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UNIVERSITY OF SOUTHAMPTON
ABSTRACT

FACULTY OF ENGINEERING AND PHYSICAL SCIENCES
School of Physics and Astronomy

Doctor of Philosophy

FLAVOUR FROM THE GRAND UNIFICATION SCALE TO THE
ELECTROWEAK SCALE

by Elena Perdomo Méndez

The flavour puzzle, the origin of the three families of quarks and leptons, with their
observed pattern of masses and mixing, persist as one of the deepest enigmas unanswered
by the Standard Model. The discovery of neutrino masses makes the flavour puzzle
even more acute, but also provides new features like small neutrino masses and large
lepton mixing. The smallness of neutrino masses may be explained with a type-1 seesaw
mechanism, which introduces at least two right-handed neutrinos, while a large lepton

mixing may be an indication of an underlying non-Abelian family symmetry.

We extend these ideas into unified models of flavour based on S; x SO(10) and A4 x
SU(5), which are spontaneously broken to the minimal supersymmetric Standard Model.
We give a dynamical origin to Yukawa couplings, leading to predictive mass matrix struc-
tures for both quarks and leptons and giving a natural understanding for the hierarchies
between fermion masses. We also address the doublet-triplet splitting and the p prob-
lem, proton decay and GUT breaking. We perform a y? fit to available data in each of
the models and we also find that in one of the Sy x SO(10) models, the correct baryon
asymmetry of the Universe can be reproduced through Ns thermal leptogenesis. In the
case of the Ay x SU(5) model, we include extra dimensions whose orbifold geometry
leads to the discrete symmetry. We also introduce the modular symmetry, which is
used as a family symmetry, meaning that the Yukawa couplings in this model become

modular forms.

Lastly, we present an extension of the Standard Model with a U(1)" symmetry and an
additional fourth family of vector-like fermions to give a possible explanation for the
recent Rxg and Ry« anomalies. The Z’ gets induced couplings to the second family
of left-handed lepton doublets and to the third family of left-handed quark doublets,
accounting for the measured B-meson decay ratios while consistent with existing exper-

imental constraints.


http://www.soton.ac.uk
http://www.engineering.soton.ac.uk
http://www.isis.ecs.soton.ac.uk
mailto:e.perdomo-mendez@soton.ac.uk




Contents

Declaration of Authorship

Acknowledgements

Nomenclature

1 Introduction
1.1 The Standard Model . . . . . . . . . . . ..

1.1.1 Fermion masses and quark mixing . . . ... ... ... ... ...
1.2 Neutrino masses and the seesaw mechanism . . . . .. ... ... ... ..
1.2.1 Lepton mixing . . . . . . . . . .. . Lo
1.3 Supersymmetry . . . . . ..o Lo Lo
1.3.1 How to build supersymmetric models. . . . . . . . ... ... ...
1.3.2 The Minimal Supersymmetric Standard Model . . . . . . ... ..
1.3.3 R-parity . . . . . . .
1.4 Grand Unified Theories . . . . .. .. .. . . .. ... ... ...,
141 SUB) . o
1.4.2 SO(10) . . . ..
1.5 The flavour puzzle . . . . . . . ..o
1.5.1 Discrete flavour symmetries . . . . . . .. ... Lo L.
1.6 The baryon asymmetry of the Universe. . . . . . . ... .. ... .....
1.6.1 Leptogenesis . . . . . . . . . ...
1.7 Extradimensions . . . . . . . . . . . ...
1.7.1 A compactified 5-dimensional toy model . . . . . . .. .. ... ..
1.7.2  Orbifold compactification . . . . . . .. ... ... ... ......

1.7.3
1.7.4

1.7.2.1  An example: the S'/(Zy x Z}) orbifold . . . . ... ...
Family symmetry from extra dimensions . . . . . . ... ... ...
Modular symmetry and modular forms. . . . . . . ... ... ...

2 A natural Sy X SO(10) model of flavour
2.1 Introduction . . . . . . . . .. L e
2.2 Themodel . . . . . . . .. e

2.2.1
2.2.2
2.2.3
2.24
2.2.5
2.2.6

Overview of the model . . . . . . . . . .. ... . ...
Field content and Yukawa superpotential . . . . . ... ... ...
Clebsch-Gordan relations . . . . . . . .. ... ...
Renormalisability of the third family . . . . .. ... ... ... ..
Doublet-triplet and doublet-doublet splitting . . . . .. ... ...
Protondecay . . . .. .. .. .

xiii

XV

xix



vi CONTENTS
2.3 Yukawa and mass matrices . . . . . .. ..o oo 46
2.3.1 Complete derivation of Yukawa and mass matrices . . . . . .. .. 46
2.3.2  Numerical Yukawa and neutrino mass matrices . . . . ... .. .. 48
2.3.3 Analytic estimates . . . . . . ... 49

2.4 Numerical fit . . . . . . .. . e 51
2.5 Summary ... ..o e e 54
3 S4 X SO(10) grand unified theory of flavour and leptogenesis 57
3.1 Themodel. . .. .. . . . . . e o7
3.1.1 Overview of themodel . . . . . . ... ... ... ... ....... 57

3.1.2 Effective Yukawa structure . . . .. ... ... ... ... ... 59

3.1.3 Vacuum alignment . . . . . ... ... ..o 61
3.1.4 Symmetry breaking . . . . ... ... oo 63

3.1.5 Doublet-triplet splitting . . . . . . . ... ... ... ... .. 65
3.1.6 Protondecay . . ... .. .. ... 67

3.2 Detailed Yukawa structure . . . . . . .. ... oo oo 67
3.2.1 Renormalisability of the third family . . . . . ... ... ... ... 68
3.2.2  Mass matrix structure . . . .. ..o 69

3.2.3  Seesaw mechanism . . . . . ... ..o 71

3.3 Numerical fit . . . .. . . . . . . 72
3.3.1 Parameter counting . . . . ... ... Lo L o oL 74

3.4 Nyleptogenesis . . . . . . . . L e 76
3.4.1 General Ny leptogenesis . . . . . .. . .. ... 76
3.4.2 Leptogenesis in our model . . . . . ... ... 77

3.5 SUMMATY .« . . v vt e e e e e 78
4 SU(5) grand unified theory with A4 modular symmetry 81
4.1 Motivation . . . . . .. e 81
4.2 Orbifold T?/Zy and symmetries . . . . . . . . . oo 82
4.2.1 Review of modular transformations . . . . . .. ... ... ... .. 82
4.2.2  Modular symmetry of the orbifold 72/Zy . . . .. ... ... ... 83
4.2.3 Remnant symmetry of the orbifold T?/Zy with twist w = e/ 86
4.2.4 Connection between the modular and the remnant symmetries 87
4.2.5 Enhanced A4 X Zy symmetry of the fixed points . . . . ... ... 88

4.3 Themodel . . . . . . . . . . e 89
4.3.1 Field content . . . . . .. ... Lo 89
4.3.2 GUT and flavour breaking by orbifold compactification . . . . . . 91
4.3.3 Effective Yukawa superpotential . . . . . ... ... ... ... .. 93
4.3.4 Effective alignments from modular forms . . . .. ... ... ... 94
4.3.5 Massmatrices. . . . . . . .. e 96
4.3.6 p— 7 reflection symmetry . . . ... o000 oL 98
4.3.7 Numerical fit . . . . . ... ... L 99

4.4 SUMMATY . . . v o e e e e e e 101
5 Flavourful Z’ model to address Ry (. anomalies 103
5.1 Introduction . . . . . . . . .. L 103
52 Themodel . . . . . . . . . . e 106



CONTENTS vii
5.3 Ry anomalies and flavour constraints . . . . . ... ... ... ... .. 112
531 By —BymixXing . . . . . . .. 113

5.3.2 Neutrino trident . . . . . . ... .. ... .. ... . 113

53.3 LHCsearches . . . . . . . . . .. . .. . . 114

5.3.4 Constraints from lepton-flavour violation . . . ... ... ... .. 115

5.3.5 Other constraints . . . . . . . ... ... Lo 116

B4 SUmMmMAary . ..o e e 118

6 Conclusions 121
A S, and A4 group theory 127
A1 Sysymmetry group ... ..o e e 127
A2 Ay symmetry group . . ... oL 129
A.2.1 Generalised C'P consistency conditions for A4 . . . . .. ... ... 130

A.2.2 Modular formsfor's~ A4 . . . . . . . .. . . ... .. ... ... 131

B Running Yukawa parameters 135
C Conventions 137
C.1 Dirac gamma matrices . . . . . . . . . ... 137
C.2 Charge conjugation matrix . . . . . . . . . .. ..o 138
Bibliography 139






List of Figures

1.1
1.2
1.3

2.1

2.2

2.3
2.4

3.1

3.2

3.3
3.4

4.1

5.1
5.2

5.3

5.4

Renormalization group evolution of inverse gauge couplings a™' . . . . . .

Diagrams contributing to the C'P asymmetry in neutrino decays . . . . .
Orbifold T5/Z; leading to a tetrahedron . . . . .. ... ... ... ....

Diagrams giving rise to the up-type quark and Dirac neutrino Yukawa
matrices . . . . . . . L
Diagrams giving rise to the down-type quark and charged lepton Yukawa
matrices . . . . . . . L e
Diagrams giving rise to the right-handed neutrino mass matrices . . . . .
Pulls for the best fit of model todata . . . . ... .. ... ... .....

Diagrams giving rise to the up-type quark and Dirac neutrino Yukawa
MatriCes . . . . . . o e e e
Diagrams giving rise to the down-type quark and charged lepton Yukawa
matrices . . . . . ... e e
Diagrams giving rise to the right-handed neutrino mass matrices . . . . .
Pulls for the best fit of model todata . . . . . .. ... ... ... ....

Visualization on the remnant A4 symmetry after orbifolding. . . . .. ..

Diagrams contributing to B — K®[t]~ decays . . . . . . ... ... ...
Parameter space in the (g, gr) plane compatible with Ry(.) anomalies
and flavour constraints . . . . . . . ... ... oL
Parameter space in the (g,,,, Mz) plane compatible with R(.) anomalies
and flavour constraints . . . . . . .. .. ... Lo

Bounds on the parameter space in the (g,,, gr,) plane for fixed Z’' masses:
50, 200, 500 and 1000 GeV . . . . . . . ... e

ix






List of Tables

1.1
1.2
1.3
1.4

2.1
2.2
2.3
2.4
2.5

3.1
3.2
3.3
3.4
3.5

4.1
4.2
4.3
4.4
4.5
4.6

5.1

Al
A2
A3

Standard Model field content . . . . . . . ... Lo 2
Experimental neutrino oscillation parameters . . . . . . .. ... ... .. 9
MSSM chiral supermultiplets . . . . .. .. ..o oo 13
MSSM gauge supermultiplets . . . . . . ... ... oL 13
Superfields of the model related to the Yukawa superpotential . . . . . . . 39
Messengers involved in doublet-triplet splitting . . . . . .. ... ... .. 44
Model predictions at the GUT scale in the lepton sector . . . . . . . . .. 52
Model predictions at the GUT scale in the quark sector . . . .. ... .. 53
Best fit input parameter values . . . . . .. ..o o000 54
Superfield content of the model related to the low energy fields . . . . . . 58
Messenger and driving superfields . . . . . ... .00 59
Model predictions at the GUT scale in the lepton sector . . . . . . . . .. 73
Model predictions at the GUT scale in the quark sector . . . .. .. ... 74
Best fit input parameter values . . . . . . .. ... ... ... ... .. 75
Brane superfields of the model . . . . . . ... .. ... ... .. ..., 90
Bulk superfields of the model . . . . . .. .. ... ... .. ........ 90
Modular forms of y” as a function of its weight o . . . . . . . . . ... .. 94
Modular forms of 3/ as a function of its weight 3 . . . . . . ... ... .. 95
Model predictions in the neutrino sector for weights a =5 =6 . .. . .. 100
Two different sets of input parameters which give a good fit . . . . . . .. 101
Field content and U(1)" charges of the model . . . ... ... .. ..... 107
Generators S, T"and U of S4 . . . . . . . .. ... . 128
Generators S and T of Ay . . . . . . . 130
Component decomposition of two Ay triplets . . . . . .. ... ... ... 130

xi






Declaration of Authorship

I, Elena Perdomo Méndez, declare that this thesis entitled “Flavour from the grand

unification scale to the electroweak scale” and the work presented in it are my own and

has been generated by me as the result of my own original research. I confirm that:

1. This work was done wholly or mainly while in candidature for a research degree
at this University;

2. Where any part of this thesis has previously been submitted for a degree or any
other qualification at this University or any other institution, this has been clearly
stated;

3. Where I have consulted the published work of others, this is always clearly at-
tributed;

4. Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work;

5. I have acknowledged all main sources of help;

6. Where the thesis is based on work done by myself jointly with others, I have made
clear exactly what was done by others and what I have contributed myself;

7. Parts of this work have been published as: [1], [2], [3] and [4].

SIgned: . .o e
DA . .

xiii






Acknowledgements

I would like to thank all the people that has encouraged me during this time and who
have made possible the completion of this thesis. In first place, an special thank you to
my supervisor Steve King, for your endless support. You have guided me always with
fruitful discussions in the last three years and your time has been invaluable to me. 1
am also very grateful to all my collaborators: Francisco de Anda, Fredrik Bjorkeroth,

Adam Falkowski, Mathias Pierre and Patrick Vaudrevange.

During this time in Southampton, there has been many people next to me and I thank
them all. Hynek, thank you for the countless times having a chat and a beer together.
Lauri, for reminding me the wonderful world we live in. Eirini, thank you for welcoming
me in your house and making it our house. Thanks to all the people in my office, to
Adam, Jack, Matt, Michele, Sam, Simon and Will for each Friday evening at the Stags.
Thank you to the Greek team: Angelis, Thanasis and Nikos and to Gerardo, Joan and

Roberto for making this a familiar place.

I am very grateful to all the Elusives family. Specially, thanks to Alvaro, Gongzalo, Nuno
and Rupert, for making the best possible time at any school or conference. I keep all the
adventures in my heart. Thank you to all the people that made my time unforgettable

during my secondments in Paris, Geneva and Japan.

Thanks to my oldest friends and the best ones that one could ask for: Alvaro, Ancor,
Carlota, Edu, Gara, Lilly, Marta, Muza, Noe and Pablo. Even in the farthest distance,
you have always been there and you will always be. Thank you to Maria, for sitting

next to me once we started the journey of Physics and for continuing being by my side.

A very special thank you to my parents, Rosa and Berto, who have been the great pillars
of my life. Thank you for being next to me in every aspect of my life, for teaching me to
keep pushing forward, for encouraging me to enjoy the only life we have, for holding me
anytime I needed and for letting me being myself. Thank you to the other two parts of
me, my brothers Alberto, for always making me laugh, and Javier, for being an example

to follow.

Finally, to my love Felipe, for showing me that dreaming bigger is possible. Thank you
for so many wonderful moments and for making me smile. Thank you, for always having
time to listen to me, for your patience and support in my darkest moments. You are my

sunshine.

XV






To my parents, Rosa and Berto,
for making this possible.

Xvii






Nomenclature

SM Standard Model

EW Electroweak

QCD Quantum chromodynamics

SSB Spontaneous symmetry breaking
VEV Vacuum expectation value

CKM  Cabibbo-Kobayashi-Maskawa

CcP Charge-parity

GIM Glashow-Iliopoulus-Maiani

PMNS Pontecorvo-Maki-Nakagawa-Sakata
LHC Large Hadron Collider

SUSY  Supersymmetry

MSSM  Minimal supersymmetric Standard Model
LSP Lightest supersymmetric particle
DM Dark Matter

B Baryon number

L Lepton number

GUT Grand unified theory

BSM Beyond the Standard Model

BAU Baryon asymmetry of the Universe

4D 4-dimensional
5D 5-dimensional
6D 6-dimensional
CSD Constrained sequential dominance

CG Clebsch-Gordan

TB Tri-bimaximal

DW Dimopoulos-Wilczek

FCNC Flavour-changing neutral-current
CL Confidence level

xix






Chapter 1

Introduction

In this chapter, we give a brief introduction to the Standard Model and to some of the
main theoretical and experimental open questions still unresolved in particle physics.
In particular, we tackle the problem of neutrino masses within a type-I seesaw mecha-
nism. We continue summarizing the idea of supersymmetry, originally motivated by the
hierarchy problem and we show the unification of gauge couplings within the minimal
supersymmetric Standard Model. This leads to a discussion of grand unified theories, in
which we focus on SU(5) and SO(10). Subsequently, we present the flavour puzzle and
the use of non-Abelian discrete symmetries to address it. The next section is devoted
to the baryon asymmetry of the Universe and we introduce the leptogenesis mechanism.
Finally, we establish the advantages of the inclusion of extra dimensions. These open
questions and possible solutions motivate us to propose new models which are presented

in the following chapters.

1.1 The Standard Model

The Standard Model (SM) is a gauge theory based on the gauge symmetry group
SU(3)c x SU(2)r, x U(1)y, which describes the strong and electroweak (EW) inter-
actions. The gauge group of quantum chromodynamics (QCD) is SU(3)¢ [5-7], with
subscript C' for color. The gauge group of electroweak interactions is SU(2)r, x U(1)y
[8-11], where the subscript L refers to the fact that only left-handed fields transform
non-trivially under SU(2)r, and Y refers to the weak hypercharge.

The field content of the SM and its corresponding transformation properties under the
gauge group SU(3)c x SU(2)r, x U(1)y are given in table 1.1. There are three fam-
ilies of chiral fermion fields,! encoded in the subscript ¢ = 1,2,3 in table 1.1a. The
left-handed fields are SU(2)r, doublets, while their right-handed partners transform as

!Chiral fields are defined in appendix C.
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Representation X

Field SU3) SU) U _ Representation

; c 2 L 1 6Y Field SUGe SU@). Uy
QL / Go 8 1 0
UR; 3 1 2/3 Wb 1
dRi 3 1 ~1/3 5 X i’ 0
Lri 1 2 ~1/2 0
ERi 1 1 -1 H 1 2 1/2

(a) Chiral fermionic fields. The subscript ¢ = 1,2,3 (b) Gauge bosonic fields and Higgs field (a =1, ..., 8,
runs over the three families of the Standard Model. b=1,2,3).

Table 1.1: Standard Model field content.

SU(2)y, singlets.? For the leptons, the doublet Ly; = (v, er;)? contains the left-handed
charged lepton and its corresponding left-handed neutrino, where the family index refers
to the electron, muon and tau. The SM does not include the right-handed partner of
the neutrino field and we only have right-handed charged leptons er;. The quark field
Qri = (uri,dr;)T includes the up and down quarks Qr1 = (ur,dr)?, the charm and
strange quarks Qr2 = (cr,sz)?, and the top and bottom quarks Qr3 = (tr,br)".
Their corresponding right-handed partners are given by ug; and dg;. The quarks also
transform as triplets under SU(3)c and we are suppressing the color index. There-
fore, the SM contains a total of 15 chiral fields within each family. Additionally, we
have the spin-1 gauge boson fields in table 1.1b: eight massless gluons G* (a = 1, ...,8)
for the strong interaction SU(3)c and the gauge fields W (b = 1,2,3) and B of the
SU(2)r x U(1) gauge theory. Finally, the SM also contains the SU(2)r-doublet scalar
field H = (H*, H*)” (Higgs doublet), which causes the spontaneous symmetry breaking
(SSB) of the electroweak group to the electromagnetic subgroup:

SUB)e x SUQR)L x ULy 22 SU(3)e x U(1)qep (1.1)

The SSB mechanism [12-17] generates the masses of the weak gauge bosons and the
masses and mixing of the fermions. It also gives rise to the appearance of a physical

scalar particle in the model, the Higgs particle.

The Standard Model does not incorporate the right-handed neutrino field, vg;, meaning

that the SM predicts massless neutrinos and we will address this problem in section 1.2.

The gauge transformations under the SM gauge group, with the infinitesimal form for

2 Although the charge conjugate of right-handed fields 9% transform as left-handed fields, they remain
singlets under SU(2)r. Similarly for the left-handed fields, whose charge conjugated fields transform as
right-handed fields but they behave as doublets under SU(2)r.
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the gauge field transformations, are the following:

Uy : ¢ —exp(idy (2)Yy)v, H — exp(idy (z)Yu)H,
Bu— B+ gl,auxy(x)
SUQ2)L: b — exp(iAL(@)T")y, H — exp(iAg(z)T*)H, (1.2)
Wi — WS+ ;aﬂxi(x) + ePWPNG ()

-\ a a a a 1 a aoc C
SUB)c: ¥ — exp(ids(@)t)y, G — G4+ ;8MAC(x) + fUGE N (),

where 9 is a generic fermion field and repeated indices are always taken as summed.
The coupling strength of the hypercharge, weak and strong interactions are given by ¢, ¢
and gs, respectively. Y is the hypercharge operator and 7% and t* are the SU(2)r, and
SU(3)¢ generators, respectively. When acting upon a doublet representation of SU(2)z,
T = 0%/2 where 0% are the Pauli matrices, while when acting upon singlets 7% = 0.
For the case of SU(3)¢, the triplet representations transform with t* = \*/2, where \*
are the Gell-Mann matrices, while singlet representations transforms as t* = 0. The
antisymmetric structure constants of SU(3)¢c, f2¢, are defined in terms of the group
generators [t %] = if2%°t¢, where a,b,c run from 1 to 8. For SU(2)z, a,b,c run from
1 to 3 and f®¢ = €% the totally antisymmetric three-index tensor defined so that

€12 = 1.

The most general renormalizable Lagrangian invariant under the SU(3)¢ x SU(2)r x

U(1)y gauge transformations in equation (1.2) is given by

L= ﬁkinetic + ['Yukawa + £H (13)
The kinetic term contains
_ ) 1 a apy 1 a auy 1 g
£kinetic - ZZT,ZJ’Y D;ﬂﬁ - ZG;LVG - ZW;LVW - ZBHVB ) (14')

(4

where the field strength tensors for the U(1)y, SU(2)r and SU(3)¢ interactions are

B, = 0,B, — 0,B,
Wi, = 0,W — 9, W + ge™™ W)Wy (1.5)
G4, = 0,GS — 0,G% + g5 f"°GhGE,.

The covariant derivative encodes the kinetic and the gauge interactions and it is given

by
D, =98,—i¢'B,Y — igWyT" —igsGt®. (1.6)
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The terms involved in the Lagrangian term Ly in equation 1.3 are
Ly = (D, H)(D'H) — V(H), (1.7)
where the scalar potential is given by
V(H)=p?H'H+XH'H? (1> <0, A>0). (1.8)

The minimum of this potential is away from |H|=0 and the vacuum expectation value
(VEV), or minimum energy state, is not invariant under SU(2);, xU(1)y transforma-
tions. The gauge symmetry SU(2)r x U(1l)y is spontaneously broken [12-17] to the
gauge group U(1)qep of electromagnetic interactions. We can find a gauge (the so-

called unitary gauge) in which the doublet scalar field takes the form

1 0
Hz) = (v . h@:)) , (1.9)

where h is a real scalar field, the Higgs boson field. From equations. 1.8 and 1.9, we find

that a minimum of the potential is given by

<0|H\o>=\}§<2>, b=y (1.10)

The vacuum is invariant under the unbroken gauge group U(1)qrp with generator @
e?e®)Q (0| H|0) = (0|H|0), (1.11)
leading to well-known expression for the electric charge
Q=T3+VY. (1.12)

After diagonalizing the gauge kinetic term (D, H )I(D*H) in the unitary gauge, we can
deduce that the masses for the W* and Z bosons are

2 12
My = %, My = ¥v. (1.13)

The relation between the gauge and the mass eigenstates is given by

1 . 2
- :Wu —ZWH,
14 \/i
Wl 4+ iw?
- _p M
Wu = \/i (1.14)

3
Z# ZCWWM — SWB#,

A# ISwwj’ + CwBM,
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where sy = sin by, ¢y = cosbfy and 6y is the weak mixing angle or Weinberg angle
satisfying the relation cosfy = My /My. The state A, does not couple to the Higgs
field and thus does not acquire a mass after gauge symmetry breaking. This state is
identified as the photon.

The covariant derivative in terms of the gauge boson mass basis is

(WITH + W, T7) —i——

Z,(T? - s3,Q) —ieA,Q, (1.15)
Swew

. g
Dy = 0, —igsGit* — 7

7

where T are the raising and lowering operators of SU(2),, with T* = o% = (0! +ic?)

and e is the electromagnetic coupling such that e = ¢’cyy.

1.1.1 Fermion masses and quark mixing

The Yukawa couplings in equation 1.3 are given by
Lyvukawa = — <Yi?®Hde + Yf;@[zlugj + Y;;-TL,'HQRJ' + H.C.) , (1.16)

where H = ioc? H*, i,j = 1,2,3 are family indices and the matrices Y4, Y* and Y¢ are
complex 3 x 3 matrices of Yukawa coupling constants. After gauge symmetry breaking,

the terms in equation 1.16 give rise to fermion masses

Ly = — (dLMydg +urMyug +egMeegr + H.c.) (1.17)
where
v v v
My=—Y% M,=—Y" M, =—Y°¢ 1.18

are the mass matrices. We have arranged the members of a fermion family into a single
vector, i.e. d = (di,ds,ds3)”, where d; for i = 1,2,3 are the down-type quark flavour
interaction eigenstates and similarly for the up-type quarks and charged leptons. Since
the Standard Model does not contain right-handed neutrinos, vg;, there is no Yukawa

coupling and neutrinos are predicted to be massless within the SM.

The physical massive fermion fields can be found by diagonalizing the mass matrices.

We diagonalize M? and M" using appropriate unitary transformation matrices

mg 0 0 m, 0 O
ViMvE =10 m, o, vEMVE =10 m o |. (1.19)
0 0 my 0o 0 my
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Thus we can write the quark mass eigenstates as

d dq U Uy
s = VﬂR do and c =Vig | u . (1.20)
b L.R ds L.R L L.R U3/ R

Since the up-type and the down-type quarks are rotated into the mass eigenstates with
different unitary matrices, there is a mismatch between the flavour basis and the mass
eigenstate basis in the charged-current W7 interactions, where the couplings to the

physical left-handed quarks are given by

dr,
%(@qﬂ)wwjvcm sp | +He,  Vexu = Vv (1.21)
br,

The Cabibbo-Kobayashi-Maskawa (CKM) matrix Veg [18, 19] is a 3 x 3 unitary matrix,
which can be parametrized in terms of three mixing angles and a charged-parity (CP)-

violating KM phase ¢ [19]. One common choice is given by [20]

1 0 0 C13 0 513€_i5q C12 si2 0
Vekm = | 0 ca3  s23 0 1 0 —s12 c12 0], (1.22)
0 —s93 o3 —s93€"" 0 c13 0 0 1

where s;; = sin0;;, ¢;; = cos0;;. These are fundamental parameters of the SM, describ-

ing flavour-changing interactions.
Since the photon couplings @ and the Z boson couplings (T — sin? f,Q)) are universal
to all three families, the neutral currents are flavour diagonal. This is a manifestation

of the GIM mechanism introduced by Glashow, Iliopoulus and Maiani [21].

The charged-lepton mass term can be also diagonalized through unitary transformations

me O 0
UsM UG =10 m, 0 . (1.23)
0 0 m,

The charged-lepton mass eigenstates become

e €1
% =ULr|e (1.24)
™) LR €/ LR

The mass eigenfields e, u and 7 are said to be the flavour eigenfields of the charged
leptons, i.e. the flavour of a charged lepton is defined by its mass. Since neutrinos are

predicted to be massless in the SM, a neutrino v, is said to be of flavour o (where av =
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e, i, T), if it is produced or detected in a charged current interaction process involving

the charged lepton flavour a.

1.2 Neutrino masses and the seesaw mechanism

The discovery of neutrino masses is a clear hint that new physics beyond the Standard
Model is needed. In 2015, the Nobel Prize of Physics was awarded to Takaaki Kajita and
Arthur B. McDonald “for the discovery of neutrino oscillations, which shows that neutri-
nos have mass” and “for their key contributions to the experiments which demonstrated

that neutrinos change identities”.

The most common choice to accommodate neutrino masses is to extend the Stan-
dard Model field content in table 1.1 and include Ng right-handed neutrinos, vg; =
(VR1, .., VRNy ), which are singlets under the SM gauge group. The right-handed neu-

trino fields do not couple to the gauge fields but new Yukawa couplings arise
Lyukawa,p = —YiLriHvg; + Hec., (1.25)
which, after spontaneous symmetry breaking, give rise to the neutrino mass term
Lp=-vMpvg + H.c. (1.26)

The subscript D refers to Dirac mass term and Mp = vY"”/y/2 is a complex 3 x Ny
matrix. Additionally, if we allow lepton number violation, there is another neutrino

mass term (Majorana mass term) compatible with gauge invariance given by
1~
Lr= —§VRMRVR+H-C-3 (1.27)

where ¢ = C@T denotes the charge conjugate field, where C' is known as the charge
conjugation matrix, see appendix C. A Majorana mass term for the left-handed neutrino
fields is possible below the electroweak symmetry breaking scale since the neutrino has
zero electric charge. However, before SSB a renormalizable Majorana mass term for the
left-handed neutrino fields is not gauge invariant under SU(2);, x U(1)y. The type-I
seesaw mechanism [22-26] assumes this term to be zero to begin with, but is generated

effectively by right-handed neutrinos.

Collecting together the Dirac mass term 1.26 and the Majorana mass term 1.27, we can

write the seesaw mass matrix as

S 0  Mp)\ (v¢
(uL VR> ((MD)T MR> (VZ> (1.28)

which, after diagonalization, effectively generates a Majorana mass term for the left-
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handed fields. The Majorana masses Mg are not an effect of gauge symmetry breaking
and therefore the scale can be orders of magnitude larger than the electroweak scale,
Mgw ~ O(10%) GeV. In the approximation where My > Mp, the Majorana mass term
for left-handed fields, after diagonalization, is given by

1
Ly = —iﬁm’jui +H.c, (1.29)
where m,,, in terms of the seesaw formula, is
m, = —MpMp'(Mp)”. (1.30)

The smallness of neutrino masses is understood in the seesaw mechanism through the
suppression by the heavy scale M. For example, if we take Mp to be 1 GeV (roughly
equal to the charm quark mass), then a neutrino mass of 0.1 eV requires a right-handed

neutrino mass of 1010 GeV.

1.2.1 Lepton mixing

From the antisymmetry of the charge conjugation matrix C' and the anticommutativity
of fermion fields, one can deduce that a Majorana mass matrix must be symmetric. A

complex symmetric matrix can be diagonalized by an unitary matrix such that

mia 0 0
Urm"(U =10 mo 0 |. (1.31)
0 0 ms

The charged-current interactions, involving charged-leptons and neutrinos, in the mass

basis is
o Vi
E(QMTL’ TV W,FUpnins | var, | +He.,  Upnins = UE(UR)T, (1.32)
V3L

where U7 is the unitary matrix diagonalizing the charged-lepton mass term in equa-
tion 1.23 and Upns is the lepton mixing matrix or Pontecorvo-Maki-Nakagawa-Sakata
(PMNS) matrix [27-30]. The neutrino flavour eigenstates are defined through their

charged current interactions with charged-leptons, therefore

VeL VL
vur | = Upmns | vor, | - (1.33)
vrL v3L

If neutrinos are massive, the neutrino flavour eigenfields are rotated against the neu-

trino mass eigenfields by the unitary matrix Upyng. In the standard PDG parametriza-
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tion [31], the unitary matrix Upyng is given by three mixing angles Géj, the Dirac CP

phase 5t and two Majorana phases a9; and as3; such that

1 0 0 C13 0 Slge_i‘;l C12 s12 O 1 0 0
Upmns = | 0 C23 S923 0 1 0 —S12 c12 O 0 ei% 0
0 —s23 co3 —s93¢" 0 €13 0 0 1 0 0 e

(1.34)
where in this case ¢;; = cos Gﬁj and s;; = sin Héj. The Majorana phases are unphysical
for Dirac neutrinos since a phase field redefinition leaves the Dirac mass term invariant

while the Majorana mass term would not be invariant.

Observable Data

Best fit lo range
012 /° 33.82  33.06 — 34.60
015 /° 8.610  8.480 — 8.740
053 /° 4830  46.40 — 49.40
5t /e 222.0  194.0 — 260.0

Am3,/(107%eV?)  7.390  7.190 — 7.600
Am3,/(107%eV?) 2523  2.493 — 2.555

Table 1.2: Neutrino oscillation parameters, for the normal ordered case (without Super-
Kamiokande atmospheric data), from the fit to global data done by NuFit collaboration,
version 4.1 [32]. The data included by NuFit come from solar experiments [33-45], atmo-
spheric experiments [46-48], reactor experiments [49-53] and accelerator experiments [54-58].

The transition probability of producing a neutrino of flavour « and detecting a neutrino
of flavour 3 depends on the mass squared differences Am3, = m3—m?, Am}3 = m%—m]z,
the mixing angles, Qﬁj and the C'P violating phase §' but it does not depend on the
Majorana phases nor the masses themselves. Thus, there are six observables which
can be determined by neutrino oscillations. These are known as the solar mixing angle
9l12 and solar mass splitting Am3,, atmospheric mixing angle 9l23 and atmospheric mass
splitting Am3;, the reactor mixing angle 05 and the C'P violating phase 6. Furthermore,
current experimental data cannot yet determine the mass ordering of neutrinos, defined
as normal (Am3, > 0) or inverted ordering (Am3; < 0), although there is a preference
for normal mass ordering [32]. There is a cosmological limit on the total sum of the
three neutrino masses >, m; = mj +mg +ms3 < 0.23 eV [59]. If neutrinos are Majorana
particles, neutrinoless double beta decay Ov3/ (which violates lepton number by two
units) can give us information about neutrino masses as well. The rate of 0v3S is

proportional to the effective Majorana mass mgg =, miUezi,

where we have suppressed
the PMNS subindex in the unitary mass matrix Uppyns. Recent searches set a limit on
the neutrino mass of mgg < 0.06 — 0.200 eV [60, 61]. Furthermore, neutrinoless double
beta decay is sensitive to normal and inverted mass ordering and future experiments will
be able to confirm or set stronger constraints in the ordering of neutrino masses. We
show the oscillation parameters for normal mass ordering, without Super-Kamiokande

atmospheric data, given by the NuFit-4.1 collaboration [32] in table 1.2.
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1.3 Supersymmetry

Supersymmetry (SUSY) [62-66] is an extension of space-time symmetry beyond the
Poincaré group which transforms a fermionic field into a bosonic field and vice versa.
In a supersymmetric theory the irreducible representations are known as “supermulti-
plets”, containing both fermion and boson states, each being a “superpartner” of the
other. Each supermultiplet contains an equal number of fermion and boson degrees of
freedom and particles within the same supermultiplet must also be in the same repre-
sentation of the gauge group. Therefore, in SUSY the content of the SM is duplicated as
shown in tables 1.3 and 1.4. The superpartners of quarks and leptons are scalars called
“squarks” and “sleptons”. Each fermion and its scalar superpartner are accommodated
in a “chiral supermultiplet”, which is the simplest possible combination for a supermul-
tiplet consisting of a single Weyl fermion and a complex scalar field. The gauge bosons
together with their superpartners “gauginos” are combined in a “gauge” or “vector”
supermultiplet. The Higgs field is accommodated in a chiral multiplet, together with a
spin-1/2 superpartner, the Higgsino.

Supersymmetry was intended to address the “hierarchy problem” [67-70] or the fact that
the Higgs mass receives quantum corrections quadratically divergent with the energy
cutoff Ayvy, i.e. Am%[ x A%V. The ultraviolet momentum cutoff is interpreted as the
scale at which new physics enters. If we consider this scale to be the Planck scale
Mp ~ O(10'9) GeV, where gravity effects need to be included, we would require a large
fine tuning between the tree level mass and the radiative corrections given that there are
17 orders of magnitude between the energy cutoff and the Higgs mass, my ~ 125 GeV.
In the Standard Model, these quantum corrections come from loop diagrams involving
fermions, however, if we include supersymmetry, the scalar superpartners will contribute
to the quantum corrections with a relative minus sign leading to a cancellation of the
SM contributions. This cancellation occurs to all orders by the supersymmetric non-

renormalisation theorem [71, 72].

Since we have not yet observed any scalar particle with the same mass as the known
fermions, supersymmetry must be broken a low energies. If we still want supersymme-
try to provide an explanation for the hierarchy problem, we can only consider “soft”
supersymmetry breaking terms (containing only mass terms and coupling parameters
with positive mass dimension). In this case, the relationships between dimensionless
couplings that hold in an unbroken supersymmetric theory are maintained, and the can-
cellation between scalar and fermion loop diagrams still occur. However, there will be
contributions from associated soft terms with scale mgygt, i.e. Am%[ x mgoft. Since the
Large Hadron Collider (LHC) has set some limits on the mass of the sparticles of about
2 TeV, the hierarchy problem is reintroduced, where some degree of fine tuning has to

be accepted.

The hierarchy problem is not the only motivation to consider supersymmetry. SUSY
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also provides a dark matter (DM) candidate when assuming “R-parity” [73]. A con-
sequence of this symmetry is that it provides a stable supersymmetry particle, the so
called lightest supersymmetric particle (LSP), which can be considered as a dark matter
candidate. Furthermore, SUSY leads to the unification of gauge couplings in the Min-
imal Supersymmetric Standard Model (MSSM) [74-78], as we will see in section 1.3.2.
Supersymmetry can also be used to unify gravity with the strong and electroweak inter-
actions [79-81].

1.3.1 How to build supersymmetric models

Supersymmetry relates fermionic and bosonic states. Both states are described in terms
of a supermultiplet, which is an irreducible representation of the supersymmetry algebra.
Additionally, we need an extra ingredient to close the supersymmetry algebra, the aux-
iliary fields. In the case of chiral multiplets, the auxiliary field is given by a new complex
scalar field F, which does not have a kinetic term and with equations of motion given
by F' = F* = 0. Similarly, for a vector multiplet, we need a new real bosonic auxiliary
field D with no kinetic term. They are really just tools that allow the supersymmetry
algebra to close off-shell. In summary, a chiral supermultiplet contains a Weyl fermion
1, a complex scalar ¢ and auxiliary field F', while a vector supermultiplet consists of a

gauge field A, gaugino A and auxiliary field D.

The most general Lagrangian density of masses and non-gauge interactions for particles

that live in a chiral multiplet, consistent with supersymmetry, is given by
1 .. .
Ling = (—2W”wi¢j + WZFZ‘> +H.c., (1.35)

where W4 and W* are the functional derivatives

oW BW

Wt = . WY = .
di 0¢ido;

(1.36)

The function W is called the superpotential and it is an holomorphic function of the

scalar fields ¢; treated as complex variables,
i Lo ij L ik
W =L'¢i + S MY i + cy7" i P (1.37)

The most general non-gauge interactions for chiral supermultiplets are determined by
the superpotential W, where the terms in equation 1.37 are constrained to be gauge

invariant terms. For example, L parameters will only appear if ¢; is a gauge singlet.

The scalar potential of the theory is given in terms of the superpotential by

V(g,¢") = W'W} = F"F, (1.38)
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where in the last equality we used the equations of motion for the auxiliary fields
F, = =W} and F* = —W". In fact, once one studies the Lagrangian for gauge su-
permultiplets and the gauge interactions, the complete scalar potential contains terms
also proportional to the auxiliary fields D, i.e. V (¢, ¢*) = F*'F; + %Za D®D®. These
two types of terms are known as “F-term” and “D-term”, respectively. The F-terms are
fixed by Yukawa couplings and fermion mass terms while the D-terms are fixed by gauge
interactions. Since in this thesis we are interested in the flavour sector, concerning about
Yukawa couplings and mass terms, we will not explicitly show the form of Lagrangian

for the gauge interactions and we will not mention again the D-terms.

Equivalently, we can use the superfield [82, 83] language. A superfield contains as compo-
nents all the bosonic, fermionic and auxiliary fields within the corresponding supermul-
tiplet, for example ®; D (¢;, 15, F;) and it is a function of the “superspace” coordinates,
containing not only the usual bosonic space-time coordinates but also fermionic anti-
commuting coordinates. The gauge quantum numbers and the mass dimension of a
chiral superfield are the same as of its scalar component. The superpotential would be

the same as in equation 1.37, substituting ¢; by ;.

1.3.2 The Minimal Supersymmetric Standard Model

The Minimal Supersymmetric Standard Model (MSSM) contains the SM fields and
its superpartners, see tables 1.3 and 1.4. We duplicated the number of Higgs fields to
cancel gauge anomalies. The condition that one has to satisfy to avoid gauge anomalies is
Tr[T3Y] = Tr[Y3] = 0, where the traces run over all of the left-handed Weyl fermions. If
we only had one Higgs field, its superpartner, the Higgsino, would have weak hypercharge
Y = 1/2, spoiling the cancellation that was automatically done in the SM. This is not
the only reason to add another Higgs field, since the superpotential is an holomorphic
function of the chiral superfields, it would not be possible to write the up-type quark

Yukawa coupling as in equation 1.16, using the complex conjugate of a single Higgs field.
The most general superpotential in the MSSM is given by

Whssm = Y4 Qiti; Hy + ViQid; Hy + Y5 Liej Hy + pH, Hy, (1.39)

where I:Iu, I:Id, Q, f), u, j, ¢ are the chiral superfields appearing in table 1.3. The
subindex 1,7 = 1,2,3 corresponds to the family index while the SU(3)¢ color and
SU(2) 1, weak isospin indices are suppressed. The “u term” is the supersymmetric version

of the Higgs boson mass in the SM, leading to
- ﬁsupersymmetric Higgs mass — ’N’z(’HJ‘Q + |Hz(i)|2 + |H'8’2 =+ ’Hd_|2) (140)

The soft supersymmetry breaking terms, compatible with gauge invariance within the
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Names spin 0 spin 1/2  SU(3).,SU(2),U(1)y
Q (ar d) (ur dp) (3,2, %)
squarks, quarks E Up UE 3, 1, _%)
d d di, 3,1, 1)
Lo (o) (o er) (1, 2, —3)
sleptons, leptons & &, ek (1, 1, 1)
poo o He (HE W) () 12 3
iggs, higgsinos - _ ~ =
Hy (Hg Hy) (Hy Hy) (1, 2, =3)

Table 1.3: Chiral supermultiplets in the MSSM. The spin 1/2 are left-handed two component
Weyl fermions. The spin 0 are complex scalar fields.

Names spin 1/2  spin 1
gluino, gluon g g
winos, W bosons W+ W0 W+ wo
bino, B boson BY BY

Table 1.4: Gauge supermultiplets in the MSSM.

MSSM field content, are given by
1 . .
LAEM = 2 (Msgg + MWW + M BB + He.)
— (uauQHu —dagQH; — ea. LH; + H.c.) (1.41)
—Q'myQ — L'mi L — umau' — dm2d' — émZé!

—my;, HyH, —mj HiHq — (bH,Hy + H.c.).

We need negative soft supersymmetry-breaking squared-mass terms for the Higgs scalars
in equation 1.41 (m%[u < 0 and m%[d < 0) to get electroweak symmetry breaking (oth-
erwise the minimum of the potential in equation 1.40 is found for HY = H? = 0). Then
w should be of order 10? or 103 GeV to get a Higgs VEV at the EW scale without too
much miraculous cancellation between the |1|? and the negative soft mass terms. A new
problem arises known as the “u problem”, since there is not any symmetry protecting
the |p|? term, it could be of order of the Planck mass scale, so in particular why should
it be roughly of the same order as the soft mass terms? After including the F-terms,
D-terms and soft supersymmetry-breaking terms, the minimum of the Higgs potential is
found for H,} = H; = 0, while the neutral components have non-zero VEVs, v, = <H3 >
and vg = <Hg>, satisfying

v2 4 02 =v? ~ 174 GeV, (1.42)

where v is the SM electroweak VEV. The ratio of the VEVs is usually written in terms
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of a new free parameter 3 as

tan 8 = s (1.43)
d

1.3.3 R-parity

An extra ingredient is usually added to supersymmetry. There are processes in SUSY
which violate baryon number (B) and lepton number (L) leading to proton decay and
other B- and L-violating processes which have not been seen experimentally. In order
to avoid these processes, a new symmetry is added known as “R-parity” [73], with a

conserved quantum number defined as
Pp = (~1)P(B-1+2, (1.44)

where s refers to the spin of the particle. When we drop the part depending on the spin
in equation 1.44, we are left with “matter parity” [84-87]

Py = (—1)3B-0), (1.45)

Under matter parity, all the quarks and leptons supermultiplets have charge Py, = —1,
while the Higgs and the gauge supermultiplets have matter parity Py; = +1. When
enforcing matter parity, the MSSM does not have any renormalizable interactions that
violate B or L. Matter parity commutes with supersymmetry, since all members of a

given supermultiplet have the same matter parity.

In the case of R-parity, the particles within the same supermultiplet do not share the
same charge. All SM particles have even R-parity (Pr = +1) while the supersymmetric
partners, the sparticles, have odd R-parity (P = —1). Matter parity and R-parity
conservation are equivalent in the sense that any interaction vector will satisfy (—1)% =
+1 to conserve angular momentum. If R-parity is exactly conserved, every interaction
vertex has to contain an even number of P = —1 sparticles. This leaves us with a stable
particle given by the lightest supersymmetric particle (LSP), which can be a good dark
matter (DM) candidate [88, 89] if it is electrically neutral and it interacts weakly with

ordinary matter.

In general, symmetries that when acting on different fields within the same supermulti-
plet have different transformation properties are called R symmetries and do not com-
mute with supersymmetry. Sometimes, in model building one uses continuous U(1) R
symmetries or discrete Zy which are then broken to R-parity, a discrete Zo symmetry.

The superpotential must carry charge 4+2 under R symmetries to conserve R symmetry.
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1.4 Grand Unified Theories

A grand unified theory (GUT) accommodates gauge coupling unification at a scale
MgauT, much larger than the electroweak scale but below the Planck scale Mp. The
Standard Model would be the limit of this new theory at low energies. It was first
proposed by [90, 91] as a theory for quarks and leptons beyond the Standard Model
(BSM). Originally, the first models of GUTs did not include supersymmetry but most

of them have been ruled out and we will focus on supersymmetric grand unification.

In the Standard Model, the three gauge couplings at the electroweak scale are very
different, however they evolve and change with energy according to their renormalisa-
tion group equations and they may converge at some higher scale. Once the MSSM is
considered, the new extra particles provide additional contributions leading to apparent
unification of gauge couplings at a scale Mgyt ~ 106 GeV, which we call the grand
unification scale, motivating SUSY GUT models. Figure 1.1 shows the renormalisation
evolution of the inverse gauge couplings ai_l, where «; = g?/4m, for both cases the
Standard Model and the MSSM.?

60_ T T T T T T T T T T T T T T T T
502_ “‘--_H‘- 1"’/_
40F =TT ]

- E -
o 30F = 2

20f E

10p

0546 8 10 12 14 16 18
Log,,(Q/GeV)

Figure 1.1: Inverse gauge couplings a~! two-loop renormalization group evolution in the
Standard Model (dashed lines) and the MSSM (solid lines). Figure from [92].

Additionally, a grand unified theory gives an explanation of why the charge of the proton
is equal but opposite to the charge of the electron. This is known as the charge quan-
tization problem in the Standard Model, namely why the quark charges are quantized
into multiples of e/3, where e is the electron charge. In a grand unified theory, quarks
and leptons are assigned to an unique multiplet therefore their charges must be related

since the trace of any generator has to be zero.

A grand unified theory is described by a larger symmetry group G containing the SM,

3In this normalisation, g1 = 1/5/3¢’, g2 = g and g3 = gs.
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i.e.

G > SUB)e x SU2), x U(1)y. (1.46)

Since the SM is rank four the group G has to be of rank four or greater. The first model
proposed was the Pati-Salam group SU(4)c x SU(2)r, x SU(2)r [91]. Even though it
can not be considered as true unification, because it still has three different couplings, it
was the first model whose quarks and leptons were unified into single multiplets, where
the leptons are the fourth colour and the charge assignment is left-right symmetric. The
choice of a GUT group can be quite large, but in the following we will focus on SU (5) [90]
and SO(10) [93, 94]. Other choices are larger SU(N) groups or the exceptional group

Eg, but we will not consider them in this thesis.

1.4.1 SU(5)

The minimal choice towards a GUT is based on the SU(5) group which is rank four (the
other simple rank 4 algebras could not work since they do not have complex representa-
tions). To embed the Standard Model gauge group in SU(5), one can take the SU(3)¢
and SU(2)r, generators on the upper-left 3 x 3 and lower-right 2 x 2 blocks, respectively,
in traceless 5 x 5 matrices for SU(5) generators of the fundamental representation 5.
The U(1)y generator is then given by the commutation relation with SU(3)c x SU(2)r,
i.e. diag(—1/3,—1/3,—1/3,1/2,1/2).

A left-handed family of leptons and quarks transform like 5 @ 10 in the SU(5) model

ds 0 ug  —upy —up —dy
dy —ug 0 ul  —up  —dp

5= dy , 0= up —u; 0 —uy, —dg , (1.47)
e” Uy Up Ug 0 —et

_Ve L

where 7, b, g are quark colours and ¢ denotes the charge conjugated fermions. Note
that there is no space for the right-handed neutrinos within this multiplet and they have
to be added as singlets of SU(5) if desired. Furthermore, with this multiplet structure
the sum of the quantum numbers ), 75 and Y are zero within one multiplet, as it
should, since the trace of any of these generators must be equal to zero. The trace of
the charge operator (Q on the 5 representation being equal to zero forces the charge of
the down quark to be 1/3 of the charge of an electron. Similarly, one finds that the
charge of the up quark to be 2/3 of the positron charge, giving a solution to the charge
quantization problem of the Standard Model.

To preserve local gauge invariance under SU(5) the gauge bosons in the 24 adjoint

representation are introduced. The Standard Model gauge fields (gluons and electroweak

4The bar in 5 refers to the complex conjugate of the fundamental representation 5.
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bosons) are unified in a single 24 adjoint. In addition to the SM gauge bosons, new
X and Y gauge bosons appear from the 12 remaining degrees of freedom in the 24
representation. These new gauge fields produce new interactions in which quarks are
transformed into leptons and vice-versa, thus violating lepton and baryon number.®

These new transitions lead to nucleon decays.

The Higgs field, necessary to break the electroweak symmetry at the weak scale, is
accommodated in a 5 multiplet of SU(5).% This representation not only has the Higgs
doublet under SU(2) but it has three additional states known as colour-triplet Higgs
scalars. The Higgs triplet also violates lepton and baryon number, inducing nucleon
decay. Due to the strong constraints on nucleon decays, the mass of the Higgs triplet
has to be very high, close to Mgur. This leads to a problem known as the doublet-
triplet splitting problem since we need the Higgs doublet to be at the electroweak scale
while having GUT-scale Higgs triplets, however we would expect fields from the same
multiplet to have equal-scale masses. This problem also arises in other models based in
different GUT groups than SU(5) and we will address it in the models presented in this

thesis.

The breaking of SU(5) down to SU(3)c x SU(2)r x U(1l)y can be done by a Higgs
multiplet in the 24 representation developing a VEV « diag(1,1,1,—3/2,—3/2), which
commutes with SU(3)¢c x SU(2)r x U(1)y. Therefore, this VEV gives masses to the
X,Y gauge bosons of the SU(5) group but not to the electroweak gauge bosons, which

remains massless until the 5 Higgs multiplet acquires a VEV.

We mentioned before that the new gauge bosons X and Y as well as the Higgs triplets
lead to nucleon decays. These processes induces effective four fermion interactions of
the form gqql/A?, where q and [ refers to a quark or a lepton, respectively. The scale A
is associated with the mass scale of the mediating particle. There are heavy constraints
from the non-observation of nucleon decay, for example, the null result on search for the
dominant decay mode of a proton decaying into a positron plus a neutral pion constrains
A to be larger than O(10%) GeV [31]. In a non-SUSY SU(5) model, gauge coupling
unification is expected to be reached well below 10'® GeV, therefore non-SUSY SU (5)
is heavily constrained by the non-observation of nucleon decay. In SUSY GUTs the
grand unification scale is Mgy ~ 2 x 10 GeV predicting a lifetime of the proton

1031=34 years (depending on

about 7 ~ 103 years, larger than the current constraints
the model). In SUSY GUTSs, there are additional dimension four and dimension five
operators. Operators of dimension four can be eliminated requiring R-parity within the
model. In SUSY SU(5) GUTs, dimension-five operators are generically generated via
the triplet Higgs exchange and they must necessarily obtain masses of order the GUT

scale.

®The difference between baryon and lepton number B — L is conserved in these transitions.
5In the MSSM the two Higgs multiplets H, and Hy are contained in a 5 and a 5 representation,
respectively.
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Additionally, one must be careful with the mass scale of the new particles. The gauge
coupling unification in the MSSM assumes that there is no additional field content
between the supersymmetry scale, usually of the order O(TeV) and the GUT scale
Mgur. New particles will contribute to the running of gauge couplings (when the new
particles are non-singlets), mainly at their mass scales. This is another reason to have
the colour-triplet Higgs at high scale, no to spoil gauge coupling unification. This is also

valid for any GUT group chosen.

1.4.2 SO(10)

The next simple unification is based on the gauge group SO(10) which is rank 5. All
matter fields are unified into a single representation, the 16 fundamental representation.
It includes all quark and lepton fields and also accommodates a singlet under the SM,
which can be associated with the right-handed neutrino. The gauge fields are in the
45 adjoint representation. The product of two matter representations gives 16 ® 16 =
10 & 126 @ 120. We can construct Yukawa couplings if the Higgs field is in the 10
representation since the product 10 ® 10 contains the singlet representation (although
other possibilities include Higgs fields in the 120 or 126 representations). Since all
fermions are unified into a single representation, there is only one Yukawa coupling
predicting equal fermion masses at the GUT scale which is phenomenologically ruled

out. Therefore, it is necessary to add additional Higgs fields to build a viable theory.

The breaking of SO(10) into the SM model can be done through different directions since
it contains as subgroups both the Pati-Salam group SU(4)c x SU(2)r x SU(2)g as well
as SU(5) x U(1). The breaking path depends on the Higgs field representation which
acquires a VEV, see e.g. [95] for an extended overview of the possible breaking schemes.
In general, if SO(10) is broken to the Pati-Salam group SU(4)c x SU(2)r, x SU(2)g, the
fundamental representation is decomposed as 16 — (4,2,1) & (4,1,2), 10 — (6,1,1) @
(1,2,2) and 45 — (1,3,1) ¢ (1,1,3) & (15,1,1) & (6,2,2). When SO(10) is broken
in the direction of SU(5) x U(1), then 16 — 53 ® 101 & 1_5, 10 — 55 & 5_5 and
45 — 19 © 104 ® 10_4 & 24y.

The right-handed Majorana masses Mpr can be generated from the non-renormalisable
operators
i - Ais -
—%HH@%—%%@@P%#EA@#@, (1.48)
where A may be of order the Plank scale, v is in the 16 representation, and H are
Higgs in the 16 representation whose right-handed neutrino component gets a VEV
(vg), breaking SO(10) down to SU(5) at the GUT scale. The right-handed neutrino is

denoted as v°.

Gauge coupling unification as well as charge quantization are also achieved in SO(10).

The doublet-triplet splitting problem is also appearing in models based on SO(10) and
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we will discuss how to solve it in each of the models presented in this thesis. Proton

decay discussion follows as in the case of SU(5).

1.5 The flavour puzzle

The flavour puzzle in the Standard Model can be summarized by the lack of understand-

ing of the following questions:

e Why are there 3 families of quarks and leptons?

e Why is there such a large hierarchy between the different fermion masses, ranging
from the lightest neutrino, on the order of meV, to the top quark, with mass
my ~ 173 GeV?

e Why is the mixing pattern in the quark sector, given by the CKM matrix, so small
while the lepton mixing, characterized by the PMNS matrix, is so large?

e What is the origin of C'P violation?

The Standard Model does not account for the three different families of fermions that
transform in the same gauge representation under the SM gauge group but differ by
their mass. Most of the free parameters of the SM are related to the questions above.
The Yukawa couplings of fermions to the Higgs field are not predicted by the theory and
have to be measured experimentally. If we assume an extension of the SM, with three
right-handed neutrinos, there are 22 (20 if B — L is conserved) independent low-energy
parameters in the flavour sector, the Yukawa couplings of quarks and charged leptons,
the mixing parameters and C P-phase in the CKM and PMNS matrices, the neutrino

masses and two Majorana phases (only if neutrinos are Majorana particles).

There is no justification for the large range between fermion masses, from few MeV to
over 100 GeV in the quark sector. One can go one step further and ask why the hierarchy
between different fermion types is not conserved through the families, e.g. why does the
ratio between up quark and down quark masses m,,/mg < 1 differ from that of the charm
and strange quarks m./ms ~ 10, or top and bottom quarks m;/ms ~ 50?7 Furthermore,
the range between masses is enlarged when considering neutrino masses which are no
larger than O(100) meV, many orders of magnitude below the lightest charged fermion,
the electron, with mass m, ~ 0.5 MeV. We have seen that one possible solution to have

so tiny neutrino masses is given by the seesaw mechanism in section 1.2.

The third question is concerned about the fact that the CKM mixing matrix is small

compared with the PMNS mixing matrix. The largest mixing angle in the quark sector is

"These numbers change with the scale due to the renormalization group equations and are merely
indicative.
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given by the Cabbibo angle with 67, ~ 13° and the rest being almost negligible, however
in the leptonic sector all mixing angles are sizeable. This is analogous to understand the
evidence that the hierarchy in the neutrino sector is much milder than the one in the

charged fermions.

One possible argument for considering three families instead of two relates to C'P vio-
lation, as discovered by Kobayashi and Maskawa [19]. Once one includes three weakly
interacting families, a new complex phase is automatically introduced in the mixing ma-
trix leading to C'P violation, which is not appearing in the case of a two-family system.
C'P violation was experimentally discovered in neutral kaon decays in 1964 [96], and
observed in recent years in B meson decays. There are also experimental hints [32] that
CP is violated in the lepton sector. In fact, C'P violation is necessary to understand the
baryon asymmetry of the universe (BAU), as discussed in section 1.6. However, this is
not enough to understand why there are three families in the SM since the C'P violation

in the CKM matrix is not sufficient to explain the observed baryon asymmetry.

1.5.1 Discrete flavour symmetries

We are interested in following a guide principle, comparable to the gauge principle, to
tackle the flavour puzzle such that the Yukawa couplings are deducted from first princi-
ples. In the absence of fermion masses, the Standard Model contains an accidental global
symmetry [U(3)]%, which is the maximal symmetry preserved by the kinetic terms. Each
U(3) corresponds to a family symmetry for each fermion-type, i.e. Qr,ugr,dg,Lr,€R.
If we add right-handed neutrinos, there would be an extra U(3) symmetry. Clearly,
this symmetry is broken once one considers the observed fermion masses, however we
can imagine a situation where a global family symmetry is imposed at high energies
and which is then broken by the VEV of some scalar field. Such fields are usually
called “flavons” and they can give a dynamical origin to the Yukawa parameters of the
Standard Model. The flavon field, denoted by ¢, is a gauge singlet under the SM and
it couples to the fermions ¥ and Higgs field H giving rise to Yukawa terms after the

symmetry is broken, e.g.

(9)

Lo %gﬂH@b R RS € (1.49)

where A is the mass scale of the high energy theory.

Family symmetries restrict the Yukawa couplings such that one can possibly explain
some of the features of masses and mixing. There are models based in global continu-
ous flavour symmetries, however they lead to massless Goldstone bosons [97-99] after
spontaneous symmetry breaking. A more common choice in the literature is the use
of discrete flavour symmetries, more specifically, non-Abelian discrete symmetries (for

reviews, see e.g. [100-103]). The main interest of these groups from a physics point of
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view is that, because of the non-Abelian aspect, it is necessary that at least some of
the representations must be matrices. Therefore, some non-Abelian discrete symmetries
may include non-trivial triplet representations, providing a posteriori justification for
the observation of three families of fermions. Some of the simplest such groups are Ay
and Sy which are subgroups of SU(3). Their irreducible representations and their Kro-
necker product rules are listed in appendix A. GUT models together with either A4 or

S4 symmetries are described in chapters 2, 3 and 4.

Although we will focus in non-Abelian discrete symmetries, it is worth mentioning one of
the most popular Abelian family symmetries, proposed by Froggatt and Nielsen [104]. It
is based on a flavour U(1) symmetry under which the fermions are distinguished. Each
family has a different U(1) charge such that the usual Yukawa terms have positive integer
charges. Additionally, one includes a flavon field ¢ which typically has a U(1) charge
assignment of —1. Therefore, you can construct Yukawa interactions using different

powers n;; of the flavon field to compensate the charges of the fermion fields, i.e.

Cij (i) . Yir¥irH, (1.50)

where H is the Higgs doublet, v is a fermion field, ¢ and j are family indices and
ci; are undetermined order one coefficients. After the flavon field acquires a VEV, the
hierarchies between the different fermion masses are determined solely by the U(1) charge
assignments, since the effective Yukawa couplings become Y;; = ¢;;((€) /A)™4. This idea
can also be implemented using Zy discrete symmetries if preferred. In chapter 4, this
mechanism is used in combination with A4 family symmetry, meaning that Abelian and

non-Abelian symmetries can be combined to explain flavour structures.

Coming back to discrete non-Abelian family symmetry models, there are two different
approaches one can follow. The first is based on “direct” models, in which the discrete
symmetry is partially broken and a residual symmetry remains after flavour breaking,
while in the second approach, the so-called “indirect” models, no part of the original
symmetry is present at low scale. The symmetry is broken by the flavon VEVs. Depend-
ing on the alignments of these flavons and how they are broken, we will have different

flavour structures.

The motivation for direct models is given by the leptonic sector. In the basis of (ap-
proximately) diagonal charged leptons and assuming neutrinos to be Majorana, the
neutrino mass matrix is always symmetric under a Klein symmetry Zo x Zs while the
charged lepton mass matrix is Zg symmetric. In the case that the Klein symmetry is
generated by the generators S and U of Sy, given in appendix A.1, then the PMNS
mixing matrix is associated with tri-bimaximal (TB) mixing [105, 106], which predicts
sinfa3 = 1/v/2, sinfya = 1/v/3, 613 = 0 and no CP violation. Although TB is already
excluded, the good agreement of data at that time motivated the use of non-Abelian

discrete symmetries in flavour models. In direct models the full Klein-symmetry in the
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neutrino sector and the Zs symmetry in the charged lepton sector arise as a subgroup of
the initial family symmetry since the flavons fields which break the symmetry preserve

these subgroups.

In the indirect approach, we do not demand these accidental symmetries to arise as a
subgroup of the original family symmetry after it has been broken. The possible vacuum
alignments of the flavon fields are not restricted to preserve any subgroup of the original
family symmetry and therefore the options to construct a phenomenologically successful
flavour model are enlarged. The possible alignments will depend on the allowed couplings
and field content of the model. Chapter 2 is based on a semidirect model in which
only part of the accidental symmetry can be identified with a generator of the family
symmetry (in this case only one of the two Zs symmetries of the Klein symmetry is

generated by the SU generator of Sy) while chapters 3 and 4 are indirect models.

1.6 The baryon asymmetry of the Universe

The ACDM model [107] is known as the “standard model” for Big Bang cosmology.
The name A refers to the positive cosmological constant which is responsible for the
accelerated expansion of the Universe [108]. The term “CDM” alludes to cold dark
matter. It is the minimal model able to reproduce most cosmological observations,
such us the existence and anisotropies of the CMB, the large-scale galaxy structure, the
abundances of light elements and the accelerating expansion of the Universe. Together
with the ACDM model, it is believed that at very early stages the Universe went through
a period of superluminal expansion known as inflation [109-111], which explains why

the Universe is spatially-flat, homogeneous and isotropic.

However, the ACDM model does not address the fact that we have only observed pri-
mordial matter but not antimatter, i.e. it does not give an explanation for the baryon
asymmetry of the Universe (BAU). It cannot be explained using very specific initial
conditions within the framework of an inflationary model, since any asymmetry at the
beginning of the Universe would be wash-out during the inflationary period. Therefore,
the baryon asymmetry of the Universe must be generated after inflation and before Big
Bang nucleosynthesis (BBN), when the first light elements were formed. It is necessary
to find a mechanism which explains the observed baryon-to-photon ratio

ng—ng (

6.10 4+ 0.04) x 10719, (1.51)
Ny

nB =
where np — ng is the difference between the baryons and antibaryons density and n.
is the number photon density. Since primordial antimatter has not been observed,
np > ng, one uses the baryon-to-photon ratio np to understand the baryon asymmetry

of the Universe.
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In 1967, Sakharov [112] realised that three conditions must be satisfied for baryogenesis

to occur in a particle physics theory, i.e.

e Baryon number (B) violation.
e Charge (C) and charge-parity (C'P) violation.

e The process must occur out of thermal equilibrium.

The first condition is not satisfied at tree level in the Standard Model. If we think
in terms of grand unified theories, we already mentioned that the new gauge bosons
X and Y can mediate baryon number violating interactions, however present bounds
suggest that inflation reheated well below GUT energies (the reheating temperature Try
cannot be higher than ~ 10'® GeV from CMB observations [59]), and thus thermal GUT

baryogenesis is not viable.

Focusing again in the Standard Model, baryon number (B) and lepton number (L)
are accidental symmetries of the Lagrangian, however B + L is violated by the SU(2)-
chiral anomaly, while B — L is conserved also at the quantum level. Sphalerons [113]
are non-perturbative field configurations which violate B and L number but conserve
B — L. The sphaleron transitions are efficient for temperatures above the electroweak
symmetry breaking. Therefore, if baryon asymmetry has been produced above the EW
scale, sphalerons will wash out any primordial baryon asymmetry. On the other hand,
the sphaleron processes open up a new possibility of producing a net lepton asymmetry
at high scales and use sphalerons to convert the initial lepton asymmetry into a baryon
asymmetry. This solution is known as leptogenesis and it was first proposed by Fukugita
and Yanagida [114].

The second condition presented by Sakharov has to do with charge (C') and charge-parity
(CP) violation. This is easily understood if we consider a decay X — Y + B and the C-
conjugate process X — Y + B, where X and Y are B = 0 states. If charge is conserved,
the decay rates of these two processes are equal I'(X — Y + B) = I'(X — Y + B).
If there are equal number of states X and C-conjugate states X, then the net baryon
production vanishes in the case of C-conserving interactions. Additionally, one also
needs CP-violating interactions. Consider, for example, the chiral decays X — qr, + qr,
and X — qgr + qgr, where g is a quark state with B # 0. Even though, C-violation
means I'(X — g1, +qz) # ['(X — @, +7q;,), CP-conservation implies T'(X — g1, +q1) =
I'(X = qr+qr) and T(X — qr +qr) = I'(X — q;, +7q;,) and therefore, the total decay

rates of X and X into baryons and antibaryons are again equal:
DX = qr+qr) +T(X = qr+qr) =T(X = qp +qp) + T(X = 7, +7q).  (1.52)

Thus, as long as the initial state has equal numbers of X and X, we end up with no net

baryon asymmetry if C or C'P are conserved.
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Finally the process must occur out of thermal equilibrium, since otherwise any baryon
asymmetry initially produced would be washed-out by the inverse process. Suppose
again the decay X — Y + B. If the process occurs in thermal equilibrium, then the rate
in one direction is identical to the rate in the opposite direction, i.e. I'(X — Y + B) =
I'(Y + B — X), such that no net baryon asymmetry is produced.

We can conclude that, in principle, it is possible to satisfy all the Sakharov conditions
within the Standard Model. However, the amount of C'P violation in the SM is not
enough to generate the observed baryon asymmetry and baryogenesis within the SM
has already been ruled out. Therefore, the baryon asymmetry of the Universe requires
some extension of the SM. In the following, we will focus in the leptogenesis procedure
presented by Fukugita and Yanagida [114], which is a natural solution once we add
right-handed neutrinos to the SM. In fact, the seesaw mechanism, which is the most
common choice to explain neutrino masses, makes a perfect scenario to address the

baryon asymmetry of the Universe through leptogenesis.

1.6.1 Leptogenesis

The original leptogenesis mechanism [114] relies on the type-I seesaw mechanism. The
lepton asymmetry is generated through the out of equilibrium decay of heavy right-
handed neutrinos into leptons (or anti-leptons) and Higgs bosons via Yukawa couplings.
CP violation occurs in the decay due to interference effects at one loop, which can lead
to a net lepton asymmetry. In most models, the lightest right-handed neutrino mass
M; < 10' GeV is compatible with the upper bound in the reheating temperature after
inflation Try < 10' GeV, meaning that the asymmetry generated is not washed-out

by the inflationary epoch.

The right-handed neutrinos do not carry lepton number and therefore the decay of a
right-handed neutrino into lepton-Higgs and the inverse process violate lepton number
(JAL| =1). At temperatures 7' > 100 GeV, the sphaleron transitions violate B + L but
conserve B — L. If we start with a lepton asymmetry, we could end up with about 1/3
of the B — L asymmetry in the form of a baryon asymmetry while the other -2/3 of the

B — L asymmetry would be in the form of a lepton number.

The type-I seesaw mechanism provides the necessary ingredients to satisfy the three
Sakharov conditions: baryon asymmetry after sphaleron transitions, C' and C'P violation
of the process and out-of-equilibrium decays for which one requires T' < Mpg, where T'
is the temperature of the Universe at the time of the decay and Mpg is the mass of the
right-handed neutrino. Now, one needs to check quantitative if it is possible to reproduce
the observed baryon-to-photon ratio. The amount of C'P-violation will depend on &',
the C'P phase of the PMNS matrix (experimentally there is a preference for non-zero
given by global fits [32]). Additionally, one has to take into account the wash-out due
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to inverse decays and scattering. Let us give a simple example of the mechanism in a

toy model of thermal leptogenesis.

Thermal leptogenesis is based on the thermal production of the right-handed neutrinos.
In this example we assume very hierarchical right-handed neutrinos M; < My, M3 so
that the right-handed neutrino Ny is the last heavy neutrino to decay out of equilib-
rium and generates the lepton asymmetry. The evolution of the right-handed neutrino

abundance, Ny, is given by the Boltzmann equation

dNn,
dz

= —Di(Ny, — Nb), (1.53)

where z = M, /T and N;g is the abundance at thermal equilibrium. The decay factor
D is proportional to the ratio of the total decay width I'p, to the expansion rate of the

Universe. For a more detailed explanation of the decay factor we refer to [115].

The lepton asymmetry is converted into a baryon asymmetry through sphalerons. These
processes conserve the B — L asymmetry and the final baryon asymmetry is approxi-
mately 1/3 of the B — L asymmetry. The evolution of the B — L asymmetry is described

by
dNp_p,

dz
The first term on the right-hand side corresponds to the B — L asymmetry produced.

:€1D1(NN1 —Nﬁg)—WNB,L. (1.54)

The parameter €1 is proportional to the CP asymmetry and it is given by

(N, —H)—T(Ny — [H)
(N, = IH)+T(N, — [H)’

g1 = (1.55)
where the lepton [ is by definition the lepton produced by the decay of the Ny right-
handed neutrino and, in general, it will be a combination of the flavour eigenstates. It
is computed from the interference of the tree level with one loop self-energy and vertex
diagrams in figure 1.2. The parameter €1 will be proportional to the neutrino Yukawa

matrix and the specific value is model dependant.

JH JH i
) /#/ ) 'ij\ ,;(, ) [ «
Ny + M v + M .. );\frj
¢ H
14 14 14

Figure 1.2: Diagrams contributing to the C P asymmetry in right-handed neutrino decays.

The second term in the right-hand side of equation 1.54 takes into account the wash-
out meaning that this term is not a source of B — L asymmetry but instead it tries
to re-equilibrate the number of leptons and anti-leptons. It contains information about

inverse decays and scattering processes, we refer again to [115] for details.

The set of Boltzmann equations 1.53 and 1.54 may be solved for thermal initial conditions
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at z = 0 to give the final asymmetry N L’;_ 1 at 2 > 1. The solution can be written as

N é_ 1 = €1K1, where k1 is known as the efficiency factor.

Finally, one needs to compare the B — L asymmetry with the observed baryon-to-photon

ratio np, using the relation

Nb_p
1B = Qsph Nrec (1.56)
¥
where N} ~ 37 and agpn = 28/79 ~ 1/3 [116, 117].% The factor asph takes into account
the number of B — L asymmetry converted into a baryon asymmetry by the sphalerons
while NI accounts for the production of photons after leptogenesis until recombination,

when nuclei and electrons combined to form atoms.

In chapter 3, we present a model in which the correct BAU is obtained through Ns-
leptogenesis, meaning that the second right-handed neutrino decays are the ones re-
sponsible for the asymmetry. The reason is that the lightest right-handed neutrino is
too light to produce the observed BAU. We take into account the wash-out due to inverse

decays into N7 as well as flavour effects.

1.7 Extra dimensions

The idea of extra dimensions was introduced in the 1920s by Kaluza-Klein [118, 119] in
an attempt to unify gravity with electromagnetism. The new concept of this theory was
to extend general relativity in the presence of a fifth dimension. The 5-dimensional (5D)
gravity would manifest in our observable 4-dimensional (4D) space-time as gravitational,
electromagnetic and a new scalar field. More recently, during the late 1970s and the
1980s, higher dimensional theories gained renewed interests seeking for the unification of
gravity with electroweak and strong interactions in a consistent quantum theory. This
idea led to superstring and supergravity theories, which are described in ten and eleven

space-time dimensions respectively.

To overcome the fact that we do not observe extra dimensions, these are assumed to
be compactified and finite in size. The energies necessary to experimentally observe the
extra dimensions are of the order of the length scale at which the compact dimensions
live. This compactification can break the higher-dimensional Lorentz invariance or the
higher-dimensional Poincaré invariance as in orbifolds where translational invariance
is explicitly broken. Furthermore, the compactification of extra dimensions can also
introduce non-trivial boundary conditions, a mechanism that can be used for symmetry

breaking.

In this thesis, the motivation to consider extra dimensions is that they offer a simple

8This expression is valid for the Standard Model plus three right-handed neutrinos. In the case of the
MSSM, for example, there will be another factor of 2 due to the decay of the right-handed sneutrinos.
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and elegant way to break GUT symmetries by appropriate boundary conditions, as first
proposed by Kawamura [120-122]. The basic idea is that the GUT symmetry is realised
in 5 or more space-time dimensions and it is broken to the Standard Model by using
GUT-symmetry violating boundary conditions on an orbifold compactification. Within
this approach, the doublet-triplet splitting problem is easily solved by leaving only the
light Higgs doublets after orbifolding, as we will see in chapter 4. Additionally, discrete
symmetries may arise from orbifold compactifications [123], which might be used as the

flavour symmetry.

1.7.1 A compactified 5-dimensional toy model

We introduce a 5D toy model to illustrate the appearance of Kaluza-Klein modes after
compactification of the extra dimension. The usual four space-time dimensions are
parametrized by z#, where u = 0,1, 2,3, while the extra dimension is specified by y. In

M — (gt y), where M now runs over

general, these coordinates can be combined into z
all the space-time indices. In this case, we compactify the extra dimension on a circle

of radius R, i.e. we make the identification
y~y+2nR. (1.57)

We are now able to expand the field ¢ as a Fourier series on the extra dimensional space
oat,y) =y oM (at)e™, (1.58)
n

where k = 1/R is given by the condition ¢(z#,y) = ¢(a*,y + 2mrR) (known as ordinary
compactification). We can apply the Klein-Gordon equation for a massless particle
MOy = (00, — 0Y0y)¢ = 0 to the field Fourier expansion in equation 1.58, such that

> (00, — 0Y9,)¢!™ (xR = 0. (1.59)

n

When we further simplify this equation, we end up with an equation of motion given by

S (018, +m ™)™ (2t = g, (1.60)

n

which corresponds to the equation of motion for a set of fields ¢ (z#), with a mass

(™

= n/R. To recap, we started with a 5-dimensional massless particle, which, after
applying the compactification conditions, has been split in an infinite set of 4-dimensional
particles with ever increasing mass. Klein assumed R to be extremely small such that all
the Kaluza-Klein modes with n > 0 would have stayed out of reach for experiments. For
energies E < R™!, heavy fields can be integrated out and the effective four dimensional

theory will only depend on the zero mode n = 0, which is independent of y.
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1.7.2 Orbifold compactification

In the following, we will be interested in orbifold compactifications. In chapter 4 we con-
struct a model based on SU(5) gauge symmetry and 6-dimensional (6D) supersymmetry
(corresponding to N' = 2 SUSY in 4D, where N refers to the number of supersymmetries,
i.e. the number of distinct copies of supersymmetry generators). Orbifold compactifica-
tions have the advantage of breaking the extended N'= 2 SUSY to N’ =1 SUSY in 4D,
in addition to the breaking of the GUT symmetry to the SM gauge group.

In general, the model is constructed based on a gauge group G on a manifold M =
My xC, where My is the 4D Minkowski space-time and the manifold C' (with coordinate

y) is supposed to have a symmetry under a discrete group K, i.e.
Ko (¢ y) — (2", kly)). (1.61)

In the previous toy model, C is taken to be the set of real numbers which we then mod
out by the equivalence y ~ y + 27 R generated by the discrete translation group K = Z,
leading to the smooth space R/Z = S!, the circle of radius R. After compactification,
the gauge symmetry of the theory is still G but now defined on the smaller physical
space My x S1. In this example, K acts freely, i.e.

kly| #y, Yy e C, Vk #1 € K. (1.62)

However, there are cases when the action of K has fixed points (k[y] = y for some
y € C, k#1). In such a case, the space C/K is known as an orbifold compactification.
To understand the advantage of orbifold compactification, we have to consider the action
of K in field space

K@ ot y) = By 62",k [y)), (1.63)

where Ry is a matrix representation of K and K is now to be thought of as a subgroup
of the gauge group G. In an orbifold with fixed points, the gauge symmetry of the
theory, G, remains the same away from these fixed points, while at the fixed points, the
gauge symmetry is reduced to a subgroup H, C G. The subgroup H, can be found
as follows, first consider, at each y, the subgroup F, C K which leaves y fixed, i.e.
Fy={k € K: kly| =y}. Then, the unbroken gauge group H, at y is the centralizer of

F, in G, i.e. the elements of G that commute with the elements of F} and it is given by
H,={9€G: gk=kgVk e F,}. (1.64)

Therefore, in general, the gauge group of the theory can be broken to a subgroup at the
fixed points after orbifold compactification. Furthermore, to have a consistent theory
the action of the discrete group K on field space must be an automorphism of the Lie-
algebra of the original gauge group G. This means that the action of K will map the

Lie-algebra of the group G into itself preserving the multiplication law, in this way the
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discrete group K is assured to be a symmetry of the gauge action, for more details
see [124, 125].

1.7.2.1 An example: the S'/(Z2 x Z}) orbifold

Consider the S1/(Zy x Z}) orbifold, where in this case C' = S?, the circle with radius R
and Zy x ZJ is the discrete group acting on the extra coordinate y. The action of the
S1/Z, orbifold is to identify the points y ~ —y, i.e. identify points of the circle opposite
with respect to a given diameter. Additionally, one imposes an extra constraint to obtain
the orbifold S1/(Zy x Z4), which is y' ~ —y/, where ¥’ = y + 7R/2. The orbifold action
can be written as

P:y——y and Py — —y. (1.65)

There are two inequivalent fixed points (also known as 4-dimensional walls) at y = 0
and y = 7R/2. The orbifold S!/(Zy x Z}) has a fundamental domain of 0 < y < Z&,
since any other point of the circle S' can be mapped from that region using the action
of Zy x Zj,.

Assume now a field ®(x*,y) which is a N-multiplet under some symmetry group G.

The action of the Zy x Zl, parity on field space is defined by
P: ®(z*y) = Pp®(2z*,—y) and P': ®(at,y) — Ppd®(z*, —y). (1.66)

The matrices Pp and Py, are N x N matrix representations of the two Z5 actions, meaning
that they satisfy (Pp)? = (P§)? = 1, where 1 refers to the N x N identity matrix. We
can classify the fields by their (P, P’) eigenvalues (£1,41), with Kaluza-Klein modes

O (2, y) \/>Z oY 2") (x#) cos 2Ry
() = \/72 <I> 2n+1 (2”;1)2/,
Lzt y) = \/>Zq)2"+1 a")s (2711—;1)3/,
O__(at,y) = \/; S @) (k) sin (2”;2”

where n is an integer and each field <I>(2")( "), @ffﬂ)(x“), <I>(,2i+1)(x“) and "2 (zH)

acquires a mass 25, 2”R+ L 2”; L and 2”R+ 2 upon compactification, respectively. There-

(1.67)

fore, 4-dimensional massless fields appear only in CIJ(fi) (z#). Additionally, some fields
vanish at the fixed points, for example, ®_, (z#,0) = &__(z*,0) = 0 at y = 0 and
O, (zM,7R/2) =P__(x*,mR/2) =0 at y =7R/2.

We now study an SU(5) gauge theory with minimal SUSY in 5D (with 8 real super-
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charges, corresponding to A/ = 2 SUSY in 4D). We assume that, at minimum, the bulk
must have the 5D vector superfield, corresponding to a vector supermultiplet, V', and a
chiral multiplet, ¥, in terms of 4d N/ = 1 SUSY such that both of them transform in
the adjoint representation 24 of SU(5).

We assume that the Zy orbifold action on field space is given by

VA@H, )TA — VAt —y)PTAP!

A A A Ap—1 (1.68)
St y) T — =S5 (2, —y)PT P,

and similarly for the Z) transformation, obtained by replacing y and P by 3’ and P’.
The matrices T4 are the 5 x 5 generators of SU(5) with A = 1,...,24. The parity
assignments are chosen to be P = diag(1,1,1,1,1) and P’ = diag(—1,-1,—1,1,1).
With this assignment and the first transformation given in equation 1.68, the SU(5)
gauge symmetry group is broken down to SU(3) x SU(2) x U(1) at the fixed point
y = wR/2 but it is unbroken in the bulk and on y = 0. This is because

PTP~' =1 PTP = _-T% (1.69)

where T are the gauge generators of SU(3) x SU(2) x U(1) and T% are the rest of the

gauge generators.

Additionally, the overall sign in the second line of equation 1.68 breaks the 4D N = 2
SUSY to 4D A = 1 SUSY on both fixed points at y = 0 and y = 7R/2. Since only
the (+,+) fields contain massless zero modes, we end up with the gauge and gaugino
content of the 4D N =1 MSSM at low energies.

With this example, we have illustrated that when K acts non-freely on the extra dimen-
sional manifold C, i.e. there exist fixed points and additionally, the action of K does
not commute with the symmetry of the theory G, then this symmetry is broken to a

subgroup of G at the 4-dimensional fixed points.

We have also seen that only the fields with positive parity assignments have zero-massless
modes. We can make use of this parity choice to achieve the doublet-triplet splitting of
Higgs multiplets in GUTs. We will select the parities in such a way that the doublets
contain zero massless modes while the triplets are heavy. This mechanism is used in

chapter 4.

1.7.3 Family symmetry from extra dimensions

Discrete symmetries may naturally arise as the remnant symmetry of the space-time
symmetry after it is broken down to the 4-dimensional Poincaré symmetry through

orbifold compactification. As an example, we show the original proposal by Altarelli,
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Feruglio and Lin [123] in which the tetrahedral symmetry of A, arises after compactifi-

cation of the two extra dimensions in a Ts/Zy orbifold, where T5 refers to a torus.

We start with a model in 6 dimensions whose two extra dimensions are compactified into
an orbifold T5/Z5. The two extra dimensions, x5 and xg are combined into a complex

coordinate z = x5 + ixg. The torus Ty is defined then by the following identifications

z~z41
. (1.70)
z~z+7v, where v=¢'3.
The action of the Zs parity is defined as
zZ o~ —z. (1.71)

The set of equations 1.70 and 1.71 define the orbifold T5/Z5 and the fundamental domain
is shown in figure 1.3. This orbifold contains four fixed points given by (21, 22, 23, 24) =
(1/2,(1 +7)/2,7/2,0), i.e. these points remain unchanged under the orbifold action.
Furthermore, the segments labelled by a in figure 1.3 are identified, and similarly for
those labelled by b and c¢. Once we identify these segments, we find that the orbifold
is a regular tetrahedron with vertices at the four fixed points. If one assumes that the
space-time symmetry, before compactification, consisted of the 6D translations and 6D
proper Lorentz transformations, then the orbifold has broken it to the 4D space-time
symmetry times the discrete group of rotations and translations A4. This group can be

generated by two transformations

1
S:z—z+ =,
2 (1.72)
T:z—wz, where w=n~2
Xg 14 1+}’ 2y
- A,
b, a b c
a
Z
% e 2 3 . ¥o)
a
f d d
! /
w ¢ oz ¢ X5 4l

Figure 1.3: Orbifold T>/Z; with fixed points (z1, 22, 23, 2z4) and fundamental domain outlined
in bold. The segments with same label are identified one with each other such that the orbifold
is exactly a regular tetrahedron with edges a, b, c,d, e, f and vertices given by the four fixed
points of the orbifold.
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These two transformations induce even permutations of the four fixed points, such that

S : (21a22a23; Z4) — (24, z3, ZQ,Zl)
(1.73)
T: (Zla 224 23, Z4) — (ZQa 23, %1, Z4)‘

These two generators satisfy the presentation of A44°, i.e. S? = 73 = (ST)3 = 1. Other
discrete symmetry groups can arise from different orbifold compactifications. For a list

of Ty /Z orbifolds with their associated discrete symmetry, we refer to [126].

It is possible to build a model in the 6D space-time My x Ty/Zy, with fields either
living at the fixed points, known as 4D “brane” fields, or “bulk” fields, depending on
both the uncompactified coordinates z# and the complex coordinate z. In chapter 4,
a 6-dimensional supersymmetric SU(5) GUT model has been constructed along these

lines, in which the family symmetry arises from the orbifold of the extra dimensions.

1.7.4 Modular symmetry and modular forms

Toroidal compactification is one of the most common and simple compactifications. In

general, a torus can be defined by giving two periods in the complex plane
z~z4wy, 2z~ z+wo, (1.74)

where wy and w9 are assumed to be finite, non-zero and their ratio is not real. Here, the
variable z refers again to the complex coordinate z = x5 + ixg, where x5 and zg are the
two extra dimension coordinates. The torus is then characterized by the complex plane

C modulo a two-dimensional lattice A, «,), where A, o) = {mwi + nwa,m,n € Z},

Ty = C/A(y 10n)- (1.75)

Without loss of generality, we can apply the transformation z — z/we, such that the
torus is equivalent to one whose periods are 1 and 7 = wj/wy and we can restrict 7 to

the upper half-plane H = Im 7 > 0. There exists alternative periods
W) =awy +bwy and wh = cw; + dwo, (1.76)

which define the same lattice, if a,b,c,d € Z and ad — be = 1, or equivalently

wi\  f[a b\ [w a b
(wé) = <c d) <w2>’ where (c d) € SL(2,2). (1.77)

9An additional transformation z — z* also permutes the fixed points. This transformation belongs
to the full 6D Poincaré group, which includes not only 6D translations and proper Lorentz transfor-
mations, but also discrete symmetries. In this case, if one assumes the 6D Poincaré symmetry before
compactification, the orbifold leads to the product of 4D Poincaré times the discrete group Su (instead
of A4)
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Therefore, the torus defined by the modulus 7 is equivalent to one with modulus pa-

rameter given by
,  wy  ar+b

T = = .
wh et +d

(1.78)

An SL(2,2Z) transformation on the modulus parameter 7 and its negative are equivalent,
as can be seen from equations 1.77 and 1.78. Therefore, we can use the infinite discrete
group PSL(2,Z) = SL(2,2Z)/Zs, generated by

S:t— -1/t and T:7—>71+1, (1.79)

to describe the transformations that relate equivalent tori. This group is also known as

the modular group I' = PSL(2,Z)' and its generators satisfy
5% = (ST)? = 1. (1.80)

If one imposes an extra constraint given by TV = 1, the finite modular groups I'y are
realized. Depending on the value of N, the finite modular group I'y is isomorphic to

different permutation groups, for example, I'y ~ S3, I'3 ~ A4, 'y =~ S4 and 'y ~ As.

In theories where the extra dimensions are compactified on a Ty /Zx orbifold, the super-
potential has to be invariant under the modular symmetry [127, 128]. In general, a set
of chiral supermultiplets, o), are assumed to transform in a representation p(!) of the

finite modular group I'y with weight k() i.e.

ar+b

- 5
ct+d (1.81)
oD = (er 4+ d) 1 pD D)

The invariance of the superpotential under the modular group provides a strong re-
striction on the theory since the couplings have to become modular forms whose weight
cancel the sum of the weights of the supermultiplets. For example, consider a term in
the superpotential given by

WY ()W ... oM. (1.82)

To build an invariant term, Y'(7) should be a modular form with weight ky, where
ky > 0 is an integer, transforming in the representation p of I'y:

Y (7') = (er 4+ d)* pY (1), (1.83)

with ky and p such that the weight ky compensates the overall weight of the product

oMl
contains an invariant singlet under I'y. Therefore, the couplings in equation 1.82 are

n)

,ie. ky = ki +---+ ky, and the product of representations p x p(X) ... p(")

constrained to the possible modular forms that satisfy these conditions. We refer to

'%Some authors define the modular group to be PSL(2,Z), while others define it to be the larger
group SL(2,Z).
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appendix A.2.2 for a basis of modular forms for I's ~ A4 with different weights ky .

In chapter 4, we build a supersymmetric SU(5) model in 6D where the two extra di-
mensions are compactified on a T5/Z5 orbifold. Some of the Yukawa couplings become
modular forms giving rise to mass matrix structure and therefore providing a possible

interpretation of the flavour puzzle.



Chapter 2

A natural S4 X SO(10) model of

flavour

In chapter 1, we introduced some of the questions left unanswered by the Standard Model
such as neutrino masses and mixing, the hierarchy problem, the charge quantisation and
the apparent unification of gauge forces at high energies, and the flavour puzzle among
others. In this chapter we present a natural Sy x SO(10) supersymmetric grand unified
theory of flavour which aims to explain the observed masses and mixing patterns of
quarks and leptons and which is capable to address the questions above. It is mainly
based on the work published in [1].

2.1 Introduction

From a theoretical point of view, the choice of an SO(10) grand unified theory is pre-
ferred, since it predicts three right-handed neutrinos and makes neutrino mass inevitable.
We combine it with an S4 symmetry since it is one of the simplest and smallest family
symmetry groups that admit triplet representations. Furthermore, if one assumes that
the Klein symmetry of the neutrino mass matrix is generated by the S, U and T" genera-
tors of Sy (shown in appendix A.1), then the PMNS matrix is equal to the tri-bimaximal
(TB) mixing matrix, such that one can associate TB mixing with the discrete symmetry
group Sy [129]. Even though TB mixing is already ruled-out due to the observation of
a non-zero reactor angle, we follow a semi-direct approach in which the flavon vacuum
alignments only preserve a generator of the symmetry (specifically, the SU generator).
Then, S4 naturally leads to constrained sequential dominance-3 (CSD3), meaning that
the flavons are aligned in the following directions (0,1, —1)%, (1,3,—-1)7 and (0,1,0)7,

which gives successful predictions in the neutrino sector as we explain below.

To generate neutrino masses we apply the type-I seesaw mechanism with three right-

35
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handed neutrinos. Furthermore, we consider sequential dominance (SD) of right-handed
neutrinos [130-133], which is a natural framework to realize large lepton mixing and
normal neutrino hierarchy within the type-I seesaw. SD postulates three right-handed
neutrinos, where one of them, usually the heaviest one, is almost decoupled from the
seesaw mechanism, and is responsible for the lightest physical neutrino mass m;. Of the
remaining two, one gives the dominant seesaw contribution and is mainly responsible
for the (heaviest) atmospheric neutrino mass ms and mixing, while the other gives
a subdominant contribution, responsible for the (second-heaviest) solar neutrino mass
ms and mixing. SD therefore predicts m; <« my < mg3 ~ 50 meV. The amount of
atmospheric and solar mixing is governed by ratios of Yukawa couplings, which can easily
be large, while the reactor mixing is typically Ues < O(ma/ms) = 0.17. This successful

prediction was made over a decade before the reactor angle was measured [134-136].

One may go further and impose constraints on the Yukawa couplings in order to achieve
predictions for mixing, as in constrained sequential dominance (CSD) [137-141]. A
particularly successful scheme is known as CSD3 [142, 143] where the neutrino Yukawa
matrix is controlled by particular vacuum expectation values (VEVs) of three triplet
flavon fields (¢;), as discussed later. The particular flavon vacuum alignments may be
enforced by an Sy symmetry and are fixed by a superpotential which we do not specify
here but was shown in [142]. After implementing the seesaw mechanism, the above

flavons yield a light effective left-handed Majorana neutrino mass matrix,
my = p1Yi + p2Y2e + p3Yss, (2.1)

where Y;; ~ (¢;) (¢j>T, up to Sy Clebsch-Gordan (CG) factors. Each of the matrices Y;;
is quadratic in (¢;) and therefore has rank 1. The SD condition implies that ps > p;
and hence maximal atmospheric mixing is controlled by Yas, solar mixing is controlled
by Y11, while Y33 plays no important role in neutrino physics due to the smallness of s,

which implies that m; is similarly small.

In the present chapter we propose a natural Sy x SO(10) Grand Unified Theory of flavour
in which the CSD3 model of neutrinos is embedded. Our guiding principles are firstly
simplicity, involving the fewest number of low-dimensional fields, secondly naturalness,
and thirdly completeness, in particular addressing the doublet-triplet splitting problem.
What does natural mean? For us it means that we have a qualitative explanation of
charged fermion mass and mixing hierarchies, as for neutrino mass and mixing, with all
dimensionless parameters O(1), and in particular that the Yukawa matrices are obtained
from sums of low-rank matrices, as in equation 2.1, where each matrix in the sum
naturally accounts for the mass of a particular family, analogous to SD in the neutrino
sector. This qualitative picture of “universal sequential dominance” is underpinned by

a detailed quantitative fit of the fermion spectrum.

To accomplish these goals, we need to add two Higgs 10s, H{{, and Hflo, which will
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give rise, at low energy, to the minimal supersymmetric Standard Model (MSSM) Higgs
doublets, H,, and H, respectively, with no appreciable Higgs mixing effects. After GUT
breaking, the Higgs H{{, couples to up-type quarks and neutrinos, with Yukawa matrices
given by an universal CSD3 structure as in equation 2.1. The Yukawa matrices for the
charged leptons and down-type quarks, which couple to H fo, have a different universal
structure where Y7 is replaced by Yo ~ (¢1) (gbg)T. Then quark mixing is mostly
originated in the down-type quark sector, with the down and strange quark masses
successfully realised by having a zero entry in the (1,1) element of the down-type quark
Yukawa matrix Y¢, as in the Gatto-Sartori-Tonin (GST) approach [144], with a milder

hierarchy among down-type quarks as compared to up-type quarks.

The model accurately fits all available quark and lepton data. We give analytical estima-
tions for quark mixing angles and we recognize some tension in the predicted observables.
This tension is alleviated by assuming rather large SUSY threshold corrections. All di-
mensionless couplings in the renormalisable theory are naturally assumed O(1) and the
hierarchy in the flavon VEVs fixes the scales of all but one parameter. The model reduces
to the MSSM at lower energies, a u term of O(TeV) is achieved as well as doublet-triplet
splitting and proton decay operators are Planck scale suppressed. The model requires
an auxiliary Z2 and ZF symmetry and a spectrum of messenger fields to achieve all the

features above.

The model introduced here differs from previous models based on Sy x SO(10) [145-
148], (see also [149-151]).! Firstly, the full symmetry is different, since we use an
extra Z2 x ZIt symmetry, while earlier works use a Z,, [146-148]. Furthermore, we only
include small Higgs representations 10 (fundamental), 16 (spinor) and 45 (adjoint) and
do not allow the large Higgs representations such as the 126 and 120 which are used
in the other approaches. As a consequence our neutrino masses follow from a type-I
seesaw mechanism, rather than a type-II seesaw employed in other papers. In further
contrast, we do not allow Higgs mixing: the MSSM Higgs doublets H, and H,; emerge
directly from H{{ and H fo, respectively, whereas in [145-148] they arise as unconstrained
linear combinations of doublets contained in 10- and 126-dimensional Higgs fields. In
addition we consider doublet-triplet splitting. These features are largely absent from
earlier works. Another important difference is that we have used the CSD3 vacuum
alignments in [142], whereas the vacuum alignments used in most previous works were
geared towards TB mixing, and do not naturally provide a large reactor angle. Indeed

our model is motivated by the success of CSD3 in the neutrino sector.

! Previous works on SO(10) models with non-Abelian discrete flavour symmetries are found in [152-
161], and further flavoured GUTs can be found in [162-187]. More recently, a generalised approach to
flavour symmetries in SO(10) is considered in [188].
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2.2 The model

2.2.1 Overview of the model

All the fermions of the Standard Model are unified in a single superfield 1) which trans-
forms as a (3',16) representation of Sy x SO(10). We also include two Higgs fields Hféd in
(1,10) representation and three flavon fields ¢;, with i = 1,2,3 in (3/,1) representation.

The flavons are assumed to have CSD3 vacuum alignments [142]

0 0
(pr)=uv | 3 |, (P2)=w2| 1 [, (d3)=vs|1], (2.2)
-1 -1 0
with VEVs driven to scales with the hierarchy?
v K v9 L v3 ~ Maur. (2.3)

The idea is that the up-type quark Yukawa matrix Y* and neutrino Yukawa matrix Y”

arise from effective terms like

Hio(vor)(ver) + Hip(ve2)(ve2) + Hip(¥es)(ves), (2.4)

where the bracket means that the fields inside are contracted into a singlet representation
of S4. Due to the hierarchy of the flavon VEVs in equation 2.3, each rank-1 matrix in the
sum in equation 2.4 contributes dominantly to a particular family, giving a rather natural
understanding of the hierarchical Yukawa couplings y, ~ v?/ MéUT, Yo ~ V3 /MéUT,

Y ~ v3 /MéUT, and similarly for the neutrino Yukawa couplings.

The operators in equation 2.4 are nonrenormalisable and they will have denominator
scales of order MqguT, determined by the VEVs of additional Higgs adjoint 45s, leading
to various CG factors. Consequently, the Yukawa matrices Y% and Y" are a sum of
rank-1 matrices as in equation 2.1, with independent coefficients multiplying each rank-
1 matrix, where Yj; ~ (¢;) <¢j>T, up to S; CG factors. Since the expansion breaks down
for the third family, in section 2.2.4 we shall find a renormalisable explanation of the
third-family Yukawa couplings. The right-handed neutrino Majorana mass matrix will

also have the same universal form, leading to the seesaw mass matrix as in equation 2.1.

The down-type quark Yukawa matrix Y¢ and charged lepton Yukawa matrix Y¢ are
slightly different

Hiy (1) (Vo) + Hi (2) (o) + Hi(¥h3) (1hhs). (2.5)

2 In the full model we shall not provide an explanation for this hierarchy of VEVs, nor shall we repeat
the vacuum alignment superpotential responsible for the alignments in equation 2.2, which is discussed
in [142]. We note that the alignments (¢1) and (¢2) preserve the SU generator of S.
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In equation 2.5, there is a mixed term involving ¢; and ¢, leading to a new rank-2
Yukawa structure Yia ~ (¢1) (¢2>T. This new term gives rise to two new features which
are welcome: firstly, it enforces a zero in the (1,1) element of Y'¢, giving the GST relation
for the Cabibbo angle, i.e. 0%, ~ \/M , and it also leads to a milder hierarchy in the

down and charged lepton sectors.

To guarantee all the above features of the model, it is necessary to introduce additional

symmetries and fields.

2.2.2 Field content and Yukawa superpotential

We now present the full superfield content of the model in table 2.1. All known SM
fermions are contained in a “matter” superfield ¢). Additionally, we include three triplet
flavons ¢, (a = 1,2, 3) which acquire CSD3 vacuum alignments, two Higgs 10s contain-
ing one each of the electroweak-scale Higgs SU(2) doublets,® a spinor Hyg which breaks
SO(10) (and gives masses to the right-handed neutrinos along with the singlet field p),
as well as several Higgs adjoints. The x superfields are messengers that are integrated
out below the GUT scale, and are given GUT-scale masses by the VEV of H, 4Z5.

Representation
Field " "son0) z, z, z¢
P 3/ 16 1 1 Representation
Field
HY 1 10 0 2 0 81 SO(10) Zy Zy4 ZF
HE, 110 2 0 0 1 1 16 3 3 1
Hig 1 16 2 1 0 X1 1 16 0 3 1
Hig 1 16 1 2 0 X2 1 16 1 3 1
HYY 1 45 2 1 0 x2 1 16 2 3 1
HZ 1 45 1 2 0 x3 1 16 31 1
HE-E 1 45 2 2 2 xs 1 16 0 1 1
/
b1 31 0 0 0 X3 I 16 32 1
b2 3 1 2 0 0 X2 1 16 1 0 1
o3 3 1 0 2 0 1) 1 1 2 2 1
(a) Matter, Higgs and flavon superfields. (b) Messenger superfields.

Table 2.1: Field content giving the Yukawa superpotential in equation 2.6.

We also include two Z4 symmetries that forbid any mixed flavon Yukawa terms and a
R symmetry, Zf, under which the superpotential has total charge two, and which is
broken at the GUT scale by the H fg_L VEV to Z¥, the usual R (or matter) parity in
the MSSM, ensuring a stable lightest supersymmetric particle (LSP). This symmetry
also helps achieving the doublet-triplet splitting problem, ensuring that only two light
Higgs doublets (and no Higgs triplets) are present in the effective MSSM and it also

3 We assume that the MSSM Higgs doublets H,, Hy lie completely inside the SO(10) multiplets
Hi, HY), respectively. This is justified in section 2.2.5.
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controls the p term. Z4R is the smallest R symmetry that can achieve the above, and is
specially motivated within SO(10) [189]. We shall also assume a spontaneously broken

canonical C' P symmetry at the high scale.

With this superfield content and symmetries, the most general renormalisable Yukawa

superpotential that can be written at the GUT scale is

GUT _ _
Wy(/ ) = YV PaXa + XaXaHAlZE) + XaXaHiLO + PX3HE + Mppp

(2.6)
+ Xox3 (Has + His) + xpxpHio + x1x2Hi,

where we sum over indices a = 1,2,3 and b = 2, 3, and have suppressed O(1) coefficients
A that multiply each term. Furthermore, there are two essential terms that appear

suppressed by one Planck mass Mp and they are given by

W(Planck) . XaXaHEHE ¢¢¢3Hiio
Y - + )
Mp Mp

(2.7)

where a = 1,2,3. The first term couples Hiz to fermions via the messengers x,. The
second term is allowed by the symmetries and cannot be ignored since it contributes to

the fermion Yukawa matrices at the same order of the smallest GUT-scale terms.

The adjoint Higgs superfields acquire VEVs, in general complex, at the GUT scale,
ie. (HE) ~ Mgur with k = X,Y,Z,B — L. H;s"? gain arbitrary (SM-preserving)
VEVs, providing CG factors which separate the quark and lepton masses. We elaborate
on this feature in section 2.2.3. H fg_L gains a VEV in the direction that preserves
B — L, generating GUT-scale masses for Higgs triplets via the Dimopoulos-Wilczek
(DW) mechanism [190-192]. Our implementation of the DW mechanism is described in

section 2.2.5.

The VEVs of ¢ and ¢; are assumed to get VEVs well below the GUT scale, i.e. (¢12) <
Mgur, while (¢3) ~ Mgur. Therefore, the scale at which the flavour symmetry is
broken, along with C'P, is the GUT scale. At low scales no residual CP symmetry
survives, however C'P does play a role in fixing phases in the mass matrices. As (¢3) is
near the messenger scale, the process of integrating out messengers s, Y3 is not trivial.
The correct procedure and the consequences of having a flavon VEV near Mgyt are
discussed in detail in section 2.2.4, where we verify also that the third family of Yukawa

couplings are renormalisable at the electroweak scale.

The mass and Yukawa matrices arise from the diagrams in figures 2.1-2.3.% The three
diagrams in figure 2.1 correspond to the ultraviolet completion of the three terms in
equation 2.4, while those in figure 2.2 are the completion of the terms in equation 2.5.
The diagrams ensure correct Sy group theory contractions and introduce CG coefficients
due to the Hig’Y’Z VEVs. These diagrams are analogous to how the seesaw mechanism

replaces the Weinberg operator for neutrino mass. Of course neutrino mass itself in this

* The diagrams were drawn with JaxoDraw [193].
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model is more subtle, since both the Dirac and right-handed Majorana masses arise from

these diagrams.

Each diagram leads to a 3 x 3 matrix, whose internal structure is dictated by the vacuum
alignment of the relevant flavon VEV in equation 2.2. The Yukawa and mass matrices are
consequently given as a sum over these matrices. A prominent feature is a texture zero
in the (1,1) element of Y% and V¢, which realises the GST relation for the Cabibbo angle.

The full derivation and the exact matrices that we fit to data are given in section 2.3.

o1 Hij 1 o) Hij ¢ o3 Hij 3
. . .
1 1 1
1 1 1
1 1 1

(HE) @ (HE) (H) (HE) @ (HE)

voox1ox1 ox1 ox1 ¥ voXe X2 X2 X2 ¥ vooX3 X3 X3 X3 ¥

(HF)

Figure 2.1: Diagrams coupling v to Hiy. When flavons acquire VEVs, these give the up-type
quark and Dirac neutrino Yukawa matrices.

ol HY, o) HY, o3 Hi,

XY XY XY
<H4Zo> (Hi5™") (Hi") (Hi5")
vooX1 X1 X2 Xe ¥ v X2 Xa X X2 ¥ v X3 X3 X3 X3

(H")

S
V]

S
no

-—---S‘

=

Figure 2.2: Diagrams coupling ¢ to HY. When flavons acquire VEVs, these give the down-
type quark and charged lepton Yukawa matrices.

s Hig Hrg 3 ¢a Hg Hi ¢

L (HE) M, 1 (HE) L (HE) S (HE)

' ! ! ! 1 ‘Mp L
X3 xs PP X3 Xz ¥ Vo Xa Xa—Xe Xo U

Figure 2.3: Diagrams coupling ¢ to Hig. One copy of the right diagram may be drawn for
each of a = 1,2,3, although for ¢ = 3, its contribution is negligible compared to the left
diagram. When flavons acquire VEVs, these give the right-handed neutrino mass matrix.

Additional Planck-scale operators suppressed by one power of the Planck mass Mp, apart
from the ones given in equation 2.7, are forbidden by the symmetries. Further effective
operators, suppressed by at least two powers of the Planck mass M]% and involving all
allowed contractions of Sy multiplets ¢ and ¢;, are expected to arise. The largest of these
terms can be O(M&yr/M3) ~ 1076, We will assume these contributions are negligible;

however, such corrections may pollute the texture zero in Y.

2.2.3 Clebsch-Gordan relations

We have several adjoint 45 representations of SO(10) in table 2.1. Any adjoint can
acquire a VEV aligned in the direction of any of the four U(1) subgroup generators that
commute with the Standard Model, or a combination thereof. There are four such U(1)
symmetries, labelled U(1)x, U(1)y, U(1)B_L, U(l)Tg. They arise from the breaking of
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SO(10) either through
SO(10) — SUGB)xU()x — SUB)exSUR2), xU(1)y xU(1)x (2.8)
or through the Pati-Salam chain

80(10) — SU(4)C X SU(Q)L X SU(Q)R
— SU(3)C X SU(Q)L X SU(2)R X U(l)B,L (29)
— SU(3)C X SU(Q)L X U(l)T}% X U(l)B,L.

The generators of these U(1) symmetries are not linearly independent; two of them may
be expressed in terms of the other two. The VEVs of Hig,y,z may be written as linear
combinations of these alignments. Without loss of generality, we choose (H %) and (Hz%)
to be aligned in the “X” and “Y™” direction, respectively, while (HZ) is a combination
of both. Fermions couple to these VEVs with strengths that depend on their associated
U(1) charges, which are different for quarks and leptons.

Up-type quarks and Dirac neutrinos couple to HZ (see figure 2.1). Since (HZ) is
arbitrary, there is no hard prediction for the ratio between quark and neutrino Yukawa
couplings within a family. However, the same ratio has to hold for all the families since
all the flavons ¢, (a = 1,2,3) couple to this VEV in the same way. Therefore, once Y*
is determined, Y is also fixed, such that Y” « Y“, to good approximation, up to an

overall CG factor, with small deviations for the third family.

Meanwhile, the down-type quarks and charged leptons couple to two adjoints H, 4)g and
H ZE) (see figure 2.2). Unlike the up sector, where matter always couples to the same
SO(10) VEV, each diagram in figure 2.2 involving a different flavon couples to a distinct
linear combination of VEVs (Hz) and (HJ;). This introduces CG factors non-trivially
into Y% and Y°. As such, there is no fixed relationship between down-type quark and
charged lepton Yukawa couplings, neither within a family, nor across families. They are

nevertheless expected to be of the same order.

2.2.4 Renormalisability of the third family

In this section we show that naive integration over messenger fields is not possible for
the third family, due to the large VEV of ¢3. We emphasize that there is an assumed
hierarchy of flavon VEVs, such that v; < vo < vg ~ Mgy, implying it is not possible

to formally integrate out the messengers xs which couple to the flavon ¢3.

Let us single out the terms in the superpotential Wy involving the messenger field xs,

the flavon ¢3 and the Higgs field Hj, (the same method applies to terms coupling to
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H¢). Suppressing O(1) couplings, the relevant terms are
3 _ _
Wy = ysxs + HExsXs + xsxsHi. (2.10)

After the field H 4Z5 and the flavon field ¢3 acquire VEVs, we have

3 _ _
Wé) = v3thsXs + (HE) x3Xs + xax3H 1, (2.11)

where the first two terms are of comparable order.

We could have interpreted 3 as the third-family particles. However, there is a large
coupling to Y3, which induces a mass for ¥3 via the second term in equation 2.11. There-
fore, 13 cannot be interpreted as the physical third-family states, which are massless
above the electroweak scale. To get the physical (massless) states, which we label ¢, we
rotate into a physical basis (13, x3) — (¢, x), such that ¢ does not couple to y3. This

basis change is given by

HZVt —vgt + (HZ
¢3_<45>T+”3X7 N +T< BIX o2+ (HE). (2.12)

Physically, it may be interpreted as follows: inside the original superpotential Wy lie

the terms )

v
Wy D xaxsHig D ——2—— tt Hjf, (2.13)

vi + (Hi)
which generate renormalisable mass terms for the top quark and the third Dirac neutrino

at the electroweak scale.

2.2.5 Doublet-triplet and doublet-doublet splitting

As is the case for every broken GUT, the Higgs sector of our model contains more fields
than the usual MSSM. The H féd multiplets contain colour triplets that mediate proton
decay. Since we have two 10s, there is an additional pair of doublets that, if light, could
spoil gauge coupling unification. For these reasons, those extra fields need to be heavy,
while ensuring the MSSM doublets are massless. This splitting can be achieved in our

model.

The splitting mechanism involves superfields given in table 2.1 as well as the addition of
the superfields in table 2.2. The singlet field £ obtains a VEV slightly above the GUT
scale and ensures the correct structure to the masses. The Hg generates a mass for the
Hig and also gets a VEV in the right-handed neutrino (v¢) direction. H, 4B57L is the only
R-charged field that gets a VEV, breaking Zf to the usual R parity.
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Representation
Field =g “so(10) z, z, z&
¢ 1 1 2 2 0
Xu 1 16 2 1 2
Xu 1 16 0 1 0
Xd 1 16 1 0 0
Xd 1 16 1 2 2
(1 1 45 1 1 2
(a2 1 45 1 1 0

Table 2.2: Messengers involved in doublet-triplet splitting.

With the superfields in tables 2.1 and 2.2, we may write the superpotential

Wy =HE™" (H%oﬂflo + (2C2 + HigXu + Hlﬁ)?d)
+ HrgHiyXu + HisHigxa + Hi6HigCl + € (C1C2 + XuXu + XaXa) (2.14)

X,Y,Z
+HB—L HEHEH% + HlGHlﬁH%o + g Hd (H45 )4
45 MP MP 104410 M;L) ’

where we have ignored dimensionless couplings. We assume that the VEV (£) > Mgy,

so that we may integrate out the messenger fields and obtain the effective superpotential

(HieHpg)? | HygHgHYy | HisHigHf

T

(£)? 3 3 215
X,Y,Z .
N HygHgHY, L HetheHly | pu pra (His )t
Mp Mp 10710l ’

where we have suppressed dimensionless couplings, and the final term involves all com-
binations of adjoints allowed by the symmetries, i.e. either (H. 425)4 or any combination
of powers of Hjs and H); totalling four. The three terms suppressed by () are allowed

by the integration of three messenger pairs.

We consider that the superfields Hig 44, Hf5 (k=X,Y,Z,B— L) get GUT-scale VEVs,
Le. vig15 ~ v &~ Mgur, through an unspecified mechanism. The fields Hig 16 get VEVs
in the right-handed neutrino v direction. The field H 4B5_L gains a VEV aligned in the
B — L direction, which splits doublet and triplet Higgs masses through the Dimopoulos-
Wilczek (DW) mechanism [190-192]. This can be understood by considering the de-
composition of the H ﬁ’)d into the Pati-Salam group. The triplets behave as a sextuplet
of SU(4) while the doublets are singlets. Since U(1)p_; C SU(4), the triplets get a
mass from the first term of equation 2.15 while the doublets do not. In the last term, all
the SO(10) adjoints can be contracted to a singlet, so they affect doublets and triplets
equally.

To show explicitly the mechanism, we construct the doublet and triplet mass matrices.
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We define the dimensionless scale parameters y = Mgur/Mp, 2 = Mgur/ (§) and label
the up-type doublets inside a given Higgs representation H by 2,(H), and down-type
doublets by 24(H). We define triplets 3,(H) and 3,(H) analogously. The field H refers
either to HY, H{, or H i6,16- 1he doublet mass matrix Mp and the triplet mass matrix

M are given by

Zu(HiJO) 2u(HflO) 2u(Hﬂs)

24(Hfy) (v 0 y
Mp = 24(H{p) 0 —y* z Maur,
24(Hg) Yy z z
(2.16)
3u(Hiy) 3u(H{y) 3u(Hr)
3d(Hfl0) 1 0 Y
M= s |0 Maur.
34(Hig) Yy z z

The triplets mass matrix My has three eigenvalues of O(Mgut). The doublets mass
matrix has two eigenvalues at O(MguT) and one at O(y*Mguyr), which we identify with
the p term. Since y ~ 1073 we have j ~ 1 TeV, which is the desired order. Furthermore,
the light eigenvectors of Mp define the MSSM doublets H,, 4 as

u Yy Y
Hy, ~ 2,(Hjy) + ;2u(Hfl0)7 Hy~ 24(H{y) + ;2u(Hfl0)a (2.17)

where the contribution of O(y) is negligible, so that the MSSM doublets are located as
required by the Yukawa structure of the model.

2.2.6 Proton decay

One of the characteristic features of GUTs is the prediction of proton decay. It has not
been observed and the proton lifetime is constrained to be 7, > 103! years [31]. Proton
decay can be mediated by the extra gauge bosons and by the triplets accompanying
the Higgs doublets. In SUSY SO(10) GUTs the main source for proton decay comes
from the triplet Higgsinos. The decay width is dependent on SUSY breaking and the
specific coupling texture of the triplets. In general, the constraints are barely met
when the triplets are at the GUT scale [194, 195], which is our case as it was shown in

section 2.2.5.

Proton decay may also arise from effective terms like

saaar). (2.18)

P
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in which case, the constraint g (X) < 3 x 10° GeV [196] must be satisfied to meet the
limits on the proton lifetime. In our model, the largest contribution of this type comes
from the term
B—L/ 7 X,Y
Hys " (Hys HE)?
Mp

= (X)= Mavr)® 168 ey, (2.19)

vy 7

The constraint on g (X) is easily met, so proton decay from such terms is highly sup-

pressed.

2.3 Yukawa and mass matrices

2.3.1 Complete derivation of Yukawa and mass matrices

In this section we rewrite the renormalisable superpotential in equation 2.6, including
the dominant Planck-suppressed terms in equation 2.7, and writing explicitly all O(1)

couplings,

H—=H-—
Wy = Y A¥¢aXa + XXaXaHE + XaXa (AZH%O + AL 8 16)
a=12,3 Mp

+ D X (N HIS + A HL) + Ao Hig (2.20)
b—2.3

Vs Hiy

+ NaxaxeHio + Mpxatig + Mapp + Xp— 0>

Mass matrices are built from the flavon vacuum alignments in equation 2.2, after con-
structing singlet products which occur in ¢, above, i.e. 3’ x 3’ — 1. The product of

two triplets into a singlet is given by
(AB) = A1B1 + A3B3 + A3Bs. (2.21)

To account for this non-trivial product as well as the field redefinition ¥ — —)9 (this

overall sign is unphysical), we define the vectors

1 0 O
(@i) = Is, (¢), with Is, =0 0 —1]|. (2:22)
01 0
In the new variables, the alignments become,
1 0 0
(pr)=vi [1], (g2)=w2 1], (g3)=w3[0]. (2.23)
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As explained in section 2.2.3, fermions couple to the VEVs of (HJ) with strengths
proportional to unique CG factors. The index k labels the adjoint, i.e. kK = X,Y, Z, B—L.
After the GUT is broken and % is decomposed into multiplets of the SM gauge group,
the part of an adjoint VEV which couples to a given multiplet f is denoted by

Hf5 - <HZIL€5>f’ (2.24)

where f = Q,u‘ d° L,e, or v°. The field Hiz gets a VEV in the direction which
preserves SU(5), which we call the (singlet) right-handed neutrino v¢ direction. Its

VEV only affects the right-handed neutrino mass matrix and is simply denoted vgg.

The Yukawa matrices are taken from diagrams in figures 2.1-2.3. Taking into account

non-trivial Sy products (as above), we have

(A2 (ba); (Pa) (A2 (3); (@s);
Y = AU R L , 2.25
! g‘; (A2 (HE) g (HEE) e (A9)208 + ()2 (HE) o (HE) e 22
(D) (ba); (da) (AD)? (@), (¢3)
Y/ = Y 4+ L —d : 2.26
’ a;,z (A2 (HE) p (HE) e (A§)203 + (NN)2 (HE) , (HE),c (220
MR o )\(JZV,U% ()‘2)2 <(Z)a>z‘ <(z~>a>j
Y G, Me (N)2(HE),. (HE) .
) (D2 AY (A2 (@3), (d3), .
* Vg ( M, Mp) (\))202 + ()2 (HZ) . (HZ),. (2:27)
iy (A9)° (2), (do),
NS HE) + A (HID N (HS) + A (H))ge
\ (A2 (@), (ds);
T (A9)202 + A (HE) + AY (HE) QN (HE) + N (H))ae
APAS (1), (o) Ypu
d 172 APl VTR Y it 2.28
ve — d (AD)2 (2); (62);
RIS HE) + A (HID]L A <Hzf§,2 + A%f (HJ5))ee
v (A9)? (@3); (d3);
T (A)202 + N (HE) + AY () LAY (HE) + AY (HE)ee
APAS (1), (o) Ypu
d 172 7 7 /\d PU3 299
NN (BT, (Hy. " M (2.29)
where vz = | (¢3) |, v, Y} is the Dirac neutrino mass matrix and Mil} is the right-handed

neutrino Majorana matrix. The last term in equation 2.20 is a singlet coming from three
Sy triplets and gives rise to the last terms in equations 2.28 and 2.29, where Yp is a

numerical matrix which is defined below in equation 2.30.

Finally, we take into account the effect of mixing between the state ¥3 and messenger xs,
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explained in section 2.2.4. This mixing provides additional contributions to the fermion
mass matrices in the form of coefficients multiplying the third rows and columns. The
size of each coefficient depends on the CG factors and the ratio(s) of v3 to adjoint Higgs
VEVs 055, for Kk = X,Y,x. In the limit where v3 < vffg,, all these coefficients are 1,
corresponding to a negligible amount of x3 being mixed into the physical state. This is
exactly what occurs for the other two families: the massless states are aligned almost
exactly with the states 1 2. Generally, any significant deviation would require a tuning
among CG factors and O(1) parameters A. We do not expect these factors to have a

large effect on mixing, hence we set them all to one for simplicity.

2.3.2 Numerical Yukawa and neutrino mass matrices

Following the derivation in section 2.3.1, we present here the explicit form of the Yukawa

matrices in terms of the numerical matrices

11 3 000 000

Yu=|(11 3|, Yo=|0 1 1], Ys3=|0 0 0},
3309 01 1 00 1
0 1 0 0 -1

Yie=|[1 2 4|, Yp=|0 2 0 |, (2.30)
1 4 6 -1 0 0

~ ., o\T
which are constructed from the products (¢;) (¢;)" (see equation 2.23). We remind that
the tilde on the flavon VEVs takes into account the Sy singlet contractions in the triplet

products like (¢ ¢;)(¥¢;). Yp derives from the Planck-suppressed operator ¥tpps H.

The up, down, charged lepton and Dirac neutrino Yukawa matrices (Y, Y? Y€ and

YV, respectively) and right-handed neutrino mass matrix M® may be expressed as

YU o= yteYi+  yiYar+ yhe Yas, (2.31)
YV o= gfeMYiu+ Vet 4 Yas, (2.32)
MR =MPeYiy + M3 Yo + MJe™ Vi, (2.33)
Y4 = yhel3Yia +yde Yoy + yleiYss +yT e Yp, (2.34)
YO = y5hel 2 Vio + y5ei® Yoo + y5e® Vas +y e MY, (2.35)

since the MSSM Higgs doublets H, and Hy arise from Hjj, and Hfo, respectively, as

shown in section 2.2.5.

The flavon VEVs v, (a = 1,2,3) are complex, with the fixed phase relation

v\ 2 2T
n = arg <1> = BER (2.36)
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given (up to a sign) by the superpotential that fixes the alignments. The remaining

phase 7’ is determined by the fit.

The light neutrino mass matrix is obtained by the seesaw mechanism. Both Y* and
MP® have the same structure, namely both are sums over the same rank-1 matrices Y71,
Y29 and Y33. By a proof given in [197], the light neutrino matrix m, will also have this

structure, i.e.

my, = €Y + p2Yao + pze’ Yas

‘ 1 1 3 0 0 O 3 0 0 O (2‘37)
=pue |1 1 3| 4+pe |0 1 1 +upse 10 0 0],
3 3 9 01 1 0 0 1

where the parameters p; are given in terms of the parameters y; and MZR simply by

2 (W))*
Wi = : (2.38)
“ MZ-R

As shown in section 2.1, the flavons yield a light neutrino mass matrix m,, where the
normal hierarchy m; < mo < mg then corresponds to us < pu1 < pe. Achieving this hi-
erarchy after seesaw implies that the right-handed neutrino masses are very hierarchical,

as we will see below.?

2.3.3 Analytic estimates

The parameters y¥, y¢, y¢, u1;, and y© (a total of 13) appearing in the Yukawa and mass
matrices 2.31-2.35 are free real parameters of the model. Recalling that n is fixed by
flavon vacuum alignment, we have the following further free parameters: 7', age, Bd,e,
and 7 (a total of 6). The scales of the real parameters are mostly fixed by the scales of

the flavon VEVs, v123. We set the flavon VEV scales to some appropriate values,
v~ 0.00QMGUT, Vo X 0~05MGUT, V3 =~ 0~5MGUT7 (239)

where we set MguT ~ 10'® GeV. The terms giving MEQ and y? in equations 2.33 and
2.34-2.35, respectively, derive from terms suppressed by one Planck mass Mp. As they
arise from unspecified dynamics, the scale of these parameters is not very well defined.
For definiteness, we set Mp ~ 10'? GeV and again assume that the associated coefficients
are close to one. We consider that M, ~ Mgyt and therefore Mf is also at the GUT

scale due to the term px3Hgg, see also figure 2.3.

We examine the parameters of the matrices defined in equations 2.31-2.35 setting all

5 While the model does not mathematically forbid an inverted hierarchy, we have checked that the
corresponding predictions for neutrino masses and mixing angles would always give a bad fit to data. It
would also require parameter choices that strongly violate the naturalness principle employed here.



50 Chapter 2 A natural Sy x SO(10) model of flavour

O(1) coefficients to exactly one, and ignoring CG factors by setting all adjoint Higgs
VEVs to Mgyt ~ 10'® GeV. Then the Yukawa couplings are estimated to be

Yo~ yy ~ v/ MEyr ~4x 1075,

Yo~y yd ~ys ~ 03/ M2y ~2.5 x 1073,

Yy~ ~ yd ~ s ~ 03/ MEyp ~0.25, (2.40)
Yy ~ Yy ~vr0g /MEp 1 X 1074,

yP' ~ w3/Mp =~=5x107%
The right-handed neutrino mass parameters are estimated to be
MP ~ 4 %107 GeV, Mt~25x10"Y Gev, M}~ 10'° GeV. (2.41)

This very strong hierarchy implies negligible right-handed neutrino mixing, such that the
mass eigenvalues closely correspond to the above values. As each parameter contains
several O(1) coefficients and CG factors, the above numbers only represent order of

magnitude estimates.

The numerical fit in section 2.4 shows that the above estimates are in good agreement
with the values that produce a good fit to data except only for the parameter M,
which is primarily responsible for the lightest right-handed neutrino mass. It should
be a factor O(0.01) times the estimate above in order to give the correct light neutrino
mass spectrum. This can be understood by inserting the above estimates for y; and
M#P into the expression for p in equation 2.38, which suggests 1 ~ 0.01 meV, whereas
we will see the fit prefers a value of O(1) meV. The necessary factor can be achieved by

assuming that one or more coefficients deviate from unity.

One can also get approximate expressions for the quark mixing angles in terms of quark
Yukawa couplings as follows. The very strong hierarchy in the three real parameters
of Y" is correlated with that in the physical Yukawa eigenvalues of up, charm and top
quarks. We therefore expect negligible contributions from the up sector to quark mixing.
This implies that not only do the four real parameters in the down sector, yfl and y, fix
the down-type Yukawa eigenvalues, they also must reproduce the observed CKM mixing

angles.

Let us keep only the leading terms in each element of Y% and ignore free phases. As

noted above, ny ~yf < yg < yg. We also define y}, = yg + 2yf2 + 2yP. Then

0 ny ytliZ - yP
d
Vim |yl vh vy + 20y, —y) | - (2.42)

vl —yP b 420yl —y) yg
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In the small angle approximation, the mixing angles can be estimated by

d d d d P d d P

HQNY12_@ gq,\,Yli’)_le_y HqNY23_y§+2(y12—y) (2.43)

12NYd_ /o 13Nyd_ d ) 23NYd_ d : :
22 Y2 33 Y3 33 Ys3

The down-type Yukawa eigenvalues are given by yq ~ (y%)2/%5, ys ~ yh, yb =~ yS.

Solving for y&,, y5 and y§, we have, to good approximation, ¥, ~ \/YaUs, ¥4 ~ Us,
y¢ ~ y,. Reintroducing these into our estimates for mixing angles, we get
. Ya g V¥aUs—vT . s +2(/Ysya — y)

0y = /=, bl —"""— 033~ . (2.44)

Ys Yb Yb

The first equality is exactly the GST relation [144], which is in good agreement with
data. In fact, the GST relation, which predicts 67, ~ 0.224 for the central values of y,
and ys, is in mild tension with experimental data, which gives 0], ~ 0.227. Possible
modifications to the GST result have been proposed [198], e.g. adding a correction like
\/M, which can be realised by a texture zero also in Y“. Alternatively, one may
exploit the statistical uncertainties on each of the down and strange quark masses. A

small deviation from their central values can predict a slightly different 67,.

On the other hand, the mixing angles 0], and 6, are less precisely estimated, as the
parameter y© can be as large as yig, and the final result will depend on the relative
phase between ny and y©. Note however that both mixing angles depend in the same
way on ny — yP. Generally, the approximations in equation 2.44 predict some tension
between 6], and 64, which are too large and too small, respectively. This tension cannot

be resolved simply by tuning y* .

2.4 Numerical fit

Our model determines the Yukawa couplings and mixing parameters at the GUT scale,
which is also the highest flavour-breaking scale. The values from experiments must
therefore be run up to the GUT scale. Moreover, when matching the SM to the MSSM
at the scale Mgysy, supersymmetric radiative threshold corrections have to be included.
The GUT scale values after the running of quark and lepton parameters together with
the inclusion of one-loop supersymmetric threshold correction have been computed in
[199] and we use their results. The parametrisation of these corrections is summarised
in appendix B. Most parameters do not significantly affect the fit, so are simply set to
reasonable values. Specifically, we set Msysy = 1 TeV, tan3 =5 and 7, = 7y = 0. We
also find that a good fit can be achieved for a rather large value 77, = —0.8. The choices
of SUSY parameters tan S and 7, are here empirically determined to give a good fit of
the model to data. It is clear from the fit that large (negative) 7 is required, affecting

primarily the bottom quark Yukawa coupling ;. In order to keep y;, perturbative, we
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must assume tan 8 < 30. In the region of 5 < tan § < 10 or so, the fit is rather insensitive
to the exact choice. Neutrino data is taken from the NuFit global fit [200].

To find the best fit of the model to data, we minimise a x? function, defined in the
standard way: for a given set of input parameters x, we calculate the n observables
P,(x). These are then compared to the observed values P°P, which have associated

statistical errors 0,,.5 Then

=) <W>2. (2.45)

g
n n

For our model, the input parameters are z = {yV, yf, y$,yp, i, M, Qde, Baes 7}, and the
observables are given by P, € {Ogj,(5q,yu,cﬁt,ydﬁ’b,ij,ye%ﬁAm?j}. Note that as the
lepton C'P phase 6° is not yet well measured, we do not include it in the fit, rather we
prefer to leave it as a pure prediction. Furthermore, only the neutrino mass-squared dif-
ferences are measured in oscillation experiments (as opposed to the masses themselves),

while our model predicts the masses outright, including the lightest neutrino mass m;.

Observable Data Model
Central value lo range Best fit
0%, /° 33.57 32.81 — 34.32 33.62
%5 /° 8.460 8.310 — 8.610 8.455
045 /° 41.75 40.40 — 43.10 41.96
st e 261.0 202.0 — 312.0 300.9
ye /107° 1.017 1.011 — 1.023 1.017
yp /1073 2.147 2.134 — 2.160 2.147
yr /1072 3.654 3.635 — 3.673 3.654
Am3,/(107° eV?) 7.510 7.330 — 7.690 7.515
Am3, /(1073 eV?) 2.524 2.484 — 2.564 2.523
my /meV 0.441
ma /meV 8.680
ms /meV 50.24
S m; /meV < 230 59.36
Q21 67.90
Qs 164.2

Table 2.3: Model predictions in the lepton sector for tan 8 = 5, Msysy = 1 TeV and 7, = —0.8.
The observables are at the GUT scale. The lepton contribution to the total x2 is 0.03. 4
as well as the neutrino masses m; are pure predictions of our model. The bound on Z m; 1S
taken from [59].

We present the best fit (minimum x?) of the model to physical observables (Yukawa
couplings and neutrino mass and mixing parameters) in tables 2.3 and 2.4, which also
include the central values and lo ranges from data. Figure 2.4 shows the associated

pulls, and table 2.5 shows the corresponding input parameter values. The fit gives

5 In order for a minimum x? to correspond to the maximum likelihood, the statistical uncertainties
should be symmetric (Gaussian). This is essentially satisfied for all parameters except 655, where current
experimental data cannot conclusively resolve the octant, i.e whether it is larger or smaller than 45°.
Currently, the data favours 65; < 45°, with a central value 41.6° [200]. We will assume this is the true
value.
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Observable Data Model
Central value lo range Best fit
69, /° 13.03 12.99 — 13.07 13.02
015 /° 0.039 0.037 — 0.040 0.039
03, /° 0.445 0.438 — 0.452 0.439
6 /° 69.22 66.12 — 72.31 69.21
Yu /1076 2.988 2.062 — 3.915 3.012
Ye /1073 1.462 1.411 — 1.512 1.493
Yt 0.549 0.542 — 0.556 0.547
Yd /1075 2.485 2.212 — 2.758 2.710
Ys /1074 4.922 4.656 — 5.188 5.168
Yb 0.141 0.136 — 0.146 0.137

Table 2.4: Model predictions in the quark sector for tan 8 = 5, Msysy = 1 TeV and 7, = —0.8.
The observables are at the GUT scale. The quark contribution to the total x? is 3.38.

Pull
1.0

0.5
e

0.0

-0.5

-1.0-

Figure 2.4: Pulls for the best fit of model to data, as shown in tables 2.3-2.4, for quark (blue)
and lepton (yellow) parameters.

X2 ~ 3.4.7 A second minimum with x?> ~ 4 was also found, leading primarily to a
different prediction for 6¢, as discussed below, although we shall not present the full fit

parameters for this case.

We see from tables 2.3, 2.4 and figure 2.4 that both quark and lepton sectors are fitted
to within 1o of the values predicted by global fits to experiment. The biggest pulls
are in down-type quark Yukawa couplings yg s, and 645. As shown in section 2.3.3, 64,
is approximately given by the ratio ys/yp, which is typically too small. Furthermore,
attempts to increase 0;, e.g. by tuning y, tends to increase 615, which is then too
large. This tension can be ameliorated by assuming large threshold corrections, i.e. by
setting 7, = —0.8, although some tension remains among the above parameters, which

deviate by about 1o.

We find two different minima with best fit values for ' of 300.9° with x? ~ 3.4 (as
seen in table 2.3) and 233.9° corresponding to a second best fit point with y? =~ 4.
We note that both values are far from maximal C'P violation §¢ = 270°, which is close

to the prediction from CSD3 with diagonal charged leptons. In short, charged-lepton

" The best fit predicts a strong neutrino hierarchy, with m; < 1 meV. It is possible to achieve a
milder hierarchy, although the numerical fit gives x® > 20 in such cases, predicting neutrino masses
of approximately 5, 10 and 51 meV. Additionally it predicts 6° ~ +25°, currently disfavoured by
experiment.
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Parameter Value Parameter Value Parameter Value
Y /1076 3.009 y$, /1074 1.558 Qd 0.0437
yy /1073 1.491 ys /1073 2.248 Ba 0.295m
Yy 0.549 ys /1072 3.318 Qe 1.6927
ylh /107 —1.186 w1 /meV 2.413 Be 1.7557
yd /1074 6.980 w2 /meV 27.50 y 0.9187
yd 0.137 p3 /meV 2.900 n 1.0537
y" /1074 1.243

Table 2.5: Best fit input parameter values. The model has 13 real parameters: y¥, y&, y¢, w:
and y”. While 5 is fixed by flavon alignment to —27/3, there are six additional free phases:
0, age, Ba,e and . The total x? is 3.4.

corrections induce a deviation from maximal C'P phase, which can either be positive or

negative, depending on the phases of Y°.

One may be tempted to calculate a reduced chi-squared x?2, i.e. the x? per degree of
freedom (d.o.f.), where the number of d.o.f. is naively given by the number of observables
minus the number of input parameters. In the conventional picture, a good fit has
X2 ~ 1. However, as discussed in [201], this interpretation is only valid for linear
models, which our model is not. Indeed, when evaluating y? we fit 19 inputs to 18
observables, which in a linear model would suggest a perfect fit is always possible; this
is certainly not the case. While 2 is a valid tool for comparing models to each other,

since it is not possible to establish an exact number of d.o.f., we cannot reliably define

X

2.5 Summary

We try to address the flavour puzzle in the Standard Model, which is the source of a
majority of the Standard Model free parameters, characterised by different mixing be-
haviours for quarks and leptons, and very hierarchical masses. The most minimal solu-
tion to the problem of neutrino masses remains the seesaw mechanism with heavy right-
handed neutrinos, which arise automatically in SO(10), with naturally large masses.
This motivates SO(10) above other popular gauge groups, such as SU(5), where right-
handed neutrinos are added by hand. All three families of SM fermions in the 16 of
SO(10) are here also unified in a single triplet of S4. This very elegant picture presents

model-building challenges, many of which we have tackled in this chapter.

We have constructed a rather simple, natural and complete SO(10) model of flavour
with a discrete Sy x Z% x Z§ symmetry, where all Yukawa matrices derive from the
VEVs of triplet flavons, in the CSD3 alignment. It is simple in the sense that the field
content is reasonably minimal, with small Higgs representations of SO(10) consisting of
two 10s which contain the MSSM doublets, a Higgs spinor pair 16 and 16 responsible for

Majorana masses and four adjoint Higgs 45s, which provide necessary Clebsch-Gordan



Chapter 2 A natural Sy x SO(10) model of flavour 55

factors that distinguish charged leptons and down-type quarks. It is natural in the sense
that Yukawa and mass matrices consist of sums of low-rank matrices, each of which
contributes dominantly to a particular family, i.e. “universal sequential dominance”. It
is complete in the sense that we address the p-problem, Higgs mixing and doublet-triplet
splitting, and provide an ultraviolet renormalisable model, with Planck-suppressed op-
erators controlled by symmetry. However, we do not discuss the origin of the hierarchy
of flavon VEVs, nor do we repeat the discussion of flavon vacuum alignment, which can
be found in [142].

We believe this model represents a significant step forward in the quest for a complete
and correct description of fermions within SUSY GUTs. For instance, we have demon-
strated the correct procedure for treating the third family couplings and how to generate
an electroweak-scale renormalisable third-family Yukawa coupling. We also emphasise
that the principle of universal sequential dominance is a simple and effective way to
understand fermion hierarchies. Although the origin of such family hierarchies has not
been fully resolved, as the scales of flavon VEVs v, (a = 1,2, 3) are assumed rather than
proven, the problem has been ameliorated, since the hierarchy is given by the squares
of these VEVs.

The model successfully reproduces the observed fermion masses and mixing, even in
the quark sector, where the CKM parameters are measured to very high precision.
Analytical estimates are underpinned by a detailed numerical analysis, demonstrating
the viability of the model. Moreover, there is no tuning of O(1) parameters necessary to
explain the mass hierarchies of charged fermions, accounting also for the milder hierarchy
in down-type quarks compared to up-type quarks. The model simultaneously realises
large lepton mixing and small quark mixing, as well as the GST relation for the Cabibbo
angle, 6, ~ \/M via a texture zero in the down-type Yukawa matrix Y'¢. In the
lepton sector an excellent fit to data is found, predicting a normal neutrino hierarchy
and lightest neutrino mass m; < 0.5 meV. The CP phase §* was not fitted, but left as a
pure prediction. Two distinct fits are found, with corresponding best fit values 6¢ ~ 301°
and 234°. We emphasise that the model predicts significant deviation from both zero

and maximal C'P violation.






Chapter 3

S4 X SO(10) grand unified theory

of flavour and leptogenesis

To further explore the phenomenological implications of S; x SO(10) models, in this
chapter we present a more complete version involving an additional Z f X Z jf controlling
the Higgs and flavon symmetry breaking sectors. In the model here, we prefer the simpler
constrained sequential dominance-2 (CSD2) [202] vacuum alignments since it also allows
successful leptogenesis, as discussed below. Interestingly we find that leptogenesis is
not consistent with the earlier model based on CSD3 vacuum alignments, which is a
significant motivation for considering the new model based on CSD2. Additionally, we
explicitly show the superpotential leading to the CSD2 vacuum alignments and the origin

of the hierarchies between the flavon VEVs. This chapter is primarily derived from [2].

3.1 The model

3.1.1 Overview of the model

The symmetry of the model is Sy x SO(10) x Z§ x Z3. The model has a gauge sym-
metry SO(10) which is the GUT symmetry. The symmetry Sy is the flavour symmetry
which gives the specific CSD2 structure to the fermion mass matrices. The ZF is an R
symmetry while the other three Z,’s are shaping symmetries. Furthermore, we assume
that the GUT theory is invariant under trivial C'P symmetry, which is spontaneously
broken by the complex VEVs of the flavons.

We present table 3.1 with the Higgs, flavons and matter superfields relevant to the
Yukawa sector. The superfield 1) accommodates the full Standard Model fermion content
and is a spinorial 16 of SO(10) and a triplet 3’ of Sy. The superfields H féd contain the
MSSM Higgs doublets H,, q respectively. The Hig breaks SO(10) — SU(5) and gives

o7
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_ Representation ' Representation
Field g "sot0) | z8 zo zo z | | 5, so00) [ 28 20z z
v |3 16 1 0 0 0 oo |31 0 2 2 0
Hy |1 10 |o o o o] % |3 1 0 2 0 0
gL 11 10 o o 2 of| % |3 1 0 0 2 0
Hyg | 1 16 0 0 0 0]]|¢sr |3 1 0o 0 0 1
Hg |1 16 0 0 1 0 or | 3 1 0o 1 0 1
Hyy' |1 45 0 0 1 0 ¢ 11 0 3 0 2
Hpy? |1 45 0 2 0 0 e |3 1 0o 0 1 3
HE*L 1 45 9 0 9 0 (b) Flavon superfields.
¢ 11 0 0 2 0

(a) Matter and Higgs superfields.

Table 3.1: Superfield content of the model that relates directly to the low energy fields.

masses to the right-handed neutrinos. The superfields on the adjoint 45 representation
Hys's break SU(5) — SM and introduce the necessary Clebsch-Gordan (CG) relations
to generate correct charged lepton and down quark masses. The flavon superfields
¢;, with ¢ = 1,2,3 break S; completely and they acquire the specific CSD2 vacuum
alignments [202] given by

0 0
(1) =vi | 0 |, (p2)=w2| 1 |, (d3)=w3| 1 |, (3.1)
2 -1 0

with |v1] < |v2| < |vs]. In this chapter, CSD2 is simply used as a label which refers
to this particular flavon vacuum alignment in equation 3.1. The superpotential that
fixes the CSD2 flavon alignments is presented in section 3.1.3, while the superpotential

responsible of the hierarchy between the flavon VEVs is shown in section 3.1.4.

The symmetries of the model and the superfield content in table 3.1 lead to a very
specific mass structure for the Standard Model fermion fields. The up-type quark and

the neutrino Yukawa matrices arise from terms like

Hio(¥e1)(¥o1) + Hipg(¥o2) (Ye2) + Hig(¥es)(Yes), (3.2)

where the brackets denote Sy singlet contractions. Similarly to chapter 2, each term in
equation 3.2 generates a rank-1 matrix. Therefore, the hierarchy between the flavon
VEVs gives a natural explanation of the hierarchical Yukawa couplings, i.e. 1y, ~
V3 /ME&urs Yo ~ v3/MEyr and y ~ v3/ME&, . In this chapter, we explicitly show a
superpotential which fixes the hierarchy between the flavon VEVs |v1| < |v2| < |v3] in
section 3.1.4. The right-handed neutrino Majorana masses are similar to equation 3.2
but replacing H{j, by HigHs. The right-handed neutrino mass matrices have the same

structure as the Dirac neutrino masses since they are dictated by the same flavon vac-
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uum alignments. This fact gives rise to exactly the same structure for the left-handed

neutrino Majorana masses after the seesaw mechanism, as shown in section 3.2.3.

The down-type quark and the charged lepton Yukawa matrices emerge from terms like

H{ (1) (1ha) + Hifg (Vo) (o) + Hig(wos) (eps) + Hig(vih)zds,  (3.3)

where the brackets denote Sy singlet contractions apart from the last term in which
the 3’ contraction is necessary to subsequently combine it with the flavon ¢3 into a
singlet. These Yukawa matrices have a different structure compared to the up sector,
due to a mixing term between the flavons ¢ and ¢o, which explains why there is a
milder hierarchy in the down and charged lepton sectors compared to the up one. It also
introduces a texture zero in the (1,1) element of the down Yukawa matrix, reproducing
the GST relation [144], i.e. the Cabibbo angle is predicted to be 87, ~ \/ya/ys.

With this setup the full Standard Model fermion masses are generated in a very specific
and predictive way, this being the main aim of chapter 3. Furthermore, all the messen-
ger superfields and adjoints obtain a GUT scale mass after GUT symmetry breaking.
The triplets inside the Higgs superfields Hfdd also get a GUT scale mass through the
Dimopoulos-Wiclzeck mechanism [190-192], as shown in section 3.1.5. This way we

make sure that at low energies, only the MSSM remains.

3.1.2 Effective Yukawa structure

Representation Representation
Field g "soaoy [ 22z zo z| | s, soa0) |28 2z, 2, z
X1 1 16 1 2 2 0 Xy | 3 1 2 0 0 2
X1 1 16 1 0 2 0 X 2 1 2 2 0 2
X2 1 16 1 2 0 0 X 2 1 2 0 1 1
X2 1 E 1 0 0 0 X1 1 2 0 2 2
Xs | 1 16 1 0 2 0 X 1 2 3 3 0
X3 1 16 1 2 2 0 Xy | U 1 2 3 2 2
1 16 |1 0 1 0 Zy |31 2 3 0 2
x¢ |1 16 1 2 3 0 3 |31 2 2 2 0
_ — Z 1 1 2 3 2 3
Xu 1 16 2 0 0 O 7 1 1 5 0 0 o0
Xu 1 16 o 0 2 0
Xd 1 16 0 0 1 0 (b) Driving superfields.
Xd 1 16 2 0 1 0
(1 1 45 2 0 3 0
(2 1 45 0o 0 3 0

(a) Messenger superfields.

Table 3.2: Superfields that appear only at high energies. Together with the ones in table 3.1
they list the complete field content of the model.
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We now present the effective Yukawa terms in more detail, with the full field content of
the model listed in tables 3.1 and 3.2. The superpotential relevant to the Yukawa terms,
including terms O(1/Mp), is given by

+ +

(HIEZ)? (HEZ)? (HIEZ)?
L B W) () | Hiy(62)(¥62) | Hi(463) (Y6s)

2 2 2

(Hyp?) (H™) (H") (3.4)
n HigHyg (1) (Y1) n HigHig(1d2) (o) n HigHig(1é3)(¢3)

Mp (HE)® Mp (HIFZ)? Mp (HLZ)
n HE (p)3(¢3)

where ()3 means a 3’ contraction, while ( ) without any subscript means the singlet
contraction of Sy and we have ignored all the O(1) dimensionless couplings for simplicity.
There are plenty of terms suppressed by MI% and they are expected to make small mass
contributions of O(MZ&;7/M%) < 1075, and therefore negligible. The most important
correction, of @(107%), is made to the up-quark Yukawa coupling. In section 3.3 we
perform a fit ignoring these corrections, however from table 3.5, we see that this contri-
bution is of comparable magnitude. If they were to be included, they would only shift
the fit parameters and therefore we can safely ignore them. The largest contribution to

the electron Yukawa coupling is of O(107%) and is therefore negligible.

The diagrams that generate the terms in equation 3.4 are shown in figures 3.1-3.3, where

they include the messengers x listed in table 3.2.

(HY?) \ (HY") (HY?) o (H7) (H?) o (H7)
v ox1 x1 o x1o ox1 v YoXe X2 X2 Xe ¥ voX3 X3 X3 X3 ¥

o hlf 10 G?l o) Hyj, Q?Q o3 Hyj Qfs
. . .
1 1 1
1 1 1
1 1 1

Figure 3.1: Diagrams coupling ¥ to Hiy. When flavons acquire VEVs, these give the up-type
quark and Dirac neutrino Yukawa matrices.

LHSY) L (HEY)
3 X4

(HY7)  (H5%)
YooX1 ox1 X2 Xe W VX2 XS

é1 Hij

Y
[V}
S
no
i -
————
no

@3 Hi @3
X X
1
1
1
1

X5 X2 ¥ ¥ X3 X3 v

Figure 3.2: Diagrams coupling v to H{,. These generate the down-type quark and charged
lepton Yukawa matrices.

In section 3.2, we present the renormalisable terms involving the heavy messenger fields
in table 3.2.
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2 Hi Hg ¢ 2 Hy Hg ¢ 3 Hy Hyg ¢

E Wz Y Wz E E Wz Y Wz E E Wz ' Wz E

! 7< 45 >@ < 45 7> ! “ ! 7< 45 >@ < 45 7> ! “ ! 7< 45 >@ < 45 7> ! “
v oox1r o xiTx o xan v Y X2 X2 TXx2 X2 ¥ YoXs XsTXx3 Xs ¥

Figure 3.3: Diagrams coupling ¢ to Hyg. These give the right-handed neutrino mass matrix.

3.1.3 Vacuum alignment

We introduce the flavon superpotential that fixes the symmetry breaking flavon VEVs
in equation 3.1. To derive these alignments, we need to add a set of driving fields,
listed in table 3.2, which couple to the flavon fields in table 3.1. We follow a sequence
of steps using supersymmetric F-terms equations to align all the flavons. The letter
subscript (S,U,T and t) in the flavons refers to the symmetry preserving generator,
where t correspond to T multiplied by a Z3 generator which is not part of Sy. The
alignments depend on the Sy representation of the driving field, denoted by its subscript
Xi, Z;. The superpotential is given by

Wy ~ Xs(ds,0)* + Xo(or)? + X1(d0)? + X1drde + X1 drds + Xogids

) (3.5)
+ Zaosyon + 6om) + Zut (S~ 0n).

where we have ignored dimensionless O(1) parameters since they are not relevant. Solv-

ing the F-term equations from the driving fields fixes the flavon VEV alignments, while

the F-term equations from flavons forbid the driving fields from getting a VEV.

The three Sy generators, working in the T-diagonal basis as in appendix A.1, are

) -1 2 1 0 0
S = 3 -1 , T=10 w? 0 for 3 or 3, (3.6)
2 -1 0 0 w
and
100 . -1 2
U=F|0 0 1], SU:US:$§ 2 2 -1, for 3,3 respectively.
010 2 -1 2
(3.7)

The first three terms in the superpotential in equation 3.5 couple the square of a flavon

triplet to a single driving field X;. The different representations of X; result on distinct
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flavon alignments such that they are fixed as

1
Xy (psv)? — w" |, (3.8)

w2n
1 1

Xo(¢r)? — o, | —2wm |, (3.9)
0 —2uw2n
0 0 2

X1(¢r)? — ol,l1],] 2z , (3.10)
1 0 —1/z

up to an integer (n € Z) or continuous (z € R) parameter, with w = €27%/3,

The (¢r) has four different solutions. The last three solutions are related by a T' trans-
formation. From these three, the one without any w is related to the first solution by an
S transformation. Since all the solutions for (¢r) are related by Sy transformations, we
may choose (1,0,0)7 without loss of generality. Moreover, we may notice that the align-
ments for (¢s ) can be brought to the standard (1,1,1)7 form by a T transformation
which does not affect the (¢7) alignment.

Finally, the (¢;) has three different solutions. The third solution is removed by the fourth
term in the superpotential 3.5 which requires orthogonality with (¢r). This fixes the
solution to be either (0,0,1)” or (0,1,0)”, which are related by an U transformation.
Since the so-selected alignments of (¢r) and (¢s) do not change their form (up to
possible overall sign) under application of a U transformation, we choose (¢;) o (0,0,1)7

without loss of generality,.

The fifth and sixth terms in equation 3.5 fix the alignment of ¢3 to be orthogonal to
(¢¢) and (¢7) so that it is fixed to be (0,1,0)7.

The term Zy (¢psudr + {P2) in equation 3.5 involves

(psu) - (or))y o< | =11, (3.11)
1

and fixes (¢9) into this direction. Equivalently, the last term in the superpotential 3.5

contains the product
((d2) - {¢3))y o 0], (3.12)
2

and fixes (¢1) into this direction. The ¢ field does not add anything to the flavon

alignments but it does play a role in driving the hierarchy between the flavon VEVs as
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explained below in section 3.1.4.

In summary, the F-term equations from the driving fields X;, Z; fix the alignments to
be

1 1 0
<¢S,U> =1 1 |, {(¢pr)=v2] 0 |, (pt)=w] O
1 0 1
(3.13)
1 0 0
<¢1> =N 0 ) <¢2> = V2 1 ) <¢3> = U3 1 ,
2 —1 0

where the last three flavons couple to the matter superfield 1) and determine the fermion
mass matrix structure. The flavon VEVs v; are, in general, complex, and spontaneously

break the assumed C'P symmetry of the high energy theory.

3.1.4 Symmetry breaking

The model gives a natural understanding of the Standard Model fermion masses through
the hierarchy between the flavon VEVs |v1| < |va| < |v3]. Here, we show the symmetry
breaking superpotential that produces such hierarchy between the VEVs,

?3 Z@ ¢z2
Mp

Wiy ~ Zs€ <¢1_¢2¢3> 5 OT

Mp + Z-— <¢1¢2 —

o o)

+Z (MéUT + GF+ (Hy P+ (HE? + 2+ 22+ O(l/Mp)>

)

HeH
+HE" ((Hié’y)2 + AZ)((HX?Z)Q +(HELY?) 4 HEY 364;6 +DT +0(1 /Mf;)) ,

(3.14)

where we have ignored dimensionless couplings for simplicity.

The first term of equation 3.14 also appears in the alignment superpotential in equa-

tion 3.5 and fixes
VU3

1
), (315)

|Riv1| =

where K1 denotes an effective dimensionless coupling coming from the ones in the su-
perpotential. Note that we have written this equation as only fixing the modulus. This
happens due to the appearance of the field £. We assume that there are two copies of
that field, which get a VEV with an arbitrary phase. This phase, together with the

dimensionless couplings for each term, does not allow to relate the phases of the v;.
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The second term of equation 3.14 fixes the VEVs

- U3
K2 V1V2 = 7M Vi
P =
(A

(3.16)
where ko denotes an effective dimensionless coupling coming from the ones in the su-

perpotential. This equation, together with the previous one, require a hierarchy in the

v;’s. Specifically it requires v 3 > vy.

The field Z does not obtain a VEV to comply with the F-term equations from the

flavons.

The second line of equation 3.14 drives the linear combination

L0+ (2)2, (3.17)

My ~ Y vF + (B + (HE)

i
where we assume that the sum of v; and the all adjoints get a GUT scale VEV. The
field Z does not get a VEV due to the F-term equations coming from the adjoints. This
equation does not fix the phases of the VEVs. We assume that the (H. ZVE)’Z> are real
while the phase of the sum of flavon VEVs is unconstrained (only related to the one of
(¢) which does not appear at low energies). We assume that the flavons obtain a VEV

that break the C' P symmetry with an arbitrary phase.

The third line of equation 3.14 drives

D (g ) ~ STV )

(HgH1e)

1
Bl @y

where we assume that the <Hig’y> is real. The term DT appearing in equation 3.14
represents all the terms involved in the doublet-triplet splitting (shown in section 3.1.5)
that do not contribute to the F-term equation, but they are there nonetheless. The F-
term equations coming from the adjoints Hig’y force the messengers x,, 4 to also acquire

a VEV and does not change any low energy phenomenology.

The F-term equations previously discussed can give a VEV to the adjoint fields but do
not fix their direction. The adjoint fields can get a VEV in any SM preserving direction.
In general they can be written as a linear combination of the U(1) x,y directions. We do
not assume any specific direction for the VEVs (H. g’X’Y’Z, ¢). We assume that (H5 %)
lies in the U(1)p_y direction'. We assume that the (Hzg 16) lie in the right-handed

neutrino direction.

Using the first three equations 3.15-3.17, we may find that the flavon VEVs are given
by
VE1koMp Ko

Tt can be written as the linear combination B — L = (=X +4Y)/5.

vy = R3MGUT- (3.19)
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In this way, if we assume that &7 ~ 0.1, ko ~ 10, k3 ~ 1, we have
v~ 0.001 MGUT; Vg X~ 0.1 MGUT7 vy X~ MGUT; (320)

which generates the hierarchy between the fermion families. We note that the hierarchy
between v and wo is given by the structure of the F-term equations. The hierarchy
between vy and w3 is assumed and realized by a much milder hierarchy between the

couplings in the superpotential.

Using equation 3.16 and knowing that vz > vy 2, we approximately get

v3
K ~ 3.21
K2 V102 Mp ( )
which also fixes the VEV phases to be
arg vy + arg vg ~ 3 arg vs. (3.22)
In terms of the physical phases, which we define in section 3.2.2 this means
n o~ 4y’ — 2, (3.23)

and, therefore, there are only two free physical phases.

3.1.5 Doublet-triplet splitting

We need to address the fact that the Higgs superfields Hﬁ’)d and Hyg 15 contain SU(2)
doublets and SU(3) triplets. The triplets have to be heavy since they mediate proton
decay, while two of the doublets need to remain light so they can be associated to the
MSSM Higgs doublets. This is known as the doublet-triplet splitting problem and can be
solved using the Dimopolous-Wilczek mechanism [190-192]. In our case this mechanism
is in place since we assume that (HE %) lies in the U(1)p_1, direction. Furthermore,
there are extra pairs of doublets, and they are required to be heavy to preserve gauge
coupling unification. Using the fields in tables 3.1-3.2, we may write the superpotential

involving the Higgs fields (ignoring dimensionless parameters) as

Wy = H " (Hfonlo + (2o + Higxu + H167<d)
+ HigH{Xu + HisHigxa + HisHiglr + ¢ (C1¢2 + XuXu + XaXd) (3.24)

X, Y,W,Z
+HB—L HEHEHfo + HlﬁHlGHﬁ) + g e (H45 )4
45 Mp Mp 10 wiMj‘s .
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After integrating out the messengers (;, x;, the superpotential becomes

H Hi 2 HX7Y7W72 4
WH — HZLB;*L I{lHi,LOH{lO + Ko ( 16 216) + K7H?OH1d0 ( 45 I )
() Mp
HSHTGHEH{“‘O n H4H1—GH1—6H{10 n K5H16H16H}‘0 K6H16H16Hf10>
(€ Mp Mp (©
(3.25)
We remember that the magnitude of the VEVs is assumed to be
(Hie) = (Hig) = (Has) = Mgur- (3.26)

We define the dimensionless parameters z = Mgyr/ () and y = Mgyr/Mp and denote
the up (down)-type doublet inside each Hig as 2,4 (H %(d)), and similarly for the triplets.

Then, the mass matrix for the triplets can be written as

3U(Hil0) 3U(Hfl0) 3u(HE‘)

3d(Hfl0) K1 0 K4y
My~ g ) 0 e oo | Maur (3.27)
3d(H16) R5Y RgZ HQZ2

The mass matrix for the triplets in equation 3.27 has approximate eigenvalues given by
mr ~ kiMqur, kiMaur, kez*Maur, (3.28)

such that the triplets are at the GUT scale if one requires k1 ~ K922 ~ 1.

The mass matrix for the doublets is given by

2u(Hﬁ)) 2u(HiiO) 2u(Hﬁi)

24(H{y) [ —r7y’ 0 K4y
Mp ~ Meaur, 3.29
D 2d(H%0) 0 H7y4 K32 GUT ( )
2,(Hg) K5Y KgZ Koz?
with approximate eigenvalues
mp ~ —y*Mgur, keksz*Maur, koz*Meaur. (3.30)

2

In this case, two doublet pairs are at the GUT scale if kgk322 ~ k222 ~ 1. Furthermore,

there is a p term generated by

w~ y*Mayr ~ 1 TeV, (3.31)
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which happens at the correct order.
The light MSSM doublets are given by

K4y K5Y
Hy, ~2,(Hj) + 2u(H{lO)v Hy~ 2d(HflO) + 2u(Hf0>v (3.32)
R3z KgZ
so that the second term is suppressed to be < 1072 and we may safely assume that the

MSSM Higgs doublets H,(g) lic only inside H{5".

3.1.6 Proton decay

One of the characteristic features of GUTs is the prediction of proton decay. It has not
been experimentally observed and the proton lifetime is constrained to be 7, > 1034

years [31].

Within the model, proton decay can be mediated by the extra gauge bosons of the
GUT symmetry and by the triplets accompanying the Higgs doublets. In SUSY SO(10)
GUTs, the main source for proton decay comes from the triplet Higgsinos. The decay
width is dependent on SUSY breaking and the specific coupling texture of the triplets and
determining it exactly lies beyond the scope of this chapter. In general the constraints are
barely met when the triplets have a mass at the GUT scale [194-196], and in section 3.1.5

we have shown this is our case.

Furthermore, the existence of additional fields in the model may allow proton decay to
arise from effective terms of the type

(X)

9QQQL—. (3.33)

M
Such terms must obey the constraint g (X) < 3 x 10° GeV [196]. In our model, the
largest contribution of this type comes from the term

- XY
(Hip “(Hiy" )?)
T

(Mgur)?

10
e ~ 10" GeV. (3.34)

Yy

= (X)=

The constraints are met when g < 0.3. With an O(1) g parameter, the contributions
coming from these terms are the same order as the ones coming from the Higgs triplets.
In this model, proton decay complies with experimental constraints but lies fairly close

to detection.

3.2 Detailed Yukawa structure

In this section, we introduce the fully detailed Yukawa structure. The complete super-

field content of the model is given by the superfields in table 3.1, together with the
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messenger superfields in table 3.2. With the symmetries of the model and these super-

fields, we may write the superpotential relevant to the Yukawa terms, up to O(1/Mp),
¢ - W W ZrrZ - u U N HEHE
Wy = Z A (Vha) Xa + (A, Has + A5 His)XaXa + MNaXaXaHiy + Ay X“X”‘TP
a=1,2,3

(Vy)y ¢3HTy
Mp

(3.35)

+ Z (XbXb(/\b His + N Hiz) + )‘bXbXleo) + Aoxax2 Hip + A
b=2,3

where (), ()3 means an Sy singlet or 3’ contraction respectively. The \’s are dimen-
sionless and real coupling constants, due to C'P conservation, and are all expected to be

o(1).

After integrating out the messengers y, we obtain the superpotential

) 0D (6 (0a) (6 0a)) 1urr . D2 (0 (6a)) (8 (6a)) AY
WY‘a;g((W (HIT) + 72 ()2 0 O () + 32 () 2 My ><H16>)
(3 e el NS (8 (60)) (4 (6)
2 O+ A (g T NI HI) N (HE) Y (HE) + 3 (HE))

bl ) >) H

(3.36)

that generates all the Standard Model fermion masses. The structure of the mass ma-
trices is dictated by the flavon alignments in equation 3.1. Furthermore, the adjoints
45 provide the necessary CG coefficients to distinguish between each fermion type and

give the correct masses to Standard Model fermions, as we show in section 3.2.2.

3.2.1 Renormalisability of the third family

In equation 3.36, all the terms suppressed by (H. XYWZ)

involve integrating out the
messengers by assuming Mgy > v;. This naive integration is not possible for the third
flavon since it has a much larger VEV v3 ~ Mayr. Let us single out the terms in Wy
involving these fields. Ignoring O(1) couplings, and after the fields get their VEV, the

relevant terms are
3 _ _
W;(/) ~ v3th3X3 + (H57) X3Xs- (3.37)

Naively, one would interpret 13 as the set of third-family particles, but the first term in
equation 3.37 generates mixing with 3. To obtain the physical (massless) states, which
we label ¢, we rotate into a physical basis (¢3, x3) — (t, x)

<HVV’Z>t+1}3X —03t+<HW’Z>X

2
thy = 45 . . X3 = . 45 I U§+<HII5/,Z> . (3.38)
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Physically, it may be interpreted as follows: inside the original superpotential Wy lie

the terms )

Wy D xsxsHip D 5 tt Hip, (3.39)

W,z
v3 + (Hyy”)

which generate renormalisable mass terms for the third family at the electroweak scale.

3.2.2 Mass matrix structure

The superpotential in equation 3.36 generates all the Standard Model fermion mass
matrices. The structure of the mass matrices is fixed by the flavon VEV structure
shown in equation 3.1. We may redefine the dimensionless couplings to obtain the mass

structure of the Standard Model fermions at low energies

(A0)?[val?
Yo =N T :
© TNV (HY) + N (HE) Y (HIY) + M (HE) e
= (A9)? 032 |
(A$)2v2 + NV (HIY) + MF (HE) QY (HIY) + AF (HE)]ue
S = A (A)?[val?
© DO () + N HE LN (HY) + M (HE)] e
o — (A9)?[vs]* |
(AD)208 + (2N (YY) + 2F (HE) LY (HIY) + A (HE)]e
y5 = 2 (X5)° v |
NS (HE) + A (DL (HE) + AY (HE)]ee
g5 = Al (A5)° o3/’ |
(A$)203 + A (HZE) + Y (HI LA (HES) + AY (H5)ee
yg: >‘62l X /gX Y 1(3\3)2‘”)2('2 X Y (gY N, (3.40)
g (His) + Ay (Hys)lo[Ag (His) + A5 (Hys)lae
yg: d (A§)2|U3’2 :

T(A9)203 + N (HE) + N (HE) N (HE) + A (H))ae
/\‘f)\glvlvgl

AV (HY) + M (HE) Lyee [N (HY) + M (HE) Lyee”
APAG [v1vg)|

Z/f2 = )\512 {

d d
Vi = N N 7 (e DY (HE) + 3 () g e
VR _ e Vs (AD)?[val?
© T Mp NV (HE) + N (HE)Z
Y (A)?vs 2 |
Mp (X)203 + Y (HI) + M (HE))%
yP _\d U3

tMP’
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where a = 1,2 and <H£’Y’W7Z>

f denotes the adjoint VEV with the corresponding CG
coefficients for each Standard Model fermion f. This allows for each y, M parameter
in equation 3.40 to be independent. The VEVs (HXY') obtain a VEV in an arbitrary

SO(10) breaking direction and they need to be different from one another.

For a better understanding we show an explicit example. Let us assume that <H£’Y>

is aligned in the U(1)x,y direction respectively with an Mgy magnitude. In this case,

the effective Yukawa couplings yg’d would be

(A3)° 2l s — 2 (A9)°[val”
BAY = AV2IAF + A MG T AT AT /6N + AL /8 MGy
(3.41)
where the coefficients multiplying each A**Y" are the U(1) x,y charges of the correspond-

ys = A

ing Standard Model field. Since the /\g(’y appear with different coefficients in yg’d, we can
use them to obtain a arbitrarily different effective Yukawa coupling for charged leptons

and down type quarks.
Assuming that all the adjoints have real VEVs, the physical phases are

n=2argv; —2argvy
n = 2arguvs — 2arg vy (3.42)

v = argvs — 2arg vs,
while all the y's and M’s are real.

With these definitions we may write the fermion mass matrices

01 1 00 0 000 0 1
M€jvg =y5e™? 11 4 2| +y5(0 1 1|+ w5 |0 0 o] +y7e7 [0 2 0
120 01 1 001 100
01 1 00 0 000 001
Mg =ye™? 11 4 2| 4980 1 1|+ v 0o 0 of +y77 |0 2 0
120 01 1 001 100
120 00 0 00 0
M%v, = |2 4 o +y5]0o 1 1]+ %0 0 o],
00 0 01 1 001
120 00 0 00 0
Mp/v,= yte |2 4 o +u5]0 1 1|+ 4 |0 0 o],
00 0 01 1 001
120 000 00 0
Mp = M2 4 o +MF|o 1 1| +ME o 0 0
00 0 011 001

(3.43)
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We note the remarkable universal structure of the matrices in the up and neutrino

sectors, which differ from the down and charged lepton sectors.

The y and M parameters are all free and independent while there is a constraint in the
phases
n o~ 4n — 27, (3.44)

as shown in section 3.1.4. We have in total 18 free parameters that fix the whole spectrum

of fermion masses and mixing angles, as discussed in section 3.3.1.

In section 3.1.4, it is shown that the flavons get a VEV vy ~ 0.001 Mgy, v2 ~ 0.1 Mgy,
and v3 ~ Mgy, while the adjoint 45 fields and 16 are assumed to get a GUT scale
VEV, i.e. vig’Y’W’Z ~ v =~ Mgur. We assume that all the dimensionless parameters
in the superpotential are O(1), and using tan § ~ 20, the mass matrix parameters are

expected to be

yi ~yy ~ ot ol ~ 1070, s~ g~ ol fuds ~ 1072,
y§ ~ s~ v /vl ~ 1, gy ~ iy ~ cos B uivg fus ~ 1070,
yd ~ s ~ cos B3 Juds ~ 1073, yd ~ s ~ cos B 3 Jvls ~ 0.1, (3.45)
yT ~cos B ug/Mp ~ 1074, M~ v%v%/v&MP ~ 107 GeV,
M~ U%GU%/’UZ5MP ~ 10" Gev, MIE~ v%v%/vZE)Mp ~ 1013 GeV.

These values denote only an approximate order of magnitude for each parameter and are
expected to be different due to the appearance of dimensionless couplings. This applies
specially to the last 4 parameters that come from unknown Planck suppressed physics

and may deviate significantly from our naive expectation.

3.2.3 Seesaw mechanism

Since we have heavy right-handed neutrino Majorana masses, the left handed neutrinos

get a small Majorana mass through the type-I seesaw
m, = —MpMp"(Mp)”. (3.46)

As we see in equation 3.43, the Dirac neutrino masses Mp and the right-handed neutrino
Majorana masses Mpr have the same matrix structure. These are rank one matrices so

that we may write them as
Mp /vy = yie™ 01001 + 15 w205 + y5e™ o303, (3.47)
Mg = M{e™ o107 + M3" 0203 + M{le™ 3],

with
ol =(1,2,0), @I =(0,1,1), ¢ =(0,0,1). (3.48)
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We may always find vectors ¢, such that
&1 ¢ = dij, (3.49)

this way we may write the inverse matrix as

e g 1 o e g
Mp" = EPIAL + VR P22 + R P3P (3.50)
1 2 3

Plugging this into the seesaw mechanism 3.46, we obtain the light effective left-handed

Majorana neutrino mass matrix m, as

(veou)” (3.51)

my = e o1l + 2 papy + pse pspl, with e =
a

We may conclude that the small left-handed neutrino mass matrix has the same universal

structure
1 2 0 0 0 0 0 0 O
my=pe [2 4 0| +p2|0 1 1| +pse™ 0 0 0f, (3.52)
0 0 O 01 1 0 0 1

after the seesaw mechanism.

3.3 Numerical fit

To test our model we perform a numerical fit using a x? test function. We have a set of
input parameters z = {y}", y;j, (8 v, pi,n', v}, from which we obtain a set of observables

P, (x). We minimize the function defined as

=) (W)z, (3.53)

g
n n

where the 19 observables are given by P> ¢ {ij,éq,yu,at,ydﬁ&b,Hfj,él,ye,u,T,Am?j}
with statistical errors o,. This test assumes data is normally (Gaussian) distributed,
which is true for most of the observables except for 053. The atmospheric mixing angle
octant, i.e. 65, < 45° or 65, > 45°, has not been determined yet. Current data favours

045 = 41.6 from Nufit 3.0 [200] and we assume such scenario.

We need to run up all the measured Yukawa couplings and mixing angles up to the GUT
scale in order to compare it with the predictions of our model.? In doing so, we need
to match the SM to the MSSM at the SUSY scale, Mgy sy, which involves adding the

2Note that we are performing the numerical fit in terms of the effective neutrino mass parameters j;
defined in equation 3.52. We are ignoring any renormalisation group running corrections in the neutrino
sector.
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Observable Data Model
Central value lo range Best fit
6%, /° 33.57 32.81 — 34.33 33.53
0%y /° 8.460 8.310 — 8.610 8.452
955 /° 41.75 40.40 — 43.10 41.88
5t /° 261.0 206.0 — 316.0 200.3
ye /1075 6.023 5.987 — 6.059 6.023
Y. /1072 1.272 1.264 — 1.280 1.272
Yr 0.222 0.219 — 0.225 0.222
Am3,/(107° eV?) 7.510 7.330 — 7.690 7.507
Am3, /(1073 eV?) 2.524 2.484 — 2.564 2.524
my /meV 10.94
my /meV 13.95
ms /meV 51.42
> m; /meV < 230 76.31
Q21 /O 134,3
asy /° 6.415
mgap /meV < 61-165 11.10

Table 3.3: Model predictions in the lepton sector for tan8 = 20, Msysy = 1 TeV and
fy = —0.9. The observables are at the GUT scale. The lepton contribution to the total x?
is 1.2. The neutrino masses m; as well as the Majorana phases are pure predictions of our
model. The bound on Y m; is taken from[59]. The bound on mgg is taken from [61].

supersymmetric radiative threshold corrections. This has been done in [199]. At the
GUT scale, the values depend to a good approximation only on 7, and tan 3. A good
fit is found for large 75, which can be explained if tan 8 = 5, as shown in appendix B.
We also need tan 8 < 30 to keep Yukawa couplings perturbative. The best fit is found
for 7, = —0.9 and tan 8 = 20. The SUSY scale does not affect the fit and we choose
Mgysy =1 TeV. The fit has been performed using the Mixing Parameter Tools (MPT)
package [203].

The best fit found has a x? = 11.9. Table 2.3 shows the best fit to the charged leptons
and neutrinos observables. Neutrino data is taken from the Nufit 3.0 global fit [200].
Only the neutrino mass-squared differences are known but the model also predicts the
neutrino masses themselves as well as the Majorana phases. The model predicts normal
ordered neutrino masses and we also give the effective Majorana mass mgg. All the
lepton sector is fitted to within 1o except for the leptonic C'P phase. ¢° is not yet well
measured, although a negative C'P phase is preferred [204].

In table 2.4, we have all the quark Yukawa couplings and mixing parameters for the
minimum y2. The biggest contribution to the x? is coming from this sector, as shown
in figure. 3.4. This figure shows the corresponding pulls for lepton (light orange) and
quark (blue) observables. As we can see, all parameters lie inside the 20 region and the

biggest pulls are in the quark Yukawa couplings.

Table 2.5 shows the input parameter values.®> There are 13 real parameters plus two

3 Assuming the Dirac neutrino Yukawa parameters 3! in equation 3.45, we can compute the right-
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Observable Data Model
Central value lo range Best fit
69, /° 13.03 12.99 — 13.07 13.02
015 /° 0.016 0.016 — 0.017 0.016
03, /° 0.189 0.186 — 0.192 0.186
07 /° 69.22 66.12 — 72.31 70.66
Yu /1076 3.060 2.111 — 4.009 3.253
Ye /1073 1.497 1.444 — 1.549 1.567
Yt 0.666 0.637 — 0.694 0.611
ya /107% 1.473 1.311 — 1.635 1.614
Ys /1073 2918 2.760 — 3.075 3.098
Yb 2.363 2.268 — 2.457 2.238

Table 3.4: Model predictions in the quark sector for tan 8 = 20, Msysy = 1 TeV and 7, =
—0.9. The observables are at the GUT scale. The quark contribution to the total x? is 10.7.

additional phases, a total of 15 input parameters to fit 19 data points, which remarks
the predictivity of the model, not only fitting to all available quark and lepton data but

also fixing the neutrino masses and Majorana phases.
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Figure 3.4: Pulls for the best fit of model to data, as shown in Tables 3.3-3.4, for lepton (light
orange) and quark (blue) parameters.

3.3.1 Parameter counting

In this section we explain and clarify the number of parameters in our model. Clearly at
the high energy scale there are many parameters associated with the undetermined O(1)
Yukawa couplings of the 43 superfields of the model. For example the renormalisable

Yukawa superpotential in equation 3.35 contains 23 parameters alone. Then we must

handed neutrino masses, using the seesaw formula in equation 3.51 and taking the p; values from the
fit, such that M ~ 10* GeV, ME ~ 10! GeV and ML ~ 10 GeV. Only M, has the expected
natural value given in equation 3.45. We remark that right-handed neutrino Majorana masses come
from unknown Planck suppressed physics, which is presumably responsible for the mismatch.
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Parameter Value Parameter Value Parameter Value
Y /1076 3.232 y$ /1074 8.616 yt /1074 2.475
yy /1073 1.580 ys /1072 1.013 o 1.9687
Yy —0.610 ys 0.229 n 0.790m
ylh /107 —7.068 w1 /meV 6.845
yg /107" —8.737 w2 /meV  27.18
yd —2.238 us /meV 42.17

Table 3.5: Best fit input parameter values. The model has 13 real parameters: y*, y&, y¢, u:
and y© and two additional free phases: 7’ and ~. The total x? is 11.9.

add to this all the O(1) Yukawa couplings associated with vacuum alignment, GUT
symmetry breaking and doublet-triplet splitting, many of which we have not defined
explicitly. Despite this, we are claiming that our model is predictive at low energies.
How can this be? The short answer is that most of these parameters are irrelevant for

physics below the GUT scale, as discussed in detail below.

The effective fermion mass matrices generated below the GUT scale are given in equa-
tion 3.43 as function of 18 free effective parameters (remembering the constraint on 7)
that will fix all the fermion masses and mixing angles, including right-handed neutrino
Majorana masses and Majorana phases. This compares favourably to the 31 parame-
ters of a general high energy model, comprising 21 parameters in the lepton sector of a
general three right-handed neutrinos seesaw model [205], plus the 6 quark masses and
4 CKM parameters. However, below the seesaw scale of right-handed neutrino masses,

the effective parameter counting is different again and requires further discussion below.

In order to perform the fit and compare our model with available data, we apply the
seesaw mechanism to write the light effective left-handed Majorana neutrino mass ma-
trix as a function of the new parameters p; in equation 3.51. Therefore, we have 15
effective parameters at low energy (shown in table 3.5) that fit the 19 so far measured or
constrained observables in figure 3.4.* After the fit is performed, the model predicts all
the three light neutrino masses with a normal ordering, a C'P oscillation phase of 200°
and both the Majorana phases, corresponding to a total of 22 low energy observables
which will be eventually observable (10 from the quark sector discussed above and 12
from the lepton sector, including the two Majorana phases). Therefore we see that,
below the seesaw scales, the model contains 15 effective parameters which generate 22
observables, making the model eminently testable, as these observables become better

determined.

4 We need to run up to the GUT scale these observables and, therefore, we need to include SUSY
threshold corrections. The fit is therefore also dependent on 7, and tan 8. As shown earlier, we find a
good fit for 7, = —0.9 and tan 8 = 20.
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3.4 N, leptogenesis

The source of the Baryon Asymmetry of the Universe (BAU)
np = (6.1+£0.1) x 10719, (3.54)

remains unexplained in the Standard Model. One of the most convincing sources for it
is leptogenesis, where the asymmetry is generated through C'P breaking decays of heavy

right-handed neutrinos into leptons, then converted into baryons through sphalerons.

The simplest mechanism to generate the correct BAU, happens when the lightest right-
handed neutrino has C'P breaking decays and a mass of about ~ 10'0 GeV. In our
model, according to equation 3.45, it is the second right-handed neutrino the one that
is expected to be at that scale. When leptogenesis is generated mainly by the decays
of the second right-handed neutrino, it is called No leptogenesis. This has already been

calculated in [206] and we will apply such calculations to our specific model.

3.4.1 General N, leptogenesis

Leptogenesis calculations are done in the so called flavour basis, where the charged
lepton and right-handed neutrino mass matrices are both diagonal. In this basis, the

Dirac neutrino mass matrix is given by

mp = VoL MpUZ%, where

(3.55)
Ve MET MV, = diag(y?,y2,y2)03,  UnMgUL = diag(My, Mo, Ms).

The final asymmetry can be computed using simple approximate analytic equations
derived in [206]. The total and flavoured decay parameters, K; and K, respectively,

can be written as

T
[mpail? (mpmp)ii
Ki :7mySSMMi and Ki:gKia:mySSMMi7 (356)
where the equilibrium neutrino mass is given by
mMS5M ~ .78 x 1073 eV sin? B. (3.57)

The wash-out at the production is described by the efficiency factor (K2, ) that for an

initial thermal N9 abundance can be calculated as

2

2.5
— = (1- Koo) ~2+4 K913 e Kae . (3.58
ZB(KQa)K2a( ¢ » #p(Kaa) taligte (3:58)

H(Kga) =

_ Koq Z]3’(1('204))
2

In the hierarchical right-handed neutrino mass limit, as our model is, the C'P asymme-
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tries can be approximated to

E9 = Z&‘ £ ~ i M2 Im[(mTD)wé (mD)OzEI(mTDmD)Z‘g]
o o 0TI g 2 Mo M3 mg ’

(3.59)

where mq = (mTD mp)az/Moa.

In the regime where 5 x 101 GeV (1 + tan? 3) > My > 5 x 10® GeV (1 + tan? ), the

final B — L asymmetry can be calculated using

K K ﬁ
NE_L ~ [K% 52#/@([(27;) + <€ge % 2e £2T2L> K/(K27_2L/2>] o5 Kie +
27’2l 21'2L
K2u K, _3m
" K _ H K 2 ] Kl,u
+ [}'{27_2l 627'2l H( 27’2L) + (62H KQTQL 627’2L K“( 2’7’2J‘/ ) e +
+ eoy k(Kay) e ¥ Hr (3.60)

where we indicated with TQJ‘ the electron plus muon component of the quantum flavour
states produced by the Ns-decays defining K27_2L = K.+ Ky, and Egrd = E2¢ +e9,. The

final asymmetry, in terms of the baryon to photon number ratio is

Np_p,

e (3.61)
N]}/‘BC

B = 2 Qsph,
where o,p, = 8/23 is the fraction of B — L asymmetry converted into baryon asymmetry
by sphalerons. The photon asymmetry at recombination is (NZ;“)M SSM ~ 78, The
factor of 2 accounts for the asymmetry generated by the right-handed neutrinos plus the

superpartners sneutrinos.

3.4.2 Leptogenesis in our model

Using the matrices in equation 3.43 and the fit in table 3.5, we may calculate the
BAU generated through Ny leptogenesis in our model. The first thing to note is that
the parameters are quite hierarchical so that the rotation angles of the diagonalizing

matrices can be neglected since they only give 1% contributions
Voo ~1, Uy ~diag(e ™/?,0,e /%), (3.62)

and the neutrino mass matrix in the flavour basis becomes
vy etn/2 2y ein 0
mpij =~ | 2yve?  yy e /2 |, (3.63)

0 s yke?
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Also, due to the hierarchical nature of the couplings we may safely assume that the right-

handed neutrino mass parameters are equal to their mass eigenvalues, i.e. Mf‘ ~ M,.

One of the features of the matrix structure in equation 3.63 is an approximate zero in
the (3,1) entry of the Dirac mass matrix, meaning that the wash-out due to 7’s decaying
into the first right-handed neutrino N is suppressed. In terms of decaying parameters,
it implies that K;, vanishes and the last term in equation 3.60 is greatly enhanced since
it overcomes the exponential suppression. The zero in the Dirac mass matrix 3.63 is a
consequence of the CSD2 vacuum alignments; it would not be zero for CSD3 vacuum
alignments and this is why leptogenesis is not possible within the model introduced in

chapter 2. With these approximations, the baryon asymmetry becomes

2a5ph,
nB ~ Njfc k(Kar) €27, where
vy
(3.64)
(y5)*vs 3 My (y5)® o
KQT = Wj\f% and €or = SIN 7N gﬁg 9 Sin B

We note that ' is identified with the leptogenesis phase. Using equation 3.51, we may
write the neutrino Yukawa couplings as y* = /e M2 /v, so that

3 Quph fi2 pi3M>
~ sip gl 5 Yop
np ~ sinn 87]\7;"60 K (mi\/[SSM> 2 (3.65)

where we note that the only free parameter is Ms. Using the parameters from the fit,
in table 3.5, the correct BAU is generated when®

My ~ 1.9 x 10! GeV. (3.66)

From equation 3.45 we see that this is the natural value for the second right-handed
neutrino mass, so that the model naturally explains the origin of the BAU through N,

leptogenesis without any need for tuning.

3.5 Summary

We have constructed a SUSY GUT of flavour based on the symmetry Sy x SO(10) x
Z3 x Zf that is relatively simple, predictive and fairly complete. The Higgs sector of
the model involves two SO(10) 10-plets, a 16-plet and its conjugate 16 representation,
and three 45-plets. These low dimensional Higgs representations are all that is required
to break the GUT symmetry, yield the Clebsch-Gordan relations responsible for the
difference of the charged fermion masses, and account for heavy right-handed neutrino

Majorana masses. In order to account for the hierarchical mixing structure of the Yukawa

5 My, has been computed numerically, including the rotation angles of the diagonalizing matrices in
equation 3.63.
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matrices, we also need a particular set of Sy triplet flavons with hierarchical VEVs and
particular CSD2 vacuum alignments, where both features are fully discussed here. To
complete the model we also require a rather rich spectrum of high energy messenger and
driving superfields, which, like most of the Higgs fields, do not appear in the low energy

effective theory.

We highlight and summarise the main successes and features of the model as follows:

e The model is successfully built with an SO(10) gauge symmetry where all of the
fields belong to the small “named” representations: fundamental, spinorial and

adjoints; this could be helpful for a possible future string embedding.

e It contains a superpotential that spontaneously breaks the original symmetry:
Sy x SO(10) x Z3 x Z — SU(3)¢ x SU(2)r x U(1)y x ZE. The model also
spontaneously breaks C'P.

e The S, breaking superpotential that yields the CSD2 vacuum alignment is fairly

simple.

e All the GUT scale parameters are natural and ~ O(1), explaining the hierarchy of
the low energy parameters, where the family mass hierarchy is due to the derived
hierarchy of flavon VEVs |v1| < |v2| < |vs], rather than by Froggatt-Nielsen.

e The model contains a working doublet-triplet mechanism, that yields exactly two
light Higgs doublets from two SO(10) Higgs multiplets, respectively and without
mixing, apart from the p term which is generated at the correct scale. It also has

well behaved proton decay.

e The model naturally generates sufficient BAU through Ny leptogenesis, which fixes
the second right-handed neutrino mass My ~ 2 x 10" GeV, in the natural range
predicted by the model.

e At low energies, the model contains 15 free parameters that generate 19 presently
constrained observables so that it is quite predictive. The model achieves an
excellent fit of the Standard Model fermion masses and mixing angles, with x? =
11.9.

We find it remarkable that all of the above can be achieved consistently within a single
model. It contains 43 supermultiplet fields, which is the minimal number for any such

complete model in the literature so far.

Despite the above successes of the model, it also has a few drawbacks. It does not explain
SUSY breaking, and it relies on specific threshold corrections. Even though it has an
almost complete UV completion, it still relies on O(1/Mp) terms for the right-handed

neutrino masses. Indeed M; and Ms apparently do not have such natural values as
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M>, and we are forced to explain this away by appealing to the unknown physics at the
Planck scale. The symmetry breaking superpotential gives VEVs to most of the GUT
breaking fields but it does not drive all of them. Also we do not address the strong C'P
problem, inflation or Dark Matter (DM) (which may in principle be due to the lightest
SUSY particle, stabilised by the R-parity). Indeed we have not considered the SUSY
spectrum at all. Such issues are beyond the stated aims of the present thesis and the idea
of this chapter is to propose a complete grand unified theory of flavour and leptogenesis,
consistent with the data on quark and lepton masses and mixing parameters, in which
the three families of quarks and leptons are unified into a single (3’,16) representation
of Sy x SO(10).

Importantly, the model can be tested due to its robust predictions of a normal neutrino
mass ordering, a C'P oscillation phase of 200°, an atmospheric angle of 42° in the first
octant and a neutrinoless double beta decay parameter mgg = 11 meV, with the sum of
neutrino masses being 76 meV. These predictions, together with the other lepton mixing
angles given earlier, will enable the model to be tested by the forthcoming neutrino

experiments.



Chapter 4

SU (5) grand unified theory with

A4 modular symmetry

Given the success of chapters 2 and 3, we aim to build a new model based on supersym-
metric SU(5) in 6-dimensions. In this chapter, we include extra dimensions for several
reasons. First, we choose to compactify the two extra dimensions on a T?/Z5 orbifold,
in which the tetrahedral symmetry of A4 arises naturally and plays the roll of the flavour
symmetry. Furthermore, we show that, if there is a finite modular symmetry, then it

27/3 or 7 = w + 1, where we focus on the

can only be A4 with fixed modulus T =w =¢
first possibility. Secondly, the GUT symmetry is broken to the Standard Model by using
GUT-symmetry violating boundary conditions on the orbifold compactification and the
doublet-triplet splitting problem is easily solved by leaving only the light Higgs doublets
after orbifolding. All these features reduce significantly the number of superfields, the
structure of the Yukawa matrices is now dictated by modular forms and there is no
need for alignment superpotentials since the flavon alignments are fixed by the orbifold
boundary conditions. The contents of this chapter are primarily established from the

work in [3].

4.1 Motivation

It is well known that orbifold GUTSs in extra dimensions (ED) can provide an elegant
explanation of GUT breaking and Higgs doublet-triplet spitting [120]. Similarly, theories
involving GUTs and flavour symmetries have been formulated in ED [123, 126, 165, 168,
173, 207-209]. The extra dimensions can help to understand the origin of the discrete
non-Abelian group symmetry, such as A4 and Sy, which may then be identified as a
remnant symmetry of the extended Poincaré group after orbifolding, as discussed in

section 1.7.3.

81
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Some time ago it was suggested that modular symmetry, when interpreted as a family
symmetry, might help to provide a possible explanation for the neutrino mass matrices
[210, 211]. Recently it has been suggested that neutrino masses might be modular forms
[212], with constraints on the Yukawa couplings. This has led to a revival of the idea that
modular symmetries are symmetries of the extra dimensional space-time with Yukawa
couplings determined by their modular weights [213-218]. However to date, no attempt
has been made to combine this idea with orbifold GUTs in order to provide a unified

framework for quark and lepton masses and mixings.

In this chapter, we present the first example in the literature of a grand unified theory
(GUT) with a modular symmetry interpreted as a family symmetry. The theory is based
on a 6-dimensional (6D) supersymmetric SU(5), where the two extra dimensions are
compactified on a T5/Z9 orbifold. Such constructions suggest an underlying modular A4

27/3 or 7 = w + 1, and we choose to construct

symmetry with fixed modulus 7 =w =e
the model based on the first possibility 7 = w. This is one of the main differences
of the present chapter as compared to recent works with modular symmetries which
regard the modulus 7 as a free phenomenological parameter [212, 215]. We construct a
detailed model along these lines, where the brane fields on the fixed points are assumed
to respect a generalised C' P symmetry A4 X Zo which leads to an effective y— 7 reflection
symmetry at low energies, implying maximal atmospheric mixing and maximal leptonic
CP violation. The model introduces two triplet flavons in the bulk, whose vacuum
alignments are determined by orbifold boundary conditions, analogous to those used for
SU(5) breaking with doublet-triplet splitting. There are also two right-handed neutrinos
on the branes whose Yukawa couplings are determined by modular weights. The charged
lepton and down-type quarks have diagonal and hierarchical Yukawa matrices, with
quark mixing due to a hierarchical up-quark Yukawa matrix with high modular weight

to provide quark C'P violation.

4.2 Orbifold T?/Z, and symmetries

4.2.1 Review of modular transformations

We presented the general theory of modular transformations and modular forms in
section 1.7.4. For completeness, we remind that the modular group I' = PSL(2,2) is
generated by

S:t— -1/t and T:7—>71+1, (4.1)

satisfying the relation
I~ {S T|S*=(ST)* = 1}/{+1}, (4.2)

where the mod out by {£1} reflects the fact that an SL(2,Z) transformation on the

modulus parameter 7 and its negative are equivalent, see equations 1.77 and 1.78. The
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finite modular group I'y is realized when the generator T also complies with TV = 1,
i.e.

Ty ~ {S,T|S% = (ST)® =TV =1} /{+1}. (4.3)

In the following, we choose the (non-unique) representation

0 1 e~ N-
S = d Ty = , ; 4.4

which is consistent with the presentation of the finite modular group I'y in equation 4.3

for any integer N > 2.

4.2.2 Modular symmetry of the orbifold T2/Z,

We assume that the two extra dimensions are compactified on a T?/Zs orbifold. We
combine the two extra dimensions coordinates, x5 and xg, in the complex coordinate

z = x5 + ixg. The action of the orbifold is given by

Z2 =z + wi,
z =z +ws, (4.5)
z=—2z,

where w; and wy are the two lattice vectors defining the torus 72, while the last equation

is due to the Zy action. This orbifold contains four invariant fixed points

_ w1 wo Wi+ wo
—Jo 2 4.6
’Z { ) 2 ) 2 M 2 } ) ( )

where Z refers to the set of fixed points, i.e. Z = {z1, 22, Z3, Z4}.

Any model built in the 6D space-time with the two extra dimensions compactified on a
T?/Z5 orbifold, will have fields living at the fixed points, known as 4D ‘brane’ fields, and
will also have ‘bulk’ fields, depending on both the uncompactified coordinates and the
complex coordinate z. Therefore, it is relevant to study if, after compactification, there
is any symmetry left unbroken among the fixed points, which will afterwards affect the
fields allocated on them. In this section, we want to find out for which values of w; and
wo, if any, the set of fixed points is invariant under the general modular transformations
in equation 4.4. For doing so, we will apply these transformations on the set of fixed
points z in equation 4.6, and see if there is any solution, i.e. if there exits any value of
w1, ws and N under which the set is left invariant up to permutations of the fixed points.

We will also assume that |w;| = |wa| as it is usually done in orbifold theories.

The action of the general modular transformations in equation 4.4 on the lattice vectors
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w1 and we is given by

—i2w /N
w1 w2 w1 e w1
S = . T = . . 4.7

Therefore, after an S-transformation, the set of fixed points is transformed to
_ Wy —Ww1 Wy —wi
=<0, =, —, ——— 5. 4.8
ZS { ) 2 ) 2 ) 2 } ( )

However, we can use the orbifold transformations in equation 4.5, i.e. we can add w; to
the second and fourth fixed points in Zg, and obtain the original set z. Therefore, the
set of fixed points, up to permutations, is always invariant under an S-transformation,

for any value of w1 and ws.

The T-transformed fixed points are given by

~ e 2Ny wy + €2 Ny e 27/N 4wy + e27/N
Zr = {O, 5 , 5 , 5 } . (4.9)
If the set is to be invariant, up to permutations of the fixed points, the second term in
equation 4.9 must correspond to one of the original fixed points in z. Since there is no
orbifold transformation or value of N that can relate it to the wy /2 nor the 0 branes, then
it must correspond to wa/2 or (w1 + w2)/2, up to orbifold transformations. Therefore,
we find the constraints +wy = wie 2™/N or twy = wy(e=2™/N 4 1). The + sign is due
to the Zs orbifold symmetry. For the fixed points, both signs are equivalent since one
(—w2/2) is related to the other (w9/2) by adding an extra wy, which is a symmetry of

the torus. Without loss of generality, we choose to use the negative sign.

For wy = —wie2™/N _ the set ot T-transformed fixed points become
- e~i2m/N e=i2m/N
ZT(wg:—wle*QiTr/N) = {07 9 5 07 9 ) (410)

which removes two fixed points, so this choice of wo does not leave a set of invariant

fixed points.

The second choice is wy = —w; (e~ 2™/N 4+ 1) and the T-transformed set is

—i2r/N  _, . i2%/N —i2r/N _ . i2w/N
_ wie’ wie wie wie
ZT(w2:—W1(67i27T/N+1)) — {O, 2 3 2 ; 2 } . (4.11)
We are looking for an invariant set of branes, therefore from equation 4.6, we see that
w1/2 must be in the set. The second and third terms in equation 4.11 multiply w;/2
by a phase so it can not correspond to the original one. Therefore, the only possibility
is that the last term in equation 4.11 is identical to the brane w;/2, up to orbifold

transformations. We can add integer n times ws and integer m times w; or change an
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overall sign and it will correspond to the same point. Taking this into account, then the
requirement that the second fixed point from equation 4.6 corresponds to the fourth one

from equation 4.11 gives

wie 2N 2N — o mwy + s, (4.12)
If now we also take into account that wy = —wl(e*i%/N + 1), equation 4.12 can be
rewritten as

— 2T/N =2 IN(] _ 2p) — 2n 4 2m = 1, (4.13)

for arbitrary integers n, m, N. Since both sides are real, this fixes n = 1 and we end up
with 5
— 2cos (;) =3—2m, (4.14)

which only has solutions for m =1 and N =3 or m =2 and N = 6.

The Ty generators for N = 3 and N = 6, in equation 4.4, satisfy
3 _mb6 __ 3

that, due to the modding out of the £{1} sign in the presentation of the finite modular
group 'y in equation 4.3, I's and I'g are both equivalent and for now we will only refer

to I's ~ A4 modular symmetry.

Therefore, we have shown that for the T2 /Z5 orbifold, the set of fixed points is invariant
under modular transformations only if the modular group is I's ~ A4 and when the
lattice vectors satisfy the relation wy = wy w, for N = 3, or we = wy(w + 1), for N = 6,

where w = ¢27/3,

Without loss of generality, we can always rescale the lattice vectors such that the torus
is equivalent to one whose periods are 1 and 7 = wy/wy. In the following, we work on
the orbifold 72/Z5 with the torus defined by 1 and twist angle 7 = w. If we would have
chosen the N = 6 case, the basis vectors would be w; = 1 and wy = w+ 1 with the same
A4 modular symmetry. This is a choice that we follow in the rest of the chapter. The
above argument suggests that brane fields allocated on the fixed points must respect a
I's ~ A4 modular symmetry, with fixed modulus 7 = w = €"?™/3. We emphasize that this
is one of the main differences of the present chapter as compared to recent works with
modular symmetries that regard the modulus 7 as a free phenomenological parameter
[212, 215]. In our work, we assume a specific orbifold structure which fixes the angle
T = w = 27/3 from the outset, although we shall not address the problem of moduli

stabilisation.
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4.2.3 Remnant symmetry of the orbifold T?/Z, with twist w = e**"/3

In this section, we study the extra dimensional space-time as the orbifold T?/Z, with

i2r/3

twist angle w = ¢ independently of any modular symmetry considerations. This

orbifold corresponds to the identification

z~z41,
z~ 2z 4w, (4.16)

zZn~ =2z,

where the first two equations are the periodic conditions from the torus 72 and the third
one is the action generated by the orbifolding symmetry Zs. The orbifold symmetry

transformations leave four invariant fixed points
1l w 1+w
z=1<0, =, —, —— 4.17
={o. 5. 5. 52} (1.17)

shown in figure 4.1.

We analyse the remnant symmetry of the space-time symmetry after it is broken down
to the 4D Poincaré symmetry through orbifold compactification, as in section 1.7.3.
We assume that the space-time symmetry before compactification is a 6D Poincaré
symmetry. The compactification breaks part of this symmetry, however, due to the

i27/3

geometry of our T?/Zy orbifold with twist angle w = e , a discrete subgroup is left

unbroken. This group may be generated by the space-time transformations

S:z—z+1/2 or z = z+w/2,
T:z— wz, (4.18)

U:z— 2" or z— —2",

which permute the fixed points and leave invariant the set of four fixed points in equa-

tion 4.17. These transformations satisfy

S§% =13 = (ST)% =1,

) ) 5 . (4.19)
U2 = (SU)? = (TU)? = (STU)* = 1,

where the first line is the presentation of the group A4 and both lines complete the
presentation of Sy. In figure 4.1, we show how these transformations act on the extra

dimensional space and how the A4 symmetry is realized.

The T?/Z; orbifold with twist angle w has four fixed points and they are permuted by
the discrete subgroup of rotations and translation in the extra space, A4 or S4. This
symmetry, together with 4D Poincaré transformations, is a subgroup of the 6D Poincaré

symmetry that survives compactification. Any brane field living in the fixed points will
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X
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(a) The extra dimensional space. Opposite sides
are identified to form a torus. The orbifolding Zo
identifies both equilateral triangles. These are the
identifications in equation 4.16.

(b) The effective extra dimensional space T2/(Z2).
This is the whole bulk. The four invariant fixed
points z1,2,3,4 are shown.

L6y
b a A4
d
b a
d d
c c >

(c¢) The four fixed points are permuted by the sym-
metries S,T,U in equation 4.18. The transforma-
tions S, U identify the sides a,b,c while T rotates
everything by identifying sides d.

(d) By actually folding to identify sides a,b,c we
obtain a tetrahedron, whose vertices are related by
the symmetry group As.

Figure 4.1: Visualization on the remnant A4 symmetry after orbifolding.

transform under the 4D Poincaré group as usual and additionally under the remnant A4
or S4 symmetry. We choose the embedding of the representation 4 — 3 4+ 1 so that the

brane fields can only transform under those irreducible representations [208].

With these type of models one chooses the bulk fields to follow the space-time symmetry
transformations in equation 4.18, so that this symmetry becomes the flavour symmetry
of the model [123, 126, 207]. For example, this approach has been followed for A4 or Sy
combined with SU(5) Grand Unified Theories (GUTSs) in 6d or 8d [166, 168, 173, 208,
209].

4.2.4 Connection between the modular and the remnant symmetries

In this section, we connect and identify the two symmetries that we have been discussing
so far: the modular symmetry I's ~ A4 in section 4.2.2 and the remnant A4 symmetry,
as a subgroup of the space-time 6D Poincaré symmetry, in section 4.2.3 (we shall return
to the remnant S; symmetry in section 4.2.5). At this point, the reader might have

noticed that, indeed, the two symmetries are identical when acting on the fixed points.
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The modular symmetry is just a passive transformation, acting on the lattice vectors
defining the torus. Under these passive transformations, we have checked that the set
of fixed points is permuted but left invariant. The remnant A4 symmetry is an active
transformation, acting on the extra space and again inducing permutations of the four

fixed points. It is just a choice of “picture” (active or passive) which we choose.

Modular symmetry acting on brane fields behave as any usual discrete flavour symmetry
(i.e. modular forms are not relevant), since the fields living on the fixed points do not
depend on the extra dimensional coordinate. We checked that on the orbifold T5/Z3, the
fixed points can only be consistent with the modular group I's iff r =w or 7 =w+1 and
no other. In this setup, the fixed points feel the finite modular A4 symmetry as simply

equivalent to a remnant A4 symmetry, a subgroup of the extra dimensional Poincaré

group.

We can see from equation 4.7, that the S and T{3) transformations (the I's; modular
transformations) correspond to specific passive reflections, rotations and translations.

This way this must be a subgroup of the 6d Poincaré group.

Bulk fields will transform under some representation of the 6D Poincaré, however they
will transform under a non linear representation of the modular symmetry I's, the mod-
ular forms [212]. We can then conclude that we can have the modular symmetry I's as

a non linear realization of the remnant A4 symmetry.

4.2.5 Enhanced A4 X Z, symmetry of the fixed points

In section 4.2.3, we have seen that the orbifold has a remnant symmetry S; on the fixed
points. We note here that Sy ~ A4 x Zs. We have also discussed in section 4.2.4, that
if we impose a modular symmetry I's ~ A4 on the whole space, its action on the brane
fields is the same action as the remnant space-time symmetry, i.e. it permutes the fixed
points but leaves invariant the whole set. The modular symmetry acts on the basis
vectors of the torus while the remnant symmetry is a space-time symmetry, therefore
the first one can be seen as passive transformation while the second one is an active
transformation. This way we may identify the remnant A4 symmetry of the brane fields

as a modular symmetry.

We know, from section 4.2.3 that the full symmetry of the fixed points is 54, however
we can not interpret it as a modular symmetry since we proved in section 4.2.2, that the
fixed points can only be invariant under the modular transformations corresponding to

I's >~ Ay, i.e. we only found a solution for N =3 or N = 6.

The symmetry generated by U in equation 4.18 is a remnant symmetry of the orbifolding
process, but it can not be interpreted as a modular transformation. We conclude that

the remnant symmetry of the branes is I's x Zo ~ Ay X Zy. The Zy symmetry is
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generated by C - U where U is the usual matrix representation of the generator from Sy
and C stands for complex conjugation of the complex coordinate, which is equivalent to

6t dimension Ps. The Z5 is

a change of sign in zg, i.e. the parity transformation of the
not a modular symmetry while the A4 is. The product of both symmetries is not direct
since the generator U does not commute with all A4 generators and is reminiscent of

the corresponding S4 generator.

The A4 modular symmetry will require the Yukawa couplings to be specific modular
forms, see appendix A.2.2. The Zy symmetry will further restrict the possible mass
matrix structure so that the theory has strong predictions for leptons [219]. As we shall
see later, the up quarks will lie in different A4 singlets, so that only the subgroup Z3
is remnant while the Zs behaves trivially. This forces stringent relations for the lepton

mass matrices but not for the quarks.

After compactification, the Zs behaves like a generalized C P symmetry where the trans-
formations C, Py, ..., P5 are trivial while Ps = Pg U, where P is the trivial parity trans-
formation, while the U is a family transformation [220]. Although this is not a usual
generalized C'P symmetry. There is no C' transformation involved, only Ps. However,
after compactification this symmetry appears as an effective generalized C'P symmetry.
As stated before, this effective symmetry transformations only affects non trivially on
the brane fields and the fields on the bulk are unaffected.

We have shown that the remnant Zs symmetry on the branes behaves as an effective
generalized C'P transformation. In appendix A.2.1, we check its compatibility with the

A, flavour symmetry, and find that it is consistent, as indeed it must be.

4.3 The model

4.3.1 Field content

In this section we construct a supersymmetric SU(5) GUT model on a 6D orbifold 72 /Z,

with twist w = ei27/3

, with an A4 modular symmetry as a flavour symmetry, extended
by the Zs symmetry on the fixed points. Furthermore we impose a global U(1) as a
shaping symmetry. We assume different boundary conditions at each invariant fixed

point. These conditions break the original symmetry into the MSSM.

All the fields in the bulk ¢ will transform under the modular transformations

at +b
%
ct+d

as Y — (er +d)"Fpip, (4.20)

where p is the usual matrix representation of the corresponding A4 transformation. Each

field has an arbitrary weight —k. The fields are not modular forms and can have any
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Representation
Field
A4 X ZQ SU(5) U(l)
F 3 5 a+ 2c
N¢§ 1 1 a
N§ 1 1 4a
& 1 1 —2a

Table 4.1: Brane fields living on the fixed points, including matter and right-handed neutrino
superfields. A working set of charges is {a,b,c} = {2,0,1}. Note that the 3 representations
on the brane transform under A4 x Z3 as shown in table A.2 and equation A.9.

Representation Localization
Field

A4 SU(5) U(l) Welght PO P1/2 Pw/g
TE 17 10 ¢+ 4a -y 41 £l 41
Ty 1 10 c+2a -y 41 £ 1
T 1 10 c -y 41 £+l
Hs 1 5 —2c -« +1 +1  +1
Hy 1 5 b a+y 41 +1  +1
o1 3 1 —b—a—3c -« +1  +1 +1
b2 3 1 —3a a—0 +1 -1 41

Table 4.2: Bulk fields used in constructing the model, including matter, Higgs and flavon
superfields. A working set of charges is {a,b,c} = {2,0,1}. The complete theory must also
contain three T';, being the complex conjugate representation of T; so that it is anomaly free.

weight k;. The brane superfields that are located on the fixed points do not depend on

the extra dimensions and therefore they must have weight zero [212].

The whole field content is listed in tables 4.1 and 4.2. The fields that do not have weight
nor parity under the boundary conditions are located on the fixed points and feel the
symmetry Ay X Zs, see table 4.1. The transformations of the fields under this symmetry
are discussed in appendix A.2. The 3 representations of the brane fields transform under

Ay X Zo as shown in table A.2 and equation A.9.

The field F' contains the MSSM fields L and dp, it is a flavour triplet 3 and is located on
the fixed points. The fields Tl-jE contain the MSSM ug, egr, @, they are 3 flavour singlets.
There are two copies of each T with different parities under the boundary conditions, as
we shall see in the next section, this allows different masses for down quarks and charged
leptons. There are only two right handed neutrinos Ny ;. The MSSM Higgs fields hy 4
are inside the H 5,57 respectively. We have two flavons ¢1 2 that help to give structure to
the fermion masses. Finally, the field £ generates the hierarchy between the masses a la
Froggatt-Nielsen [104].
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4.3.2 GUT and flavour breaking by orbifold compactification

In section 1.7.2, we briefly introduced orbifold compactifications and how the action of
orbifold compactification on field space can break the original gauge group to a smaller
subgroup. Here, we apply the same procedure choosing a set of boundary conditions that
break A, completely and SU(5) into the Standard Model. We also break the extended
N =2 SUSY to N =1 SUSY.

The compactification on the T2 /Z5 orbifold implies that the extra dimensional space has
the symmetry given in equation 4.16. This geometric orbifold action is now embedded

into an action on field space

¢(z,z) = G5 ¢(z,z — 1),
d(x,2) = Gg d(z, 2z —w), (4.21)
o(z,2) = G ¢(x,—z),

where ¢(x,z) is a general field of the theory and G5, Gg and G are elements of the
symmetry group of the theory. The action on field space in equation 4.21 is equivalent
to the action on the extra dimensional space in equation 4.16, with the difference that
since we are in a gauge theory, the equations do not need to be fulfilled exactly but only

up to a gauge transformation.

The gauge transformations G5, Gg and G are also matrix representations of the sym-

metries in equation 4.16 and therefore they must comply with
G* =1, G5Gs=GeGs5, GG56G = Gy, (4.22)

where the first equation comes from the fact that it belongs to the parity operator, the
second is due to the fact of the commutativity of the translations and the third one

denotes the relation between parity and translations.

Additionally, we know that the orbifold T2/Zy contains four fixed points given by z
in equation 4.17, i.e. these points are invariant under the symmetry transformations in
equation 4.16. At the fixed points z; with i = 1,..., 4, we impose the following boundary
conditions

oz, 2+ %) = Ps,0(x, —2 + %), (4.23)

which corresponds to a reflection at each of the fixed points. In combination with the

gauge transformations in equation 4.21, they have to satisfy
P() - G, P1/2 - G5G, Pw/Q - G6G, P(1+w)/2 - G5G6G - PI/QPOPUJ/Q' (424)

By choosing all G’s to commute, all boundary conditions become matrices of order 2.

The boundary conditions must belong to the symmetry group A4 x SU(5) of the SUSY
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model, and are chosen to break the symmetry in a particular way as follows
PO = 13 X 15,
Pyjp =T x diag(—1,-1,-1,1,1), (4.25)
Pw/2 =T x dlag(ila -1,-1,1, 1)5

where 13 is the 3 x 3 identity matrix while 15 is the 5 x 5 identity matrix and the matrices

T7 and T» are given by

1 0 1 00
Tir=]10 -1 0 andTo=| 0 0 1 | =U (4.26)
0o 0 -1 010

The last boundary condition is defined by the others as P14.)/2 = P1 /2P0, 2 = T1T2 %
15.

The boundary condition Py breaks the effective extended N =2 — A =1 SUSY. The
boundary conditions P, 5,/ break A4 completely and SU(5) — SU(3) x SU(2) x U(1).
As in the example given in the introduction, equation 1.68, depending on how the parity
assignments are chosen we can break the SU(5) multiplets into different multiplets of

the Standard Model gauge group.

The parity assignments are given in table 4.2. The superfields F, Ny ;, & live on the fixed
points and are unaffected by the boundary conditions. The fields T* are A, singlets
and do not feel the Ay breaking conditions, although they do feel the SU(5) breaking
condition according to their parity. The fields T contain the light MSSM up, eg fields,
while the fields T~ encompass the light fields (). This allows for independent masses
for charged leptons and down quarks since they come from different fields. The Higgs
fields feel the SU(5) breaking condition leaving only the light doublets, solving the
doublet-triplet splitting problem [207] (for a recent discussion see for example [208]).

The flavons ¢1 o feel the A4 breaking conditions. They have different parities under the

conditions and this fixes their alignments to be

1 0
(pr)=wv1| 0 |, (d2)=wv2| 1 |. (4.27)
1

We may remark that these flavon VEV alignments do not break the Zy symmetry gen-
erated by U, even though they are in the bulk.

We see that the orbifolding breaks the symmetry SU(5) x Ay x Zg — SU(3) x SU(2) x
U(1) x Zy while solving the doublet-triplet splitting, separating charged lepton and down

quark masses and completely aligning flavon VEVs.
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We do not show an explicit driving mechanism for the VEVs v12,. We assume that
they are driven radiatively [152, 153, 221-225].

4.3.3 Effective Yukawa superpotential

In 6D, the superpotential has dimension 5 while each superfield has dimension 2. A
6D interacting superpotential is inherently non-renormalizable. We work with the ef-
fective 4D superpotential, which happens after compactification and we assume the
compactification scale is close to the original cutoff scale. We use A to denote both,
the compactification scale and the GUT scale, which is taken to be the cut-off of the

effective theory.

With the fields in tables 4.1 and 4.2, we can write the effective 4D Yukawa terms

Wy = yNENENS + y) 5 NCNC
§ L P2€

+y§ T FHsNS + yy =5 FHs N
(bl + ¢1€ + ¢1€ +
sy FPHETS + ys- g FHSTS +yi— 5 FHT (4.28)
491 a 91§ d¢1§2 _
+ s FHETy +ys—5 FHT, +yf =5 FHST
N 6—i—j
+yUH5T T i A6=i—’

where 4,7 = 1,2,3. Due to the stringent U(1) shaping symmetry, there are no higher
order terms. The field £ has a VEV and generates hierarchies between families a la
Froggatt-Nielsen [104].

The first line in equation 4.28 gives the two right-handed neutrino Majorana masses
without any mixing. The fields in both terms have zero weight so the modular symmetry
does not add anything new. The second line generate Dirac neutrino masses. They
have non trivial weights and their structure will be discussed in section 4.3.4. The
third line gives masses to charged leptons. They are all weight zero automatically and
the mass matrix is diagonal. The fourth line generates a diagonal down quark mass
matrix. Since it involves a different field (7~ instead of T) the coupling constants are
independent. Finally the fifth line gives masses to the up-type quarks, which is a general
non-symmetric mass matrix. Since the fields in these terms have a non trivial weight
but the T* are singlets, the modular symmetry does not change the matrix structure.

We remark that the top quark mass term is renormalizable.

At the GUT level, the p term is forbidden, so it should be generated by another mech-

anism at a much smaller scale [92].
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4.3.4 Effective alignments from modular forms

In this section, we discuss the couplings in equation 4.28 with weight different from zero,
ie. ¥, yq and y;;. Their weight is given to compensate the weight of the terms they

couple to, such that they become modular forms transforming according to

ar +b

Y d)*Y py Y, 4.29
o d = (e +d)™ pyY, (4.29)

T —

where ky is the weight and must be a positive even integer [226] and py is the repre-
sentation under the modular A4 symmetry. In the case of I's ~ A4, the modular forms
can be constructed as a function of the Dedekind eta-function n(7) and the exact form

can be found in appendix A.2.2.

The modular forms are functions of the lattice basis vector parameter 7 = wy/w;. Usu-
ally, this parameter is chosen to give a good fit to the flavour parameters. In our case,

the specific orbifold our model is set to fix
T=w=eX"/3 (4.30)
and the modular form structure is fixed up to a real constant.

The modular form yZ must be a triplet under A4 to construct an invariant singlet with
the triplet field F'. Furthermore, it has weight « to compensate the overall weight of
the corresponding term. We show the effective triplet alignments it can have in table
4.3, for different weights a. The possibilities are very limited since many modular forms
vanish when 7 = w, as shown in appendix A.2.2. Larger weight modular forms repeat

the same structure so that this table is exhaustive, as discussed in appendix A.2.2.

«Q (y5)s
0 0
2
2|y 2w
—w?
2
4|yl —w
2w?
-1
6|y 2w
2w?

Table 4.3: The effective alignments of the modular form gy as a triplet, depending on its
weight . The parameter y is an arbitrary constant.

The modular form y; must have weight 3. It multiplies the flavon ¢2, so that they

must be contracted into a triplet (yZ (¢2))s which will generate the effective alignment.
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In the case of y. being a singlet under A4, the effective alignment is simply given the
flavon VEV (¢2) in equation 4.27, which was fixed by the orbifold boundary conditions.
When gy is a triplet under A4, it must be contracted with ¢, as shown in appendix
A2 3x3 - 1+1 +1"+ 3, + 3s. This gives different possible products for the
effective triplet. The actual effective alignment is an arbitrary linear combination of all
possibilities and can be found in table 4.4. For 8 = 0 the only modular form is a singlet,
so the only triplet that can be built is (¢2). For g = 2, the only modular form is the
triplet Y?,(2) shown in the appendix A.2.2. The effective triplet is the linear combination
of the symmetric and antisymmetric product of the modular form with the flavon VEV,
(pa) X Y3(2) — 34+ 35. For 8 = 4,6 the modular form can be the singlet Y1(,4),Y1(6)
respectively and the corresponding triplets Y3(4), Yég), so that the actual alignment comes

from the linear combination of (¢2) x Y7 1/ — 3 and (¢2) X Y3 — 34 + 3s.

B (Yg (D2))3/v2
0
0 Y1 1
1
w? — 2w —w? — 2w
2 y1| 2w—-2 | +y2 -2
4w — 2 2
1 —2w? 4+ w 2w? + w
4 lyww!| 0 | +y2 2w? — 2 +ys3 -2
1 —2u% -2 2
0 2 2w? — 2w
6 | | 1 |+y2| ?+1 | +uys 1
1 4w +1 -1

Table 4.4: The effective alignments of the modular form y; contracted with (¢2) into a triplet,
depending on its weight 8. The parameters y; are constants constrained by the A4 X Zj
symmetry.

By choosing the weights a and 3, the structure of the neutrino mass matrix is completely
defined. The y in table 4.3 and y1,y2,y3 in table 4.4 correspond to general complex
numbers that comply with the non trivial C'P symmetry of the model.

We have obtained all the possible A4 invariant modular forms. However, we have to com-
ply with the extended symmetry A4 x Zo. The U generator only transforms non trivially
the triplet field F' which is contracted to a triplet modular form. An U transformation

of the field F' can be reabsorbed by transforming the modular form by

(4.31)

Q
o O =
= o O
oS = O

where the C stands for complex conjugation. Invariant terms under the full symmetry

must involve modular forms that are also invariant under the Zs transformation. From
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table 4.3, the only invariant case is when o = 6 with real y. From table 4.4, the only

invariant cases happen when 8 = 0 with real y; or § = 6 with y; » real and y3 imaginary.

The triplet field F' is not only taking part in the Dirac neutrino mass terms but also in
the down quark and charged leptons mass terms, therefore they also must be invariant
under the enhanced symmetry Ay X Zs. In this case, the field F' is contracted with the
flavon field ¢ and it is easy to check that the transformation in equation 4.31 leaves the
VEV invariant when real and therefore the charged lepton and down quark mass terms

when the parameters ygi and yf involved are real.

Finally, the modular form y;; must have weight a 4 27 to build an invariant. All the
fields in the corresponding terms are singlets, so these modular forms must be singlets
also and do not change the structure. Depending on ¢ and j, the modular form Y;; must
be a different type of singlet. The weight a + 27 has to be large enough so that the
space contains the three types of singlets. This modular form does not add anything to
the structure of the up-type quark mass matrix but allows to build the A4 invariants for
all T;T; combinations. The smallest weight that allows modular forms of all 3 types of
singlets is 20, as discussed in appendix A.2.2. These modular forms y;; are in general

complex.

The case § = 0 has not enough freedom to fit the neutrino data with only two free
parameters. We conclude that the smallest phenomenologically viable choice for weights
is

a=03=6 and y=T. (4.32)

4.3.5 Mass matrices

We are now able to express the mass matrices following equation 4.28 and the effective

alignments given in section 4.3.4. First, we define the dimensionless parameters
(€) /A=¢ and v;/A =1, (4.33)

where A is the original cutoff scale. The down quark and charged lepton mass matrices

are diagonal

yi¢2 0 0
M=vg| 0 yde 0 |,
00w (4.34)
Y2 00
M¢=vg| 0 g€ 0|0,
0 0
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while the up quark mass matrix can be written as

Y11 54 Y 53 Z/%ﬁ; 52
My =vy | ysy & sy &  y& | D2, (4.35)
Y3 52 (7R3 Y33

where the parameters yld and yld are real due to the enhanced symmetry on the fixed

points A4 X Zo while yZ are in general complex.

The down-type quark and charged lepton mass matrices in equation 4.34 are diagonal so
the fit to the observed masses is straightforward. The hierarchy between the masses of
the different families is understood through the powers off~ and can be achieved assuming
the dimensionless couplings to be of order O(1). All the contributions to quark mixing
is coming from the up sector. The complex parameters in the up-type mass matrix, see
equation 4.35, fix the up, charm and top quark masses as well as the observed CKM
mixing angles. We can obtain a perfect fit for weight v = 7. Different values of 01, 09
and §~ can fit the observed masses using different dimensionless couplings still of order

O(1).

The form of the Dirac neutrino mass matrix depends on the weights a and 5. All
the possible alignments are given in tables 4.3 and 4.4. The Z; symmetry restricts
ourselves to the case @« = 6 and § = 0 or § = 6. In the case of 8 = 0, we only
have two free parameters {y,y1} and we can not find a good fit. Therefore, the only
phenomenologically viable case is for « = = 6 and we restrict ourselves to this case in

the following.

As shown in the appendix A.2, we have to take into account the Clebsch-Gordan coef-
ficients when contracting the modular form (y%F); and (y” (¢2) F')1 into singlets, i.e.

3 x 3 — 1, given by
()1 = p19h1 + 213 + w31b2, (4.36)

after which the effective alignments for & = 6 and = 6 look like

-1 2y2 + y3(2w* — 2w)
=y |22, Bo=|wm+yp@w+l)—ys |, (4.37)
2w y1 + y2(4w2 +1)+ys

respectively. The Dirac neutrino mass matrix is then given by

(22 +y3(2w® — 2w)) T2 —y
Mp=uvy| (31 +y2dw+1) —ys3) b 2wy | & (4.38)
(y1 +yo(4w? + 1) + yg) Uy 2wy
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The right-handed neutrino Majorana mass matrix is diagonal

Neb oo
Mg = (§) (yo yg,v>’ (4.39)

with hierarchical right-handed neutrino masses given by the different powers of the field
&. Furthermore, we have heavy right-handed neutrino Majorana masses such that the

left-handed neutrinos get a small Majorana mass through type I seesaw [22]
mY = MP Mz (MP)T. (4.40)

The neutrino mass matrix looks like

2 &2 02 2
my = <<£u>yé\f) as(ag)’ + <<g>§~yzv> Be(Bs)", (4.41)

where ag and Sg are the alignments defined in equation 4.37. The effective parameters at
low energy are {y, y1,y2,ys}, previously defined in tables 4.3 and 4.4. The Zy symmetry

fixes the parameters {y, y1,y2} to be real while y3 is purely imaginary.

4.3.6 p — 7 reflection symmetry

The neutrino mass matrix in equation 4.41 is u — 7 reflection symmetric (u7-R symmet-
ric). This corresponds to the interchange symmetry between the muon neutrino v, and

the tau neutrino v; combined with C'P symmetry, namely
Ve = Ve, Vy— Vg, Vr— Uy, (4.42)

where the superscript denotes the charge conjugation of the neutrino field. This can
be easily seen from the alignments in equation 4.37 which construct the neutrino mass
matrix in equation 4.41. The Zy symmetry fixes the parameters {y,y1,y2} to be real
while y3 is purely imaginary, therefore the transformation in equation 4.42 leaves the
alignments invariant and accordingly the neutrino mass matrix. For a review of ur

symmetry see e.g. [227] and references therein, also see the recent discussion [228].

It is known that having a neutrino mass matrix p7-R symmetric in the flavour basis
(which is our case) is equivalent to g — 7 universal (u7-U) mixing in the PMNS matrix,
see reference [229]. The consequences of having p — 7 symmetry is that it leads to
having non zero reactor angle, 613, together with maximal atmospheric mixing angle

and maximal Dirac C'P phase:
13 # 0, 6Oy3 =45°, 6 =490° (4.43)

We remark that this is a prediction of the model due to having A4 x Zy symmetry on
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the fixed points.

4.3.7 Numerical fit

The parameters {y,y1,y2,y3} in the neutrino mass matrix 4.41 will fit the rest of the
PMNS observables, namely {9112, 9’13, Am3y, Am3,} together with the prediction of the
[ — 7 symmetry, fa3 = 45° and 6! = —90°. The contribution to a x2 test function comes
only from these predictions and we use the recent global fit values of neutrino data from
NuFit4.0 [32]. The best fit points together with the 1o ranges are f23/° = 49.6%70 and
§t)° = 215J_r38 for normal mass ordering and without the Super-Kamiokande atmospheric
neutrino data analysis. However, the distribution of these two observables are far from
Gaussian and the predictions of having maximal atmospheric mixing angle 623 = 45° and
maximal C'P violation §' = —90°, still lie inside the 30 (40) region with a x? = 5.48(6.81)
without (with) Super-Kamiokande. We show two numerical fits below, although this is
only an example as we can find a good fit for a large range of parameters y, y1, y» and ys3.!
The predictions of the model o3 = 45° and §' = —90° are due to the pu7-R symmetry
and the four free parameters are used to fit the rest of the observables in the PMNS

matrix.

We perform a x? test function when fitting the effective neutrino mass matrix in equa-
tion 4.41 with input parameters x = vy, y1, y2, y3, from which we obtain a set of observ-

ables P, (x). We minimize the function defined as

X=> <W>2, (4.44)

g,
n n

where the observables are given by P2 € {0},, 0}, 05, 6!, Am%,, Am2,} with statistical
errors o,,. We use the recent global fit values of neutrino data from NuFit4.0 [32]. Most
of the observables follow an almost Gaussian distribution and we take a conservative
approach using the smaller of the given uncertainties in our computations except for 053
and 6!. The best fit from NuFit4.0 is for normal mass ordering with inverted ordering
being disfavoured with a Ax? = 4.7(9.3) without (with) the Super-Kamiokande atmo-
spheric neutrino data analysis. We tried a fit to inverted mass ordering and we found a
2 ~ 6800, therefore in the following results we only focus in the case of normal mass

ordering.

The model predictions are shown in table 4.5. The neutrino mass matrix in equation 4.41
predicts maximal atmospheric mixing angle, 0123 = 45°, and maximal CP violation,
§' = —90°, within the 30 region from the latest neutrino oscillation data. This is a

consequence of the pu7-R symmetric form of the neutrino mass matrix when y, y1, y2 are

1 Although the model only allows the weights o = 0 and 8 = 0,6, we tried a numerical fit with all
possible combination of weights with the alignments in tables 4.3 and 4.4, and the only one that worked
is the u7-R symmetric for a = 8 = 6.
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Observable Data Model
Central value lo range a=p=6

0%, /° 33.82 33.06 — 34.60 33.82
055 /° 8.610 8.480 — 8.740 8.610
055 /° 49.60 48.40 — 50.60 45.
5t /e 215.0 186.0 — 255.0 270.
Am3,/(107° eV?) 7.390 7.190 — 7.600 7.390
Am3; /(1073 eV?) 2.525 2.493 — 2.558 2.525
my /meV 0
mo /meV 8.597
ms /meV 50.25
S m; /meV <230 58.85
as /° 180.
mgs /meV < 60-200 2.587

Table 4.5: Model predictions in the neutrino sector for weights « = 8 = 6. The neutrino
masses m; as well as the Majorana phases are pure predictions of our model. We also predict
maximal atmospheric mixing angle 643 = 45° and maximal CP phase §' = 270°. The bound
on > m; is taken from[59]. The bound on mgg is taken from [60]. There is only one physical
Majorana phase a3 since mp = 0.

real while y3 is imaginary. Furthermore, since we only have two right-handed neutrinos,
we predict a massless left-handed neutrino m; = 0 and there is only one physical Ma-
jorana phase ap3 [230]. The bound on effective Majorana mass mgg [60] as well as the

predicted value are also given in table 4.5.

The fit has been performed using the Mixing Parameter Tools (MPT) package [203].
The values of y,y1,y2 and y3 are shown in table 4.6. Fit 1 shows a good fit where all
of the dimensionless real parameters y are of O(1), however a large range of parameters
can give an equally good fit, see for example Fit 2. The VEV ratios ]é , U;| are parameters
that do not enter the fit directly and they are chosen to reproduce the hierarchy between
the fermion Yukawa couplings, making them more natural numbers. These VEV ratios
also appear in the quark and charged-lepton mass matrices in equations 4.34 and 4.35.
For different values of |¢| and |3y, as in Fit 1 and 2 in table 4.6, different dimensionless
O(1) parameters yf, y; and y;; can be used to give the correct mass of the down- and
up-type quarks and charged leptons. In the case of the neutrino mass matrix, even for
fixed |§~ | and |0y, there is a large range of parameters y, y1, y2 and y3 that can give
a good fit to the observables, meaning that the modular forms for weight o = 6 and
B = 6 give a constrained form of the neutrino mass matrix which is phenomenologically
suitable. For comparison, we also give the value of the x? test function in the case of
B = 0, in which we only have two free parameters y and ¥, and it goes up to x? ~ 1500,
while for g = 6 with four free parameters we have found a perfect fit for a variety of

values of y, y1,y2 and ys.
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Fit 1 Fit 2
Parameter Value Parameter Value
Y -1.28 Y -1.00
Y1 0.66 Y1 -1.00
Yo -1.05 Yo -0.08
Y3 i1.07 Y3 i0.08
yY 1 y 1
Yo' 1 Yo' 1
€] 0.01 €] 0.02
|Da] 0.001 |02 0.004

Table 4.6: Two different sets with the four input parameters y, y1,y2 and y3 that enter into
the neutrino mass matrix in equation 4.41, giving the correct PMNS observables.

4.4 Summary

In this chapter, we have presented the first example in the literature of a grand unified
theory with a modular symmetry interpreted as a family symmetry. The theory is based
on supersymmetric SU(5) in 6D, where the two extra dimensions are compactified on
a Ty/Zy orbifold. We have shown that, if there is a finite modular symmetry, then

27/3 or 7 = w+ 1. We emphasize

it can only be A4 with fixed modulus 7 = w = ¢
that this is one of the main differences of the present chapter as compared to recent
works with modular symmetries which regard the modulus 7 as a free phenomenological
parameter [212, 215]. By contrast, in the present chapter we assume a specific orbifold
structure which fixes the modulus to one of only two values, where we focus on the case

i27/3

T=w=e , although we do not address the problem of moduli stabilisation.

We have shown that it is possible to construct a consistent model along these lines,
which successfully combines an SU(5) GUT group with the A4 modular symmetry and
a U(1) shaping symmetry. In this model, the matter F' brane field on the fixed points
is assumed to respect an enhanced symmetry A4 X Zs which leads to an effective y — 7
reflection symmetry at low energies, predicting maximal atmospheric angle and maximal
CP phase. In addition, there are two right-handed neutrinos on the fixed points whose
Yukawa couplings are determined by modular weights, leading to specific alignments that
fix the Dirac mass matrix. The model also introduces two triplet flavons in the bulk,
whose vacuum alignments are determined by orbifold boundary conditions, analogous to
those responsible for Higgs doublet-triplet splitting. The charged lepton and down-type
quarks have diagonal and hierarchical Yukawa matrices, with quark mixing due to a
hierarchical up-quark Yukawa matrix with sufficiently high modular weight to provide

quark C'P violation.

The resulting model, summarised in tables 4.1 and 4.2, provides an economical and

successful description of quark and lepton (including neutrino) masses and mixing angles
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and C'P phases. Indeed the quarks can be fit perfectly, consistently with SU(5), using
only O(1) parameters. In addition we obtain a very good fit for the lepton observables
with x? ~ 5(7) without (with) Super-Kamiokande data, using four O(1) parameters
which determine the entire lepton mixing matrix Upys s and the light neutrino masses (8
observables), which implies that that the theory is quite predictive. The main predictions
of the model are a normal neutrino mass hierarchy with a massless neutrino, and the
p — 7 reflection symmetry predictions 64, = 45° and C'P phase §' = —90°, which will be

tested soon.



Chapter 5

Flavourful Z’ model to

accommodate R ) anomalies

K (%

Previously, we have been interested in flavour models at the grand unification scale, in
which the Standard Model is embedded into a larger group such as SO(10) in chapters 2
and 3 or SU(5) in chapter 4. In general, one of the simplest extensions of the Standard
Model that one could do is to introduce an additional gauged U(1)’, which could emerge
as a remnant of larger group embeddings of the SM gauge group, with rank larger than
4. In this chapter, we are motivated to present one of such models to examine flavour
at the electroweak scale and give a possible explanation to the present anomalies in
semi-leptonic B-meson decays. The ideas presented in this chapter are mainly based
on [4].

5.1 Introduction

Recently, the phenomenological motivation for considering non-universal Z’' models
has increased due to mounting evidence for semi-leptonic B-meson decays whose rates
and differential distributions are inconsistent with those predicted by the Standard
Model [231-233]. In particular, the LHCb Collaboration has reported a number of
deviations from p-e universality in B — K®)[*]~ decays. These decays are b — s
flavour-changing neutral-current (FCNC) processes which in the Standard Model are
only allowed involving electroweak loop Feynman diagrams, see figure 5.1a. Since FC-
NCs are forbidden at tree-level in the SM, they become sensitive to any new physics

that introduce additional tree-level FCNC interactions as in figure 5.1b.

The couplings of leptons to electroweak gauge bosons are independent of their flavour,
this is known as lepton universality (LU) in the Standard Model. The flavour-changing

neutral-currents are a good way to test LU. Particularly, the ratios within a given range
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k=l

Gos

K9 B K

d d d d
(a) One of the possible diagrams leading to B de- (b) Tree-level contribution to B decays from a new

cays within the Standard Model. Z' gauge boson.

Figure 5.1: Some of the diagrams responsible for B-meson decays in the model presented. On
the left we show one of the the Standard Model contributions, while on the right we present
the new tree-level contribution due to a new Z’ gauge boson.

of the dilepton mass squared from qfnin to g2, given by

]2
dg
Tonin dg?
RK(*) - q ) ot ) (51)
2., AU[B — K®eTe ]d )
qrznin dq2 q

where T' is the ¢?>-dependent partial width of the decay, are a reliable way to probe
deviations from the SM predictions since some theoretical uncertainties cancel out in
the ratio. Due to lepton universality, the ratios of u™pu~ to eTe™ final states Ry and
Ry~ are expected to be close to unity in the Standard Model, however, these are observed
to be about 70% of their expected values. The measurement of Ry [234] is reported
for 1 < ¢ < 6 GeV? while the R+ [235] ratio is measured in two regions 0.045 < ¢% <
1.1 GeV? and 1.1 < ¢% < 6.0 GeV?:

Ry = 0.7457009% (stat) + 0.036(syst) for 1 < ¢ < 6 GeV?,

0.667 0t (stat) + 0.03(syst) for 0.045 < ¢* < 1.1 GeV?, (5.2)
0.6970 45 (stat) + 0.05(syst) for 1.1 < ¢ < 6.0 GeV=.

K+ =

FEach measurement is displaying a 2.50 deviation from the SM and combining that with
the input from other b — s¢™¢~ processes, the SM is disfavoured by 4 to 5 standard
deviations [236, 237].

The Rg and Rg+ anomalies if confirmed, or equivalently, any conclusive observation of
LU violation would indicate the evidence of new physics beyond the Standard Model
(BSM). The B decay rates may be affected by the presence of new heavy BSM particles,
which could couple differently to electrons and muons, violating lepton universality, and
therefore could be responsible for the deviation between the R(.) measurements and
the SM prediction.

A number of recent phenomenological analyses, see e.g. [236-244], conclude that these

data can be well fit when the low-energy Lagrangian below the weak scale contains a
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new physics operator of the CEI,\LP = —C%Z form, where Cé\f and C’%l; are the corre-
sponding Wilson coefficients of the effective four-fermion contact interactions OQNE =
(by* Pps)(ary* ) and 0%1; = (by*Pps)(iy"*ysu). An operator of the form CEI,\LP = —C%Z
leads to

ALegr D Grsy(bry*se)(Bryupr) + He., (5.3)

which fits the Ry () anomalies for

1
G ™ 30 Tov 2 (5-4)
In a flavourful Z’ model, the new physics operator in equation 5.3 will arise from tree-
level Z' exchange: G, = —g’]’\j[%““, where g is the flavour-violating Z’ coupling to left-

z!

handed b- and s-quarks, and g,,, is the couplings to left-handed muons. There is already
a vast literature discussing the Z’ explanation of the B-anomalies and phenomenological
constraints on the parameter space of such models, see e.g. [245-275]. In realistic models
of this kind, the coupling gy is strongly constrained by precision measurements of the
B, meson mass difference. Taking that into account, one can derive the constraint
Mz < 1.2g,, TeV, implying that Mz must be close to the weak scale in weakly coupled
models. The corollary is that the Z’ is in the correct mass range to act as mediator
between the SM and thermally produced dark matter [276-282]. In this chapter we only
discuss how this Z’ model can account for the B-anomalies while in reference [4] it is
shown that the same model can simultaneously explain the observed relic abundance
via a weakly interacting massive particle (WIMP) communicating with the SM through

the same 7’.

We follow reference [283], which introduces a fourth vector-like family with non-universal
gauged U(1)" charges. The idea is that the Z’' couples universally to the three chiral
families, which then mix with the non-universal fourth family to induce effective non-
universal couplings in the physical light mixed quarks and leptons. Such a mechanism
has wide applicability, for example it was recently discussed in the context of F-theory
models with non-universal gauginos [284]. Two explicit examples were discussed in [283].
Firstly an SO(10) — SU(5) x U(1)x model, where we identified U(1)" = U(1)x, which
however was subsequently shown to be not consistent with both explaining R+ and
respecting the By mass difference [285]. Reference [283] also discussed a fermiophobic
model where the gauged U(1) charges are not carried by the three chiral families,
only by fourth vector-like family. In the absence of mixing, the Z’ is fermiophobic,
having no couplings to the three chiral families, but does couple to a fourth vector-like
family. Due to mixing effects, we shall suppose that the Z’' gets induced couplings to
the second family of left-handed lepton doublets (containing the left-handed muon and
its neutrino) and to the third family of left-handed quark doublets (containing the left-
handed top and bottom quarks). Including only such couplings is enough to address the

B-anomalies, in analogy to related scenarios where new vector-like fermions mix with
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the SM ones [250, 253, 256, 258, 261, 268, 270, 275]. In addition, this set-up provides a
natural WIMP dark matter candidate: the neutrino residing in the fourth family. We
are interested in the parameter space of this model where the B-anomalies are explained,
while in [4] it is shown that both B-anomalies and the relic abundance of dark matter
can be simultaneously explained. Since the study of dark matter is not the aim of this
thesis neither of this chapter, we shall not say anything else about it and we refer to [4]
for the full analysis in which direct and indirect dark matter constraints are taken into
account. Here, we present the model capable of explaining the B-anomalies and we
show that this can be achieved without conflicting experimental constraints such as By

mixing, LHC searches, neutrino trident, and so on.

5.2 The model

We consider a model in which, in addition to the Standard Model with the usual three
chiral families of left-handed quarks and leptons, including the right-handed neutrinos,
we add a dark U(1)" gauge symmetry and a fourth vector-like family of fermions. The
idea is to have the SM quarks and leptons neutral under the U(1)" while the vector-like
family has the SM quantum numbers and is charged under the U(1)’, leading to a dark
matter candidate and flavour-changing Z’ operators after the vector-like fermion mass

term mix with the SM fermions.

Table 5.1 shows all the particle content and their corresponding representations and
charges. The non-universal U(1)" charges forbid mixing between the fourth family and
the chiral families via the usual Higgs Yukawa couplings. Therefore, we need to add new
singlet scalars, with appropriate U(1)" charges, to generate mass mixing of quarks and
leptons with the vector-like family. The U(1)" is broken by the VEVs of the new Higgs

singlets ¢, to yield a massive Z’.

The Higgs Yukawa couplings of the first three chiral families can be written in a 4 x 4

matrix notation
EYukawa _ yuQLﬁuR + deLHdR + yeELHeR + yVELgVR +H.ec., (55)

where H = iooH* and y*, y?, y¢, y¥ are 4 x 4 matrices with the fourth row and columns
consisting of all zeros, since the fourth family does not couple to the Higgs doublets.
The U(1)’ charges allow Yukawa couplings between the singlet fields ¢, the fourth family
1/;4 and the first three chiral families ;. Furthermore, there is an explicit mass term

between the opposite chirality fourth family fields ¢4 and 14,

LA — %Q 0QLiQRra + T duiiraur; + 2l dadradp; + vFdrLriLra + 2 deCracr
+ Mf@m@m + MPapgups + Mldpsdrs + MFLiaLrs + M{érsers (5.6)
+ MZ§L4VR4 + H.c.,
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Representation/charge

Field ,
SUB). SU@L Uy U()

QL 3 2 1/6 0
UR; 3 1 2/3 0
dRi 3 1 -1/3 0
Lii 1 2 ~1/2 0

E€R; 1 1 -1 0

VRi 1 1 0 0

| H | 1 2 1/2 0
Qr4, QR4 3 2 1/6 qQ4
UR4, UL4 3 1 2/3 ua
dra,dr4 3 1 -1/3 qaa
Ly, Lpy 1 2 -1/2 qr4
6R4,éL4 1 1 -1 Ge4
VR4, VL4 1 1 0 qu4

’ ¢Q,u,d7L,e ‘ 1 1 0 —qQ4,u4,ds,La,e4 ‘

Table 5.1: The model consists of the usual three chiral families of quarks and leptons ;
(i =1,2,3), including the right-handed neutrino, a Higgs doublet H, plus a fourth vector-like
family of fermions 4, ¥4 and new Higgs singlets ¢y which mix fourth family fermions with
the three chiral families. Note that we exclude ¢, so that vr4, 14 do not mix and are stable.

where i =1, ..., 3.

The fourth-family vector-like singlet neutrinos vry4, Iz4 are special since we do not have
a singlet field ¢, that couples them to the other families, which is why such terms are
absent in the above equation. This implies that vgry4, 74 are absolutely stable, with
their stability guaranteed by an unbroken global U(1),,, and, since they do not carry
any Standard Model quantum numbers, they may play the role of dark matter. Note
that we also impose lepton number conservation U(1);, for all four families of leptons
which forbids Majorana mass terms. Hence all neutrinos (including those in the fourth

vector-like family) will have purely Dirac masses.!

After the singlet scalar fields ¢ obtain a non-zero vacuum expectation value (VEV), we
may rewrite the Lagrangian in terms of new mass parameters MZ-Q = x? (¢q), similarly

for the other mass parameters, such that

£7855 = MPQraQpra + M Grsupe + Mdpadre + MELpoLpy + MSCrseRa

) (5.7)
+ M4VﬁL4VR4 + H.c.,

where a = 1,...,4. We may diagonalize the mass matrix before electroweak symmetry

! Alternatively it is possible to introduce various seesaw mechanisms into this kind of model, leading to
Majorana masses, as recently discussed [285]. However in this chapter we only consider Dirac neutrinos.
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breaking, when only the fourth family is massive

L0 = MPQ' 14Qra + Miraulpy + Midpadpy + ML 14Lpg + M{Ersehy

_ (5.8)
+ M} Uravrs + Hec.

The prime states for the heavy mass basis where only the fourth family has explicit
vector-like Dirac mass terms and it is related to the original charge basis by unitary

mixing matrices,
Qr =V, Qr, ur=Vugur, dr=Vasdr, L} =Vi, Ly, €r="Vezer, (5.9)

while for the neutrino states p4 and vp4 the original and the mass basis coincides. In

this basis, the Yukawa couplings in equation 5.5 become
£Yukawa _ y/uQ/Lﬂ—ulR + yldQ_/LHd/R + y/eL_/LHelR + y/VE/LﬁVR + H.c., (510)
where

ylu — VQLtu’[

UR?

Yl = VQLdeJR, Y = VLLerJR v =V, y". (5.11)

This shows that there is a coupling between the heavy fourth family and the Higgs due
to their mixing with the first three chiral families. However, this coupling will be small
since the original y*, y¢, y¢, y” contain zeroes in the fourth row and column and they
are mixing suppressed. Therefore, we can integrate out the fourth family and look at
the low energy effective theory by simply removing the fourth rows and columns of the
primed Yukawa matrices in equation 5.10. The three massless families, below the heavy
mass scale, are described by

Eng‘ﬁ‘f”wa = yff@'Liﬁule + ng/Lin}%j + yéjilLiH‘f}%j + ygE'LiFIVRj +He., (5.12)

where
v = (Vo u" Vi )i, il = (Voo u™Vi Digs vl = (Veu™Vil)ig, i = (Vi v
(5.13)

and 7,5 = 1,...,3. The Yukawa matrices for the quarks and charged leptons can be now

diagonalized

oy Vi = diag(yu, ye ve), Vi Vik = diag(a, v w),  VIpy“Vih = diag(ye, yu, yr)-
(5.14)
The unitary CKM matrix is then given by

Vexm = Vi Vi (5.15)

In the case of neutrinos, since we are forbidding Majorana masses, the light physical
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neutrinos have Dirac mass eigenvalues given by,
Wy Vik = diag(ma, ma, ms). (5.16)

The lepton mixing matrix or PMNS matrix can be constructed from the transformations
in equations 5.14 and 5.16
Voans = VL VI (5.17)

To look at the Lagrangian involving the SM gauge couplings, we emphasize that all
the four families have the same charges under the SM. The unitary transformations in
equation 5.9 cancel as in the usual GIM mechanism [21] and the gauge couplings in the
heavy mass basis remains the same as in the SM. After integrating out the fourth family
and electroweak symmetry is broken, and the light Yukawa matrices are diagonalised,

the couplings to the W gauge bosons are

dr,
L = % (ﬂL L fL) VoMW, " | se
br,
(5.18)
V1L
+ % (éL Hr 7iL> VPMNswlj")/“ vor, | + Hec.,
V3L

where ¢ is the usual SU(2), gauge coupling. For the couplings to the Z gauge boson, the
same happens, the charges are the same for the fourth families and the transformations
in equation 5.9 cancel, such that in the heavy mass basis, after electroweak symmetry

breaking, we are left with

L3 = G Va2 (CF = Chs), (5.19)
where
o=l d el v, a=1,..4 (5.20)
and

CYl=t3, CV=t3—2s4Q. (5.21)

The electric charge of the fermions is denoted by @ and t3 are the eigenvalues of o3/2.
The couplings to the Z boson are flavour diagonal, even after diagonalization of the light
fermion mass matrices, due to the unitary transformations cancelling. The interactions
will be the same as in equation 5.19, replacing the fields ¢/, by their three family mass

eigenstates.

In the case of the couplings to the Z’ gauge bosons, we have non-universal couplings
that lead to flavour changing. In the original basis, after the U(1)" symmetry is broken,

we have diagonal gauge couplings between the massive Z' gauge boson and the four
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families
ﬁgZ%uge = g/ZL(QLDQ’)/HQL—l—ﬂRDu’y“uR+JRDd’}/“dR+I_/LDL’y“LL—i—éRDe’y‘ueR) (5.22)
where,

Dq = diag(0,0,0,qq4), Dy = diag(0,0,0,qu4), Dg = diag(0,0,0, gas)

(5.23)
-DL = diag(O,O,O,QL4)7 De = dia‘g(070707QG4)) Dl/ == diag(07070)qd4)‘

In addition there are the fourth family couplings involving the opposite chirality states
1;4. Using the transformations in equation 5.9, we get the Z’ couplings in the diagonal

heavy mass basis

LG = g'Z)(Q LDy QL + W rDy"up + d' RDYd + L' D1y L, + € RDertel)
(5.24)
where D’Q = Vo, DQVéL, and similarly with Q — L, etc. Ignoring phases, these matrices

can be parametrized as

2
S14 C14514524  C14C24514534 C14C24C34514

2 .2 2 2
C14514524 C14554 C14C24524834 €14C24C34524

D = 4q. (5.25)

2 2 2 .2 2 2
C14C24514534 C14C24524534 C14C94534 C14€54C34534

2 2 2 2 2 2
C14C24C34514 C74C24C34524 C74C54C34534 C14C34C34

where s;; and ¢;; refer to sinf;; and cos6;; (we have also suppressed the superscript in
the angles 3?4 — 814 for simplicity). Since the U(1)" charges differ for the fourth family,
the unitary transformations do not cancel and the matrices D/,, etc., are not generally

diagonal. Therefore, Z' exchange can couple to light families of different flavour.

We are interested in the sbZ’ and fuZ’ couplings, needed for the R, %) anomalies.
Assuming that only the mixing angles Hgf and 92L4L are different from zero? the mixing

mass matrices become

00 O 0 0 0 0 0
00 0 0 0 (s5)? 0 cbysk
Dl — . D= 24 24°24 | (596
QT g g (592 Ls e R (5.26)
00 C3Q433Q4 (C?;Q4)2 0 chyshy 0 (c5y)?

while the rest of them being zero. In the low energy effective theory, after integrating

out the fourth heavy family, the Z’ couplings to the three massless families of quarks

2 A more natural possibility would be to assume that the new vector-like fermions have a large mixing
only with the 3rd generation of the SM doublet, that is with taus instead of muons. Then the coupling
to muons could arise due to a mixing between the SM charged leptons, as in [283]. However, explaining
the B-meson anomalies in such a set-up runs in conflict with the strong bounds from non-observation
of 7 — 3pu.
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and leptons are
LY =47, (QQ4(S§24)2Q/L3'7HQIL?, + QL4(3§4)25'L27“LILQ) , (5.27)

where Q73 = (7,,07) and L}, = (v}, u7,). Using now the diagonalization of the Yukawa

matrices in equation 5.14, we can expand the primed fields in terms of the mass eigen-

states,
by, = (Vip)wde + (Vi )sase + (Vi Jasbe
t, = (VD)aup + (V1 D)secr + (V, TL)33tL
L= (VIDawip + (VI )aaver + (VI )asvar, (5.28)
Wy = (Vhaer + (V1 )oopr + (V)] oz

For simplicity, we assume that the charged lepton mass matrix is diagonal so that we
may drop the primes on the muon field so that p), = pr. Under this assumption, in
the lepton sector, the Z’ only couples to muon mass eigenstates 7, and muon neutrinos

vu1, where the latter are related to neutrino mass eigenstates by the PMNS matrix,

v, = (Vemns)2iviz + (Venins )2ever + (Venns 233z (5.29)

Given the hierarchies of the CKM matrix, we will assume similar hierarchies of the

rotation matrix elements:

|(Viguyp)s” < [(Vigayp)s2l® < 1(Vigu)ssl* = 1 (5.30)

The vector-like neutrino vy is not charged under the SM and can be considered as a dark
matter candidate [4]. The portal that allows it to annihilate into ordinary matter is the

7' mediator. The explicit coupling between the Z’ and the dark matter candidate vy is
L7 = g’ql,4ZL174’y“u4, (5.31)

where the Dirac dark matter field is given by v4 = V41 + vy with a Dirac mass m,Dyvy

where we have defined m, = M}.

We finish this section by summarizing all non-SM interactions that will later be relevant
for our phenomenological analysis, introducing the notation that we shall subsequently
use:

LD Z, (gwacy"ar + gesbry" st + guplenlr + guvay*va) (5.32)

where gz, = (tr,b2)7, €0 = Wur, )T g = 9'904(s5)% gbs = go(Voi )32, Gup =
g ar,(s5)2, g = d'q,. We expect |( dL)gg\ [Vis|, where |Vis| =~ 0.04 is the 3-2
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entry of the CKM matrix, as otherwise unnatural cancellations would be required. It
follows that |gps| < |Visgws|; in the following for simplicity we assume gps = VisGop,
and that gy, and g,, have the same sign. Thus, the relevant parameter space is 5-
dimensional: 3 couplings (ges, Juu, 9vv) and 2 masses (M and the dark matter mass
m,,). From the theory point of view these are all essentially free parameters, although
one naturally expects g,,, > gp, 9, in the absence of large mixings or large hierarchies of
U(1)" charges. These parameters are then constrained by flavour physics, multiple low-
energy precision measurements, colliders, and dark matter detection experiments. In the
following section we identify the regions of the parameter space where the B-anomalies
can be explained without conflicting any existing experimental data, considering only
a three-dimensional parameter space: (g, guu, Mz/). The whole analysis including the
dark matter constraints can be found in [4]. We note that Z’ models simultaneously
addressing the B-anomalies and dark matter have been previously discussed in [276-282].
In particular, reference [279] performed a detailed analysis of collider, precision, dark
matter constraints in a similar model based on gauged L, — L, symmetry. The main
practical difference between our setup and that model is the presence of Z’ couplings to

b-quarks in equation 5.32, which affects the LHC phenomenology.

5.3 Rk anomalies and flavour constraints

In this section we review and update the constraints on the parameter space of Z’ models
motivated by the current B-meson anomalies. One possible explanation of the Ry and
Ry~ measurements in LHCD is that the low-energy Lagrangian below the weak scale
contains an additional contribution to the effective 4-fermion operator with left-handed

muon, b-quark, and s-quark fields:

1

(31.5 TeV)Z’ (5:33)

ALesr D Gray(bry"sp)(pryupr) + Hee., Gospu ~
Above, the numerical value of the effective coefficient corresponds to the best fit quoted
in [237]. In our model, this operator arises from tree-level Z’ exchange and the analogous
operator with uy, replaced by e, does not appear due to vanishing charged lepton mixing.

We can express the coefficient Gy, as function of the couplings in equation 5.32,

9bsGup VisGob9up
Gpsy = — = — . (5.34)
K M2, M2,

Together, equations (5.33) and (5.34) imply the constraint on the parameters g, guu
and MZ/Z

gobpup 1

M2, (6.4 TeV)?

(5.35)

There are additional constraints on these parameters coming from flavour physics and
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low-energy precision measurements. In the following we determine the region of the
parameter space where the Ry (.) anomalies can be explained without conflicting other

experimental data.

5.3.1 B, — B, mixing

The Z' coupling to bs leads to an additional tree-level contribution to B; — B, mixing.
Low-energy observables are affected by the effective operator arising from integrating
out the Z’ at tree level:

AL

Gbs _ 2
ALt D *T(SL’)/“Z)L) + h.c, Gps = M%/ = M%/ . (5.36)

Such a new contribution is highly constrained by the measurements of the mass difference
A M of neutral Bs mesons. In this chapter we follow the recent analysis of reference [286]

which, using updated lattice results, obtains a stronger bound on Gj,:

1 1

_ << L. :
(180 TeV)2 ~ Gos S (770 TeV)?’ @95%C (5:37)

The resulting constraints in the (g,,,gm) plane are shown as the light blue region in
figure 5.2. The updated constraint is particularly strong for the models that generate a
strictly positive Gps [286] (as is the case in Z’ models) due to the ~ 1.80 discrepancy
between the measured AM; and the updated SM predictions which favours Gps < 0.
As a consequence, Z' models explaining the B-meson anomalies requires Mz < 1 TeV,
assuming weak coupling g,, < 1. For easy reference, we also show the B, mixing

constraints based on the previous SM determination of AMj [287], S Gps S

1
" (160 TeV)2

m, see the dark blue region in figure 5.2 labelled “Bs mixing 2015”.

5.3.2 Neutrino trident

The Z’ coupling to left-handed muons leads to a new tree-level contribution to the
effective 4-lepton interaction

2

AL D —@(Em“m?, G, = g“g‘ : (5.38)
2 MZI

This operator is constrained by the trident production v,v* — v, u" ™ [288-290]. Using
the results of the global fit in [291], the bound on the effective coefficient is given by

1 1
— —____ < <
(390 GeV)? ™~ Gu s (370 GeV)?’ @ 95%CL. (5.39)

The limits in the (g.u, gw) plane are shown as the orange region in figure 5.2. Since

the trident constraints probe much lower scales than the By mixing, a much larger Z’
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Figure 5.2: The parameter space in the (guu,gs) plane compatible with R, (.) anomalies
and flavour constraints (white). The Z’ mass varies over the plane, with a unique Z’ mass
for each point in the plane as determined by equation 5.35. We show the recent Bs; mixing
constraints (light blue), the trident bounds (orange), the Z — 4 constraints (pink), and the
ATLAS constraints from dimuon resonances Z' — uu (purple); for reference we also display
the previous weaker B, mixing bounds (dark blue). The green, red, purple and black lines
correspond to Mz, = 10,100, 1000, 10000 GeV respectively.

coupling to muons is allowed, g,, 2 1 for a heavy enough Z’. Nevertheless, together
with the Bs mixing constraints, the trident leaves only a narrow sliver of the parameter

space that could address the B meson anomalies.

5.3.3 LHC searches

Further constraints on our model come from collider searches. For light Z’ masses, the
LHC measurements of the Z decays to four muons, with the second muon pair produced
in the SM via a virtual photon [292, 293], pp — Z — 4u, sets relevant constraints in
the low mass region of Z’ models, 5 < Mz < 70 GeV. The Z — 4u constraints on
the magnitude of the Z’ coupling to muons were analysed in [247, 279, 290]. Projecting
these results onto our model, the excluded parameter space is marked as the pink regions
in figures 5.2 and 5.3 and in the upper-left panel of figure 5.4. All in all, the Z — 4p
constraint is non-trivial but for any Z’ mass it always leaves some available parameter

space to explain the B-meson anomalies.

For a heavier Z’, the strongest constraints comes from LHC dimuon resonance searches,
pp — Z' — ptu~, see also [269]. In our model the Z’ is dominantly produced at the
LHC through its couplings to bottom quarks, bb — Z’. The cross section olpp = Z')
from bb collisions is taken from figure 3 of reference [294]. The contribution of bottom-

strange collisions, which is secondary in our model, is estimated using Madgraph [295].
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The Z’ boson can subsequently decay into muons, muon neutrinos, bottom or strange
quarks, and also into top quarks and dark matter when kinematically allowed. The

partial decay widths are given by

2
Uz up = 7247T9WMZ/ ol W

1 1
Ly g = ggngZ/, Lz s = ggfbViMzu
2 2
m dm (5.40)
Uy = SﬂgngZ’ (1 - M; ) 1 - M2t7
Zr Z

from which we calculate Br(Z' — upu) analytically. Then o(pp — Z' — pp) is estimated
using the narrow-width approximation, and compared with the limits from the recent
dimuon resonance search by ATLAS [296], which allows us to constrain Z’' masses be-
tween 150 GeV and 5 TeV. We verified that the analogous Tevatron analyses give weaker
constraints, also in the low mass regime. Figure 5.4 shows the ATLAS constraints for
specific Z' masses (200, 500 and 1000 GeV) with dark matter couplings set to zero and
arbitrary (g,u,gm) couplings. Figure 5.2 shows the same limits for the Z’ mass fixed
in function of (g, gs») by the condition in equation 5.35. In the plane (g, ge), the
Z' mass is fixed to explain the observed Rj(.) anomalies, therefore for each g,., g
and Z' mass we compute the cross section and we check if this is excluded by ATLAS
or not. We conclude that in the parameter space of our model relevant for explaining
the B-meson anomalies the ATLAS dimuon limits are always weaker that the new By

mixing constraints.

5.3.4 Constraints from lepton-flavour violation

So far we were assuming zero mixing in the charged-lepton sector. It is interesting to
discuss the constraints resulting from relaxing that assumption. In particular, for a
non-vanishing mixing angle between charged leptons of the second and first generations
(V)21 # 0, a non-diagonal Z’ coupling to left-handed muons and electrons would be

present
LD guu(Vip)aprner Z, + He. (5.41)

which could generate an additional contribution to the transition u — ey whose partial

decay width can be estimated, according to [270], as

O[?’)’L5

L(p — ey) ~ m%gﬁu\véﬂ%lFQ(mi/M%f) ) (5.42)
where F(x) is a loop function, as defined in [270], whose limit for Mz > m, is
lim,_,o F'(x) = 2/3. The branching ratio of u — ey is severely constrained by the
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Figure 5.3: The parameter space in the (guu, Mz/) plane compatible with R, (.) anomalies
and flavour constraints (white). We show the recent B, mixing constraints (light blue), the
trident bounds (orange), the Z — 4p limits (pink) as well as the expected limits from p — ey
for several values of |V} |21 (black dashed).

MEG experiment [297] which set the bound BR(u — ey) < 4.2 x 10713 at 90%CL. An

analytical approximation of this branching ratio is given by

_ My \7*
BR(p — ey) ~ 1.24 x 1070 g7 [V/1[3, (1TeV) : (5.43)

implying that © — e is expected to set a stronger constraint than the neutrino trident
production for values of the mixing angle |V, |21 2 10~ as represented in figure 5.3,

while [V/]21 2 1072 would rule out the entire parameter space. As a result, in the

viable parameter space of our setup, the mixing angle |V, |21 is expected to be |V} |21 S
10~%. Similarly, the experimental limit on the lepton-flavour-violating of the tau lepton

into 3 muons, BR(7 — 3u) < 2 x 1078 [298], constrains the mixing angle between

2 /

GunlVorlor < 1 This
z!

charged leptons of the second and third generation (V; )so: S {16 Tev)2

> 3 x 1074, while

~

is stronger than the trident bound in equation (5.39) for (V,)s2

(V! )32 2 3 x 1073 would rule out the entire parameter space.

5.3.5 Other constraints

Finally we comment on other precision observables which yield secondary constraints on

our model.

The contribution of Z’ to the muon magnetic moment is given by

1 g 2
oo 2 [ Gup
Ay o= 1972 ( Z'> . (5.44)
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Figure 5.4: Bounds on the parameter space in the (gu,., gs») plane for fixed Z’ masses: 50,
200, 500 and 1000 GeV, as indicated on each panel. The red bands explain Ry (.) at 1lo. The
blue and orange areas show the B — B mixing [286] and neutrino trident [291] 20 exclusions,
respectively. For low Z’ masses we have additional constraints from Z — 44 as shown in pink.
The ATLAS limits [296] from dimuon resonance searches for 36 fb™'luminosity are given in

purple for larger Z’ masses.

The measured discrepancy of the muon magnetic moment is AZ_Q = (290 £90) x 10~1¢

[299]. This sets weaker limits on the ratio g,,,/My than the trident production.

Next, Z" exchange generates the effective interaction between b-quarks and muons:

7 _ e 1
L G (br "D Gy, = — =— 5.45
oft D Gou(bry"br)(Bryupr), by M2 61 Tev)2’ (5.45)
where we used equation 5.35. The operator in equation 5.45 is constrained by lepton
flavour universality of upsilon meson decays [300]. Focusing on the Y5 state, given the
measured ratio [301]

R/ _ (Y5 —7r77)
T (Ts = ptpT)

= 1.008 + 0.023, (5.46)

and the SM prediction R‘lrs/“ = 0.9924, one finds the constraint

@95%CL. (5.47)

This is automatically satisfied in our model in the parameter space where the R (., anomalies
are explained.
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5.4 Summary

We have presented a new Z’' model to accommodate the observed R (. anomalies. We
extend the Standard Model, including three right-handed neutrinos, with an U(1)" gauge
symmetry and a fourth family of vector-like fermions. In the absence of mixing, the Z’ is
fermiophobic, having no couplings to the SM three chiral families, but does couple to a
fourth vector-like family. Due to mixing effects, the Z’ gets induced couplings to second
family left-handed lepton doublets and third family left-handed quark doublets. These
couplings add a tree-level contribution to the b — s flavour-changing neutral-current
process, as shown in figure 5.1b. Since the Z’ couples to muons but it does not couple to

electrons, this model can account for the measured B-meson decay ratios Rx and Rg+.

We identify the parameter space where this explanation is consistent with existing exper-
imental constraints from LHC searches, precision measurements of flavour mixing and
neutrino processes. In this chapter, the relevant parameter space is effectively three-
dimensional, and spanned by the Z’ couplings to muons (g,,) and b-quarks (g,) and
by the mass of the Z’ gauge boson (My/). For each g,, and Mz, gy is fixed accord-
ing to equation 5.35 to the best fit value reproducing the R;(.) measurements. The
coupling gy, is further strongly constrained by precision measurements of the B; meson
mass difference leading to Mz < 1.2g,, TeV. In our model, the Z’ coupling to muons
is suppressed by a mixing angle between the SM 2nd generation lepton doublet and
the 4th generation vector-like lepton doublet, and thus My is expected to be close to
the weak scale. The coupling g, is also constrained by neutrino trident production.
Further restrictions from LHC searches are shown to be weaker than the B; mixing
constraints, see figure 5.2. Figures 5.2 and 5.4 show that there is narrow band in which
Ry (~) anomalies can be understood for Z’' masses between 10 GeV < My < 1 TeV.
Larger Z' masses would require a large Z’' couplings to muons g,, > 1, which seems

unnatural, and smaller Z’ masses are allowed for gy, < 1073.

Incidentally, that parameter space can be probed by several distinct methods. First of
all, the allowed window can be further squeezed by better precision measurements of
the trident v, N — p*p~ v, N process, and by improving the theoretical precision of the
SM prediction for the Bs; meson mass difference. The above statement is in fact valid
for all models where the B-anomalies are addressed by a tree-level Z’ exchange. What is
more specific to models where the Z’ interactions with the SM fermions originates from
mixing of the latter with vector-like fermions is a non-vanishing Z’ coupling not only to
muons but also to b-quarks. This results in a non-negligible rate of the partonic process
bb — Z' — ptp~ which can be probed by dimuon resonance searches at the LHC. In
fact, the preferred Mz range is where the LHC sensitivity is optimal. Targeted searches
for b-quark-collision initiated process (rather than recast of generic dimuon searches)
could lead to a discovery signal in the near future, or to better constraints that are more

stringent than the Bs; mixing one.
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Even though, in this chapter, we do not discuss the dark matter candidate naturally aris-
ing in this model, i.e. the fourth vector-like neutrino, the analysis has been performed
in [4]. Here, it is shown that the model is compatible with both, fitting R (., anomalies
and reproducing the correct relic abundance of dark matter while satisfying all experi-
mental and cosmological constraints. To summarize the results shown in [4], assuming
our model is indeed the correct explanation of the observed Ry (.) anomalies and dark
matter relic abundance, the analysis hints at a particular corner of the parameter space
where 300 GeV S Mz <1 TeV,my, 21 TeV, g, 21, gy ~ 0.1g,, and 0.1 S g, S 1.

~






Chapter 6

Conclusions

In this thesis we have addressed the flavour puzzle and the origin of neutrino masses
within a SUSY flavour GUT framework in chapters 2-4, while the last chapter 5 was
dedicated to flavour at the electroweak scale. In the following, we summarize the main
successes of each chapter as well as some drawbacks that in most of the cases motivated

the subsequent chapter.

Chapters 2-4 were based on flavour SUSY GUTs, driven by the aim of resolving as many
open questions in particle physics as possible simultaneously. We followed a guiding
principle, given by the discrete family symmetry group, to tackle the flavour puzzle.
We introduced flavon fields that after acquiring VEVs give a dynamical origin to the
Yukawa parameters of the Standard Model. We have also addressed neutrino masses
and mixing within a type-I seesaw mechanism. Charge quantisation and gauge coupling
unification were assured by the GUT group and we ensured that only the two MSSM

Higgs doublets remained at low scales.

In chapter 2, we constructed a model based on an Sy x SO(10) grand unified theory of
flavour. SO(10) was chosen since it predicts three right-handed neutrinos and makes
neutrino mass inevitable. In the model, the flavon vacuum alignments preserve the SU
generator of Sy, leading to the CSD3 vacuum alignments. All known fermions are con-
tained at the high scale within a single representation ¢ which is (3',16) representation
of Sy x SO(10).

The model relies on “universal sequential dominance”, meaning that the Yukawa ma-
trices are sums of low-rank matrices and each matrix in the sum naturally accounts for
the mass of a particular family. The hierarchy between all fermion masses is explained
by assuming only a rather mild hierarchy in the flavons VEVs, i.e. (¢1) < (p2) < (¢3),
with differences of an order of magnitude between each flavon VEV. With this set up,
the model successfully reproduces all the observed fermion masses and mixing, even in

the quark sector, although we had to assume some SUSY threshold corrections to the
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running of Yukawa parameters. The milder hierarchy in the down-type quarks compared
to the up-type quarks is explained by a mixed term involving ¢;1¢2, which introduces
a texture zero in the (1,1) element of the down-type Yukawa matrix Y'¢. This feature
leads to the GST relation for the Cabibbo angle 67, ~ \/M . In the lepton sector, an
excellent fit to data was performed and we gave some predictions as normal hierarchy

and CP phase deviating both from zero and maximal C'P violation.

To achieve fermion masses and mixing, there is no need of tuning of O(1) parame-
ters. We ensured naturalness within the model with all dimensionless parameters in
the renormalisable superpotential being O(1). The model is also simple, meaning that
we employed the smallest possible field content. We also addressed the doublet-triplet
splitting and the p problem and we provided an ultraviolet renormalisable model. How-
ever, we did not discuss the origin of the hierarchy of flavon VEVs, nor did we derive
the CSD3 vacuum alignments which would require additional field content. Similarly,
we did not show explicitly how SO(10) was broken to the MSSM. Furthermore, even
though the second right-handed neutrino has a mass of O(101%) GeV, which is in the
preferred range to reproduce the observed BAU, Ny leptogenesis does not survive the
washout due to the inverse decays into the lightest right-handed neutrino N;. These
features motivated us to construct a new model presented in chapter 3, which is still

based on an Sy x SO(10) symmetry but with different CSD2 vacuum alignments.

In chapter 3, we also unified the fermions in a 16 representation of SO(10) and a
triplet 3’ of Sy. The Yukawa couplings are given again a dynamical origin and arise
from the CSD2 vacuum alignments of the flavon fields. The model contains similar
characteristics to the ones in chapter 2, the Yukawa matrices are derived from sum
of low-rank matrices, where each matrix accounts for a particular fermion, while the
hierarchy between different fermions is due to a milder hierarchy between the flavon
VEVs. Similarly, the CSD2 structure and the mixing term ¢1¢2 in the down-type quark
Yukawa matrix give rise to the GST relation and to a milder hierarchy in the down-type

quarks compared to the up-type quarks.

Additionally, in this model a set of driving fields was added which together with the
supersymmetric F-term equations fix the CSD2 vacuum alignments. We also showed
the symmetry breaking superpotential that fixes the hierarchy between the flavon VEVs
(p1) < {(¢2) < (¢3) as well as a working doublet-triplet splitting mechanism and a u

term generated at the correct scale.

In this model, the second right-handed neutrino Ny has an expected natural mass value of
the order O(10!) GeV, in the favoured range to produce the observed BAU through Ny
thermal leptogenesis. To verify if it is feasible to obtain the measured baryon asymmetry,
we took into account the washout due to inverse decays into N; and we computed
all relevant parameters, i.e. decay asymmetries, efficiency factors and flavour effects.

Interestingly, the CSD2 vacuum alignments lead to a zero in the (3, 1) entry of the Dirac
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neutrino mass matrix in the flavour basis so that there is not suppression due to taus
decaying into Nj. Therefore, this model naturally generates sufficient BAU through Ny
leptogenesis, fixing the second right-handed neutrino mass My ~ 1.9 x 10! GeV, in the
natural range predicted by the model.

We also performed a fit to the Standard Model fermion masses and mixing angles with
some predictions such as normal neutrino mass ordering and a C'P violating phase of
200°. However, the fit relies on specific large SUSY threshold corrections and it still
depends on O(1/Mp) terms for the right-handed neutrinos.

The main difference between chapters 2 and 3 is given by the distinct flavon alignments
which results in different predictions in the Yukawa couplings and mixing parameters.
Chapter 2 is based on CSD3 while chapter 3 is based on CSD2. In chapter 2, we have
19 free parameters to fit 18 data points (we decided not to include &' in the fit and we
left it as a pure prediction of the model since it was not yet well measured) and we
found a y? = 3.4 with all the predictions within the 1o range. In chapter 3, we have
a larger x? ~ 11.9, with the leptonic sector perfectly fit while we found larger pulls in
the quark sector, for example, the top Yukawa coupling deviates almost 20. However,
in chapter 3 the number of free parameters is reduced to 15 and additionally we can
find the correct baryon asymmetry of the Universe through leptogenesis what was not
possible in chapter 2. In both cases most of the contribution to the y? function comes

from the quark sector and we still have to rely in large SUSY threshold corrections.

Heretofore, in chapter 2 our guiding principles were naturalness, with only O(1) dimen-
sionless parameters and minimality, with only low-dimensional representations and a
minimal field content. In chapter 3, we went one step further and we focused also in
completeness, where we added a set of driving fields to reproduce the desired flavon
vacuum alignments and we also showed an explicit symmetry breaking leading to the
hierarchy between flavon VEVs. Then, in chapter 4 we aimed at combining all these
guiding principles in a useful way with the introduction of extra dimensions. In this
case, the number of fields was largely reduced since the boundary conditions on the orb-
ifold compactification introduce GUT-symmetry breaking, reproduce a doublet-triplet

splitting and additionally align the flavon VEVs.

In chapter 4 we focused on a supersymmetric SU(5) theory in 6-dimensions, where the
two extra dimensions were compactified on a T2/Z orbifold. We showed that within
this orbifold, if there is a finite modular symmetry, it can only be A4 with fixed modulus
T =w=¢e2"/3 or 7 = w + 1, where we focused on the first possibility. However, we did
not address the problem of moduli stabilisation. The finite modular symmetry A4 plays
the roll of the flavour symmetry and the structure of the matrices is dictated not only

by the flavon VEVs but also by the Yukawa couplings which become modular forms.

In this model, the hierarchy between fermions is understood through the Froggatt-

Nielsen mechanism. The down-type quarks and the charged leptons have diagonal and
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hierarchical Yukawa matrices, with quark mixing due to a hierarchical up-type quark
Yukawa matrix. The neutrino mass matrix is u — 7 reflection symmetric at low energies,
predicting maximal atmospheric mixing angle and maximal leptonic C'P violation. The
model also predicts normal neutrino mass hierarchy. The rest of the PMNS observables
are fit to the best present measured values, while the quarks can be perfectly fit using

only O(1) parameters.

Finally, chapter 5 was devoted to flavour physics at the electroweak scale. In this
chapter, we abandoned the idea of solving simultaneously most of the open questions of
the Standard Model presented in chapter 1, and we focused on explaining the present
anomalies in semi-leptonic B-meson decays, which if confirmed, may be the first signal
of new physics beyond the Standard Model, apart from neutrino masses. In particular,
we accounted for the deviations from p — e universality, predicted by the Standard
Model, which have been reported by the LHCb Collaboration in B-meson decays. Since
these decays are b — s flavour-changing neutral-currents, forbidden at tree-level in
the SM, they become sensitive to any new physics that introduce additional tree-level

interactions.

In the model presented, we introduced an additional U(1)" symmetry to the SM (in-
cluding three right-handed neutrinos) and a fourth family of vector-like fermions. The
only fermions charged under the new U(1)" are the ones in the fourth family. However,
due to mixing effects, the Z’ gets induced couplings to the second family of left-handed
lepton doublets and to the third family of left-handed quark doublets. We showed that
the model can account for the measured B-decay ratios consistently with existing ex-
perimental constrains from LHC searches and precision measurements of flavour mixing
and neutrino processes. Additionally, the model provides a natural dark matter candi-
date, the neutrino in the fourth family, although we did not discuss the relic abundance

neither the dark matter direct and indirect experimental constraints on this thesis.

Beyond the above successes of the different chapters, there are still a few drawbacks
that deserve further study. Chapter 2-4 did not explain SUSY breaking. A more de-
tailed phenomenological study will take into account experimental constraints on SUSY
observables. Furthermore, to achieve a good fit large SUSY threshold corrections were
necessary, studying the underlying SUSY model which can reproduce the required cor-
rections is beyond the stated aims of this thesis. Furthermore, we did not discuss the
strong C'P problem, inflation or Dark Matter (which may in principle be the lightest
SUSY particle, stabilised by the R-parity).

In chapter 5, the available parameter space of the model can be proved in the future
since the preferred My range is within the LHC sensitivity scope. Better precision
measurements and resonance searches at the LHC can test the allowed window as well
as an improvement in the theoretical precision of the SM prediction for the Bg mass

difference can further squeeze the parameter space.
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In summary, we have presented three different SUSY flavour GUT models in chap-
ters 2-4 addressing some of the known Standard Model open questions such us neutrino
masses, the flavour puzzle, charge quantization and gauge coupling unification, and the
baryon asymmetry of the universe, among many others. In chapter 5, we introduced
an extension of the Standard Model which has implications at the electroweak scale, in

particular, it may explain the recent anomalies in B-meson decays.

I hope that the results presented in this thesis give a deeper insight into physics beyond
the Standard Model and that they will be helpful for future research.






Appendix A

S4 and A4 group theory

In this section, we introduce the group theory properties of Sy and Ay. Sy is the
symmetric group consisting of all possible permutations among 4 objects and it also
corresponds to the rigid rotational symmetries of a cube. Ay is a subgroup of Sy and
consists of all even permutations in Sy. Ay is also given by the rigid rotational symmetries
of a tetrahedron. There are 24 independent transformations (group elements of Sy) of
which 12 are symmetries of A4 (group elements of Ay). We will define the groups in
terms of their presentation, where the generators (subsets of elements from which we
can obtain all elements of the group by multiplication) have to satisfy certain rules.
In the case of Sy, we need three generators S, T' and U which satisfy the presentation
rules [302]

S§? =13 =U%=(ST)® = (SU)*> = (TU)? = (STU)* = 1. (A1)

If we drop the generator U, this reduces to the presentation of A4 [303]. All group

elements can be constructed from these generators, following the rules above.

A.1 S, symmetry group

We shall now present the irreducible matrix representations for Sy in the T-diagonal
basis, see [101, 304, 305] for proofs and other bases. S4 has the following irreducible
representations: two singlet representations 1 and 1’, one doublet representation 2 and
two triplets denoted by 3 and 3’ which are independent. The matrix representations in
the T-diagonal basis are given in table A.1 [102] (where w = ¢?27/3).

The Kronecker product rules are basis independent but the Clebsch-Gordan coefficients
depend on the basis. We list the Kronecker products and Clebsch-Gordan coeflicients
of Sy in the T-diagonal basis given by table A.1 [129], where n counts the number of
primes which appear, e.g. 3 ® 3’ — 3’ has n = 2 primes. The products involving at
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Sy 1,1 2 3,3’

-1 2 2
Sl((l)(1)>§2—12
2 2 -1

L0 1 0 0

T 1 0 w2 0 w* 0

0 0 w

100

U +1 G @ Floo1
010

Table A.1: Generators S, T and U in the irreducible representations of S4, where w = e'?m/3,

least one singlet or doublet are given by

11—1
1010 510 n=even 1 ®1 —1 af,
11 =1
10 @2 s 2 n=even 1®2—2 N 31
n=odd 1®2-—>2 (—=1)"B2 ’
13 —+3
) ") ) n=even 1 ®3 —3 A
1YV 93" -3 Los | © Ba |
B3
1233
" n=even 221
2021 W 2821 aifB2 + (=1)"anf,
n=o0
o
2022 {n:wm 2022 } 202)
a1
n=even 2®K3—3
" N 2®3/_>3/ 52 53
203" -3 P Bs | +(=D"az | B |,
n=o0
23 -3 o *

while the products of two triplets going into either a singlet, a doublet or a triplet are
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given by
3®3—1
30 230 510 n=even 3 ®3 =1 o181 + azfs + asfa,
33 —>1

n=even 33 —2 )
3030 52 323 -2

( a2 + agfi + 183 )
n=odd 3®3 —2

(—1)™(a3f3 + a2B1 + a1 52)

\

3933 ) 20181 — azfls — azfe
30930 530 {n=0dd 323 —3 20383 — 182 — aaf |
\ 323 -3 20002 — agf — a1 B3
3®3—-3 a2 fl3 — a3
300 3" — 3() n=even 3®3 — 3 a1ffe —aef |
323 -3 asf —a1f3

(A.3)

where «; and §; refers to the components of each multiplet such that no index is needed

when referring to the singlet multiplet.

A.2 A, symmetry group

Ay is the even permutation group of four objects, which is isomorphic to the symme-
try group of a regular tetrahedron. It has 12 elements that can be generated by two

generators, S and T, with the presentation
S§?=T3=(ST)* = 1. (A.4)

Ay has four inequivalent irreducible representations: three singlet 1,1’,1” and one triplet
3 representations. The one-dimensional representations are determined uniquely by the
conditions in A.4, while the three-dimensional representation is determined up to an
unitary transformation, representing a change of basis. We choose to work with the
same complex basis as [212] and the representation matrices of the generators are shown
in table A.2.

The product of two triplets ¢ = (1, 2, ¢3) and ¥ = (Y1, 12, ¥3), decomposes as 3x 3 =
1+ 1 + 1"+ 35 + 35, where 35, denote the symmetric or antisymmetric product,

respectively. The component decomposition of the products are shown in table A.3.

The 12 elements of A4 are obtained as 1,S,7T,ST,TS,T?,ST? STS,TST,T?S,TST?
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1 1 17 3
-1 2 2
1 1 1 3 2 -1 2
2 2 -1
1 0 0
1 w W? 0 w 0
0 0 w?

Table A.2: Generators S and 7T in the irreducible representations of A4, where w = e

i27/3

Component decomposition

P11 + p2103 + P32

(o)1 P33 + P12 + Y211

(o)1 P22 + P31 + P13

20191 — P21P3 — P32

(0v)s, % 20313 — P12 — P21y

20212 — 31 — V193

P21h3 — P32
(pv)3, P12 — P21
P31 — P13

Table A.3: Decomposition of the product of two A4 triplets p, % in the T-diagonal basis. The
subscript of the bracket refers to the representation in which the product is contracted since

3x3=1+1+1"+3¢+ 3a.

and T?ST. The A4 elements belong to 4 conjugacy classes

1Cy: 1

4Cs: T, ST, TS, STS
4C3 : T2, ST?, T?S, ST?S
3Cy : S, T?ST, TST?,

where mC¥ refers to the Schoenflies notation where m is the number of elements of

rotations by an angle 27k /n.

A.2.1 Generalised CP consistency conditions for Ay

In this section, we check the compatibility of the Zo symmetry on the fixed points with

the A4 flavour symmetry in chapter 4. The remnant Zs symmetry behaves as an effective

generalized C'P transformation and the brane fields will transform under Zs as

P(x) = Xpp*(2'), (A.6)
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where ' = (t, 21, 9, 23,25, —x¢) and X, is the representation matrix in the irreducible
representation r. To combine the flavour symmetry A, with the Zy symmetry, the
transformations have to satisfy certain consistency conditions [306, 307], which were
specifically applied to A4 flavour symmetry in [219]. These conditions assure that if
we perform a Zy transformation, then apply a family symmetry transformation, and
finally an inverse Zy transformation is followed, the resulting net transformation should
be equivalent to a family symmetry transformation. It is sufficient to only impose the

consistency conditions on the group generators:
Xepp ($)X: 7t = pe(S), Xepr(D) X = pe(T), (A7)

where p, denotes the representation matrix for the generators S and T, see table A.2.

As shown in [219], S” and T” can only belong to certain conjugacy classes of Ay
S’ €3Cy, T €4C3U4CE, (A.8)

(see equation A.5 to find out the elements in each conjugacy class). The transformations

under the generalised C'P symmetry Z, are then:

1 00
Yy =Py, b =Yy, Y3 — [0 0 1|3, (A.9)
010

which are consistent with equations A.7 and A.8 for S’ = S and 7" = T. However in the
model under consideration in chapter 4, we do not have any brane field transforming
under the 1’ and 1” representation. Thus the Zs transformation only affects the 3

representations.

We conclude that the 3 representations on the fixed points transform under A4 x Zy as

shown in table A.2 and equation A.9.

A.2.2 Modular forms for I's ~ A,

In this section, we explicitly show the construction of modular forms for I's ~ Ay
following reference [212]. These modular forms are necessary to understand the structure

of the Yukawa couplings in chapter 4.

To build invariant terms under the modular group I's, the couplings have to become

modular forms with weight ky [127], transforming according to
Y(r') = (et + d)" pY (1), (A.10)

where p is the representation under the modular group and 7’ is the transformed modular
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parameter after a modular transformation, given by

(A.11)

To get an invariant term, we need to satisfy two conditions, first the weight ky has to
cancel the overall weights of the fields and second the product of p times the repre-
sentation matrices of the fields has to contain an invariant singlet. When ky = 0 for
every constant, we have the usual discrete symmetry. Therefore, the modular form with

weight 0 is simply a constant and a singlet under Ay4.

In reference [212], it is shown that a weight 2 form can only transform in the three-

dimensional representation of I's and each component of the triplet Y3T = (Y1,Ys,Y3) is

given by
i () (=) () 2T/ (3)
A = o (77(5) T T a6 )
. /(T ! (T+1 1 (T+2
Yao(r) = — (:’7 (G) 21 ((él)) tw ! Ti;) , (A.12)

ol @M
~— SN—
3

~
—_

Y3<T>=< 5,7 ED) 2T
™ \n(3) n (%) n(5°)
where 7(7) denotes the Dedekind function
n(r)=q"* [ (1 =¢"), g=e?m. (A.13)
n=1

Therefore, there are no weight 2 singlets. In the model presented in chapter 4, the
modulus is fixed by the orbifold to be 7 = w. In this case, up to an overall coefficient,
we have

Vi(w) =2, Ys(w)=2w, Ysw)=—w? (A.14)

and the triplet for weight 2 is
P = (2, 2w, —w?), (A.15)

where the superscript refers to the weight and the subscript to the representation under
Ay

Higher weight modular forms can be written in terms of the weight 2 forms by taking

products of them following the decomposition rules in table A.3. Then, the weight 4
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modular forms are written as

Vi = (V2 = YaYs, Y = ViY2, Y3 — V1Y),

vV = ¥2 4 2v,Ys,

@ ) (A.16)
Y]_/ — }/3 + 2}/1}/2’
YD = Y§ + 213,

where the subscript corresponds to the representation under A4. In our model, the

modulus field is fixed by the orbifold to be 7 = w. In this case, the only non-zero weight

4 modular forms are

Y3(4)’T:w =2, —w, 2w, Y1(/4) =w (A.17)

The weight 6 modular forms can be found in a similar way and are written as

Yl(ﬁ) = Y24+ Y5 + Y] - 3Y1YaYs,

vyl = (VF + 2YaYs, Y2V, + 2V2Y5, VY5 + 2Y3Y)),
V) = (Vi + 2N YaYs, YY1 + 2V72Y), YY) + 2V3V1),
Y:i(g) = (Vs +2V1YaY3, Y5'Y3 + 2Y5'Y1, YY1 + 2Y7Y3),

(A.18)

where we have three different triplet representations labelled by the subscript 3,4 for

i =1,2,3. Due to relations of the Dedekind functions, the modular forms satisfy [212]
Y3 +2V1Y3 =0, (A.19)

which reduce the number of possible modular forms. Furthermore, in our case with the

modulus parameter being fixed to 7 = w, we also have the constraint
(Y2 4 2Y2Y3)| =0 = 0, (A.20)

which reduces even further the possible modular forms. Therefore, the only triplet of

weight 6 that is different from zero in equation A.18 is

Y3 rcw = (—1, 202, 20). (A.21)

All modular forms are built from products of the weight 2 triplet. We can build the
modular forms for weight 8. Following [212], this is a 15 dimensional space that must be
decomposed as 2 x 1+ 2 x 1’ +2 x 1”7 + 3 x 3. For simplicity we can work out only the
specific case where 7 = w. This case is greatly restricted and can be checked by doing

all possible multiplications of 3 x 3 x 3 x 3 that the only non zero modular forms are

Y3(8) = (2, 2w, —w?) and Yl(,%) = w? (A.22)
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where we can see that the triplet has the same structure as the weight 2 one. From this,
we conclude that any higher weight triplet would only repeat the previous structures

without having any new one.

For weight 10 we would have the same triplet as in weight 4 but two singlets since we

can have the non-trivial products
V{9 xv{P 51 and V¥ x v 17, (A.23)

such that this is the first weight that has two singlets. The next weight that has the three
singlets is built from powers of these singlets, so the modular form must have weight 20.
This is important in chapter 4 when building the up-type quark Yukawa matrix since
we need the three types of singlets to construct the invariant term and therefore the up
Yukawa coupling y;; must have weight 20, constraining the value of v in table 4.2 to be

vy="1.
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Running Yukawa parameters

The models in chapters 2-4 are defined at the GUT scale, while experimental data is
available at the Standard Model scale. Therefore, to test the model we need to have
the running from fermion masses and mixing parameters at the high energy scale where
the model is defined. Additionally, one needs to include the supersymmetric radiative

threshold corrections when deriving the running parameters at Mgyr.

An analysis of the running of MSSM Yukawa parameters up to the GUT scale has been
performed in [199], where they propose a useful parametrisation of tan /3 enhanced 1-
loop threshold corrections to the charged fermion Yukawa couplings and quark mixing

angles.

The analysis assumes that, when matching the SM to its SUSY extension, all super-
partners are integrated out at once at a single threshold scale Mgysy. The matching
conditions at the SUSY scale Mgysy are parametrised in terms of four parameters 7, ¢,
which take into account the contribution from loops involving SUSY particles, and /3,

as
MSSM ~ SM 2
yuct yuctcscﬁ,

MSSM M 2
g ™M~ (14 7g) " Y3 sec B,

yp SM o~ (1 4 i) 7 M sec B, (B.1)

~ (1
yyfw (1+70) " yS) sec B,

MSSM . , MSSM 2
Yr ~y 7 sec .

The CKM parameters also get corrections
gq,MSSM L+ pa:SM

L+,
eq,MSSM ~ 9q7SM (B.2)
12 — Y12 >

)

5q,MSSM ~ 5q,SM
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To a very good approximation 67, and §7 are not affected by the threshold corrections.
The running of couplings y%\/ISSM up to the GUT scale, y%v[SSM — y%\/ISSM@GUT, depends
to a good approximation only on 7 and tan 3. In the limit where threshold corrections
to y, are negligible, 5 reduces to the usual 3. We will assume just such a scenario. We
will also set 7, = 7y = 0 for simplicity, as these are found not to affect the quality of
the fits. Meanwhile, the neutrino masses and mixing angles are expected to be largely

insensitive to group running.

Conversely, the remaining SUSY parameter, 7, will be important and prefers a large
(negative) value for both fits in chapters 2 and 3. The leading contributions to this

parameter come from loops either shottoms and gluinos or stops and higgsinos that add

up to [308]
_ tanf (8 ymgpu o A
~ 8 A B.3

"= 6n2 (3 3 2m3 A mé )’ (B-3)

where mg represents the squark masses, g3 the strong coupling, mg; the gluino mass and
A; the SUSY softly breaking trilinear coupling involving the stops. We see that a large

contribution can be achieved when
mg, b, Ay > my, tan 8 2 5. (B.4)

Since SUSY breaking lies beyond the scope of this thesis, it is sufficient for us to show
that there is a parameter space in the softly broken SUSY that generates the necessary

corrections.



Appendix C

Conventions

C.1 Dirac gamma matrices

First, we introduce the notation that will follow for the rest of the appendix. We define

1,, as the n x n identity matrix and when no subindex is added, we will be assuming 1 as

the integer number. We present the Weyl or chiral representation of the Dirac gamma

matrices v* in 2 x 2 block form:

o ([0 1o ;. [0 o

where i = 1,2,3 and ¢° are the Pauli matrices

01:01 02:0—2' 03:10‘
1 0/’ i 0]’ 0 -1

The additional gamma matrix > in a 2 x 2 block diagonal form is given by

-1 0
5 . 0.1.2 3 2

— 1 = .
0 Y (O 12>

The gamma matrices satisfy the anticommutation relations

(v, 4"} =20""14, {¥°,4"} =0,
137

(C.1)
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(C.4)
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where p,v =0,1,2,3 and " = diag(1,—1, —1, —1) is the Minkowski metric. Addition-

ally, in the Weyl basis the gamma matrices comply with

P = ()" =" =17,

v =t AP =45, ©5)
)P =1, ()’=-1, (")?=1,

700 =yt

The chiral projectors are defined as

14 — ’}/5 12 0 14 + ’y5 0 0
P, = = Pp= = : -
L 2 (O O) ) R 2 0 12 (C 6)

Left-(right-) handed fields are eigenvectors of the operator ° with eigenvalues —1(+1).
We define the left-handed 1, and right-handed ¥ fields from the four-component fields

P as

Y1, = Py, 1 := Pr. (C.7)

The fields 91, and ¥ are known as chiral fields.

C.2 Charge conjugation matrix

Charge conjugation is defined to take a solution of the Dirac equation

(i7" (9 — 1€QA,) — m)ih(z) = 0 (€8)
into a solution ¢ of the charge conjugate Dirac equation
(17" (9 + 1€QA,) — m)i<(x) = 0. (C.9)
A solution is given by
Y = Co(z) (C.10)

where 1) = 1T7? and the charge conjugation matrix C' must fulfil C(y*)TC~! = —#,
In the chiral representation of the gamma matrices given in equation C.1, one finds that

C = ¢"*y290 for a € R (arbitrary) is a solution.

If 4 is a chiral field, then the charged conjugated field ¢ has the opposite chirality. For
example, if ¥y, is a left-handed chiral field, under conjugation the chirality of the field

changes, i.e. ¢ transforms as a right-handed field.
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