The University of Southampton
University of Southampton Institutional Repository

Textile manufacturing compatible triboelectric nanogenerator with alternating positive and negative freestanding grating structure

Textile manufacturing compatible triboelectric nanogenerator with alternating positive and negative freestanding grating structure
Textile manufacturing compatible triboelectric nanogenerator with alternating positive and negative freestanding grating structure
This paper demonstrates a novel design of textile-based triboelectric nanogenerator (TENG), which is compatible with standard textile manufacturing. The device can convert kinetic energy occurring during frictional contact between two dissimilar materials into electricity based on contact electrification and the electrostatic induction effect. The TENG can generate an RMS open-circuit voltage of 136 V, an RMS short-circuit current of 2.68 µA and a maximum RMS power of 125 µW (38.8 mW/m2). To demonstrate practical applications, the TENG was embedded into a lab coat. The energy is generated from the relative movement between the arm and torso. Its output was used to drive a digital watch, a wearable night-time warning indicator for pedestrians, a wireless transmitter and a pedometer.
triboelectric nanogenerator, energy harvesting, E-textile
2504-3900
Paosangthong, Watcharapong
1dd91299-2c2a-423a-89cd-9f693fa53c17
Wagih, Mahmoud
7e7b16ba-0c64-4f95-bd3c-99064055f693
Torah, Russel
7147b47b-db01-4124-95dc-90d6a9842688
Beeby, Steve
ba565001-2812-4300-89f1-fe5a437ecb0d
Paosangthong, Watcharapong
1dd91299-2c2a-423a-89cd-9f693fa53c17
Wagih, Mahmoud
7e7b16ba-0c64-4f95-bd3c-99064055f693
Torah, Russel
7147b47b-db01-4124-95dc-90d6a9842688
Beeby, Steve
ba565001-2812-4300-89f1-fe5a437ecb0d

Paosangthong, Watcharapong, Wagih, Mahmoud, Torah, Russel and Beeby, Steve (2020) Textile manufacturing compatible triboelectric nanogenerator with alternating positive and negative freestanding grating structure. Proceedings, 32 (1), [23]. (doi:10.3390/proceedings2019032023).

Record type: Article

Abstract

This paper demonstrates a novel design of textile-based triboelectric nanogenerator (TENG), which is compatible with standard textile manufacturing. The device can convert kinetic energy occurring during frictional contact between two dissimilar materials into electricity based on contact electrification and the electrostatic induction effect. The TENG can generate an RMS open-circuit voltage of 136 V, an RMS short-circuit current of 2.68 µA and a maximum RMS power of 125 µW (38.8 mW/m2). To demonstrate practical applications, the TENG was embedded into a lab coat. The energy is generated from the relative movement between the arm and torso. Its output was used to drive a digital watch, a wearable night-time warning indicator for pedestrians, a wireless transmitter and a pedometer.

Text
proceedings-32-00023 - Version of Record
Available under License Creative Commons Attribution.
Download (842kB)

More information

Published date: 20 January 2020
Venue - Dates: International Conference on the Challenges, Opportunities, Innovations and Applications in Electronic Textiles (E-TEXTILES 2019), , London, United Kingdom, 2019-11-12 - 2019-11-12
Keywords: triboelectric nanogenerator, energy harvesting, E-textile

Identifiers

Local EPrints ID: 437341
URI: http://eprints.soton.ac.uk/id/eprint/437341
ISSN: 2504-3900
PURE UUID: 6ee19e1d-d713-4997-b840-4480ba0b618c
ORCID for Mahmoud Wagih: ORCID iD orcid.org/0000-0002-7806-4333
ORCID for Russel Torah: ORCID iD orcid.org/0000-0002-5598-2860
ORCID for Steve Beeby: ORCID iD orcid.org/0000-0002-0800-1759

Catalogue record

Date deposited: 24 Jan 2020 17:31
Last modified: 16 Nov 2024 03:01

Export record

Altmetrics

Contributors

Author: Watcharapong Paosangthong
Author: Mahmoud Wagih ORCID iD
Author: Russel Torah ORCID iD
Author: Steve Beeby ORCID iD

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×