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Abstract: The neutral axis depth is adopted by many codes of practice as an indicator 

of flexural ductility to quantify moment redistribution in continuous prestressed 

concrete (PSC) beams. Moment redistribution, however, does not only depend on 

ductility but also on differences in stiffness along the length of the beam. Therefore, 

the effectiveness of using solely the neutral axis depth for redistribution quantification 

needs to be further evaluated. This study examines moment redistribution against 

neutral axis depth in two-span PSC beams with external CFRP tendons by applying a 

validated finite element model. The main variable is the content of non-prestressed 

reinforcement either at the positive or negative moment zone to generate varying 

stiffness differences between critical sections. The study shows that the use of neutral 

axis depth as a key parameter is inadequate when quantifying moment redistribution 

in these beams. Modifications of CSA, BSI and EC2 equations are proposed by 

introducing a parameter reflecting the impact of stiffness difference. The proposed 

equations show much better fit to the actual redistribution than that provided by 

equations in current design codes. 
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1. Introduction 

Because of the advantages of excellent corrosive resistance, non-magnetic 

property and high strength-to-weight ratio, fibre reinforced polymer (FRP) is 

increasingly used in the field of civil engineering [1]. Numerous works on FRP 

reinforced/strengthened structures have been reported in recent years [2-6]. Of 

different composite materials, carbon FRP (CFRP) is most resistant to creep rupture 

(i.e. sustaining about 80% of the ultimate strength) [7,8] and, therefore, this material 

appears to be the best choice for prestressing applications [9-11]. In external 

prestressing systems, the tendons are usually subject to harsh environment, thereby 

resulting in corrosive issue for conventional prestressing steel. Replacement of steel 

tendons by CFRP composites is an effective way to overcome the corrosive problem 

[12]. The use of CFRP tendons as a replacement of steel alternatives on the behaviour 

of prestressed concrete (PSC) beams with external tendons has been experimentally 

and numerically investigated [13-16]. The studies showed that CFRP tendons lead to 

similar structural behaviour of both simply supported [13,14] and continuous beams 

[15,16] in comparison with steel tendons. 

In statically indeterminate members such as continuous beams, redistribution of 

bending moments occurs once the members exhibit nonlinear behaviour. Moment 

redistribution is associated to flexural ductility. As FRP composites are brittle material, 

the ability of FRP reinforced or strengthened concrete beams to redistribute moments 

is often limited [17-19]. Such limitation can be effectively overcome by providing 

longitudinal non-prestressed steel in PSC beams with external FRP tendons [20,21]. 
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The effect of prestress level (15%-75% of the tensile failure strength of FRP tendons) 

and load pattern (symmetrical and unsymmetrical loads) on global redistribution 

behaviour of these beams was revealed [20]. More factors influencing moment 

redistribution in continuous PSC beams with external CFRP tendons were also 

examined [21]. Of various parameters investigated, the difference between the 

non-prestressed steel areas at the critical sections was found to be the most critical 

[21]. However, the impact of this parameter on the global redistribution during 

loading has not been analysed. 

The current design codes suggest an elastic analysis with limited redistribution for 

exploiting the ductile capacity of continuous members. The neutral axis depth is a key 

parameter reflecting the flexural ductility [22] and this parameter is used by many 

codes of practice (e.g. CSA [23], BSI [24] and EC2 [25]) to quantify the permissible 

moment redistribution. However, moment redistribution is not only associated to the 

ductility but, more importantly, to the stiffness difference between the critical positive 

and negative moment sections [21,26]. Therefore, the use of neutral axis depth for the 

quantification of moment redistribution needs to be further evaluated. Although a few 

studies on continuous PSC beams with external FRP tendons have been carried out 

[15,16,20,21], the redistribution behaviour of these beams has not been fully 

understood. For example, while the importance of stiffness difference is recognised 

[21,26], its influence on the global redistribution and neutral axis behaviour of 

continuous PSC beams with external FRP tendons has never been addressed. 

Although code equations using neutral axis depth for redistribution quantification are 



 4 

available [23-25], these equations may not be reasonable because of the neglect of 

stiffness difference impact. An improvement of these equations is of practical 

importance. An in-depth study addressing these important issues is therefore essential. 

In this study, moment redistribution against neutral axis depth in two-span PSC 

beams with external CFRP tendons is examined by using a validated numerical model. 

The main investigated variable is the content of non-prestressed reinforcement at 

either the positive or negative moment zone. This variable is selected so as to produce 

varying stiffness differences between the mid-span and inner support. Typical results 

in relation to global redistribution and neutral axis behaviour are presented. Several 

codes of practice that use the neutral axis depth for redistribution quantification are 

assessed. Reasonable modifications of these code equations are proposed by 

introducing a parameter describing the impact of stiffness difference. 

 

2. Numerical procedure 

2.1. Material laws 

The model recommended in EC2 [25] is used to simulate the compressive 

behaviour of concrete. The stress ( c ) versus strain ( c ) relationship is expressed as 

follows: 
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where 8cm ckf f  ; ckf  is the cylinder compressive strength (MPa); 

01.05 /c c cmk E f ; 0.31
0 ( ) 0.7 2.8c cmf  ‰ ; cE  is the modulus of elasticity (GPa). 

An elastic and linearly tension-stiffening law, as illustrated in [27], is used to simulate 
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the tensile behaviour of concrete. 

CFRP tendons are linear-elastic material, i.e. 

 f f f fE f     (2) 

where f  and f  are stress and strain for CFRP composites, respectively; fE  is 

the CFRP modulus of elasticity; ff  is the ultimate strength. 

The non-prestressed steel is linearly elastic until yielding, followed by perfectly 

plastic behaviour. The stress ( s ) versus strain ( s ) relationship is expressed by 

 Prior to yielding, s s sE   (3a) 

 After yielding, s yf   (3b) 

where sE  is the steel modulus of elasticity; yf  is the yield strength. 

2.2. Beam element 

Consider a beam element with six degrees of freedom (see Fig. 1). Assuming that 

sections remain plane during the loading process as well as ignoring shear 

deformation, the axial strain is defined by: 
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where u is the axial displacement; and v is the transverse displacement. Assume these 

displacements are linear and cubic polynomial functions, respectively. The 

relationship between element nodal loads ( eP ) and displacements ( eu ) is expressed 

by [27] 
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where i i
i

N A ; p = x/l; l is the element length;   represents the stress; A 

represents the area; Et represents the tangential modulus. The summations are used for 

describing the entire cross section consisting of divided layers represented by the 

subscript i. External prestressing contributes to the beam element by equivalent loads. 

Detailed formulation on the beam element and the treatment of external tendons can 

be found elsewhere [27]. 

2.3. Model validation 

Two continuous externally PSC beam specimens, designated as A-1 and B5, are 

selected for the investigation. Specimen A-1 was tested by Aravinthan et al. [28] and 

Specimen B5 by Du and Zhao [29]. Both specimens were of rectangular sections 

(400×150 mm for A-1 and 200×300 mm for B5), continuous over two identical spans 

each of which was subjected to either two-point (A-1) or one-point (B5) loading. 

Specimen A-1 was post-tensioned with one external steel tendon with sectional area 

of 69.7 mm2, elastic modulus of 196 GPa, yield stress of 1464 MPa and initial 

prestress of 362 MPa. Specimen B5 was post-tensioned with two external steel 

tendons with sectional area of 280 mm2, elastic modulus of 197 GPa, yield stress of 
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1420 MPa and initial prestress of 1071 MPa. More details of the specimens can be 

referred to [28,29]. In analysing the specimens, the stress-strain relationship for steel 

tendons proposed in [30] is adopted. 

Fig. 2 shows the predicted and experimental results regarding the load versus 

reaction, deflection and increase in tendon stress curves for Specimen A-1, and Fig. 3 

shows the predicted and experimental load-moment curves for Specimen B5. The 

results by nonlinear analysis correspond well with the experimental data over both the 

elastic and inelastic ranges of loading. The load-reaction and load-moment curves by 

elastic analysis deviate from the experimental data in the inelastic range of loading 

due to moment redistribution. It is noted that the deviation between the elastic 

analysis and experiment is apparent for Specimen A-1, which had obvious stiffness 

difference between the critical positive and negative moment sections. On the other 

hand, such deviation is not so apparent for Specimen B5, which had identical stiffness 

at the mid-span and inner support. This indicates that the stiffness difference between 

the critical sections plays an important role in moment redistribution in the beams. In 

the following sections, the impact of stiffness difference on moment redistribution 

against neutral axis depth in continuous PSC beams with external CFRP tendons is 

explored comprehensively. 

 

3. Numerical investigation 

The structure and section of the reference beam are illustrated in Fig. 4. The PSC 

beam with external CFRP tendons has two identical spans with a total length of 20000 
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mm. The reinforcement arrangement is as follows: ρp = 0.34%, ρs1 = ρs2 = 1.41%, ρs3 

= 0.27%, where / ( )p p pA bd  , / ( )s s pA bd  . The subscripts p, s1, s2 and s3 

represent the tendon, non-prestressed tension steel at the mid-span and inner support 

and the non-prestressed compression steel, respectively; b denotes the cross-sectional 

width; dp denotes the maximum effective tendon depth. The material properties are as 

follows: fck = 60 MPa; ff = 1840 MPa, Ef = 147 GPa, fy = 450 MPa, Es = 200 GPa. The 

initial prestress, σp0, is 1104 MPa. 

The main investigated variable is ρs1 or ρs2 so as to produce varying stiffness 

differences between the mid-span and inner support. In this section, the results for 

varied ρs1 (0.27%-4.03%) and fixed ρs2 (1.41%) are presented and discussed. 

3.1. Failure and crack mode 

Prior to failure that is caused by concrete crushing, the following phases are 

experienced sequentially in the beams with ρs1 equal to or less than 1.03%: cracks 

occurring at the inner support and then at the mid-span, yielding of non-prestressed 

tension steel at the mid-span and then at the inner support. For ρs1 equal to or greater 

than 1.41%, the order of yielding at the critical sections is reversed, namely, yielding 

occurs firstly at the inner support, followed by yielding at the mid-span. 

Fig. 5 shows the strain distribution at ultimate at the bottom and top fibres of the 

beams with different ρs1 values. The beam concrete is crushed when the specified 

ultimate compressive strain of 0.003 is reached at the mid-span. Meanwhile, the 

compressive strain at the inner support may be far below (for ρs1 = 0.27%), below (for 

ρs1 = 1.41%) or very close to its ultimate capacity (for ρs1 = 4.03%). In addition, when 
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ρs1 = 0.27%, there occurs a large tensile strain at the mid-span against slight strains 

over other positive moment regions, indicating strain or crack concentration. As ρs1 

increases, the crack width at the mid-span is significantly reduced and the crack zone 

over the positive moment region is extended. On the other hand, increasing ρs1 leads 

to increased crack width at the inner support and reduced crack zone over the negative 

moment region. 

3.2. Deformation behaviour 

Fig. 6 shows that the beams with different ρs1 values exhibit the same 

load-deflection responses until cracking. Thereafter, a higher ρs1 leads to stiffer 

structural behaviour, attributed to the higher cross-sectional stiffness over the positive 

moment region. The beam with ρs1 of 0.27% exhibits the smallest deformation 

capacity. This can be explained by the fact the inner support section is well below its 

strength capacity when the concrete at the mid-span is crushed. As ρs1 increases up to 

1.41%, the exploitation of the inner support section is improved and, therefore, the 

deformation capacity is increased. The change in deformation capacity with varying 

ρs1 appears to be not apparent when ρs1 is greater than 1.41%. This is caused by the 

combined effect of the exploitation of the inner support section and the change of 

flexural ductility of the mid-span section.  

Fig. 7 shows the deflection development against the stress increase in external 

tendons for different ρs1 values. There is nearly linear relationship between the tendon 

stress increase and the deflection. For a given tendon stress, a higher ρs1 leads to a 

higher deflection. Since the stress in external tendons is evenly distributed over the 
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full length, external tendons are well below their tensile capacity at failure. 

3.3. Neutral axis evolution with the moment 

The neutral axis depth c is recognised to have critically important relationship 

with moment redistribution. This is reflected in various design codes such as CSA 

[23], BSI [24] and EC2 [25]. A good understanding of the neutral axis evolution 

during the loading process is therefore essential. For the investigated beams under 

self-weight and external prestressing, there is a slight hogging curvature at the 

mid-span and a slight sagging curvature at the inner support. Accordingly, the initial 

value of c is negative, namely, the neutral axis situates above (below) the top (bottom) 

of the mid-span (inner support). The initial curvature gradually vanishes after loading. 

Then, the sagging (hogging) curvature at the mid-span (inner support) appears and 

increases. Accordingly, the value of c is quickly reduced to the negative infinity, and 

then suddenly changed to the positive infinity and rapidly reduced thereafter. 

The evolution of c (for c ≤ 600 mm) with the bending moment M for different ρs1 

values is presented in Fig. 8. The M-c curve is characterised by four stages. The first 

stage is featured by a dramatic decrease in c until the cracking moment is reached. 

The second stage is initiated by the appearance of flexural cracks and ended by the 

stabilisation of the crack development. This stage shows a reduced decrease rate of c 

with increasing moment. The decrease rate is significantly further reduced in the third 

stage until the yielding of non-prestressed tension steel. This is followed by the fourth 

stage, which shows a resume of a quick decrease of c until failure. At the mid-span, 

the M-c curves for different ρs1 values differ after cracking, i.e. a higher ρs1 value 
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leads to a slower decrease in c. For the inner support, the M-c curves for different ρs1 

values are almost identical. In other words, the neutral axis evolution at the inner 

support is independent of the reinforcement content at the mid-span. This observation 

confirms that the neutral axis depth is only a section-related parameter, rather than a 

structure-related parameter. Therefore, it is not adequate to use this parameter to 

quantify the moment redistribution, which mainly results from the structural 

redundancy. 

3.4. Load-reaction relationship 

Fig. 9 shows the load-reaction curves for different ρs1 values. Both the actual 

reactions generated by a nonlinear analysis and the elastic reactions generated by an 

elastic analysis are demonstrated. The reaction comprises the load-induced reaction 

and prestressing-induced reaction (secondary reaction). The secondary reaction for the 

investigated beams is positive at the outer support and negative at the inner support. 

Therefore, if the tendons are linearly transformed to be concordant to eliminate the 

secondary reaction, the outer support reaction would be smaller and the inner support 

reaction would be bigger. 

According to the linear-elastic theory, the support reaction develops linearly 

throughout the loading process. Prior to cracking, the actual reaction development is 

identical to the elastic one. On cracking, the actual reaction begins to deviate from the 

elastic one due to redistribution of moments. The deviation varies significantly 

according to the ρs1 value. For ρs1 = 0.27%, the cracking induced reduction in flexural 

stiffness at the mid-span is significantly more pronounced than that at the inner 
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support, leading to redistribution of moments from the mid-span to the inner support. 

Consequently, the actual reaction at the outer support tends to be smaller than the 

elastic one while the actual reaction at the inner support tends to be larger than the 

elastic one. The deviation tends to be increasingly apparent as the load increases. As 

ρs1 gradually increases, the difference between the actual and elastic reactions 

diminishes, indicating reduced moment redistribution. When ρs1 is equal to 1.03%, the 

difference is negligible over the inelastic loading range, indicating that moment 

redistribution is negligible. When ρs1 increases to 1.41%, the actual reaction at the 

outer (inner) support after cracking turns to be slightly larger (smaller) than the elastic 

one. This indicates that bending moments are redistributed slightly from inner support 

towards mid-span. The deviation of the actual reaction from the elastic reaction is 

more and more apparent with the continuing increase of ρs1. When ρs1 is equal to 

4.03%, the actual reaction at the outer (inner) support after cracking is significantly 

larger (smaller) than the elastic one, indicating significant redistribution of moments 

from inner support towards mid-span. 

3.5. Evolution of bending moments and moment ratio with the load 

Fig. 10 shows the evolution of bending moments and moment ratio for different 

ρs1 values. In Fig. 10, M1 and M2 refer to the actual moments, induced by the applied 

load, at the mid-span and inner support, respectively; (M1)ela and (M2)ela refer to 

elastic moments, induced by the applied load, at the mid-span and inner support, 

respectively. The elastic moment development shows a linear behaviour and, 

therefore, the elastic moment ratio remains constant over the loading process. Because 
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of the influence of reinforcement content, the value of (M1)ela/(M2)ela varies from 0.8 

for ρs1 = 0.27% to 0.91 for ρs1 = 4.03%. 

Similar to the behaviour of reaction development, the actual moment development 

differs from the elastic one after the cracking load is reached. Correspondingly, the 

actual moment ratio is no longer a constant. The actual moment ratio is associated to 

moment redistribution: an increase in M1/M2 represents redistribution of moments 

from inner support towards mid-span; a decrease in M1/M2 indicates moment 

redistribution from mid-span towards inner support; a stabilisation of M1/M2 implies 

stabilising moment redistribution; the larger the deviation between the actual moment 

ratio and elastic one, the higher the amount of moment redistribution. The evolution 

of the actual moment ratio strongly depends on ρs1, as can be seen in Fig. 10. 

3.6. Neutral axis evolution against moment redistribution 

The degree of redistribution is defined as:  

 1
ela

M

M
     (10) 

It should be noted that the actual moment M and elastic moment Mela are contributed 

by the live and dead loads as well as the secondary reaction induced by external 

prestressing. 

Fig. 11 presents the evolution of β against c/d (for c/d ≤ 1) for different ρs1 values. 

The effective depth d is calculated by 

 0

0

p p p s y s

p p s y

A d A f d
d

A A f








  (11) 

where dp and ds are the depths of prestressed and non-prestressed reinforcement, 
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respectively. The redistribution is zero with the rapid decrease in c/d until cracking. 

Moment redistribution occurs afterwards, and the behaviour is affected typically by 

stabilising of crack evolution and yielding of non-prestressed tension steel at the 

critical sections. The beams having ρs1 = 0.27% and 0.65% show similar behaviour. 

Immediately after cracking, there occur slightly positive moment redistribution over 

inner support and negative one over mid-span. This is attributed to the occurrence of 

first crack at the inner support, leading to moment redistribution from inner support 

towards mid-span. Cracking also occurs at the mid-span very soon. When the crack 

evolution at both the critical sections stabilises, moments start to be redistributed from 

mid-span (weaker section) towards inner support (stronger section). Consequently, the 

positive (negative) redistribution at the inner support (mid-span) decreases (increases) 

quickly to a negative (positive) value, accompanying with a slower decrease in c/d. 

When first yielding occurs at the mid-span, further moments are redistributed from 

mid-span to inner support, resulting in a faster decrease (increase) of moment 

redistribution over inner support (mid-span). Meanwhile, the variation in c/d is 

limited. Such behaviour continues until yielding at the inner support. Thereafter, the 

evolution of moment redistribution is insignificant with varying c/d. For ρs1 = 1.03%, 

yielding at critical sections occurs almost simultaneously. Therefore, the decrease 

(increase) in positive (negative) redistribution over inner support (mid-span) after 

stabilising of crack evolution is not so important. For ρs1 = 1.41% or above, moment 

redistribution tends to slightly decrease, stabilise or slightly increase, after stabilising 

of crack evolution, until first yielding at the inner support. This is followed by a quick 
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increase (decrease) in positive (negative) moment redistribution over inner support 

(mid-span) until second yielding at the mid-span, accompanying with limited 

variation in c/d. Afterwards, the variation of β is negligible while the variation of c/d 

is significant at the mid-span and not so significant at the inner support. 

 

4. Proposed equations based on the parameter c/d 

The parameter c/d (at ultimate) is mostly adopted in current design codes around 

the world for calculating the moment redistribution in statically indeterminate 

structures. The results presented in the previous section shows that the parameter c/d 

is only section-related while moment redistribution is remarkably affected by varying 

ρs1 (ρs2 is fixed) and consequently by the stiffness difference between the critical 

sections. In this section, typical codes of practice are assessed and possible 

modifications of the code equations are suggested to take the stiffness difference into 

consideration. Unless otherwise stated, the numerical results presented herein are 

generated for fck = 60 MPa. The flexural stiffness of an externally PSC section could 

be described by the combined reinforcement index ω, which consists of the 

prestressed reinforcement index ωp and non-prestressed reinforcement index ωs. 

 p s      (12) 

 0p p
p

ckf

 
  , s y

s
ck

f

f


    (13) 

Three typical design codes are investigated herein, i.e. CSA [23], BSI [24] and 

EC2 [25]. The ACI code [31] is not evaluated in this study because this code does not 

adopt the parameter c/d for quantifying moment redistribution (it uses the strain in 
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extreme tensile steel instead). 

A single parameter c/d is used in CSA Eq. (14) and BSI Eq. (15) for redistribution 

quantification of continuous PSC beams. 

 0.3 0.5 /c d    (14) 

 0.5 /c d     (15) 

The maximum redistribution allowed by CSA and BSI is 20%. The equation 

suggested by EC2 accounts for the effect of concrete grade and is expressed by 

 1
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where 

 1 21.25(0.6 0.0014 / )cuk     (17) 

in which εcu2 is the ultimate strain which is determined according to EC2 by 

 0
002 4
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f f
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  (18) 

The maximum redistribution allowed by EC2 is 30%. 

Fig. 12 illustrates the β-c/d relationship at ultimate obtained from the finite 

element analysis (FEA) along with the code curves (BSI, EC2 and CSA). The FEA 

data are generated by either varying ω1 (ω2 is fixed) or ω2 (ω1 is fixed) from 0.073 to 

0.355, where ω1 and ω2 are the combined reinforcement indexes at the mid-span and 

inner support, respectively. According to FEA, as ω2 varies from 0.073 to 0.355, the 

value of c/d at the mid-span is almost unchanged, accompanying with a significant 

change of β at the mid-span from -25.0% to 21.9%. In the case that ω1 is a variable, 

the variation of c/d at the inner support is very slight when β at the inner support 
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varies remarkably between -35.5% and 42.8%. The afore-mentioned observations are 

inconsistent with the design codes, i.e. there is significant change in c/d with the β 

value. Therefore, it can be concluded that the stiffness difference between the critical 

sections cannot be reflected in these codes.  

To further confirm this statement, the β-ln(ω1/ω2) relationship by FEA is 

compared to the code predictions in Fig. 13. The results for the mid-span section 

shown in Fig. 13(a) are produced by varying ω2 (ω1 is fixed), while those for the inner 

support section shown in Fig. 13(b) are produced by varying ω1 (ω2 is fixed). The 

code predictions demonstrate nearly stabilising β with varying ln(ω1/ω2). This is, 

however, contradicts with the FEA results, which show a remarkable change in β with 

increasing ln(ω1/ω2). Therefore, the design codes neglect the structure-related 

parameter ω1/ω2 and, consequently, they cannot accurately predict the moment 

redistribution in continuous PSC beams. 

In order to introduce the parameter ω1/ω2 which describes the stiffness difference 

between the critical sections, CSA Eq. (14), BSI Eq. (15) and EC2 Eq. (16) are 

modified by introducing coefficients λcsa, λbsi and λec2, respectively. The modified 

equations are expressed as follows: 

 (0.3 0.5 / )csa c d     (19) 

 (0.5 / )bsi c d     (20) 

 2 1

2 1

(0.56 / )     for 50 MPa

(0.46 / )     for 50 MPa
ec ck

ec ck

k c d f

k c d f





 

   
  (21) 

where λcsa, λbsi and λec2 are coefficients related to ω1/ω2. The code equations, in 

general, are applied to both sagging and hogging sections. However, the neutral axis 
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evolution against moment redistribution for critical sagging and hogging sections of 

an externally PSC beam is quite different, as can be seen in Fig. 11. It is therefore 

necessary to obtain the values of λcsa, λbsi and λec2 separately for the mid-span and 

inner support sections. 

The variations of λcsa and λbsi against ln(ω1/ω2) for the mid-span section of the 

beams with varied ω2 and fixed ω1 are shown in Fig. 14(a) and (b), respectively, 

while the variations of λec2 for fck = 40 (representing the case of fck ≤ 50 MPa) and 60 

MPa (representing the case of fck > 50 MPa) are shown in Fig. 14(c) and (d), 

respectively. According to the fit curves, λcsa, λbsi and λec2 for the mid-span section are 

expressed as follows: 

 1 20.18 1.46ln( / )csa       (22) 

 1 20.12 0.96ln( / )bsi       (23) 

 1 2
2

1 2

0.13 0.98ln( / )    for 50 MPa

0.18 1.46ln( / )    for 50 MPa
ck

ec
ck

f

f

 


 
  

   
  (24) 

The λcsa-ln(ω1/ω2) and λbsi-ln(ω1/ω2) relationships for the inner support section of 

the beams with varied ω1 and fixed ω2 are shown in Fig. 15(a) and (b), respectively, 

while the λec2-ln(ω1/ω2) relationships for fck = 40 and 60 MPa are shown in Fig. 15(c) 

and (d), respectively. According to the fit curves, λcsa, λbsi and λec2 for the inner 

support section are expressed as follows: 

 2
1 2 1 20.43 2.71ln( / ) 0.84ln ( / )csa         (25) 

 2
1 2 1 20.29 1.87 ln( / ) 0.68ln ( / )bsi         (26) 

2
1 2 1 2

2 2 3
1 2 1 2 1 2

0.31 2.09ln( / ) 0.94 ln ( / )                              for 50 MPa

0.58 2.45ln( / ) 2.75ln ( / ) 2.67 ln ( / ) for 50 MPa
ck

ec

ck

f

f

   


     
   

 
   
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(27) 

Correlations of simplified equations with the β values obtained by FEA for the 

mid-span and inner support are demonstrated in Figs. 16 and 17, respectively. In Fig. 

16, a total of 42 external CFRP tendon specimens with varying either ω1 or ω2 from 

0.073 to 0.355 and fck from 40 to 90 MPa are used for the correlations. In Fig. 17, in 

addition to the afore-mentioned 42 specimens, another 49 external CFRP tendon 

specimens having various variables presented in [21] are also used for the correlations. 

Those included the areas of non-prestressed reinforcement and external tendons, 

CFRP elastic modulus, effective tendon depth, effective prestress, concrete strength, 

span length and load geometry. It is seen in Figs. 16 and 17 that the design codes 

(CSA, BSI and EC2) exhibit poor fit to the β values by FEA. By including the 

parameter ω1/ω2, the proposed equations (i.e. modified CSA, BSI and EC2 equations) 

correlate very well with the FEA predictions for both the mid-span and inner support 

sections. 

 

5. Conclusions 

A numerical investigation is carried out to evaluate moment redistribution against 

neutral axis depth in two-span PSC beams with external CFRP tendons, emphasising 

on the impact of differences in stiffness between the mid-span and the inner support. 

The stiffness difference is generated by varying the content of non-prestressed 

reinforcement at either the positive or negative moment zone. It is shown that varying 

the stiffness difference leads to a remarkable change in behaviour related to moment 
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redistribution, e.g. load-reaction relationship, evolution of moments and moment ratio, 

and development of moment redistribution. On the other hand, varying the stiffness at 

the mid-span does not influence the neutral axis evolution at the inner support, and 

vice versa. This confirms that the neutral axis depth is only a section-related 

parameter. Therefore, the use of this parameter for the quantification of moment 

redistribution, which is the case in various codes of practice, is not adequate. 

Three typical code equations that use the neutral axis depth as a key parameter for 

redistribution quantification are investigated, namely CSA, BSI and EC2. The results 

show that these codes fail to consider the impact of stiffness difference and 

consequently cannot predict accurately the amount of moment redistribution. 

Reasonable modifications of CSA, BSI and EC2 equations are proposed to quantify 

the moment redistribution in continuous PSC beams with external CFRP tendons. 

Simplified equations for both mid-span and inner support sections are developed. By 

introducing the parameter ω1/ω2, which accounts for the impact of stiffness difference, 

the proposed equations show a much better fit to the redistribution values by FEA 

than that provided by equations in current design codes. 

It should be noted that for conventional continuous reinforced concrete (RC) and 

PSC beams, the stiffness difference is also a critical factor influencing moment 

redistribution. Since both moment redistribution and neutral axis evolution highly 

depend on the structural typology, the modified CSA, BSI and EC2 equations 

proposed in this study, however, may not be applied to conventional RC and PSC 

beams and requires further validation. 
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Fig. 1. Beam element. 
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Fig. 2. Comparison with test results of Specimen A-1 [28]. 
 
 
 
 
 
 
 
 
 
 
 
 
 

0 40 80 120
0

10

20

30

40

50

R
ea

ct
io

n
 a

t o
ut

er
 s

up
po

rt
 (

kN
)

Applied load (kN)

 Test
 Elastic analysis
 Nonlinear analysis

P/2

e=406 e=500 e=281

e=250P/2 P/2 P/21250

1250 1250 1250 1250 1250 1250 1250 1250

Unit: mm

-20

0

20

40

60

80

100

0 40 80 120
0

500

1000

1500

2000

2500

Applied load (kN)

D
ef

le
ct

io
n

 (
m

m
)

Tendon stress increase

T
en

do
n 

st
re

ss
 in

cr
ea

se
 (

M
P

a)
 

 Test
 Nonlinear analysis

Deflection



 28 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. Comparison with test results of Specimen B5 [29]. 
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Fig. 4. Details of reference PSC beam with external CFRP tendons. 
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Fig. 5. Strain distribution at ultimate at the bottom and top fibres of the beams with 
different ρs1 values. 
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Fig. 6. Load-deflection curves for different ρs1 values. 
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Fig. 7. Deflection development with the tendon stress increase for different ρs1 values. 
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Fig. 8. Neutral axis evolution with the moment for different ρs1 values. 
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Fig. 9. Load-reaction curves for different ρs1 values. 
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Fig. 10. Evolution of moments and moment ratio for different ρs1 values. 
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Fig. 11. Neutral axis evolution against moment redistribution for different ρs1 values. 
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Fig. 12. The β-c/d curves by FEA and different codes. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0.0 0.1 0.2 0.3 0.4 0.5 0.6
-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

Inner support 
(

1
=variable)

 

 



c/d

EC2

BSI

CSA

Mid-span
(

2
=variable)



 38 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 13. The β-ln(ω1/ω2) relationships according to FEA and different codes. (a) 
mid-span (ω2 = variable); (b) inner support (ω1 = variable). 
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Fig. 14. Fit curves for the mid-span section. (a) λcsa; (b) λbsi; (c) λec2 for fck = 40 MPa; 

(d) λec2 for fck = 60 MPa. 
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Fig. 15. Fit curves for the inner support section. (a) λcsa; (b) λbsi; (c) λec2 for fck = 40 
MPa; (d) λec2 for fck = 60 MPa. 
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Fig. 16. Correlation of simplified equations for the mid-span section with β by FEA. 
(a) CSA and modified CSA equations; (b) BSI and modified BSI equations; (c) EC2 

and modified EC2 equations. 
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Fig. 17. Correlation of simplified equations for the inner support section with β by 
FEA. (a) CSA and modified CSA equations; (b) BSI and modified BSI equations; (c) 

EC2 and modified EC2 equations. 
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