
1

Verifying Cross-layer Interactions through Formal
Model-based Assertion Generation

Asieh Salehi Fathabadi∗, Mohammadsadegh Dalvandi†, Michael Butler∗ and Bashir M. Al-Hashimi∗
∗ University of Southampton † University of Surrey

Abstract—Cross-layer runtime management (RTM) frame-
works for embedded systems provide a set of standard APIs
for communication between different system layers (i.e. RTM,
applications and device) and simplify the development process by
abstracting these layers. Integration of independently developed
components of the system is an error-prone process that requires
careful verification. In this paper, we propose a formal approach
to integration testing through automatic generation of runtime
assertions in order to test the implementation of the APIs. Our
approach involves a formal model of the APIs, developed using
the Event-B formal method which is automatically translated to
a set of assertions and embedded in the existing implementation
of APIs. The embedded assertions are used at runtime to check
the correctness of the integration. 1

I. INTRODUCTION

Runtime Management (RTM) is used to optimise and trade-
off between performance and power/energy efficiency. How-
ever, the complexity of embedded platforms together with
the highly dynamic nature of modern applications make the
development of RTM for managing hardware platforms and
applications at runtime difficult. One possible approach to
reduce the complexity of RTM development is the introduction
of abstract layers for hardware (or device layer), application
and RTM and providing a set of APIs (Application Pro-
gramming Interface) for cross-layer interactions. Recent work
[1]–[4] proposes systematic cross-layer frameworks managing
interactions between applications, RTM and devices which can
facilitate effective runtime software. In such frameworks, the
RTM manages monitored and controlled values between the
layers, explores trade-offs between performance and power,
and optimizes energy consumption while maintaining the
required performance.

The abstraction provided by such frameworks allows the
development of the system in three independent layers, i.e.
application, RTM, and device. Although this approach can
reduce the development complexity, it introduces a new chal-
lenge regarding correctness in integration of the higher layers
and the lower layers. While each of the layers may have been
independently tested and verified, the interactions between
different layers needs to be checked carefully to ensure the
overall correctness of the system. Consistence interactions
between layers can be challenging, since the layers can be
developed and verified individually by difference sources and
techniques. Violation of correct interacting behaviours like
flawless control flows and valid value range settings can cause
the overall system faulty.

1This work was supported by the EPSRC PRiME Project (EP/K034448/1),
www.prime-project.org.

As an example, consider a device control (e.g. frequency)
whose value is set by an RTM which uses an approximate
computing technique to calculate the control value. Since the
RTM is developed independently from the other layers and so
does not have full knowledge of the device layer, it may try
to set the control to a value outside the allowed range (e.g.
a frequency that is not supported by the device). This paper
addresses this problem by introducing a formal approach for
runtime verification of the system to improve the confidence
in interactions between layers, either by improving system
understanding, or by checking conformance to specifications.
Our proposed approach takes advantage of formal modelling
and verification of the framework at an abstract level and
automatic assertion generation from the verified model to
perform runtime integration testing. The reason that we need
runtime assertion checking is that we might not control the
development of different components of the system that use
the framework APIs so we cannot apply static verification to
them. To validate our approach we have formally modelled and
verified some properties of the PRiME Runtime Framework
APIs [4] and generated the necessary assertions for testing
the integration of different layers of the framework at runtime
for the existing implementation. Our approach enabled us to
identify a number of inconsistencies in the implementation of a
video decoder application that was using the PRiME Runtime
Framework APIs. The formal modelling of the framework also
led to discovery of an inconsistency between the framework
specification and its implementation.

Our integration testing approach consists of three stages: 1)
formal modelling of the framework APIs in Event-B language,
2) formal verification of consistency properties (including or-
der of API calls and value bounds) 3) automatic generation of
assertions from the verified model and integration of assertions
within the existing C++ implementation of the APIs.

The rest of this paper is structured as follows: Section II
provides an overview of cross-layer RTM frameworks and
briefly discusses the PRiME Runtime Framework. Section III
introduces the Event-B formal modelling language briefly.
Details of the verified formal model of the framework APIs
are presented in Section IV. Section V presents the generation
of assertions. Section VI evaluates the approach and finally
Section VII concludes the paper.

II. CROSS-LAYER RUNTIME FRAMEWORK

A cross-layer runtime framework introduces abstraction
between different layers of a system. A number of frameworks



2

Application-to-RTM API

Runtime management layer

App controls
e.g. threads, algorithm

App monitors
e.g. throughput, accuracy

Dev controls
e.g. voltage, freq.

Dev monitors
e.g. power, temperature

Application layer

App 1 App 2 App NA

RTM-to-device API

Device layer

Dev 1 Dev 2 Dev ND

Fig. 1. Cross-layer framework and API.

that offer different levels of abstraction exist [1]–[4]. These
link two or three layers of a system composed of application,
runtime management and device layers (Figure 1). The appli-
cation layer can include any application that uses the runtime
API, the device layer includes the hardware platform and any
low-level drivers, and runtime management level includes the
RTM software. Application-to-RTM and RTM-to-Device APIs
connect the layers to enable the exposure of adjustable controls
(also known as knobs) and observable monitors to the runtime
layer from the application and device layers. Controls are
parameters in the applications and devices that can be adjusted
at runtime, such as the degree of parallelism in an application
or frequency at the device level. Monitors represent any
property of the application that characterises its performance,
such as a throughput measured in frames-per-second (fps). In
the device, monitors can include physical properties of interest
such as power consumption or architectural properties such as
core utilization.

The PRiME Runtime Framework [4] is a cross-layer frame-
work that provides solutions for application and platform ag-
nostic runtime management. The framework achieves abstrac-
tion by separating the system into three layers (i.e. application,
RTM, and device) and provides a set of APIs facilitating the
interactions between different layers using cross-layer controls
(knobs) and monitors. Controls and monitors have associated
bounds with them in the form of minima and maxima. A bound
represents a range of allowed or desired value for controls and
monitors, respectively. The framework and APIs are built into
a software library, with functions to perform all control and
monitoring interactions.

III. EVENT-B FORMAL METHOD

Event-B is a formal modelling language for system level
modelling based on set theory and first order predicate logic.
The language is designed to target a set of different domains
including distributed and embedded systems. A model in
Event-B consists of two parts: a context which is the static part
of the model (constants and types) and a machine which is the
dynamic part of the model (variables and events). A model
is specified using variables, invariants and events. An event
models state change in the system and comprises a number
of guards (conditions) and actions (assignments). An event is
executed only if all its guards hold. An invariant is a predicate
stating a condition on the state of the model. All events should

preserve all model invariants. An event has the following of:
E , any t when P(t,v) then S(t,v) end, where E is the name
of the event, t represents event parameters and P(t,v) and
S(t,v) denote the guards and actions of the event, respectively.
Event-B supports refinement. Refinement is a correctness-
preserving stepwise process which starts from an abstract level
and continues towards a concrete level by introducing new
details to the model. Event-B is supported by the Rodin [6]
platform. Rodin is an Eclipse-based IDE that provides effective
support for refinement and mathematical proof of Event-B
models. In our approach, we have used Event-B to model the
PRiME Framework APIs and verify its different consistency
properties. The following section, outlines the modelling of
the framework and its verification.

IV. FORMAL MODELLING AND VERIFICATION OF THE
FRAMEWORK

To illustrate our approach, we present the modelling and
verification of some of the framework properties in this
section. Due to space limitation, we have simplified the
formal model of the framework and omitted a lot of detail
in this paper. Two of the most important properties of the
framework, amongst others, are correct ordering between
different interactions and monitor/control value boundaries.
For instance, an application’s control can be registered with
the framework only if the application itself is registered. This
property can be specified in the model using the following
invariant: app ctrl reg ∈ app reg ↔ APP CTRL. In
this invariant, app reg is a variable denoting the set of all
registered applications. app ctrl reg is a relation between
registered applications (app reg) and their registered controls
and APP CTRL is the type of application controls. The
following event models the registration of an application
control:

Event app ctrl manage
any a, ac where

grd1: a ∈ app reg
grd2: ac ∈ APP CTRL then
act1: app ctrl reg := app ctrl reg ∪ {a 7→ ac} End

Parameters a and ac denote an application and a control,
respectively. The first guard specifies that the application
should be registered. If application a is registered and ac
is an application control, then the execution of the above
event will add a new application-control pair (a 7→ ac) to
the app ctrl reg relation. If we remove the first guard, then
a can be an unregistered application, hence the execution of
the event may result in violation of the invariant. In addition
to the correct ordering between different operations in the
framework, it is important to ensure that the value of controls
remain in the allowed range and different parties do not set
an out of bound value. Each control and monitor has an
associated pair of minimum and maximum value with it. This
is specified for application controls using the following two
total functions:
app ctrl min ∈ APP CTRL→ Z
app ctrl max ∈ APP CTRL→ Z
The following invariant states the aforementioned property

about the value of controls formally:



3

∀ c . c ∈ ran(app ctrl reg) =⇒
app ctrl value(c) ≥ app ctrl min(c)
∧ app ctrl value(c) ≤ app ctrl max(c)

where app ctrl value(c) returns the value of control c. Set-
ting the value of a control by RTM is modelled as follows:

Event RTM app ctrl set
any a, ac, value where

grd1: a ∈ app reg
grd2: ac ∈ APP CTRL
grd3: a 7→ ac ∈ app ctrl reg
grd4: value ∈ Z
grd5: value ≥ app ctrl min(ac)
grd6: value ≤ app ctrl max(ac) then
act1: app ctrl value(ac) := value End

Guards of the above event, in particular grd5 and grd6,
guarantee that the value of a control cannot be set to a value
outside of the allowed range, hence the operation does not
violate the invariant.

The consistency of the model is verified using theorem
proving with the Rodin tool. The verification requirements
are expressed in a number of automatically generated Proof
Obligations (POs). For our model of RTM APIs, the tool
generated 116 POs, where 97% of them were discharged
automatically and the rest (3 POs) were discharged through
interactive proof.

V. AUTOMATIC ASSERTION GENERATION

We have developed a proof-of-concept tool to automate the
generation of C++ assertions from Event-B formal models.
The tool, illustrated in Figure 2, is an extension of our existing
contract generation tool [7] and is implemented as a Rodin
plug-in. The assertion generation tool translates an Event-B
event to a C++ function where the function implements an
assertion. If an assertion is violated, an exception is thrown
with a message about the violation to guide the developer.

Fig. 2. Tool Overview

In translating a high-level Event-B event to a low level
C++ implementation, we address the data abstraction gap
between the model and the implementation. Although the
model of an API is constructed independently from their
actual implementations, implementation level variables refine
model-level variables. The relationship between high- and
low-level variables are made explicit by the modeller prior
to translation. The tool extends an Event-B machine with
a new construct called a function constructor to allow the
modeller to define the relation of each event and its variables
with its implementation in the final code. For instance, recall
event RTM app ctrl set from the previous section. A function
constructor should be defined as follows:

RTM app ctrl set (a:T1, app reg:T2, ac:T3, value:T4,
min:T5, max:T6) = {RTM app ctrl set}

where T1 − T6 are the types of variables in the low-level
C++ implementation and RTM app ctrl set is the name of the
corresponding Event-B event. The tool translates an event by
using a pattern-matching algorithm and finding suitable trans-
lation rules for the event. We have defined a number of patterns
for event guards. Each pattern has a corresponding translation
rule for transforming a guard matching the pattern to C++
code. For instance, guard grd3 of event RTM app ctrl set,
which specifies that the control should be registered with the
application before setting the value of the control, is translated
to a function returning true if the control is registered with the
application and false if it is not.

For the aforementioned event, for example, the assertion
function is generated based on the event guards and the above
function constructor:

To transform Event-B operators to code (eg. grd1 to is-
Member), a set of predefined translation rules is provided as
part of the tool. The typing information is also provided by
the user through the function constructors. It is important that
the modeller specifies the concrete variable types correctly.
This requires the modeller to have a full understanding of
the low-level implementation. For instance, in the framework
implementation, the type of variable a is a user-defined type
pid t and app reg is a vector of type pid t 2. This typing
relationship should be made explicit. In the above generated
assertion function code, isMember(a, app reg) is a function
which returns true if a is in app reg or false otherwise.
Generated assertions should then be injected into the imple-
mentation manually. First, the corresponding implementation
of abstract events should be identified in the code. Then the
assertion function generated from each event should be called
right before the corresponding implementation of the abstract
event. A catch mechanism should also be implemented as
part of APIs implementation so that exceptions do not cause
disruption in the overall execution. Below is the integration of
assertions into the implementation:

The formal properties of our approach are: - sufficient
guards: we formally verify that the guards are strong enough
to guarantee that the invariants are preserved in the model;
and - assertion violation: violation of a generated assertion
within the code identifies an incorrect program state which
may violate the model invariants.

2The full generated code and Event-B model is available at
http://dalvandi.github.io/esl/. This can be compiled alongside the PRiME
framework code at https://github.com/PRiME-project/PRiME-Framework.



4

VI. EVALUATION

As mentioned before, the first stage of our approach is
formal modelling and verification of the cross-layer framework
APIs. Our modelling of the PRiME framework was divided
among four refinement levels which helped us to manage
the complexity of the model through gradual development.
Formal models are usually simpler than executable imple-
mentation and are easier to ensure their consistency and
correctness through formal verification. By assessing the case
study requirements, we identified 18 consistency properties
within the interactions between layers; our tool automatically
generated 18 corresponding assertion functions which were
then manually embedded to the existing implementation of the
framework. The collection of correctness properties can fur-
ther expanded by experimenting with new application and/or
devices. In this paper, we ensure the correctness of API flows
and value boundaries.

We have experimented with our approach by testing the
integration of two applications (a video decoder and a Jacobi
application), one RTM (Q-Learning) and a device (Odroid
XU3) through the PRiME framework APIs [9]. Our approach
enabled us to discover several inconsistencies in how the
implementation of the video decoder application called the
cross-layer API. The video decoder application has a specific
monitor which returns the decode time of each decoded
frame. If the developer forgets to register the monitor with
the framework initially and tries to set/read the value of the
monitor, then an assertion will be violated and an exception
will be thrown (”Registration violation” assertion from the
previous section). Likewise, if the value of the monitor is out
of bound (i.e. less than lower bound or greater than upper
bound) then second or third assertions will be violated and an
exception will be thrown (”Boundary violation” assertion)3.

In addition, we artificially introduced different errors to both
the RTM and the applications and were able to detect all of
them through the generated assertions. More interestingly, for-
mal modelling of the framework and embedding the assertions
into the existing implementation led us to find a bug in the
implementation of the APIs which remained undiscovered in
previous tests.

VII. CONCLUSION

One of the most important parts of a cross-layer runtime
framework is its APIs. The APIs provide a standard way for
cross-layer communications and this makes them extremely
important in developing correct and reliable runtime man-
agement software. Inconsistencies in API calls in embedded
system software can result in incorrect behaviour at run-
time which can be difficult to discover and resolve. Since
different components at different layers may be developed
independently of each other by third party developers, it is
essential that integration testing is performed to ensure that
different software components are using the framework in a
correct and consistent way. In this paper we introduced a
formal-based approach for integration testing and validated
our approach by applying it to the PRiME framework. Our use
of Event-B allowed us to specify and reason about important

3A demonstration video is available here: https://dalvandi.github.io/esl/

properties of the PRiME framework at an abstract level. After
proving the consistency of the framework APIs at a high level,
we automatically generated a number of assertions specifying
different consistency properties of the framework from the
verified model. We embedded assertions into the existing
implementation of the framework and checked their validity at
runtime to ensure that different software components involved
do not violate these assertions.

There has been little research reported on API runtime
verification and to the best of our knowledge none on high-
level modelling and testing of cross-layer API interactions in
embedded systems. Hallé et al in [10] introduced an approach
for runtime verification of a Web service API. They used a
formal language to define properties of the API and employed
model checking to check for potential violations. Spinellis and
Louridas in [11] proposed a framework for static verification
of API calls as a complementary tool to runtime verification. In
our previous work [12] an approach was proposed toward au-
tomatic generation of the RTM system; this includes modelling
and verifying the RTM system independent of its interactions
with application and device layers. In this paper, however, we
proposed an approach to model and verify the interactions
(between RTM, application and device) within a cross-layer
framework using its APIs.

Our current tool generates assertions automatically, how-
ever, embedding the generated assertions into the existing
implementation is done manually. Automatic injection of
assertions into the code will be addressed as future work.
In our experience, modelling using a formal notation such
as Event-B has great potential for modelling and verification
of embedded software. In addition to integration testing,
assertions can be used for other formal verification techniques
such as static code analysis and model checking. In future,
we would like to apply previous work on generating correct-
by-construction implementations [8] from Event-B models to
embedded systems, including cross-layer management.

REFERENCES

[1] Hoffmann, Henry, et al. ”Application heartbeats: a generic interface for
specifying program performance and goals in autonomous computing
environments.” ACM, 2010.

[2] Hoffmann, Henry, et al. ”Dynamic knobs for responsive power-aware
computing.” ACM SIGPLAN Notices. Vol. 46. No. 3. ACM, 2011.

[3] Gadioli, Davide, et al. ”Application autotuning to support runtime adap-
tivity in multicore architectures.” SAMOS, IEEE, 2015.

[4] Bragg, G. M., et al: ”An Application- and Platform-agnostic Control and
Monitoring Framework for Multicore Systems.” PEC, 2018.

[5] Abrial, Jean-Raymond. ”Modeling in Event-B - System and Software
Engineering.” Cambridge University Press, 2010.

[6] Abrial, Jean-Raymond, et al: Rodin: an open toolset for modelling and
reasoning in Event-B. STTT 12, 6, 447-466, 2010.

[7] Dalvandi, Mohammadsadegh, et al. ”From Event-B models to Dafny code
contracts.” Springer, Cham, 2015.

[8] Dalvandi, Mohammadsadegh, et al. ”Verifiable Code Generation from
Scheduled Event-B Models.” ABZ, Springer, Cham, 2018.

[9] Fathabadi, Asieh Salehi, et al. ”A model-based framework for software
portability and verification in embedded power management systems.”
Journal of Systems Architecture, 2018.

[10] Hallé, Sylvain, et al. ”Runtime verification of web service interface
contracts.” Computer 43.3, 2010.

[11] Spinellis, Diomidis, and Panagiotis Louridas. ”A framework for the
static verification of API calls.” Journal of Systems and Software, 2007.

[12] Fathabadi, Asieh Salehi, et al. ”Towards automatic code generation
of run-time power management for embedded systems using formal
methods.” MCSoC, IEEE, 2015.


