
Millington and Niranjan

RESEARCH

Partial Correlation Financial Networks
Tristan Millington* and Mahesan Niranjan

*Correspondence:

t.millington@soton.ac.uk

School of Electronics and

Computer Science, University of

Southampton, University Road,

Southampton, UK

Abstract

Correlation based networks have been a popular way of inferring a financial
network due to the simplicity of construction and the ease of interpretability.
However two variables which share a common cause can be correlated, leading to
the inference of spurious relationships. To solve this we can use partial
correlation. In this paper we construct both correlation and partial correlation
networks from S&P500 returns and compare and contrast the two. Firstly we
show that the partial correlation networks have a smaller and much less variable
intensity than the correlation networks, but in fact are less stable. We look at the
centrality of the various sectors in the graph using degree centrality and
eigenvector centrality, finding that sector centralities move together during the
2009 market crash and that the financial sector generally has a higher mean
centrality over most of the dataset. Exploring the use of these centrality measures
for portfolio construction, we shown there is mild correlation between the
in-sample centrality and the out of sample Sharpe ratio but there is negative
correlation between the in-sample centrality and out of sample risk. Finally we use
a community detection method to study how the networks reflect the underlying
sector structure and study how stable these communities are over time.

Keywords: correlation network; financial networks; portfolio optimization; partial
correlation; covariance estimation

1 Introduction
Financial markets are a critical part of modern economies and help us to understand

the current consensus on how various constituent companies are performing. Asset

prices are an equilibrium reached by the interactions between external informa-

tion, historic performance and trader sentiments. Because of this, they are widely

regarded as incredibly complex systems. Networks are a popular method of repre-

senting a complex system due to their ability to express interactions or relationships

between components in a simple model that is widely applicable to many different

fields. Networks inferred from these disparate fields share surprisingly common prop-

erties, including heavy tailed degree distributions, high clustering coefficients and

community structure [1] [2]. Once constructed, the networks can be used for a wide

variety of applications, for instance portfolio selection [3] [4], stability analysis [5]

and to detect attempts to manipulate stock prices [6] [7].

A common and popular way of constructing a financial network is to infer it from

returns data following the seminal work of Mantenga [8]. In this paper the author

uses Pearson’s correlation coefficient between the returns to weight the edge be-

tween two companies and constructs a minimum spanning tree from the resulting

graph, finding companies in similar sectors are clustered in the tree. Onella et al

[9] further investigate this, studying the effects of market crashes on the minimum
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spanning tree. They find the length of the tree decreases in times of market disrup-

tion (i.e. things become more correlated). Boginski et al [10] create a network from

the correlation matrix inferred from financial returns data and investigate what

happens to the structure of the network when a threshold is set. Any correlation

coefficients with an absolute value below the threshold are set to zero and any above

are set to one. This model is applied to the US stock market, and they find that the

degree distribution of the networks resembles a power law if the threshold is set to a

sufficiently large value. Furthermore they also construct maximal independent sets

from the network in an attempt to create diversified portfolios. Other authors have

applied this model to the Russian [11], Chinese [5] and British [12] stock markets.

These models have also been applied to other assets, including cryptocurrencies

[13].

An important question is whether these correlation networks contain real infor-

mation or whether they are merely picking up noise present at that moment of

time. Plerou et al [14] use random matrix theory to analyze correlation matrices

inferred from stock returns. By studying the eigenvalues and eigenvectors of the

correlation matrix they obtain several interesting results. Firstly, only a few of the

eigenvalues and eigenvectors contained in the correlation matrix differ significantly

from those obtained from a random matrix. This implies many of the relationships

in the correlation matrix are noise. However the largest eigenvalue tends to dif-

fer significantly, being an order of magnitude larger than the second largest. The

eigenvector that corresponds to this eigenvalue tends to contain information that

affects all stocks (for instance interest rate increases), with its components being

significantly different from those obtained from a random matrix. They also study

the next few eigenvectors corresponding to the next largest eigenvalues and find

these tend to have significant values for related stocks - for instance those in the

same sector or who have business in similar regions. Finally they show the eigenvec-

tor that corresponds to the largest eigenvalue tends to be preserved for correlation

matrices inferred from data across different times, indicating it is stable.

While using the correlation coefficient does give a simple, interpretable model

there are downsides. Two variables which share a common cause can be correlated,

which could be considered a false relationship. We can use partial correlation in this

context to attempt to remove these indirect correlations. Kennet et al [15] create a

form of partial correlation network they term a ‘dependency network’. Calculating

partial correlations by removing one variable at a time, they subtract this off the

correlation coefficient between two variables. This gives the contribution that a

particular company has on the correlation between two others. These networks are

directed and help us to understand which companies are influential in the market.

They find that the financial sector is very influential in the US stock markets and

its influence is maintained throughout the period of study.

Another example of the use of partial correlation is used by Wang et al [16] who

compare minimum spanning trees constructed using the correlation and partial

correlation coefficients inferred from various stock indices across the world. They

calculate partial correlation by inverting the correlation matrix and find that the

centrality structure in the minimum spanning tree constructed from the partial

correlation matrix is more useful than that constructed from the correlation matrix,
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with the USA, Germany and Japan clearly serving as hubs. Other authors have used

sparse precision matrix estimators to infer these networks, for instance the graphical

lasso [17] [4] and SPACE [18]. These sparse methods do however tend to produce

quite unstable networks, possibly due to the instability of the lasso with highly

correlated data [19] [20].

A covariance matrix can be used to estimate both correlation and partial correla-

tion matrices. We can obtain the correlation matrix (C) from the covariance matrix

(Σ) by normalizing the off-diagonal entries:

Cij =
Σij√
ΣiiΣjj

(1)

Obtaining the partial correlation matrix can be done in a similar manner. We

scale the off diagonal entries of the inverse of the covariance matrix (Θ), also called

the precision matrix, to acquire the partial correlation matrix (P)

Pij = − Θij√
ΘiiΘjj

(2)

Calculating the partial correlation matrix therefore requires that the covariance

matrix is invertible. This is not always the case with financial data due to the

presence of outliers and the issue of having more dimensions than samples. To solve

these issues we use the Ledoit-Wolf Covariance shrinkage method [21]. This produces

a well-regularized covariance matrix by combining the sample covariance matrix

with the identity to reduce the off-diagonal values. This well formed covariance

matrix can then be inverted to obtain the precision matrix. With these regularized

covariance and precision matrices, we can use the equations above to obtain the

correlation and partial correlation networks. Once obtained, we can then compare

and contrast said networks. The shrinkage method is described further in section 2.

We hope that by using partial correlation we can discover latent relationships

that are hidden in correlation networks by the overall movement of the market.

Previous work has focused on removing the market mode from the data by various

methods, including deleting the largest eigenvalue and eigenvector, or using a factor

model [22] but to our knowledge a partial correlation approach like the one we take

has not been used on financial data before. In our approach, the partial correlation

between two variables is the correlation between the two once the linear effects of

all other variables have been removed. To gain further insight, first consider that

we can infer row i of a precision matrix from a dataset X via regressing variable i

(xi) on the others (X−i)

β∗ = arg min
β
||xi −X−iβ||22 (3)

The solution to this is

β∗
ij = −Θij

Θii
= Pij

√
Θjj

Θii
(4)
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This means that the partial correlation between i and j (Pij) is proportional to the

weight that the least squares method would assign to j in a regression problem if

we tried to predict i from the rest of the dataset (or since Pij = Pji the weight that

the least squares method would assign to i if we tried to predict j from the dataset)

Furthermore the precision matrix is intimately connected with the minimum vari-

ance portfolio. The problem, formulated as [23]

minimize
w

wTΣw

subject to 1Tw = 1
(5)

has a solution of for one corner of the optimal mean-variance returns frontier

w∗ =
1

1TΘ1
Θ1 (6)

where 1 is a vector of all 1s and wi is the amount to be invested in asset i. Due to

the relationship between the precision matrix (Θ) and partial correlation (P) (see

equation 2) we expect these networks will give insight into the benefits and draw-

backs of these portfolios, however it is important to remember a partial correlation

matrix discards the diagonal of the precision matrix

2 Ledoit-Wolf Covariance
Ledoit-Wolf covariance is based upon shrinkage, where we combine the sample co-

variance matrix S (which may have a high variance but low bias) with a known

matrix with desirable properties (which has a low variance but high bias). The

usual choice for this is the identity matrix I and we create a linear combination of

the two

Σlw = (1− ρ)S + ρtr(S)I (7)

To decide ρ we wish to minimize the Frobenius norm of the difference between

Σlw and the true population covariance matrix Σ∗

min
ρ
E[||Σ∗ − Σlw||2F ] (8)

The optimal solution of ρ is

ρ =
E[||S − Σ∗||2F ]

E[||S − tr(S)I||2F ]
=
β2

δ2
(9)

The interpretation here is that if S is very close to Σ∗ (i.e. our estimate of the

covariance is good) then we do not need to shrink much, or if our shrinkage choice

does not seem accurate then we should not shrink much either. However the obvious

flaw so far is that we need to know the true population covariance matrix to obtain

the correct value for ρ - and if we did then we would not need to bother estimating

it to begin with! We therefore require estimates of β2 and δ2. We can estimate δ2

as following:

δ̂2 = ||S − tr(S)I||2F (10)
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and β2 as

γ̂2 =
1

n2

n∑
k=1

||xkxTk − S||2F (11)

β̂2 = min(δ̂2, γ̂2) (12)

ρ̂ =
β̂2

δ̂2
(13)

The constraint on β̂2 ensures that ρ < 1. While it is rarely necessary, it does help

stop us accidentally making our estimate less well formed.

The Ledoit-Wolf method is guaranteed to give us a positive-definite invertible

matrix, which is critical in this application as we require the inverse of the covariance

matrix (the precision matrix) to acquire the partial correlation matrix.

This covariance estimation method has been applied to the genomics field [24], for

portfolio optimization [21] and in the neuroscience field [25] but to our knowledge

has not actually been applied to create financial networks.

3 Data and Software

For our study we use daily log returns from the S&P500. If there is less than 10%

of the data missing for a particular stock we fill it with the price from the previous

day, or if the data is missing from the start, from the first day when the stock is

traded. If there is more than 10% missing we discard the data for that stock. We

use the close price on the day to calculate the return, from 2000-01-03 to 2017-12-

05. Overall we have 4510 days of return data for 345 stocks. Since financial data

is non stationary we use a window of 300 days and slide along this 30 days at a

time to obtain a sample where we can assume the data is stationary, giving us 140

windows overall. The returns inside each window are normalized using the z-score

to have a mean of 0 and a standard deviation of 1. While correlation is by definition

normalized, this procedure is mostly for the benefit of the shrinkage procedure -

normalizing reduces the amount of shrinkage required which allows us to capture

more relationships.

Using this dataset we infer a network for each window by using the Ledoit-Wolf

shrinkage methods to obtain a covariance matrix and inverting it to obtain a pre-

cision matrix. We then scale both of these matrices appropriately using equations

1 (Correlation) and 2 (Partial Correlation) to create the correlation and partial

correlation matrices and use these as adjacency matrices to construct the networks.

We then study the properties of these networks and how they change over time.

We make use of Python, NumPy and SciPy [26] for general scripting, pandas

[27] for handing the data, sklearn [28] for the implementation of the Ledoit Wolf

estimation methods, statsmodels [29] for some of the statistical analysis, matplotlib

[30] for plotting, Networkx [31] for the network analysis and gephi [32] for some

graph visualization.
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Figure 1 Example correlation network inferred from the first window. Only the largest connected
component of the network containing the 1000 edges with the largest absolute weights are shown.
Nodes are coloured according to sector membership. There is a strong community structure
visible, with communities usually made up of companies in the same sector.

4 Results and Analysis
4.1 Network Analysis and Sector Centrality

Firstly we display the networks constructed on the first window of this data. Since

they are dense, we display the edges that correspond to the 1000 largest absolute

values from the off-diagonal of the matrix. The correlation network has isolated

nodes in this situation, so we only display the largest connected component, but

the partial correlation network remains connected. These networks are displayed

in Figures 1 (Correlation) and 2 (Partial Correlation). Both networks show a de-

gree of sector clustering but it is far more prominent in the correlation networks

compared to the partial correlation networks. The partial correlation networks also

seem to have a more uniform degree distribution than the correlation ones, with

less community structure.

To begin our analysis we look at the distribution of correlation coefficients to

partial correlation coefficients in the network, and the difference in weight between

the same edge in the two networks. A histogram of these is shown in Figure 3, and
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Figure 2 Example partial correlation network inferred from the first window. Only the 1000 edges
with the largest absolute weights are shown. Nodes are coloured according to sector membership.
There seems to be less sector clustering in the partial correlation networks and less of a
community structure.

a scatter plot relating the two is shown in Figure 4. In general, partial correlation

coefficients tend to be smaller than the corresponding correlation values and are

more likely to be negative, but it is also clear that the two are related. This is

likely to be due to the definition of partial correlation - if it is reducing the value

of indirect correlations then we would expect some companies that are supposedly

correlated to have these relationship strengths reduced.

Our next goal is to compare and contrast stability of the networks. In a correlation

matrix the largest eigenvalue measures the intensity of the correlation present, and

the corresponding eigenvector measures the ‘market mode’ and the effect the general

market has on that particular company [14] [33]. Each entry of this eigenvector can

also be used as a measure of centrality. Therefore we can study how this eigenvector

changes over time to see if the networks regard the same nodes as important, a proxy

for how stable the networks are. To measure this we normalize the eigenvectors so

the components to add to 1 and then measure the difference between those from

adjacent windows using the L2 norm.
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(a) Correlation (b) Partial Correlation

Figure 3 Distribution of correlation and partial correlation coefficients over the dataset of 140
windows taken over the 17 year period. We can see that the partial correlation matrix generally
has smaller values than the correlation matrix, and that they are more likely to be negative.

Figure 4 Scatter plot of the correlation coefficient for an edge against that of the partial
correlation coefficient for each of the 140 networks in the dataset. The partial correlation
coefficients are in general smaller than their corresponding correlation coefficients which is to be
expected if the indirect correlations and reduced, however there is still a relationship between the
two

Firstly we look at how the largest eigenvalue varies over time. The results are

shown in Figure 5. From this we can see that the largest eigenvalue of the par-

tial correlation matrix is much smaller and varies relatively little, compared to the

largest eigenvalue of the correlation matrix. This implies that the intensity of the

partial correlation networks does not change much over the dataset, particularly

compared to the correlation networks which have large changes. This perhaps indi-

cates that the market mode has been removed. However if we look at the difference

in the eigenvectors we get a slightly different story. From Figure 6 we can see there

is a larger change in the corresponding leading eigenvector of the partial correla-

tion matrix as opposed to the correlation matrix, signifying the partial correlation

networks are less stable than the corresponding correlation networks and could in-

dicate as to why minimum risk portfolios tend to require large changes in asset

holdings [34]. Both seem to reflect macroeconomic changes, with the magnitude of

the difference varying over time. Interestingly the differences between eigenvectors

from adjacent windows drops during periods of disruption.
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(a) Correlation (b) Partial Correlation

Figure 5 Largest eigenvalue in the correlation (left) and partial correlation (right) networks. There
is a large variation in the largest eigenvalue of the correlation matrix, with it varying from 180 to
40. It noticeably picks up the financial crisis of 2008/2009, where the eigenvalue reaches its
maximum. The reverse is true in the partial correlation networks where the largest eigenvalue
stays roughly constant (and quite small) showing the network has a consistent intensity, indicating
the market state has been removed

Figure 6 Change in the normalized leading eigenvectors, measured using the L2 norm, of the
correlation and partial correlation matrices. Both have changes that seem to reflect the general
market conditions, although the eigenvector from the partial correlation matrix seems to change
more, which shows the network is less stable.

Next we study the centrality of the sectors in the networks, allowing us to quan-

tify their influence in the economy. We use two measures, degree centrality and

eigenvector centrality. Relating these specifically to financial networks, firstly we

note that degree centrality is simply the sum of the edges of a node. The weight

on the optimal portfolio is also proportional to weight of the edges on a node (see

equation 6). Secondly eigenvector centrality is calculated using the eigenvector that

corresponds to the largest eigenvalue, with its components normalized to sum to

1 in the same manner as above. This largest eigenvector reflects the market mode

and the effect the general market has on a particular company.

The presence of negative edges in the networks makes calculating centrality more

challenging. Negative edges can result in a node having negative centrality, which

does not have an obvious interpretation. We can use the absolute values of the

edges to solve this problem but this involves discarding the negative relationships,

which are numerous in the partial correlation networks. In our experiments we found

relatively little difference between permitting negative edges or using the absolute
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values of edge weights and so permit the existence of negative edges. We normalize

at the end so the sum of all node centralities is 1.

To measure the centrality of a sector we take the mean centrality of all the com-

panies in said sector. We then normalize these mean sector centralities to add to 1

to make comparison easier. To start with we look at the mean degree centrality for

the sectors for each network. A graph of this over time is shown in Figure 8. In this

graph we can see that the partial correlation networks have a much lower difference

and variance in the sector centrality than the correlation networks - each sector

has roughly the same centrality and there is little variation over time. The telecom-

munications sector has relatively few companies, hence why its centrality has far

more variance. In the correlation networks we firstly see a much larger variance in

the mean centrality of a sector, with the financial sector having the highest mean

centrality for the majority of the dataset. Interestingly all the centralities ’jump’

together during the financial crisis, showing how suddenly the correlations between

previously unrelated companies increases due to these macroeconomic effects.

Figure 7 Legend for the sector colours for Figures 8 and 9

Next we look at eigenvector centrality. A graph of this over time is shown in

Figure 9. In this figure we see very different results to degree centrality for the

partial correlation networks, which show a much larger variation in the centrality of

the sectors. They also show a slightly larger variance in the mean centrality when

compared with the correlation networks too. In particular the financial sector is

far more dominant than we would expect. The macroeconomic conditions are also

visible in these graphs, with the financial crisis again forcing the mean centralities

towards a mean.

The movement of centrality measures towards a mean during times of disruption

is particularly interesting. Preis et al [20] pointed out that the market tends to be

more correlation during times of market disruption, which makes selecting truly

diversified portfolios very challenging as suddenly supposedly unrelated assets be-

come related during these periods. This may be relevant here too - here we have

that during periods of disruption companies start having far more similar behaviour

than they did during times of stability.

We have pointed out this connection between the minimum risk portfolios and

the degree centrality in the partial correlation networks, but to what degree does it
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hold? To further explore this we plot the L2 difference between the optimal portfolio

vector and the sum of the diagonal of the precision matrix (as this is effectively

discarded by the partial correlation matrix) in Figure 10. From this we can see the

difference can be quite large, although most of the difference seems to be explained

by the size of the precision matrix diagonal, which is effectively discarded by the

partial correlation networks.



Millington and Niranjan Page 12 of 21

(a) Correlation

(b) Partial Correlation

Figure 8 Mean degree centrality for each sector over time. It is noticeable that in the partial
correlation networks the difference in centrality is much smaller for each sector than in the
correlation networks. We can see the macroeconomic trends in the correlation networks with the
centralities jumping together during the crash. The colour legend can be found in Figure 7
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(a) Correlation

(b) Partial Correlation

Figure 9 Mean eigenvector centrality for each sector over time. These centralities have a much
larger variance than the degree centralities, particularly for the partial correlation networks. Here
we can see the financial sector is the most central for the majority of the dataset, although the
real estate does also become important in both networks. Macroeconomic effects are also much
more visible, with the strong change from 2009 - 2011 as all the sector centralities move together.
The colour legend can be found in Figure 7
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4.2 Out of sample Portfolio Performance

Previous work with correlation networks has stated that companies who are on the

fringes of the network have a better Sharpe ratio than those who are more central

[4] [3]. We are curious as to how this applies in these networks. Therefore we study

the centrality of a company against its out of sample Sharpe ratio (defined as the

mean return over the standard deviation of the returns µ
σ ) and its risk (defined as

the standard deviation of the returns) for the next window.

Using Spearman correlation we find that there is mild positive correlation between

the centrality of a company and its out of sample Sharpe ratio in every network,

and perhaps unsurprisingly mild negative correlation between out of sample risk

and centrality. The exact results are shown in Table 1. All results are statistically

significant at p < 0.05.

4.3 Community Detection

In Figures 1 and 2 it can be seen that there is some community structure in the

networks, so we are interested in further studying this. To do so we use a com-

munity detection algorithm to divide each network into communities, and analyze

how these change over time. Since we have a ground truth classification of the sec-

tor memberships of the various companies, we can also quantify how well these

communities reflect the sector structure.

A popular method to detect communities is to attempt to maximize the modu-

larity of the network. This is an NP-hard problem [35] and so various approximate

methods have been proposed, including a spectral method [36] or the Louvain algo-

rithm [37]. These methods have been applied previously to detect communities in

financial networks constructed from stock data [38] [39].

The classic formulation of modularity for a network with adjacency matrix A and

a vector of community assignments c is [36]

Q =
1

m

∑
i

∑
j

(Aij −
kikj
m

)δ(ci, cj) (14)

where m =
∑
i

∑
j Aij , δ(ci, cj) is the Dirac function, equaling 1 when ci = cj (i.e.

nodes i and j are in the same community and 0 otherwise) and ki is the sum of

weights of a node. However this is not appropriate when we are looking at graphs

with negative edges. Here we use a definition designed for the presence of negative

edges. Proposed by Gomez et al [40] we divide the network into positive edges

Degree Eigenvector
Sharpe Ratio
Correlation 0.156 0.148

Partial Correlation 0.129 0.131

Risk
Correlation -0.189 -0.175

Partial Correlation -0.145 -0.156
Table 1 Spearman correlation between the centrality measures and the out of sample risk and Sharpe
ratio. In all situations there is a positive relationship between centrality and Sharpe ratio, and a
negative relationship between centrality and out of sample risk. All relationships are statistically
significant at p < 0.05 but the correlation is relatively mild.
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(a) Optimal Portfolio vs Degree Centrality (b) Sum of precision matrix diagonal

Figure 10 L2 difference between the weight placed on each node in the optimal portfolio vs
degree centrality of each node (left) and the sum of the precision matrix diagonal (right). The
differences between the optimal portfolio and the degree centrality can be quite large, but most of
the difference can be explained by the sum of the precision matrix diagonal.

(signified by a +) and negative edges (signified by a −)

Aij = A+
ij −A

−
ij (15)

where

A+
ij = max(0, Aij) (16)

A−
ij = max(0,−Aij) (17)

and so the definitions of modularity are

Q+ =
1

m+

∑
i

∑
j

(A+
ij −

k+i k
+
j

m+
)δ(ci, cj) (18)

Q− =
1

m−

∑
i

∑
j

(A−
ij −

k−i k
−
j

m− )δ(ci, cj) (19)

where

m+ =
∑
i

∑
j

A+
ij (20)

m− =
∑
i

∑
j

A−
ij (21)

k+i =
∑
j

A+
ij (22)

k−i =
∑
j

A−
ij (23)
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Total modularity is then a scaled version of these

Q =
m+

m+ +m−Q
+ − m−

m+ +m−Q
− (24)

We choose the Louvain method [37] to maximize modularity. This method works

by maximizing modularity in a greedy bottom up manner. All nodes are initialized

into their own random community. We then check the gain in modularity from

moving node i from community a to community b. Doing so for all communities,

we put node i in the community that maximizes the modularity gain the most,

assuming the gain is positive. We then continue to do this over all nodes until we

cannot put a node in another community and make a positive gain in modularity.

Phase 1 of the algorithm is now complete. In phase 2 each community can then be

treated as a node and the edges out to other communities collapsed into one edge

per community. The algorithm can then be run again until we do not make a gain

in modularity by collapsing the communities.

The gain in modularity from moving isolated node i into a community can be

calculated by separately considering the positive and negative edges as follows

δQ+ =

∑+
in +2k+i
m+

− (

∑+
tot +k+i
m+

)2 − (

∑+
in

m+
− (

∑+
tot

m+
)2 − (

k+i
m+

)2) (25)

δQ− =

∑−
in +2k−i
m− − (

∑−
tot +k−i
m− )2 − (

∑−
in

m− − (

∑−
tot

m− )2 − (
k−i
m− )2) (26)

where
∑

in is the sum of weights of all the edges inside the community node i is

being moved into,
∑

tot is the sum of weights of the edges to the community. The

gains are then scaled by the total weight of positive and negative edges in the graph

and combined together

δQ =
m−

m+ +m− δQ
+ − m−

m+ +m− δQ
− (27)

A notable advantage of this algorithm is that we do not need to choose the number

of communities. Since this algorithm is greedy, we randomise the order of the nodes

each run through in phase 1. This of course means that we will achieve different

results every time we run the algorithm. Therefore we run the algorithm 10 times

on each network to get a mean and standard deviation for any measures taken.

To evaluate our clustering we use the Adjusted Rand Index. Given a set of ele-

ments S, and two partitions of this X and Y divided into subsets the Rand Index

[41] is defined as

R =
a+ b

a+ b+ c+ d
(28)

where a is the number of pairs of items in the same subset in X and Y , b is the

number of pairs of items that are in different subsets in X and Y , c is the number

of pairs of items in the same subset in X and a different subset in Y and d in

the number of pairs of items in the same subset in Y and different subsets in X.
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Basically it is very similar to a measure of accuracy if we have a ground truth

labelling.

In the Adjusted Rand Index (ARI) a correction is made for chance, using the

expected similarity for clustering under a random model:

ARI =
R− E[R]

max(R)− E[R]
(29)

Figure 11 shows the ARI over time, exhibiting how the networks reflect the known

sector structure. The partial correlation networks have less success overall in dis-

covering the sector structure, although both networks show large variations over

the time period. We suggest this is to due to the reduction in indirect correlations

that the partial correlation coefficient provides - we would expect this to reduce

intra-sector correlation strengths which would lead to a reduced success in recover-

ing the sector structure. It is also noticeable that times of disruption seem to lower

the ARI for the correlation networks. This could be due to the increased amount of

correlation and volatility causing companies to behave more similarly, reducing the

ability of the algorithm to separate them [20]. However for the partial correlation

networks the ARI actually increases during these times.

We next look at the number of clusters produced. This is shown in Figure 12. The

correlation networks have a smaller number of clusters than the partial correlation

networks, averaging around 4 while the partial correlation networks have an average

of around 20. Both choose roughly the same number of clusters throughout the entire

dataset, although we can see there is a small dip for both networks in 2009. Again

this could be due to the increasing correlations during market disruption, making

the companies seem more similar. There are 11 actual sectors in the dataset, so

neither method is particularly close to the true value.

Finally we study how stable the clusters are over time. Since we have 10 partitions

per network, we use the adjusted rand index to compare the consistency of the

clustering between those from the previous window and those from the next. The

results of this are shown in Figure 13. The correlation networks have a much more

stable structure than the partial correlation networks (i.e the ARI between each run

is larger meaning more companies are in the same cluster), although the variance

does seem to be higher. For the correlation networks there is a large ’break’ in 2008

with the consistency dropping considerably, but then both networks have an increase

in stable clustering over the crisis. This is consistent with our finding about network

stability in Section 4.1, with the partial correlation networks being less stable than

the correlation networks.

5 Conclusion and Future Work
In this paper we have constructed correlation and partial correlation networks from

S&P500 returns data using the Ledoit-Wolf covariance estimator. This is designed

to cope having more dimensions than samples and always gives us an invertible

covariance matrix, which is required for estimation of the partial correlation matrix.

We construct 140 networks using windows of data and contrast the correlation and

partial correlation networks produced.
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Figure 11 Adjusted Rand Index score over time using Louvain community detection algorithm. In
general the partial correlation networks have less success in uncovering the sector structure than
the correlation networks although there are time periods where this is not the case. This could be
due to the reduction in supposedly indirect correlations by the partial correlation networks

Figure 12 Number of clusters over time using Louvain community detection algorithm. The
correlation networks generally seem to pick up a smaller number of clusters than the partial
correlation networks, but both keep a similar number over the entire dataset. There is also a drop
in the number of clusters detected for both networks during the financial crisis

Firstly we compare the edge weights in these networks. The partial correlation

network has more negative edges than the correlation network and generally has

smaller weights. There is however a clear relationship between the two - several

edges with a high correlation also have a high partial correlation. Since partial

correlation is designed to reduce the effect of indirect correlations this is something

we would expect.

Secondly we use the largest eigenvalue and corresponding eigenvector to measure

the intensity and stability of the networks. The largest eigenvalue of the correlation

network varies significantly depending on the state of the market at that time while

the largest eigenvalue of the partial correlation network remains roughly constant.

This shows that the partial correlation networks do not have much change in in-

tensity over the dataset. However, using the difference in the largest eigenvector to

measure the stability of the network we find the partial correlation networks are sig-

nificantly less stable than the correlation networks, perhaps showing why minimum

risk portfolios tend to be less stable.

Exploring the mean centrality of various sectors using both degree and eigenvector

centrality, we find that in the partial correlation networks the sectors all have rel-

atively similar mean centrality with degree centrality. Furthermore macroeconomic



Millington and Niranjan Page 19 of 21

Figure 13 Clustering Consistency for the Louvain algorithm over time. The correlation network
produces much more stable clusters than the partial correlation networks, although there is much
more variance in this consistency than in the partial correlation networks

factors do not seem to effect the centrality, with all sectors have a fairly consistent

mean degree centrality. This is not the case in the correlation networks, where there

is clear variation in the centralities, notably during the financial crisis of 2008/2009.

The eigenvector centralities show a very different story, with there being more vari-

ation in the partial correlation networks rather than less. Macroeconomic effects

are also picked up in both networks here, again with the centralities of the sectors

moving together during the financial crisis.

Utilizing these networks for portfolio selection, we find there is positive correlation

between the centrality of a company and its out of sample Sharpe ratio but there

is negative correlation between its centrality and risk. This result is statistically

significant and is relevant for both the correlation and partial correlation networks.

Finally we run an altered Louvain community detection algorithm using a ver-

sion of modularity that is designed for networks with negative edges to attempt

to discover whether the sector assignments are replicated in the actual data. We

find that the partial correlation networks are less successful than the correlation

networks in uncovering these sector clusters. The correlation networks also produce

more stable clustering with a lower number of clusters than the partial correlation

networks. This indicates that in general the partial correlation networks have less

stable structure than a correlation network constructed from the same data.
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24. Schäfer, J., Strimmer, K.: A shrinkage approach to large-scale covariance matrix estimation and implications for

functional genomics. Statistical applications in genetics and molecular biology 4(1) (2005)

25. Brier, M.R., Mitra, A., McCarthy, J.E., Ances, B.M., Snyder, A.Z.: Partial covariance based functional

connectivity computation using ledoit–wolf covariance regularization. NeuroImage 121, 29–38 (2015).

doi:10.1016/j.neuroimage.2015.07.039

26. Oliphant, T.E.: A Guide to NumPy vol. 1, (2006)

27. McKinney, W.: Data structures for statistical computing in python. In: Proceedings of the 9th Python in

Science Conference, pp. 51–56 (2010)

28. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P.,

Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.:

Scikit-learn: Machine learning in Python. Journal of Machine Learning Research 12, 2825–2830 (2011)

29. Seabold, S., Perktold, J.: Statsmodels: Econometric and statistical modeling with python. In: 9th Python in

Science Conference (2010)

30. Hunter, J.D.: Matplotlib: A 2d graphics environment. Computing in Science & Engineering 9(3), 90–95 (2007).

doi:10.1109/MCSE.2007.55

31. Hagberg, A.A., Schult, D.A., Swart, P.J.: Exploring network structure, dynamics, and function using networkx.

In: Proceedings of the 7th Python in Science Conference, Pasadena, CA USA, pp. 11–15 (2008).

doi:10.25080/issn.2575-9752



Millington and Niranjan Page 21 of 21

32. Bastian, M., Heymann, S., Jacomy, M.: Gephi: an open source software for exploring and manipulating

networks. In: Third International AAAI Conference on Weblogs and Social Media (2009)

33. Namaki, A., Shirazi, A., Raei, R., Jafari, G.: Network analysis of a financial market based on genuine correlation

and threshold method. Physica A: Statistical Mechanics and its Applications 390(21-22), 3835–3841 (2011)

34. DeMiguel, V., Garlappi, L., Uppal, R.: Optimal versus naive diversification: How inefficient is the 1/n portfolio

strategy? The review of Financial studies 22(5), 1915–1953 (2007). doi:10.1093/rfs/hhm075

35. Brandes, U., Delling, D., Gaertler, M., Görke, R., Hoefer, M., Nikoloski, Z., Wagner, D.: Maximizing modularity

is hard. arXiv preprint physics/0608255 (2006)

36. Newman, M.E.J.: Modularity and community structure in networks. Proceedings of the National Academy of

Sciences 103(23), 8577–8582 (2006). doi:10.1073/pnas.0601602103.

https://www.pnas.org/content/103/23/8577.full.pdf

37. Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks.

Journal of Statistical Mechanics: Theory and Experiment 2008(10), 10008 (2008).

doi:10.1088/1742-5468/2008/10/p10008

38. PICCARDI, C., CALATRONI, L., BERTONI, F.: Clustering financial time series by network community

analysis. International Journal of Modern Physics C 22(01), 35–50 (2011). doi:10.1142/S012918311101604X.

https://doi.org/10.1142/S012918311101604X

39. Isogai, T.: Clustering of Japanese stock returns by recursive modularity optimization for efficient portfolio

diversification*. Journal of Complex Networks 2(4), 557–584 (2014). doi:10.1093/comnet/cnu023.

http://oup.prod.sis.lan/comnet/article-pdf/2/4/557/9130958/cnu023.pdf
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