
December 10, 2019 12:25 IJMPA S0217751X19502099 page 1

Alleviating the B̄ → Dτντ and B̄ → D
∗
τντ puzzle in the MSSM

Dris Boubaa,∗,†,‡,§ Shaaban Khalil‡,¶ and Stefano Moretti∗,‖

∗School of Physics and Astronomy, University of Southampton,

Highfield, Southampton SO17 1BJ, UK
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We show that Supersymmetric effects driven by penguin contributions to the b → cτντ
transition are able to account simultaneously for a sizeable increase of both branching
ratios of B̄ → Dτν̄τ and B̄ → D∗τ ν̄τ with respect to the Standard Model predic-
tions, thereby approaching their experimentally measured values. We emphasize that a
light chargino and neutralino, with masses less than 300 GeV, in addition to a large
stau/sneutrino mass and a large tan β, are essential for enhancing the effect of the
lepton penguin τντW±, which is responsible for the improved theoretical predictions
with respect to current data.
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1. Introduction

Rare B-decays provide a good opportunity for probing New Physics (NP) Beyond

the Standard Model (BSM). In fact, experimental studies of flavor at (Super-)B-

factories (BaBar and Belle) and LHCb are complementary to the direct search for

NP at the Large Hadron Collider (LHC). The origin of flavor and Charge-Parity

(CP) violation is one of the most profound open questions in particle physics.
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Most extensions of the SM, wherein the latter is embedded as a low energy effec-

tive theory, include new sources of flavor and CP violation. Supersymmetry (SUSY)

is one promising candidate for BSM physics which has these characteristics, partic-

ularly if the soft SUSY-breaking terms are nonuniversal.

A deviation from the SM expectations in the ratios has been recently reported

R(D) =
BR(B̄ → Dτν̄τ )

BR(B̄ → Dlν̄l)
, R(D∗) =

BR(B̄ → D∗τ ν̄τ )

BR(B̄ → D∗lν̄l)
, (1)

where l refers to either electron or muon. On the one hand, between 2015 and 2017,

the Belle collaboration1–4 has reported the following results:

R(D)Belle = 0.375± 0.064 , (2)

R(D∗)Belle
ave = 0.288± 0.019 . (3)

On the other hand, the BaBar collaboration found that5

R(D)BaBar = 0.440± 0.072 , (4)

R(D∗)BaBar = 0.332± 0.030 . (5)

In addition, the LHCb collaboration has announced the following value for R(D∗):6

R(D∗)LHCb = 0.336± 0.027± 0.030 . (6)

Therefore, the overall combined average is given by7

R(D) = 0.403± 0.040 , (7)

R(D∗) = 0.310± 0.015 , (8)

which deviate by ∼ 1.7σ for R(D) and ∼ 3.9σ for R(D∗) from the SM expectations

that are given by8–10

R(D)SM = 0.305± 0.012 , (9)

R(D∗)SM = 0.252± 0.004 . (10)

These deviations, if confirmed, could be important hints for NP, especially because

the SM results for R(D) and R(D∗) are essentially independent of the parametriza-

tion of the hadronic matrix elements.

As the semileptonic decay b → cτντ takes place in the SM at tree-level, it is

naively expected that any BSM contribution would be subdominant, even those em-

bedding a charged Higgs boson entering at tree-level, since MH± ≥ MW± . Indeed,

it is notoriously challenging to account for large deviations from the SM rates. This

has been shown explicitly in some SM extensions.11–15 In particular, it was empha-

sized that in 2-Higgs Doublet Models (2HDMs) the above experimental results for

R(D) and R(D∗) cannot be simultaneously explained.

1950209-2



December 10, 2019 12:25 IJMPA S0217751X19502099 page 3

Alleviating the B̄ → Dτντ and B̄ → D∗τντ puzzle in the MSSM

In this paper, we argue that SUSY contributions, as described in the Minimal

Supersymmetric Standard Model (MSSM) with nonuniversal soft SUSY-breaking

terms, might help to explain the discrepancy between the experimental results for

B̄ → Dτντ and B̄ → D∗τντ and the corresponding SM expectations. For the first

time in literature, to our knowledge, we consider here all contributions up to next-to-

leading order (NLO) within the MSSM: tree-level ones due to charged gauge boson

and Higgs exchange as well as one-loop ones due to bubbles, triangles (penguins)

and boxes onset by the exchanges of 2HDM states (i.e. γ, Z, W±, H±, h0, H0 and

A0) alongside the SUSY ones due to gauginos (charginos and neutralinos) and

sfermions (squarks, sleptons and sneutrinos). Our results ameliorate the situation

with respect to the aforementioned data, yet even higher orders may be required

to achieve full consistency.

The plan of the paper is as follows. In Sec. 2, we describe the calculation in some

detail in terms of helicity amplitudes and corresponding observables. In Sec. 3, we

introduce the Wilson coefficients needed for the calculation. Then we describe the

experimental constraints enforced and illustrate our numerical analysis. We finally

conclude in Sec. 6.

2. Model Independent Contributions to R(D) and R(D∗)

The effective Hamiltonian for b → clν̄l is given by

Heff =
4GFVcb√

2

[

(1 + gVL)[c̄γµPLb][l̄γµPLνl] + gVR[c̄γµPRb][l̄γµPLνl]

+ gSL[c̄PLb][l̄PLνl] + gSR[c̄PRb][l̄PLνl] + gT [c̄σ
µντPLb][l̄σµνPLνl]

]

, (11)

where GF is the Fermi coupling constant, Vcb is the Cabibbo–Kobayashi–Maskawa

(CKM) matrix element between charm and bottom quarks while PL/R = (1− /

+ γ5)/2. Further, gi is defined in terms of the Wilson coefficients (see Ref. 16 for

prospects of extracting these using optimal observables) Ci as

gi =
CSUSY

i

CSM
, i ≡ V L, V R, SL, SR, T (12)

with CSM = 4GFVcb√
2

. Therefore, the full amplitude B̄ → Dlν̄l takes the form

M = Mλ
D(∗) ,λl

SM +Mλ
D(∗) ,λl

S(L,R) +Mλ
D(∗) ,λl

V (L,R) +Mλ
D(∗) ,λl

T , (13)

where λl is the helicity of the lepton l. The D(∗)-meson is taken to be either a spin-0

D-meson, with λD = 0, or a spin-1 D∗-meson, with λD∗ = ±, 0.

Furthermore, one can define both observables R(D) and R(D∗) as follows:

R(D) =
Γ(B̄ → Dτντ )

Γ(B̄ → Dlνl)
, R(D∗) =

Γ(B̄ → D∗τντ )

Γ(B̄ → D∗lνl)
. (14)

1950209-3



December 10, 2019 12:25 IJMPA S0217751X19502099 page 4

D. Boubaa, S. Khalil & S. Moretti

Using the explicit formulae of the hadronic and leptonic amplitudes in Refs. 8,

9, 17–20 (when the l contribution is assumed to be described by the SMa) and upon

fixing the SM parameters as well as the form factors involved in the definition of

the matrix elements to their central values as in Ref. 5, we can cast the explicit

dependence of R(D) and R(D∗) upon the Wilson coefficients in the MSSM as

follows:

R(D) = R(D)SM
[

0.981|gSR + gSL|2 + |1 + gVL + gVR|2 + 0.811|gT |2

+ 1.465Re
[

(1 + gVL + gVR)× (gSR + gSL)
∗]

+ 1.074Re
[

(1 + gVL + gVR)g
∗
T

]]

, (15)

R(D∗) = R(D∗)SM
[

0.025|gSR − gSL|2 + |1 + gVL|2 + |gVR|2 + 16.739|gT |2

+ 0.094Re
[

(1 + gVL + gVR)× (gSR − gSL)
∗]+ 6.513Re

[

gVRg
τ∗
T

]

− 4.457Re
[

(1 + gVL)g
∗
T

]

− 1.748Re
[

(1 + gVL)g
∗
VR

]]

. (16)

Thus, in case of a dominant scalar contribution (and negligible vector and tensor

ones), it is clear that R(D∗) cannot be significantly larger than the SM expectation,

due to the smallness of the coefficient of this contribution, unless |gSR−gSL| is much

larger than 1 (i.e. CSUSY
S > CSM), which is not possible. Recall that gSR is larger

than gSL and receives a contribution at the tree-level via charged Higgs boson (H±)

exchange that yields

gSR =
−mbmτ tanβ

2

M2
H±

. (17)

This conclusion is confirmed in Fig. 1, where we display the regions in the

(gSL, gSR) plane that can accommodate the experimental results of R(D) and

R(D∗) within 1σ and 2σ confidence level (CL), for e.g. Belle, the experiment with

predictions closer to the SM. From this figure, it is clear that the scalar contri-

bution alone cannot account for both R(D) and R(D∗) simultaneously. In order

to get R(D) and R(D∗) within 2σ of the aforementioned average results from the

various experiments, (gSL, gSR) should lie between [−2.32,−0.77] and [−0.39, 2.03],

respectively. In these conditions, either gSL or gSR is larger than 1, which is not

possible.

In case of a dominant vector contribution, as shown from the allowed regions of

(gVL, gVR) in Fig. 1, one gets R(D) and R(D∗) inside the 2σ region of the averages

aThis assumption is made here only for convenience, so as to write model independent analytical
formulae. In the next sections though, SUSY contributions are analyzed for all processes: B̄ →

Dτντ and B̄ → Dlνl, i.e.

R(D) =
BR(B → Dτν)SM+SUSY

BR(B → Dlν)SM+SUSY
.

In presence of experimental constraints on BR(B̄ → Dlνl), which are in fact quite consistent with
the SM results, i.e. BR(B → Dlν)SM+SUSY is within the experimental range of the measured
BR(B → Dlν) (similar arguments hold for the B∗ rates).
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Fig. 1. (Color online) The allowed regions in the (gSL, gSR) (left) and (gVL, gVR) (right) planes
by the 1σ and 2σ experimental results on R(D) (magenta) and R(D∗) (blue) of the combined
average.

if (gVL, gVR) varies between (0.05, 0.02) and (0.15, 0.10), respectively. Furthermore,

it is remarkable that, unlike the scalar contribution, a small vector contribution,

gVL ∼ O(0.1) and gVR ∼ O(0.01), can induce significant enhancement for both

R(D) and R(D∗), e.g. R(D) ∼ 0.336 and R(D∗) ∼ 0.277 if gVL ∼ 0.05 and gVR ∼ 0,

which, as we will see, are quite plausible values in the MSSM. Finally, the tensor

contribution, which is typically quite small, may affect only R(D∗).

3. SUSY Contributions to b → cτντ

The SUSY contributions to gVL are generated from the penguin corrections to the

vertex W±lνl (l = e, µ, τ) through the exchange of charginos and neutralinos along-

side sleptons and sneutrinos, respectively, as displayed in Fig. 2. Our calculation

is based on FlavorKit,21 SARAH22 and SPheno,23 although the dominant penguin

corrections were also derived analytically. Renormalization is performed at one loop

using the DR scheme (following SARAH and SPheno) including the full momentum

dependence for any SUSY and Higgs state. As a cross-check of the implementation,

we have explicitly verified that, while our loop integrals for the two and three point

functions depend upon the renormalization scale, such a dependence drops out in

the computation of physical observables. In fact, it can be extracted from our equa-

tions that the loop corrections scale with v2/M2
SUSY, so that, in the limit of very

large MSUSY, the loop effects go to zero, hence R(D) and R(D∗) approach their

SM values. In order to have sizable loop functions, we will enforce on our scans the

condition mχ0
1
≈ mχ−

1
. 500 GeV.

Let us now try to decode our results, by concentrating on the Wilson coefficient

CVL, which sees contributions induced by the penguin topologies in Fig. 2. First,

we can confirm that the graph with neutral Higgs bosons is small while the other
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Fig. 2. Triangle diagrams (penguins) contributing to, e.g. b → c(τ, e)ν(τ,e) affecting the leptonic
vertex.

two are roughly comparable. Thus, the emerging CSUSY
VL term is essentially

CSUSY
VL = C τ̃

VL + C ν̃
VL + C

(A0,H0,h0)
VL , (18)

where

C τ̃
VL =

ΓL
χ̃−

j
νlI τ̃

∗
i

ΓR
l̄I χ̃0

k
τ̃i
ΓL
c̄bW−

16π2M2
W±

[

ΓR
χ̃+
j
χ0
k
W−mχ̃−

j
mχ̃0

k
C0

(

m2
χ̃0
k
,m2

χ̃−

j

,m2
τ̃i

)

− ΓL
χ̃+
j
χ̃0
k
W−

(

B0

(

m2
χ̃−

j

,m2
χ̃0
k

)

− 2C00

(

m2
χ̃0
k
,m2

χ̃−

j

,m2
τ̃i

)

+m2
τ̃iC0

(

m2
χ̃0
k
,m2

χ̃−

j

,m2
τ̃i

))]

, (19)

C ν̃
VL =

ΓL
νlI χ̃

0
k
ν̃∗
i

ΓR
χ̃−

j
l̄I ν̃i

ΓL
c̄bW−

16π2M2
W±

[

−ΓL
χ̃+
j
χ0
k
W−mχ̃−

j
mχ̃0

k
C0

(

m2
χ̃−

j

,m2
χ̃0
k
,m2

ν̃i

)

+ ΓR
χ̃+
j
χ̃0
k
W−

(

B0

(

m2
χ̃0
k
,m2

χ̃−

j

)

− 2C00

(

m2
χ̃−

j

,m2
χ̃0
k
,m2

ν̃i

)

+m2
τ̃iC0

(

m2
χ̃−

j

,m2
χ̃0
k
,m2

ν̃i

))]

, (20)

CA0

VL =
2ΓL

l̄νlH−Γ
R
l̄lA0ΓA0H+W−ΓL

c̄bW−

16π2M2
W±

C00

(

m2
l ,M

2
H− ,m2

A0

)

. (21)

The Wilson coefficients C
(H0,h0)
VL can be obtained from CA0

VL by exchanging A0 ↔
(H0, h0). The corresponding couplings are given by

ΓL
χ̃−

j νlI τ̃
∗
i

= g

(

−ZiI∗
L Zj1∗

− +
mlI√

2MW± cosβ
Z

i(I+3)∗
L Zj2

−

)

, (22)

ΓR
l̄I χ̃0

k
τ̃i

=
g√
2

(

ZiI∗
L

(

tan θWZk1∗
N + Zk2∗

N

)

− mlI

MW± cosβ
Z

i(I+3)∗
L Zj3∗

N

)

, (23)
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ΓL
χ̃0
k
νlI ν̃i

=
g√
2
ZiI∗
ν

(

tan θWZk1
N − Zk2

N

)

, (24)

ΓR
l̄Iχ

−

j
ν̃i

= −gZj1∗
+ ZiI

ν , ΓL
c̄bW+ = − g√

2
Vcb , (25)

ΓL
χ̃+
j
χ̃0
k
W− = −g

(

Zj1
− Zk2∗

N +
1√
2
Zj2
− Zk3∗

N

)

, (26)

ΓR
χ̃+
j
χ̃0
k
W− = −g

(

Zj1
+ Zk2∗

N − 1√
2
Zj2
+ Zk4∗

N

)

, (27)

ΓL
τ̄νH− =

gmτ√
2MW± cosβ

Z21
H− , ΓA0H+W− =

g

2
, (28)

ΓR
τ̄τA0 = − 1√

2

gmτ√
2MW± cosβ

Z21
A , (29)

ΓR
τ̄τH0 =

1√
2

gmτ√
2MW± cosβ

Z21
H , (30)

ΓH0H+W− =
g

2

(

Z22
H Z22

H− − Z21
H Z21

H−

)

, (31)

where ZL, Zν , Z±, ZN and Z(H,A,H−) are the diagonalizing matrices for slepton,

sneutrino, chargino, neutralino and Higgs masses, respectively. In addition, the loop

functions are given by24

B0(x, y) = ηε − 1 + log
x

µ̃2
− y log y

x

x− y
, (32)

C0(x, y, z) =
1

y − z

(

y log y
x

y − x
+

z log z
x

x− z

)

, (33)

C00(x, y, z) =
1

4

(

ηε − log
x

µ̃2

)

+
3

8
+

1

y − z

(

y2 log y
x

4(x− y)
− z2 log z

x

4(x− z)

)

, (34)

with ηε = 2
d−4 + log 4πγE , which is subtracted in the DR scheme, and µ̃ the

renormalization scale with the dimensions of mass. Here, a few comments are in

order. (i) The loop function C0

(

m2
χ̃0
k

,m2
χ̃−

j

,m2
τ̃i

)

→ 0 if mχ̃0
k
, mχ̃−

j
and mτ̃i →

∞, as expected in the SUSY decoupling limit. (ii) If mχ̃0
k
and mχ̃−

j
are of order

O(100) GeV and mτ̃i is very heavy, then m2
τ̃i
C0

(

m2
χ̃0
k

,m2
χ̃−

j

,m2
τ̃i

)

does not vanish,

as this is not a decoupling limit since a light fermionic SUSY spectrum is assumed.

Specifically, for mχ̃0
k
≃ mχ̃−

j
, the loop function takes the form

C0

(

m2
χ̃0
i
,m2

χ̃0
i
,m2

τ̃j

)

=
1

(

m2
χ̃0
i

−m2
τ̃j

)2

[

m2
χ̃0
i
−m2

τ̃j +m2
τ̃j log

(

m2
τ̃j

m2
χ̃0
i

)]

. (35)
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Fig. 3. Behavior of the last term in Eq. (19), m2
τ̃C0

(

m2
χ̃0 ,m

2
χ̃− ,m2

τ̃

)

, with mτ̃ for degenerate

(left) and nondegenerate (right) chargino/neutralino masses.

(iii) From Eq. (19), one can see that if C0

(

m2
χ̃0
i

,m2
χ̃0
i

,m2
τ̃j

)

6= 0, then the last term,

proportional to m2
τ̃j
C0

(

m2
χ̃0
i

,m2
χ̃0
i

, m2
τ̃j

)

, gives the dominant effect to C τ̃
VL. (iv) The

typical values of the couplings ΓR
χ̃−

j
l̄I ν̃i

, ΓL
νlI χ̃

0
k
ν̃∗
i

, ΓL
c̄bW− , ΓL

χ̃+
j
χ̃0
k
W−

and the loop

function C0

(

m2
χ̃0
i

,m2
χ̃0
i

,m2
τ̃j

)

at mχ̃0
i
∼ O(100) GeV and mτ̃j ∼ O(1) TeV imply

that C τ̃
VL ∼ 2×10−3

16π2M2

W±

m2
τ̃j
C0

(

m2
χ̃0
i

,m2
χ̃0
i

,m2
τ̃j

)

is of order 10−8 GeV−2. Therefore,

gVL = C τ̃
VL/C

SM, where CSM ∼ 1.38× 10−6 GeV−2, can be of order 0.01.

In Fig. 3 we show the behavior of the last term in Eq. (19),

m2
τ̃iC0

(

m2
χ̃0
k
,m2

χ̃−

j

,m2
τ̃i

)

,

as function of mτ̃ with several examples of degenerate (left panel) and nonde-

generate (right panel) chargino/neutralino masses. As it can be seen from this

figure, the largest corrections are obtained if chargino/neutralino masses are less

than 200 GeV and the stau mass is larger than 1 TeV. It is further clear that, in

the light gaugino mass regime, chargino/neutralino mass degeneracy is not a pre-

condition for enhancing the aforementioned loop contribution, it so happens that

there can be spectrum configurations in the scan when they are close in mass, as

allowed by experimental constraints.25 We stress again that, even if the stau is very

heavy, we are not in the decoupling limit, where SUSY effects must diminish, since

charginos/neutralinos are kept quite light.

Finally, the Wilson coefficients CSUSY(W → lν) and CSUSY(τ → ντ lνl) can be

obtained from Eqs. (18) and (19) as follows:

CSUSY(τ → ντ lνl) =
ΓL
ν̄ττW−

ΓL
c̄bW−

(

C τ̃
VL + C ν̃

VL

)

, (36)

CSUSY(W → lν) =
M2

W±

ΓL
c̄bW−

(

C τ̃
VL + C ν̃

VL

)

, (37)
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where the loop functions are given by the following changes:

C0

(

0, 0, 0,m2
χ0
k
,m2

χ−

j

,m2
ν̃i

)

→ C0

(

m2
W , 0, 0,m2

χ0
k
,m2

χ−

j

,m2
ν̃i

)

, (38)

C00

(

0, 0, 0,m2
χ0
k
,m2

χ−

j

,m2
ν̃i

)

→ C00

(

m2
W , 0, 0,m2

χ0
k
,m2

χ−

j

,m2
ν̃i

)

, (39)

B0

(

0,m2
χ0
k
,m2

χ−

j

)

→ B0

(

m2
W ,m2

χ0
k
,m2

χ−

j

)

, (40)

where the loop functions of nonvanishing MW± can be found in Refs. 26 and 27.

4. Experimental Constraints

Let us now discuss experimental limits coming from other processes. In this regard,

one should consider a possible constraint due to the direct measurement of the W±

boson decay widths that leads to28

Γ(W → τν)

Γ(W → eν)
= 1.043± 0.024 . (41)

The SM prediction for this ratio is given by ∼ 0.999267, which is consistent with

the measured value. Similarly, constraints can also be obtained from28

Γ(W → τν)

Γ(W → µν)
= 1.07± 0.026 , (42)

with which the SM is also consistent. The decay width of W → lν with SUSY

contributions can be parametrized as

Γ(W → lν) =
GFM

3
W±

6
√
2π

(

1− m2
l

M2
W±

)2(

1 +
1

2

m2
l

M2
W±

)

|1 + g′VL|2 , (43)

where g′VL = CSUSY(W → lν)/CSM(W → lν) and CSM(W → lν) = g/
√
2. An-

other important experimental measurement connected with lepton universality in

τ decay that should be considered here is of τ → ντ lνl with l = e, µ, which is given

by the relation31,b

(

gµ
ge

)2

τ

=
BR(τ → µντνµ)

BR
(

τ → eντνe
)

f
(

m2
e/m

2
τ

)

f
(

m2
µ/m

2
τ

) . (44)

In the SM, the universal gauge interaction implies that

Γ(τ → µντνµ)

Γ(τ → eντνe)
=

f
(

m2
µ/m

2
τ

)

f
(

m2
e/m

2
τ

) = 0.9726 , (45)

bIn the presence of NP, the deviations from τ − µ − e universality can be studied via the ratios
of the branching fractions BR(τ → ντ eνe)/BR(µ → νµeνe), BR(τ → ντµνµ)/BR(µ → νµeνe),
BR(τ → ντµνµ)/BR(τ → ντ eνe), which lead to appropriate ratios Gτ,e/Gµ,e, Gτ,µ/Gµ,e and
Gτ,µ/Gτ,e, respectively. Here we use a different convention from those in Refs. 29 and 30, i.e. we
take the ratio (gµ/ge)τ rather than (Gτ,µ/Gτ,e).
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where f(x) = 1 − 8x + 8x3 − x4 − 12x2 log(x). The current experimental result

for this ratio is 0.979 ± 0.004,28 which gives
( gµ
ge

)

τ
= 1.0032 ± 0.002. With SUSY

contributions, Eq. (45) can be written as

Γ(τ → µντνµ)

Γ(τ → eντνe)
= 0.9726

|1 + gµVL|2
|1 + geVL|2

, (46)

where glVL = CSUSY(τ → ντ lνl)/C
SM(τ → ντ lνl) with CSM(τ → ντ lνl) = 2

√
2GF .

(As we will show, this imposes stringent constraints on SUSY contributions to

glVL.) Furthermore, SUSY loop effects induce a correction to the Fermi coupling

via a potential breaking of µ− e universality. In fact, using Eqs. (44) and (46), for

glVL ≪ 1 one can find

(

gµ
ge

)

τ

=

∣

∣1 + gµVL

∣

∣

∣

∣1 + geVL

∣

∣

=
∣

∣1 + ∆gµ,eVL

∣

∣ , (47)

where ∆gµ,eVL = gµVL − geVL, so that the above experimental constraints impose that

0.0012 ≤ ∆gµ,eVL ≤ 0.0052. In our work, we will enforce gµ = ge = g, which satisfies

Eq. (47).

Moreover, there are other constraints that could be considered here, coming from

Lepton Flavor Violating (LFV) processes such as BR(τ− → µ−γ) < 4.5 × 10−8

and BR(τ− → e−γ) < 1.2 × 10−7 (Ref. 32) as well as BR(H → eτ) < 1.04%,

BR(H → µτ) < 1.43 and BR(Z → µτ) < 1.69× 10−5 (Ref. 33). However, we will

focus on the strongest one, which is indeed from the decay τ → lντνl, as shown

above, essentially because it carries the same one-loop corrections of the vertex

W±lνl within the process b → clνl. Furthermore, the lifetime of the Bc meson

may also impose important constraints on the scalar contributions, gSL and gSR.

However, this observable is less sensitive to the vector contribution, gVL, which is

playing an important role in enhancing R(D) and R(D∗) in our analysis. This has

been discussed in detail in Ref. 35. In summary, in our scans, only points respecting

all the above limits are retained. In particular, compliance with Eqs. (41) and (42)

ensures that our parameter space automatically satisfies also constraints from the

ratio Γ(τ → eνν)/Γ(µ → eνν). Indeed, the SUSY contribution to µ → eνν leads

to BR(µ → eνν) ≈ 100%, which is consistent with the experimental result given in

Ref. 28.

Furthermore, the oblique electroweak (EW) parameters S, T and U34 are useful

to constraint NP that enters in self-energy corrections to a gauge boson propagator,

denoted by Πij , which represents the transition ij (i, j = W,Z, γ), as we have28

α̂(MZ)T =
ΠNP

WW (0)

M2
W

− ΠNP
ZZ (0)

m2
Z

, (48)

where α̂(MZ) is the renormalized electromagnetic (EM) coupling constant at the

MZ scale. Here, we are interested in the T parameter. In this respect, a related
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Table 1. Loop functions values which correspond to the benchmark
given in Table 2, where the renormalization scale, µ̃, has been fixed
at 1 GeV.

Loop function b → cτντ W → τντ

C00 −1.2880 −1.2879

C0 2.910× 10−7 GeV−2 2.931× 10−7 GeV−2

B0 0.0281 0.0715

quantity known as the ρ parameter is defined as28

ρ− 1 =
1

1− α̂(MZ)T
≃ α̂(MZ)T . (49)

In this work we take ∆ρexp = ρ − 1 = 0.0006 ± 0.0009, which is extracted

from the data on the T parameter (0.08 ± 0.12).28 While in the SM ρ ≡ ρ0 =

M2
W±/M2

Z cos θW = 1 at tree-level, in our scan we obtain ∆ρSUSY ∈ [0.0001, 0.0006].

5. Numerical Analysis

We now perform the numerical evaluations in the light of the results in Secs. 2

and 3 in presence of experimental constraints. Since our focus is on the penguin

contributions, let us look at the relevant loop functions entering the numerics. Let

us begin with those of W → lν, from the formulae given in Eq. (38) one can notice

that the loop functions of the decay W → lν are approximately equal to those

associated with b → clν: this is made evident in Table 1, for the case of the MSSM

benchmark of Table 2, which is one yielding sizable corrections to both R(D) and

R(D∗).

In essence, the one-loop SUSY effects onto the W± widths are scaled by the W±

squared mass while in R(D) and R(D∗) only by the meson squared masses. These

suppressions are crucial for satisfying the experimental constraints on the ratio of

the W± decay widths so that the results of R(D) and R(D∗) can be accommodated

in unexcluded regions of the MSSM parameter space.

As mentioned, the enhancement of C τ̃
VL occurs mostly when the chargino

and neutralino masses are light and similar, in addition to large tanβ and stau

mass. Therefore, in our scan, we focus on benchmark points where the gaugino

soft masses are given by M1, M2 ∈ [110, 500] GeV and M3 = 2 TeV. Also,

we choose the µ parameter ∈ [100, 500] GeV, m2
A0 ∈ [0, 25 × 104] GeV2, the

A terms ∈ [−2000,−100] GeV, MQ̃, MŨ and MD̃ are fixed in the TeV range

while the slepton soft mass terms mL̃ and mẼ ∈ [100, 5000] GeV. Finally, we take

tanβ ∈ [5, 70]. (As mentioned, the aforementioned Table 2 shows an example yield-

ing large corrections to our two observables extracted from such a scan.)

In Figs. 4 and 5 we display the regions in the (gSL, gSR) and (gVL, gVR) planes,

respectively, that can accommodate the BaBar, Belle and combined average results

on R(D) and R(D∗) within a 1σ and 2σ CL. We also compare these ranges with
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Table 2. Illustrative benchmark point yielding large R(D) and R(D∗) values.

Parameter Value

tanβ 55.22

µ 432.05 GeV

M2
A0 (tree) 2.5× 105 GeV

M1, M2, M3 326.59, 169.40, 2000 GeV

M
Ũ
, M

D̃
, M

Q̃
1 TeV (all)

M
Ẽ1

, M
Ẽ2

, M
Ẽ3

1693.70, 4926.31, 1033.35 GeV

M
L̃1

, M
L̃2

, M
L̃3

4877.02, 4910.96, 4446.64 GeV

At, Ab, Aτ −1806.83, −1887.99, 0 GeV

mχ̃0
1
, m

χ̃
−
1

173.07, 173.52 GeV

mν̃1 , mτ̃1 4466.25, 4467.40 GeV

Mh0 , MH0 , MA0 , MH− 125.13, 441.72, 441.87, 405.60 GeV

ΓL

χ̃
−
1 ντ τ̃∗

1

0.629

ΓR

χ̃
−
1 τ̄ ν̃1

−0.656

ΓR
τ̄χ̃0

1 τ̃1
−0.447

ΓL
ντ χ̃0

1 ν̃
∗
1

−0.460

ΓR

χ̃
+
1 χ0

1W
−

−0.642

ΓL

χ̃
+
1 χ0

1W
−

−0.642

ΓL
c̄bW− −0.019

gτ̃VL(b → cτ ν̄τ ) 0.021

gν̃VL(b → cτ ν̄τ ) 0.022

gH
0,A0,H−

VL
(b → cτ ν̄τ ) 0.0042

gVL(b → cτ ν̄τ ) = gτ̃VL + gν̃VL + gH
0,A0,H−

VL 0.047

gVL(b → ceν̄e) 0

R(D) 0.335

R(D∗) 0.276

the MSSM expectations at the one-loop level. It is clear that the contributions

that induce vector operators, like the aforementioned triangle diagrams, lead to

R(D) and R(D∗) close to or potentially within the experimental regions. We can

also conclude that gVL must be nonvanishing and of order 0.1 while gVR can be

in the range [−0.1, 0.1]. This conclusion is explicitly confirmed in Fig. 6, where

the correlation between the SUSY contribution to gVL and gVR is presented. As
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Fig. 6. (Color online) (Left) The correlation between the SUSY corrected values of gVL and
gVR is displayed in the right panel, where yellow points represent the configurations that yield
Γ(τ → µντνµ)/Γ(τ → eντνe) within experimental limits while the red ones are the complete
sample. (Right) The correlation between the SUSY corrected values of gSL and gSR is displayed
in the right panel.
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Fig. 7. (Color online) The correlation between R(D) and R(D∗) at tree-level (top-left) and
after the one-loop SUSY contributions through the lepton penguins (top-right) where the blue
points show the constrained ones by Γ(τ → µντνµ)/Γ(τ → eντνe). The correlation between
sneutrino and stau masses is on the bottom-left (same color scheme as on the top-right frame
with the additional yellow points representing the region with R(D) > 0.33). (Bottom-right) This
represents the correlation between chargino and neutralino masses where the colors have the same
meaning as on the bottom-left panel.

expected, gVR ∼ 0 in the MSSM, which has no right-handed vector contribution,

while gVL can be of order few percents, which can account for the Belle results

within the 1σ limit and on the borderline with the 2σ band of BaBar and average

results. Herein, SUSY contributions to gSL and gSR, which are negligibly small,

∼ 10−4, are also displayed.
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On the top-left (top-right) panel of Fig. 7 we present the correlation between

R(D) and R(D∗) at tree-level (at one-loop due to the SUSY contributions to the

lepton penguins alone). As can be seen from this plot, in presence of MSSM one-

loop corrections, R(D) can reach 0.335 while R(D∗) extends to 0.277, which are

results rather consistent with the Belle measurements and not that far from the

BaBar ones. This correlation can be understood from the fact that SUSY one-loop

corrections give a significant contribution to gVL only (of order 6%) and, hence,

according to Eqs. (15) and (16), both R(D) and R(D∗) are affected by the same

correction factor ∝ (1+gVL)
2 through a common Wilson coefficient. It is also worth

noting that the enhancements of R(D) and R(D∗) require a very peculiar region

of parameter space of the MSSM, especially in terms of mχ̃−

1
and tanβ, wherein,

however, all experimental and theoretical constraints sensitive to the latter two

quantities are taken into account and included in our scan and numerical analysis.

To our knowledge, these enhancements in both R(D) and R(D∗) have never been

accounted for before in any NP scenario. The dependence of R(D) and R(D∗) on

tanβ is displayed in Fig. 8. As can be seen from these plots, a larger value of

tanβ is preferred by larger values of R(D) and R(D∗). This can be understood

from Eqs. (22) and (31) that emphasize the increase of the neutralino and chargino

couplings with the τ lepton at very large tanβ.

It is also very relevant to extract the typical mass spectra which are responsible

for the MSSM configurations yielding R(D) and R(D∗) values (potentially) consis-

tent with experimental measurements, as these might be accessible during Run 3

at the LHC. As an indication, this is done in Fig. 7 (bottom-left panel) for the

case of the lightest stau and sneutrino. The plot shows a predilection of the high-

est R(D) and R(D∗) points for MSSM parameter configurations with mτ̃1 > mν̃1

while the absolute mass scale can cover the entire interval from 200 GeV to 5 TeV.

However, the points with R(D) > 0.33 require a rather large τ̃1 mass (say above

2.5 TeV) irrespectively of the ν̃1 one as well as large tanβ. This signals that there

occurs an interplay between mass suppressions in the loops and enhancements in

the couplings.
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Fig. 8. R(D) and R(D∗) as functions of tanβ. The scan over the parameter space is performed
as in the previous plots.
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6. Conclusions

In summary, we have proven that the MSSM has the potential to alleviate the

anomaly presented by recent data produced by especially Belle and (somewhat less

so) BaBar, which revealed a rather significant excess above and beyond the best

SM predictions available in the observed BR(B̄ → Dτν̄τ ) and BR(B̄ → D∗τ ν̄τ )

relative to the light lepton cases. Most remarkably, within the MSSM, the excesses

can be explained simultaneously, needless to say, over the same regions of parameter

space. Further, the latter do not correspond to any particularly fine-tuned dynamics

(possibly apart from light neutralino/chargino masses, plus a preference for heavy

τ̃1 and ν̃1, recall Fig. 7) and a more than acceptable agreement with the Belle

(especially) and BaBar (to a lesser extent) data can be reached via MSSM spectra

easily compatible with current experimental constraints from a variety of sources

(flavor physics, Higgs boson measurements, SUSY searches). Such a conclusion

is obtained after the first complete tree-level plus (penguin dominated) one-loop

calculation of all MSSM topologies entering the partonic b → cτντ decay process

matched with standard computational elements enabling the transition from the

partonic to hadronic level. If forthcoming data will confirm the anomalous BaBar

and Belle results, e.g. from the now running LHCb experiment at the LHC, our

findings are rather interesting since a variety of other (typically non-SUSY) models

have been tried and tested as a possible explanation of the B̄ → Dτν̄τ and B̄ →
D∗τ ν̄τ anomalies and failed. On the one hand, our results might then be taken as

a circumstantial evidence of SUSY. On the other hand, they might pave the way

to its direct discovery as they point to spectra in the sparticle sector of the MSSM

that can be accessed at Run 3.
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