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Abstract: In this study a hybrid finite element-statistical energy analysis (FE-SEA) method is used to investigate 

the structure-borne noise of a steel-concrete composite railway bridge. The rail is represented by an infinite 

Timoshenko beam connected to the sleepers which are regarded as finite Timoshenko beams supported in ballast. 

The fasteners and ballast are simplified as a series of springs with complex stiffness. This model allows the 

receptance of the track to be determined. The wheel-rail forces are computed in the frequency domain from the 

contact-filtered roughness and the receptances of the wheel, track, and contact. The forces transmitted to the 

bridge are determined by substituting the wheel-rail forces into the equation of motion for the track. This model 

could also be applied to a slab track mounted on a bridge. A hybrid FE-SEA method is introduced in which FE is 

used to model the concrete deck and SEA is used to model the steel girders. This enables the computation of the 

vibration and noise of the composite railway bridge. The proposed method is verified by comparing its predictions 

with field measurements. The structure-borne noise level of the bridge is found to increase with train speed v by 

approximately 20lg(v). It is shown that the adjacent spans in a multi-span bridge can be ignored in deriving the 

bridge-borne noise at receiver points in the middle of the main span, provided that the distance to the track 

centreline is less than 0.3 times the length of the main span.  
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1 Introduction 

Due to increases in the train speed and density of railway networks, considerable numbers of 

complaints arise from residents living close to the line about the train-induced vibration and noise. 

Long-term exposure to high levels of vibration and noise can adversely affect people’s quality of 

life and may have long-term effects on health. In China, the high-speed railway network extends 

over 31,000 km, much of which is elevated. However, in general bridge sections generate more 

noise than plain tracks at ground level, typically by around 5 dB for concrete bridges, and 10 dB on 

average for steel bridges [1]. Investigations into the structure-borne noise of railway bridges are 

therefore of great significance in route planning, bridge design, and mitigation of vibration and 

noise.  

In the last few decades, many studies have been carried out into the noise emitted by concrete 

bridges and viaducts, mainly utilizing the finite element method (FEM) to compute the vibration 

and the boundary element method (BEM) to calculate the acoustic radiation. Crockett and Pyke [2] 

computed the vibration of a viaduct induced by the wheel-rail interaction by employing FEM to 

model the structure, track, and vehicle, and then obtained an estimate of the noise radiated to the 

wayside from the bridge vibration, neglecting the directivity. Wu and Liu [3] used a two-stage 

approach. They first considered the bridge to be rigid in order to compute the fastener forces from 

their stiffness and relative displacement; the bridge vibration was then derived in the frequency 

domain using FEM by taking the fastener forces as the excitation. The structure-borne noise from 

the bridge was estimated by using an analytical expression for the acoustic power. Li et al. [4] 

adopted FEM to resolve the transient train-track-bridge coupled vibration in the time domain, using 

a modal superposition method. Three-dimensional (3D) BEM was then utilized to determine the 

low-frequency sound pressure emanating from the viaduct by multiplying the modal coordinate 

spectrum with the modal acoustic transfer vectors. The method was applied to a U-shaped concrete 

viaduct. Zhang et al. [5] derived the vibration of a concrete box beam based on a coupled analysis of 
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the train, track and bridge in the time domain, and determined the acoustic radiation of the viaduct 

by using 3D BEM.  

However, fully 3D FEM and BEM models are quite time-consuming in the prediction of the 

vibration and noise of bridges. In order to improve the computational efficiency, Li et al. [6] 

adopted 2.5-dimensional (2.5D) BEM to study the structure-borne noise of a U-shaped viaduct. The 

applicability of two-dimensional (2D) infinite elements coupled to acoustic FEM for the 

structure-borne noise calculation of a U-shaped viaduct in the frequency domain was investigated in 

[7]. Based on numerical computations of the train-track-bridge coupled vibration in the time domain, 

Song et al. studied the structure-borne noise of a U-shaped viaduct by employing 2.5D BEM [8] and 

a 2.5D infinite element method [9]. A 2.5D FEM was also employed by Song et al. to study the 

medium- and high-frequency vibration characteristics of a box-girder bridge [10].  

Steel-concrete composite bridges, composed of steel beams supporting a concrete deck, are often 

used for railway bridges of small and medium span length [11]. Such bridges were built with direct 

rail fastening systems for many years, but most modern composite railway bridges are fitted with 

ballasted or slab track. Steel bridges and steel-concrete composite bridges generally produce more 

structure-borne noise than fully-concrete bridges. As the structure-borne noise from a steel or 

composite bridge can be relevant up to 1000 Hz, and as these structures have a very large number of 

vibration modes in this frequency range, a huge computational cost would be involved in the noise 

calculation of the whole bridge using 3D FEM and BEM. Therefore, previous studies using these 

methods have focused on a small section of the steel bridge. Augusztinovicz et al. [12] calculated 

the vibration of a steel road bridge using FEM based on an estimated force input to the deck plate 

due to a tram; they then derived the structure-borne noise by using BEM. Statistical energy analysis 

(SEA) and experimental transfer functions were also used. Alten and Flesch [13] studied the 

vibration of a steel truss bridge section by using FEM and investigated various design options in 

terms of their vibration; comparisons were made with measured noise.  
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To obtain the acoustic radiation of the whole bridge, Remington and Wittig [14] used an approach 

based on SEA. They computed the vertical rail velocity in the frequency domain by using the wheel 

and rail impedances and roughness spectra. The mean-square bridge velocity was derived from the 

vibration ratios between the rail, tie, and girder deduced from the power balance equations of SEA 

by simplifying the girder as a single degree-of-freedom (DOF) system; then the acoustic power of 

the girder was obtained through an analytical expression. Janssens and Thompson [15] used a 

strongly-coupled SEA model for a steel bridge. They calculated the power input to the bridge based 

on the bridge mobility, equivalent fastener stiffness, and measured rail vibration. The mean square 

velocity of each bridge plate was obtained through the strongly-coupled assumption and the sound 

radiation was calculated using analytical formulae for the radiation efficiency of plates. Based on 

this approach, Bewes et al. [16] improved the rail-bridge coupling calculation below the decoupling 

frequency and modified the high-frequency mobility of the bridge by considering in-plane 

deformation of the cross-section. The method was also applied to a steel-concrete composite bridge 

in [17]. Poisson and Margiocchi [18] studied the sound and vibration characteristics of a steel truss 

bridge by adopting FEM below 200 Hz and SEA above this frequency. They identified that the rail 

was a major source of noise and investigated the noise reduction effect of rail dampers 

experimentally. Li et al. [19] discussed the vibration and noise characteristics of a composite 

railway bridge by combining a coupled train-track-bridge model in the time domain with SEA in the 

frequency domain.  

In an alternative approach, Ouelaa et al. [20] employed the modal superposition method to 

compute the acceleration of a steel bridge, and the acoustic pressure was determined by 

representing the bridge as a set of monopoles. Michishita et al. [21] analysed the noise reduction 

due to surface absorption on a steel plate girder, assuming the plate girder to be a line source and 

the concrete deck to be an infinite rigid reflective surface based on a simplified 2D model. Xie et al. 

[22] discretized the bridge deck into a large number of small patches, neglecting the 
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acoustic-structure interaction, and derived the low-frequency acoustic radiation of a steel highway 

bridge.  

The FEM/BEM approach has a good accuracy in assessing the vibration and noise of bridges at 

low frequency, but as the required element size decreases with increasing frequency, it becomes 

impractical to use it for higher frequencies. The SEA method is suitable for computing the vibration 

and noise at high frequencies, but at low frequencies, its calculation accuracy is poor because of the 

low modal density. The noise from the concrete decks of steel-concrete composite bridges is mostly 

concentrated below 300 Hz [19] where there is a low modal density, suggesting that FEM can be 

used to obtain the vibration of such components. The noise of the steel beams can be important up 

to 1000 Hz where the number of modes is sufficiently high to justify the use of the SEA method. 

Such a structure is therefore suitable for the hybrid FE-SEA method, which allows stiff components 

to be modelled using FEM and more flexible components to be modelled using SEA [23]. A good 

balance between the accuracy and expense can be achieved in the vibration and noise calculation of 

composite bridges through utilizing this hybrid FE-SEA method.  

In this study the hybrid FE-SEA method is used to investigate the structure-borne noise of a 

steel-concrete composite bridge. First, a discretely supported track model is established in the 

frequency domain to compute the forces transmitted to the bridge. This uses an infinite Timoshenko 

beam to model the rail, attached to a series of equivalent supports with a complex stiffness 

representing the fasteners connected to the sleepers which are represented by finite Timoshenko 

beams supported in ballast. This model is used to determine the receptance of the track, which is 

then used together with the wheel and contact receptances in deriving the wheel-rail interaction 

forces from the moving roughness model. The forces transmitted to the bridge are obtained by 

substituting the wheel-rail force into the equations of motion for the track. The above procedure can 

also be applied to a slab track mounted on a bridge by representing the slab by a finite Timoshenko 

beam supported by distributed springs and dampers. Subsequently, the hybrid FE-SEA method is 
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employed to calculate the vibration and noise of the composite bridge, using FE to model the 

concrete deck and SEA to model the steel beam. The approach is verified by comparing the 

numerical results with on-site measured data. In addition, formulae are derived for the bridge-borne 

noise in terms of the train speed and distance for use in the environmental assessments of railways.  

2 Calculation method for forces transmitted to bridge 

The wheel-rail system is excited by the roughness of the wheel tread and rail surface [24], as well 

as by parametric excitation arising from the periodically varying stiffness of the track [25]. 

Parametric excitation may be included in terms of an equivalent roughness excitation. It is generally 

of less relevance for lower values of support stiffness [1] and is neglected here. Since the train 

speed of current railway systems is considerably lower than the propagation velocity of the 

vibration waves in the periodically supported rail, the wheel-rail interaction can be obtained with 

the moving roughness model. This is based on the assumption that the roughness is ‘pulled’ 

between the wheel and the rail at the train passing speed. However, the position of the wheels 

relative to the track is based on the actual situation at one particular time. Then all nw vertical 

wheel-rail forces acting on one rail at frequency  are given as follows [1]  

1
wr w c t

F β β β Δ( )                                    (1) 

where Δ is a vector containing the vertical roughness amplitude at the nw wheel-rail contacts on one 

rail; βw, βt, and βc are the nwnw receptance matrices of the wheels, track, and wheel-rail contact, 

respectively and nw is the number of wheels on the rail.  

2.1 Assumptions 

As well as the noise from the bridge, the noise from a train on a bridge consists of rolling noise 

and (at high speed) aerodynamic noise. A number of techniques are available to control the rolling 
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noise, including rail dampers [18] and sound barriers [26]. Aerodynamic noise is the dominant 

source of railway noise above about 300 km/h, control measures for which include shape 

optimization of high-speed trains and added fairings for the bogie and pantograph [27]. This study 

focuses only on the structure-borne noise of bridges.  

The lower-limit frequency of human hearing is about 20 Hz. The bridge-borne noise of composite 

bridges occurs mainly below about 1000 Hz. Allowing for the width of 1/3 octave bands, and to 

extend the upper limit to the 1600 Hz band, the selected frequency range for analysis in this study is 

from 17.8 to 1780 Hz.  

A vertical model is established based on a single rail, i.e. half-width track and vehicles, to 

compute the forces transmitted to the bridge. Then the forces from both rails will be applied to the 

bridge in the calculation of the train-induced vibration and noise.  

2.2 Wheel receptance 

The natural frequency of the primary suspension of rail vehicles is typically around 10 Hz and 

that of the secondary suspension is approximately 1 Hz. Thus, in the frequency range of interest the 

wheels can be treated as independent, neglecting coupling through the bogie and car body. The 

primary suspension is retained together with the bogie mass. Its receptance can be expressed as [28]  

2
1 1 b

w 4 2
w b 1 1 w b m m

i 1

( i )( ) (1 i )

k c m

m m k c m m k

 
   

 
 

   
                  (2) 

where ω is the angular frequency; mb and mw represent the masses of a quarter of the bogie and half 

of the wheelset, respectively; k1 and c1 indicate the stiffness and damping of the primary suspension, 

and i= 1 . km is the modal stiffness associated with high frequency modes in the wheel receptance; 

ηm is the loss factor corresponding to km.  
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The receptance matrix of all wheels acting on the rail can be written as  

 
w

w w w wdiag
n

β                                (3) 

2.3 Track receptance 

The vertical dynamic stiffness of a bridge is much higher than that of the track. From [29], it is 

found that the receptance of the track does not change significantly whether the bridge is considered 

or not. In computing the track receptances the bridge is therefore simplified as a rigid foundation 

below the track; the rail is discretely supported by the fastener-sleeper-ballast system, as shown in 

Fig. 1. An infinite Timoshenko beam is used to model the rail whereas the sleepers are represented 

as finite uniform Timoshenko beams supported in the ballast. The rail fasteners are simplified as 

discrete elastic supports, represented by a stiffness and a damping loss factor. The ballast is 

represented by a continuous layer of stiffness and viscous damping beneath each sleeper.  

 

Fig. 1.  Train and track model.  

The displacement of the rail at an arbitrary longitudinal position x is  

w f

r r r f
1 1

,( ) ( , ) ( , )
n n

j j k k
j k

z x β x x P β x x F
 

                          (4) 

where βr(x, xj) depicts the displacement of the free rail at x when a unit force is applied at xj, Pj is the 

jth wheel-rail force, Ff,k is the force applied to the rail by the fastener at the kth support at xk, and nf 

represents the number of fasteners considered under one rail.  

In most models of bridge noise, the rail has usually been represented as an Euler-Bernoulli beam. 
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This model is suitable for describing the vertical dynamic response of the track for frequencies up to 

about 500 Hz [1]. For higher frequencies a model based on a Timoshenko beam, which includes 

shear deformation and rotational inertia, can be used for rail vibration in the vertical direction up to 

2500 Hz [30]. This is used in the current study. The transfer receptance of an infinite Timoshenko 

beam is given as [31]  

r 1 2 1 1 1 2 2 2 1 2
exp i exp( , ) ( | |) ( | |)β x x u k x x u k x x                       (5)

 

where  

2 2
r r r r r r r 1 r

1 2 2 2
r r r r r 1 1 2

1 i 1 ii

2 1 i

( ) ( )
( ) ( )

ρ I ω G A κ η E I k η
u

E I G A κ η k k k

   


 
          (6) 

2 2
r r r r r r r 2 r

2 2 2 2
r r r r r 2 1 2

1 i 1 i1

2 1 i

( ) ( )
( ) ( )

ρ I ω G A κ η E I k η
u

E I G A κ η k k k

   


 
          (7) 

1 2
1 2

2

r r r r r r
1 2 2

r r r r r r r r r r r

4

1 i 1 i 1 i 1 i 1 i2

//

, ( ) ( ) ( ) ( ) ( )
ρ ρ ρ ρ ρ Aω

k
E η G κ η E η G κ η E I ω η

                                                   

  (8)

 where Er and Gr represent the Young’s modulus and shear modulus of the rail, Ar and Ir indicate the 

area and second moment of area of the rail cross section, ρr and ηr depict rail density and loss factor, 

and κ is the Timoshenko shear coefficient depending on the cross-section shape, with κ<1.  

The displacement of the kth sleeper is given by 

s s f ,( )
k k

z x β F                                      (9) 

where βs is the point receptance of the sleeper on an elastic foundation based on [1].  

The fastener force under the rail is obtained from [32]  

f f f r s
1 i, ( ) ( ) ( )

k k k
F k η z x z x                                  (10)

 

where kf is the real part of the complex stiffness of the fastener and ηf is the corresponding damping 

loss factor.  
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Substituting Eq. (10) into Eqs. (4) and (9), a matrix form is obtained as  

βz=P                                    (11) 

where β is a matrix composed of the rail and sleeper receptances and the fastener stiffness. The 

displacement vector is expressed as  

f f
f

T

r 1 r 2 r s 1 s 2 s
2 1

( ) ( ) ( ) ( ) ( ) ( )
n n

n
z x z x z x z x z x z x



    z            (12) 

The vector P is given by  

w w w

f

f

T

r 1 r 2 r
1 1 1

2 1

0 0 0( , ) ( , ) ( , )
n n n

j j j j n j j
j j j

n

β x x P β x x P β x x P
   

 
   
  
  P        (13)

 

Assuming that there is a unit harmonic force Pj =exp(iωt) acting on an arbitrary position of the 

rail, the displacement vector can be determined by solving Eq. (11) if the receptances of the free rail 

βr(x, xj) and flexible sleeper βs are known. Then all fastener forces Ff,k can be obtained through Eq. 

(10) and the track receptance at an arbitrary point of the rail can be determined by substituting a 

single unit excitation force and all the corresponding fastener forces into Eq. (4). The receptance 

matrix of the track at the wheel positions follows  

w

w

w w

t t t
11 12 1

t t
22 2

t

t

Symmetric

n

n

n n

β

  

 



 
 
   
 
  



 

                          (14) 

where t
pq  is the rail displacement at the pth wheel when a unit force is applied on the rail at the 

position of the qth wheel.  

2.4 Wheel-rail contact receptance 

The contact receptance matrix can be written as  
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 
w w

c c c cdiag
n n

β   


                              (15) 

where βc = 1/kH, in which kH is the linearised Hertzian contact stiffness that depends on the wheel 

radius, rail head radius of curvature and axle load [1].  

2.5 Forces transmitted to bridge 

Generally, the track vertical irregularity profile can be regarded as a stationary ergodic Gaussian 

random process apart from areas with turnouts, crossings or local track deterioration [33]. Assuming 

that the same irregularity excites each wheel-rail contact apart from a time lag, the roughness vector 

of four contact points under the mth vehicle can be expressed as  

c c w
T

c b c w b

exp i 1 exp i 1 2

                 exp[i 1 2 exp i 1 2 2 Δ

( ) { [ ( ) / ] [ [( ) ]/ ]

[( ) ]/ ] [ [( ) ]/ ]} ( )
m

ω ω m l v ω m l l v

ω m l l v ω m l l l v ω

   

    

Δ
     (16)

 

where lc is the vehicle length, lb represents half the distance between the bogie centres, lw indicates 

half the wheelbase of the bogie, v is the train speed and Δ is the roughness amplitude at frequency . 

The roughness vector at all contact points is formed by assembling Δm(ω) for all vehicles.  

If the wheel, track, and contact receptances, as well as the roughness spectrum are known, all 

wheel-rail forces can be derived from Eq. (1). Then the vector of rail and sleeper displacements can 

be obtained by substituting the computed wheel-rail forces into Eq. (11). Furthermore, to determine 

the forces transmitted to the bridge, it is assumed that the ballast beneath a half-sleeper can be 

replaced by a single spring and damper. The forces transmitted to the bridge by each sleeper of the 

half-width track, can be derived from  

b b b s
i, ( ) ( )

k k
F K ωC z x                                 (17)

 

where Kb and Cb are the stiffness and viscous damping of ballast beneath each half-sleeper.  

This model can also be used to calculate the forces transmitted to a viaduct fitted with a normal 
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slab track or a floating slab track. The rail is still modelled by an infinite Timoshenko beam and the 

slab is represented by finite uniform Timoshenko beams supported on the bearing layer. The rail 

fasteners are simplified as discrete elastic supports, represented by a stiffness and a damping loss 

factor. The bearing layer is represented by distributed springs and viscous dampers.  

 

3 Hybrid FE-SEA method to compute the vibration and noise of composite bridges 

A typical composite railway bridge consists of a concrete deck with I-shaped or box steel girders 

beneath it. This study aims to use a hybrid FE-SEA approach to characterize the structure-borne 

noise emitted from a composite railway bridge, to achieve a balance between the computing 

efficiency and accuracy. Moreover, if distinct models are used for different frequency ranges, this 

could lead to a discontinuity at the dividing frequency between them; the hybrid approach can avoid 

this. The excitation of the hybrid FE-SEA model is taken as the set of forces beneath each sleeper 

calculated using the method described in the previous section. The equations of motion are 

presented separately for the FE, SEA, and FE-SEA coupled parts.  

3.1 FE equations of motion 

For a system modelled using FE, the equations of motion governing the amplitudes u at the node 

points can be obtained from Lagrange’s equations and have the well-known form  

2
d- iM C K u D u f                                    (18) 

where M, C, and K are the mass, damping, and stiffness matrices, respectively; Dd is the dynamic 

stiffness matrix; u and f indicate the vectors of the amplitudes of the nodal displacements and 

external forces, respectively.  

3.2 SEA equations 
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By applying SEA to predict the average vibration in various frequency bands generated by a 

complex structure, the bridge should be divided into structural subsystems according to similar 

modal groups and boundary conditions. If a subsystem has a sufficient number of modes in the 

frequency bands of interest, modal energy equipartition can be assumed. Additionally, it is also 

assumed that the energy is uniformly distributed within each subsystem. The power balance 

equations are derived by relating the stored, dissipated, and transmitted energies between 

subsystems. Assuming a linear system consisting of N1 coupled subsystems, the power balance 

equation of the jth subsystem is expressed as [34]  

1

in ,
1

( )
N

j j jk j kj k j
k
k j

E E E P  



                             (19) 

where ηj represents the damping loss factor of the jth subsystem, ηjk denotes the coupling loss factor 

from the jth subsystem to the kth subsystem, in, jP  represents the power input to the jth subsystem, 

and Ej is the vibrational energy of the jth subsystem. Expressions for the coupling loss factors are 

given, for example, in [35].  

3.3 FE-SEA coupling  

Based on the work of Langley and Shorter [36–38], this section summarizes the equations and 

procedures for using the hybrid FE-SEA approach to calculate the vibration and noise of composite 

bridges. Components with a low modal density are modelled by FE and regarded as deterministic, 

and other components are represented by SEA subsystems. The complete set of deterministic 

components can be described by a set of displacements u, while the statistical components are 

represented by a set of energies E. The set of deterministic components is considered as the master 

system, while each of the statistical components is taken as a subsidiary subsystem.  

The equations of motion of the master system at a specific frequency ω can be written as  

2
( )

tot ext rev
1

N
k

k

D u f f


                                   (20) 
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where fext contains the external forces applied directly to the master system, N2 represents the 

number of SEA subsystems, the reverberant force 
( )
rev

kf  describes the force on the connection 

arising from the reverberant field in the kth subsystem, and the total dynamic stiffness matrix totD  

is found by adding the dynamic stiffness matrix of the FE components Dd to the direct field 

dynamic stiffness matrix from each subsystem ( )
dir
kD .  

2
( )

tot d dir
1

N
k

k

D D D


                                   (21) 

According to Eq. (20), the vector containing the nodal displacements of FE components allowing 

for coupling with SEA subsystems is given by  

2
1 ( )

tot ext rev
1

( )
N

k

k

u D f f



                                 (22) 

As described by Shorter and Langley [36], a diffuse field reciprocity relation applies to the 

coupling between these two types of components. This relates the cross-spectrum of the forces at 

the boundary of a statistical component to the vibrational energy level of the component. The 

relation between the deterministic part and the statistical subsystem is established by the reciprocity 

principle between the direct and reverberant field. The cross-spectral matrix of the reverberant 

forces from the kth subsystem follows  

 ( ) ( ) ( )*T ( )
,rev rev rev dir

4
E Imk k k kk

ff
k

E

n
S f f D


 

     
 

                      (23) 

Here E[] indicates an ensemble average, Ek is the vibrational energy of the kth subsystem and nk is 

its modal density. Equation (23) relates the forces acting on the FE components to the energies of 

the SEA subsystems.  

The coupling between the deterministic and statistical components is given by Eq. (23), leading 

to the following result for the response of the deterministic system. The cross-spectral matrix for the 

responses of the FE part is expressed as  
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 
2 2

1 ( ) 1*T 1 ( ) 1*T
tot ,ext ,rev tot tot ,ext dir tot

1 1

4
( ) Im

N N
k kk

uu ff ff ff
k k k

E

n
S D S S D D S D D


   

 

  
     

  
          (24) 

where Sff,ext is the cross-spectrum of the forces applied to the deterministic system.  

The terms on the right-hand side of Eq. (21) can be computed from the physical properties of the 

system, apart from the subsystem energy Ej, for which a power balance condition is required for 

each subsystem. This leads to the following power balance equations of the jth subsystem  
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where the term ηd,j represents an additional subsystem loss factor owing to the energy dissipation in 

the master system, and Nj is the number of SEA subsystems coupled with the jth subsystem. 

Moreover 
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The power input to the jth subsystem from forces applied on the deterministic part  
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where rs denotes the rth row and sth column element in a matrix. The complete response of the SEA 

subsystem allowing for coupling with the FE components is obtained by solving Eq. (25) to yield 

the vibrational energy. Equation (24) is used to obtain the response of the deterministic system. 

Then, from the vibration, the sound pressure at any point in space due to the bridge can be 

determined.  

3.4 Acoustic radiation 

In order to calculate the noise emission, each FE component or SEA subsystem of a composite 
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bridge can be considered as a rectangular plate. The radiated sound power of plate j with 

mean-square velocity 2
jv   can be expressed as [39]  

2
0 0j j j jW c S v                                    (29) 

where ρ0 and c0 denote the air density and the sound speed in air respectively, σj is the radiation 

ratio or radiation efficiency which can be derived from the analytical solutions in [1] and Sj is the 

area of plate j. The mean-square velocity 2
jv   is derived from the energy Ej of the SEA 

subsystems or the spatially averaged nodal responses of the FE components.  

The mean-square sound pressure radiated by the bridge is written as [19]  

0 02 j
j

j j

c W
p G

A


                                (30) 

where Aj is the area over which the sound power from plate j is distributed. Expressions for this can 

be found in [19] in which each plate is represented by plane, line or point sources depending on the 

distance from the receiver; Gj is the ground reflection term which can be derived from [1].  

 

4 Case study 

4.1 Outline of the composite bridge 

The method is applied to a composite railway bridge with ballasted track. Field tests have been 

carried out to measure the vibration and noise from this bridge which are used to verify the 

proposed method. The continuous steel-concrete composite bridge is on a straight line with a span 

layout of (32 + 40 + 32) m, as shown in Fig. 2(a). The dual-track bridge has a 12.4 m wide deck 

with a track spacing of 4.6 m. The bridge consists of two I-section steel girders 6 m apart, and a 

pre-stressed concrete deck which is cast on the steel girders, as shown in Fig. 2(b). The steel girder 

has a flange of width 1.2 m and a web of height 2.5 m. The thicknesses of the web and flange are 24 

mm and 50 mm, respectively. Lateral bracing is included between the two steel girders at intervals 
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of 4 m. The thickness of the cast-in-situ bridge deck ranges from 0.2 to 0.487 m. The upper flanges 

of the girders are connected to the deck via shear studs. The bridge is supported on double-column 

piers.  

(a) 

 
(b) 

 

Fig. 2.  Sketch of the bridge: (a) Elevation view; (b) Cross-section (unit: mm).  

4.2 Roughness 

The track is fitted with continuously welded rail, so impact loads caused by rail joints can be 

neglected. The rail roughness on the bridge could not be measured since this high speed line is in 

operation and access to the track on the deck was not available. Because the measurement of wheel 

roughness of high-speed trains is also not available, the wheel roughness is ignored in the case study. 

Nevertheless, the wheel roughness of disc-braked rolling stock is usually low compared with the 

rail roughness [40]. Wei [41] found that the roughness of several typical Chinese railway lines is 

close to the limit curve given in the previous standard, ISO 3095:2005 [42]. So the RMS roughness 

Δ in 1/3 octave bands described in ISO 3095:2005 is adopted:  
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where Δ0 = 1 μm is the reference roughness, λ = v/f is the wavelength, with v the speed in m/s and f 

the frequency.  

The excitation of the wheel-rail system will be weakened if the wavelength of the roughness is 

shorter than the length of the contact patch in the rolling direction, denoted by 2a. This effect is 

called contact filtering that can be approximated by the following filtering transfer function [1]  

1
2 3

0 0
1

4
( ) ( )π

H k k a
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                             (32) 

where k0 means the wavenumber of the roughness, k0 = 2π/λ. In the current study the vehicle speed 

is 200 km/h (55.6 m/s), so for the chosen frequency range 17.8 to 1780 Hz, the wavelength range of 

the roughness extends from 0.0312 to 3.12 m. The 1/3 octave band roughness spectra with and 

without the contact filter are shown in Fig. 3.  

 

Fig. 3.  Assumed 1/3 octave band roughness spectra from ISO 3095:2005.  

The wheel-rail forces and forces transmitted to the bridge per unit roughness can be obtained by 

using Eqs. (1) and (17) in narrow bands; the frequency resolution is 1 Hz in this study. Then these 

force results will be averaged into 1/3 octave bands. Multiplying these forces by the filtered 

1 0.1
1E-7

1E-6

1E-5

1E-4
 

R
M

S
 r

ou
gh

ne
ss

 (
m

)

1/3 octave wavelength (m)

 Without filtering
 Contact filtering



19 

roughness spectrum from Eq. (31) in 1/3 octave bands results in the final wheel-rail forces and 

forces transmitted to the bridge.  

4.3 Forces transmitted to bridge  

For high-speed trains in China, with a formation of eight or sixteen vehicles, the vehicles on the 

bridge at any given time may be all powered vehicles, or a mixture of powered and trailer vehicles. 

Here, for simplicity the situation with all powered vehicles on the bridge is used in the predictions. 

The parameters of the motor vehicle used in the calculation of the wheel receptance are listed in 

Table 1 [19].  

Table 1  Parameters of motor vehicle. 

Parameter Symbol Units Value 

Quarter of bogie mass  mb kg 800 

Half of wheel-set mass  mw kg 1000 

Vertical stiffness of primary suspension  k1 N/m 1.176×106 

Vertical damping of primary suspension  c1 N·s/m 2.5×104 

Half of bogie spacing  lb m 8.75 

Half of wheelbase  lw m 1.25 

Vehicle length  lc m 26 

Modal stiffness km N/m 4.4×109 

Loss factor of modal spring ηm / 0.2 

Stiffness of wheel-rail contact spring  kH N/m 1.325×109 

The track on the bridge is ballasted track with CN 60 rail and a standard gauge of 1435 mm; there 

are 191 sleepers included in the track model; the corresponding parameters are listed in Table 2 [43]. 
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After the receptances of rail and monobloc sleeper are obtained, the receptance matrix of the track 

could be produced using Eq. (11). The computed receptances of the track are shown in Fig. 4(a). 

Both a point receptance and a transfer receptance to the response at 2.5 m (equal to the wheelbase) 

away from the excitation point are shown. The transfer receptance is far lower than the driving 

point receptance, particularly in the frequency range below 300 Hz. A peak occurs in the driving 

point receptance at 249 Hz, coinciding with the natural frequency of the rail mass on the stiffness of 

the fastener system including the sleeper flexibility and the ballast resilience. The excitation point is 

close to the mid-span between two sleepers. At this point, a peak occurs in the driving point 

receptance at 1266 Hz, corresponding to the pinned-pinned mode of the discretely supported rail. 

The decay rate is obtained using the formula in [44] and plotted in Fig. 4(b). The decay rate below 

200 Hz is around 10 dB/m and it drops to less than 1 dB/m above about 500 Hz as waves propagate 

freely along the track.  

Table 2  Track parameters. 

Parameter Symbol Units Value 

Rail density  ρr kg/m3 7860 

Rail cross-sectional area  Ar m2 7.745×10-3 

Rail Young’s modulus  Er Pa 2.059×1011 

Rail shear modulus  Gr Pa 7.7×1010 

Second moment of area of rail  Ir m4 3.217×10-5 

Rail loss factor  ηr / 0.01 

Rail shear coefficient  κ / 0.45 

Fastener vertical stiffness  kf N/m 1.2×108 
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Fastener loss factor  ηf / 0.25 

Fastener spacing df m 0.545 

Sleeper Young’s modulus  Es Pa 5.7×1010 

Sleeper shear modulus  Gs Pa 2.38×1010 

Sleeper density ρs kg/m3 2648 

Sleeper length ls m 2.5 

Sleeper average cross-sectional area As m2 0.0453 

Second moment of area of sleeper  Is m4 1.27×10-4 

Sleeper loss factor  ηs / 0.015 

Sleeper shear coefficient  κs / 0.83 

Ballast vertical stiffness per unit length along the sleeper kb N/m2 6.8×107 

Ballast vertical damping per unit length along the sleeper cb N·s/m2 2.352×104 

 

(a)                                             (b) 

   

Fig. 4.  Track dynamic properties: (a) Receptances; (b) Decay rate.  

A total of 17 wheels, distributed along the rail on the bridge, were considered in the wheel-rail 

interaction computation. The computed wheel-rail force above the sleeper at the centre of the bridge 
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is shown in Fig. 5. Results are shown for a single wheel-rail contact without the transfer receptances 

of the rail and for multiple contacts allowing for the coupling between all the wheel-rail contacts by 

the transfer receptances. Fig. 5(a) shows the narrow-band force for a unit roughness and Fig. 5(b) 

shows the 1/3 octave band spectrum for the ISO 3095:2005 roughness. There is a peak in the 

wheel-rail force at 85 Hz, this being the natural frequency of the wheel-rail system at which the 

wheel mass bounces on the track stiffness. The wheel-rail force computed with the inclusion of the 

transfer receptances is smooth in the frequency region below 200 Hz; however, it has large 

fluctuations at higher frequencies. These results demonstrate that the wheel-rail forces with and 

without consideration of the transfer receptances of the track are quite similar below 315 Hz where 

the decay rate is high, but the wheel-rail force without the transfer receptances of the track is an 

under-estimate at higher frequencies.  

(a)                                             (b) 

   

Fig. 5.  Computed wheel-rail forces excited by: (a) roughness of 1 μm at each frequency; (b) roughness from ISO 

3095:2005.  

Substituting the computed wheel-rail forces into Eq. (11), the sleeper displacement is obtained. 

Subsequently, the forces transmitted to the bridge can be derived from the sleeper displacement 

according to Eq. (17). The forces at three example positions (0 m, 0.545 m, and 1.09 m from the 
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wheel above a sleeper at the centre of the bridge) are shown in Fig. 6. The force below the wheel 

again has a peak around 80 Hz. As the distance from the wheel increases, the force generally 

becomes lower owing to the high decay rate of track below 200 Hz. The force at 1.09 m from the 

wheel includes multiple peaks below 200 Hz, due to interference between the wheel-rail forces 

from the two adjacent wheels. Above 500 Hz the forces at these three sleepers have similar 

magnitudes and exhibit considerable fluctuation as seen in the wheel-rail force. The cross spectra of 

all forces transmitted to the bridge are converted into 1/3 octave bands and then substituted into Eqs. 

(24) and (28) to resolve the hybrid FE-SEA model of the bridge.  

 

(a)                                             (b) 

   
Fig. 6.  Computed forces transmitted to the bridge: (a) the roughness of 1μm; (b) the roughness of ISO 3095.  

4.4 Bridge model 

The material properties of the composite bridge were provided by the railway operator and are 

listed in Table 3. In the hybrid FE-SEA model of the composite bridge, FE is used for the concrete 

deck, and the SEA method is used to model the steel girder, as shown in Fig. 7. The FE mesh size 

should be smaller than 1/6 of the modal wavelength of the deck under free-free conditions at upper 

frequency. This would require an element size of 0.18 m for the concrete deck, given the modal 

wavelength of 1.08 m around 1780 Hz. Eventually, the element size of the deck is rounded up to 0.2 

10 100 1000
10-1

100

101

102

103

104
 

F
or

ce
 tr

an
sm

it
te

d 
to

 b
ri

dg
e 

(N
/μ

m
)

Frequency (Hz)

 0.000m to the wheel
 0.545m to the wheel
 1.090m to the wheel

10 100 1000
10-1

100

101

102

103

104
 

F
or

ce
 tr

an
sm

it
te

d 
to

 b
ri

dg
e 

(N
)

Frequency (Hz)

 0.000m to the wheel
 0.545m to the wheel
 1.090m to the wheel



24 

m because the dominant frequency of the bridge-borne noise is much lower than the upper 

frequency. The web and flange are modelled by different SEA subsystems and are divided at the 

section of the bridge bearings. The number of modes and modal overlap factor of the web and 

flange in each frequency band are shown in Fig. 8, which meet the requirement of SEA in most 

frequency bands. The coupling loss factors between the web and flange, as shown in Fig. 9, in 

combination with the modal density in Fig. 8, illustrate the reciprocity relationship between the two 

subsystems. In the hybrid FE-SEA model, the bridge is composed of 32440 shell finite elements and 

18 SEA subsystems.  

Table 3  Material properties of the composite bridge. 

Parameter Symbol Units Value 

Steel density ρst kg/m3 7850 

Steel Young’s modulus Est GPa 206 

Steel loss factor ηst / 0.015 

Concrete density ρc kg/m3 2650 

Concrete Young’s modulus Ec GPa 35 

Concrete loss factor ηc / 0.03 

 

    

Fig. 7.  Hybrid FE-SEA model of the bridge.  

  

Deck (FEM) 

Web (SEA) 
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(a)                                            (b) 

   

Fig. 8.  Asymptotic estimates of the modal parameters in each 1/3 octave band of main span web and flange: (a) 

Number of modes; (b) Modal overlap factor.  

 

Fig. 9.  Coupling loss factors between the web and flange.  

 

4.5 Experimental set-up 

Noise and vibration measurements have been conducted on the bridge described in Section 3.1. 

The noise was measured at two positions: S1 is directly beneath the bridge centreline, and S2 is 7.5 

m to one side of the centre of the west-bound track, i.e. 9.8 m from the centreline (see Fig. 10). Both 

microphones were located 1.5 m above the ground which was flat with a bituminous pavement. 

Accelerometer V1 was mounted below the centre of the deck; V2 and V3 measured the normal 

accelerations of the web and lower flange, respectively. The effective frequency range of the 

piezoelectric accelerometers is from 0.5 Hz to 10 kHz, with a maximum response of 50 g. The 
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frequency range of the microphones is from 3 Hz to 20 kHz, and the response range is a sound 

pressure level from 16 to 146 dB. The sampling frequency was 10.24 kHz. The results were 

analysed over the same frequency range as used in the model, i.e. 1/3 octave bands between 20 Hz 

and 1.6 kHz. Figure 11(a) shows the experimental site and Fig. 11(b) the microphone at S2. The 

train speed was obtained from the train’s length and passing time. It was sunny and the wind speed 

was less than 2–3 m/s.  

 

Fig. 10.  Layout of acceleration and noise measuring points (unit: mm). 

 

(a)                                               (b)  

     
 

Fig. 11.  Images of the vibration and noise measurement: (a) Image of the bridge; (b) Microphone of S2. 

4.6 Comparison between the measured and computed responses 

The measured and computed vibrational acceleration levels are shown in Fig. 12. The deck 

acceleration in the frequency region 40–100 Hz is larger than in other frequency regions. The 

accelerations of the web and lower flange are 5–10 dB greater than that of the deck for frequencies 
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above 50 Hz. They have peaks in the acceleration spectrum at 63 Hz and 80 Hz, respectively, close 

to the peak in the wheel-rail force. From Fig. 12 it can be seen that the simulated acceleration 

spectra coincide with the measured ones. Especially the fact that the relative levels at the three 

locations are correctly estimated, provides verification of the proposed method for vibration 

prediction.  

(a) 

 
(b)                                            (c) 

   

Fig. 12.  Comparison between the measured and computed vibrational accelerations: (a) V1; (b) V2; (c) V3.  

The predicted and measured sound pressure levels (SPLs) at both receiver points are shown in 

Fig. 13. The spectrum of the A-weighted SPL is fairly flat between 80 and 1000 Hz owing to the 

larger force transmitted to the bridge at low frequencies, the effect of the A-weighting and the 

higher radiation efficiency at high frequencies. The radiation efficiencies of the different 
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components, which are derived from the formulae in [1], are shown in Fig. 14. The computed SPL 

at S1 (see Fig. 13 (a)), radiated solely by the bridge, agrees with the measured one in the main 

frequency range since the rolling noise and aerodynamic noise are shielded to a large extent by the 

deck. The predicted noise at S2 (see Fig. 13 (b)) agrees well with the measured one in the region 

between 40 and 800 Hz, whereas for higher frequencies the prediction model underestimates the 

noise, which will be influenced by the rolling noise which is not included in the model. Generally, 

the agreement between the measured and predicted results verifies the proposed prediction approach 

for structure-borne noise of composite bridges.  

(a)                                             (b) 

   

Fig. 13.  Comparison between the measured and computed A-weighted SPLs: (a) S1; (b) S2.  

 

Fig. 14.  Radiation efficiency of bridge components.  
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4.7 Comparison of FE, SEA and FE-SEA models  

In this Section the hybrid FE-SEA model is compared with models of the same composite bridge 

based purely on FEM or purely on SEA. This will allow the advantages and disadvantages of the 

three models to be assessed through a comparison of the accuracy and efficiency of calculating the 

vibration and noise of the composite railway bridge. In the SEA-only model the power input to the 

bridge is derived from the bridge mobility from the FE model and the forces transmitted to the 

bridge. It has 30 subsystems whereas the FE-only model has 225420 shell elements. The calculation 

times for the vibration and noise from the composite bridge using the three models are listed in 

Table 4 for a 3.2 GHz CPU with 16 GB of RAM. Obviously, the purely SEA model has a very high 

calculation efficiency. The calculation time of the purely FE model is about 11 times that of the 

hybrid FE-SEA model when the frequency range extends up to 1780 Hz, and the advantage of the 

hybrid FE-SEA model will be more obvious as the analysis frequency is increased.  

Table 4  Comparison of calculation efficiency.  

Models Number of elements Number of subsystems Calculation time 

SEA model / 30 0.6 s 

FE-SEA model 32440 18 111 min 

FE model 225420 / 20.5 h 

 

The computed vibration and noise of the composite bridge are illustrated in Fig. 15. At high 

frequencies, the results derived from the SEA and hybrid FE-SEA models are similar and close to 

the measured values. In the mid-frequency region, the FE-SEA calculation is closest to the 

measured data. At low frequencies, the responses from the FE model have the best approximation to 

the measurement. The hybrid FE-SEA model provides a good balance between accuracy and 

efficiency for computing the vibration and noise of this composite bridge.  
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(a)                                               (b) 

   

Fig. 15.  Comparison of accuracy: (a) Accelerations at V2; (b) SPL at S1.  

5 Discussion 

5.1 Sound contributions  

The bridge was divided into three parts: girder webs, lower flanges, and bridge deck, to 

investigate the noise contributions from the main components. The spectra of the noise at S1 and S2 

radiated from the three components are shown in Fig. 16. It is found that the deck dominates the 

noise emanating from the bridge below 125 Hz, while the web radiates the most noise above 400 Hz. 

In the region between 125 and 400 Hz, all the three components have significant contributions to 

the overall noise from the bridge.  

(a)                                             (b) 

   

Fig. 16.  Predicted A-weighted SPL spectra from the webs, flanges, and deck: (a) S1; (b) S2. 
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Table 5 illustrates the overall noise level radiated by the three components at S2. The proportion 

of the squared pressure from the web is the highest (50.1%), followed by bridge deck (35.1%), and 

then the lower flange (14.8%).  

Table 5  Contributions of various components to SPL at S2.  

Component A-weighted SPL (dBA) 

Web 76.1 

Flange 70.8 

Deck 74.6 

Left span 67.8 

Main span 78.4 

Right span 67.6 

Total 79.1 

 

To determine the influence of the bridge spans on the predicted noise, the SPL contribution of the 

left, main, and right span were computed, as listed in Table 5. The noise generated by the left and 

right spans together represents 14.5% of the acoustic radiation of the entire bridge. Because S1 and 

S2 are located in the cross section in the middle of the main span, the contribution of the main span 

is similar to the total SPL of the entire bridge, whereas the noise emitted from the side spans is 

much lower than that from the main span at these positions.  

 

5.2 Train speed  

The computed SPL spectra at S2 for speeds between 150 and 350 km/h are displayed in Fig. 17. 

It is found that the SPL in the entire frequency range increases with the train speed.  
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Fig. 17.  SPL spectra of S2 at various speeds.  

 

In the Chinese Technical Guidelines for Noise Impact Assessment [45], the speed correction of 

the SPL of railway wayside noise is given as  

Cv = 30lg(v/v0)                              (33) 

where v denotes the train speed, and v0 indicates the reference speed. This implies that the SPL 

increases by 9 dB if the speed doubles. The wayside noise of the elevated railway includes rolling 

noise, aerodynamic noise, and bridge-borne noise. Aerodynamic noise generally increases much 

more rapidly with speed than noise from mechanical sources, typically by 60lg(v) [46]. This section 

aims to obtain the relation between bridge-borne noise and train speed.  

The overall predicted A-weighted SPLs at S1 and S2 are plotted against speed in Fig. 18. Linear 

fitting is utilized to obtain the relation between SPL and lg(v) with the least squares method to 

derive the fitting coefficient: 

Cv = 20lg(v/v0)                              (34) 

The coefficient of the right side of Eq. (34) was found as 19.78 (S1) and 19.59 (S2) but for 

conciseness, was rounded to 20.  
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(a)                                            (b) 

   

Fig. 18.  Computed SPLs of bridge noise at various speeds: (a) S1; (b) S2.  

5.3 Geometrical attenuation  

The calculated SPLs obtained at 7.5, 15, 22.5, 30, 40, and 50 m from the centre of the westbound 

track for a train passing at 200 km/h are shown in Fig. 19. The A-weighted SPL decreases with 

distance in the entire frequency range, e.g. the doubling of distance from 7.5 m to 15 m corresponds 

to a 3-dB decrease in SPL and the doubling of distance from 15 m to 30 m to a 4-dB decrease in 

SPL.  

 

Fig. 19.  SPL spectra computed at the speed of 200 km/h. 

Generally, the expression for the geometrical attenuation of infinite line source is given as 

L(r) = L(r0)–10lg(r/r0)                               (35) 

where L(r) and L(r0) are the SPLs at the points where the distances to the source are r and r0, 
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respectively. According to Eq. (35), doubling the distance to the source produces a SPL attenuation 

of 3 dB.  

In Technical Guidelines for Noise Impact Assessment [45], for a finite line source with the length 

of l0, when r < l0/3 and r0 < l0/3,  

L(r) = L(r0)–10lg(r/r0)                               (36) 

This implies that the finite line source can be regarded as approximately infinite in the near field.  

When l0/3 < r <l0 and l0/3 < r0 < l0, Ref [45] recommends using  

L(r) = L(r0)–15lg(r/r0)                               (37) 

This indicates that doubling the distance to the source produces a SPL attenuation of approximately 

4.5 dB.  

When r > l0 and r0 > l0,  

L(r) = L(r0)–20lg(r/r0)                               (38) 

This implies that, in the far field, a finite line source can be considered as a point, and doubling the 

distance to the source produces a SPL attenuation of approximately 6 dB.  

The above three equations are concise; however, they result in steep changes in gradient at the 

points l0/3 and l0. It is difficult to predict the SPL using these equations if the unknown and 

reference points are from different regions. Therefore, it is indispensable to construct a unified 

formula to assess the SPL. A nonlinear fitting with the dimensionless variable lg(d/l0) was applied 

to take account of the nonlinear propagation, as shown in Fig. 20.  

0 0 0
0 2

0

20 83 5 84( ) ( ) . lg( ) . lg( ) lg( )
d dd d

L d L d
d dl

                     (39) 

where L(d) and L(d0) indicate the SPLs at the points where the horizontal distances to the track 

centreline are d and d0, respectively; l0 is the full bridge length.  

In the far field, the bridge can be regarded as a point source, and the SPL will be decreased by 6 

dB when doubling the distance to the source. According to L(d)–L(2d)≤6 dB, the valid distance of 
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Eq. (39) is no more than 120 m.  

 

Fig. 20.  Computed and fitted SPLs.  

To investigate the bridge span effect on the noise prediction, the SPL radiated by the main span is 

also shown in Fig. 20. The fitted formula follows  

0 0 0
0 2

m

20 83 5 84( ) ( ) . lg( ) . lg( )lg( )
d dd d

L d L d
d dl

                    (40) 

where L'(d) and L'(d0) indicate the SPLs at the points where the horizontal distances to the track 

centreline are d and d0, respectively; lm is the main span length. From Fig. 20, as 30 m is near to l0/3, 

it produces an obvious error around the dividing distance applying Eqs. (36–38) to predict SPLs of 

the bridge. However, Eqs. (39–40) describe well the geometrical attenuation of the bridge noise in 

the valid distance range.  

If an error of less than 1 dB (L(d)–L'(d) <1 dB) is taken as the critical condition, it is required that 

d < 0.3lm = 12 m, i.e. d should be less than 0.3 times of the main span length. Therefore, it can be 

concluded that the adjacent spans can be ignored in deriving the structure-borne noise at the points 

that are less than 0.3lm to the centre of the near track in the middle section of the main span. 

However, the proportion of the noise contributed by the adjacent spans will increase with the 

distance from the field point to the track centreline. At a distance d of 50 m the error of ignoring 

adjacent spans will be more than 3 dB.  
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6 Conclusions 

A hybrid FE-SEA method has been applied to study the vibration and noise of a composite 

railway bridge. FE is used to model the concrete deck and SEA to model the steel beam. Results are 

presented from field measurements of vibration and noise for such a composite bridge to validate 

this method. The main conclusions can be summarized as follows:  

1) The vibration and noise of a composite bridge derived from the hybrid FE-SEA method agree 

well with the measured values.  

2) The hybrid FE-SEA model has a good balance between accuracy and efficiency when 

computing the vibration and noise of composite structures with various modal densities.  

3) The deck dominates the noise radiation below 125 Hz, while the girder web radiates the most 

noise above 400 Hz. In the middle frequency range between 125 and 400 Hz, both the deck 

and girder have a significant contribution to the overall noise of the bridge.  

4) The structure-borne noise radiated by the bridge generally increases with the train speed v at a 

rate of approximately 20lg(v).  

5) The adjacent spans can be ignored when calculating the structure-borne noise at points within a 

certain distance to the track centreline, but the proportion of the noise radiated from the 

adjacent spans will increase with the distance from the field point to the track centreline.  

All data published in this paper are openly available from the University of Southampton repository 

at https://doi.org/10.5258/SOTON/D1202. 
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