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1. Introduction

Gini’s (1914) coefficient is widely used indicator for measuring income in-

equality in a wide range of area of economics and finance (e.g. Koshevoy and

Mosler, 1997; Ogwang, 2000; Gajdos and Weymark, 2005). The Gini coefficient

is defined as the ratio of the area that lies between the 45◦ line and the Lorenz’s

(1905) curve given by

L(x) :=
1

E(Y )

∫ x

0

y dFY (y), (1)

where FY (·) is the cumulative distribution function of a positive random variable

Y and E(Y ) is the expectation of Y . An excellent review of various formulations

of the Gini coefficient can be found in Giorgi and Gigliarano (2017).

Surveys are usually used to estimated the Gini coefficient. However, sampled5

unit are rarely selected independently with equal probability, because of sample
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selection, which involves stratification and unequal probabilities. Two custom-

ary estimators for unequal probability sampling can be found in the literature

(e.g. Langel and Tillé, 2013, for a review). They are defined by (13) and (14)

in §5. The proposed estimator is different and based on a ratio, which allows to10

express it as an empirical likelihood estimator. Single stage designs are consid-

ered in this paper. The approach proposed can be extended for multi-stage by

using Berger’s (2018a) approach.

Variance estimation of the Gini coefficient has been widely studied in the

literature (e.g. Nair, 1936; Hoeffding, 1948; Glasser, 1962; Sendler, 1979; Beach15

and Davidson, 1983; Gastwirth and Gail, 1985; Schezhtman and Yitzhaki, 1987;

Sandström et al., 1985, 1988; Nyg̊ard and Sandström, 1989; Yitzhaki, 1991;

Shao, 1994; Binder and Kovaćević, 1995; Bishop et al., 1997; Karagiannis and

Kovaćević, 2000; Ogwang, 2000; Giles, 2004; Modarres and Gastwirth, 2006;

Davidson, 2009). Yitzhaki (1991) and Qin et al. (2010) proposed a variance es-20

timator under stratified random samples. Asymptotic variance under stratified

and clustered survey data can be found in Bhattacharya (2007). Berger (2008)

proposed a jackknife variance estimator under unequal probability sampling.

Langel and Tillé (2013) provided a comprehensive literature review on variance

estimation for the Gini coefficient.25

Sandström et al. (1988) has developed a confidence interval for the Gini co-

efficient based on normal approximation. Mills and Zandvakili (1997) consider

the use of bootstrap methods to compute interval estimates for the Gini coeffi-

cient. Qin et al. (2010) proposed pseudoempirical likelihood confidence intervals

for the Gini coefficient under simple random samples, using bootstrap and em-30

pirical likelihood methods. Qin et al.’s (2010) approach requires estimating

the distribution function, and is not designed for unequal probability sampling.

Other empirical likelihood intervals with independent and identically observa-
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tions can be found in Peng (2011). Empirical likelihood confidence intervals

are range preserving; that is, the lower bound and the upper bound cannot be35

outside the parameter space [0, 1] of the Gini coefficient. The bounds are driven

by the distribution observed from the data, rather than an asymptotic distri-

bution. Empirical likelihood also offers the possibility of using some auxiliary

information which may improve the estimation of the Gini coefficient (Berger

and Torres, 2016). A review of empirical likelihood under unequal probability40

sampling can be found in Berger (2018b). Note that the confidence intervals

proposed do require an effective sample size or a design-effect, unlike the pseu-

doempirical likelihood approach (Wu and Rao, 2006) for unequal probability

sampling.

In §2, we define the Gini coefficient. The estimator proposed is defined in45

§3. In §4, we show how bootstrap and empirical likelihood can be combined

to construct confidence intervals. The empirical likelihood confidence intervals

have the advantage of having bounds within the range of the Gini coefficient.

Linearisation will not be required for empirical likelihood confidence intervals.

Our simulation study in §5 shows that the estimator proposed can be more50

efficient than the customary estimator (e.g. Berger, 2008; Langel and Tillé,

2013). The coverages of the proposed empirical likelihood confidence interval

are usually not significantly different from the nominal value.

2. The Gini Coefficient

Let Y > 0 denote a positive random variable with a distribution function

FY (y). The Gini coefficient is defined by

G0 :=
2

E(Y )

∫ ∞
0

yFY (y)dFY (y)− 1 = 1− 1

E(Y )

∫ ∞
0

{
1− FY (y)

}2
dy· (2)
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Yitzhaki (1998) proposed an alternative expression of G0 based on the minimum

Z := min
{
Ya, Yb

}
of two independent copies Ya and Yb of Y . Since Z > 0, we always have that

E(Z) =
∫∞
0
{1 − FZ(z)}dz, where FZ(z) denotes the cumulative distribution

of Z. Furthermore, since Z is the minimum of two random variables with the

same distribution, we have that FZ(z) = 1−{1−FY (z)}2. This implies E(Z) =∫∞
0
{1−FY (z)}2dz. Thus, (2) gives Yitzhaki’s (1998) alternative expression (see

also Peng, 2011),

G0 = 1− E(Z)

E(Y )
· (3)

Let U be a finite population of N units, where N is a fixed quantity which55

is not necessarily known. Consider that we have N independent copies {Yi : i ∈

U} of Y . Let {yi : i ∈ U} be the realisation of these copies.

The empirical equivalent of E(Z) is therefore

y∗U :=
1

N(N − 1)

∑
i∈U

∑
j∈U
j 6=i

min{yi, yj} =
1

N

∑
i∈U

y∗i ·

where

y∗i :=
1

N − 1

∑
j∈U
j 6=i

min{yi, yj}·

Thus, the empirical version of (3) is the finite population parameter

GU := 1− y
∗
U

yU
, (4)
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where

yU :=
1

N

∑
i∈U

yi· (5)

3. Estimation of the Gini coefficient

Suppose that a sample S is randomly selected from U . We observe the

values yi for the sampled units i ∈ S. We shall use Neyman’s (1938) design-60

based approach; that is, the sampling distribution is conditional on {yi : i ∈ U}

and driven by the random selection of S. Thus, the values {yi : i ∈ U} and the

parameter GU will be treated as constants.

We consider that the population U is broken up into disjoint strata U1, . . . ,

Uh, . . . , UH and ∪Hh=1Uh = U . Within each stratum Uh, a sample of nh65

units is selected with-replacement with unequal selection probabilities Pi, where∑
i∈Uh

Pi = 1. Let πi = nhPi, when i ∈ Uh. Let Sh be the set of nh labels

for stratum Uh. where S = ∪Hh=1Sh and n =
∑H
h=1 nh. We assume that we

have a with-replacement or without-replacement sampling design with negligi-

ble sampling fractions, in order to justify the bootstrap approach. Fortunately,70

in practice, the Gini coefficient is estimated from social surveys which are often

based on negligible sampling fractions. The negligible sampling fraction is only

needed for variance estimation and confidence intervals.

The estimator proposed for (4) is

Ĝπ := 1− y
∗
π

yπ
, (6)
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where y∗π and yπ denote Hájek’s (1971) estimators given by

yπ :=
1

N̂

∑
i∈S

yi
πi
,

y∗π :=
1

N̂

∑
i∈S

ŷ∗i
πi
,

ŷ∗i :=
1

N̂−π−1i

∑
j∈S
j 6=i

1

πj
min{yi, yj},

N̂ :=
∑
i∈S

π−1i ·

The advantage of (6) is the fact that it does not involve the estimation FY (y).

Note that (6) reduces to Yitzhaki’s (1998) under simple random sampling with75

a single stratum (see also Peng, 2011; Giorgi and Gigliarano, 2017).

Rescaled bootstrap (Rao et al., 1992; Rust and Rao, 1996) can be used for

variance estimation. This method is based on bootstrap weights (Rust and Rao,

1996) given by

w
(b)
i :=

rin

πi(n− 1)
(7)

where ri is the number of times i-th unit is selected, by bootstrap. The vari-

ance between the bootstrap replicates can be used as a variance estimate. A

bootstrap confidence interval based on the bootstrap quantiles can be derived

(the so-called “histogram approach”).80

The theory of bootstrap is well established, and little needs to be added.

However, empirical likelihood is a new emerging topic, and little has been done

on empirical likelihood confidence intervals for Gini, under unequal probabil-

ity sampling. Peng’s (2011) approach assumed an independent and identically

distributed setting. Qin et al.’s (2010) method is based on simple random sam-85

pling. In §4, we show how an empirical likelihood confidence interval can be
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constructed with unequal probability sampling, in conjunction with bootstrap.

4. Empirical likelihood confidence intervals

In this §, we show how Berger and Torres’s (2016) approach can be combined

with bootstrap. Empirical likelihood is based on estimating equations. It can

be shown that (6) is the solution to

∑
i∈S

1

πi
e(yi, ŷ

∗
i , G) = 0· (8)

where

e(yi, ŷ
∗
i , G) := yi(G− 1) + ŷ∗i · (9)

By substituting (9) within (8), we obtain
∑
i∈S π

−1
i yi(G− 1) +

∑
i∈S π

−1
i ŷ∗i =

(G− 1)N̂yπ + N̂y∗π = 0. The solution to the last equation is indeed (6).90

Berger and Torres’s (2012; 2014; 2016) “empirical log-likelihood function” is

defined by

`max(G) := max
pi: i∈S

{∑
i∈S

log(pi) : pi > 0,
∑
i∈S

pi
πi
e(yi, ŷ

∗
i , G) = 0,

∑
i∈S

piδi =
−→n
n

}
, (10)

where G denotes a value within the parameter space, δi is the vector of strati-

fication variables defined by

δi :=
(
δi1, . . . , δih, . . . , δiH

)>
and −→n is the strata allocation given by

−→n :=
∑
i∈S

δ̃i =
(
n1, . . . , nh, . . . , nH

)>·
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Within (10), we have two types of constraints. The constraint involving G

is a moment condition which contains the standard sampling weights π−1i . We

also have a stratification constraint
∑
i∈S piδi = −→nn−1, which is not motivated

by moment conditions. The function (10) reduces to Owen’s (1988) empirical

log-likelihood function when we have a single stratum and πi = n/N , ∀i ∈ U .95

The advantage of (10) is that it can be used as a standard likelihood function

for design-based inference. Note that (10) differs from Peng’s (2011) approach,

even with a single stratum and πi = n/N , because Peng’s (2011) approach is

based on splitting the sample randomly into two sub-samples of same size.

The “maximum empirical likelihood estimator” ĜEL is defined as the quan-100

tity which maximises `max(G). Berger and Torres (2016) show that this implies

that ĜEL is the solution to (8). Thus, ĜEL = Ĝπ.

The empirical likelihood approach can be also used for confidence intervals

based upon (6). Consider the “empirical log-likelihood ratio statistic”

r̂(G) := 2
{
`max(Ĝ)− `max(G)

}
· (11)

Berger and Torres (2016) showed that the empirical log-likelihood ratio statistic

converges to a ancillary quadratic form, when G = G0. Unfortunately, this

quadratic form will not necessarily converge to a χ2-distribution, because the105

ŷ∗i are estimated. In other word, this quadratic form is an ancillary statistics

with an unknown distribution. We shall approximate this distribution using

bootstrap.

In order to compute a α-level confidence interval, we would need to know the

upper α-quantile of the distribution of r̂(G0). This distribution upper can be

approximated by the bootstrap distribution. Consider the rescaled bootstrap

sampling weights given by (7). Let r̂(G)b the b-th bootstrap value of (11)

based on bootstrap sampling weights given by (7), with G = Ĝπ. The α-level
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bootstrap confidence interval is

[
min

{
G : r̂(G) 6 rα

}
; max

{
G : r̂(G) 6 rα

} ]
, (12)

where rα is the α-quantile of {r̂(Ĝπ)1, . . . , r̂(Ĝπ)b, . . . , r̂(Ĝπ)B}. Note that r̂(G)

is a convex non-symmetric function with a minimum at G = Ĝπ. This interval110

can be found by using any root search method, such that the Brent (1973) and

Dekker’s (1969) method, since the bounds are the two roots of r̂(G) − rα = 0.

This can be achieved numerically by calculating r̂(G) for several values of G.

The empirical likelihood confidence intervals cannot be disjoint because r̂(G)

is always convex, because of the strict concavity of the function
∑
i∈S log(pi)115

within (10).

5. Simulation studies

Two customary estimators can be found in the literature (e.g. Berger, 2008;

Langel and Tillé, 2013). They are given by

Ĝ(1)
π :=

2

N̂ yπ

∑
i∈S

yi
πi
F̂π(yi)− 1, (13)

Ĝ(2)
π :=

1

2N̂2yπ

∑
i∈S

∑
j∈S

1

πiπj
|yi − yj |, (14)

where

F̂π(yi) :=
1

N̂

∑
i∈S

1

πi
I{yi < y}·

In this §, we compare via simulation the estimator proposed Ĝπ in (6) with (13)

and (14). We also compare their variance estimators and coverages of their 95%

confidence intervals. Our simulation study will show the estimator proposed (6)120
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can be less biased than (13) and (14). The observed coverages of the empirical

likelihood confidence interval are also closer to the nominal value.

We generated N = 10 000 population values yi from different distributions

as in Davidson (2009), Qin et al. (2010) and Peng (2011), namely the χ2, expo-

nential, lognormal, Pareto and Weibull distributions. The different values of G0125

defined by (2) are given in Table 1. We selected 2000 randomized systematic

samples of size n = 200 and 500. The inclusion probabilities πi are generated

from a linear model with yi as covariate, in order to obtain a correlation of

0.7 between πi and yi. We chosen this correlation to highlight the effect of the

design. We use B = 1000 replicates for the bootstrap procedures.130

In Table 1, we have the observed relative bias (RB) and mean squared error

(MSE) given by

RB(Ĝ) :=
Ê(Ĝ)−G0

G0
× 100%,

MSE(Ĝ) := Ê{(Ĝ−G0)2}

for Ĝ = Ĝπ, Ĝ
(1)
π and Ĝ

(2)
π . Here, Ê(·) denotes the means over the 2000 observed

values. The RB of Ĝπ is slightly smaller than with Ĝ
(2)
π . The RB of Ĝ

(1)
π tends

to be the smallest for large value of G0. However, Ĝ
(1)
π has the largest RB with

small G0. The MSE of Ĝπ and Ĝ
(2)
π are similar. The MSE of Ĝ

(1)
π is slightly

larger when n = 200. With n = 500, all the MSE are similar. From Table 1,135

we conclude that Ĝπ tends to have the smallest bias with a MSE comparable

to one observed for Ĝ
(2)
π .

In Table 2, we have the observed coverages of the 95% confidence intervals.

For Ĝπ, we consider two confidence intervals: The “bootstrap confidence inter-

val” based on the 2.5% and 97.5% quantiles of the bootstrap (column “Boot”),

and the empirical likelihood confidence intervals (12) (column “EL”). The usual

confidence intervals based on linearised variance estimates are used for Ĝ
(1)
π and
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Ĝ
(2)
π . The quantity G0 is the target parameter on which the confidence intervals

are based upon. The relative bias of the variance estimator

RB{V̂ (Ĝ)} :=
Ê{V̂(Ĝ)} −V(Ĝ)

V(Ĝ)
× 100%

are given in the last three columns, where V(Ĝ) denotes the observed variance.

The bootstrap variance is used for Ĝπ. For Ĝ
(1)
π and Ĝ

(2)
π , we use the lineari-

sation variance estimates (e.g. Berger, 2008; Langel and Tillé, 2013) based on140

Hartley and Rao’s (1962) variance estimator.

The observed coverages of the empirical likelihood approach are usually not

significantly different from 95%, when the other coverages are different from

95%. The low coverages of Ĝ
(1)
π and Ĝ

(2)
π can be explained by lack of normality.

With small values of G0, the lower bounds of Ĝ
(1)
π and Ĝ

(2)
π can be negative. This145

could also explain the low coverage of Ĝ
(1)
π . When the coverage of the empirical

likelihood approach is significantly different from 95%, the other coverages are

also significantly different (distributions Γ(α = 5, β = 1), Exp(λ = 1) and χ2
1).

The distribution Γ(α = 10, β = 1) is an exception, because Ĝ
(1)
π has the best

coverage, but with a biased variance estimator. We have observed one sample150

of size n = 200 with a negative lower bound for the confidence interval of (13).

This occurs with the data generated from a χ2-distribution.

The RB of the variance of Ĝπ can be large with n = 200, because they are

based on bootstrap. However, with n = 500, all the RB are similar, and Ĝπ

may have the smallest RB. When n = 200, we have larger RB for large value of155

G0 (distributions Exp(λ = 1) and χ2
1 and Γ(α = 0.2, β = 1)).

In Table 3, we have the observed average length of the 95% confidence inter-

vals as well as the observed “coefficient of variation” (CV) of the lengths. The

average length is very similar and in line with the coverages observed in Table

2, because confidence intervals with large coverage tend to be larger. The con-160
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fidence interval tends to produce wider confidence intervals on average, because

it has the largest observed coverage.

A small CV implies more stable confidence intervals, but this does not imply

observed coverages closer to 95%. The CV of the bootstrap confidence intervals

tends to be the smallest, but with observed coverage significantly different from165

95%. For the Pareto and Weibull distribution, the CV of (11) is slightly larger

than the other confidence intervals, which have coverages usually different from

95%. This effect is more pronounced with n = 200. With the Gamma and

χ2-distributions, we have a small CV with bootstrap and Ĝ
(2)
π , but with very

low coverages.170

6. Discussion

Our simulation study shows the estimator proposed is usually less biased

than the customary estimators. The observed coverages of the empirical like-

lihood confidence interval proposed are also closer to the nominal value. We

considered a single stage design. However, the approach proposed can be ex-175

tended for multi-stage design with unit non-response, using Berger’s (2018a)

approach combined with bootstrap. Auxiliary information has not been consid-

ered for simplicity. Calibration weights can be used within (6). The empirical

likelihood approach proposed can also take into account of some auxiliary in-

formation, by adding additional constraints within (10) (see Berger and Torres,180

2016; Berger, 2018a,b, for more details). These additional constraints imply

that ĜEL will be different but usually close to Ĝπ, because ĜEL is based on

calibrated weights.
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Table 1: Relative bias (%) and mean squared error (MSE) of Ĝπ, Ĝ
(1)
π and

Ĝ
(2)
π for several distributions. G0 is given by (3). The rows are sorted

according to G0.

Relative bias (%) MSE ×10, 000

n Distributions G0 Ĝπ Ĝ
(1)
π Ĝ

(2)
π Ĝπ Ĝ

(1)
π Ĝ

(2)
π

200 Pareto(α = 10, β = 1) 0.05 −0.4 8.5 −0.9 0.2 0.4 0.2

Weibull(α = 10, β = 1) 0.07 −0.7 6.3 −1.2 0.2 0.3 0.2

Pareto(α = 5, β = 1) 0.11 1.0 5.1 0.6 0.8 1.1 0.8

Weibull(α = 5, β = 1) 0.13 −0.6 2.8 −1.0 0.6 0.7 0.6

Γ(α = 10, β = 1) 0.18 −0.9 2.0 −1.3 1.2 1.5 1.2

Γ(α = 5, β = 1) 0.25 −2.0 0.2 −2.4 2.4 2.6 2.5

LogN(µ = 0, σ = 0.5) 0.28 −0.6 0.9 −1.0 1.8 1.8 1.8

Exp(λ = 1) 0.50 −0.9 −0.3 −1.4 6.2 6.0 6.4

χ2
1 0.64 −1.9 −1.4 −2.3 8.8 8.1 9.7

Γ(α = 0.2, β = 1) 0.80 0.0 0.1 −0.3 3.5 3.5 3.6

500 Pareto(α = 10, β = 1) 0.05 −0.2 3.4 −0.3 0.1 0.1 0.1

Weibull(α = 10, β = 1) 0.07 −0.7 2.1 −0.9 0.1 0.1 0.1

Pareto(α = 5, β = 1) 0.11 0.9 2.6 0.8 0.3 0.4 0.3

Weibull(α = 5, β = 1) 0.13 −0.5 0.9 −0.7 0.2 0.2 0.2

Γ(α = 10, β = 1) 0.18 −0.5 0.7 −0.7 0.5 0.5 0.5

Γ(α = 5, β = 1) 0.25 −1.7 −0.9 −1.9 1.1 1.0 1.1

LogN(µ = 0, σ = 0.5) 0.28 −0.4 0.2 −0.6 0.7 0.7 0.7

Exp(λ = 1) 0.50 −0.9 −0.7 −1.1 2.5 2.4 2.6

χ2
1 0.64 −1.7 −1.5 −1.9 4.6 4.3 4.9

Γ(α = 0.2, β = 1) 0.80 −0.1 0.0 −0.2 1.4 1.4 1.4
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Table 2: Observed coverages (%) of 95% confidence intervals of Ĝπ
(bootstrap and empirical likelihood), Ĝ

(1)
π and Ĝ

(2)
π . Relative bias RB{V̂ (Ĝ)}

(%), of the bootstrap variance estimator of Ĝπ, and the linearised variance of

Ĝ
(1)
π and Ĝ

(2)
π . Several distributions are considered. The rows are sorted

according to G0 (see Table 1 for the values of G0).

Coverages (%)

Ĝπ RB{V̂ (Ĝ)} (%)

n Distributions Boot (11) Ĝ
(1)
π Ĝ

(2)
π Ĝπ Ĝ

(1)
π Ĝ

(2)
π

200 Pareto(α = 10, β = 1) 94.2 94.6 83.2† 94.0† 2.6 1.6 1.6

Weibull(α = 10, β = 1) 93.5† 94.6 85.6† 93.4† 4.8 3.7 4.0

Pareto(α = 5, β = 1) 94.4 95.1 92.6† 94.3 4.4 2.1 2.2

Weibull(α = 5, β = 1) 93.5† 94.5 93.3† 93.3† 3.9 2.7 3.2

Γ(α = 10, β = 1) 91.1† 92.9† 94.6 90.6† −7.6 −17.5 −5.5

Γ(α = 5, β = 1) 89.4† 92.7† 93.4† 89.1† −10.9 −2.6 −9.9

LogN(µ = 0, σ = 0.5) 93.7† 95.4 94.8 93.7† −1.0 −1.7 −2.0

Exp(λ = 1) 90.7† 92.7† 92.7† 90.4† −13.7 −14.9 −14.4

χ2
1 89.1† 90.4† 90.8† 89.3† −19.7 −20.8 −18.8

Γ(α = 0.2, β = 1) 94.7 95.4 94.4 94.6 −5.7 0.0 −2.8

500 Pareto(α = 10, β = 1) 95.1 95.2 90.1† 94.3 4.9 −0.9 −0.9

Weibull(α = 10, β = 1) 93.5† 94.6 85.6† 93.4† 4.8 3.7 4.0

Pareto(α = 5, β = 1) 95.1 94.8 93.1† 94.3 4.2 −3.6 −3.9

Weibull(α = 5, β = 1) 93.2† 95.1 94.4 93.0† 0.6 −3.7 −3.5

Γ(α = 10, β = 1) 93.4† 94.7 94.4 93.2† 1.5 −2.7 −0.5

Γ(α = 5, β = 1) 88.6† 92.9† 92.3† 88.3† −1.2 2.2 −1.9

LogN(µ = 0, σ = 0.5) 94.4 95.4 94.6 94.2 −1.0 −1.7 −2.0

Exp(λ = 1) 93.1† 93.8† 93.7† 92.8† −6.0 −7.7 −8.2

χ2
1 87.7† 87.5† 89.0† 87.6† 3.0 −1.6 0.6

Γ(α = 0.2, β = 1) 95.5 96.0 94.6 95.2 8.6 0.6 1.6

† Coverage rates significantly different from 95%: p-value 6 0.05.
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Table 3: Observed Average Length of 95% confidence intervals and observed
coefficient of the lengths variation (CV) in percent. The rows are sorted
according to G0 (see Table 1 for the values of G0).

Average Lengths CV(Lengths) %

Ĝπ Ĝπ

n Distributions Boot (11) Ĝ
(1)
π Ĝ

(2)
π Boot (11) Ĝ

(1)
π Ĝ

(2)
π

200 Pareto(α = 10, β = 1) 0.017 0.018 0.017 0.017 16.4 18.1 16.2 16.2

Weibull(α = 10, β = 1) 0.016 0.016 0.016 0.016 13.5 13.3 13.3 13.3

Pareto(α = 5, β = 1) 0.036 0.037 0.035 0.035 14.6 15.1 14.2 14.2

Weibull(α = 5, β = 1) 0.030 0.030 0.029 0.030 11.8 11.7 11.5 11.5

Γ(α = 10, β = 1) 0.039 0.040 0.041 0.039 23.1 38.4 66.9 28.5

Γ(α = 5, β = 1) 0.054 0.056 0.057 0.054 23.7 37.8 43.8 28.8

LogN(µ = 0, σ = 0.5) 0.052 0.053 0.052 0.052 11.9 12.7 15.9 13.3

Exp(λ = 1) 0.089 0.092 0.089 0.090 19.3 30.9 26.2 23.7

χ2
1 0.089 0.095 0.091 0.091 27.4 38.5 40.1 33.8

Γ(α = 0.2, β = 1) 0.076 0.077 0.074 0.076 9.0 9.5 8.1 9.0

500 Pareto(α = 10, β = 1) 0.011 0.011 0.011 0.011 11.0 11.1 10.4 10.4

Weibull(α = 10, β = 1) 0.010 0.010 0.010 0.010 8.6 8.6 8.3 8.3

Pareto(α = 5, β = 1) 0.023 0.023 0.022 0.022 9.3 9.4 8.6 8.6

Weibull(α = 5, β = 1) 0.019 0.019 0.019 0.019 8.2 8.1 7.6 7.6

Γ(α = 10, β = 1) 0.025 0.026 0.026 0.025 20.9 47.5 79.4 23.9

Γ(α = 5, β = 1) 0.036 0.037 0.036 0.035 22.0 37.6 33.9 26.8

LogN(µ = 0, σ = 0.5) 0.033 0.033 0.032 0.032 9.9 9.9 12.0 10.9

Exp(λ = 1) 0.058 0.060 0.058 0.058 20.1 34.9 27.5 23.9

χ2
1 0.060 0.064 0.060 0.061 32.3 52.4 49.5 39.1

Γ(α = 0.2, β = 1) 0.048 0.048 0.046 0.046 5.7 6.0 5.1 5.1
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