NewSpace and its implications for space debris models
NewSpace and its implications for space debris models
Until two decades ago, the dominance of the space industry by national governments shaped the key characteristics of the spacecraft population and hence the space debris models used to anticipate future orbital populations. The rise of `NewSpace’ with the growth of private sector involvement has brought innovations, disrupting the status quo and changing to the physical characteristics and mission orbits of commercial spacecraft. Analysis of shifts in mass and launch traffic for spacecraft launched between 1980 and 2019 (source: ESA’s DISCOS database) suggests significant impacts for debris modelling. Results emphasised the ongoing change towards a more commercially focused space sector. 742 spacecraft were launched in the 1980s, of which 34 were labelled as commercial. By contrast, there were 1292 commercial missions out of 2325 launched in the 2010s - an increase from 4.6% to 55.6%. These increases correlate with a rise in the number of different organisations operating spacecraft and a clear trend can be seen towards smaller, lower mass spacecraft. This is likely to alter the distributions of fragments generated in collisions compared with the distributions obtained from empirical methods, such as the NASA Standard Breakup model, derived from the fragmentation of larger spacecraft in the 600-1,000 kg range. A study of observed breakup events indicates that the NASA Standard Breakup Model over-estimates the number of large debris released during fragmentations due to collisions or explosion of satellites while also under-estimating the number of small debris. It is believed that this will have a significant impact on the outcomes of simulations of the future debris environment where these fragmentation modes are expected to dominate the generation of new debris over the propulsion based explosions which have been historically prevalent.
International Astronautical Federation
Diserens, Samuel
cf4d9d41-f067-4ee1-8fda-d691c46061aa
Lewis, Hugh
e9048cd8-c188-49cb-8e2a-45f6b316336a
Fliege, Joerg
54978787-a271-4f70-8494-3c701c893d98
22 October 2019
Diserens, Samuel
cf4d9d41-f067-4ee1-8fda-d691c46061aa
Lewis, Hugh
e9048cd8-c188-49cb-8e2a-45f6b316336a
Fliege, Joerg
54978787-a271-4f70-8494-3c701c893d98
Diserens, Samuel, Lewis, Hugh and Fliege, Joerg
(2019)
NewSpace and its implications for space debris models.
In 70th International Astronautical Congress (IAC), Washington D.C., United States.
International Astronautical Federation.
10 pp
.
Record type:
Conference or Workshop Item
(Paper)
Abstract
Until two decades ago, the dominance of the space industry by national governments shaped the key characteristics of the spacecraft population and hence the space debris models used to anticipate future orbital populations. The rise of `NewSpace’ with the growth of private sector involvement has brought innovations, disrupting the status quo and changing to the physical characteristics and mission orbits of commercial spacecraft. Analysis of shifts in mass and launch traffic for spacecraft launched between 1980 and 2019 (source: ESA’s DISCOS database) suggests significant impacts for debris modelling. Results emphasised the ongoing change towards a more commercially focused space sector. 742 spacecraft were launched in the 1980s, of which 34 were labelled as commercial. By contrast, there were 1292 commercial missions out of 2325 launched in the 2010s - an increase from 4.6% to 55.6%. These increases correlate with a rise in the number of different organisations operating spacecraft and a clear trend can be seen towards smaller, lower mass spacecraft. This is likely to alter the distributions of fragments generated in collisions compared with the distributions obtained from empirical methods, such as the NASA Standard Breakup model, derived from the fragmentation of larger spacecraft in the 600-1,000 kg range. A study of observed breakup events indicates that the NASA Standard Breakup Model over-estimates the number of large debris released during fragmentations due to collisions or explosion of satellites while also under-estimating the number of small debris. It is believed that this will have a significant impact on the outcomes of simulations of the future debris environment where these fragmentation modes are expected to dominate the generation of new debris over the propulsion based explosions which have been historically prevalent.
Text
[IAC-19-A6.2.6] NewSpace and its Implications for Space Debris Models
- Author's Original
Restricted to Repository staff only
Request a copy
More information
Published date: 22 October 2019
Identifiers
Local EPrints ID: 437256
URI: http://eprints.soton.ac.uk/id/eprint/437256
PURE UUID: 18a0c63e-1d49-46f9-b456-dd2864130f04
Catalogue record
Date deposited: 22 Jan 2020 17:33
Last modified: 17 Mar 2024 03:12
Export record
Contributors
Author:
Samuel Diserens
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.
View more statistics