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ABSTRACT

By convention, an aerofcil design problem involves finding the aerofoil shape
corresponding to a prescribed surface velocity distribution. Various design methods
have been devised for inviscid flows, including one based on .an expression for the
-stream function on an aerofoil's surface. Present work extends this method to
produce a matched viscous/inviscid iterative solution for the design of aerofoils in

viscous flows.

Full derivations of new formulae are presented as well as a summary of
essential formulae. Techniques for solving the underlying equations are examined,
with particular emphasis on achieving a stable iteration. Comparisons are made
between exact inviscid solutions for Karman-Treffetz aerofoils and viscous—flow
solutions for aerofoils with the same surface velocity distributions. Results are

plausible when displacement thickness effects are taken into account.



ACKNOWLEDGEMENT

The work described in this report was funded by the Commission of the
European Communities as part of -Contract EN3W.0016.UK (H1) between the
Commission and the University of Southampton. Thanks are due to both the
Commission and my colleagues in the Department of Ship Science, for financial

and technical support, respectively,



NOMENCLATURE

a,b,c {t£,n) coordinates defined in Fig. A.1.2,
c Chord
r Leading edge radius
s,n Local surface coordinates
X,y Cartesian coordinates
u,v Horizontal and vertical velocity components
w Transpiration velocity through aerofoil surfaces
[A] . Influence coefficients for a panel method involving U(x) and v
H Shape factor (81/6)
L Length scale to begin under-relaxation
N1, No Shape factors for vorticity variation (Fig. A.1.1)
R Reynolds Number
U Non-dimensional aerofoil surface velocity
Uo Free stream velocity
Incidence
=% Vorticity
51 ' Displacement thickness
X Variable in Thwaite's method Eq. 32-34
6 Angle of s axis to x axis (Geometrical context)
<] Momentum thickness (Boundary Layer context)
¥ Stream function
v Kinematic viscosity
5] Relaxation parameter
(¢,m) Local surface coordinates
Suffices
' Dimensional variable
i Collocation node (geometrical context)
i Inviscid flow (viscous/inviscid matching context)
j Vorticity node



Number of panels

Conditions at the wall



INTRODUCTION

Various authors have advanced methods for calculating the shape of ap
aerofoil corresponding to a prescribed surface velocity distribution- for inviscid flows.
Present work builds on previous work for inviscid flows, [refs-(l) .and (2)] to
develop a similar method for viscous flows. The calculation of an aerofoil's shape
from its surface velocity distribution is conventionally known as the aerofoil design
problem. Of equal importance for real aerofoil design are the assessment of the
characteristics required and the relationship between those characteristics and the
aerofoil's surface velocity distribution. In the restricted jargon of aerodynamics, the
two latter topics are not conventionally included in the ‘design' problem and also

lie outside the scope of the present paper.

The introduction of viscous effects into the design problem utilises ideas on
matched viscous/inviscid solutions, where a real viscous flow (RVF) has its
streamline—displacement effect computed and is then represented by an équivalent
inviscid flow. A good account of this technique is described by Lock and Williams
in ref (3). The main idea behind this technique is to achieve a smooth match
with solutions for both the RVF and EIF. That idea is implicit in present work,
i.e. it is a design method based on accurately-matched viscous and inviscid
solutions.  Another idea presented in ref (3) is that of a semi-inverse solution
procedure where a direct (i.e. calculate U(x) knowing y(x)) inviscid solution is
matched with an inverse (i.e. knowing w(x) calculate U(x)) boundary layer solution.
In the present work, the considerable advantages of the semi-inverse algorithm are
retained, but its implementation is reversed through the use of an inverse inviscid

method and direct viscous method.

The starting point for the design problem is assumed to be a knowledge of
the EIF wvelocity distribution either on an aerofoil, or on a displacement surface
irnmediately proud of the aerofcil's surface. The solution procedure involves an
iterative solution of a non-linear algebraic equation, derived from an expression .for
the stream function for the EIF on the aerofoil surface. Solution of this eqixation
is achieved with the aid of two panel methods, both of ’which use linearly-varying
vorticity elements with nodal collocation points. One of these involves a stream
function/aerofoil shape relationship and the other a vorticity/velocity relationship.
Various techniques are described to stabilise the solution 'process and derive a

practical aerofoil design method for viscous flows.



Comparisons with inviscid Karman Treffetz aerofoil calculations are presented,
as well as a sample calculation of an aerofoil derived from a more arbitrary

surface velocity distribution.

OUTLINE OF THE DESIGN METHOD

The design method seeks to find an aerofoil shape corresponding to the
equivalent inviscid flow (EIF) for some real viscous flow (RVF) around an aerofoil.
Formulation of the inviscid problem follows classical stream function analysis e.g.
Glauret, ref (4) but to avoid confusion, the notation of Soinn‘e's report, ref (2) is

adopted as present work builds that analysis.

Viscous flow calculations employ the methods of Heimenz, Thwaites, Smith,
Gamberoni, ref (5) and Green, Weeks and Brooman, ref (6), for laminar boundary
layer, transition and turbulent boundary layer calculations respectively. Results for
displacement thickness (51) are used to calculate surface stream function values for
the required EIF and an inviscid analysis is then employed to estimate the aerofoil

geometry.

FORMULATION OF THE INVISCID PROBLEM

Flow conditions are two dimensional, incompressible and irrotational. In these
conditions, the stream function provides a measure of the volumetric flow across a
boundary. 1In the case of an aerofoil without surface transpiration, the value of
the stream function must be constant everywhere on the aerofoil surface since there
is no flow through the surface. This stream function property can be used to
solve classical problems of the surface velocity distribution corresponding to a given
aerofoil shape (analysis problem) or the shape of an aerofoil corresponding to a
given surface wvelocity distribution (design problem). The technique is to place
vorticity panels over the aerofoil surface, relate vorticity strengths to the stream
function value on the aerofoil "and calculate either -wvalues of vorticity or the
geometry of the aerofoil sought. Fig 1(a) shows this general arrangement with the

notation in context and Fig 1(b) a detail of the panelised aerofoil.

The inviscid stream function model of ref (2) is summarised:

a;, = U (1)



¥o- (2)

Vorticity from elements &s of strength 4' are integrated over -the aerofoil to

produce a stream function of:

Vo= | oy In &) as (3)
AERCFOIL

Stream function changes associated with details of a position relative to the axis
system are accounted for with the equation:

¥'(x',y') = Uo (y' cosa -~ x' sinm) (4)
A stream function equation for a complete aerofoil can now be written:

. 1
¥'g = Uo (y' cosx - X' sinw) + P j v'(s) 1In (-E) ds (5
AEROFOIL

A value of vorticity at some node 'j' will be collocated against a stream function

value at point i such that equation (5) is re—written:

V' = U, (y'j cosa - x'§ sinm) - § kij T'j 6)

+ where Kij is related to aerofoil geometry, the values of vorticity on panels adjacent

to node j and the shape function chosen to represent vorticity variation (Ng) i.e..

-1 r
kij = i = | Min (@ as (7)
NODES

ADJACENT
TO j



The problem is non—dimensionalised by dividing either with ¢ or Uo.c. New

variables lack the primes found in equations 1-7.

x - ¥ (8)
y =¥ | (9
yj = Ho (10

Using the new variables, equation (6) becomes:

¥ = yi cosa - xi sina - I kjj vj (12)

Equation (12} provides the basis for an analysis method whereas for a design

method the equation is re—arranged to provide an estimate of y; as:

yi = [¥ + x; sina + ? Kij v (13)

CoSs{

Equation (13) or its equivalent is a well-known Fredholms integral equation of
the first kind, to which many solutions have been offered e.g. ref's (1) and (2).
Present work is concerned with stabilising the solution process and the inclusion of
viscous effects; through the calculation of an appropriate transpiration velocity to

represent displacement effects of the -boundary layer.
EXTENSIONS TO INCLUDE VISCOUS EFFECTS

The growth of a boundary layer over a surface has a displacement effect on
external—flow streamlines equivalent' to moving the surface outwards by an amount
61. Following the notation of ref (3), where suffix i is used to denote inviscid
conditions and suffix w the conditions at the wall, a transpiration velocity (-dy/ds)

for the EIF can be found from continuity considerations as:



. %'_ 5s = ff,ag (U; - U) dn (13)

d 16
-5 [0 W; - v an (14)
defining &1, as U—l Iz (U; - U) dn (15)
iw :
oy d

Integrating from a stagnation point along the surface (where n=0) leads to the

equation 1

y' = constant - U;, 1 (17)
At a stagnation point, Ujg, is zero and the stream function is denoted by ys.
Consequently,

v = ¥'g - Ujy 81(s) (18)

Equation (18) provides a basis for including viscous effects into the stream
function design method. Instead of using a constant value of ' (appropriate to an
inviscid flow problem) it is possible to vary the wvalues of ' along the surface of
the aerofoil to reflect the growth in displacement thickness, as indicated by
equation (18). In practice, the choice of a starting value of ' simply determines
the position of the aerofoil on the y axis but not the shape of the resulting
section. it is therefore possible to simplify equation (19) by -taking s' as .zero,

revert back to the notation that i corresponds to a collocation point and write:

' = U b (19



Non-dimensionalising leads to:

Ui 81
¥i = T U, T (20)

Equation (13) is now modified to introduce viscous effects as:

1
coso

¥i - [¢1 + x5 sina + T Ky 4] (21)
]

where the values of y; come from equation (20).
Equation (21) can be solved directly for an appropriate surface velocity
distribution, but fails to converge for velocity distributions that are not feasible.

More will be said on this topic later.

STRATEGIC CONSIDERATIONS FOR A SOLUTION

Equation (21) is an algebraic equation derived from a Fredholms integral
equation of the first kind, for which a solution cannot be guaranteed. previous
authors, refs (1) and (2) have commented on problems of numerical stability in
solutions to equation (13). The problem is that equation {13) needs to be solved
iteratively — starting with an initial estimate of aerofoil geometry and a chordwise
velocity distribution, computing values for Yj and finally estimating y; to provide
the next iteration for aerofoil geometry. There is no guarantee that this iterative
procedure will always be stable, especially when starting from an arbitrary initial
estimate of aerofoil geometry. Any errors in relating vj to uj will probably
magnify instabilities. Equation (21) is potentially less stable than (13), as it makes

provision for displacement effects of viscous flow to be included.

With all these uncertainties, as well as a degree of vagueness in the literature
about previous efforts to relate vj o uj, a solution strategy had to be devised.
Initial considerations indicated that- any quick method of relating vj to w; would
lose accuracy but that any accurate method would involve a price in computational
speed. Robustness in the solution procedure was preferred to gains in

computational speed and so a slow but accurate solution strategy was chosen.

Formally, the choices that need to be made involve the type of vorticity

panels used to obtain kij and the method of relating vorticity to surface velocity.
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A panel method, based on a linear variation of vorticity with nodal collocation
points, was employed. This is described in ref (2). An additional, compatible
panel method was also developed to relate ¥j to v This panel method requires
the solution of a system of simultanecus equations for each iteration. Some ten
years ago this might -have seemed computationally prohibitive,  at the time of
writing it adds about 30 seconds of microcomputer time to each iteration but -in
the future, this additional time should be significantly reduced. Robustness. gained
through the use of this panel method should produce significant savings from time
that would otherwise have been wasted in failed attempts with Iless

numerically-robust methods.

LINEARLY-VARYING VORTICITY PANELS

Details of panelisation and the relationship of  to « are given in ref (2).
For completeness, a summary of those details is given here, together with full

details of the method for relating u; to Y-

For each panel, a local axis system is defined in terms of n ~ { coordinates.
The panel length is 2¢c, with nodes 1 and 2 at { ordinates of —¢ and +c
respectively, A linear variation of vorticity to either node is described with the

aid of the shape functions:

Np - 3 (-2 (22)
Ny = 3 (1+3) (23)

The values of  for unit values of vorticity at the ends 1 and 2 of the panel
are evaluated for each shape function and expressed in terms of kj;, ki1, ka1, kq2,
ky7 and kjp. The element kj; is formed by summing the influences at collocation
point i of those shape functions having a value of unit at node j. Essential results

are summarised in Appendix I.

The problem of relating tangential of relevant vorticity effects over a panel.

Relevant integrals are evaluated in Appendix II.

11



CALCULATION OF NODAL VORTICITY

Non-dimensional surface velocities (U%YUo or U) are sub-divided into a
component due to the free stream and a component due.to the effects of the all

vorticity panels, i.e. .

{U} = {ecos(¥-o) + Uy} (24)

Calculation of {U;} involves integrating the vorticity effects at collocation point i,
from all panels. A set of influence coefficients (aij) is calculated using the results
of Appendix II and formed into a matrix [A]. An equation for {U} can then be

written:

{Up = [A] {v} (25)
This is introduced into equation (24) as

{U} = (cos(8-a)} + [A]l{vy]) (26)
Rearranging, {y} can then be found as:

(v} = (a7l (U - .cos (6-a)} (27)
VISCOUS MODEL

The broad outline of the viscous model follows; Hiemenz flow is assumed at a

stagnation point, A Thwaite's integration is used to calculate the laminar boundary

layer, the Smith—Gamberoni criteria is wused to predict transition and the

Lag—-Entrainment method used for the turbulent boundary layer.

The Hiemenz flow at the leading edge stagnation point is assumed to behave
like that around a cylinder of radius °'r'. A nose radius 'r' is computed from
aerofoil geometry and the starting conditions for the laminar boundary layer are

then:

' rr
6 = 0.29234 70, (28)

12



57 = 0.64791 ; 2 (29)
o]

Thwaite's integral between points 1 and 2 can be evaluated (using the assumption

of linear velocity variation) as:

Uy, 6 0.45 s2 - s1 U 6
2 _ (1 2 . _tAa
89 (U2 61 + 5 v - T, — U3 (1 [U2] ) (30)
2
Using A o= %— gg (31)
and H = 2.61 - 3.75\ + 5.24x2 (0 ¢ » £ 0.1) (32)

= 0.0731/(0.14 + ) + 2.088 (-0.1 ¢ » ¢ 0) (33)
then 81 = H.¢ (34)
(where 8p is the displacement thickness, generally rather than at points 1 or 2).

The Smith Gamberoni Transition criteria is quoted in ref (5) as:

Ro¢r = 1.174 [1 + (22 400/Rx)] Rx0.46 (35)

The Lag—Entrainment method is described in ref (6), where equations A-10 to
A-32 are arranged in order to facilitate programming. These equations provide the
inputs for a momentum integral equation, entrainment equation and lag equation,
which are then solved by a2 Runge-Kutta—Merson initial-value method.

The essential output from the viscous model is the displacement thickness
(81), which is used with equation (20) to calculate 4, in preparation for a new
estimate of geometry (yj) from equation (21).

KARMAN TREFFTZ AEROFOHOS AND THE TRAILING EDGE CONDITION
The Karman Trefftz analysis for aerofoils with finite trailing edge angles, is

described in ref (7). This analysis was employed to provide a yardstick, against

which the present method could be tested and to investigate the issue of an
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appropriate trailing edge condition. Two candidate methods are described in ref
(2) which are:

Y1 * Yo+l = O (36)

Y1 - Yo+l = O (37)

Indices 1 and n+l refer to 4 values on lower and upper surfaces respectively
at the trailing edge. Equation (37) was found to be the most appropriate for
viscous flow around an aerofcil. One reason for this finding was that equation
(36) implies the existence of a rear stagnation point in viscous flow (for which
there is no experimental evidence). An additional, important point also became

clear while this issue was being investgated.

An examination was made of the distance over which a Karman-Trefftz
velocity distribution decayed to zero at the trailing edge. This was found to be
very, very small; in fact too small to allow a good representation using the panel
method devised, even in inviscid flow. The effects of the vorticity panels depend
on fvds and so if the length of a panel is insignificantly small then its integrated
effects can be ignored. To model vorticity effects at the trailfng edge properly, it
becomes necessary to prescribe a finite trailing edge wvelocity which will fair in
reasonably with both upper and lower surface velocity distributions. An example of
this is shown in Fig 2, where up to the trailing edge a Karman-Trefftz velocity

distribution is used and at the trailing edge U/Uo is raised from zero to 0.865.

MESH DETAILS

The majority of panel methods are formulated in terms of geometry and an
inflow velocity. This usually results in at least one singularity somewhere on a
panel and requires a careful choice of both collocation points and mesh for a
successful method.  Considerable effort is often needed in mesh ‘tuning' and
strange answers can be generated when the mesh is changed or used in
circumstances for which it has not been tuned. This created an expectation that
mesh details would need to be carefully examined before the present method could

work.
Examination of the integrals in Appendix I reveals that the relationship

between stream function and aerofoil geometry, using nodal collocation points and

linearly—varying vorticity panels proves to be non-singular. This should make the
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present model less sensitive to the type of mesh used, provided that it permits
sufficient panels to represent both an aerofcil’s geometry and the vorticity variation
that occurs naturally over an aerofoil's surface. Typically, the vorticity distribution
varies rapidly near the leading and trailing edges and so panels may need to be

concentrated in those regions.

In the mesh employed, the relationship

; = 0.5 (1 -cos) (0 ¢ 8 ¢ w) (38)

is used to generate panels with an equal increment of #, so that the required
panel concentration occurs at either end of the aerofoil. Another method,
described in ref (2) was also used. This concentrates panels in regions of high
curvature. Experience with both meshes produced similar answers, supporting the
hypothesis that the basic stream function method is not unduly sensitive to the type
of mesh used; with the proviso that whatever mesh is used can represent both the

geometry of the section and the vorticity variation over its surface.

CORRELATION WITH KARMAN TREFFTZ AERQFOILS

Fig 2 shows a velocity distribution for a Karman Trefftz aerofoil. Clearly, a
viscous calculation for the same velocity distribution should produce a profile which
is about a displacement thickness inside the inviscid profile. This implies that a
cross—over of the wupper and lower surfaces will exist at the trailing edge.
Unfortunately, cross—overs of vorticity panels produce instabilities in the iteration
and so the model needs to be modified for these particular calculations. As a
general point, it should be noted that a velocity distribution which is feasible in
inviscid flow and produces zero thickness at the trailing edge, will not be feasible
in viscous flow since displacement thicknesses produce a cross—over of upper and

lower surfaces.

The following modified method was used to investigate the plausibility of

Karman-Trefftz velocity distributions in viscous flows:
(i) The location of the displacement surface is given by:

yi + 81 cos @i (39)
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(ii)

Introducing (20) into (21) and adding é9; cos 8; to both sides produces:

Uy ]

yi + ali COSBi = (sli [0050i - m

1
cosn

[Xi siny + ¥ kij 'YJ] (40)
J

Equation {40) can now be solved iteratively for the displacement surface
position {y; + 61 cosf;) and y; found by subtracting &1j cos@; from the

y ordinate of the displacement surface.

Results of an iterative solution to (40) using the wvelocity distribution
shown in Fig 2, are given in Figs 3, 4 and for Reynolds Numbers of
500,000, and 20 x 106,  As expected, a cross—over of the upper and
lower surface profiles does occur, which becomes progressively less

pronounced as the Reynolds Number is increased.

The viscous profiles are about a displacement thickness inside the

inviscid profiles, indicating that the aerofoil design method is plausible,

DEVELOPMENT OF A PRACTICAL DESIGN METHOD

Equation (40) is a more stable formulation of the aerofoil design problem than

{22), as cross—overs in trailing edge vorticity panels are less likely. Observations

on the way profiles changed with successive iterations suggested that the use of

equation (40) could be improved by the introduction of under-relaxation whenever

the two aerofoil surfaces approached eath other at the trailing edge. Defining o

as a relaxation factor, L as a length scale, y; and yp41 as the y ordinates of the

lower and upper aerofoil surfaces respectively, then:

For

For

Yn+l1 - ¥1 > L, =1 (41)
Y+l - Y1
Yn+t1 - ¥1 ¢ L, 0= —3— (42)
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If m is the iteration number, then equation (40) is interpreted as:

{yj + 815 cos@idpe1 = lyj + 817 cosbil, (1 - w) +

Ui 1 .
@ {81i [cosﬂi U, ¢ cosoc] * Cosa [xi sino + Z kij 7]]}
J
(43)
Examination of (41) - (43) shows that whenever the two (trailing edge)

aerofoil surfaces are more than a distance L apart, any previous geometry is
discarded during the iteration cycle. When the two aerofoil surfaces are less than
a distance L apart, the credibility given to the newly-computed solution is
progressively reduced as the surfaces approach each other. This can be a recipe
for blunt trailing edges, but the degree of bluntness may be reduced by using the
output of a coarse calculation as the input for a more accurate calculation.
Typically, an initial estimate for L is 0.01 (i.e. 1% of chord) and a resulting
aerofoil might have a trailing edge thickness of 0.3% chord. This algorithm can
also include a trap to avoid negative values of w, in which case naturally—occurring
trailing edge cross—overs need not be inhibited. The Karman-—Trefftz velocity
distributions examined earlier were re—calculated using the present method and

crossed—over trailing edge profiles resulted.

It is necessary to monitor successive iterations to check that geometries are
changing slowly, using reasonable value of w, prior to cessation of the calculation,
If this condition is satisfied, .then the underlying equations should also be satisfied,
as the new geometry is consistent with a correctly-located distribution of vorticity.
Should the relaxation factor (w) become too small, the length scale (L) should be
re—defined to raise values of w so that geometry changes can be monitored

adequately.

The question of a design incidence appropriate to a velocity distribution tends
to be self-evident once a profile is generated. Initially, a design incidence is
assumed and the resulting profile is usually inclined at some angle to the x axis.
That angle is used as a correction to the initially-assumed incidence and the

profile re—computed until the chord line becomes coincident with the x axis,
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Surface velocity distributions for feasible aerofoil shapes are difficult to define
intuitively without adequate béckground of shape/velocity distribution relationships for
existing aerofoils. In particular, problems can occur at the leading edges. At the
present time, the work is used to define an aerofoil profile consistent  with a
required velocity ' distribution .over its centre and .rear chord. Leading edge details
may need to be decided by manual fairing. The resulting aerofoil is then
evaluated with an analysis program and further modifications made to improve
off-design performance. In theory, there is no reason why the method could not
be used to produce an accurate initial design of an aerofoil but in practice, until a
background of surface velocities/aerofoil-profiles relationships are available, a

designer will have difficulty in knowing what information to input to the program.

CONCLUDING COMMENTS

An aerofoil design method suitable for calculating the aerofoil shape consistent
with a prescribed EIF velocity distribution has been described. The method does
not set out to prescribe the initial EIF surface velocity distribution and the

problems associated with doing that have been outlined in the paper.

The iterative procedure described involves a non linear algebraic equation
which cannot be guaranteed to converge for an arbitrary velocity distribution when
starting from an initially assumed aerofoil shape. Techniques outlined in this paper
tend to stabilise that convergence process. Convergence can also be aided through
the use of an initial aerofoil profile that has a substantial trailing edge thickness.
This tends to allow the bulk of the aerofoil profile to converge before problems

with the upper and lower swrfaces crossing at the trailing edge begin to appear.

It has been mentioned already that experience with the stream function
method suggests it is largely insensitive to the particular mesh used. This quality
makes it very suitable for exploring aerofoil profiles corresponding to novel velocity

distributions.

Essential innovations of the present work are the inclusion of viscous effects in
the aerofoil profile calculation, the development of a panel method to relate
surface vorticity to surface velocity, the deployment of vorticity on the displacement
surface and a selective introduction of under-relaxation when the iterative process
is in danger of diverging. These innovations appear adequate to produce a
workable aerofoil design method for viscous flows, but there should be no doubt

that a good initial estimate of a surface velocity distribution is a pre-requisite for a
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successful aerofoil design. Finally, the method looks easier in theory than it is to

implement' in practice.
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Fig .2 SURFACE VELOCITIES FOR AEROFOILS
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Fig 3 COMPARISON OF VISCOUS AND
INVISCID SOLUTIDONS, Rn = 300,000,

22




e Karman Trefftz stream function
(inviscich (viscous)
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Fig4 COMPARISON 0OF VISCOUS AND
INVISCID SOLUTIONS, Rn = 20,000,000
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Fig 5 SURFACE VELOCITY FOR AEROFOIL
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APPENDIX 1 — STREAM FUNCTION INTEGRAIS

The local (£,7n) coordinate system is shown in Figs Al.1 and Al.2 together

with plots of the shape function and other details of panel notation,

The value of y; from a vortex element on a panel is given by:
1 c
i = 5 .[—c ¥(s) In rds (1)

For a complete panel, the integral is:

1 c
vy =- 5o I_c (N1 vy1 + No v2) Inr ds (2)

The problem now is to evaluate equation (2) for both shape functions Nq and

Nj to find kj;, kijp, ki, kp1, ki1, and kyjp.

From ref (2) these integrals are evaluated as:

kit = - Z% {(a+e) Inr] - (a-¢) lnry - 2¢c

+b [arctana%E— - arctan E%E]}

+ Z% {Ef:gg:ff [ln ri - In r2] - a

+ 3% [arctana%E— - arctan E%E]} (3)
kijp = - 3% {(atc) Inry - (a-c) Inrg - 2¢c

+ b [arctan EEE - arctan E%S]}

- z% {EEJ%%JEE [ln ri - In rz] - a
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ab atc a-c
+ = [arctan =~ - arctan T]} (4)

k12 = k21
=-S[1-21n)2 5
—Z—W[ - n 12ci ] (5)
k11 = k22
=-5[3-21n 12 6
—4—'"_[ - nlcl] (6)

Analytical and numerical checks were carried out to confirm that equations

(3)~(6) were wvalid, with a positive conclusion.
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APPENDIX TI — TANGENTIAL VELOCITY INTEGRAILS

The effects of a linearly—varying vortex panel are examined with a view to
finding horizontal and vertical (u,v) induced velocity components. Notation is

similar to that in Fig Al.l.

Over the panel,

y(s) = Njiv1 + Nay2

= 3 (1 -s/e)y1 +3 (1 +s/c) v (1)

Noting that the induced velocity from an element 5s is y&s/2#r with (u,v)

components of y3s b/27r2 and —‘yﬁs(a—s)l2wr2 the integrals to be evaluated are:

.- _b Ic (1-s/¢) y1 + (1 + s/c) 2

ds (2)
47 J-c (a_s)z + b2

1 _[c [(1-s/c) y1 + (1+s/¢) ¥v2] (a-s) ds

Vo= = — 3
4 J-¢ (a-s)2 + b2 (3)
Defining,
1 rc ds
1 = 4r I—c (3_3)2 + b2 (4)
and
1 c s ds
12 = E?E J-—C (a_S)Z + b2 (5)
Then (2) can be written
u=+v1 . b (I -1I2) +vy2 . b(I] + I32) (6)
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Consequently, calculation of u components to Aj; and Ajp (analageous to kj;

and kijp of Appendix I can be easily carried out once (4) and (5) are evaluated.

By inspection,

1 ¢ 1 a-s
11 = Z; -C[ T—T arc tan (TBT ]
1 atc
- 6T {arctan (= bl) - arctan (— bl)} D)

Noting that d[(a—s)2 + b2]/ds = -2 (a-~s), I3 can be written:

1 c -2(a-s) a
[9 = - — . d
2 e e O syl + b2 (as)2 4 ) ds

1 c -2(a-s) a
a3 I (a-s)2 + b2 s -2 h %)

15 is then evaluated as:

1 ¢ 3 a
[2 = - o5 ot In 172t - 2. 1y
1 ra a
y g {—1 ?T + TET [arctan ( b ) - arctan ( )]} ( )

Substituting the results from (7) and (9) into (6) gives:

u =y . 41% {-sign(b)(c-a) [arctan (—) - arctan (——-) + bln |-—-|}

+ v . {—51gn(b) (c+a) [arctan ( b ) - arctan ( ) + bln I—-—I}

(10)
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Equation (3),

-c (a-s)2 + b2

is expressed as:

v=-y1 (I3 - I4) - v2 (I3 + Ig)

where

1 (c a-s
I3 = — ——=———= ds
37 4 I—c (a-5)2 + b2

and

c s(a-5)

1
Ig - — e ds
4 47 I—c (3—5)2 + b2

Solving (12)

z% “le-v |(a-s)2 + b2| ]

-C

_ -1y ]r2
N 4x n rq

The integrand in I4 is rewritten using the relationship:

s{a-s) - -1+ b2 + a(a-s)
(a-s)2 + b2 (a-s)2 + b2
Consequently,
14 = gz [O {1+ b2 + a(azs)y g
4 4xc I-c¢ (a-s)2 + b2

Evaluating (16},

I_lc
4~ Z7¢c -c
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1 Ic [(1-s/c) y1 + (1+4s/c) y2] (a-s) 4

[-s - 1b] arctan [?%?] - ; 1n |(a—s)2 + b2|]

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)



- %c {-2¢ - b1 (arctan E’;—T] - arctan [%]) - aln |—;—%I} (19)

Substituting (15) and (19) into (11)

VvV = 4—1((1:— {(c-a) In |:—121| - 2¢ - bl (arctan [%] - arctan [?—;—%])}

Y2 ra a-c a+c
Trc {(cta) In IHI + 2¢ + 1b} (arctap [l_bl_] - arctan [—m])} (z20)

Pole terms used to be evaluated for u when a - #c and n » 0, x logx - 0

and so the logarithmic terms tend to vanish:

For s = —¢, n-=2>0
From 10,
71
u = -4-:;&- {(—2C) [0 - 1'(/2]} (21)
Y1
- (22)
For 5 = ¢, 7 -» 0 again from (10)
Y2 x
u= - % 24

Transposition of Axes:

There is a problem of converting the induced wvelocities from a panel
orientated at o to the x axis to a tangential velocity (ur) for a node orientated at
8; to the x axis. This can be done by transposing the (u, v) velocities through
~8j to obtain velocities relative to an (x,y) datum and then through +¢; to find

the relevant tangential velocity (ur) i.e.
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Ur = (ucosej - vsinﬂj) cosfj + (usinﬂj + vcosﬁj) sin@j (25)

Ur = u (cosﬂjcosﬂi + sinﬂjsinﬂi) + v(cosﬁjsinﬂi - sinﬂjcosai)
(26)

i.e. Up = ucos (8 - 6;) + vsin (6;-6;) (27)

(26) provides the essential equation for calculating coefficients Aij once u and v

are known.

SUMMARY

The effects of vorticity at node j on a tangential velocity at node i needs to
be computed. For each panel abutting node j, integrals shown in this appendix
need to be evaluated to find their contribution to the tangential velocity at node i.

Values of v and 9 are set to one or zero as appropriate.

Using panel notation with j = 1, 2; for Ay and Ay, u is found from (10)
and (v) from (19). Equation (26) is then used to find the contribution of that
panel to Aij-

Where a collocation point coincides with the end of a panel, equations (21)
and (23) are used directly to find panel contributions to Ay and Agp. Values of

A12 and Ap are zero.

Equations (10) and (19) have been checked against numerical integrations of

(2) and (3) with good correlation and no obvious doubts about their validity.

CJIS(SHIPREP)
15th June 1989
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