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ABSTRACT
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FLAVOUR FROM THE GRAND UNIFICATION SCALE TO THE

ELECTROWEAK SCALE

by Elena Perdomo Méndez

The flavour puzzle, the origin of the three families of quarks and leptons, with their

observed pattern of masses and mixing, persist as one of the deepest enigmas unanswered

by the Standard Model. The discovery of neutrino masses makes the flavour puzzle

even more acute, but also provides new features like small neutrino masses and large

lepton mixing. The smallness of neutrino masses may be explained with a type-I seesaw

mechanism, which introduces at least two right-handed neutrinos, while a large lepton

mixing may be an indication of an underlying non-Abelian family symmetry.

We extend these ideas into unified models of flavour based on S4 × SO(10) and A4 ×
SU(5), which are spontaneously broken to the minimal supersymmetric Standard Model.

We give a dynamical origin to Yukawa couplings, leading to predictive mass matrix struc-

tures for both quarks and leptons and giving a natural understanding for the hierarchies

between fermion masses. We also address the doublet-triplet splitting and the µ prob-

lem, proton decay and GUT breaking. We perform a χ2 fit to available data in each of

the models and we also find that in one of the S4 × SO(10) models, the correct baryon

asymmetry of the Universe can be reproduced through N2 thermal leptogenesis. In the

case of the A4 × SU(5) model, we include extra dimensions whose orbifold geometry

leads to the discrete symmetry. We also introduce the modular symmetry, which is

used as a family symmetry, meaning that the Yukawa couplings in this model become

modular forms.

Lastly, we present an extension of the Standard Model with a U(1)′ symmetry and an

additional fourth family of vector-like fermions to give a possible explanation for the

recent RK and RK∗ anomalies. The Z ′ gets induced couplings to the second family

of left-handed lepton doublets and to the third family of left-handed quark doublets,

accounting for the measured B-meson decay ratios while consistent with existing exper-

imental constraints.
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Chapter 1

Introduction

In this chapter, we give a brief introduction to the Standard Model and to some of the

main theoretical and experimental open questions still unresolved in particle physics.

In particular, we tackle the problem of neutrino masses within a type-I seesaw mecha-

nism. We continue summarizing the idea of supersymmetry, originally motivated by the

hierarchy problem and we show the unification of gauge couplings within the minimal

supersymmetric Standard Model. This leads to a discussion of grand unified theories, in

which we focus on SU(5) and SO(10). Subsequently, we present the flavour puzzle and

the use of non-Abelian discrete symmetries to address it. The next section is devoted

to the baryon asymmetry of the Universe and we introduce the leptogenesis mechanism.

Finally, we establish the advantages of the inclusion of extra dimensions. These open

questions and possible solutions motivate us to propose new models which are presented

in the following chapters.

1.1 The Standard Model

The Standard Model (SM) is a gauge theory based on the gauge symmetry group

SU(3)C × SU(2)L × U(1)Y , which describes the strong and electroweak (EW) inter-

actions. The gauge group of quantum chromodynamics (QCD) is SU(3)C [5–7], with

subscript C for color. The gauge group of electroweak interactions is SU(2)L × U(1)Y

[8–11], where the subscript L refers to the fact that only left-handed fields transform

non-trivially under SU(2)L and Y refers to the weak hypercharge.

The field content of the SM and its corresponding transformation properties under the

gauge group SU(3)C × SU(2)L × U(1)Y are given in table 1.1. There are three fam-

ilies of chiral fermion fields,1 encoded in the subscript i = 1, 2, 3 in table 1.1a. The

left-handed fields are SU(2)L doublets, while their right-handed partners transform as

1Chiral fields are defined in appendix C.

1



2 Chapter 1 Introduction

Field
Representation

SU(3)C SU(2)L U(1)Y

QLi 3 2 1/6
uRi 3 1 2/3
dRi 3 1 −1/3
LLi 1 2 −1/2
eRi 1 1 −1

(a) Chiral fermionic fields. The subscript i = 1, 2, 3
runs over the three families of the Standard Model.

Field
Representation

SU(3)C SU(2)L U(1)Y

Ga 8 1 0
W b 1 3 0
B 1 1 0

H 1 2 1/2

(b) Gauge bosonic fields and Higgs field (a = 1, ..., 8,
b = 1, 2, 3).

Table 1.1: Standard Model field content.

SU(2)L singlets.2 For the leptons, the doublet LLi = (νLi, eLi)
T contains the left-handed

charged lepton and its corresponding left-handed neutrino, where the family index refers

to the electron, muon and tau. The SM does not include the right-handed partner of

the neutrino field and we only have right-handed charged leptons eRi. The quark field

QLi = (uLi, dLi)
T includes the up and down quarks QL1 = (uL, dL)T , the charm and

strange quarks QL2 = (cL, sL)T , and the top and bottom quarks QL3 = (tL, bL)T .

Their corresponding right-handed partners are given by uRi and dRi. The quarks also

transform as triplets under SU(3)C and we are suppressing the color index. There-

fore, the SM contains a total of 15 chiral fields within each family. Additionally, we

have the spin-1 gauge boson fields in table 1.1b: eight massless gluons Ga (a = 1, ..., 8)

for the strong interaction SU(3)C and the gauge fields W b (b = 1, 2, 3) and B of the

SU(2)L × U(1) gauge theory. Finally, the SM also contains the SU(2)L-doublet scalar

field H = (H+, H0)T (Higgs doublet), which causes the spontaneous symmetry breaking

(SSB) of the electroweak group to the electromagnetic subgroup:

SU(3)C × SU(2)L × U(1)Y
SSB−−→ SU(3)C × U(1)QED (1.1)

The SSB mechanism [12–17] generates the masses of the weak gauge bosons and the

masses and mixing of the fermions. It also gives rise to the appearance of a physical

scalar particle in the model, the Higgs particle.

The Standard Model does not incorporate the right-handed neutrino field, νRi, meaning

that the SM predicts massless neutrinos and we will address this problem in section 1.2.

The gauge transformations under the SM gauge group, with the infinitesimal form for

2Although the charge conjugate of right-handed fields ψcR transform as left-handed fields, they remain
singlets under SU(2)L. Similarly for the left-handed fields, whose charge conjugated fields transform as
right-handed fields but they behave as doublets under SU(2)L.
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the gauge field transformations, are the following:

U(1)Y : ψ → exp(iλY (x)Yψ)ψ, H → exp(iλY (x)YH)H,

Bµ → Bµ +
1

g′
∂µλY (x)

SU(2)L : ψ → exp(iλaL(x)T a)ψ, H → exp(iλaL(x)T a)H,

W a
µ →W a

µ +
1

g
∂µλ

a
L(x) + εabcW b

µλ
c
L(x)

SU(3)C : ψ → exp(iλaC(x)ta)ψ, Gaµ → Gaµ +
1

gs
∂µλ

a
C(x) + fabcGbµλ

c
C(x),

(1.2)

where ψ is a generic fermion field and repeated indices are always taken as summed.

The coupling strength of the hypercharge, weak and strong interactions are given by g′, g

and gs, respectively. Y is the hypercharge operator and T a and ta are the SU(2)L and

SU(3)C generators, respectively. When acting upon a doublet representation of SU(2)L,

T a = σa/2 where σa are the Pauli matrices, while when acting upon singlets T a = 0.

For the case of SU(3)C , the triplet representations transform with ta = λa/2, where λa

are the Gell-Mann matrices, while singlet representations transforms as ta = 0. The

antisymmetric structure constants of SU(3)C , fabc, are defined in terms of the group

generators [ta, tb] = ifabctc, where a, b, c run from 1 to 8. For SU(2)L, a, b, c run from

1 to 3 and fabc = εabc, the totally antisymmetric three-index tensor defined so that

ε123 = 1.

The most general renormalizable Lagrangian invariant under the SU(3)C × SU(2)L ×
U(1)Y gauge transformations in equation (1.2) is given by

L = Lkinetic + LYukawa + LH . (1.3)

The kinetic term contains

Lkinetic =
∑
ψ

iψγµDµψ −
1

4
GaµνG

aµν − 1

4
W a
µνW

aµν − 1

4
BµνB

µν , (1.4)

where the field strength tensors for the U(1)Y , SU(2)L and SU(3)C interactions are

Bµν = ∂µBν − ∂νBµ
W a
µν = ∂µW

a
ν − ∂νW a

µ + gεabcW b
µW

c
ν

Gaµν = ∂µG
a
ν − ∂νGaµ + gsf

abcGbµG
c
ν .

(1.5)

The covariant derivative encodes the kinetic and the gauge interactions and it is given

by

Dµ = ∂µ − ig′BµY − igW a
µT

a − igsGaµta. (1.6)
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The terms involved in the Lagrangian term LH in equation 1.3 are

LH = (DµH)†(DµH)− V (H), (1.7)

where the scalar potential is given by

V (H) = µ2H†H + λ(H†H)2 (µ2 < 0, λ > 0). (1.8)

The minimum of this potential is away from |H|=0 and the vacuum expectation value

(VEV), or minimum energy state, is not invariant under SU(2)L ×U(1)Y transforma-

tions. The gauge symmetry SU(2)L × U(1)Y is spontaneously broken [12–17] to the

gauge group U(1)QED of electromagnetic interactions. We can find a gauge (the so-

called unitary gauge) in which the doublet scalar field takes the form

H(x) =
1√
2

(
0

v + h(x)

)
, (1.9)

where h is a real scalar field, the Higgs boson field. From equations. 1.8 and 1.9, we find

that a minimum of the potential is given by

〈0|H|0〉 =
1√
2

(
0

v

)
, v =

√
−µ2

λ
. (1.10)

The vacuum is invariant under the unbroken gauge group U(1)QED with generator Q

eiλQ(x)Q 〈0|H|0〉 = 〈0|H|0〉 , (1.11)

leading to well-known expression for the electric charge

Q = T 3 + Y. (1.12)

After diagonalizing the gauge kinetic term (DµH)†(DµH) in the unitary gauge, we can

deduce that the masses for the W± and Z bosons are

MW =
gv

2
, MZ =

√
g2 + g′2

4
v. (1.13)

The relation between the gauge and the mass eigenstates is given by

W+
µ =

W 1
µ − iW 2

µ√
2

,

W−µ =
W 1
µ + iW 2

µ√
2

Zµ =cWW
3
µ − sWBµ,

Aµ =sWW
3
µ + cWBµ,

(1.14)
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where sW = sin θW , cW = cos θW and θW is the weak mixing angle or Weinberg angle

satisfying the relation cos θW = MW /MZ . The state Aµ does not couple to the Higgs

field and thus does not acquire a mass after gauge symmetry breaking. This state is

identified as the photon.

The covariant derivative in terms of the gauge boson mass basis is

Dµ = ∂µ − igsGaµta −
g√
2

(W+
µ T

+ +W−µ T
−)− i e

sW cW
Zµ(T 3 − s2

WQ)− ieAµQ, (1.15)

where T± are the raising and lowering operators of SU(2)L, with T± = σ± = 1
2(σ1±iσ2)

and e is the electromagnetic coupling such that e = g′cW .

1.1.1 Fermion masses and quark mixing

The Yukawa couplings in equation 1.3 are given by

LYukawa = −
(
Y d
ijQLiHdRj + Y u

ijQLiH̃uRj + Y e
ijLLiHeRj + H.c.

)
, (1.16)

where H̃ = iσ2H∗, i, j = 1, 2, 3 are family indices and the matrices Y d, Y u and Y e are

complex 3× 3 matrices of Yukawa coupling constants. After gauge symmetry breaking,

the terms in equation 1.16 give rise to fermion masses

LM = −
(
dLMddR + uLMuuR + eLMeeR + H.c.

)
, (1.17)

where

Md =
v√
2
Y d, Mu =

v√
2
Y u, Me =

v√
2
Y e (1.18)

are the mass matrices. We have arranged the members of a fermion family into a single

vector, i.e. d = (d1, d2, d3)T , where di for i = 1, 2, 3 are the down-type quark flavour

interaction eigenstates and similarly for the up-type quarks and charged leptons. Since

the Standard Model does not contain right-handed neutrinos, νRi, there is no Yukawa

coupling and neutrinos are predicted to be massless within the SM.

The physical massive fermion fields can be found by diagonalizing the mass matrices.

We diagonalize Md and Mu using appropriate unitary transformation matrices

V d
LMdV

d†
R =

md 0 0

0 ms 0

0 0 mb

 , V u
LMuV

u†
R =

mu 0 0

0 mc 0

0 0 mt

 . (1.19)
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Thus we can write the quark mass eigenstates asds
b


L,R

= V d
L,R

d1

d2

d3


L,R

and

uc
t


L,R

= V u
L,R

u1

u2

u3


L,R

. (1.20)

Since the up-type and the down-type quarks are rotated into the mass eigenstates with

different unitary matrices, there is a mismatch between the flavour basis and the mass

eigenstate basis in the charged-current W± interactions, where the couplings to the

physical left-handed quarks are given by

−g√
2

(uL, cL, tL)γµW+
µ VCKM

dLsL
bL

+ H.c., VCKM = V u
L V

d†
L . (1.21)

The Cabibbo-Kobayashi-Maskawa (CKM) matrix VCKM [18, 19] is a 3×3 unitary matrix,

which can be parametrized in terms of three mixing angles and a charged-parity (CP )-

violating KM phase δq [19]. One common choice is given by [20]

VCKM =

1 0 0

0 c23 s23

0 −s23 c23


 c13 0 s13e

−iδq

0 1 0

−s23e
iδq 0 c13


 c12 s12 0

−s12 c12 0

0 0 1

 , (1.22)

where sij = sin θij , cij = cos θij . These are fundamental parameters of the SM, describ-

ing flavour-changing interactions.

Since the photon couplings Q and the Z boson couplings (T 3 − sin2 θWQ) are universal

to all three families, the neutral currents are flavour diagonal. This is a manifestation

of the GIM mechanism introduced by Glashow, Iliopoulus and Maiani [21].

The charged-lepton mass term can be also diagonalized through unitary transformations

U eLMeU
e†
R =

me 0 0

0 mµ 0

0 0 mτ

 . (1.23)

The charged-lepton mass eigenstates becomeeµ
τ


L,R

= U eL,R

e1

e2

e3


L,R

(1.24)

The mass eigenfields e, µ and τ are said to be the flavour eigenfields of the charged

leptons, i.e. the flavour of a charged lepton is defined by its mass. Since neutrinos are

predicted to be massless in the SM, a neutrino να is said to be of flavour α (where α =
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e, µ, τ), if it is produced or detected in a charged current interaction process involving

the charged lepton flavour α.

1.2 Neutrino masses and the seesaw mechanism

The discovery of neutrino masses is a clear hint that new physics beyond the Standard

Model is needed. In 2015, the Nobel Prize of Physics was awarded to Takaaki Kajita and

Arthur B. McDonald “for the discovery of neutrino oscillations, which shows that neutri-

nos have mass” and “for their key contributions to the experiments which demonstrated

that neutrinos change identities”.

The most common choice to accommodate neutrino masses is to extend the Stan-

dard Model field content in table 1.1 and include NR right-handed neutrinos, νRi =

(νR1, ..., νRNR), which are singlets under the SM gauge group. The right-handed neu-

trino fields do not couple to the gauge fields but new Yukawa couplings arise

LYukawa,D = −Y ν
ijLLiH̃νRj + H.c., (1.25)

which, after spontaneous symmetry breaking, give rise to the neutrino mass term

LD = −νLMDνR + H.c. (1.26)

The subscript D refers to Dirac mass term and MD = vY ν/
√

2 is a complex 3 × NR

matrix. Additionally, if we allow lepton number violation, there is another neutrino

mass term (Majorana mass term) compatible with gauge invariance given by

LR = −1

2
νcRMRνR + H.c., (1.27)

where ψc ≡ Cψ
T

denotes the charge conjugate field, where C is known as the charge

conjugation matrix, see appendix C. A Majorana mass term for the left-handed neutrino

fields is possible below the electroweak symmetry breaking scale since the neutrino has

zero electric charge. However, before SSB a renormalizable Majorana mass term for the

left-handed neutrino fields is not gauge invariant under SU(2)L × U(1)Y . The type-I

seesaw mechanism [22–26] assumes this term to be zero to begin with, but is generated

effectively by right-handed neutrinos.

Collecting together the Dirac mass term 1.26 and the Majorana mass term 1.27, we can

write the seesaw mass matrix as

(
νL νcR

)( 0 MD

(MD)T MR

)(
νcL
νR

)
, (1.28)

which, after diagonalization, effectively generates a Majorana mass term for the left-
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handed fields. The Majorana masses MR are not an effect of gauge symmetry breaking

and therefore the scale can be orders of magnitude larger than the electroweak scale,

MEW ∼ O(102) GeV. In the approximation where MR �MD, the Majorana mass term

for left-handed fields, after diagonalization, is given by

LL = −1

2
νLm

ννcL + H.c., (1.29)

where mν , in terms of the seesaw formula, is

mν = −MDM
−1
R (MD)T . (1.30)

The smallness of neutrino masses is understood in the seesaw mechanism through the

suppression by the heavy scale MR. For example, if we take MD to be 1 GeV (roughly

equal to the charm quark mass), then a neutrino mass of 0.1 eV requires a right-handed

neutrino mass of 1010 GeV.

1.2.1 Lepton mixing

From the antisymmetry of the charge conjugation matrix C and the anticommutativity

of fermion fields, one can deduce that a Majorana mass matrix must be symmetric. A

complex symmetric matrix can be diagonalized by an unitary matrix such that

UνLm
ν(UνL)† =

m1 0 0

0 m2 0

0 0 m3

 . (1.31)

The charged-current interactions, involving charged-leptons and neutrinos, in the mass

basis is

−g√
2

(eL, µL, τL)γµW+
µ UPMNS

ν1L

ν2L

ν3L

+ H.c., UPMNS = U eL(UνL)†, (1.32)

where U eL is the unitary matrix diagonalizing the charged-lepton mass term in equa-

tion 1.23 and UPMNS is the lepton mixing matrix or Pontecorvo-Maki-Nakagawa-Sakata

(PMNS) matrix [27–30]. The neutrino flavour eigenstates are defined through their

charged current interactions with charged-leptons, thereforeνeLνµL
ντL

 = UPMNS

ν1L

ν2L

ν3L

 . (1.33)

If neutrinos are massive, the neutrino flavour eigenfields are rotated against the neu-

trino mass eigenfields by the unitary matrix UPMNS. In the standard PDG parametriza-
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tion [31], the unitary matrix UPMNS is given by three mixing angles θlij , the Dirac CP

phase δl and two Majorana phases α21 and α31 such that

UPMNS =

1 0 0

0 c23 s23

0 −s23 c23


 c13 0 s13e

−iδl

0 1 0

−s23e
iδl 0 c13


 c12 s12 0

−s12 c12 0

0 0 1


1 0 0

0 ei
α21
2 0

0 0 ei
α31
2

 ,

(1.34)

where in this case cij = cos θlij and sij = sin θlij . The Majorana phases are unphysical

for Dirac neutrinos since a phase field redefinition leaves the Dirac mass term invariant

while the Majorana mass term would not be invariant.

Observable
Data

Best fit 1σ range

θ`12 /
◦ 33.82 33.06 → 34.60

θ`13 /
◦ 8.610 8.480 → 8.740

θ`23 /
◦ 48.30 46.40 → 49.40

δ` /◦ 222.0 194.0 → 260.0

∆m2
21/(10−5 eV2) 7.390 7.190 → 7.600

∆m2
32/(10−3 eV2) 2.523 2.493 → 2.555

Table 1.2: Neutrino oscillation parameters, for the normal ordered case (without Super-
Kamiokande atmospheric data), from the fit to global data done by NuFit collaboration,
version 4.1 [32]. The data included by NuFit come from solar experiments [33–45], atmo-
spheric experiments [46–48], reactor experiments [49–53] and accelerator experiments [54–58].

The transition probability of producing a neutrino of flavour α and detecting a neutrino

of flavour β depends on the mass squared differences ∆m2
21 ≡ m2

2−m2
1, ∆m2

3j ≡ m2
3−m2

j ,

the mixing angles, θlij and the CP violating phase δl but it does not depend on the

Majorana phases nor the masses themselves. Thus, there are six observables which

can be determined by neutrino oscillations. These are known as the solar mixing angle

θl12 and solar mass splitting ∆m2
21, atmospheric mixing angle θl23 and atmospheric mass

splitting ∆m2
3i, the reactor mixing angle θl13 and the CP violating phase δl. Furthermore,

current experimental data cannot yet determine the mass ordering of neutrinos, defined

as normal (∆m2
32 > 0) or inverted ordering (∆m2

31 < 0), although there is a preference

for normal mass ordering [32]. There is a cosmological limit on the total sum of the

three neutrino masses
∑
mi = m1 +m2 +m3 < 0.23 eV [59]. If neutrinos are Majorana

particles, neutrinoless double beta decay 0νββ (which violates lepton number by two

units) can give us information about neutrino masses as well. The rate of 0νββ is

proportional to the effective Majorana mass mββ =
∑

imiU
2
ei, where we have suppressed

the PMNS subindex in the unitary mass matrix UPMNS. Recent searches set a limit on

the neutrino mass of mββ . 0.06− 0.200 eV [60, 61]. Furthermore, neutrinoless double

beta decay is sensitive to normal and inverted mass ordering and future experiments will

be able to confirm or set stronger constraints in the ordering of neutrino masses. We

show the oscillation parameters for normal mass ordering, without Super-Kamiokande

atmospheric data, given by the NuFit-4.1 collaboration [32] in table 1.2.
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1.3 Supersymmetry

Supersymmetry (SUSY) [62–66] is an extension of space-time symmetry beyond the

Poincaré group which transforms a fermionic field into a bosonic field and vice versa.

In a supersymmetric theory the irreducible representations are known as “supermulti-

plets”, containing both fermion and boson states, each being a “superpartner” of the

other. Each supermultiplet contains an equal number of fermion and boson degrees of

freedom and particles within the same supermultiplet must also be in the same repre-

sentation of the gauge group. Therefore, in SUSY the content of the SM is duplicated as

shown in tables 1.3 and 1.4. The superpartners of quarks and leptons are scalars called

“squarks” and “sleptons”. Each fermion and its scalar superpartner are accommodated

in a “chiral supermultiplet”, which is the simplest possible combination for a supermul-

tiplet consisting of a single Weyl fermion and a complex scalar field. The gauge bosons

together with their superpartners “gauginos” are combined in a “gauge” or “vector”

supermultiplet. The Higgs field is accommodated in a chiral multiplet, together with a

spin-1/2 superpartner, the Higgsino.

Supersymmetry was intended to address the “hierarchy problem” [67–70] or the fact that

the Higgs mass receives quantum corrections quadratically divergent with the energy

cutoff ΛUV, i.e. ∆m2
H ∝ Λ2

UV. The ultraviolet momentum cutoff is interpreted as the

scale at which new physics enters. If we consider this scale to be the Planck scale

MP ∼ O(1019) GeV, where gravity effects need to be included, we would require a large

fine tuning between the tree level mass and the radiative corrections given that there are

17 orders of magnitude between the energy cutoff and the Higgs mass, mH ∼ 125 GeV.

In the Standard Model, these quantum corrections come from loop diagrams involving

fermions, however, if we include supersymmetry, the scalar superpartners will contribute

to the quantum corrections with a relative minus sign leading to a cancellation of the

SM contributions. This cancellation occurs to all orders by the supersymmetric non-

renormalisation theorem [71, 72].

Since we have not yet observed any scalar particle with the same mass as the known

fermions, supersymmetry must be broken a low energies. If we still want supersymme-

try to provide an explanation for the hierarchy problem, we can only consider “soft”

supersymmetry breaking terms (containing only mass terms and coupling parameters

with positive mass dimension). In this case, the relationships between dimensionless

couplings that hold in an unbroken supersymmetric theory are maintained, and the can-

cellation between scalar and fermion loop diagrams still occur. However, there will be

contributions from associated soft terms with scale msoft, i.e. ∆m2
H ∝ m2

soft. Since the

Large Hadron Collider (LHC) has set some limits on the mass of the sparticles of about

2 TeV, the hierarchy problem is reintroduced, where some degree of fine tuning has to

be accepted.

The hierarchy problem is not the only motivation to consider supersymmetry. SUSY
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also provides a dark matter (DM) candidate when assuming “R-parity” [73]. A con-

sequence of this symmetry is that it provides a stable supersymmetry particle, the so

called lightest supersymmetric particle (LSP), which can be considered as a dark matter

candidate. Furthermore, SUSY leads to the unification of gauge couplings in the Min-

imal Supersymmetric Standard Model (MSSM) [74–78], as we will see in section 1.3.2.

Supersymmetry can also be used to unify gravity with the strong and electroweak inter-

actions [79–81].

1.3.1 How to build supersymmetric models

Supersymmetry relates fermionic and bosonic states. Both states are described in terms

of a supermultiplet, which is an irreducible representation of the supersymmetry algebra.

Additionally, we need an extra ingredient to close the supersymmetry algebra, the aux-

iliary fields. In the case of chiral multiplets, the auxiliary field is given by a new complex

scalar field F , which does not have a kinetic term and with equations of motion given

by F = F ∗ = 0. Similarly, for a vector multiplet, we need a new real bosonic auxiliary

field D with no kinetic term. They are really just tools that allow the supersymmetry

algebra to close off-shell. In summary, a chiral supermultiplet contains a Weyl fermion

ψ, a complex scalar φ and auxiliary field F , while a vector supermultiplet consists of a

gauge field Aµ, gaugino λ and auxiliary field D.

The most general Lagrangian density of masses and non-gauge interactions for particles

that live in a chiral multiplet, consistent with supersymmetry, is given by

Lint =

(
−1

2
W ijψiψj +W iFi

)
+ H.c., (1.35)

where W ij and W i are the functional derivatives

W i =
δW

δφi
, W ij =

δ2W

δφiδφj
. (1.36)

The function W is called the superpotential and it is an holomorphic function of the

scalar fields φi treated as complex variables,

W = Liφi +
1

2
M ijφiφj +

1

6
yijkφiφjφk. (1.37)

The most general non-gauge interactions for chiral supermultiplets are determined by

the superpotential W , where the terms in equation 1.37 are constrained to be gauge

invariant terms. For example, Li parameters will only appear if φi is a gauge singlet.

The scalar potential of the theory is given in terms of the superpotential by

V (φ, φ∗) = W iW ∗i = F ∗iFi, (1.38)
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where in the last equality we used the equations of motion for the auxiliary fields

Fi = −W ∗i and F ∗i = −W i. In fact, once one studies the Lagrangian for gauge su-

permultiplets and the gauge interactions, the complete scalar potential contains terms

also proportional to the auxiliary fields D, i.e. V (φ, φ∗) = F ∗iFi + 1
2

∑
aD

aDa. These

two types of terms are known as “F -term” and “D-term”, respectively. The F -terms are

fixed by Yukawa couplings and fermion mass terms while the D-terms are fixed by gauge

interactions. Since in this thesis we are interested in the flavour sector, concerning about

Yukawa couplings and mass terms, we will not explicitly show the form of Lagrangian

for the gauge interactions and we will not mention again the D-terms.

Equivalently, we can use the superfield [82, 83] language. A superfield contains as compo-

nents all the bosonic, fermionic and auxiliary fields within the corresponding supermul-

tiplet, for example Φi ⊃ (φi, ψi, Fi) and it is a function of the “superspace” coordinates,

containing not only the usual bosonic space-time coordinates but also fermionic anti-

commuting coordinates. The gauge quantum numbers and the mass dimension of a

chiral superfield are the same as of its scalar component. The superpotential would be

the same as in equation 1.37, substituting φi by Φi.

1.3.2 The Minimal Supersymmetric Standard Model

The Minimal Supersymmetric Standard Model (MSSM) contains the SM fields and

its superpartners, see tables 1.3 and 1.4. We duplicated the number of Higgs fields to

cancel gauge anomalies. The condition that one has to satisfy to avoid gauge anomalies is

Tr[T 2
3 Y ] = Tr[Y 3] = 0, where the traces run over all of the left-handed Weyl fermions. If

we only had one Higgs field, its superpartner, the Higgsino, would have weak hypercharge

Y = 1/2, spoiling the cancellation that was automatically done in the SM. This is not

the only reason to add another Higgs field, since the superpotential is an holomorphic

function of the chiral superfields, it would not be possible to write the up-type quark

Yukawa coupling as in equation 1.16, using the complex conjugate of a single Higgs field.

The most general superpotential in the MSSM is given by

WMSSM = Y u
ij Q̂i ˆ̄ujĤu + Y d

ijQi
ˆ̄djĤd + Y e

ijL̂i ˆ̄ejĤd + µĤuĤd, (1.39)

where Ĥu, Ĥd, Q̂, L̂, ˆ̄u, ˆ̄d, ˆ̄e are the chiral superfields appearing in table 1.3. The

subindex i, j = 1, 2, 3 corresponds to the family index while the SU(3)C color and

SU(2)L weak isospin indices are suppressed. The “µ term” is the supersymmetric version

of the Higgs boson mass in the SM, leading to

− Lsupersymmetric Higgs mass = |µ|2(|H+
u |2 + |H0

d |2 + |H0
u|2 + |H−d |2). (1.40)

The soft supersymmetry breaking terms, compatible with gauge invariance within the
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Names spin 0 spin 1/2 SU(3)c, SU(2)L, U(1)Y

squarks, quarks

Q̂
(
ũL d̃L

) (
uL dL

)
(3, 2, 1

6)

û ũ∗R u†R (3̄, 1, −2
3)

d̂ d̃∗R d†R (3̄, 1, 1
3)

sleptons, leptons
L̂

(
ν̃L ẽL

) (
νL eL

)
(1, 2, −1

2)

ê ẽ∗R e†R (1, 1, 1)

Higgs, higgsinos
Ĥu

(
H+
u H0

u

) (
H̃+
u H̃0

u

)
(1, 2, 1

2)

Ĥd

(
H0
d H−d

) (
H̃0
d H̃−d

)
(1, 2, −1

2)

Table 1.3: Chiral supermultiplets in the MSSM. The spin 1/2 are left-handed two component
Weyl fermions. The spin 0 are complex scalar fields.

Names spin 1/2 spin 1

gluino, gluon g̃ g

winos, W bosons W̃± W̃ 0 W± W 0

bino, B boson B̃0 B0

Table 1.4: Gauge supermultiplets in the MSSM.

MSSM field content, are given by

LMSSM
soft = −1

2

(
M3g̃g̃ +M2W̃W̃ +M1B̃B̃ + H.c.

)
−
(

˜̄uauQ̃Hu − ˜̄dadQ̃Hd − ˜̄eaeL̃Hd + H.c.
)

−Q̃†m2
QQ̃− L̃†m2

LL̃− ˜̄um2
ū

˜̄u† − ˜̄dm2
d̄

˜̄d† − ˜̄em2
ē
˜̄e†

−m2
HuH

∗
uHu −m2

Hd
H∗dHd − (bHuHd + H.c.).

(1.41)

We need negative soft supersymmetry-breaking squared-mass terms for the Higgs scalars

in equation 1.41 (m2
Hu

< 0 and m2
Hd

< 0) to get electroweak symmetry breaking (oth-

erwise the minimum of the potential in equation 1.40 is found for H0
u = H0

d = 0). Then

µ should be of order 102 or 103 GeV to get a Higgs VEV at the EW scale without too

much miraculous cancellation between the |µ|2 and the negative soft mass terms. A new

problem arises known as the “µ problem”, since there is not any symmetry protecting

the |µ|2 term, it could be of order of the Planck mass scale, so in particular why should

it be roughly of the same order as the soft mass terms? After including the F -terms,

D-terms and soft supersymmetry-breaking terms, the minimum of the Higgs potential is

found for H+
u = H−d = 0, while the neutral components have non-zero VEVs, vu =

〈
H0
u

〉
and vd =

〈
H0
d

〉
, satisfying

v2
u + v2

d = v2 ' 174 GeV, (1.42)

where v is the SM electroweak VEV. The ratio of the VEVs is usually written in terms
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of a new free parameter β as

tanβ ≡ vu
vd
. (1.43)

1.3.3 R-parity

An extra ingredient is usually added to supersymmetry. There are processes in SUSY

which violate baryon number (B) and lepton number (L) leading to proton decay and

other B- and L-violating processes which have not been seen experimentally. In order

to avoid these processes, a new symmetry is added known as “R-parity” [73], with a

conserved quantum number defined as

PR = (−1)3(B−L)+2s, (1.44)

where s refers to the spin of the particle. When we drop the part depending on the spin

in equation 1.44, we are left with “matter parity” [84–87]

PM = (−1)3(B−L). (1.45)

Under matter parity, all the quarks and leptons supermultiplets have charge PM = −1,

while the Higgs and the gauge supermultiplets have matter parity PM = +1. When

enforcing matter parity, the MSSM does not have any renormalizable interactions that

violate B or L. Matter parity commutes with supersymmetry, since all members of a

given supermultiplet have the same matter parity.

In the case of R-parity, the particles within the same supermultiplet do not share the

same charge. All SM particles have even R-parity (PR = +1) while the supersymmetric

partners, the sparticles, have odd R-parity (PR = −1). Matter parity and R-parity

conservation are equivalent in the sense that any interaction vector will satisfy (−1)2s =

+1 to conserve angular momentum. If R-parity is exactly conserved, every interaction

vertex has to contain an even number of PR = −1 sparticles. This leaves us with a stable

particle given by the lightest supersymmetric particle (LSP), which can be a good dark

matter (DM) candidate [88, 89] if it is electrically neutral and it interacts weakly with

ordinary matter.

In general, symmetries that when acting on different fields within the same supermulti-

plet have different transformation properties are called R symmetries and do not com-

mute with supersymmetry. Sometimes, in model building one uses continuous U(1) R

symmetries or discrete ZN which are then broken to R-parity, a discrete Z2 symmetry.

The superpotential must carry charge +2 under R symmetries to conserve R symmetry.
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1.4 Grand Unified Theories

A grand unified theory (GUT) accommodates gauge coupling unification at a scale

MGUT, much larger than the electroweak scale but below the Planck scale MP . The

Standard Model would be the limit of this new theory at low energies. It was first

proposed by [90, 91] as a theory for quarks and leptons beyond the Standard Model

(BSM). Originally, the first models of GUTs did not include supersymmetry but most

of them have been ruled out and we will focus on supersymmetric grand unification.

In the Standard Model, the three gauge couplings at the electroweak scale are very

different, however they evolve and change with energy according to their renormalisa-

tion group equations and they may converge at some higher scale. Once the MSSM is

considered, the new extra particles provide additional contributions leading to apparent

unification of gauge couplings at a scale MGUT ∼ 1016 GeV, which we call the grand

unification scale, motivating SUSY GUT models. Figure 1.1 shows the renormalisation

evolution of the inverse gauge couplings α−1
i , where αi = g2

i /4π, for both cases the

Standard Model and the MSSM.3

Figure 1.1: Inverse gauge couplings α−1 two-loop renormalization group evolution in the
Standard Model (dashed lines) and the MSSM (solid lines). Figure from [92].

Additionally, a grand unified theory gives an explanation of why the charge of the proton

is equal but opposite to the charge of the electron. This is known as the charge quan-

tization problem in the Standard Model, namely why the quark charges are quantized

into multiples of e/3, where e is the electron charge. In a grand unified theory, quarks

and leptons are assigned to an unique multiplet therefore their charges must be related

since the trace of any generator has to be zero.

A grand unified theory is described by a larger symmetry group G containing the SM,

3In this normalisation, g1 =
√

5/3g′, g2 = g and g3 = gs.
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i.e.

G ⊃ SU(3)C × SU(2)L × U(1)Y . (1.46)

Since the SM is rank four the group G has to be of rank four or greater. The first model

proposed was the Pati-Salam group SU(4)C × SU(2)L × SU(2)R [91]. Even though it

can not be considered as true unification, because it still has three different couplings, it

was the first model whose quarks and leptons were unified into single multiplets, where

the leptons are the fourth colour and the charge assignment is left-right symmetric. The

choice of a GUT group can be quite large, but in the following we will focus on SU(5) [90]

and SO(10) [93, 94]. Other choices are larger SU(N) groups or the exceptional group

E6, but we will not consider them in this thesis.

1.4.1 SU(5)

The minimal choice towards a GUT is based on the SU(5) group which is rank four (the

other simple rank 4 algebras could not work since they do not have complex representa-

tions). To embed the Standard Model gauge group in SU(5), one can take the SU(3)C

and SU(2)L generators on the upper-left 3×3 and lower-right 2×2 blocks, respectively,

in traceless 5 × 5 matrices for SU(5) generators of the fundamental representation 5.

The U(1)Y generator is then given by the commutation relation with SU(3)C×SU(2)L,

i.e. diag(−1/3,−1/3,−1/3, 1/2, 1/2).

A left-handed family of leptons and quarks transform like 5⊕ 10 in the SU(5) model

5 =


dcr

dcb
dcg

e−

−νe


L

, 10 =


0 ucg −ucb −ur −dr
−ucg 0 ucr −ub −db
ucb −ucr 0 −ug −dg
ur ub ug 0 −e+

dr db dg e+ 0


L

, (1.47)

where r, b, g are quark colours and c denotes the charge conjugated fermions.4 Note

that there is no space for the right-handed neutrinos within this multiplet and they have

to be added as singlets of SU(5) if desired. Furthermore, with this multiplet structure

the sum of the quantum numbers Q, T3 and Y are zero within one multiplet, as it

should, since the trace of any of these generators must be equal to zero. The trace of

the charge operator Q on the 5 representation being equal to zero forces the charge of

the down quark to be 1/3 of the charge of an electron. Similarly, one finds that the

charge of the up quark to be 2/3 of the positron charge, giving a solution to the charge

quantization problem of the Standard Model.

To preserve local gauge invariance under SU(5) the gauge bosons in the 24 adjoint

representation are introduced. The Standard Model gauge fields (gluons and electroweak

4The bar in 5 refers to the complex conjugate of the fundamental representation 5.
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bosons) are unified in a single 24 adjoint. In addition to the SM gauge bosons, new

X and Y gauge bosons appear from the 12 remaining degrees of freedom in the 24

representation. These new gauge fields produce new interactions in which quarks are

transformed into leptons and vice-versa, thus violating lepton and baryon number.5

These new transitions lead to nucleon decays.

The Higgs field, necessary to break the electroweak symmetry at the weak scale, is

accommodated in a 5 multiplet of SU(5).6 This representation not only has the Higgs

doublet under SU(2) but it has three additional states known as colour-triplet Higgs

scalars. The Higgs triplet also violates lepton and baryon number, inducing nucleon

decay. Due to the strong constraints on nucleon decays, the mass of the Higgs triplet

has to be very high, close to MGUT. This leads to a problem known as the doublet-

triplet splitting problem since we need the Higgs doublet to be at the electroweak scale

while having GUT-scale Higgs triplets, however we would expect fields from the same

multiplet to have equal-scale masses. This problem also arises in other models based in

different GUT groups than SU(5) and we will address it in the models presented in this

thesis.

The breaking of SU(5) down to SU(3)C × SU(2)L × U(1)Y can be done by a Higgs

multiplet in the 24 representation developing a VEV ∝ diag(1, 1, 1,−3/2,−3/2), which

commutes with SU(3)C × SU(2)L × U(1)Y . Therefore, this VEV gives masses to the

X,Y gauge bosons of the SU(5) group but not to the electroweak gauge bosons, which

remains massless until the 5 Higgs multiplet acquires a VEV.

We mentioned before that the new gauge bosons X and Y as well as the Higgs triplets

lead to nucleon decays. These processes induces effective four fermion interactions of

the form qqql/Λ2, where q and l refers to a quark or a lepton, respectively. The scale Λ

is associated with the mass scale of the mediating particle. There are heavy constraints

from the non-observation of nucleon decay, for example, the null result on search for the

dominant decay mode of a proton decaying into a positron plus a neutral pion constrains

Λ to be larger than O(1015) GeV [31]. In a non-SUSY SU(5) model, gauge coupling

unification is expected to be reached well below 1015 GeV, therefore non-SUSY SU(5)

is heavily constrained by the non-observation of nucleon decay. In SUSY GUTs the

grand unification scale is MGUT ∼ 2 × 1016 GeV predicting a lifetime of the proton

about τ ∼ 1036 years, larger than the current constraints 1031−34 years (depending on

the model). In SUSY GUTs, there are additional dimension four and dimension five

operators. Operators of dimension four can be eliminated requiring R-parity within the

model. In SUSY SU(5) GUTs, dimension-five operators are generically generated via

the triplet Higgs exchange and they must necessarily obtain masses of order the GUT

scale.

5The difference between baryon and lepton number B − L is conserved in these transitions.
6In the MSSM the two Higgs multiplets Hu and Hd are contained in a 5 and a 5 representation,

respectively.
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Additionally, one must be careful with the mass scale of the new particles. The gauge

coupling unification in the MSSM assumes that there is no additional field content

between the supersymmetry scale, usually of the order O(TeV) and the GUT scale

MGUT. New particles will contribute to the running of gauge couplings (when the new

particles are non-singlets), mainly at their mass scales. This is another reason to have

the colour-triplet Higgs at high scale, no to spoil gauge coupling unification. This is also

valid for any GUT group chosen.

1.4.2 SO(10)

The next simple unification is based on the gauge group SO(10) which is rank 5. All

matter fields are unified into a single representation, the 16 fundamental representation.

It includes all quark and lepton fields and also accommodates a singlet under the SM,

which can be associated with the right-handed neutrino. The gauge fields are in the

45 adjoint representation. The product of two matter representations gives 16⊗ 16 =

10 ⊕ 126 ⊕ 120. We can construct Yukawa couplings if the Higgs field is in the 10

representation since the product 10 ⊗ 10 contains the singlet representation (although

other possibilities include Higgs fields in the 120 or 126 representations). Since all

fermions are unified into a single representation, there is only one Yukawa coupling

predicting equal fermion masses at the GUT scale which is phenomenologically ruled

out. Therefore, it is necessary to add additional Higgs fields to build a viable theory.

The breaking of SO(10) into the SM model can be done through different directions since

it contains as subgroups both the Pati-Salam group SU(4)C ×SU(2)L×SU(2)R as well

as SU(5) × U(1). The breaking path depends on the Higgs field representation which

acquires a VEV, see e.g. [95] for an extended overview of the possible breaking schemes.

In general, if SO(10) is broken to the Pati-Salam group SU(4)C×SU(2)L×SU(2)R, the

fundamental representation is decomposed as 16→ (4,2,1)⊕ (4̄,1,2), 10→ (6,1,1)⊕
(1,2,2) and 45 → (1,3,1) ⊕ (1,1,3) ⊕ (15,1,1) ⊕ (6,2,2). When SO(10) is broken

in the direction of SU(5) × U(1), then 16 → 5̄3 ⊕ 10−1 ⊕ 1−5, 10 → 52 ⊕ 5̄−2 and

45→ 10 ⊕ 104 ⊕ 10−4 ⊕ 240.

The right-handed Majorana masses MR can be generated from the non-renormalisable

operators
λij
Λ
H̄H̄ψiψj →

λij
Λ
〈vH̄〉2 νci νcj ≡M ij

R ν
c
i ν
c
j , (1.48)

where Λ may be of order the Plank scale, ψ is in the 16 representation, and H̄ are

Higgs in the 16 representation whose right-handed neutrino component gets a VEV

〈vH̄〉, breaking SO(10) down to SU(5) at the GUT scale. The right-handed neutrino is

denoted as νc.

Gauge coupling unification as well as charge quantization are also achieved in SO(10).

The doublet-triplet splitting problem is also appearing in models based on SO(10) and
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we will discuss how to solve it in each of the models presented in this thesis. Proton

decay discussion follows as in the case of SU(5).

1.5 The flavour puzzle

The flavour puzzle in the Standard Model can be summarized by the lack of understand-

ing of the following questions:

• Why are there 3 families of quarks and leptons?

• Why is there such a large hierarchy between the different fermion masses, ranging

from the lightest neutrino, on the order of meV, to the top quark, with mass

mt ≈ 173 GeV?

• Why is the mixing pattern in the quark sector, given by the CKM matrix, so small

while the lepton mixing, characterized by the PMNS matrix, is so large?

• What is the origin of CP violation?

The Standard Model does not account for the three different families of fermions that

transform in the same gauge representation under the SM gauge group but differ by

their mass. Most of the free parameters of the SM are related to the questions above.

The Yukawa couplings of fermions to the Higgs field are not predicted by the theory and

have to be measured experimentally. If we assume an extension of the SM, with three

right-handed neutrinos, there are 22 (20 if B − L is conserved) independent low-energy

parameters in the flavour sector, the Yukawa couplings of quarks and charged leptons,

the mixing parameters and CP -phase in the CKM and PMNS matrices, the neutrino

masses and two Majorana phases (only if neutrinos are Majorana particles).

There is no justification for the large range between fermion masses, from few MeV to

over 100 GeV in the quark sector. One can go one step further and ask why the hierarchy

between different fermion types is not conserved through the families, e.g. why does the

ratio between up quark and down quark masses mu/md . 1 differ from that of the charm

and strange quarks mc/ms ∼ 10, or top and bottom quarks mt/mb ∼ 50?7 Furthermore,

the range between masses is enlarged when considering neutrino masses which are no

larger than O(100) meV, many orders of magnitude below the lightest charged fermion,

the electron, with mass me ∼ 0.5 MeV. We have seen that one possible solution to have

so tiny neutrino masses is given by the seesaw mechanism in section 1.2.

The third question is concerned about the fact that the CKM mixing matrix is small

compared with the PMNS mixing matrix. The largest mixing angle in the quark sector is

7These numbers change with the scale due to the renormalization group equations and are merely
indicative.
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given by the Cabbibo angle with θq12 ≈ 13◦ and the rest being almost negligible, however

in the leptonic sector all mixing angles are sizeable. This is analogous to understand the

evidence that the hierarchy in the neutrino sector is much milder than the one in the

charged fermions.

One possible argument for considering three families instead of two relates to CP vio-

lation, as discovered by Kobayashi and Maskawa [19]. Once one includes three weakly

interacting families, a new complex phase is automatically introduced in the mixing ma-

trix leading to CP violation, which is not appearing in the case of a two-family system.

CP violation was experimentally discovered in neutral kaon decays in 1964 [96], and

observed in recent years in B meson decays. There are also experimental hints [32] that

CP is violated in the lepton sector. In fact, CP violation is necessary to understand the

baryon asymmetry of the universe (BAU), as discussed in section 1.6. However, this is

not enough to understand why there are three families in the SM since the CP violation

in the CKM matrix is not sufficient to explain the observed baryon asymmetry.

1.5.1 Discrete flavour symmetries

We are interested in following a guide principle, comparable to the gauge principle, to

tackle the flavour puzzle such that the Yukawa couplings are deducted from first princi-

ples. In the absence of fermion masses, the Standard Model contains an accidental global

symmetry [U(3)]5, which is the maximal symmetry preserved by the kinetic terms. Each

U(3) corresponds to a family symmetry for each fermion-type, i.e. QL, uR, dR, LL, eR.

If we add right-handed neutrinos, there would be an extra U(3) symmetry. Clearly,

this symmetry is broken once one considers the observed fermion masses, however we

can imagine a situation where a global family symmetry is imposed at high energies

and which is then broken by the VEV of some scalar field. Such fields are usually

called “flavons” and they can give a dynamical origin to the Yukawa parameters of the

Standard Model. The flavon field, denoted by φ, is a gauge singlet under the SM and

it couples to the fermions ψ and Higgs field H giving rise to Yukawa terms after the

symmetry is broken, e.g.

L ⊃ 1

Λ
φψHψ → 〈φ〉

Λ
ψHψ → Y ψHψ, (1.49)

where Λ is the mass scale of the high energy theory.

Family symmetries restrict the Yukawa couplings such that one can possibly explain

some of the features of masses and mixing. There are models based in global continu-

ous flavour symmetries, however they lead to massless Goldstone bosons [97–99] after

spontaneous symmetry breaking. A more common choice in the literature is the use

of discrete flavour symmetries, more specifically, non-Abelian discrete symmetries (for

reviews, see e.g. [100–103]). The main interest of these groups from a physics point of



Chapter 1 Introduction 21

view is that, because of the non-Abelian aspect, it is necessary that at least some of

the representations must be matrices. Therefore, some non-Abelian discrete symmetries

may include non-trivial triplet representations, providing a posteriori justification for

the observation of three families of fermions. Some of the simplest such groups are A4

and S4 which are subgroups of SU(3). Their irreducible representations and their Kro-

necker product rules are listed in appendix A. GUT models together with either A4 or

S4 symmetries are described in chapters 2, 3 and 4.

Although we will focus in non-Abelian discrete symmetries, it is worth mentioning one of

the most popular Abelian family symmetries, proposed by Froggatt and Nielsen [104]. It

is based on a flavour U(1) symmetry under which the fermions are distinguished. Each

family has a different U(1) charge such that the usual Yukawa terms have positive integer

charges. Additionally, one includes a flavon field ξ which typically has a U(1) charge

assignment of −1. Therefore, you can construct Yukawa interactions using different

powers nij of the flavon field to compensate the charges of the fermion fields, i.e.

cij

(
ξ

Λ

)nij
ψiLψjRH, (1.50)

where H is the Higgs doublet, ψ is a fermion field, i and j are family indices and

cij are undetermined order one coefficients. After the flavon field acquires a VEV, the

hierarchies between the different fermion masses are determined solely by the U(1) charge

assignments, since the effective Yukawa couplings become Yij = cij(〈ξ〉 /Λ)nij . This idea

can also be implemented using ZN discrete symmetries if preferred. In chapter 4, this

mechanism is used in combination with A4 family symmetry, meaning that Abelian and

non-Abelian symmetries can be combined to explain flavour structures.

Coming back to discrete non-Abelian family symmetry models, there are two different

approaches one can follow. The first is based on “direct” models, in which the discrete

symmetry is partially broken and a residual symmetry remains after flavour breaking,

while in the second approach, the so-called “indirect” models, no part of the original

symmetry is present at low scale. The symmetry is broken by the flavon VEVs. Depend-

ing on the alignments of these flavons and how they are broken, we will have different

flavour structures.

The motivation for direct models is given by the leptonic sector. In the basis of (ap-

proximately) diagonal charged leptons and assuming neutrinos to be Majorana, the

neutrino mass matrix is always symmetric under a Klein symmetry Z2 × Z2 while the

charged lepton mass matrix is Z3 symmetric. In the case that the Klein symmetry is

generated by the generators S and U of S4, given in appendix A.1, then the PMNS

mixing matrix is associated with tri-bimaximal (TB) mixing [105, 106], which predicts

sin θ23 = 1/
√

2, sin θ12 = 1/
√

3, θ13 = 0 and no CP violation. Although TB is already

excluded, the good agreement of data at that time motivated the use of non-Abelian

discrete symmetries in flavour models. In direct models the full Klein-symmetry in the
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neutrino sector and the Z3 symmetry in the charged lepton sector arise as a subgroup of

the initial family symmetry since the flavons fields which break the symmetry preserve

these subgroups.

In the indirect approach, we do not demand these accidental symmetries to arise as a

subgroup of the original family symmetry after it has been broken. The possible vacuum

alignments of the flavon fields are not restricted to preserve any subgroup of the original

family symmetry and therefore the options to construct a phenomenologically successful

flavour model are enlarged. The possible alignments will depend on the allowed couplings

and field content of the model. Chapter 2 is based on a semidirect model in which

only part of the accidental symmetry can be identified with a generator of the family

symmetry (in this case only one of the two Z2 symmetries of the Klein symmetry is

generated by the SU generator of S4) while chapters 3 and 4 are indirect models.

1.6 The baryon asymmetry of the Universe

The ΛCDM model [107] is known as the “standard model” for Big Bang cosmology.

The name Λ refers to the positive cosmological constant which is responsible for the

accelerated expansion of the Universe [108]. The term “CDM” alludes to cold dark

matter. It is the minimal model able to reproduce most cosmological observations,

such us the existence and anisotropies of the CMB, the large-scale galaxy structure, the

abundances of light elements and the accelerating expansion of the Universe. Together

with the ΛCDM model, it is believed that at very early stages the Universe went through

a period of superluminal expansion known as inflation [109–111], which explains why

the Universe is spatially-flat, homogeneous and isotropic.

However, the ΛCDM model does not address the fact that we have only observed pri-

mordial matter but not antimatter, i.e. it does not give an explanation for the baryon

asymmetry of the Universe (BAU). It cannot be explained using very specific initial

conditions within the framework of an inflationary model, since any asymmetry at the

beginning of the Universe would be wash-out during the inflationary period. Therefore,

the baryon asymmetry of the Universe must be generated after inflation and before Big

Bang nucleosynthesis (BBN), when the first light elements were formed. It is necessary

to find a mechanism which explains the observed baryon-to-photon ratio

ηB =
nB − nB

nγ
= (6.10± 0.04)× 10−10, (1.51)

where nB − nB is the difference between the baryons and antibaryons density and nγ

is the number photon density. Since primordial antimatter has not been observed,

nB � nB, one uses the baryon-to-photon ratio ηB to understand the baryon asymmetry

of the Universe.
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In 1967, Sakharov [112] realised that three conditions must be satisfied for baryogenesis

to occur in a particle physics theory, i.e.

• Baryon number (B) violation.

• Charge (C) and charge-parity (CP ) violation.

• The process must occur out of thermal equilibrium.

The first condition is not satisfied at tree level in the Standard Model. If we think

in terms of grand unified theories, we already mentioned that the new gauge bosons

X and Y can mediate baryon number violating interactions, however present bounds

suggest that inflation reheated well below GUT energies (the reheating temperature TRH

cannot be higher than ∼ 1015 GeV from CMB observations [59]), and thus thermal GUT

baryogenesis is not viable.

Focusing again in the Standard Model, baryon number (B) and lepton number (L)

are accidental symmetries of the Lagrangian, however B + L is violated by the SU(2)-

chiral anomaly, while B − L is conserved also at the quantum level. Sphalerons [113]

are non-perturbative field configurations which violate B and L number but conserve

B − L. The sphaleron transitions are efficient for temperatures above the electroweak

symmetry breaking. Therefore, if baryon asymmetry has been produced above the EW

scale, sphalerons will wash out any primordial baryon asymmetry. On the other hand,

the sphaleron processes open up a new possibility of producing a net lepton asymmetry

at high scales and use sphalerons to convert the initial lepton asymmetry into a baryon

asymmetry. This solution is known as leptogenesis and it was first proposed by Fukugita

and Yanagida [114].

The second condition presented by Sakharov has to do with charge (C) and charge-parity

(CP ) violation. This is easily understood if we consider a decay X → Y +B and the C-

conjugate process X → Y +B, where X and Y are B = 0 states. If charge is conserved,

the decay rates of these two processes are equal Γ(X → Y + B) = Γ(X → Y + B).

If there are equal number of states X and C-conjugate states X, then the net baryon

production vanishes in the case of C-conserving interactions. Additionally, one also

needs CP -violating interactions. Consider, for example, the chiral decays X → qL + qL

and X → qR + qR, where q is a quark state with B 6= 0. Even though, C-violation

means Γ(X → qL + qL) 6= Γ(X → qL + qL), CP -conservation implies Γ(X → qL + qL) =

Γ(X → qR + qR) and Γ(X → qR + qR) = Γ(X → qL + qL) and therefore, the total decay

rates of X and X into baryons and antibaryons are again equal:

Γ(X → qL + qL) + Γ(X → qR + qR) = Γ(X → qR + qR) + Γ(X → qL + qL). (1.52)

Thus, as long as the initial state has equal numbers of X and X, we end up with no net

baryon asymmetry if C or CP are conserved.



24 Chapter 1 Introduction

Finally the process must occur out of thermal equilibrium, since otherwise any baryon

asymmetry initially produced would be washed-out by the inverse process. Suppose

again the decay X → Y +B. If the process occurs in thermal equilibrium, then the rate

in one direction is identical to the rate in the opposite direction, i.e. Γ(X → Y +B) =

Γ(Y +B → X), such that no net baryon asymmetry is produced.

We can conclude that, in principle, it is possible to satisfy all the Sakharov conditions

within the Standard Model. However, the amount of CP violation in the SM is not

enough to generate the observed baryon asymmetry and baryogenesis within the SM

has already been ruled out. Therefore, the baryon asymmetry of the Universe requires

some extension of the SM. In the following, we will focus in the leptogenesis procedure

presented by Fukugita and Yanagida [114], which is a natural solution once we add

right-handed neutrinos to the SM. In fact, the seesaw mechanism, which is the most

common choice to explain neutrino masses, makes a perfect scenario to address the

baryon asymmetry of the Universe through leptogenesis.

1.6.1 Leptogenesis

The original leptogenesis mechanism [114] relies on the type-I seesaw mechanism. The

lepton asymmetry is generated through the out of equilibrium decay of heavy right-

handed neutrinos into leptons (or anti-leptons) and Higgs bosons via Yukawa couplings.

CP violation occurs in the decay due to interference effects at one loop, which can lead

to a net lepton asymmetry. In most models, the lightest right-handed neutrino mass

M1 � 1015 GeV is compatible with the upper bound in the reheating temperature after

inflation TRH . 1015 GeV, meaning that the asymmetry generated is not washed-out

by the inflationary epoch.

The right-handed neutrinos do not carry lepton number and therefore the decay of a

right-handed neutrino into lepton-Higgs and the inverse process violate lepton number

(|∆L| = 1). At temperatures T � 100 GeV, the sphaleron transitions violate B+L but

conserve B − L. If we start with a lepton asymmetry, we could end up with about 1/3

of the B −L asymmetry in the form of a baryon asymmetry while the other -2/3 of the

B − L asymmetry would be in the form of a lepton number.

The type-I seesaw mechanism provides the necessary ingredients to satisfy the three

Sakharov conditions: baryon asymmetry after sphaleron transitions, C and CP violation

of the process and out-of-equilibrium decays for which one requires T � MR, where T

is the temperature of the Universe at the time of the decay and MR is the mass of the

right-handed neutrino. Now, one needs to check quantitative if it is possible to reproduce

the observed baryon-to-photon ratio. The amount of CP -violation will depend on δl,

the CP phase of the PMNS matrix (experimentally there is a preference for non-zero δl

given by global fits [32]). Additionally, one has to take into account the wash-out due



Chapter 1 Introduction 25

to inverse decays and scattering. Let us give a simple example of the mechanism in a

toy model of thermal leptogenesis.

Thermal leptogenesis is based on the thermal production of the right-handed neutrinos.

In this example we assume very hierarchical right-handed neutrinos M1 � M2,M3 so

that the right-handed neutrino N1 is the last heavy neutrino to decay out of equilib-

rium and generates the lepton asymmetry. The evolution of the right-handed neutrino

abundance, NN1 , is given by the Boltzmann equation

dNN1

dz
= −D1(NN1 −N eq

N1
), (1.53)

where z ≡ M1/T and N eq
N1

is the abundance at thermal equilibrium. The decay factor

D1 is proportional to the ratio of the total decay width ΓD1 to the expansion rate of the

Universe. For a more detailed explanation of the decay factor we refer to [115].

The lepton asymmetry is converted into a baryon asymmetry through sphalerons. These

processes conserve the B − L asymmetry and the final baryon asymmetry is approxi-

mately 1/3 of the B−L asymmetry. The evolution of the B−L asymmetry is described

by
dNB−L
dz

= ε1D1(NN1 −N eq
N1

)−WNB−L. (1.54)

The first term on the right-hand side corresponds to the B − L asymmetry produced.

The parameter ε1 is proportional to the CP asymmetry and it is given by

ε1 =
Γ(N1 → lH)− Γ(N1 → lH)

Γ(N1 → lH) + Γ(N1 → lH)
, (1.55)

where the lepton l is by definition the lepton produced by the decay of the N1 right-

handed neutrino and, in general, it will be a combination of the flavour eigenstates. It

is computed from the interference of the tree level with one loop self-energy and vertex

diagrams in figure 1.2. The parameter ε1 will be proportional to the neutrino Yukawa

matrix and the specific value is model dependant.

Figure 1.2: Diagrams contributing to the CP asymmetry in right-handed neutrino decays.

The second term in the right-hand side of equation 1.54 takes into account the wash-

out meaning that this term is not a source of B − L asymmetry but instead it tries

to re-equilibrate the number of leptons and anti-leptons. It contains information about

inverse decays and scattering processes, we refer again to [115] for details.

The set of Boltzmann equations 1.53 and 1.54 may be solved for thermal initial conditions
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at z = 0 to give the final asymmetry Nf
B−L at z � 1. The solution can be written as

Nf
B−L = ε1κ1, where κ1 is known as the efficiency factor.

Finally, one needs to compare the B−L asymmetry with the observed baryon-to-photon

ratio ηB, using the relation

ηB = asph

Nf
B−L
N rec
γ

, (1.56)

where N rec
γ ' 37 and asph = 28/79 ' 1/3 [116, 117].8 The factor asph takes into account

the number of B −L asymmetry converted into a baryon asymmetry by the sphalerons

while N rec
γ accounts for the production of photons after leptogenesis until recombination,

when nuclei and electrons combined to form atoms.

In chapter 3, we present a model in which the correct BAU is obtained through N2-

leptogenesis, meaning that the second right-handed neutrino decays are the ones re-

sponsible for the asymmetry. The reason is that the lightest right-handed neutrino is

too light to produce the observed BAU. We take into account the wash-out due to inverse

decays into N1 as well as flavour effects.

1.7 Extra dimensions

The idea of extra dimensions was introduced in the 1920s by Kaluza-Klein [118, 119] in

an attempt to unify gravity with electromagnetism. The new concept of this theory was

to extend general relativity in the presence of a fifth dimension. The 5-dimensional (5D)

gravity would manifest in our observable 4-dimensional (4D) space-time as gravitational,

electromagnetic and a new scalar field. More recently, during the late 1970s and the

1980s, higher dimensional theories gained renewed interests seeking for the unification of

gravity with electroweak and strong interactions in a consistent quantum theory. This

idea led to superstring and supergravity theories, which are described in ten and eleven

space-time dimensions respectively.

To overcome the fact that we do not observe extra dimensions, these are assumed to

be compactified and finite in size. The energies necessary to experimentally observe the

extra dimensions are of the order of the length scale at which the compact dimensions

live. This compactification can break the higher-dimensional Lorentz invariance or the

higher-dimensional Poincaré invariance as in orbifolds where translational invariance

is explicitly broken. Furthermore, the compactification of extra dimensions can also

introduce non-trivial boundary conditions, a mechanism that can be used for symmetry

breaking.

In this thesis, the motivation to consider extra dimensions is that they offer a simple

8This expression is valid for the Standard Model plus three right-handed neutrinos. In the case of the
MSSM, for example, there will be another factor of 2 due to the decay of the right-handed sneutrinos.
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and elegant way to break GUT symmetries by appropriate boundary conditions, as first

proposed by Kawamura [120–122]. The basic idea is that the GUT symmetry is realised

in 5 or more space-time dimensions and it is broken to the Standard Model by using

GUT-symmetry violating boundary conditions on an orbifold compactification. Within

this approach, the doublet-triplet splitting problem is easily solved by leaving only the

light Higgs doublets after orbifolding, as we will see in chapter 4. Additionally, discrete

symmetries may arise from orbifold compactifications [123], which might be used as the

flavour symmetry.

1.7.1 A compactified 5-dimensional toy model

We introduce a 5D toy model to illustrate the appearance of Kaluza-Klein modes after

compactification of the extra dimension. The usual four space-time dimensions are

parametrized by xµ, where µ = 0, 1, 2, 3, while the extra dimension is specified by y. In

general, these coordinates can be combined into zM = (xµ, y), where M now runs over

all the space-time indices. In this case, we compactify the extra dimension on a circle

of radius R, i.e. we make the identification

y ∼ y + 2πR. (1.57)

We are now able to expand the field φ as a Fourier series on the extra dimensional space

φ(xµ, y) =
∑
n

φ(n)(xµ)einky, (1.58)

where k = 1/R is given by the condition φ(xµ, y) = φ(xµ, y + 2πR) (known as ordinary

compactification). We can apply the Klein-Gordon equation for a massless particle

∂M∂Mφ = (∂µ∂µ−∂y∂y)φ = 0 to the field Fourier expansion in equation 1.58, such that∑
n

(∂µ∂µ − ∂y∂y)φ(n)(xµ)einy/R = 0. (1.59)

When we further simplify this equation, we end up with an equation of motion given by∑
n

(∂µ∂µ +m(n)2)φ(n)(xµ)einy/R = 0, (1.60)

which corresponds to the equation of motion for a set of fields φ(n)(xµ), with a mass

m(n) = n/R. To recap, we started with a 5-dimensional massless particle, which, after

applying the compactification conditions, has been split in an infinite set of 4-dimensional

particles with ever increasing mass. Klein assumed R to be extremely small such that all

the Kaluza-Klein modes with n > 0 would have stayed out of reach for experiments. For

energies E � R−1, heavy fields can be integrated out and the effective four dimensional

theory will only depend on the zero mode n = 0, which is independent of y.
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1.7.2 Orbifold compactification

In the following, we will be interested in orbifold compactifications. In chapter 4 we con-

struct a model based on SU(5) gauge symmetry and 6-dimensional (6D) supersymmetry

(corresponding toN = 2 SUSY in 4D, whereN refers to the number of supersymmetries,

i.e. the number of distinct copies of supersymmetry generators). Orbifold compactifica-

tions have the advantage of breaking the extended N = 2 SUSY to N = 1 SUSY in 4D,

in addition to the breaking of the GUT symmetry to the SM gauge group.

In general, the model is constructed based on a gauge group G on a manifold M =

M4×C, whereM4 is the 4D Minkowski space-time and the manifold C (with coordinate

y) is supposed to have a symmetry under a discrete group K, i.e.

K : (xµ, y)→ (xµ, k[y]). (1.61)

In the previous toy model, C is taken to be the set of real numbers which we then mod

out by the equivalence y ∼ y+ 2πR generated by the discrete translation group K = Z,

leading to the smooth space R/Z = S1, the circle of radius R. After compactification,

the gauge symmetry of the theory is still G but now defined on the smaller physical

space M4 × S1. In this example, K acts freely, i.e.

k[y] 6= y, ∀y ∈ C, ∀k 6= 1 ∈ K. (1.62)

However, there are cases when the action of K has fixed points (k[y] = y for some

y ∈ C, k 6= 1). In such a case, the space C/K is known as an orbifold compactification.

To understand the advantage of orbifold compactification, we have to consider the action

of K in field space

K : φ(xµ, y)→ Rk φ(xµ, k−1[y]), (1.63)

where Rk is a matrix representation of K and K is now to be thought of as a subgroup

of the gauge group G. In an orbifold with fixed points, the gauge symmetry of the

theory, G, remains the same away from these fixed points, while at the fixed points, the

gauge symmetry is reduced to a subgroup Hy ⊂ G. The subgroup Hy can be found

as follows, first consider, at each y, the subgroup Fy ⊂ K which leaves y fixed, i.e.

Fy ≡ {k ∈ K : k[y] = y}. Then, the unbroken gauge group Hy at y is the centralizer of

Fy in G, i.e. the elements of G that commute with the elements of Fy and it is given by

Hy = {g ∈ G : gk = kg, ∀k ∈ Fy}. (1.64)

Therefore, in general, the gauge group of the theory can be broken to a subgroup at the

fixed points after orbifold compactification. Furthermore, to have a consistent theory

the action of the discrete group K on field space must be an automorphism of the Lie-

algebra of the original gauge group G. This means that the action of K will map the

Lie-algebra of the group G into itself preserving the multiplication law, in this way the
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discrete group K is assured to be a symmetry of the gauge action, for more details

see [124, 125].

1.7.2.1 An example: the S1/(Z2 × Z′
2) orbifold

Consider the S1/(Z2 ×Z′2) orbifold, where in this case C = S1, the circle with radius R

and Z2 × Z′2 is the discrete group acting on the extra coordinate y. The action of the

S1/Z2 orbifold is to identify the points y ∼ −y, i.e. identify points of the circle opposite

with respect to a given diameter. Additionally, one imposes an extra constraint to obtain

the orbifold S1/(Z2 × Z′2), which is y′ ∼ −y′, where y′ ≡ y + πR/2. The orbifold action

can be written as

P : y → −y and P ′ : y′ → −y′. (1.65)

There are two inequivalent fixed points (also known as 4-dimensional walls) at y = 0

and y = πR/2. The orbifold S1/(Z2 × Z′2) has a fundamental domain of 0 ≤ y ≤ πR
2 ,

since any other point of the circle S1 can be mapped from that region using the action

of Z2 × Z′2.

Assume now a field Φ(xµ, y) which is a N -multiplet under some symmetry group G.

The action of the Z2 × Z′2 parity on field space is defined by

P : Φ(xµ, y)→ PΦΦ(xµ,−y) and P ′ : Φ(xµ, y′)→ P ′ΦΦ(xµ,−y′). (1.66)

The matrices PΦ and P ′Φ areN×N matrix representations of the two Z2 actions, meaning

that they satisfy (PΦ)2 = (P ′Φ)2 = 1, where 1 refers to the N ×N identity matrix. We

can classify the fields by their (P, P ′) eigenvalues (±1,±1), with Kaluza-Klein modes

Φ++(xµ, y) =

√
2

πR

∑
n

Φ
(2n)
++ (xµ) cos

2ny

R
,

Φ+−(xµ, y) =

√
2

πR

∑
n

Φ
(2n+1)
+− (xµ) cos

(2n+ 1)y

R
,

Φ−+(xµ, y) =

√
2

πR

∑
n

Φ
(2n+1)
−+ (xµ) sin

(2n+ 1)y

R
,

Φ−−(xµ, y) =

√
2

πR

∑
n

Φ
(2n+2)
−− (xµ) sin

(2n+ 2)y

R
,

(1.67)

where n is an integer and each field Φ
(2n)
++ (xµ), Φ

(2n+1)
+− (xµ), Φ

(2n+1)
−+ (xµ) and Φ

(2n+2)
−− (xµ)

acquires a mass 2n
R , 2n+1

R , 2n+1
R and 2n+2

R upon compactification, respectively. There-

fore, 4-dimensional massless fields appear only in Φ
(2n)
++ (xµ). Additionally, some fields

vanish at the fixed points, for example, Φ−+(xµ, 0) = Φ−−(xµ, 0) = 0 at y = 0 and

Φ+−(xµ, πR/2) = Φ−−(xµ, πR/2) = 0 at y = πR/2.

We now study an SU(5) gauge theory with minimal SUSY in 5D (with 8 real super-
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charges, corresponding to N = 2 SUSY in 4D). We assume that, at minimum, the bulk

must have the 5D vector superfield, corresponding to a vector supermultiplet, V , and a

chiral multiplet, Σ, in terms of 4d N = 1 SUSY such that both of them transform in

the adjoint representation 24 of SU(5).

We assume that the Z2 orbifold action on field space is given by

V A(xµ, y)TA → V A(xµ,−y)PTAP−1

ΣA(xµ, y)TA → −ΣA(xµ,−y)PTAP−1,
(1.68)

and similarly for the Z′2 transformation, obtained by replacing y and P by y′ and P ′.

The matrices TA are the 5 × 5 generators of SU(5) with A = 1, ..., 24. The parity

assignments are chosen to be P = diag(1, 1, 1, 1, 1) and P ′ = diag(−1,−1,−1, 1, 1).

With this assignment and the first transformation given in equation 1.68, the SU(5)

gauge symmetry group is broken down to SU(3) × SU(2) × U(1) at the fixed point

y = πR/2 but it is unbroken in the bulk and on y = 0. This is because

P ′T aP ′−1 = T a, P ′T âP ′−1 = −T â, (1.69)

where T a are the gauge generators of SU(3)× SU(2)× U(1) and T â are the rest of the

gauge generators.

Additionally, the overall sign in the second line of equation 1.68 breaks the 4D N = 2

SUSY to 4D N = 1 SUSY on both fixed points at y = 0 and y = πR/2. Since only

the (+,+) fields contain massless zero modes, we end up with the gauge and gaugino

content of the 4D N = 1 MSSM at low energies.

With this example, we have illustrated that when K acts non-freely on the extra dimen-

sional manifold C, i.e. there exist fixed points and additionally, the action of K does

not commute with the symmetry of the theory G, then this symmetry is broken to a

subgroup of G at the 4-dimensional fixed points.

We have also seen that only the fields with positive parity assignments have zero-massless

modes. We can make use of this parity choice to achieve the doublet-triplet splitting of

Higgs multiplets in GUTs. We will select the parities in such a way that the doublets

contain zero massless modes while the triplets are heavy. This mechanism is used in

chapter 4.

1.7.3 Family symmetry from extra dimensions

Discrete symmetries may naturally arise as the remnant symmetry of the space-time

symmetry after it is broken down to the 4-dimensional Poincaré symmetry through

orbifold compactification. As an example, we show the original proposal by Altarelli,
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Feruglio and Lin [123] in which the tetrahedral symmetry of A4 arises after compactifi-

cation of the two extra dimensions in a T2/Z2 orbifold, where T2 refers to a torus.

We start with a model in 6 dimensions whose two extra dimensions are compactified into

an orbifold T2/Z2. The two extra dimensions, x5 and x6 are combined into a complex

coordinate z = x5 + ix6. The torus T2 is defined then by the following identifications

z ∼ z + 1

z ∼ z + γ, where γ = ei
π
3 .

(1.70)

The action of the Z2 parity is defined as

z ∼ −z. (1.71)

The set of equations 1.70 and 1.71 define the orbifold T2/Z2 and the fundamental domain

is shown in figure 1.3. This orbifold contains four fixed points given by (z1, z2, z3, z4) =

(1/2, (1 + γ)/2, γ/2, 0), i.e. these points remain unchanged under the orbifold action.

Furthermore, the segments labelled by a in figure 1.3 are identified, and similarly for

those labelled by b and c. Once we identify these segments, we find that the orbifold

is a regular tetrahedron with vertices at the four fixed points. If one assumes that the

space-time symmetry, before compactification, consisted of the 6D translations and 6D

proper Lorentz transformations, then the orbifold has broken it to the 4D space-time

symmetry times the discrete group of rotations and translations A4. This group can be

generated by two transformations

S : z → z +
1

2
,

T : z → ωz, where ω ≡ γ2.
(1.72)

Figure 1.3: Orbifold T2/Z2 with fixed points (z1, z2, z3, z4) and fundamental domain outlined
in bold. The segments with same label are identified one with each other such that the orbifold
is exactly a regular tetrahedron with edges a, b, c, d, e, f and vertices given by the four fixed
points of the orbifold.
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These two transformations induce even permutations of the four fixed points, such that

S : (z1, z2, z3, z4)→ (z4, z3, z2, z1)

T : (z1, z2, z3, z4)→ (z2, z3, z1, z4).
(1.73)

These two generators satisfy the presentation of A4
9, i.e. S2 = T 3 = (ST )3 = 1. Other

discrete symmetry groups can arise from different orbifold compactifications. For a list

of T2/ZN orbifolds with their associated discrete symmetry, we refer to [126].

It is possible to build a model in the 6D space-time M4 × T2/Z2, with fields either

living at the fixed points, known as 4D “brane” fields, or “bulk” fields, depending on

both the uncompactified coordinates xµ and the complex coordinate z. In chapter 4,

a 6-dimensional supersymmetric SU(5) GUT model has been constructed along these

lines, in which the family symmetry arises from the orbifold of the extra dimensions.

1.7.4 Modular symmetry and modular forms

Toroidal compactification is one of the most common and simple compactifications. In

general, a torus can be defined by giving two periods in the complex plane

z ∼ z + ω1, z ∼ z + ω2, (1.74)

where ω1 and ω2 are assumed to be finite, non-zero and their ratio is not real. Here, the

variable z refers again to the complex coordinate z = x5 + ix6, where x5 and x6 are the

two extra dimension coordinates. The torus is then characterized by the complex plane

C modulo a two-dimensional lattice Λ(ω1,ω2), where Λ(ω1,ω2) = {mω1 + nω2,m, n ∈ Z},

T2 = C/Λ(ω1,ω2). (1.75)

Without loss of generality, we can apply the transformation z → z/ω2, such that the

torus is equivalent to one whose periods are 1 and τ = ω1/ω2 and we can restrict τ to

the upper half-plane H = Im τ > 0. There exists alternative periods

ω′1 = aω1 + bω2 and ω′2 = cω1 + dω2, (1.76)

which define the same lattice, if a, b, c, d ∈ Z and ad− bc = 1, or equivalently(
ω′1
ω′2

)
=

(
a b

c d

)(
ω1

ω2

)
, where

(
a b

c d

)
∈ SL(2,Z). (1.77)

9An additional transformation z → z∗ also permutes the fixed points. This transformation belongs
to the full 6D Poincaré group, which includes not only 6D translations and proper Lorentz transfor-
mations, but also discrete symmetries. In this case, if one assumes the 6D Poincaré symmetry before
compactification, the orbifold leads to the product of 4D Poincaré times the discrete group S4 (instead
of A4).
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Therefore, the torus defined by the modulus τ is equivalent to one with modulus pa-

rameter given by

τ ′ =
ω′1
ω′2

=
aτ + b

cτ + d
. (1.78)

An SL(2,Z) transformation on the modulus parameter τ and its negative are equivalent,

as can be seen from equations 1.77 and 1.78. Therefore, we can use the infinite discrete

group PSL(2,Z) = SL(2,Z)/Z2, generated by

S : τ → −1/τ and T : τ → τ + 1, (1.79)

to describe the transformations that relate equivalent tori. This group is also known as

the modular group Γ ≡ PSL(2,Z)10 and its generators satisfy

S2 = (ST )3 = 1. (1.80)

If one imposes an extra constraint given by TN = 1, the finite modular groups ΓN are

realized. Depending on the value of N , the finite modular group ΓN is isomorphic to

different permutation groups, for example, Γ2 ' S3, Γ3 ' A4, Γ4 ' S4 and Γ4 ' A5.

In theories where the extra dimensions are compactified on a T2/ZN orbifold, the super-

potential has to be invariant under the modular symmetry [127, 128]. In general, a set

of chiral supermultiplets, ϕ(I), are assumed to transform in a representation ρ(I) of the

finite modular group ΓN with weight k(I), i.e.

τ → aτ + b

cτ + d
,

ϕ(I) → (cτ + d)−kIρ(I)ϕ(I).

(1.81)

The invariance of the superpotential under the modular group provides a strong re-

striction on the theory since the couplings have to become modular forms whose weight

cancel the sum of the weights of the supermultiplets. For example, consider a term in

the superpotential given by

W ⊃ Y (τ)ϕ(1) . . . ϕ(n). (1.82)

To build an invariant term, Y (τ) should be a modular form with weight kY , where

kY ≥ 0 is an integer, transforming in the representation ρ of ΓN :

Y (τ ′)→ (cτ + d)kY ρY (τ), (1.83)

with kY and ρ such that the weight kY compensates the overall weight of the product

ϕ(1) . . . ϕ(n), i.e. kY = k1 + · · · + kn and the product of representations ρ × ρ(1) . . . ρ(n)

contains an invariant singlet under ΓN . Therefore, the couplings in equation 1.82 are

constrained to the possible modular forms that satisfy these conditions. We refer to

10Some authors define the modular group to be PSL(2,Z), while others define it to be the larger
group SL(2,Z).
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appendix A.2.2 for a basis of modular forms for Γ3 ' A4 with different weights kY .

In chapter 4, we build a supersymmetric SU(5) model in 6D where the two extra di-

mensions are compactified on a T2/Z2 orbifold. Some of the Yukawa couplings become

modular forms giving rise to mass matrix structure and therefore providing a possible

interpretation of the flavour puzzle.



Chapter 2

A natural S4 × SO(10) model of

flavour

In chapter 1, we introduced some of the questions left unanswered by the Standard Model

such as neutrino masses and mixing, the hierarchy problem, the charge quantisation and

the apparent unification of gauge forces at high energies, and the flavour puzzle among

others. In this chapter we present a natural S4 × SO(10) supersymmetric grand unified

theory of flavour which aims to explain the observed masses and mixing patterns of

quarks and leptons and which is capable to address the questions above. It is mainly

based on the work published in [1].

2.1 Introduction

From a theoretical point of view, the choice of an SO(10) grand unified theory is pre-

ferred, since it predicts three right-handed neutrinos and makes neutrino mass inevitable.

We combine it with an S4 symmetry since it is one of the simplest and smallest family

symmetry groups that admit triplet representations. Furthermore, if one assumes that

the Klein symmetry of the neutrino mass matrix is generated by the S, U and T genera-

tors of S4 (shown in appendix A.1), then the PMNS matrix is equal to the tri-bimaximal

(TB) mixing matrix, such that one can associate TB mixing with the discrete symmetry

group S4 [129]. Even though TB mixing is already ruled-out due to the observation of

a non-zero reactor angle, we follow a semi-direct approach in which the flavon vacuum

alignments only preserve a generator of the symmetry (specifically, the SU generator).

Then, S4 naturally leads to constrained sequential dominance-3 (CSD3), meaning that

the flavons are aligned in the following directions (0, 1,−1)T , (1, 3,−1)T and (0, 1, 0)T ,

which gives successful predictions in the neutrino sector as we explain below.

To generate neutrino masses we apply the type-I seesaw mechanism with three right-

35
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handed neutrinos. Furthermore, we consider sequential dominance (SD) of right-handed

neutrinos [130–133], which is a natural framework to realize large lepton mixing and

normal neutrino hierarchy within the type-I seesaw. SD postulates three right-handed

neutrinos, where one of them, usually the heaviest one, is almost decoupled from the

seesaw mechanism, and is responsible for the lightest physical neutrino mass m1. Of the

remaining two, one gives the dominant seesaw contribution and is mainly responsible

for the (heaviest) atmospheric neutrino mass m3 and mixing, while the other gives

a subdominant contribution, responsible for the (second-heaviest) solar neutrino mass

m2 and mixing. SD therefore predicts m1 � m2 � m3 ∼ 50 meV. The amount of

atmospheric and solar mixing is governed by ratios of Yukawa couplings, which can easily

be large, while the reactor mixing is typically Ue3 . O(m2/m3) ≈ 0.17. This successful

prediction was made over a decade before the reactor angle was measured [134–136].

One may go further and impose constraints on the Yukawa couplings in order to achieve

predictions for mixing, as in constrained sequential dominance (CSD) [137–141]. A

particularly successful scheme is known as CSD3 [142, 143] where the neutrino Yukawa

matrix is controlled by particular vacuum expectation values (VEVs) of three triplet

flavon fields 〈φi〉, as discussed later. The particular flavon vacuum alignments may be

enforced by an S4 symmetry and are fixed by a superpotential which we do not specify

here but was shown in [142]. After implementing the seesaw mechanism, the above

flavons yield a light effective left-handed Majorana neutrino mass matrix,

mν = µ1Y11 + µ2Y22 + µ3Y33, (2.1)

where Yij ∼ 〈φi〉 〈φj〉T , up to S4 Clebsch-Gordan (CG) factors. Each of the matrices Yii

is quadratic in 〈φi〉 and therefore has rank 1. The SD condition implies that µ2 > µ1

and hence maximal atmospheric mixing is controlled by Y22, solar mixing is controlled

by Y11, while Y33 plays no important role in neutrino physics due to the smallness of µ3,

which implies that m1 is similarly small.

In the present chapter we propose a natural S4×SO(10) Grand Unified Theory of flavour

in which the CSD3 model of neutrinos is embedded. Our guiding principles are firstly

simplicity, involving the fewest number of low-dimensional fields, secondly naturalness,

and thirdly completeness, in particular addressing the doublet-triplet splitting problem.

What does natural mean? For us it means that we have a qualitative explanation of

charged fermion mass and mixing hierarchies, as for neutrino mass and mixing, with all

dimensionless parameters O(1), and in particular that the Yukawa matrices are obtained

from sums of low-rank matrices, as in equation 2.1, where each matrix in the sum

naturally accounts for the mass of a particular family, analogous to SD in the neutrino

sector. This qualitative picture of “universal sequential dominance” is underpinned by

a detailed quantitative fit of the fermion spectrum.

To accomplish these goals, we need to add two Higgs 10s, Hu
10 and Hd

10, which will
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give rise, at low energy, to the minimal supersymmetric Standard Model (MSSM) Higgs

doublets, Hu and Hd, respectively, with no appreciable Higgs mixing effects. After GUT

breaking, the Higgs Hu
10 couples to up-type quarks and neutrinos, with Yukawa matrices

given by an universal CSD3 structure as in equation 2.1. The Yukawa matrices for the

charged leptons and down-type quarks, which couple to Hd
10, have a different universal

structure where Y11 is replaced by Y12 ∼ 〈φ1〉 〈φ2〉T . Then quark mixing is mostly

originated in the down-type quark sector, with the down and strange quark masses

successfully realised by having a zero entry in the (1,1) element of the down-type quark

Yukawa matrix Y d, as in the Gatto-Sartori-Tonin (GST) approach [144], with a milder

hierarchy among down-type quarks as compared to up-type quarks.

The model accurately fits all available quark and lepton data. We give analytical estima-

tions for quark mixing angles and we recognize some tension in the predicted observables.

This tension is alleviated by assuming rather large SUSY threshold corrections. All di-

mensionless couplings in the renormalisable theory are naturally assumed O(1) and the

hierarchy in the flavon VEVs fixes the scales of all but one parameter. The model reduces

to the MSSM at lower energies, a µ term of O(TeV) is achieved as well as doublet-triplet

splitting and proton decay operators are Planck scale suppressed. The model requires

an auxiliary Z2
4 and ZR4 symmetry and a spectrum of messenger fields to achieve all the

features above.

The model introduced here differs from previous models based on S4 × SO(10) [145–

148], (see also [149–151]).1 Firstly, the full symmetry is different, since we use an

extra Z2
4 × ZR4 symmetry, while earlier works use a Zn [146–148]. Furthermore, we only

include small Higgs representations 10 (fundamental), 16 (spinor) and 45 (adjoint) and

do not allow the large Higgs representations such as the 126 and 120 which are used

in the other approaches. As a consequence our neutrino masses follow from a type-I

seesaw mechanism, rather than a type-II seesaw employed in other papers. In further

contrast, we do not allow Higgs mixing: the MSSM Higgs doublets Hu and Hd emerge

directly from Hu
10 and Hd

10, respectively, whereas in [145–148] they arise as unconstrained

linear combinations of doublets contained in 10- and 126-dimensional Higgs fields. In

addition we consider doublet-triplet splitting. These features are largely absent from

earlier works. Another important difference is that we have used the CSD3 vacuum

alignments in [142], whereas the vacuum alignments used in most previous works were

geared towards TB mixing, and do not naturally provide a large reactor angle. Indeed

our model is motivated by the success of CSD3 in the neutrino sector.

1 Previous works on SO(10) models with non-Abelian discrete flavour symmetries are found in [152–
161], and further flavoured GUTs can be found in [162–187]. More recently, a generalised approach to
flavour symmetries in SO(10) is considered in [188].
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2.2 The model

2.2.1 Overview of the model

All the fermions of the Standard Model are unified in a single superfield ψ which trans-

forms as a (3′, 16) representation of S4×SO(10). We also include two Higgs fields Hu,d
10 in

(1, 10) representation and three flavon fields φi, with i = 1, 2, 3 in (3′, 1) representation.

The flavons are assumed to have CSD3 vacuum alignments [142]

〈φ1〉 = v1

 1

3

−1

 , 〈φ2〉 = v2

 0

1

−1

 , 〈φ3〉 = v3

0

1

0

 , (2.2)

with VEVs driven to scales with the hierarchy2

v1 � v2 � v3 ∼MGUT. (2.3)

The idea is that the up-type quark Yukawa matrix Y u and neutrino Yukawa matrix Y ν

arise from effective terms like

Hu
10(ψφ1)(ψφ1) +Hu

10(ψφ2)(ψφ2) +Hu
10(ψφ3)(ψφ3), (2.4)

where the bracket means that the fields inside are contracted into a singlet representation

of S4. Due to the hierarchy of the flavon VEVs in equation 2.3, each rank-1 matrix in the

sum in equation 2.4 contributes dominantly to a particular family, giving a rather natural

understanding of the hierarchical Yukawa couplings yu ∼ v2
1/M

2
GUT, yc ∼ v2

2/M
2
GUT,

yt ∼ v2
3/M

2
GUT, and similarly for the neutrino Yukawa couplings.

The operators in equation 2.4 are nonrenormalisable and they will have denominator

scales of order MGUT, determined by the VEVs of additional Higgs adjoint 45s, leading

to various CG factors. Consequently, the Yukawa matrices Y u and Y ν are a sum of

rank-1 matrices as in equation 2.1, with independent coefficients multiplying each rank-

1 matrix, where Yij ∼ 〈φi〉 〈φj〉T , up to S4 CG factors. Since the expansion breaks down

for the third family, in section 2.2.4 we shall find a renormalisable explanation of the

third-family Yukawa couplings. The right-handed neutrino Majorana mass matrix will

also have the same universal form, leading to the seesaw mass matrix as in equation 2.1.

The down-type quark Yukawa matrix Y d and charged lepton Yukawa matrix Y e are

slightly different

Hd
10(ψφ1)(ψφ2) +Hd

10(ψφ2)(ψφ2) +Hd
10(ψφ3)(ψφ3). (2.5)

2 In the full model we shall not provide an explanation for this hierarchy of VEVs, nor shall we repeat
the vacuum alignment superpotential responsible for the alignments in equation 2.2, which is discussed
in [142]. We note that the alignments 〈φ1〉 and 〈φ2〉 preserve the SU generator of S4.
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In equation 2.5, there is a mixed term involving φ1 and φ2, leading to a new rank-2

Yukawa structure Y12 ∼ 〈φ1〉 〈φ2〉T . This new term gives rise to two new features which

are welcome: firstly, it enforces a zero in the (1,1) element of Y d, giving the GST relation

for the Cabibbo angle, i.e. θq12 ≈
√
yd/ys, and it also leads to a milder hierarchy in the

down and charged lepton sectors.

To guarantee all the above features of the model, it is necessary to introduce additional

symmetries and fields.

2.2.2 Field content and Yukawa superpotential

We now present the full superfield content of the model in table 2.1. All known SM

fermions are contained in a “matter” superfield ψ. Additionally, we include three triplet

flavons φa (a = 1, 2, 3) which acquire CSD3 vacuum alignments, two Higgs 10s contain-

ing one each of the electroweak-scale Higgs SU(2) doublets,3 a spinor H16 which breaks

SO(10) (and gives masses to the right-handed neutrinos along with the singlet field ρ),

as well as several Higgs adjoints. The χ superfields are messengers that are integrated

out below the GUT scale, and are given GUT-scale masses by the VEV of HZ
45.

Field
Representation

S4 SO(10) Z4 Z4 ZR4

ψ 3′ 16 1 1 1

Hu
10 1 10 0 2 0

Hd
10 1 10 2 0 0

H16 1 16 2 1 0
H16 1 16 1 2 0

HX,Y
45 1 45 2 1 0

HZ
45 1 45 1 2 0

HB−L
45 1 45 2 2 2

φ1 3′ 1 0 0 0
φ2 3′ 1 2 0 0
φ3 3′ 1 0 2 0

(a) Matter, Higgs and flavon superfields.

Field
Representation

S4 SO(10) Z4 Z4 ZR4

χ1 1 16 3 3 1
χ1 1 16 0 3 1
χ2 1 16 1 3 1
χ2 1 16 2 3 1
χ3 1 16 3 1 1
χ3 1 16 0 1 1
χ′3 1 16 3 2 1
χ′2 1 16 1 0 1

ρ 1 1 2 2 1

(b) Messenger superfields.

Table 2.1: Field content giving the Yukawa superpotential in equation 2.6.

We also include two Z4 symmetries that forbid any mixed flavon Yukawa terms and a

R symmetry, ZR4 , under which the superpotential has total charge two, and which is

broken at the GUT scale by the HB−L
45 VEV to ZR2 , the usual R (or matter) parity in

the MSSM, ensuring a stable lightest supersymmetric particle (LSP). This symmetry

also helps achieving the doublet-triplet splitting problem, ensuring that only two light

Higgs doublets (and no Higgs triplets) are present in the effective MSSM and it also

3 We assume that the MSSM Higgs doublets Hu, Hd lie completely inside the SO(10) multiplets
Hu

10, H
d
10, respectively. This is justified in section 2.2.5.
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controls the µ term. ZR4 is the smallest R symmetry that can achieve the above, and is

specially motivated within SO(10) [189]. We shall also assume a spontaneously broken

canonical CP symmetry at the high scale.

With this superfield content and symmetries, the most general renormalisable Yukawa

superpotential that can be written at the GUT scale is

W
(GUT)
Y = ψφaχa + χaχaH

Z
45 + χaχaH

u
10 + ρχ3H16 +Mρρρ

+ χbχ
′
b

(
HX

45 +HY
45

)
+ χ′bχ

′
bH

d
10 + χ1χ2H

d
10,

(2.6)

where we sum over indices a = 1, 2, 3 and b = 2, 3, and have suppressed O(1) coefficients

λ that multiply each term. Furthermore, there are two essential terms that appear

suppressed by one Planck mass MP and they are given by

W
(Planck)
Y =

χaχaH16H16

MP
+
ψψφ3H

d
10

MP
, (2.7)

where a = 1, 2, 3. The first term couples H16 to fermions via the messengers χa. The

second term is allowed by the symmetries and cannot be ignored since it contributes to

the fermion Yukawa matrices at the same order of the smallest GUT-scale terms.

The adjoint Higgs superfields acquire VEVs, in general complex, at the GUT scale,

i.e. 〈Hk
45〉 ∼ MGUT with k = X,Y, Z,B − L. HX,Y,Z

45 gain arbitrary (SM-preserving)

VEVs, providing CG factors which separate the quark and lepton masses. We elaborate

on this feature in section 2.2.3. HB−L
45 gains a VEV in the direction that preserves

B − L, generating GUT-scale masses for Higgs triplets via the Dimopoulos-Wilczek

(DW) mechanism [190–192]. Our implementation of the DW mechanism is described in

section 2.2.5.

The VEVs of φ1 and φ2 are assumed to get VEVs well below the GUT scale, i.e. 〈φ1,2〉 �
MGUT, while 〈φ3〉 ∼ MGUT. Therefore, the scale at which the flavour symmetry is

broken, along with CP , is the GUT scale. At low scales no residual CP symmetry

survives, however CP does play a role in fixing phases in the mass matrices. As 〈φ3〉 is

near the messenger scale, the process of integrating out messengers χ3, χ3 is not trivial.

The correct procedure and the consequences of having a flavon VEV near MGUT are

discussed in detail in section 2.2.4, where we verify also that the third family of Yukawa

couplings are renormalisable at the electroweak scale.

The mass and Yukawa matrices arise from the diagrams in figures 2.1-2.3.4 The three

diagrams in figure 2.1 correspond to the ultraviolet completion of the three terms in

equation 2.4, while those in figure 2.2 are the completion of the terms in equation 2.5.

The diagrams ensure correct S4 group theory contractions and introduce CG coefficients

due to the HX,Y,Z
45 VEVs. These diagrams are analogous to how the seesaw mechanism

replaces the Weinberg operator for neutrino mass. Of course neutrino mass itself in this

4 The diagrams were drawn with JaxoDraw [193].
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model is more subtle, since both the Dirac and right-handed Majorana masses arise from

these diagrams.

Each diagram leads to a 3×3 matrix, whose internal structure is dictated by the vacuum

alignment of the relevant flavon VEV in equation 2.2. The Yukawa and mass matrices are

consequently given as a sum over these matrices. A prominent feature is a texture zero

in the (1,1) element of Y d and Y e, which realises the GST relation for the Cabibbo angle.

The full derivation and the exact matrices that we fit to data are given in section 2.3.

〈HZ
45〉 〈HZ

45〉

Hu
10φ1 φ1

ψ ψχ̄1 χ1 χ1 χ̄1

〈HZ
45〉 〈HZ

45〉

Hu
10φ2 φ2

ψ ψχ̄2 χ2 χ2 χ̄2

〈HZ
45〉 〈HZ

45〉

Hu
10φ3 φ3

ψ ψχ̄3 χ3 χ3 χ̄3

Figure 2.1: Diagrams coupling ψ to Hu
10. When flavons acquire VEVs, these give the up-type

quark and Dirac neutrino Yukawa matrices.

〈HZ
45〉 〈HZ

45〉

Hd
10φ1 φ2

ψ ψχ̄1 χ1 χ2 χ̄2

〈HX,Y
45 〉 〈HX,Y

45 〉

Hd
10φ2 φ2

ψ ψχ̄2 χ′
2 χ′

2 χ̄2

〈HX,Y
45 〉 〈HX,Y

45 〉

Hd
10φ3 φ3

ψ ψχ̄3 χ′
3 χ′

3 χ̄3

Figure 2.2: Diagrams coupling ψ to Hd
10. When flavons acquire VEVs, these give the down-

type quark and charged lepton Yukawa matrices.

〈HZ
45〉 〈HZ

45〉

H16φ3 φ3

ψ ψχ̄3 χ3 χ3 χ̄3

H16

ρ ρ

Mρ 〈HZ
45〉 〈HZ

45〉

H16φa φa

ψ ψχ̄a χa χa χ̄a

H16

MP

Figure 2.3: Diagrams coupling ψ to H16. One copy of the right diagram may be drawn for
each of a = 1, 2, 3, although for a = 3, its contribution is negligible compared to the left
diagram. When flavons acquire VEVs, these give the right-handed neutrino mass matrix.

Additional Planck-scale operators suppressed by one power of the Planck massMP , apart

from the ones given in equation 2.7, are forbidden by the symmetries. Further effective

operators, suppressed by at least two powers of the Planck mass M2
P and involving all

allowed contractions of S4 multiplets ψ and φi, are expected to arise. The largest of these

terms can be O(M2
GUT/M

2
P ) ∼ 10−6. We will assume these contributions are negligible;

however, such corrections may pollute the texture zero in Y d.

2.2.3 Clebsch-Gordan relations

We have several adjoint 45 representations of SO(10) in table 2.1. Any adjoint can

acquire a VEV aligned in the direction of any of the four U(1) subgroup generators that

commute with the Standard Model, or a combination thereof. There are four such U(1)

symmetries, labelled U(1)X , U(1)Y , U(1)B−L, U(1)T 3
R

. They arise from the breaking of
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SO(10) either through

SO(10) → SU(5)× U(1)X → SU(3)C × SU(2)L × U(1)Y × U(1)X (2.8)

or through the Pati-Salam chain

SO(10) → SU(4)C × SU(2)L × SU(2)R

→ SU(3)C × SU(2)L × SU(2)R × U(1)B−L

→ SU(3)C × SU(2)L × U(1)T 3
R
× U(1)B−L.

(2.9)

The generators of these U(1) symmetries are not linearly independent; two of them may

be expressed in terms of the other two. The VEVs of HX,Y,Z
45 may be written as linear

combinations of these alignments. Without loss of generality, we choose 〈HX
45〉 and 〈HX

45〉
to be aligned in the “X” and “Y ” direction, respectively, while 〈HZ

45〉 is a combination

of both. Fermions couple to these VEVs with strengths that depend on their associated

U(1) charges, which are different for quarks and leptons.

Up-type quarks and Dirac neutrinos couple to HZ
45 (see figure 2.1). Since 〈HZ

45〉 is

arbitrary, there is no hard prediction for the ratio between quark and neutrino Yukawa

couplings within a family. However, the same ratio has to hold for all the families since

all the flavons φa (a = 1, 2, 3) couple to this VEV in the same way. Therefore, once Y u

is determined, Y ν is also fixed, such that Y ν ∝ Y u, to good approximation, up to an

overall CG factor, with small deviations for the third family.

Meanwhile, the down-type quarks and charged leptons couple to two adjoints HX
45 and

HY
45 (see figure 2.2). Unlike the up sector, where matter always couples to the same

SO(10) VEV, each diagram in figure 2.2 involving a different flavon couples to a distinct

linear combination of VEVs 〈HX
45〉 and 〈HY

45〉. This introduces CG factors non-trivially

into Y d and Y e. As such, there is no fixed relationship between down-type quark and

charged lepton Yukawa couplings, neither within a family, nor across families. They are

nevertheless expected to be of the same order.

2.2.4 Renormalisability of the third family

In this section we show that naive integration over messenger fields is not possible for

the third family, due to the large VEV of φ3. We emphasize that there is an assumed

hierarchy of flavon VEVs, such that v1 � v2 � v3 ∼MGUT, implying it is not possible

to formally integrate out the messengers χ3 which couple to the flavon φ3.

Let us single out the terms in the superpotential WY involving the messenger field χ3,

the flavon φ3 and the Higgs field Hu
10 (the same method applies to terms coupling to
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Hd
10). Suppressing O(1) couplings, the relevant terms are

W
(3)
Y = ψφ3χ3 +HZ

45χ3χ3 + χ3χ3H
u
10. (2.10)

After the field HZ
45 and the flavon field φ3 acquire VEVs, we have

W
(3)
Y = v3ψ3χ3 + 〈HZ

45〉χ3χ3 + χ3χ3H
u
10, (2.11)

where the first two terms are of comparable order.

We could have interpreted ψ3 as the third-family particles. However, there is a large

coupling to χ3, which induces a mass for ψ3 via the second term in equation 2.11. There-

fore, ψ3 cannot be interpreted as the physical third-family states, which are massless

above the electroweak scale. To get the physical (massless) states, which we label t, we

rotate into a physical basis (ψ3, χ3) → (t, χ), such that t does not couple to χ3. This

basis change is given by

ψ3 =
〈HZ

45〉 t+ v3 χ

r
, χ3 =

−v3 t+ 〈HZ
45〉χ

r
; r =

√
v2

3 + 〈HZ
45〉

2
. (2.12)

Physically, it may be interpreted as follows: inside the original superpotential WY lie

the terms

WY ⊃ χ3χ3H
u
10 ⊃

v2
3

v2
3 + 〈HZ

45〉
2 t tH

u
10, (2.13)

which generate renormalisable mass terms for the top quark and the third Dirac neutrino

at the electroweak scale.

2.2.5 Doublet-triplet and doublet-doublet splitting

As is the case for every broken GUT, the Higgs sector of our model contains more fields

than the usual MSSM. The Hu,d
10 multiplets contain colour triplets that mediate proton

decay. Since we have two 10s, there is an additional pair of doublets that, if light, could

spoil gauge coupling unification. For these reasons, those extra fields need to be heavy,

while ensuring the MSSM doublets are massless. This splitting can be achieved in our

model.

The splitting mechanism involves superfields given in table 2.1 as well as the addition of

the superfields in table 2.2. The singlet field ξ obtains a VEV slightly above the GUT

scale and ensures the correct structure to the masses. The H16 generates a mass for the

H16 and also gets a VEV in the right-handed neutrino (νc) direction. HB−L
45 is the only

R-charged field that gets a VEV, breaking ZR4 to the usual R parity.
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Field
Representation

S4 SO(10) Z4 Z4 ZR4

ξ 1 1 2 2 0

χ̄u 1 16 2 1 2
χu 1 16 0 1 0
χ̄d 1 16 1 0 0
χd 1 16 1 2 2

ζ1 1 45 1 1 2
ζ2 1 45 1 1 0

Table 2.2: Messengers involved in doublet-triplet splitting.

With the superfields in tables 2.1 and 2.2, we may write the superpotential

WH = HB−L
45

(
Hu

10H
d
10 + ζ2ζ2 +H16χu +H16χd

)
+H16H

u
10χu +H16H

d
10χd +H16H16ζ1 + ξ (ζ1ζ2 + χuχu + χdχd)

+HB−L
45

(
H16H16H

d
10

MP
+
H16H16H

u
10

MP
+Hu

10H
d
10

(HX,Y,Z
45 )4

M4
P

)
,

(2.14)

where we have ignored dimensionless couplings. We assume that the VEV 〈ξ〉 & MGUT,

so that we may integrate out the messenger fields and obtain the effective superpotential

WH = HB−L
45

(
Hu

10H
d
10 +

(H16H16)2

〈ξ〉2
+
H16H16H

u
10

〈ξ〉 +
H16H16H

d
10

〈ξ〉

+
H16H16H

d
10

MP
+
H16H16H

u
10

MP
+Hu

10H
d
10

(HX,Y,Z
45 )4

M4
P

)
,

(2.15)

where we have suppressed dimensionless couplings, and the final term involves all com-

binations of adjoints allowed by the symmetries, i.e. either (HZ
45)4 or any combination

of powers of HX
45 and HY

45 totalling four. The three terms suppressed by 〈ξ〉 are allowed

by the integration of three messenger pairs.

We consider that the superfields H16,16, Hk
45 (k = X,Y, Z,B−L) get GUT-scale VEVs,

i.e. v16,16 ≈ vk45 ≈MGUT, through an unspecified mechanism. The fieldsH16,16 get VEVs

in the right-handed neutrino νc direction. The field HB−L
45 gains a VEV aligned in the

B−L direction, which splits doublet and triplet Higgs masses through the Dimopoulos-

Wilczek (DW) mechanism [190–192]. This can be understood by considering the de-

composition of the Hu,d
10 into the Pati-Salam group. The triplets behave as a sextuplet

of SU(4) while the doublets are singlets. Since U(1)B−L ⊂ SU(4), the triplets get a

mass from the first term of equation 2.15 while the doublets do not. In the last term, all

the SO(10) adjoints can be contracted to a singlet, so they affect doublets and triplets

equally.

To show explicitly the mechanism, we construct the doublet and triplet mass matrices.
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We define the dimensionless scale parameters y = MGUT/MP , z = MGUT/ 〈ξ〉 and label

the up-type doublets inside a given Higgs representation H by 2u(H), and down-type

doublets by 2d(H). We define triplets 3u(H) and 3d(H) analogously. The field H refers

either to Hu
10, Hd

10 or H16,16. The doublet mass matrix MD and the triplet mass matrix

MT are given by

MD =

2u(Hu
10) 2u(Hd

10) 2u(H16)
2d(H

d
10) y4 0 y

2d(H
u
10) 0 −y4 z

2d(H16) y z z2

MGUT ,

MT =

3u(Hu
10) 3u(Hd

10) 3u(H16)
3d(H

d
10) 1 0 y

3d(H
u
10) 0 −1 z

3d(H16) y z z2

MGUT .

(2.16)

The triplets mass matrix MT has three eigenvalues of O(MGUT). The doublets mass

matrix has two eigenvalues at O(MGUT) and one at O(y4MGUT), which we identify with

the µ term. Since y ≈ 10−3 we have µ ∼ 1 TeV, which is the desired order. Furthermore,

the light eigenvectors of MD define the MSSM doublets Hu,d as

Hu ≈ 2u(Hu
10) +

y

z
2u(Hd

10), Hd ≈ 2d(H
d
10) +

y

z
2u(Hd

10), (2.17)

where the contribution of O(y) is negligible, so that the MSSM doublets are located as

required by the Yukawa structure of the model.

2.2.6 Proton decay

One of the characteristic features of GUTs is the prediction of proton decay. It has not

been observed and the proton lifetime is constrained to be τp > 1034 years [31]. Proton

decay can be mediated by the extra gauge bosons and by the triplets accompanying

the Higgs doublets. In SUSY SO(10) GUTs the main source for proton decay comes

from the triplet Higgsinos. The decay width is dependent on SUSY breaking and the

specific coupling texture of the triplets. In general, the constraints are barely met

when the triplets are at the GUT scale [194, 195], which is our case as it was shown in

section 2.2.5.

Proton decay may also arise from effective terms like

gQQQL
〈X〉
M2
P

, (2.18)
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in which case, the constraint g 〈X〉 < 3 × 109 GeV [196] must be satisfied to meet the

limits on the proton lifetime. In our model, the largest contribution of this type comes

from the term

ψψψψ
HB−L

45 (HX,Y
45 HZ

45)2

M6
P

⇒ 〈X〉 =
(MGUT)5

M4
P

∼ 103 GeV. (2.19)

The constraint on g 〈X〉 is easily met, so proton decay from such terms is highly sup-

pressed.

2.3 Yukawa and mass matrices

2.3.1 Complete derivation of Yukawa and mass matrices

In this section we rewrite the renormalisable superpotential in equation 2.6, including

the dominant Planck-suppressed terms in equation 2.7, and writing explicitly all O(1)

couplings,

WY =
∑

a=1,2,3

λφaψφaχa + λχaχaχaH
Z
45 + χaχa

(
λuaH

u
10 + λNa

H16H16

MP

)
+
∑
b=2,3

χbχ
′
b

(
λXb H

X
45 + λYb H

Y
45

)
+ λdbχ

′
bχ
′
bH

d
10

+ λd12χ1χ2H
d
10 + λρ3ρχ3H16 +Mρρρ+ λdP

ψψφ3H
d
10

MP
.

(2.20)

Mass matrices are built from the flavon vacuum alignments in equation 2.2, after con-

structing singlet products which occur in ψφa above, i.e. 3′ × 3′ → 1. The product of

two triplets into a singlet is given by

(AB) = A1B1 +A2B3 +A3B2. (2.21)

To account for this non-trivial product as well as the field redefinition ψ2 → −ψ2 (this

overall sign is unphysical), we define the vectors

〈φ̃i〉 = IS4 〈φi〉 , with IS4 =

1 0 0

0 0 −1

0 1 0

 . (2.22)

In the new variables, the alignments become,

〈φ̃1〉 = v1

1

1

3

 , 〈φ̃2〉 = v2

0

1

1

 , 〈φ̃3〉 = v3

0

0

1

 . (2.23)
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As explained in section 2.2.3, fermions couple to the VEVs of 〈Hk
45〉 with strengths

proportional to unique CG factors. The index k labels the adjoint, i.e. k = X,Y, Z,B−L.

After the GUT is broken and ψ is decomposed into multiplets of the SM gauge group,

the part of an adjoint VEV which couples to a given multiplet f is denoted by

Hk
45 → 〈Hk

45〉f , (2.24)

where f = Q, uc, dc, L, ec, or νc. The field H16 gets a VEV in the direction which

preserves SU(5), which we call the (singlet) right-handed neutrino νc direction. Its

VEV only affects the right-handed neutrino mass matrix and is simply denoted v16.

The Yukawa matrices are taken from diagrams in figures 2.1-2.3. Taking into account

non-trivial S4 products (as above), we have

Y u
ij =

∑
a=1,2

λua
(λφa)2 〈φ̃a〉i 〈φ̃a〉j

(λχa)2 〈HZ
45〉Q 〈HZ

45〉uc
+

(λφ3 )2 〈φ̃3〉i 〈φ̃3〉j
(λφ3 )2v2

3 + (λχ3 )2 〈HZ
45〉Q 〈HZ

45〉uc
, (2.25)

Y ν
ij =

∑
a=1,2

λua
(λφa)2 〈φ̃a〉i 〈φ̃a〉j

(λχa)2 〈HZ
45〉L 〈HZ

45〉νc
+

(λφ3 )2 〈φ̃3〉i 〈φ̃3〉j
(λφ3 )2v2

3 + (λχ3 )2 〈HZ
45〉L 〈HZ

45〉νc
, (2.26)

MR
ij =

∑
a=1,2

λNa v
2
16

MP

(λφa)2 〈φ̃a〉i 〈φ̃a〉j
(λχa)2 〈HZ

45〉νc 〈HZ
45〉νc

+ v2
16

(
(λρ3)2

Mρ
+
λN3
MP

)
(λφ3 )2 〈φ̃3〉i 〈φ̃3〉j

(λφ3 )2v2
3 + (λχ3 )2 〈HZ

45〉νc 〈HZ
45〉νc

, (2.27)

Y d
ij = λd2

(λφ2 )2 〈φ̃2〉i 〈φ̃2〉j
[λX2 〈HX

45〉+ λY2 〈HY
45〉]Q[λX2 〈HX

45〉+ λY2 〈HY
45〉]dc

+ λd3
(λφ3 )2 〈φ̃3〉i 〈φ̃3〉j

(λφ3 )2v2
3 + [λX3 〈HX

45〉+ λY3 〈HY
45〉]Q[λX3 〈HX

45〉+ λY3 〈HY
45〉]dc

+ λd12

λφ1λ
φ
2 〈φ̃1〉i 〈φ̃2〉j

λχ1λ
χ
2 〈HZ

45〉Q 〈HZ
45〉dc

+ λdP
YP v3

MP
, (2.28)

Y e
ij = λd2

(λφ2 )2 〈φ̃2〉i 〈φ̃2〉j
[λX2 〈HX

45〉+ λY2 〈HY
45〉]L[λX2 〈HX

45〉+ λY2 〈HY
45〉]ec

+ λd3
(λφ3 )2 〈φ̃3〉i 〈φ̃3〉j

(λφ3 )2v2
3 + [λX3 〈HX

45〉+ λY3 〈HY
45〉]L[λX3 〈HX

45〉+ λY3 〈HY
45〉]ec

+ λd12

λφ1λ
φ
2 〈φ̃1〉i 〈φ̃2〉j

λχ1λ
χ
2 〈HZ

45〉L 〈HZ
45〉ec

+ λdP
YP v3

MP
, (2.29)

where v3 = | 〈φ3〉 |, vuY ν
ij is the Dirac neutrino mass matrix and MR

ij is the right-handed

neutrino Majorana matrix. The last term in equation 2.20 is a singlet coming from three

S4 triplets and gives rise to the last terms in equations 2.28 and 2.29, where YP is a

numerical matrix which is defined below in equation 2.30.

Finally, we take into account the effect of mixing between the state ψ3 and messenger χ3,
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explained in section 2.2.4. This mixing provides additional contributions to the fermion

mass matrices in the form of coefficients multiplying the third rows and columns. The

size of each coefficient depends on the CG factors and the ratio(s) of v3 to adjoint Higgs

VEVs vk45, for k = X,Y, χ. In the limit where v3 � vk45, all these coefficients are 1,

corresponding to a negligible amount of χ3 being mixed into the physical state. This is

exactly what occurs for the other two families: the massless states are aligned almost

exactly with the states ψ1,2. Generally, any significant deviation would require a tuning

among CG factors and O(1) parameters λ. We do not expect these factors to have a

large effect on mixing, hence we set them all to one for simplicity.

2.3.2 Numerical Yukawa and neutrino mass matrices

Following the derivation in section 2.3.1, we present here the explicit form of the Yukawa

matrices in terms of the numerical matrices

Y11 =

1 1 3

1 1 3

3 3 9

 , Y22 =

0 0 0

0 1 1

0 1 1

 , Y33 =

0 0 0

0 0 0

0 0 1

 ,

Y12 =

0 1 1

1 2 4

1 4 6

 , YP =

 0 0 −1

0 2 0

−1 0 0

 , (2.30)

which are constructed from the products 〈φ̃i〉 〈φ̃i〉
T

(see equation 2.23). We remind that

the tilde on the flavon VEVs takes into account the S4 singlet contractions in the triplet

products like (ψφi)(ψφj). YP derives from the Planck-suppressed operator ψψφ3H
d
10.

The up, down, charged lepton and Dirac neutrino Yukawa matrices (Y u, Y d, Y e and

Y ν , respectively) and right-handed neutrino mass matrix MR may be expressed as

Y u = yu1 e
iηY11 + yu2Y22 + yu3 e

iη′Y33, (2.31)

Y ν = yν1e
iηY11 + yν2Y22 + yν3e

iη′Y33, (2.32)

MR =MR
1 e

iηY11 + MR
2 Y22 +MR

3 e
iη′Y33, (2.33)

Y d = yd12e
i η
2Y12 + yd2e

iαdY22 + yd3e
iβdY33 + yP eiγYP , (2.34)

Y e = ye12e
i η
2Y12 + ye2e

iαeY22 + ye3e
iβeY33 + yP eiγYP , (2.35)

since the MSSM Higgs doublets Hu and Hd arise from Hu
10 and Hd

10, respectively, as

shown in section 2.2.5.

The flavon VEVs va (a = 1, 2, 3) are complex, with the fixed phase relation

η = arg

(
v1

v2

)2

= −2π

3
, (2.36)
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given (up to a sign) by the superpotential that fixes the alignments. The remaining

phase η′ is determined by the fit.

The light neutrino mass matrix is obtained by the seesaw mechanism. Both Y ν and

MR have the same structure, namely both are sums over the same rank-1 matrices Y11,

Y22 and Y33. By a proof given in [197], the light neutrino matrix mν will also have this

structure, i.e.

mν = µ1e
iηY11 + µ2Y22 + µ3e

iη′Y33

= µ1e
iη

1 1 3

1 1 3

3 3 9

+ µ2

0 0 0

0 1 1

0 1 1

+ µ3e
iη′

0 0 0

0 0 0

0 0 1

 ,
(2.37)

where the parameters µi are given in terms of the parameters yνi and MR
i simply by

µi = v2
u

(yνi )2

MR
i

. (2.38)

As shown in section 2.1, the flavons yield a light neutrino mass matrix mν , where the

normal hierarchy m1 � m2 � m3 then corresponds to µ3 . µ1 � µ2. Achieving this hi-

erarchy after seesaw implies that the right-handed neutrino masses are very hierarchical,

as we will see below.5

2.3.3 Analytic estimates

The parameters yui , ydi , yei , µi, and yP (a total of 13) appearing in the Yukawa and mass

matrices 2.31-2.35 are free real parameters of the model. Recalling that η is fixed by

flavon vacuum alignment, we have the following further free parameters: η′, αd,e, βd,e,

and γ (a total of 6). The scales of the real parameters are mostly fixed by the scales of

the flavon VEVs, v1,2,3. We set the flavon VEV scales to some appropriate values,

v1 ≈ 0.002MGUT, v2 ≈ 0.05MGUT, v3 ≈ 0.5MGUT, (2.39)

where we set MGUT ' 1016 GeV. The terms giving MR
1,2 and yP in equations 2.33 and

2.34-2.35, respectively, derive from terms suppressed by one Planck mass MP . As they

arise from unspecified dynamics, the scale of these parameters is not very well defined.

For definiteness, we set MP ' 1019 GeV and again assume that the associated coefficients

are close to one. We consider that Mρ ∼ MGUT and therefore MR
3 is also at the GUT

scale due to the term ρχ3H16, see also figure 2.3.

We examine the parameters of the matrices defined in equations 2.31-2.35 setting all

5 While the model does not mathematically forbid an inverted hierarchy, we have checked that the
corresponding predictions for neutrino masses and mixing angles would always give a bad fit to data. It
would also require parameter choices that strongly violate the naturalness principle employed here.
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O(1) coefficients to exactly one, and ignoring CG factors by setting all adjoint Higgs

VEVs to MGUT ' 1016 GeV. Then the Yukawa couplings are estimated to be

yu1 ∼ yν1 ∼ v2
1/M

2
GUT ≈ 4× 10−6,

yu2 ∼ yν2 ∼ yd2 ∼ ye2 ∼ v2
2/M

2
GUT ≈ 2.5× 10−3,

yu3 ∼ yν3 ∼ yd3 ∼ ye3 ∼ v2
3/M

2
GUT ≈ 0.25,

yd12∼ ye12∼ v1v2/M
2
GUT≈ 1× 10−4,

yP ∼ v3/MP ≈ 5× 10−4.

(2.40)

The right-handed neutrino mass parameters are estimated to be

MR
1 ∼ 4× 107 GeV, MR

2 ∼ 2.5× 1010 GeV, MR
3 ∼ 1016 GeV. (2.41)

This very strong hierarchy implies negligible right-handed neutrino mixing, such that the

mass eigenvalues closely correspond to the above values. As each parameter contains

several O(1) coefficients and CG factors, the above numbers only represent order of

magnitude estimates.

The numerical fit in section 2.4 shows that the above estimates are in good agreement

with the values that produce a good fit to data except only for the parameter MR
1 ,

which is primarily responsible for the lightest right-handed neutrino mass. It should

be a factor O(0.01) times the estimate above in order to give the correct light neutrino

mass spectrum. This can be understood by inserting the above estimates for yν1 and

MR
1 into the expression for µ1 in equation 2.38, which suggests µ1 ∼ 0.01 meV, whereas

we will see the fit prefers a value of O(1) meV. The necessary factor can be achieved by

assuming that one or more coefficients deviate from unity.

One can also get approximate expressions for the quark mixing angles in terms of quark

Yukawa couplings as follows. The very strong hierarchy in the three real parameters

of Y u is correlated with that in the physical Yukawa eigenvalues of up, charm and top

quarks. We therefore expect negligible contributions from the up sector to quark mixing.

This implies that not only do the four real parameters in the down sector, ydi and yP , fix

the down-type Yukawa eigenvalues, they also must reproduce the observed CKM mixing

angles.

Let us keep only the leading terms in each element of Y d and ignore free phases. As

noted above, yd12 ∼ yP < yd2 � yd3 . We also define y′2 = yd2 + 2yd12 + 2yP . Then

Y d ≈

 0 yd12 yd12 − yP
yd12 y′2 y′2 + 2(yd12 − yP )

yd12 − yP y′2 + 2(yd12 − yP ) yd3

 . (2.42)
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In the small angle approximation, the mixing angles can be estimated by

θq12 ≈
Y d

12

Y d
22

=
yd12

y′2
, θq13 ≈

Y d
13

Y d
33

=
yd12 − yP

yd3
, θq23 ≈

Y d
23

Y d
33

=
y′2 + 2(yd12 − yP )

yd3
. (2.43)

The down-type Yukawa eigenvalues are given by yd ≈ (yd12)2/y′2, ys ≈ y′2, yb ≈ yd3 .

Solving for yd12, y′2 and yd3 , we have, to good approximation, yd12 ≈
√
ydys, y

′
2 ≈ ys,

yd3 ≈ yb. Reintroducing these into our estimates for mixing angles, we get

θq12 ≈
√
yd
ys
, θq13 ≈

√
ydys − yP
yb

, θq23 ≈
ys + 2(

√
ysyd − yP )

yb
. (2.44)

The first equality is exactly the GST relation [144], which is in good agreement with

data. In fact, the GST relation, which predicts θq12 ' 0.224 for the central values of yd

and ys, is in mild tension with experimental data, which gives θq12 ' 0.227. Possible

modifications to the GST result have been proposed [198], e.g. adding a correction like√
yu/yc, which can be realised by a texture zero also in Y u. Alternatively, one may

exploit the statistical uncertainties on each of the down and strange quark masses. A

small deviation from their central values can predict a slightly different θq12.

On the other hand, the mixing angles θq13 and θq23 are less precisely estimated, as the

parameter yP can be as large as yd12, and the final result will depend on the relative

phase between yd12 and yP . Note however that both mixing angles depend in the same

way on yd12 − yP . Generally, the approximations in equation 2.44 predict some tension

between θq13 and θq23, which are too large and too small, respectively. This tension cannot

be resolved simply by tuning yP .

2.4 Numerical fit

Our model determines the Yukawa couplings and mixing parameters at the GUT scale,

which is also the highest flavour-breaking scale. The values from experiments must

therefore be run up to the GUT scale. Moreover, when matching the SM to the MSSM

at the scale MSUSY, supersymmetric radiative threshold corrections have to be included.

The GUT scale values after the running of quark and lepton parameters together with

the inclusion of one-loop supersymmetric threshold correction have been computed in

[199] and we use their results. The parametrisation of these corrections is summarised

in appendix B. Most parameters do not significantly affect the fit, so are simply set to

reasonable values. Specifically, we set MSUSY = 1 TeV, tanβ = 5 and η̄q = η̄` = 0. We

also find that a good fit can be achieved for a rather large value η̄b = −0.8. The choices

of SUSY parameters tanβ and η̄b are here empirically determined to give a good fit of

the model to data. It is clear from the fit that large (negative) η̄b is required, affecting

primarily the bottom quark Yukawa coupling yb. In order to keep yb perturbative, we
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must assume tanβ < 30. In the region of 5 < tanβ < 10 or so, the fit is rather insensitive

to the exact choice. Neutrino data is taken from the NuFit global fit [200].

To find the best fit of the model to data, we minimise a χ2 function, defined in the

standard way: for a given set of input parameters x, we calculate the n observables

Pn(x). These are then compared to the observed values P obs
n , which have associated

statistical errors σn.6 Then

χ2 =
∑
n

(
Pn(x)− P obs

n

σn

)2

. (2.45)

For our model, the input parameters are x = {yui , ydi , yei , yP , µi, η′, αd,e, βd,e, γ}, and the

observables are given by Pn ∈ {θqij , δq, yu,c,t, yd,s,b, θ`ij , ye,µ,τ ,∆m2
ij}. Note that as the

lepton CP phase δ` is not yet well measured, we do not include it in the fit, rather we

prefer to leave it as a pure prediction. Furthermore, only the neutrino mass-squared dif-

ferences are measured in oscillation experiments (as opposed to the masses themselves),

while our model predicts the masses outright, including the lightest neutrino mass m1.

Observable
Data Model

Central value 1σ range Best fit

θ`12 /
◦ 33.57 32.81 → 34.32 33.62

θ`13 /
◦ 8.460 8.310 → 8.610 8.455

θ`23 /
◦ 41.75 40.40 → 43.10 41.96

δ` /◦ 261.0 202.0 → 312.0 300.9

ye /10−5 1.017 1.011 → 1.023 1.017

yµ /10−3 2.147 2.134 → 2.160 2.147

yτ /10−2 3.654 3.635 → 3.673 3.654

∆m2
21/(10−5 eV2) 7.510 7.330 → 7.690 7.515

∆m2
31/(10−3 eV2) 2.524 2.484 → 2.564 2.523

m1 /meV 0.441

m2 /meV 8.680

m3 /meV 50.24∑
mi /meV < 230 59.36

α21 67.90

α31 164.2

Table 2.3: Model predictions in the lepton sector for tanβ = 5, MSUSY = 1 TeV and η̄b = −0.8.
The observables are at the GUT scale. The lepton contribution to the total χ2 is 0.03. δ`

as well as the neutrino masses mi are pure predictions of our model. The bound on
∑
mi is

taken from [59].

We present the best fit (minimum χ2) of the model to physical observables (Yukawa

couplings and neutrino mass and mixing parameters) in tables 2.3 and 2.4, which also

include the central values and 1σ ranges from data. Figure 2.4 shows the associated

pulls, and table 2.5 shows the corresponding input parameter values. The fit gives

6 In order for a minimum χ2 to correspond to the maximum likelihood, the statistical uncertainties
should be symmetric (Gaussian). This is essentially satisfied for all parameters except θ`23, where current
experimental data cannot conclusively resolve the octant, i.e whether it is larger or smaller than 45◦.
Currently, the data favours θ`23 < 45◦, with a central value 41.6◦ [200]. We will assume this is the true
value.
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Observable
Data Model

Central value 1σ range Best fit

θq12 /
◦ 13.03 12.99 → 13.07 13.02

θq13 /
◦ 0.039 0.037 → 0.040 0.039

θq23 /
◦ 0.445 0.438 → 0.452 0.439

δq /◦ 69.22 66.12 → 72.31 69.21

yu /10−6 2.988 2.062 → 3.915 3.012

yc /10−3 1.462 1.411 → 1.512 1.493

yt 0.549 0.542 → 0.556 0.547

yd /10−5 2.485 2.212 → 2.758 2.710

ys /10−4 4.922 4.656 → 5.188 5.168

yb 0.141 0.136 → 0.146 0.137

Table 2.4: Model predictions in the quark sector for tanβ = 5, MSUSY = 1 TeV and η̄b = −0.8.
The observables are at the GUT scale. The quark contribution to the total χ2 is 3.38.

θ12
q θ13

q

θ23
q

δq yu yc

yt

yd ys

yb

θ12
l

θ13
l

θ23
l Δm21

2

Δm31
2
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yμ

yτ
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0.0

0.5

1.0
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Figure 2.4: Pulls for the best fit of model to data, as shown in tables 2.3-2.4, for quark (blue)
and lepton (yellow) parameters.

χ2 ≈ 3.4.7 A second minimum with χ2 ≈ 4 was also found, leading primarily to a

different prediction for δ`, as discussed below, although we shall not present the full fit

parameters for this case.

We see from tables 2.3, 2.4 and figure 2.4 that both quark and lepton sectors are fitted

to within 1σ of the values predicted by global fits to experiment. The biggest pulls

are in down-type quark Yukawa couplings yd,s,b and θq23. As shown in section 2.3.3, θq23

is approximately given by the ratio ys/yb, which is typically too small. Furthermore,

attempts to increase θq23, e.g. by tuning yP , tends to increase θq13, which is then too

large. This tension can be ameliorated by assuming large threshold corrections, i.e. by

setting η̄b = −0.8, although some tension remains among the above parameters, which

deviate by about 1σ.

We find two different minima with best fit values for δl of 300.9◦ with χ2 ≈ 3.4 (as

seen in table 2.3) and 233.9◦ corresponding to a second best fit point with χ2 ≈ 4.

We note that both values are far from maximal CP violation δ` = 270◦, which is close

to the prediction from CSD3 with diagonal charged leptons. In short, charged-lepton

7 The best fit predicts a strong neutrino hierarchy, with m1 < 1 meV. It is possible to achieve a
milder hierarchy, although the numerical fit gives χ2 & 20 in such cases, predicting neutrino masses
of approximately 5, 10 and 51 meV. Additionally it predicts δ` ≈ +25◦, currently disfavoured by
experiment.
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Parameter Value

yu1 /10−6 3.009

yu2 /10−3 1.491

yu3 0.549

yd12 /10−4 −1.186

yd2 /10−4 6.980

yd3 0.137

yP /10−4 1.243

Parameter Value

ye12 /10−4 1.558

ye2 /10−3 2.248

ye3 /10−2 3.318

µ1 /meV 2.413

µ2 /meV 27.50

µ3 /meV 2.900

Parameter Value

αd 0.043π

βd 0.295π

αe 1.692π

βe 1.755π

γ 0.918π

η′ 1.053π

Table 2.5: Best fit input parameter values. The model has 13 real parameters: yui , ydi , yei , µi
and yP . While η is fixed by flavon alignment to −2π/3, there are six additional free phases:
η′, αd,e, βd,e and γ. The total χ2 is 3.4.

corrections induce a deviation from maximal CP phase, which can either be positive or

negative, depending on the phases of Y e.

One may be tempted to calculate a reduced chi-squared χ2
ν , i.e. the χ2 per degree of

freedom (d.o.f.), where the number of d.o.f. is naively given by the number of observables

minus the number of input parameters. In the conventional picture, a good fit has

χ2
ν ' 1. However, as discussed in [201], this interpretation is only valid for linear

models, which our model is not. Indeed, when evaluating χ2 we fit 19 inputs to 18

observables, which in a linear model would suggest a perfect fit is always possible; this

is certainly not the case. While χ2 is a valid tool for comparing models to each other,

since it is not possible to establish an exact number of d.o.f., we cannot reliably define

χ2
ν .

2.5 Summary

We try to address the flavour puzzle in the Standard Model, which is the source of a

majority of the Standard Model free parameters, characterised by different mixing be-

haviours for quarks and leptons, and very hierarchical masses. The most minimal solu-

tion to the problem of neutrino masses remains the seesaw mechanism with heavy right-

handed neutrinos, which arise automatically in SO(10), with naturally large masses.

This motivates SO(10) above other popular gauge groups, such as SU(5), where right-

handed neutrinos are added by hand. All three families of SM fermions in the 16 of

SO(10) are here also unified in a single triplet of S4. This very elegant picture presents

model-building challenges, many of which we have tackled in this chapter.

We have constructed a rather simple, natural and complete SO(10) model of flavour

with a discrete S4 × Z2
4 × ZR4 symmetry, where all Yukawa matrices derive from the

VEVs of triplet flavons, in the CSD3 alignment. It is simple in the sense that the field

content is reasonably minimal, with small Higgs representations of SO(10) consisting of

two 10s which contain the MSSM doublets, a Higgs spinor pair 16 and 16 responsible for

Majorana masses and four adjoint Higgs 45s, which provide necessary Clebsch-Gordan
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factors that distinguish charged leptons and down-type quarks. It is natural in the sense

that Yukawa and mass matrices consist of sums of low-rank matrices, each of which

contributes dominantly to a particular family, i.e. “universal sequential dominance”. It

is complete in the sense that we address the µ-problem, Higgs mixing and doublet-triplet

splitting, and provide an ultraviolet renormalisable model, with Planck-suppressed op-

erators controlled by symmetry. However, we do not discuss the origin of the hierarchy

of flavon VEVs, nor do we repeat the discussion of flavon vacuum alignment, which can

be found in [142].

We believe this model represents a significant step forward in the quest for a complete

and correct description of fermions within SUSY GUTs. For instance, we have demon-

strated the correct procedure for treating the third family couplings and how to generate

an electroweak-scale renormalisable third-family Yukawa coupling. We also emphasise

that the principle of universal sequential dominance is a simple and effective way to

understand fermion hierarchies. Although the origin of such family hierarchies has not

been fully resolved, as the scales of flavon VEVs va (a = 1, 2, 3) are assumed rather than

proven, the problem has been ameliorated, since the hierarchy is given by the squares

of these VEVs.

The model successfully reproduces the observed fermion masses and mixing, even in

the quark sector, where the CKM parameters are measured to very high precision.

Analytical estimates are underpinned by a detailed numerical analysis, demonstrating

the viability of the model. Moreover, there is no tuning of O(1) parameters necessary to

explain the mass hierarchies of charged fermions, accounting also for the milder hierarchy

in down-type quarks compared to up-type quarks. The model simultaneously realises

large lepton mixing and small quark mixing, as well as the GST relation for the Cabibbo

angle, θq12 ≈
√
yd/ys via a texture zero in the down-type Yukawa matrix Y d. In the

lepton sector an excellent fit to data is found, predicting a normal neutrino hierarchy

and lightest neutrino mass m1 . 0.5 meV. The CP phase δ` was not fitted, but left as a

pure prediction. Two distinct fits are found, with corresponding best fit values δ` ≈ 301◦

and 234◦. We emphasise that the model predicts significant deviation from both zero

and maximal CP violation.





Chapter 3

S4 × SO(10) grand unified theory

of flavour and leptogenesis

To further explore the phenomenological implications of S4 × SO(10) models, in this

chapter we present a more complete version involving an additional ZR4 ×Z3
4 controlling

the Higgs and flavon symmetry breaking sectors. In the model here, we prefer the simpler

constrained sequential dominance-2 (CSD2) [202] vacuum alignments since it also allows

successful leptogenesis, as discussed below. Interestingly we find that leptogenesis is

not consistent with the earlier model based on CSD3 vacuum alignments, which is a

significant motivation for considering the new model based on CSD2. Additionally, we

explicitly show the superpotential leading to the CSD2 vacuum alignments and the origin

of the hierarchies between the flavon VEVs. This chapter is primarily derived from [2].

3.1 The model

3.1.1 Overview of the model

The symmetry of the model is S4 × SO(10) × ZR4 × Z3
4. The model has a gauge sym-

metry SO(10) which is the GUT symmetry. The symmetry S4 is the flavour symmetry

which gives the specific CSD2 structure to the fermion mass matrices. The ZR4 is an R

symmetry while the other three Z4’s are shaping symmetries. Furthermore, we assume

that the GUT theory is invariant under trivial CP symmetry, which is spontaneously

broken by the complex VEVs of the flavons.

We present table 3.1 with the Higgs, flavons and matter superfields relevant to the

Yukawa sector. The superfield ψ accommodates the full Standard Model fermion content

and is a spinorial 16 of SO(10) and a triplet 3′ of S4. The superfields Hu,d
10 contain the

MSSM Higgs doublets Hu,d respectively. The H16 breaks SO(10) → SU(5) and gives

57
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Field
Representation

S4 SO(10) ZR4 Z4 Z4 Z4

ψ 3′ 16 1 0 0 0

Hu
10 1 10 0 0 0 0

Hd
10 1 10 0 0 2 0

H16 1 16 0 0 0 0
H16 1 16 0 0 1 0

HX,Y
45 1 45 0 0 1 0

HW,Z
45 1 45 0 2 0 0

HB−L
45 1 45 2 0 2 0
ζ 1 1 0 0 2 0

(a) Matter and Higgs superfields.

Field
Representation

S4 SO(10) ZR4 Z4 Z4 Z4

φ1 3′ 1 0 2 2 0
φ2 3′ 1 0 2 0 0
φ3 3′ 1 0 0 2 0

φS,U 3′ 1 0 0 0 1
φT 3 1 0 1 0 1
ξ 1 1 0 3 0 2
φt 3 1 0 0 1 3

(b) Flavon superfields.

Table 3.1: Superfield content of the model that relates directly to the low energy fields.

masses to the right-handed neutrinos. The superfields on the adjoint 45 representation

H45’s break SU(5)→ SM and introduce the necessary Clebsch-Gordan (CG) relations

to generate correct charged lepton and down quark masses. The flavon superfields

φi, with i = 1, 2, 3 break S4 completely and they acquire the specific CSD2 vacuum

alignments [202] given by

〈φ1〉 = v1

 1

0

2

 , 〈φ2〉 = v2

 0

1

−1

 , 〈φ3〉 = v3

 0

1

0

 , (3.1)

with |v1| � |v2| � |v3|. In this chapter, CSD2 is simply used as a label which refers

to this particular flavon vacuum alignment in equation 3.1. The superpotential that

fixes the CSD2 flavon alignments is presented in section 3.1.3, while the superpotential

responsible of the hierarchy between the flavon VEVs is shown in section 3.1.4.

The symmetries of the model and the superfield content in table 3.1 lead to a very

specific mass structure for the Standard Model fermion fields. The up-type quark and

the neutrino Yukawa matrices arise from terms like

Hu
10(ψφ1)(ψφ1) +Hu

10(ψφ2)(ψφ2) +Hu
10(ψφ3)(ψφ3), (3.2)

where the brackets denote S4 singlet contractions. Similarly to chapter 2, each term in

equation 3.2 generates a rank-1 matrix. Therefore, the hierarchy between the flavon

VEVs gives a natural explanation of the hierarchical Yukawa couplings, i.e. yu ∼
v2

1/M
2
GUT, yc ∼ v2

2/M
2
GUT and yt ∼ v2

3/M
2
GUT. In this chapter, we explicitly show a

superpotential which fixes the hierarchy between the flavon VEVs |v1| � |v2| � |v3| in

section 3.1.4. The right-handed neutrino Majorana masses are similar to equation 3.2

but replacing Hu
10 by H16H16. The right-handed neutrino mass matrices have the same

structure as the Dirac neutrino masses since they are dictated by the same flavon vac-
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uum alignments. This fact gives rise to exactly the same structure for the left-handed

neutrino Majorana masses after the seesaw mechanism, as shown in section 3.2.3.

The down-type quark and the charged lepton Yukawa matrices emerge from terms like

Hd
10(ψφ1)(ψφ2) +Hd

10(ψφ2)(ψφ2) +Hd
10(ψφ3)(ψφ3) +Hd

10(ψψ)3′φ3, (3.3)

where the brackets denote S4 singlet contractions apart from the last term in which

the 3′ contraction is necessary to subsequently combine it with the flavon φ3 into a

singlet. These Yukawa matrices have a different structure compared to the up sector,

due to a mixing term between the flavons φ1 and φ2, which explains why there is a

milder hierarchy in the down and charged lepton sectors compared to the up one. It also

introduces a texture zero in the (1,1) element of the down Yukawa matrix, reproducing

the GST relation [144], i.e. the Cabibbo angle is predicted to be θq12 '
√
yd/ys.

With this setup the full Standard Model fermion masses are generated in a very specific

and predictive way, this being the main aim of chapter 3. Furthermore, all the messen-

ger superfields and adjoints obtain a GUT scale mass after GUT symmetry breaking.

The triplets inside the Higgs superfields Hu,d
10 also get a GUT scale mass through the

Dimopoulos-Wiclzeck mechanism [190–192], as shown in section 3.1.5. This way we

make sure that at low energies, only the MSSM remains.

3.1.2 Effective Yukawa structure

Field
Representation

S4 SO(10) ZR4 Z4 Z4 Z4

χ̄1 1 16 1 2 2 0
χ1 1 16 1 0 2 0
χ̄2 1 16 1 2 0 0
χ2 1 16 1 0 0 0
χ̄3 1 16 1 0 2 0
χ3 1 16 1 2 2 0

χd3 1 16 1 0 1 0
χd2 1 16 1 2 3 0

χ̄u 1 16 2 0 0 0
χu 1 16 0 0 2 0
χ̄d 1 16 0 0 1 0
χd 1 16 2 0 1 0
ζ1 1 45 2 0 3 0
ζ2 1 45 0 0 3 0

(a) Messenger superfields.

Field
Representation

S4 SO(10) ZR4 Z4 Z4 Z4

X3′ 3′ 1 2 0 0 2
X2 2 1 2 2 0 2

X̃2 2 1 2 0 1 1
X1 1 1 2 0 2 2

X̃1 1 1 2 3 3 0
X1′ 1′ 1 2 3 2 2
Z3′ 3′ 1 2 3 0 2

Z̃3′ 3′ 1 2 2 2 0

Z̃ 1 1 2 3 2 3
Z 1 1 2 0 0 0

(b) Driving superfields.

Table 3.2: Superfields that appear only at high energies. Together with the ones in table 3.1
they list the complete field content of the model.
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We now present the effective Yukawa terms in more detail, with the full field content of

the model listed in tables 3.1 and 3.2. The superpotential relevant to the Yukawa terms,

including terms O(1/MP ), is given by

WY ∼
Hu

10(ψφ1)(ψφ1)

〈HW,Z
45 〉

2 +
Hu

10(ψφ2)(ψφ2)

〈HW,Z
45 〉

2 +
Hu

10(ψφ3)(ψφ3)

〈HW,Z
45 〉

2

+
Hd

10(ψφ1)(ψφ2)

〈HW,Z
45 〉

2 +
Hd

10(ψφ2)(ψφ2)

〈HX,Y
45 〉

2 +
Hd

10(ψφ3)(ψφ3)

〈HX,Y
45 〉

2

+
H16H16(ψφ1)(ψφ1)

MP 〈HW,Z
45 〉

2 +
H16H16(ψφ2)(ψφ2)

MP 〈HW,Z
45 〉

2 +
H16H16(ψφ3)(ψφ3)

MP 〈HW,Z
45 〉

2

+
Hd

10(ψψ)3′(φ3)

MP
,

(3.4)

where ( )3′ means a 3′ contraction, while ( ) without any subscript means the singlet

contraction of S4 and we have ignored all the O(1) dimensionless couplings for simplicity.

There are plenty of terms suppressed by M2
P and they are expected to make small mass

contributions of O(M2
GUT /M

2
P ) < 10−6, and therefore negligible. The most important

correction, of O(10−6), is made to the up-quark Yukawa coupling. In section 3.3 we

perform a fit ignoring these corrections, however from table 3.5, we see that this contri-

bution is of comparable magnitude. If they were to be included, they would only shift

the fit parameters and therefore we can safely ignore them. The largest contribution to

the electron Yukawa coupling is of O(10−8) and is therefore negligible.

The diagrams that generate the terms in equation 3.4 are shown in figures 3.1-3.3, where

they include the messengers χ listed in table 3.2.

〈HW,Z
45 〉 〈HW,Z

45 〉

Hu
10φ1 φ1

ψ ψχ̄1 χ1 χ1 χ̄1

〈HW,Z
45 〉 〈HW,Z

45 〉

Hu
10φ2 φ2

ψ ψχ̄2 χ2 χ2 χ̄2

〈HW,Z
45 〉 〈HW,Z

45 〉

Hu
10φ3 φ3

ψ ψχ̄3 χ3 χ3 χ̄3

Figure 3.1: Diagrams coupling ψ to Hu
10. When flavons acquire VEVs, these give the up-type

quark and Dirac neutrino Yukawa matrices.

〈HW,Z
45 〉 〈HW,Z

45 〉

Hd
10φ1 φ2

ψ ψχ̄1 χ1 χ2 χ̄2

Figure 3.2: Diagrams coupling ψ to Hd
10. These generate the down-type quark and charged

lepton Yukawa matrices.

In section 3.2, we present the renormalisable terms involving the heavy messenger fields

in table 3.2.
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〈HW,Z
45 〉 〈HW,Z

45 〉

H16φ1 φ1

ψ ψχ̄a χa χa χ̄a

H16

MP

1 1 1 1

〈HW,Z
45 〉 〈HW,Z

45 〉

H16φ2 φ2

ψ ψχ̄a χa χa χ̄a

H16

MP

2 222

〈HW,Z
45 〉 〈HW,Z

45 〉

H16φ3 φ3

ψ ψχ̄a χa χa χ̄a

H16

MP

3 3 3 3

Figure 3.3: Diagrams coupling ψ to H16. These give the right-handed neutrino mass matrix.

3.1.3 Vacuum alignment

We introduce the flavon superpotential that fixes the symmetry breaking flavon VEVs

in equation 3.1. To derive these alignments, we need to add a set of driving fields,

listed in table 3.2, which couple to the flavon fields in table 3.1. We follow a sequence

of steps using supersymmetric F -terms equations to align all the flavons. The letter

subscript (S,U, T and t) in the flavons refers to the symmetry preserving generator,

where t correspond to T multiplied by a Z3 generator which is not part of S4. The

alignments depend on the S4 representation of the driving field, denoted by its subscript

Xi, Zi. The superpotential is given by

Wφ ∼ X3′(φS,U )2 +X2(φT )2 +X1(φt)
2 + X̃1φTφt +X1′φTφ3 + X̃2φtφ3

+ Z3′(φS,UφT + ξφ2) + Z̃3′ξ

(
φ2φ3

MP
− φ1

)
,

(3.5)

where we have ignored dimensionless O(1) parameters since they are not relevant. Solv-

ing the F -term equations from the driving fields fixes the flavon VEV alignments, while

the F -term equations from flavons forbid the driving fields from getting a VEV.

The three S4 generators, working in the T -diagonal basis as in appendix A.1, are

S =
1

3

−1 2 2

2 −1 2

2 2 −1

 , T =

1 0 0

0 ω2 0

0 0 ω

 for 3 or 3′ , (3.6)

and

U = ∓

1 0 0

0 0 1

0 1 0

 , SU = US = ∓1

3

−1 2 2

2 2 −1

2 −1 2

 , for 3,3′ respectively.

(3.7)

The first three terms in the superpotential in equation 3.5 couple the square of a flavon

triplet to a single driving field Xi. The different representations of Xi result on distinct



62 Chapter 3 S4 × SO(10) grand unified theory of flavour and leptogenesis

flavon alignments such that they are fixed as

X3′(φS,U )2 −→

 1

ωn

ω2n

 , (3.8)

X2(φT )2 −→

1

0

0

 ,

 1

−2ωn

−2ω2n

 , (3.9)

X1(φt)
2 −→

0

0

1

 ,

0

1

0

 ,

 2

2x

−1/x

 , (3.10)

up to an integer (n ∈ Z) or continuous (x ∈ R) parameter, with ω = e2πi/3.

The 〈φT 〉 has four different solutions. The last three solutions are related by a T trans-

formation. From these three, the one without any ω is related to the first solution by an

S transformation. Since all the solutions for 〈φT 〉 are related by S4 transformations, we

may choose (1, 0, 0)T without loss of generality. Moreover, we may notice that the align-

ments for 〈φS,U 〉 can be brought to the standard (1, 1, 1)T form by a T transformation

which does not affect the 〈φT 〉 alignment.

Finally, the 〈φt〉 has three different solutions. The third solution is removed by the fourth

term in the superpotential 3.5 which requires orthogonality with 〈φT 〉. This fixes the

solution to be either (0, 0, 1)T or (0, 1, 0)T , which are related by an U transformation.

Since the so-selected alignments of 〈φT 〉 and 〈φS,U 〉 do not change their form (up to

possible overall sign) under application of a U transformation, we choose 〈φt〉 ∝ (0, 0, 1)T

without loss of generality,.

The fifth and sixth terms in equation 3.5 fix the alignment of φ3 to be orthogonal to

〈φt〉 and 〈φT 〉 so that it is fixed to be (0, 1, 0)T .

The term Z3′(φS,UφT + ξφ2) in equation 3.5 involves

(〈φS,U 〉 · 〈φT 〉)3′ ∝

 0

−1

1

 , (3.11)

and fixes 〈φ2〉 into this direction. Equivalently, the last term in the superpotential 3.5

contains the product

(〈φ2〉 · 〈φ3〉)3′ ∝

1

0

2

 , (3.12)

and fixes 〈φ1〉 into this direction. The ξ field does not add anything to the flavon

alignments but it does play a role in driving the hierarchy between the flavon VEVs as
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explained below in section 3.1.4.

In summary, the F -term equations from the driving fields Xi, Zi fix the alignments to

be

〈φS,U 〉 = v1

 1

1

1

 , 〈φT 〉 = v2

 1

0

0

 , 〈φt〉 = vt

 0

0

1



〈φ1〉 = v1

 1

0

2

 , 〈φ2〉 = v2

 0

1

−1

 , 〈φ3〉 = v3

 0

1

0

 ,

(3.13)

where the last three flavons couple to the matter superfield ψ and determine the fermion

mass matrix structure. The flavon VEVs vi are, in general, complex, and spontaneously

break the assumed CP symmetry of the high energy theory.

3.1.4 Symmetry breaking

The model gives a natural understanding of the Standard Model fermion masses through

the hierarchy between the flavon VEVs |v1| � |v2| � |v3|. Here, we show the symmetry

breaking superpotential that produces such hierarchy between the VEVs,

WDV ∼ Z̃3ξ

(
φ1 −

φ2φ3

MP

)
+ Z̃

φT
MP

(
φ1φ2 −

φ3
∑

i φ
2
i

MP
+O(1/M2

P )

)
+ Z

(
M2
GUT +

∑
i

φ2
i + (HW,Z

45 )2 + (HB−L
45 )2 + ζ2 + Z2 +O(1/MP )

)

+HB−L
45

(
(HX,Y

45 )2 +
ζ

MP

(
(HW,Z

45 )2 + (HB−L
45 )2

)
+HX,Y

45

H16H16

MP
+DT +O(1/M2

P )

)
,

(3.14)

where we have ignored dimensionless couplings for simplicity.

The first term of equation 3.14 also appears in the alignment superpotential in equa-

tion 3.5 and fixes

|κ̃1v1| =
∣∣∣∣v2v3

MP

∣∣∣∣ , (3.15)

where κ̃1 denotes an effective dimensionless coupling coming from the ones in the su-

perpotential. Note that we have written this equation as only fixing the modulus. This

happens due to the appearance of the field ξ. We assume that there are two copies of

that field, which get a VEV with an arbitrary phase. This phase, together with the

dimensionless couplings for each term, does not allow to relate the phases of the vi.
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The second term of equation 3.14 fixes the VEVs

κ̃2 v1v2 =
v3

MP

∑
i

v2
i , (3.16)

where κ̃2 denotes an effective dimensionless coupling coming from the ones in the su-

perpotential. This equation, together with the previous one, require a hierarchy in the

vi’s. Specifically it requires v2,3 � v1.

The field Z̃ does not obtain a VEV to comply with the F -term equations from the

flavons.

The second line of equation 3.14 drives the linear combination

M2
GUT ∼

∑
i

v2
i + 〈HW,Z

45 〉
2

+ 〈HB−L
45 〉2 + 〈ζ〉2 + 〈Z〉2 , (3.17)

where we assume that the sum of vi and the all adjoints get a GUT scale VEV. The

field Z does not get a VEV due to the F -term equations coming from the adjoints. This

equation does not fix the phases of the VEVs. We assume that the 〈HW,Z
45 〉 are real

while the phase of the sum of flavon VEVs is unconstrained (only related to the one of

〈ζ〉 which does not appear at low energies). We assume that the flavons obtain a VEV

that break the CP symmetry with an arbitrary phase.

The third line of equation 3.14 drives

〈ζ〉
MP

(
〈HW,Z

45 〉
2

+ 〈HB−L
45 〉2

)
∼ 〈HX,Y

45 〉
2

+ 〈HX,Y
45 〉

〈H16H16〉
MP

, (3.18)

where we assume that the 〈HX,Y
45 〉 is real. The term DT appearing in equation 3.14

represents all the terms involved in the doublet-triplet splitting (shown in section 3.1.5)

that do not contribute to the F -term equation, but they are there nonetheless. The F -

term equations coming from the adjoints HX,Y
45 force the messengers χu,d to also acquire

a VEV and does not change any low energy phenomenology.

The F -term equations previously discussed can give a VEV to the adjoint fields but do

not fix their direction. The adjoint fields can get a VEV in any SM preserving direction.

In general they can be written as a linear combination of the U(1)X,Y directions. We do

not assume any specific direction for the VEVs 〈HW,X,Y,Z
45 , ζ〉. We assume that 〈HB−L

45 〉
lies in the U(1)B−L direction1. We assume that the 〈H16,16〉 lie in the right-handed

neutrino direction.

Using the first three equations 3.15-3.17, we may find that the flavon VEVs are given

by

v1 =
κ̃2

3M
2
GUT√

κ̃1κ̃2MP
v2, v2 =

√
κ̃1κ̃3MGUT√

κ̃2
, v3 = κ̃3MGUT . (3.19)

1It can be written as the linear combination B − L = (−X + 4Y )/5.



Chapter 3 S4 × SO(10) grand unified theory of flavour and leptogenesis 65

In this way, if we assume that κ̃1 ' 0.1, κ̃2 ' 10, κ̃3 ' 1, we have

v1 ' 0.001 MGUT , v2 ' 0.1 MGUT , v3 'MGUT , (3.20)

which generates the hierarchy between the fermion families. We note that the hierarchy

between v1 and v2 is given by the structure of the F -term equations. The hierarchy

between v2 and v3 is assumed and realized by a much milder hierarchy between the

couplings in the superpotential.

Using equation 3.16 and knowing that v3 � v1,2, we approximately get

κ̃2 v1v2 '
v3

3

MP
, (3.21)

which also fixes the VEV phases to be

arg v1 + arg v2 ' 3 arg v3. (3.22)

In terms of the physical phases, which we define in section 3.2.2 this means

η ' 4η′ − 2γ, (3.23)

and, therefore, there are only two free physical phases.

3.1.5 Doublet-triplet splitting

We need to address the fact that the Higgs superfields Hu,d
10 and H16,16 contain SU(2)

doublets and SU(3) triplets. The triplets have to be heavy since they mediate proton

decay, while two of the doublets need to remain light so they can be associated to the

MSSM Higgs doublets. This is known as the doublet-triplet splitting problem and can be

solved using the Dimopolous-Wilczek mechanism [190–192]. In our case this mechanism

is in place since we assume that 〈HB−L
45 〉 lies in the U(1)B−L direction. Furthermore,

there are extra pairs of doublets, and they are required to be heavy to preserve gauge

coupling unification. Using the fields in tables 3.1-3.2, we may write the superpotential

involving the Higgs fields (ignoring dimensionless parameters) as

WH = HB−L
45

(
Hu

10H
d
10 + ζ2ζ2 +H16χu +H16χd

)
+H16H

u
10χu +H16H

d
10χd +H16H16ζ1 + ζ (ζ1ζ2 + χuχu + χdχd)

+HB−L
45

(
H16H16H

d
10

MP
+
H16H16H

u
10

MP
+Hu

10H
d
10

(HX,Y,W,Z
45 )4

M4
P

)
.

(3.24)
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After integrating out the messengers ζi, χj , the superpotential becomes

WH = HB−L
45

(
κ1H

u
10H

d
10 + κ2

(H16H16)2

〈ζ〉2
+ κ7H

u
10H

d
10

(HX,Y,W,Z
45 )4

M4
P

+ κ3
H16H16H

u
10

〈ζ〉 + κ4
H16H16H

d
10

MP
+ κ5

H16H16H
u
10

MP
+ κ6

H16H16H
d
10

〈ζ〉

)
.

(3.25)

We remember that the magnitude of the VEVs is assumed to be

〈H16〉 ' 〈H16〉 ' 〈H45〉 = MGUT . (3.26)

We define the dimensionless parameters z = MGUT / 〈ζ〉 and y = MGUT /MP and denote

the up (down)-type doublet inside eachH10 as 2u(d)(H
u,(d)
10 ), and similarly for the triplets.

Then, the mass matrix for the triplets can be written as

MT ∼

3u(Hu
10) 3u(Hd

10) 3u(H16)
3d(H

d
10) κ1 0 κ4y

3d(H
u
10) 0 −κ1 κ3z

3d(H16) κ5y κ6z κ2z
2

MGUT . (3.27)

The mass matrix for the triplets in equation 3.27 has approximate eigenvalues given by

mT ∼ κ1MGUT , κ1MGUT , κ2z
2MGUT , (3.28)

such that the triplets are at the GUT scale if one requires κ1 ∼ κ2z
2 ∼ 1.

The mass matrix for the doublets is given by

MD ∼

2u(Hu
10) 2u(Hd

10) 2u(H16)
2d(H

d
10) −κ7y

4 0 κ4y

2d(H
u
10) 0 κ7y

4 κ3z

2d(H16) κ5y κ6z κ2z
2

MGUT , (3.29)

with approximate eigenvalues

mD ∼ −y4MGUT , κ6κ3z
2MGUT , κ2z

2MGUT . (3.30)

In this case, two doublet pairs are at the GUT scale if κ6κ3z
2 ∼ κ2z

2 ∼ 1. Furthermore,

there is a µ term generated by

µ ∼ y4MGUT ∼ 1 TeV, (3.31)
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which happens at the correct order.

The light MSSM doublets are given by

Hu ' 2u(Hu
10) +

κ4y

κ3z
2u(Hd

10), Hd ' 2d(H
d
10) +

κ5y

κ6z
2u(Hd

10), (3.32)

so that the second term is suppressed to be < 10−3 and we may safely assume that the

MSSM Higgs doublets Hu(d) lie only inside H
u(d)
10 .

3.1.6 Proton decay

One of the characteristic features of GUTs is the prediction of proton decay. It has not

been experimentally observed and the proton lifetime is constrained to be τp > 1034

years [31].

Within the model, proton decay can be mediated by the extra gauge bosons of the

GUT symmetry and by the triplets accompanying the Higgs doublets. In SUSY SO(10)

GUTs, the main source for proton decay comes from the triplet Higgsinos. The decay

width is dependent on SUSY breaking and the specific coupling texture of the triplets and

determining it exactly lies beyond the scope of this chapter. In general the constraints are

barely met when the triplets have a mass at the GUT scale [194–196], and in section 3.1.5

we have shown this is our case.

Furthermore, the existence of additional fields in the model may allow proton decay to

arise from effective terms of the type

gQQQL
〈X〉
M2
P

. (3.33)

Such terms must obey the constraint g 〈X〉 < 3 × 109 GeV [196]. In our model, the

largest contribution of this type comes from the term

ψψψψ
〈HB−L

45 (HX,Y
45 )2〉

M4
P

⇒ 〈X〉 =
(MGUT)3

M2
P

∼ 1010 GeV. (3.34)

The constraints are met when g < 0.3. With an O(1) g parameter, the contributions

coming from these terms are the same order as the ones coming from the Higgs triplets.

In this model, proton decay complies with experimental constraints but lies fairly close

to detection.

3.2 Detailed Yukawa structure

In this section, we introduce the fully detailed Yukawa structure. The complete super-

field content of the model is given by the superfields in table 3.1, together with the
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messenger superfields in table 3.2. With the symmetries of the model and these super-

fields, we may write the superpotential relevant to the Yukawa terms, up to O(1/MP ),

WY =
∑

a=1,2,3

(
λφa (ψφa) χ̄a + (λWa H

W
45 + λZaH

Z
45)χaχ̄a + λuaχaχaH

u
10 + λNa χaχa

H16H16

MP

)

+
∑
b=2,3

(
χbχ

d
b(λ

X
b H

X
45 + λYb H

Y
45) + λdbχ

d
bχ

d
bH

d
10

)
+ λd12χ1χ2H

d
10 + λdt

(ψψ)3′ φ3H
d
10

MP
,

(3.35)

where ( ) , ( )3′ means an S4 singlet or 3′ contraction respectively. The λ’s are dimen-

sionless and real coupling constants, due to CP conservation, and are all expected to be

O(1).

After integrating out the messengers χ, we obtain the superpotential

WY =
∑

a=1,2,3

(
(λφa)2 (ψ 〈φa〉) (ψ 〈φa〉)

(λWa 〈HW
45 〉+ λZa 〈HZ

45〉)2
λuaH

u
10 +

(λφa)2 (ψ 〈φa〉) (ψ 〈φa〉)
(λWa 〈HW

45 〉+ λZa 〈HZ
45〉)2

λNa
MP
〈H16〉 〈H16〉

)

+

∑
b=2,3

λdb
(λφb )2 (ψ 〈φb〉) (ψ 〈φb〉)

(λXb 〈HX
45〉+ λYb 〈HY

45〉)2
+ λd12

λφ1λ
φ
2 (ψ 〈φ1〉) (ψ 〈φ2〉)

(λW1 〈HW
45 〉+ λZ1 〈HZ

45〉)(λW2 〈HW
45 〉+ λZ2 〈HZ

45〉)

+ λdt
(ψψ)3′ 〈φ3〉

MP

)
Hd

10,

(3.36)

that generates all the Standard Model fermion masses. The structure of the mass ma-

trices is dictated by the flavon alignments in equation 3.1. Furthermore, the adjoints

45 provide the necessary CG coefficients to distinguish between each fermion type and

give the correct masses to Standard Model fermions, as we show in section 3.2.2.

3.2.1 Renormalisability of the third family

In equation 3.36, all the terms suppressed by 〈HX,Y,W,Z
45 〉 involve integrating out the

messengers by assuming MGUT � vi. This naive integration is not possible for the third

flavon since it has a much larger VEV v3 ∼ MGUT . Let us single out the terms in WY

involving these fields. Ignoring O(1) couplings, and after the fields get their VEV, the

relevant terms are

W
(3)
Y ∼ v3ψ3χ3 + 〈HW,Z

45 〉χ3χ3. (3.37)

Naively, one would interpret ψ3 as the set of third-family particles, but the first term in

equation 3.37 generates mixing with χ3. To obtain the physical (massless) states, which

we label t, we rotate into a physical basis (ψ3, χ3)→ (t, χ)

ψ3 =
〈HW,Z

45 〉 t+ v3 χ

r
, χ3 =

−v3 t+ 〈HW,Z
45 〉χ

r
; r =

√
v2

3 + 〈HW,Z
45 〉

2
. (3.38)
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Physically, it may be interpreted as follows: inside the original superpotential WY lie

the terms

WY ⊃ χ3χ3H
u
10 ⊃

v2
3

v2
3 + 〈HW,Z

45 〉
2 t tH

u
10, (3.39)

which generate renormalisable mass terms for the third family at the electroweak scale.

3.2.2 Mass matrix structure

The superpotential in equation 3.36 generates all the Standard Model fermion mass

matrices. The structure of the mass matrices is fixed by the flavon VEV structure

shown in equation 3.1. We may redefine the dimensionless couplings to obtain the mass

structure of the Standard Model fermions at low energies

yua = λua
(λφa)2|va|2

[λWa 〈HW
45 〉+ λZa 〈HZ

45〉]Q[λWa 〈HW
45 〉+ λZa 〈HZ

45〉]uc
,

yu3 =
(λφ3 )2|v3|2

(λφ3 )2v2
3 + [λW3 〈HW

45 〉+ λZ3 〈HZ
45〉]Q[λW3 〈HW

45 〉+ λZ3 〈HZ
45〉]uc

,

yνa = λua
(λφa)2|va|2

[λWa 〈HW
45 〉+ λZa 〈HZ

45〉]L[λWa 〈HW
45 〉+ λZa 〈HZ

45〉]νc
,

yν3 =
(λφ3 )2|v3|2

(λφ3 )2v2
3 + (λχ3 )2[λW3 〈HW

45 〉+ λZ3 〈HZ
45〉]L[λW3 〈HW

45 〉+ λZ3 〈HZ
45〉]νc

,

ye2 = λd2
(λφ2 )2|v2|2

[λX2 〈HX
45〉+ λY2 〈HY

45〉]L[λX2 〈HX
45〉+ λY2 〈HY

45〉]ec
,

ye3 = λd3
(λφ3 )2|v3|2

(λφ3 )2v2
3 + [λX3 〈HX

45〉+ λY3 〈HY
45〉]L[λX3 〈HX

45〉+ λY3 〈HY
45〉]ec

,

yd2 = λd2
(λφ2 )2|v2|2

[λX2 〈HX
45〉+ λY2 〈HY

45〉]Q[λX2 〈HX
45〉+ λY2 〈HY

45〉]dc
,

yd3 = λd3
(λφ3 )2|v3|2

(λφ3 )2v2
3 + [λX3 〈HX

45〉+ λY3 〈HY
45〉]Q[λX3 〈HX

45〉+ λY3 〈HY
45〉]dc

,

ye12 = λd12

λφ1λ
φ
2 |v1v2|

[λW1 〈HW
45 〉+ λZ1 〈HZ

45〉]L+ec [λW2 〈HW
45 〉+ λZ2 〈HZ

45〉]L+ec
,

yd12 = λd12

λφ1λ
φ
2 |v1v2|

[λW1 〈HW
45 〉+ λZ1 〈HZ

45〉]Q+dc [λ
W
2 〈HW

45 〉+ λZ2 〈HZ
45〉]Q+dc

,

MR
a =

λNa v
2
16

MP

(λφa)2|va|2
[λWa 〈HW

45 〉+ λZa 〈HZ
45〉]2νc

,

MR
3 =

λN3 v
2
16

MP

(λφ3 )2|v3|2
(λφ3 )2v2

3 + [λW3 〈HW
45 〉+ λZ3 〈HZ

45〉]2νc
,

yP = λdt
v3

MP
,

(3.40)
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where a = 1, 2 and 〈HX,Y,W,Z
45 〉f denotes the adjoint VEV with the corresponding CG

coefficients for each Standard Model fermion f . This allows for each y,M parameter

in equation 3.40 to be independent. The VEVs 〈HX,Y 〉 obtain a VEV in an arbitrary

SO(10) breaking direction and they need to be different from one another.

For a better understanding we show an explicit example. Let us assume that 〈HX,Y
45 〉

is aligned in the U(1)X,Y direction respectively with an MGUT magnitude. In this case,

the effective Yukawa couplings ye,d2 would be

ye2 = λd2
(λφ2 )2|v2|2

[3λX2 − λY2 /2][−λX2 + λY2 ]M2
GUT

, yd2 = λd2
(λφ2 )2|v2|2

[−λX2 + λY2 /6][3λX2 + λY2 /3]M2
GUT

,

(3.41)

where the coefficients multiplying each λX,Y are the U(1)X,Y charges of the correspond-

ing Standard Model field. Since the λX,Y2 appear with different coefficients in ye,d2 , we can

use them to obtain a arbitrarily different effective Yukawa coupling for charged leptons

and down type quarks.

Assuming that all the adjoints have real VEVs, the physical phases are

η = 2 arg v1 − 2 arg v2

η′ = 2 arg v3 − 2 arg v2

γ = arg v3 − 2 arg v2,

(3.42)

while all the y′s and M ′s are real.

With these definitions we may write the fermion mass matrices

M e/vd = ye12e
iη/2

0 1 1

1 4 2

1 2 0

 + ye2

0 0 0

0 1 1

0 1 1

 + ye3e
iη′

0 0 0

0 0 0

0 0 1

 + yP eiγ

0 0 1

0 2 0

1 0 0

 ,

Md/vd = yd12e
iη/2

0 1 1

1 4 2

1 2 0

 + yd2

0 0 0

0 1 1

0 1 1

 + yd3e
iη′

0 0 0

0 0 0

0 0 1

 + yP eiγ

0 0 1

0 2 0

1 0 0

 ,

Mu/vu = yu1 e
iη

1 2 0

2 4 0

0 0 0

 + yu2

0 0 0

0 1 1

0 1 1

+ yu3 e
iη′

0 0 0

0 0 0

0 0 1

 ,

MD/vu = yν1e
iη

1 2 0

2 4 0

0 0 0

 + yν2

0 0 0

0 1 1

0 1 1

+ yν3e
iη′

0 0 0

0 0 0

0 0 1

 ,

MR = MR
1 e

iη

1 2 0

2 4 0

0 0 0

 +MR
2

0 0 0

0 1 1

0 1 1

 + MR
3 e

iη′

0 0 0

0 0 0

0 0 1

 .

(3.43)
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We note the remarkable universal structure of the matrices in the up and neutrino

sectors, which differ from the down and charged lepton sectors.

The y and M parameters are all free and independent while there is a constraint in the

phases

η ' 4η′ − 2γ, (3.44)

as shown in section 3.1.4. We have in total 18 free parameters that fix the whole spectrum

of fermion masses and mixing angles, as discussed in section 3.3.1.

In section 3.1.4, it is shown that the flavons get a VEV v1 ' 0.001MGUT , v2 ' 0.1 MGUT ,

and v3 ' MGUT , while the adjoint 45 fields and 16 are assumed to get a GUT scale

VEV, i.e. vX,Y,W,Z45 ' v16 ' MGUT . We assume that all the dimensionless parameters

in the superpotential are O(1), and using tanβ ∼ 20, the mass matrix parameters are

expected to be

yu1 ∼ yν1 ∼ v2
1/v

2
45 ∼ 10−6, yu2 ∼ yν2 ∼ v2

2/v
2
45 ∼ 10−2,

yu3 ∼ yν3 ∼ v2
3/v

2
45 ∼ 1, yd12 ∼ ye12 ∼ cosβ v1v2/v

2
45 ∼ 10−5,

yd2 ∼ ye2 ∼ cosβ v2
2/v

2
45 ∼ 10−3, yd3 ∼ ye3 ∼ cosβ v2

3/v
2
45 ∼ 0.1,

yP ∼ cosβ v3/MP ∼ 10−4, MR
1 ∼ v2

16
v2

1/v
2
45MP ∼ 107 GeV,

MR
2 ∼ v2

16
v2

2/v
2
45MP ∼ 1011 GeV, MR

3 ∼ v2
16
v2

3/v
2
45MP ∼ 1013 GeV.

(3.45)

These values denote only an approximate order of magnitude for each parameter and are

expected to be different due to the appearance of dimensionless couplings. This applies

specially to the last 4 parameters that come from unknown Planck suppressed physics

and may deviate significantly from our naive expectation.

3.2.3 Seesaw mechanism

Since we have heavy right-handed neutrino Majorana masses, the left handed neutrinos

get a small Majorana mass through the type-I seesaw

mν = −MDM
−1
R (MD)T . (3.46)

As we see in equation 3.43, the Dirac neutrino masses MD and the right-handed neutrino

Majorana masses MR have the same matrix structure. These are rank one matrices so

that we may write them as

MD/vu = yν1e
iη ϕ1ϕ

T
1 + yν2 ϕ2ϕ

T
2 + yν3e

iη′ ϕ3ϕ
T
3 ,

MR = MR
1 e

iη ϕ1ϕ
T
1 +MR

2 ϕ2ϕ
T
2 +MR

3 e
iη′ ϕ3ϕ

T
3 ,

(3.47)

with

ϕT1 = (1, 2, 0), ϕT2 = (0, 1, 1), ϕT3 = (0, 0, 1). (3.48)
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We may always find vectors ϕ̃a such that

ϕ̃Ti ϕj = δij , (3.49)

this way we may write the inverse matrix as

M−1
R =

e−iη

MR
1

ϕ̃1ϕ̃
T
1 +

1

MR
2

ϕ̃2ϕ̃
T
2 +

e−iη
′

MR
3

ϕ̃3ϕ̃
T
3 . (3.50)

Plugging this into the seesaw mechanism 3.46, we obtain the light effective left-handed

Majorana neutrino mass matrix mν as

mν = µ1e
iη ϕ1ϕ

T
1 + µ2 ϕ2ϕ

T
2 + µ3e

iη′ ϕ3ϕ
T
3 , with µa =

(yνavu)2

MR
a

. (3.51)

We may conclude that the small left-handed neutrino mass matrix has the same universal

structure

mν = µ1e
iη

1 2 0

2 4 0

0 0 0

 + µ2

0 0 0

0 1 1

0 1 1

 + µ3e
iη′

0 0 0

0 0 0

0 0 1

 , (3.52)

after the seesaw mechanism.

3.3 Numerical fit

To test our model we perform a numerical fit using a χ2 test function. We have a set of

input parameters x = {yui , ydi , yei , yP , µi, η′, γ}, from which we obtain a set of observables

Pn(x). We minimize the function defined as

χ2 =
∑
n

(
Pn(x)− P obs

n

σn

)2

, (3.53)

where the 19 observables are given by P obs
n ∈ {θqij , δq, yu,c,t, yd,s,b, θ`ij , δl, ye,µ,τ ,∆m2

ij}
with statistical errors σn. This test assumes data is normally (Gaussian) distributed,

which is true for most of the observables except for θ`23. The atmospheric mixing angle

octant, i.e. θ`23 < 45◦ or θ`23 > 45◦, has not been determined yet. Current data favours

θ`23 = 41.6 from Nufit 3.0 [200] and we assume such scenario.

We need to run up all the measured Yukawa couplings and mixing angles up to the GUT

scale in order to compare it with the predictions of our model.2 In doing so, we need

to match the SM to the MSSM at the SUSY scale, MSUSY , which involves adding the

2Note that we are performing the numerical fit in terms of the effective neutrino mass parameters µi
defined in equation 3.52. We are ignoring any renormalisation group running corrections in the neutrino
sector.
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Observable
Data Model

Central value 1σ range Best fit

θ`12 /
◦ 33.57 32.81 → 34.33 33.53

θ`13 /
◦ 8.460 8.310 → 8.610 8.452

θ`23 /
◦ 41.75 40.40 → 43.10 41.88

δ` /◦ 261.0 206.0 → 316.0 200.3

ye /10−5 6.023 5.987 → 6.059 6.023

yµ /10−2 1.272 1.264 → 1.280 1.272

yτ 0.222 0.219 → 0.225 0.222

∆m2
21/(10−5 eV2) 7.510 7.330 → 7.690 7.507

∆m2
31/(10−3 eV2) 2.524 2.484 → 2.564 2.524

m1 /meV 10.94

m2 /meV 13.95

m3 /meV 51.42∑
mi /meV < 230 76.31

α21 /
◦ 134.3

α31 /
◦ 6.415

mββ /meV < 61-165 11.10

Table 3.3: Model predictions in the lepton sector for tanβ = 20, MSUSY = 1 TeV and
η̄b = −0.9. The observables are at the GUT scale. The lepton contribution to the total χ2

is 1.2. The neutrino masses mi as well as the Majorana phases are pure predictions of our
model. The bound on

∑
mi is taken from[59]. The bound on mββ is taken from [61].

supersymmetric radiative threshold corrections. This has been done in [199]. At the

GUT scale, the values depend to a good approximation only on η̄b and tanβ. A good

fit is found for large η̄b, which can be explained if tanβ & 5, as shown in appendix B.

We also need tanβ < 30 to keep Yukawa couplings perturbative. The best fit is found

for η̄b = −0.9 and tanβ = 20. The SUSY scale does not affect the fit and we choose

MSUSY = 1 TeV. The fit has been performed using the Mixing Parameter Tools (MPT)

package [203].

The best fit found has a χ2 = 11.9. Table 2.3 shows the best fit to the charged leptons

and neutrinos observables. Neutrino data is taken from the Nufit 3.0 global fit [200].

Only the neutrino mass-squared differences are known but the model also predicts the

neutrino masses themselves as well as the Majorana phases. The model predicts normal

ordered neutrino masses and we also give the effective Majorana mass mββ . All the

lepton sector is fitted to within 1σ except for the leptonic CP phase. δ` is not yet well

measured, although a negative CP phase is preferred [204].

In table 2.4, we have all the quark Yukawa couplings and mixing parameters for the

minimum χ2. The biggest contribution to the χ2 is coming from this sector, as shown

in figure. 3.4. This figure shows the corresponding pulls for lepton (light orange) and

quark (blue) observables. As we can see, all parameters lie inside the 2σ region and the

biggest pulls are in the quark Yukawa couplings.

Table 2.5 shows the input parameter values.3 There are 13 real parameters plus two

3 Assuming the Dirac neutrino Yukawa parameters yνi in equation 3.45, we can compute the right-
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Observable
Data Model

Central value 1σ range Best fit

θq12 /
◦ 13.03 12.99 → 13.07 13.02

θq13 /
◦ 0.016 0.016 → 0.017 0.016

θq23 /
◦ 0.189 0.186 → 0.192 0.186

δq /◦ 69.22 66.12 → 72.31 70.66

yu /10−6 3.060 2.111 → 4.009 3.253

yc /10−3 1.497 1.444 → 1.549 1.567

yt 0.666 0.637 → 0.694 0.611

yd /10−4 1.473 1.311 → 1.635 1.614

ys /10−3 2.918 2.760 → 3.075 3.098

yb 2.363 2.268 → 2.457 2.238

Table 3.4: Model predictions in the quark sector for tanβ = 20, MSUSY = 1 TeV and η̄b =
−0.9. The observables are at the GUT scale. The quark contribution to the total χ2 is 10.7.

additional phases, a total of 15 input parameters to fit 19 data points, which remarks

the predictivity of the model, not only fitting to all available quark and lepton data but

also fixing the neutrino masses and Majorana phases.

θ12
l θ13

l θ23
l δl Δm21

2 Δm31
2 ye yμ yτ θ12

q θ13
q θ23

q δq yu yc yt yd ys yb
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Figure 3.4: Pulls for the best fit of model to data, as shown in Tables 3.3-3.4, for lepton (light
orange) and quark (blue) parameters.

3.3.1 Parameter counting

In this section we explain and clarify the number of parameters in our model. Clearly at

the high energy scale there are many parameters associated with the undetermined O(1)

Yukawa couplings of the 43 superfields of the model. For example the renormalisable

Yukawa superpotential in equation 3.35 contains 23 parameters alone. Then we must

handed neutrino masses, using the seesaw formula in equation 3.51 and taking the µi values from the
fit, such that MR

1 ∼ 104 GeV, MR
2 ∼ 1011 GeV and MR

3 ∼ 1015 GeV. Only M2 has the expected
natural value given in equation 3.45. We remark that right-handed neutrino Majorana masses come
from unknown Planck suppressed physics, which is presumably responsible for the mismatch.
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Parameter Value

yu1 /10−6 3.232

yu2 /10−3 1.580

yu3 −0.610

yd12 /10−4 −7.068

yd2 /10−4 −8.737

yd3 −2.238

Parameter Value

ye12 /10−4 8.616

ye2 /10−2 1.013

ye3 0.229

µ1 /meV 6.845

µ2 /meV 27.18

µ3 /meV 42.17

Parameter Value

yP /10−4 2.475

γ 1.968π

η′ 0.790π

Table 3.5: Best fit input parameter values. The model has 13 real parameters: yui , ydi , yei , µi
and yP and two additional free phases: η′ and γ. The total χ2 is 11.9.

add to this all the O(1) Yukawa couplings associated with vacuum alignment, GUT

symmetry breaking and doublet-triplet splitting, many of which we have not defined

explicitly. Despite this, we are claiming that our model is predictive at low energies.

How can this be? The short answer is that most of these parameters are irrelevant for

physics below the GUT scale, as discussed in detail below.

The effective fermion mass matrices generated below the GUT scale are given in equa-

tion 3.43 as function of 18 free effective parameters (remembering the constraint on η)

that will fix all the fermion masses and mixing angles, including right-handed neutrino

Majorana masses and Majorana phases. This compares favourably to the 31 parame-

ters of a general high energy model, comprising 21 parameters in the lepton sector of a

general three right-handed neutrinos seesaw model [205], plus the 6 quark masses and

4 CKM parameters. However, below the seesaw scale of right-handed neutrino masses,

the effective parameter counting is different again and requires further discussion below.

In order to perform the fit and compare our model with available data, we apply the

seesaw mechanism to write the light effective left-handed Majorana neutrino mass ma-

trix as a function of the new parameters µi in equation 3.51. Therefore, we have 15

effective parameters at low energy (shown in table 3.5) that fit the 19 so far measured or

constrained observables in figure 3.4.4 After the fit is performed, the model predicts all

the three light neutrino masses with a normal ordering, a CP oscillation phase of 200◦

and both the Majorana phases, corresponding to a total of 22 low energy observables

which will be eventually observable (10 from the quark sector discussed above and 12

from the lepton sector, including the two Majorana phases). Therefore we see that,

below the seesaw scales, the model contains 15 effective parameters which generate 22

observables, making the model eminently testable, as these observables become better

determined.

4 We need to run up to the GUT scale these observables and, therefore, we need to include SUSY
threshold corrections. The fit is therefore also dependent on ηb and tanβ. As shown earlier, we find a
good fit for ηb = −0.9 and tanβ = 20.



76 Chapter 3 S4 × SO(10) grand unified theory of flavour and leptogenesis

3.4 N2 leptogenesis

The source of the Baryon Asymmetry of the Universe (BAU)

ηB = (6.1± 0.1)× 10−10, (3.54)

remains unexplained in the Standard Model. One of the most convincing sources for it

is leptogenesis, where the asymmetry is generated through CP breaking decays of heavy

right-handed neutrinos into leptons, then converted into baryons through sphalerons.

The simplest mechanism to generate the correct BAU, happens when the lightest right-

handed neutrino has CP breaking decays and a mass of about ∼ 1010 GeV. In our

model, according to equation 3.45, it is the second right-handed neutrino the one that

is expected to be at that scale. When leptogenesis is generated mainly by the decays

of the second right-handed neutrino, it is called N2 leptogenesis. This has already been

calculated in [206] and we will apply such calculations to our specific model.

3.4.1 General N2 leptogenesis

Leptogenesis calculations are done in the so called flavour basis, where the charged

lepton and right-handed neutrino mass matrices are both diagonal. In this basis, the

Dirac neutrino mass matrix is given by

mD = VeLMDU
T
N , where

VeLM
e†M eV †eL = diag(y2

e , y
2
µ, y

2
τ )v2

d, UNMRU
T
N = diag(M1,M2,M3).

(3.55)

The final asymmetry can be computed using simple approximate analytic equations

derived in [206]. The total and flavoured decay parameters, Ki and Kiα respectively,

can be written as

Kiα =
|mDαi|2

mMSSM
? Mi

and Ki =
∑
α

Kiα =
(m†DmD)ii
mMSSM
? Mi

, (3.56)

where the equilibrium neutrino mass is given by

mMSSM
? ' 0.78× 10−3 eV sin2 β. (3.57)

The wash-out at the production is described by the efficiency factor κ(K2α) that for an

initial thermal N2 abundance can be calculated as

κ(K2α) =
2

zB(K2α)K2α

(
1− e−

K2α zB(K2α)

2

)
, zB(K2α) ' 2 + 4K0.13

2α e
− 2.5
K2α . (3.58)

In the hierarchical right-handed neutrino mass limit, as our model is, the CP asymme-
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tries can be approximated to

ε2 =
∑
α

ε2α, ε2α '
3

8π

M2

v2

Im
[(
m†D
)
iα

(
mD

)
α3

(
m†DmD

)
i3

]
M2M3 m̃2

, (3.59)

where m̃2 ≡ (m†DmD)22/M2.

In the regime where 5 × 1011 GeV (1 + tan2 β) � M2 � 5 × 108 GeV (1 + tan2 β), the

final B − L asymmetry can be calculated using

N f
B−L '

[
K2e

K2τ⊥2

ε2τ⊥2
κ(K2τ⊥2

) +

(
ε2e −

K2e

K2τ⊥2

ε2τ⊥2

)
κ(K2τ⊥2

/2)

]
e−

3π
8
K1e +

+

[
K2µ

K2τ⊥2

ε2τ⊥2
κ(K2τ⊥2

) +

(
ε2µ −

K2µ

K2τ⊥2

ε2τ⊥2

)
κ(K2τ⊥2

/2)

]
e−

3π
8
K1µ +

+ ε2τ κ(K2τ ) e−
3π
8
K1τ , (3.60)

where we indicated with τ⊥2 the electron plus muon component of the quantum flavour

states produced by the N2-decays defining K2τ⊥2
≡ K2e+K2µ and ε2τ⊥2

≡ ε2e+ε2µ. The

final asymmetry, in terms of the baryon to photon number ratio is

ηB ' 2 asph
NB−L
N rec
γ

, (3.61)

where αsph = 8/23 is the fraction of B−L asymmetry converted into baryon asymmetry

by sphalerons. The photon asymmetry at recombination is (N rec
γ )MSSM ' 78. The

factor of 2 accounts for the asymmetry generated by the right-handed neutrinos plus the

superpartners sneutrinos.

3.4.2 Leptogenesis in our model

Using the matrices in equation 3.43 and the fit in table 3.5, we may calculate the

BAU generated through N2 leptogenesis in our model. The first thing to note is that

the parameters are quite hierarchical so that the rotation angles of the diagonalizing

matrices can be neglected since they only give 1% contributions

VeL ' 1, UN ' diag(e−iη/2, 0, e−iη
′/2), (3.62)

and the neutrino mass matrix in the flavour basis becomes

mDij '

 yν1e
iη/2 2yν1e

iη 0

2 yν1e
iη/2 yν2 yν2e

−iη′/2

0 yν2 yν3e
iη′/2

 vu. (3.63)
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Also, due to the hierarchical nature of the couplings we may safely assume that the right-

handed neutrino mass parameters are equal to their mass eigenvalues, i.e. MR
a 'Ma.

One of the features of the matrix structure in equation 3.63 is an approximate zero in

the (3,1) entry of the Dirac mass matrix, meaning that the wash-out due to τ ’s decaying

into the first right-handed neutrino N1 is suppressed. In terms of decaying parameters,

it implies that K1τ vanishes and the last term in equation 3.60 is greatly enhanced since

it overcomes the exponential suppression. The zero in the Dirac mass matrix 3.63 is a

consequence of the CSD2 vacuum alignments; it would not be zero for CSD3 vacuum

alignments and this is why leptogenesis is not possible within the model introduced in

chapter 2. With these approximations, the baryon asymmetry becomes

ηB '
2αsph
N rec
γ

κ(K2τ ) ε2τ , where

K2τ =
(yν2 )2v2

u

mMSSM
? M2

and ε2τ = sin η′
3

8π

M2

M3

(yν3 )2

2
sin2 β.

(3.64)

We note that η′ is identified with the leptogenesis phase. Using equation 3.51, we may

write the neutrino Yukawa couplings as yνa =
√
µaMR

a /vu so that

ηB ' sin η′
3

8π

αsph
N rec
γ

κ

(
µ2

mMSSM
?

)
µ3M2

v2
, (3.65)

where we note that the only free parameter is M2. Using the parameters from the fit,

in table 3.5, the correct BAU is generated when5

M2 ' 1.9× 1011 GeV. (3.66)

From equation 3.45 we see that this is the natural value for the second right-handed

neutrino mass, so that the model naturally explains the origin of the BAU through N2

leptogenesis without any need for tuning.

3.5 Summary

We have constructed a SUSY GUT of flavour based on the symmetry S4 × SO(10) ×
Z3

4 × ZR4 that is relatively simple, predictive and fairly complete. The Higgs sector of

the model involves two SO(10) 10-plets, a 16-plet and its conjugate 16 representation,

and three 45-plets. These low dimensional Higgs representations are all that is required

to break the GUT symmetry, yield the Clebsch-Gordan relations responsible for the

difference of the charged fermion masses, and account for heavy right-handed neutrino

Majorana masses. In order to account for the hierarchical mixing structure of the Yukawa

5 M2 has been computed numerically, including the rotation angles of the diagonalizing matrices in
equation 3.63.
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matrices, we also need a particular set of S4 triplet flavons with hierarchical VEVs and

particular CSD2 vacuum alignments, where both features are fully discussed here. To

complete the model we also require a rather rich spectrum of high energy messenger and

driving superfields, which, like most of the Higgs fields, do not appear in the low energy

effective theory.

We highlight and summarise the main successes and features of the model as follows:

• The model is successfully built with an SO(10) gauge symmetry where all of the

fields belong to the small “named” representations: fundamental, spinorial and

adjoints; this could be helpful for a possible future string embedding.

• It contains a superpotential that spontaneously breaks the original symmetry:

S4 × SO(10) × Z3
4 × ZR4 → SU(3)C × SU(2)L × U(1)Y × ZR2 . The model also

spontaneously breaks CP .

• The S4 breaking superpotential that yields the CSD2 vacuum alignment is fairly

simple.

• All the GUT scale parameters are natural and ∼ O(1), explaining the hierarchy of

the low energy parameters, where the family mass hierarchy is due to the derived

hierarchy of flavon VEVs |v1| � |v2| � |v3|, rather than by Froggatt-Nielsen.

• The model contains a working doublet-triplet mechanism, that yields exactly two

light Higgs doublets from two SO(10) Higgs multiplets, respectively and without

mixing, apart from the µ term which is generated at the correct scale. It also has

well behaved proton decay.

• The model naturally generates sufficient BAU through N2 leptogenesis, which fixes

the second right-handed neutrino mass M2 ' 2 × 1011 GeV, in the natural range

predicted by the model.

• At low energies, the model contains 15 free parameters that generate 19 presently

constrained observables so that it is quite predictive. The model achieves an

excellent fit of the Standard Model fermion masses and mixing angles, with χ2 =

11.9.

We find it remarkable that all of the above can be achieved consistently within a single

model. It contains 43 supermultiplet fields, which is the minimal number for any such

complete model in the literature so far.

Despite the above successes of the model, it also has a few drawbacks. It does not explain

SUSY breaking, and it relies on specific threshold corrections. Even though it has an

almost complete UV completion, it still relies on O(1/MP ) terms for the right-handed

neutrino masses. Indeed M1 and M3 apparently do not have such natural values as
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M2, and we are forced to explain this away by appealing to the unknown physics at the

Planck scale. The symmetry breaking superpotential gives VEVs to most of the GUT

breaking fields but it does not drive all of them. Also we do not address the strong CP

problem, inflation or Dark Matter (DM) (which may in principle be due to the lightest

SUSY particle, stabilised by the R-parity). Indeed we have not considered the SUSY

spectrum at all. Such issues are beyond the stated aims of the present thesis and the idea

of this chapter is to propose a complete grand unified theory of flavour and leptogenesis,

consistent with the data on quark and lepton masses and mixing parameters, in which

the three families of quarks and leptons are unified into a single (3′,16) representation

of S4 × SO(10).

Importantly, the model can be tested due to its robust predictions of a normal neutrino

mass ordering, a CP oscillation phase of 200◦, an atmospheric angle of 42◦ in the first

octant and a neutrinoless double beta decay parameter mββ = 11 meV, with the sum of

neutrino masses being 76 meV. These predictions, together with the other lepton mixing

angles given earlier, will enable the model to be tested by the forthcoming neutrino

experiments.



Chapter 4

SU(5) grand unified theory with

A4 modular symmetry

Given the success of chapters 2 and 3, we aim to build a new model based on supersym-

metric SU(5) in 6-dimensions. In this chapter, we include extra dimensions for several

reasons. First, we choose to compactify the two extra dimensions on a T 2/Z2 orbifold,

in which the tetrahedral symmetry of A4 arises naturally and plays the roll of the flavour

symmetry. Furthermore, we show that, if there is a finite modular symmetry, then it

can only be A4 with fixed modulus τ = ω = ei2π/3 or τ = ω + 1, where we focus on the

first possibility. Secondly, the GUT symmetry is broken to the Standard Model by using

GUT-symmetry violating boundary conditions on the orbifold compactification and the

doublet-triplet splitting problem is easily solved by leaving only the light Higgs doublets

after orbifolding. All these features reduce significantly the number of superfields, the

structure of the Yukawa matrices is now dictated by modular forms and there is no

need for alignment superpotentials since the flavon alignments are fixed by the orbifold

boundary conditions. The contents of this chapter are primarily established from the

work in [3].

4.1 Motivation

It is well known that orbifold GUTs in extra dimensions (ED) can provide an elegant

explanation of GUT breaking and Higgs doublet-triplet spitting [120]. Similarly, theories

involving GUTs and flavour symmetries have been formulated in ED [123, 126, 165, 168,

173, 207–209]. The extra dimensions can help to understand the origin of the discrete

non-Abelian group symmetry, such as A4 and S4, which may then be identified as a

remnant symmetry of the extended Poincaré group after orbifolding, as discussed in

section 1.7.3.

81
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Some time ago it was suggested that modular symmetry, when interpreted as a family

symmetry, might help to provide a possible explanation for the neutrino mass matrices

[210, 211]. Recently it has been suggested that neutrino masses might be modular forms

[212], with constraints on the Yukawa couplings. This has led to a revival of the idea that

modular symmetries are symmetries of the extra dimensional space-time with Yukawa

couplings determined by their modular weights [213–218]. However to date, no attempt

has been made to combine this idea with orbifold GUTs in order to provide a unified

framework for quark and lepton masses and mixings.

In this chapter, we present the first example in the literature of a grand unified theory

(GUT) with a modular symmetry interpreted as a family symmetry. The theory is based

on a 6-dimensional (6D) supersymmetric SU(5), where the two extra dimensions are

compactified on a T2/Z2 orbifold. Such constructions suggest an underlying modular A4

symmetry with fixed modulus τ = ω = ei2π/3 or τ = ω + 1, and we choose to construct

the model based on the first possibility τ = ω. This is one of the main differences

of the present chapter as compared to recent works with modular symmetries which

regard the modulus τ as a free phenomenological parameter [212, 215]. We construct a

detailed model along these lines, where the brane fields on the fixed points are assumed

to respect a generalised CP symmetry A4nZ2 which leads to an effective µ−τ reflection

symmetry at low energies, implying maximal atmospheric mixing and maximal leptonic

CP violation. The model introduces two triplet flavons in the bulk, whose vacuum

alignments are determined by orbifold boundary conditions, analogous to those used for

SU(5) breaking with doublet-triplet splitting. There are also two right-handed neutrinos

on the branes whose Yukawa couplings are determined by modular weights. The charged

lepton and down-type quarks have diagonal and hierarchical Yukawa matrices, with

quark mixing due to a hierarchical up-quark Yukawa matrix with high modular weight

to provide quark CP violation.

4.2 Orbifold T 2/Z2 and symmetries

4.2.1 Review of modular transformations

We presented the general theory of modular transformations and modular forms in

section 1.7.4. For completeness, we remind that the modular group Γ ≡ PSL(2,Z) is

generated by

S : τ → −1/τ and T : τ → τ + 1, (4.1)

satisfying the relation

Γ ' {S, T |S2 = (ST )3 = 1}/{±1}, (4.2)

where the mod out by {±1} reflects the fact that an SL(2,Z) transformation on the

modulus parameter τ and its negative are equivalent, see equations 1.77 and 1.78. The
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finite modular group ΓN is realized when the generator T also complies with TN = 1,

i.e.

ΓN ' {S, T |S2 = (ST )3 = TN = 1}/{±1}. (4.3)

In the following, we choose the (non-unique) representation

S =

(
0 1

−1 0

)
and T(N) =

(
e−i2π/N 0

1 ei2π/N

)
, (4.4)

which is consistent with the presentation of the finite modular group ΓN in equation 4.3

for any integer N > 2.

4.2.2 Modular symmetry of the orbifold T 2/Z2

We assume that the two extra dimensions are compactified on a T 2/Z2 orbifold. We

combine the two extra dimensions coordinates, x5 and x6, in the complex coordinate

z = x5 + ix6. The action of the orbifold is given by

z = z + ω1,

z = z + ω2,

z = −z,
(4.5)

where ω1 and ω2 are the two lattice vectors defining the torus T 2, while the last equation

is due to the Z2 action. This orbifold contains four invariant fixed points

z̄ =

{
0,

ω1

2
,
ω2

2
,
ω1 + ω2

2

}
, (4.6)

where z̄ refers to the set of fixed points, i.e. z̄ = {z̄1, z̄2, z̄3, z̄4}.

Any model built in the 6D space-time with the two extra dimensions compactified on a

T 2/Z2 orbifold, will have fields living at the fixed points, known as 4D ‘brane’ fields, and

will also have ‘bulk’ fields, depending on both the uncompactified coordinates and the

complex coordinate z. Therefore, it is relevant to study if, after compactification, there

is any symmetry left unbroken among the fixed points, which will afterwards affect the

fields allocated on them. In this section, we want to find out for which values of ω1 and

ω2, if any, the set of fixed points is invariant under the general modular transformations

in equation 4.4. For doing so, we will apply these transformations on the set of fixed

points z̄ in equation 4.6, and see if there is any solution, i.e. if there exits any value of

ω1, ω2 and N under which the set is left invariant up to permutations of the fixed points.

We will also assume that |ω1| = |ω2| as it is usually done in orbifold theories.

The action of the general modular transformations in equation 4.4 on the lattice vectors
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ω1 and ω2 is given by

S

(
ω1

ω2

)
=

(
ω2

−ω1

)
, T(N)

(
ω1

ω2

)
=

(
e−i2π/Nω1

ω1 + ei2π/Nω2

)
. (4.7)

Therefore, after an S-transformation, the set of fixed points is transformed to

z̄S =

{
0,

ω2

2
,
−ω1

2
,
ω2 − ω1

2

}
. (4.8)

However, we can use the orbifold transformations in equation 4.5, i.e. we can add ω1 to

the second and fourth fixed points in z̄S , and obtain the original set z̄. Therefore, the

set of fixed points, up to permutations, is always invariant under an S-transformation,

for any value of ω1 and ω2.

The T -transformed fixed points are given by

z̄T =

{
0,

e−i2π/Nω1

2
,
ω1 + ei2π/Nω2

2
,
e−i2π/Nω1 + ω1 + ei2π/Nω2

2

}
. (4.9)

If the set is to be invariant, up to permutations of the fixed points, the second term in

equation 4.9 must correspond to one of the original fixed points in z̄. Since there is no

orbifold transformation or value of N that can relate it to the ω1/2 nor the 0 branes, then

it must correspond to ω2/2 or (ω1 + ω2)/2, up to orbifold transformations. Therefore,

we find the constraints ±ω2 = ω1e
−2iπ/N or ±ω2 = ω1(e−2iπ/N + 1). The ± sign is due

to the Z2 orbifold symmetry. For the fixed points, both signs are equivalent since one

(−ω2/2) is related to the other (ω2/2) by adding an extra ω2, which is a symmetry of

the torus. Without loss of generality, we choose to use the negative sign.

For ω2 = −ω1e
−2iπ/N , the set ot T -transformed fixed points become

z̄T (ω2=−ω1e−2iπ/N ) =

{
0,

e−i2π/Nω1

2
, 0,

e−i2π/Nω1

2

}
, (4.10)

which removes two fixed points, so this choice of ω2 does not leave a set of invariant

fixed points.

The second choice is ω2 = −ω1(e−2iπ/N + 1) and the T -transformed set is

z̄T (ω2=−ω1(e−i2π/N+1)) =

{
0,

ω1e
−i2π/N

2
,
−ω1e

i2π/N

2
,
ω1e
−i2π/N − ω1e

i2π/N

2

}
. (4.11)

We are looking for an invariant set of branes, therefore from equation 4.6, we see that

ω1/2 must be in the set. The second and third terms in equation 4.11 multiply ω1/2

by a phase so it can not correspond to the original one. Therefore, the only possibility

is that the last term in equation 4.11 is identical to the brane ω1/2, up to orbifold

transformations. We can add integer n times ω2 and integer m times ω1 or change an
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overall sign and it will correspond to the same point. Taking this into account, then the

requirement that the second fixed point from equation 4.6 corresponds to the fourth one

from equation 4.11 gives

ω1e
−i2π/N − ω1e

i2π/N = ω1 +mω1 + nω2. (4.12)

If now we also take into account that ω2 = −ω1(e−i2π/N + 1), equation 4.12 can be

rewritten as

− e2iπ/N + e−2iπ/N (1− 2n)− 2n+ 2m = 1, (4.13)

for arbitrary integers n,m,N . Since both sides are real, this fixes n = 1 and we end up

with

− 2 cos

(
2π

N

)
= 3− 2m, (4.14)

which only has solutions for m = 1 and N = 3 or m = 2 and N = 6.

The T(N) generators for N = 3 and N = 6, in equation 4.4, satisfy

T 3
(3) = T 6

(6) = 1, T 3
(6) = −1, (4.15)

that, due to the modding out of the ±{1} sign in the presentation of the finite modular

group ΓN in equation 4.3, Γ3 and Γ6 are both equivalent and for now we will only refer

to Γ3 ' A4 modular symmetry.

Therefore, we have shown that for the T 2/Z2 orbifold, the set of fixed points is invariant

under modular transformations only if the modular group is Γ3 ' A4 and when the

lattice vectors satisfy the relation ω2 = ω1 ω, for N = 3, or ω2 = ω1(ω + 1), for N = 6,

where ω = ei2π/3.

Without loss of generality, we can always rescale the lattice vectors such that the torus

is equivalent to one whose periods are 1 and τ = ω2/ω1. In the following, we work on

the orbifold T 2/Z2 with the torus defined by 1 and twist angle τ = ω. If we would have

chosen the N = 6 case, the basis vectors would be ω1 = 1 and ω2 = ω+ 1 with the same

A4 modular symmetry. This is a choice that we follow in the rest of the chapter. The

above argument suggests that brane fields allocated on the fixed points must respect a

Γ3 ' A4 modular symmetry, with fixed modulus τ = ω = ei2π/3. We emphasize that this

is one of the main differences of the present chapter as compared to recent works with

modular symmetries that regard the modulus τ as a free phenomenological parameter

[212, 215]. In our work, we assume a specific orbifold structure which fixes the angle

τ = ω = ei2π/3 from the outset, although we shall not address the problem of moduli

stabilisation.
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4.2.3 Remnant symmetry of the orbifold T 2/Z2 with twist ω = ei2π/3

In this section, we study the extra dimensional space-time as the orbifold T 2/Z2 with

twist angle ω = ei2π/3 independently of any modular symmetry considerations. This

orbifold corresponds to the identification

z ∼ z + 1,

z ∼ z + ω,

z ∼ −z,
(4.16)

where the first two equations are the periodic conditions from the torus T 2 and the third

one is the action generated by the orbifolding symmetry Z2. The orbifold symmetry

transformations leave four invariant fixed points

z̄ =

{
0,

1

2
,
ω

2
,

1 + ω

2

}
, (4.17)

shown in figure 4.1.

We analyse the remnant symmetry of the space-time symmetry after it is broken down

to the 4D Poincaré symmetry through orbifold compactification, as in section 1.7.3.

We assume that the space-time symmetry before compactification is a 6D Poincaré

symmetry. The compactification breaks part of this symmetry, however, due to the

geometry of our T 2/Z2 orbifold with twist angle ω = ei2π/3, a discrete subgroup is left

unbroken. This group may be generated by the space-time transformations

S : z → z + 1/2 or z → z + ω/2,

T : z → ω2z,

U : z → z∗ or z → −z∗,
(4.18)

which permute the fixed points and leave invariant the set of four fixed points in equa-

tion 4.17. These transformations satisfy

S2 = T 3 = (ST )3 = 1,

U2 = (SU)2 = (TU)2 = (STU)4 = 1,
(4.19)

where the first line is the presentation of the group A4 and both lines complete the

presentation of S4. In figure 4.1, we show how these transformations act on the extra

dimensional space and how the A4 symmetry is realized.

The T 2/Z2 orbifold with twist angle ω has four fixed points and they are permuted by

the discrete subgroup of rotations and translation in the extra space, A4 or S4. This

symmetry, together with 4D Poincaré transformations, is a subgroup of the 6D Poincaré

symmetry that survives compactification. Any brane field living in the fixed points will
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(a) The extra dimensional space. Opposite sides
are identified to form a torus. The orbifolding Z2

identifies both equilateral triangles. These are the
identifications in equation 4.16.

(b) The effective extra dimensional space T 2/(Z2).
This is the whole bulk. The four invariant fixed
points z1,2,3,4 are shown.

(c) The four fixed points are permuted by the sym-
metries S, T, U in equation 4.18. The transforma-
tions S,U identify the sides a, b, c while T rotates
everything by identifying sides d.

(d) By actually folding to identify sides a, b, c we
obtain a tetrahedron, whose vertices are related by
the symmetry group A4.

Figure 4.1: Visualization on the remnant A4 symmetry after orbifolding.

transform under the 4D Poincaré group as usual and additionally under the remnant A4

or S4 symmetry. We choose the embedding of the representation 4→ 3 + 1 so that the

brane fields can only transform under those irreducible representations [208].

With these type of models one chooses the bulk fields to follow the space-time symmetry

transformations in equation 4.18, so that this symmetry becomes the flavour symmetry

of the model [123, 126, 207]. For example, this approach has been followed for A4 or S4

combined with SU(5) Grand Unified Theories (GUTs) in 6d or 8d [166, 168, 173, 208,

209].

4.2.4 Connection between the modular and the remnant symmetries

In this section, we connect and identify the two symmetries that we have been discussing

so far: the modular symmetry Γ3 ' A4 in section 4.2.2 and the remnant A4 symmetry,

as a subgroup of the space-time 6D Poincaré symmetry, in section 4.2.3 (we shall return

to the remnant S4 symmetry in section 4.2.5). At this point, the reader might have

noticed that, indeed, the two symmetries are identical when acting on the fixed points.
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The modular symmetry is just a passive transformation, acting on the lattice vectors

defining the torus. Under these passive transformations, we have checked that the set

of fixed points is permuted but left invariant. The remnant A4 symmetry is an active

transformation, acting on the extra space and again inducing permutations of the four

fixed points. It is just a choice of “picture” (active or passive) which we choose.

Modular symmetry acting on brane fields behave as any usual discrete flavour symmetry

(i.e. modular forms are not relevant), since the fields living on the fixed points do not

depend on the extra dimensional coordinate. We checked that on the orbifold T2/Z2, the

fixed points can only be consistent with the modular group Γ3 iff τ = ω or τ = ω+1 and

no other. In this setup, the fixed points feel the finite modular A4 symmetry as simply

equivalent to a remnant A4 symmetry, a subgroup of the extra dimensional Poincaré

group.

We can see from equation 4.7, that the S and T(3) transformations (the Γ3 modular

transformations) correspond to specific passive reflections, rotations and translations.

This way this must be a subgroup of the 6d Poincaré group.

Bulk fields will transform under some representation of the 6D Poincaré, however they

will transform under a non linear representation of the modular symmetry Γ3, the mod-

ular forms [212]. We can then conclude that we can have the modular symmetry Γ3 as

a non linear realization of the remnant A4 symmetry.

4.2.5 Enhanced A4 n Z2 symmetry of the fixed points

In section 4.2.3, we have seen that the orbifold has a remnant symmetry S4 on the fixed

points. We note here that S4 ' A4 n Z2. We have also discussed in section 4.2.4, that

if we impose a modular symmetry Γ3 ' A4 on the whole space, its action on the brane

fields is the same action as the remnant space-time symmetry, i.e. it permutes the fixed

points but leaves invariant the whole set. The modular symmetry acts on the basis

vectors of the torus while the remnant symmetry is a space-time symmetry, therefore

the first one can be seen as passive transformation while the second one is an active

transformation. This way we may identify the remnant A4 symmetry of the brane fields

as a modular symmetry.

We know, from section 4.2.3 that the full symmetry of the fixed points is S4, however

we can not interpret it as a modular symmetry since we proved in section 4.2.2, that the

fixed points can only be invariant under the modular transformations corresponding to

Γ3 ' A4, i.e. we only found a solution for N = 3 or N = 6.

The symmetry generated by U in equation 4.18 is a remnant symmetry of the orbifolding

process, but it can not be interpreted as a modular transformation. We conclude that

the remnant symmetry of the branes is Γ3 n Z2 ' A4 n Z2. The Z2 symmetry is
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generated by C ·U where U is the usual matrix representation of the generator from S4

and C stands for complex conjugation of the complex coordinate, which is equivalent to

a change of sign in x6, i.e. the parity transformation of the 6th dimension P6. The Z2 is

not a modular symmetry while the A4 is. The product of both symmetries is not direct

since the generator U does not commute with all A4 generators and is reminiscent of

the corresponding S4 generator.

The A4 modular symmetry will require the Yukawa couplings to be specific modular

forms, see appendix A.2.2. The Z2 symmetry will further restrict the possible mass

matrix structure so that the theory has strong predictions for leptons [219]. As we shall

see later, the up quarks will lie in different A4 singlets, so that only the subgroup Z3

is remnant while the Z2 behaves trivially. This forces stringent relations for the lepton

mass matrices but not for the quarks.

After compactification, the Z2 behaves like a generalized CP symmetry where the trans-

formations C,P1, ..., P5 are trivial while P̃6 = P6 U , where P6 is the trivial parity trans-

formation, while the U is a family transformation [220]. Although this is not a usual

generalized CP symmetry. There is no C transformation involved, only P6. However,

after compactification this symmetry appears as an effective generalized CP symmetry.

As stated before, this effective symmetry transformations only affects non trivially on

the brane fields and the fields on the bulk are unaffected.

We have shown that the remnant Z2 symmetry on the branes behaves as an effective

generalized CP transformation. In appendix A.2.1, we check its compatibility with the

A4 flavour symmetry, and find that it is consistent, as indeed it must be.

4.3 The model

4.3.1 Field content

In this section we construct a supersymmetric SU(5) GUT model on a 6D orbifold T 2/Z2

with twist ω = ei2π/3, with an A4 modular symmetry as a flavour symmetry, extended

by the Z2 symmetry on the fixed points. Furthermore we impose a global U(1) as a

shaping symmetry. We assume different boundary conditions at each invariant fixed

point. These conditions break the original symmetry into the MSSM.

All the fields in the bulk ψ will transform under the modular transformations

τ → aτ + b

cτ + d
as ψ → (cτ + d)−kρψ, (4.20)

where ρ is the usual matrix representation of the corresponding A4 transformation. Each

field has an arbitrary weight −k. The fields are not modular forms and can have any
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Field
Representation

A4 n Z2 SU(5) U(1)

F 3 5̄ a+ 2c
N c
s 1 1 a

N c
a 1 1 4a
ξ 1 1 −2a

Table 4.1: Brane fields living on the fixed points, including matter and right-handed neutrino
superfields. A working set of charges is {a, b, c} = {2, 0, 1}. Note that the 3 representations
on the brane transform under A4 n Z2 as shown in table A.2 and equation A.9.

Field
Representation Localization

A4 SU(5) U(1) Weight P0 P1/2 Pω/2

T±1 1′′ 10 c+ 4a −γ +1 ±1 ±1
T±2 1′ 10 c+ 2a −γ +1 ±1 ±1
T±3 1 10 c −γ +1 ±1 ±1

H5 1 5 −2c −α +1 +1 +1
H5 1′ 5 b α+ γ +1 +1 +1

φ1 3 1 −b− a− 3c −α +1 +1 +1
φ2 3 1 −3a α− β +1 −1 +1

Table 4.2: Bulk fields used in constructing the model, including matter, Higgs and flavon
superfields. A working set of charges is {a, b, c} = {2, 0, 1}. The complete theory must also
contain three T i, being the complex conjugate representation of Ti so that it is anomaly free.

weight ki. The brane superfields that are located on the fixed points do not depend on

the extra dimensions and therefore they must have weight zero [212].

The whole field content is listed in tables 4.1 and 4.2. The fields that do not have weight

nor parity under the boundary conditions are located on the fixed points and feel the

symmetry A4 nZ2, see table 4.1. The transformations of the fields under this symmetry

are discussed in appendix A.2. The 3 representations of the brane fields transform under

A4 n Z2 as shown in table A.2 and equation A.9.

The field F contains the MSSM fields L and dR, it is a flavour triplet 3 and is located on

the fixed points. The fields T±i contain the MSSM uR, eR, Q, they are 3 flavour singlets.

There are two copies of each T with different parities under the boundary conditions, as

we shall see in the next section, this allows different masses for down quarks and charged

leptons. There are only two right handed neutrinos N c
a,s. The MSSM Higgs fields hu,d

are inside the H5,5, respectively. We have two flavons φ1,2 that help to give structure to

the fermion masses. Finally, the field ξ generates the hierarchy between the masses à la

Froggatt-Nielsen [104].



Chapter 4 SU(5) grand unified theory with A4 modular symmetry 91

4.3.2 GUT and flavour breaking by orbifold compactification

In section 1.7.2, we briefly introduced orbifold compactifications and how the action of

orbifold compactification on field space can break the original gauge group to a smaller

subgroup. Here, we apply the same procedure choosing a set of boundary conditions that

break A4 completely and SU(5) into the Standard Model. We also break the extended

N = 2 SUSY to N = 1 SUSY.

The compactification on the T 2/Z2 orbifold implies that the extra dimensional space has

the symmetry given in equation 4.16. This geometric orbifold action is now embedded

into an action on field space

φ(x, z)→ G5 φ(x, z − 1),

φ(x, z)→ G6 φ(x, z − ω),

φ(x, z)→ G φ(x,−z),
(4.21)

where φ(x, z) is a general field of the theory and G5, G6 and G are elements of the

symmetry group of the theory. The action on field space in equation 4.21 is equivalent

to the action on the extra dimensional space in equation 4.16, with the difference that

since we are in a gauge theory, the equations do not need to be fulfilled exactly but only

up to a gauge transformation.

The gauge transformations G5, G6 and G are also matrix representations of the sym-

metries in equation 4.16 and therefore they must comply with

G2 = 1, G5G6 = G6G5, GG5,6G = G−1
5,6, (4.22)

where the first equation comes from the fact that it belongs to the parity operator, the

second is due to the fact of the commutativity of the translations and the third one

denotes the relation between parity and translations.

Additionally, we know that the orbifold T 2/Z2 contains four fixed points given by z̄

in equation 4.17, i.e. these points are invariant under the symmetry transformations in

equation 4.16. At the fixed points z̄i with i = 1, . . . , 4, we impose the following boundary

conditions

φ(x, z + z̄i)→ Pz̄iφ(x,−z + z̄i), (4.23)

which corresponds to a reflection at each of the fixed points. In combination with the

gauge transformations in equation 4.21, they have to satisfy

P0 = G, P1/2 = G5G, Pω/2 = G6G, P(1+ω)/2 = G5G6G = P1/2P0Pω/2. (4.24)

By choosing all G′s to commute, all boundary conditions become matrices of order 2.

The boundary conditions must belong to the symmetry group A4× SU(5) of the SUSY
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model, and are chosen to break the symmetry in a particular way as follows

P0 = 13 × 15,

P1/2 = T1 × diag(−1,−1,−1, 1, 1),

Pω/2 = T2 × diag(−1,−1,−1, 1, 1),

(4.25)

where 13 is the 3×3 identity matrix while 15 is the 5×5 identity matrix and the matrices

T1 and T2 are given by

T1 =

 1 0 0

0 −1 0

0 0 −1

 and T2 =

 1 0 0

0 0 1

0 1 0

 = U. (4.26)

The last boundary condition is defined by the others as P(1+ω)/2 = P1/2P0Pω/2 = T1T2×
15.

The boundary condition P0 breaks the effective extended N = 2 → N = 1 SUSY. The

boundary conditions P1/2,ω/2 break A4 completely and SU(5)→ SU(3)×SU(2)×U(1).

As in the example given in the introduction, equation 1.68, depending on how the parity

assignments are chosen we can break the SU(5) multiplets into different multiplets of

the Standard Model gauge group.

The parity assignments are given in table 4.2. The superfields F,N c
a,s, ξ live on the fixed

points and are unaffected by the boundary conditions. The fields T± are A4 singlets

and do not feel the A4 breaking conditions, although they do feel the SU(5) breaking

condition according to their parity. The fields T+ contain the light MSSM uR, eR fields,

while the fields T− encompass the light fields Q. This allows for independent masses

for charged leptons and down quarks since they come from different fields. The Higgs

fields feel the SU(5) breaking condition leaving only the light doublets, solving the

doublet-triplet splitting problem [207] (for a recent discussion see for example [208]).

The flavons φ1,2 feel the A4 breaking conditions. They have different parities under the

conditions and this fixes their alignments to be

〈φ1〉 = v1

 1

0

0

 , 〈φ2〉 = v2

 0

1

1

 . (4.27)

We may remark that these flavon VEV alignments do not break the Z2 symmetry gen-

erated by U , even though they are in the bulk.

We see that the orbifolding breaks the symmetry SU(5)×A4 nZ2 → SU(3)× SU(2)×
U(1)×Z2 while solving the doublet-triplet splitting, separating charged lepton and down

quark masses and completely aligning flavon VEVs.
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We do not show an explicit driving mechanism for the VEVs v1,2,ξ. We assume that

they are driven radiatively [152, 153, 221–225].

4.3.3 Effective Yukawa superpotential

In 6D, the superpotential has dimension 5 while each superfield has dimension 2. A

6D interacting superpotential is inherently non-renormalizable. We work with the ef-

fective 4D superpotential, which happens after compactification and we assume the

compactification scale is close to the original cutoff scale. We use Λ to denote both,

the compactification scale and the GUT scale, which is taken to be the cut-off of the

effective theory.

With the fields in tables 4.1 and 4.2, we can write the effective 4D Yukawa terms

WY = yNs ξN
c
sN

c
s + yNa ξ

ξ3

Λ3
N c
aN

c
a

+ yνs
ξ

Λ
FH5N

c
s + yνa

φ2ξ

Λ2
FH5N

c
a

+ ye3
φ1

Λ
FH5T

+
3 + ye2

φ1ξ

Λ2
FH5T

+
2 + ye1

φ1ξ
2

Λ3
FH5T

+
1

+ yd3
φ1

Λ
FH5T

−
3 + yd2

φ1ξ

Λ2
FH5T

−
2 + yd1

φ1ξ
2

Λ3
FH5T

−
1

+ yuijH5T
+
i T
−
j

ξ6−i−j

Λ6−i−j ,

(4.28)

where i, j = 1, 2, 3. Due to the stringent U(1) shaping symmetry, there are no higher

order terms. The field ξ has a VEV and generates hierarchies between families à la

Froggatt-Nielsen [104].

The first line in equation 4.28 gives the two right-handed neutrino Majorana masses

without any mixing. The fields in both terms have zero weight so the modular symmetry

does not add anything new. The second line generate Dirac neutrino masses. They

have non trivial weights and their structure will be discussed in section 4.3.4. The

third line gives masses to charged leptons. They are all weight zero automatically and

the mass matrix is diagonal. The fourth line generates a diagonal down quark mass

matrix. Since it involves a different field (T− instead of T+) the coupling constants are

independent. Finally the fifth line gives masses to the up-type quarks, which is a general

non-symmetric mass matrix. Since the fields in these terms have a non trivial weight

but the T± are singlets, the modular symmetry does not change the matrix structure.

We remark that the top quark mass term is renormalizable.

At the GUT level, the µ term is forbidden, so it should be generated by another mech-

anism at a much smaller scale [92].
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4.3.4 Effective alignments from modular forms

In this section, we discuss the couplings in equation 4.28 with weight different from zero,

i.e. yνs , yνa and yuij . Their weight is given to compensate the weight of the terms they

couple to, such that they become modular forms transforming according to

τ → aτ + b

cτ + d
, Y → (cτ + d)kY ρY Y, (4.29)

where kY is the weight and must be a positive even integer [226] and ρY is the repre-

sentation under the modular A4 symmetry. In the case of Γ3 ' A4, the modular forms

can be constructed as a function of the Dedekind eta-function η(τ) and the exact form

can be found in appendix A.2.2.

The modular forms are functions of the lattice basis vector parameter τ = ω2/ω1. Usu-

ally, this parameter is chosen to give a good fit to the flavour parameters. In our case,

the specific orbifold our model is set to fix

τ = ω = e2iπ/3 (4.30)

and the modular form structure is fixed up to a real constant.

The modular form yνs must be a triplet under A4 to construct an invariant singlet with

the triplet field F . Furthermore, it has weight α to compensate the overall weight of

the corresponding term. We show the effective triplet alignments it can have in table

4.3, for different weights α. The possibilities are very limited since many modular forms

vanish when τ = ω, as shown in appendix A.2.2. Larger weight modular forms repeat

the same structure so that this table is exhaustive, as discussed in appendix A.2.2.

α (yνs )3

0 0

2 y

 2
2ω
−ω2


4 y

 2
−ω
2ω2


6 y

 −1
2ω
2ω2


Table 4.3: The effective alignments of the modular form yνs as a triplet, depending on its
weight α. The parameter y is an arbitrary constant.

The modular form yνa must have weight β. It multiplies the flavon φ2, so that they

must be contracted into a triplet (yνa 〈φ2〉)3 which will generate the effective alignment.
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In the case of yνa being a singlet under A4, the effective alignment is simply given the

flavon VEV 〈φ2〉 in equation 4.27, which was fixed by the orbifold boundary conditions.

When yνa is a triplet under A4, it must be contracted with φ2 as shown in appendix

A.2, 3 × 3 → 1 + 1′ + 1′′ + 3a + 3s. This gives different possible products for the

effective triplet. The actual effective alignment is an arbitrary linear combination of all

possibilities and can be found in table 4.4. For β = 0 the only modular form is a singlet,

so the only triplet that can be built is 〈φ2〉. For β = 2, the only modular form is the

triplet Y
(2)
3 shown in the appendix A.2.2. The effective triplet is the linear combination

of the symmetric and antisymmetric product of the modular form with the flavon VEV,

〈φ2〉 × Y (2)
3 → 3a + 3s. For β = 4, 6 the modular form can be the singlet Y

(4)
1′ , Y

(6)
1

respectively and the corresponding triplets Y
(4)
3 , Y

(6)
3,2 , so that the actual alignment comes

from the linear combination of 〈φ2〉 × Y1,1′ → 3 and 〈φ2〉 × Y3 → 3a + 3s.

β (yνa 〈φ2〉)3/v2

0 y1

 0
1
1


2 y1

 ω2 − 2ω
−2ω − 2
4ω − 2

+ y2

 −ω2 − 2ω
−2
2


4 y1ω

 1
0
1

+ y2

 −2ω2 + ω
2ω2 − 2
−2ω2 − 2

+ y3

 2ω2 + ω
−2
2


6 y1

 0
1
1

+ y2

 2
4ω2 + 1
4ω + 1

+ y3

 2ω2 − 2ω
1
−1


Table 4.4: The effective alignments of the modular form yνa contracted with 〈φ2〉 into a triplet,
depending on its weight β. The parameters yi are constants constrained by the A4 n Z2

symmetry.

By choosing the weights α and β, the structure of the neutrino mass matrix is completely

defined. The y in table 4.3 and y1, y2, y3 in table 4.4 correspond to general complex

numbers that comply with the non trivial CP symmetry of the model.

We have obtained all the possible A4 invariant modular forms. However, we have to com-

ply with the extended symmetry A4nZ2. The U generator only transforms non trivially

the triplet field F which is contracted to a triplet modular form. An U transformation

of the field F can be reabsorbed by transforming the modular form by

C

1 0 0

0 0 1

0 1 0

 (4.31)

where the C stands for complex conjugation. Invariant terms under the full symmetry

must involve modular forms that are also invariant under the Z2 transformation. From
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table 4.3, the only invariant case is when α = 6 with real y. From table 4.4, the only

invariant cases happen when β = 0 with real y1 or β = 6 with y1,2 real and y3 imaginary.

The triplet field F is not only taking part in the Dirac neutrino mass terms but also in

the down quark and charged leptons mass terms, therefore they also must be invariant

under the enhanced symmetry A4 n Z2. In this case, the field F is contracted with the

flavon field φ1 and it is easy to check that the transformation in equation 4.31 leaves the

VEV invariant when real and therefore the charged lepton and down quark mass terms

when the parameters ydi and yei involved are real.

Finally, the modular form yuij must have weight α + 2γ to build an invariant. All the

fields in the corresponding terms are singlets, so these modular forms must be singlets

also and do not change the structure. Depending on i and j, the modular form yuij must

be a different type of singlet. The weight α + 2γ has to be large enough so that the

space contains the three types of singlets. This modular form does not add anything to

the structure of the up-type quark mass matrix but allows to build the A4 invariants for

all TiTj combinations. The smallest weight that allows modular forms of all 3 types of

singlets is 20, as discussed in appendix A.2.2. These modular forms yuij are in general

complex.

The case β = 0 has not enough freedom to fit the neutrino data with only two free

parameters. We conclude that the smallest phenomenologically viable choice for weights

is

α = β = 6 and γ = 7. (4.32)

4.3.5 Mass matrices

We are now able to express the mass matrices following equation 4.28 and the effective

alignments given in section 4.3.4. First, we define the dimensionless parameters

〈ξ〉 /Λ = ξ̃ and vi/Λ = ṽi, (4.33)

where Λ is the original cutoff scale. The down quark and charged lepton mass matrices

are diagonal

Md =vd

y
d
1 ξ̃

2 0 0

0 yd2 ξ̃ 0

0 0 yd3

 ṽ1,

M e =vd

y
e
1ξ̃

2 0 0

0 ye2ξ̃ 0

0 0 ye3

 ṽ1,

(4.34)
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while the up quark mass matrix can be written as

Mu = vu

 yu11 ξ̃
4 yu12 ξ̃

3 yu13 ξ̃
2

yu21 ξ̃
3 yu22 ξ̃

2 y23ξ̃

yu31 ξ̃
2 yu32 ξ̃ yu33

 ṽ2, (4.35)

where the parameters ydi and ydi are real due to the enhanced symmetry on the fixed

points A4 n Z2 while yuij are in general complex.

The down-type quark and charged lepton mass matrices in equation 4.34 are diagonal so

the fit to the observed masses is straightforward. The hierarchy between the masses of

the different families is understood through the powers of ξ̃ and can be achieved assuming

the dimensionless couplings to be of order O(1). All the contributions to quark mixing

is coming from the up sector. The complex parameters in the up-type mass matrix, see

equation 4.35, fix the up, charm and top quark masses as well as the observed CKM

mixing angles. We can obtain a perfect fit for weight γ = 7. Different values of ṽ1, ṽ2

and ξ̃ can fit the observed masses using different dimensionless couplings still of order

O(1).

The form of the Dirac neutrino mass matrix depends on the weights α and β. All

the possible alignments are given in tables 4.3 and 4.4. The Z2 symmetry restricts

ourselves to the case α = 6 and β = 0 or β = 6. In the case of β = 0, we only

have two free parameters {y, y1} and we can not find a good fit. Therefore, the only

phenomenologically viable case is for α = β = 6 and we restrict ourselves to this case in

the following.

As shown in the appendix A.2, we have to take into account the Clebsch-Gordan coef-

ficients when contracting the modular form (yνsF )1 and (yνa 〈φ2〉F )1 into singlets, i.e.

3× 3→ 1, given by

(ϕψ)1 = ϕ1ψ1 + ϕ2ψ3 + ϕ3ψ2, (4.36)

after which the effective alignments for α = 6 and β = 6 look like

α6 = y

−1

2ω2

2ω

 , β6 =

 2y2 + y3(2ω2 − 2ω)

y1 + y2(4ω + 1)− y3

y1 + y2(4ω2 + 1) + y3

 , (4.37)

respectively. The Dirac neutrino mass matrix is then given by

Mν
D = vu


(
2y2 + y3(2ω2 − 2ω)

)
ṽ2 −y

(y1 + y2(4ω + 1)− y3) ṽ2 2ω2y(
y1 + y2(4ω2 + 1) + y3

)
ṽ2 2ωy

 ξ̃. (4.38)
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The right-handed neutrino Majorana mass matrix is diagonal

MR = 〈ξ〉
(
yNa ξ̃

3 0

0 yNs

)
, (4.39)

with hierarchical right-handed neutrino masses given by the different powers of the field

ξ. Furthermore, we have heavy right-handed neutrino Majorana masses such that the

left-handed neutrinos get a small Majorana mass through type I seesaw [22]

mν
L = MD

ν M
−1
R (MD

ν )T . (4.40)

The neutrino mass matrix looks like

mν =

(
v2
u

〈ξ〉
ξ̃2

yNs

)
α6(α6)T +

(
v2
u

〈ξ〉
ṽ2

2

ξ̃yNa

)
β6(β6)T , (4.41)

where α6 and β6 are the alignments defined in equation 4.37. The effective parameters at

low energy are {y, y1, y2, y3}, previously defined in tables 4.3 and 4.4. The Z2 symmetry

fixes the parameters {y, y1, y2} to be real while y3 is purely imaginary.

4.3.6 µ− τ reflection symmetry

The neutrino mass matrix in equation 4.41 is µ− τ reflection symmetric (µτ -R symmet-

ric). This corresponds to the interchange symmetry between the muon neutrino νµ and

the tau neutrino ντ combined with CP symmetry, namely

νe → νce , νµ → νcτ , ντ → νcµ, (4.42)

where the superscript denotes the charge conjugation of the neutrino field. This can

be easily seen from the alignments in equation 4.37 which construct the neutrino mass

matrix in equation 4.41. The Z2 symmetry fixes the parameters {y, y1, y2} to be real

while y3 is purely imaginary, therefore the transformation in equation 4.42 leaves the

alignments invariant and accordingly the neutrino mass matrix. For a review of µτ

symmetry see e.g. [227] and references therein, also see the recent discussion [228].

It is known that having a neutrino mass matrix µτ -R symmetric in the flavour basis

(which is our case) is equivalent to µ− τ universal (µτ -U) mixing in the PMNS matrix,

see reference [229]. The consequences of having µ − τ symmetry is that it leads to

having non zero reactor angle, θ13, together with maximal atmospheric mixing angle

and maximal Dirac CP phase:

θ13 6= 0, θ23 = 45◦, δl = ±90◦ (4.43)

We remark that this is a prediction of the model due to having A4 n Z2 symmetry on
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the fixed points.

4.3.7 Numerical fit

The parameters {y, y1, y2, y3} in the neutrino mass matrix 4.41 will fit the rest of the

PMNS observables, namely {θl12, θ
l
13,∆m

2
21,∆m

2
31} together with the prediction of the

µ− τ symmetry, θ23 = 45◦ and δl = −90◦. The contribution to a χ2 test function comes

only from these predictions and we use the recent global fit values of neutrino data from

NuFit4.0 [32]. The best fit points together with the 1σ ranges are θ23/
◦ = 49.6+1.0

−1.2 and

δl/◦ = 215+40
−29 for normal mass ordering and without the Super-Kamiokande atmospheric

neutrino data analysis. However, the distribution of these two observables are far from

Gaussian and the predictions of having maximal atmospheric mixing angle θ23 = 45◦ and

maximal CP violation δl = −90◦, still lie inside the 3σ(4σ) region with a χ2 = 5.48(6.81)

without (with) Super-Kamiokande. We show two numerical fits below, although this is

only an example as we can find a good fit for a large range of parameters y, y1, y2 and y3.1

The predictions of the model θ23 = 45◦ and δl = −90◦ are due to the µτ -R symmetry

and the four free parameters are used to fit the rest of the observables in the PMNS

matrix.

We perform a χ2 test function when fitting the effective neutrino mass matrix in equa-

tion 4.41 with input parameters x = y, y1, y2, y3, from which we obtain a set of observ-

ables Pn(x). We minimize the function defined as

χ2 =
∑
n

(
Pn(x)− P obsn

σn

)2

, (4.44)

where the observables are given by P obs
n ∈ {θl12, θ

l
13, θ

l
23, δ

l,∆m2
21,∆m

2
31} with statistical

errors σn. We use the recent global fit values of neutrino data from NuFit4.0 [32]. Most

of the observables follow an almost Gaussian distribution and we take a conservative

approach using the smaller of the given uncertainties in our computations except for θl23

and δl. The best fit from NuFit4.0 is for normal mass ordering with inverted ordering

being disfavoured with a ∆χ2 = 4.7(9.3) without (with) the Super-Kamiokande atmo-

spheric neutrino data analysis. We tried a fit to inverted mass ordering and we found a

χ2 ∼ 6800, therefore in the following results we only focus in the case of normal mass

ordering.

The model predictions are shown in table 4.5. The neutrino mass matrix in equation 4.41

predicts maximal atmospheric mixing angle, θl23 = 45◦, and maximal CP violation,

δl = −90◦, within the 3σ region from the latest neutrino oscillation data. This is a

consequence of the µτ -R symmetric form of the neutrino mass matrix when y, y1, y2 are

1 Although the model only allows the weights α = 0 and β = 0, 6, we tried a numerical fit with all
possible combination of weights with the alignments in tables 4.3 and 4.4, and the only one that worked
is the µτ -R symmetric for α = β = 6.
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Observable
Data Model

Central value 1σ range α = β = 6

θ`12 /
◦ 33.82 33.06 → 34.60 33.82

θ`13 /
◦ 8.610 8.480 → 8.740 8.610

θ`23 /
◦ 49.60 48.40 → 50.60 45.

δ` /◦ 215.0 186.0 → 255.0 270.

∆m2
21/(10−5 eV2) 7.390 7.190 → 7.600 7.390

∆m2
31/(10−3 eV2) 2.525 2.493 → 2.558 2.525

m1 /meV 0

m2 /meV 8.597

m3 /meV 50.25∑
mi /meV . 230 58.85

α23 /
◦ 180.

mββ /meV . 60-200 2.587

Table 4.5: Model predictions in the neutrino sector for weights α = β = 6. The neutrino
masses mi as well as the Majorana phases are pure predictions of our model. We also predict
maximal atmospheric mixing angle θl23 = 45◦ and maximal CP phase δl = 270◦. The bound
on

∑
mi is taken from[59]. The bound on mββ is taken from [60]. There is only one physical

Majorana phase α23 since m1 = 0.

real while y3 is imaginary. Furthermore, since we only have two right-handed neutrinos,

we predict a massless left-handed neutrino m1 = 0 and there is only one physical Ma-

jorana phase α23 [230]. The bound on effective Majorana mass mββ [60] as well as the

predicted value are also given in table 4.5.

The fit has been performed using the Mixing Parameter Tools (MPT) package [203].

The values of y, y1, y2 and y3 are shown in table 4.6. Fit 1 shows a good fit where all

of the dimensionless real parameters y are of O(1), however a large range of parameters

can give an equally good fit, see for example Fit 2. The VEV ratios |ξ̃, ṽi| are parameters

that do not enter the fit directly and they are chosen to reproduce the hierarchy between

the fermion Yukawa couplings, making them more natural numbers. These VEV ratios

also appear in the quark and charged-lepton mass matrices in equations 4.34 and 4.35.

For different values of |ξ̃| and |ṽ2|, as in Fit 1 and 2 in table 4.6, different dimensionless

O(1) parameters ydi , y
e
i and yuij can be used to give the correct mass of the down- and

up-type quarks and charged leptons. In the case of the neutrino mass matrix, even for

fixed |ξ̃| and |ṽ2|, there is a large range of parameters y, y1, y2 and y3 that can give

a good fit to the observables, meaning that the modular forms for weight α = 6 and

β = 6 give a constrained form of the neutrino mass matrix which is phenomenologically

suitable. For comparison, we also give the value of the χ2 test function in the case of

β = 0, in which we only have two free parameters y and y1, and it goes up to χ2 ∼ 1500,

while for β = 6 with four free parameters we have found a perfect fit for a variety of

values of y, y1, y2 and y3.
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Fit 1

Parameter Value

y -1.28
y1 0.66
y2 -1.05
y3 i 1.07

yNs 1
yNa 1

|ξ̃| 0.01
|ṽ2| 0.001

Fit 2

Parameter Value

y -1.00
y1 -1.00
y2 -0.08
y3 i 0.08

yNs 1
yNa 1

|ξ̃| 0.02
|ṽ2| 0.004

Table 4.6: Two different sets with the four input parameters y, y1, y2 and y3 that enter into
the neutrino mass matrix in equation 4.41, giving the correct PMNS observables.

4.4 Summary

In this chapter, we have presented the first example in the literature of a grand unified

theory with a modular symmetry interpreted as a family symmetry. The theory is based

on supersymmetric SU(5) in 6D, where the two extra dimensions are compactified on

a T2/Z2 orbifold. We have shown that, if there is a finite modular symmetry, then

it can only be A4 with fixed modulus τ = ω = ei2π/3 or τ = ω + 1. We emphasize

that this is one of the main differences of the present chapter as compared to recent

works with modular symmetries which regard the modulus τ as a free phenomenological

parameter [212, 215]. By contrast, in the present chapter we assume a specific orbifold

structure which fixes the modulus to one of only two values, where we focus on the case

τ = ω = ei2π/3, although we do not address the problem of moduli stabilisation.

We have shown that it is possible to construct a consistent model along these lines,

which successfully combines an SU(5) GUT group with the A4 modular symmetry and

a U(1) shaping symmetry. In this model, the matter F brane field on the fixed points

is assumed to respect an enhanced symmetry A4 n Z2 which leads to an effective µ− τ
reflection symmetry at low energies, predicting maximal atmospheric angle and maximal

CP phase. In addition, there are two right-handed neutrinos on the fixed points whose

Yukawa couplings are determined by modular weights, leading to specific alignments that

fix the Dirac mass matrix. The model also introduces two triplet flavons in the bulk,

whose vacuum alignments are determined by orbifold boundary conditions, analogous to

those responsible for Higgs doublet-triplet splitting. The charged lepton and down-type

quarks have diagonal and hierarchical Yukawa matrices, with quark mixing due to a

hierarchical up-quark Yukawa matrix with sufficiently high modular weight to provide

quark CP violation.

The resulting model, summarised in tables 4.1 and 4.2, provides an economical and

successful description of quark and lepton (including neutrino) masses and mixing angles
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and CP phases. Indeed the quarks can be fit perfectly, consistently with SU(5), using

only O(1) parameters. In addition we obtain a very good fit for the lepton observables

with χ2 ≈ 5(7) without (with) Super-Kamiokande data, using four O(1) parameters

which determine the entire lepton mixing matrix UPMNS and the light neutrino masses (8

observables), which implies that that the theory is quite predictive. The main predictions

of the model are a normal neutrino mass hierarchy with a massless neutrino, and the

µ− τ reflection symmetry predictions θl23 = 45◦ and CP phase δl = −90◦, which will be

tested soon.



Chapter 5

Flavourful Z′ model to

accommodate R
K(∗) anomalies

Previously, we have been interested in flavour models at the grand unification scale, in

which the Standard Model is embedded into a larger group such as SO(10) in chapters 2

and 3 or SU(5) in chapter 4. In general, one of the simplest extensions of the Standard

Model that one could do is to introduce an additional gauged U(1)′, which could emerge

as a remnant of larger group embeddings of the SM gauge group, with rank larger than

4. In this chapter, we are motivated to present one of such models to examine flavour

at the electroweak scale and give a possible explanation to the present anomalies in

semi-leptonic B-meson decays. The ideas presented in this chapter are mainly based

on [4].

5.1 Introduction

Recently, the phenomenological motivation for considering non-universal Z ′ models

has increased due to mounting evidence for semi-leptonic B-meson decays whose rates

and differential distributions are inconsistent with those predicted by the Standard

Model [231–233]. In particular, the LHCb Collaboration has reported a number of

deviations from µ-e universality in B → K(∗)l+l− decays. These decays are b → s

flavour-changing neutral-current (FCNC) processes which in the Standard Model are

only allowed involving electroweak loop Feynman diagrams, see figure 5.1a. Since FC-

NCs are forbidden at tree-level in the SM, they become sensitive to any new physics

that introduce additional tree-level FCNC interactions as in figure 5.1b.

The couplings of leptons to electroweak gauge bosons are independent of their flavour,

this is known as lepton universality (LU) in the Standard Model. The flavour-changing

neutral-currents are a good way to test LU. Particularly, the ratios within a given range

103
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d d

b̄ s̄

W+

t̄, c̄, ū

Z, γ
e−, µ−

e+, µ+

B0 K∗0

(a) One of the possible diagrams leading to B de-
cays within the Standard Model.

b̄ s̄

Z ′

µ−

µ+

B0 K∗0

gbs

gµµ

d d

(b) Tree-level contribution to B decays from a new
Z′ gauge boson.

Figure 5.1: Some of the diagrams responsible for B-meson decays in the model presented. On
the left we show one of the the Standard Model contributions, while on the right we present
the new tree-level contribution due to a new Z′ gauge boson.

of the dilepton mass squared from q2
min to q2

max given by

RK(∗) =

∫ q2max

q2min

dΓ[B → K(∗)µ+µ−]

dq2
dq2

∫ q2max

q2min

dΓ[B → K(∗)e+e−]

dq2
dq2

, (5.1)

where Γ is the q2-dependent partial width of the decay, are a reliable way to probe

deviations from the SM predictions since some theoretical uncertainties cancel out in

the ratio. Due to lepton universality, the ratios of µ+µ− to e+e− final states RK and

RK∗ are expected to be close to unity in the Standard Model, however, these are observed

to be about 70% of their expected values. The measurement of RK [234] is reported

for 1 < q < 6 GeV2 while the RK∗ [235] ratio is measured in two regions 0.045 < q2 <

1.1 GeV2 and 1.1 < q2 < 6.0 GeV2:

RK = 0.745+0.090
−0.074(stat)± 0.036(syst) for 1 < q < 6 GeV2 ,

RK∗ =

0.66+0.11
−0.07(stat)± 0.03(syst) for 0.045 < q2 < 1.1 GeV2,

0.69+0.11
−0.07(stat)± 0.05(syst) for 1.1 < q2 < 6.0 GeV2.

(5.2)

Each measurement is displaying a 2.5σ deviation from the SM and combining that with

the input from other b → s`+`− processes, the SM is disfavoured by 4 to 5 standard

deviations [236, 237].

The RK and RK∗ anomalies if confirmed, or equivalently, any conclusive observation of

LU violation would indicate the evidence of new physics beyond the Standard Model

(BSM). The B decay rates may be affected by the presence of new heavy BSM particles,

which could couple differently to electrons and muons, violating lepton universality, and

therefore could be responsible for the deviation between the RK(∗) measurements and

the SM prediction.

A number of recent phenomenological analyses, see e.g. [236–244], conclude that these

data can be well fit when the low-energy Lagrangian below the weak scale contains a
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new physics operator of the CNP
9µ = −CNP

10µ form, where CNP
9µ and CNP

10µ are the corre-

sponding Wilson coefficients of the effective four-fermion contact interactions ONP
9µ =

(b̄γµPLs)(µ̄γ
µµ) and ONP

10µ = (b̄γµPLs)(µ̄γ
µγ5µ). An operator of the form CNP

9µ = −CNP
10µ

leads to

∆Leff ⊃ Gbsµ(b̄Lγ
µsL)(µ̄LγµµL) + H.c., (5.3)

which fits the RK(∗) anomalies for

Gbsµ ∼
1

(30 TeV)2
. (5.4)

In a flavourful Z ′ model, the new physics operator in equation 5.3 will arise from tree-

level Z ′ exchange: Gbsµ = −gbsgµµ
M2
Z′

, where gbs is the flavour-violating Z ′ coupling to left-

handed b- and s-quarks, and gµµ is the couplings to left-handed muons. There is already

a vast literature discussing the Z ′ explanation of the B-anomalies and phenomenological

constraints on the parameter space of such models, see e.g. [245–275]. In realistic models

of this kind, the coupling gbs is strongly constrained by precision measurements of the

Bs meson mass difference. Taking that into account, one can derive the constraint

MZ′ . 1.2gµµ TeV, implying that MZ′ must be close to the weak scale in weakly coupled

models. The corollary is that the Z ′ is in the correct mass range to act as mediator

between the SM and thermally produced dark matter [276–282]. In this chapter we only

discuss how this Z ′ model can account for the B-anomalies while in reference [4] it is

shown that the same model can simultaneously explain the observed relic abundance

via a weakly interacting massive particle (WIMP) communicating with the SM through

the same Z ′.

We follow reference [283], which introduces a fourth vector-like family with non-universal

gauged U(1)′ charges. The idea is that the Z ′ couples universally to the three chiral

families, which then mix with the non-universal fourth family to induce effective non-

universal couplings in the physical light mixed quarks and leptons. Such a mechanism

has wide applicability, for example it was recently discussed in the context of F-theory

models with non-universal gauginos [284]. Two explicit examples were discussed in [283].

Firstly an SO(10)→ SU(5)× U(1)X model, where we identified U(1)′ ≡ U(1)X , which

however was subsequently shown to be not consistent with both explaining RK∗ and

respecting the Bs mass difference [285]. Reference [283] also discussed a fermiophobic

model where the gauged U(1)′ charges are not carried by the three chiral families,

only by fourth vector-like family. In the absence of mixing, the Z ′ is fermiophobic,

having no couplings to the three chiral families, but does couple to a fourth vector-like

family. Due to mixing effects, we shall suppose that the Z ′ gets induced couplings to

the second family of left-handed lepton doublets (containing the left-handed muon and

its neutrino) and to the third family of left-handed quark doublets (containing the left-

handed top and bottom quarks). Including only such couplings is enough to address the

B-anomalies, in analogy to related scenarios where new vector-like fermions mix with
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the SM ones [250, 253, 256, 258, 261, 268, 270, 275]. In addition, this set-up provides a

natural WIMP dark matter candidate: the neutrino residing in the fourth family. We

are interested in the parameter space of this model where the B-anomalies are explained,

while in [4] it is shown that both B-anomalies and the relic abundance of dark matter

can be simultaneously explained. Since the study of dark matter is not the aim of this

thesis neither of this chapter, we shall not say anything else about it and we refer to [4]

for the full analysis in which direct and indirect dark matter constraints are taken into

account. Here, we present the model capable of explaining the B-anomalies and we

show that this can be achieved without conflicting experimental constraints such as Bs

mixing, LHC searches, neutrino trident, and so on.

5.2 The model

We consider a model in which, in addition to the Standard Model with the usual three

chiral families of left-handed quarks and leptons, including the right-handed neutrinos,

we add a dark U(1)′ gauge symmetry and a fourth vector-like family of fermions. The

idea is to have the SM quarks and leptons neutral under the U(1)′ while the vector-like

family has the SM quantum numbers and is charged under the U(1)′, leading to a dark

matter candidate and flavour-changing Z ′ operators after the vector-like fermion mass

term mix with the SM fermions.

Table 5.1 shows all the particle content and their corresponding representations and

charges. The non-universal U(1)′ charges forbid mixing between the fourth family and

the chiral families via the usual Higgs Yukawa couplings. Therefore, we need to add new

singlet scalars, with appropriate U(1)′ charges, to generate mass mixing of quarks and

leptons with the vector-like family. The U(1)′ is broken by the VEVs of the new Higgs

singlets φψ to yield a massive Z ′.

The Higgs Yukawa couplings of the first three chiral families can be written in a 4 × 4

matrix notation

LYukawa = yuQ̄LH̃uR + ydQ̄LHdR + yeL̄LHeR + yνL̄LH̃νR + H.c. , (5.5)

where H̃ = iσ2H
∗ and yu, yd, ye, yν are 4×4 matrices with the fourth row and columns

consisting of all zeros, since the fourth family does not couple to the Higgs doublets.

The U(1)′ charges allow Yukawa couplings between the singlet fields φ, the fourth family

ψ̃4 and the first three chiral families ψi. Furthermore, there is an explicit mass term

between the opposite chirality fourth family fields ψ4 and ψ̃4,

Lmass = xQi φQQ̄LiQ̃R4 + xui φu ¯̃uL4uRi + xdi φd
¯̃
dL4dRi + xLi φLL̄LiL̃R4 + xeiφe ¯̃eL4eRi

+MQ
4 Q̄L4Q̃R4 +Mu

4
¯̃uL4uR4 +Md

4
¯̃
dL4dR4 +ML

4 L̄L4L̃R4 +M e
4
¯̃eL4eR4

+Mν
4

¯̃νL4νR4 + H.c. ,

(5.6)
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Field
Representation/charge

SU(3)c SU(2)L U(1)Y U(1)′

QLi 3 2 1/6 0
uRi 3 1 2/3 0
dRi 3 1 −1/3 0
LLi 1 2 −1/2 0
eRi 1 1 −1 0
νRi 1 1 0 0

H 1 2 1/2 0

QL4, Q̃R4 3 2 1/6 qQ4

uR4, ũL4 3 1 2/3 qu4

dR4, d̃L4 3 1 −1/3 qd4

LL4, L̃R4 1 2 −1/2 qL4

eR4, ẽL4 1 1 −1 qe4
νR4, ν̃L4 1 1 0 qν4

φQ,u,d,L,e 1 1 0 −qQ4,u4,d4,L4,e4

Table 5.1: The model consists of the usual three chiral families of quarks and leptons ψi
(i = 1, 2, 3), including the right-handed neutrino, a Higgs doublet H, plus a fourth vector-like
family of fermions ψ4, ψ̃4 and new Higgs singlets φψ which mix fourth family fermions with
the three chiral families. Note that we exclude φν so that νR4, ν̃L4 do not mix and are stable.

where i = 1, ..., 3.

The fourth-family vector-like singlet neutrinos νR4, ν̃L4 are special since we do not have

a singlet field φν that couples them to the other families, which is why such terms are

absent in the above equation. This implies that νR4, ν̃L4 are absolutely stable, with

their stability guaranteed by an unbroken global U(1)νR4 and, since they do not carry

any Standard Model quantum numbers, they may play the role of dark matter. Note

that we also impose lepton number conservation U(1)L for all four families of leptons

which forbids Majorana mass terms. Hence all neutrinos (including those in the fourth

vector-like family) will have purely Dirac masses.1

After the singlet scalar fields φ obtain a non-zero vacuum expectation value (VEV), we

may rewrite the Lagrangian in terms of new mass parameters MQ
i = xQi 〈φQ〉, similarly

for the other mass parameters, such that

Lmass = MQ
α Q̄LαQ̃R4 +Mu

α
¯̃uL4uRα +Md

α
¯̃
dL4dRα +ML

α L̄LαL̃R4 +M e
α

¯̃eL4eRα

+Mν
4

¯̃νL4νR4 + H.c. ,
(5.7)

where α = 1, ..., 4. We may diagonalize the mass matrix before electroweak symmetry

1Alternatively it is possible to introduce various seesaw mechanisms into this kind of model, leading to
Majorana masses, as recently discussed [285]. However in this chapter we only consider Dirac neutrinos.
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breaking, when only the fourth family is massive

Lmass = M̃Q
4 Q̄

′
L4Q̃R4 + M̃u

4
¯̃uL4u

′
R4 + M̃d

4
¯̃
dL4d

′
R4 + M̃L

4 L̄
′
L4L̃R4 + M̃ e

4
¯̃eL4e

′
R4

+Mν
4

¯̃νL4νR4 + H.c.
(5.8)

The prime states for the heavy mass basis where only the fourth family has explicit

vector-like Dirac mass terms and it is related to the original charge basis by unitary

mixing matrices,

Q′L = VQLQL, u′R = VuRuR, d′R = VdRdR, L′L = VLLLL, e′R = VeReR, (5.9)

while for the neutrino states ν̃L4 and νR4 the original and the mass basis coincides. In

this basis, the Yukawa couplings in equation 5.5 become

LYukawa = y′uQ̄′LH̃u
′
R + y′dQ̄′LHd

′
R + y′eL̄′LHe

′
R + y′νL̄′LH̃νR + H.c. , (5.10)

where

y′u = VQLy
uV †uR , y′d = VQLy

dV †dR , y′e = VLLy
eV †eR y′ν = VLLy

ν . (5.11)

This shows that there is a coupling between the heavy fourth family and the Higgs due

to their mixing with the first three chiral families. However, this coupling will be small

since the original yu, yd, ye, yν contain zeroes in the fourth row and column and they

are mixing suppressed. Therefore, we can integrate out the fourth family and look at

the low energy effective theory by simply removing the fourth rows and columns of the

primed Yukawa matrices in equation 5.10. The three massless families, below the heavy

mass scale, are described by

LYukawa
light = y′uij Q̄

′
LiH̃u

′
Rj + y′dijQ̄

′
LiHd

′
Rj + y′eijL̄

′
LiHe

′
Rj + y′νij L̄

′
LiH̃νRj + H.c. , (5.12)

where

y′uij = (VQLy
uV †uR)ij , y′dij = (VQLy

dV †dR)ij , y′eij = (VLLy
eV †eR)ij , y′νij = (VLLy

ν)ij

(5.13)

and i, j = 1, ..., 3. The Yukawa matrices for the quarks and charged leptons can be now

diagonalized

V ′uLy
′uV ′†uR = diag(yu, yc, yt), V ′dLy

′dV ′†dR = diag(yd, ys, yb), V ′eLy
′eV ′†eR = diag(ye, yµ, yτ ).

(5.14)

The unitary CKM matrix is then given by

VCKM = V ′uLV
′†
dL. (5.15)

In the case of neutrinos, since we are forbidding Majorana masses, the light physical
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neutrinos have Dirac mass eigenvalues given by,

vV ′νLy
′νV ′†νR = diag(m1,m2,m3). (5.16)

The lepton mixing matrix or PMNS matrix can be constructed from the transformations

in equations 5.14 and 5.16

VPMNS = V ′eLV
′†
νL. (5.17)

To look at the Lagrangian involving the SM gauge couplings, we emphasize that all

the four families have the same charges under the SM. The unitary transformations in

equation 5.9 cancel as in the usual GIM mechanism [21] and the gauge couplings in the

heavy mass basis remains the same as in the SM. After integrating out the fourth family

and electroweak symmetry is broken, and the light Yukawa matrices are diagonalised,

the couplings to the W± gauge bosons are

Lint
W =

g√
2

(
ūL c̄L t̄L

)
VCKMW

+
µ γ

µ

dLsL
bL



+
g√
2

(
ēL µ̄L τ̄L

)
VPMNSW

+
µ γ

µ

ν1L

ν2L

ν3L

+ H.c.,

(5.18)

where g is the usual SU(2)L gauge coupling. For the couplings to the Z gauge boson, the

same happens, the charges are the same for the fourth families and the transformations

in equation 5.9 cancel, such that in the heavy mass basis, after electroweak symmetry

breaking, we are left with

Lint
Z =

e

2sW cW
ψ̄′αZµγ

µ(CψV − C
ψ
Aγ5)ψ′α (5.19)

where

ψ′α = u′α, d
′
α, e
′
α, ν
′
α α = 1, ..., 4 (5.20)

and

CψA = t3, CψV = t3 − 2s2
WQ. (5.21)

The electric charge of the fermions is denoted by Q and t3 are the eigenvalues of σ3/2.

The couplings to the Z boson are flavour diagonal, even after diagonalization of the light

fermion mass matrices, due to the unitary transformations cancelling. The interactions

will be the same as in equation 5.19, replacing the fields ψ′α by their three family mass

eigenstates.

In the case of the couplings to the Z ′ gauge bosons, we have non-universal couplings

that lead to flavour changing. In the original basis, after the U(1)′ symmetry is broken,

we have diagonal gauge couplings between the massive Z ′ gauge boson and the four
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families

Lgauge
Z′ = g′Z ′µ(Q̄LDQγ

µQL+ūRDuγ
µuR+d̄RDdγ

µdR+L̄LDLγ
µLL+ēRDeγ

µeR) (5.22)

where,

DQ = diag(0, 0, 0, qQ4), Du = diag(0, 0, 0, qu4), Dd = diag(0, 0, 0, qd4)

DL = diag(0, 0, 0, qL4), De = diag(0, 0, 0, qe4), Dν = diag(0, 0, 0, qd4).
(5.23)

In addition there are the fourth family couplings involving the opposite chirality states

ψ̃4. Using the transformations in equation 5.9, we get the Z ′ couplings in the diagonal

heavy mass basis

Lgauge
Z′ = g′Z ′µ(Q̄′LD

′
Qγ

µQ′L + ū′RD
′
uγ

µu′R + d̄′RD
′
dγ

µd′R + L̄′LD
′
Lγ

µL′L + ē′RD
′
eγ
µe′R)

(5.24)

where D′Q = VQLDQV
†
QL

, and similarly with Q→ L, etc. Ignoring phases, these matrices

can be parametrized as

D′Q = qQ4


s2

14 c14s14s24 c14c24s14s34 c14c24c34s14

c14s14s24 c2
14s

2
24 c2

14c24s24s34 c2
14c24c34s24

c14c24s14s34 c2
14c24s24s34 c2

14c
2
24s

2
34 c2

14c
2
24c34s34

c14c24c34s14 c2
14c24c34s24 c2

14c
2
24c34s34 c2

14c
2
24c

2
34

 (5.25)

where sij and cij refer to sin θij and cos θij (we have also suppressed the superscript in

the angles sQ14 → s14 for simplicity). Since the U(1)′ charges differ for the fourth family,

the unitary transformations do not cancel and the matrices D′Q, etc., are not generally

diagonal. Therefore, Z ′ exchange can couple to light families of different flavour.

We are interested in the s̄bZ ′ and µ̄µZ ′ couplings, needed for the RK(∗) anomalies.

Assuming that only the mixing angles θQL34 and θLL24 are different from zero2 the mixing

mass matrices become

D′Q = qQ4


0 0 0 0

0 0 0 0

0 0 (sQ34)2 cQ34s
Q
34

0 0 cQ34s
Q
34 (cQ34)2

 , D′L = qL4


0 0 0 0

0 (sL24)2 0 cL24s
L
24

0 0 0 0

0 cL24s
L
24 0 (cL24)2

 , (5.26)

while the rest of them being zero. In the low energy effective theory, after integrating

out the fourth heavy family, the Z ′ couplings to the three massless families of quarks

2A more natural possibility would be to assume that the new vector-like fermions have a large mixing
only with the 3rd generation of the SM doublet, that is with taus instead of muons. Then the coupling
to muons could arise due to a mixing between the SM charged leptons, as in [283]. However, explaining
the B-meson anomalies in such a set-up runs in conflict with the strong bounds from non-observation
of τ → 3µ.
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and leptons are

Lgauge
Z′ = g′Z ′µ

(
qQ4(sQ34)2Q̄′L3

γµQ′L3
+ qL4(sL24)2L̄′L2γ

µL′L2

)
, (5.27)

where Q′L3 = (t′L, b
′
L) and L′L2 = (ν ′µL, µ

′
L). Using now the diagonalization of the Yukawa

matrices in equation 5.14, we can expand the primed fields in terms of the mass eigen-

states,

b′L = (V ′†dL)31dL + (V ′†dL)32sL + (V ′†dL)33bL

t′L = (V ′†uL)31uL + (V ′†uL)32cL + (V ′†uL)33tL

ν ′µL = (V ′†νL)21ν1L + (V ′†νL)22ν2L + (V ′†νL)23ν3L (5.28)

µ′L = (V ′†eL)21eL + (V ′†eL)22µL + (V ′†eL)23τL.

For simplicity, we assume that the charged lepton mass matrix is diagonal so that we

may drop the primes on the muon field so that µ′L = µL. Under this assumption, in

the lepton sector, the Z ′ only couples to muon mass eigenstates µL and muon neutrinos

νµL, where the latter are related to neutrino mass eigenstates by the PMNS matrix,

ν ′µL = (VPMNS)21ν1L + (VPMNS)22ν2L + (VPMNS)23ν3L (5.29)

Given the hierarchies of the CKM matrix, we will assume similar hierarchies of the

rotation matrix elements:

|(V ′(d,u)L)31|2 � |(V ′(d,u)L)32|2 � |(V ′(d,u)L)33|2 ≈ 1 (5.30)

The vector-like neutrino ν4 is not charged under the SM and can be considered as a dark

matter candidate [4]. The portal that allows it to annihilate into ordinary matter is the

Z ′ mediator. The explicit coupling between the Z ′ and the dark matter candidate ν4 is

Lν4Z′ = g′qν4Z
′
µν4γ

µν4, (5.31)

where the Dirac dark matter field is given by ν4 = ν̃4L + ν4R with a Dirac mass mνν4ν4

where we have defined mν ≡Mν
4 .

We finish this section by summarizing all non-SM interactions that will later be relevant

for our phenomenological analysis, introducing the notation that we shall subsequently

use:

L ⊃ Z ′µ
(
gbbq̄Lγ

µqL + gbsb̄Lγ
µsL + gµµ ¯̀

Lγ
µ`L + gννν4γ

µν4

)
, (5.32)

where qL = (tL, bL)T , `L = (νµL, µL)T , gbb = g′qQ4(sQ34)2, gbs = gbb(V
′†
dL)32, gµµ =

g′qL4(sL24)2, gνν = g′qν4 . We expect |(V ′†dL)32| . |Vts|, where |Vts| ≈ 0.04 is the 3-2
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entry of the CKM matrix, as otherwise unnatural cancellations would be required. It

follows that |gbs| . |Vtsgbb|; in the following for simplicity we assume gbs = Vtsgbb,

and that gbb and gµµ have the same sign. Thus, the relevant parameter space is 5-

dimensional: 3 couplings (gbb, gµµ, gνν) and 2 masses (MZ′ and the dark matter mass

mν). From the theory point of view these are all essentially free parameters, although

one naturally expects gνν � gbb, gµµ in the absence of large mixings or large hierarchies of

U(1)′ charges. These parameters are then constrained by flavour physics, multiple low-

energy precision measurements, colliders, and dark matter detection experiments. In the

following section we identify the regions of the parameter space where the B-anomalies

can be explained without conflicting any existing experimental data, considering only

a three-dimensional parameter space: (gbb, gµµ,MZ′). The whole analysis including the

dark matter constraints can be found in [4]. We note that Z ′ models simultaneously

addressing the B-anomalies and dark matter have been previously discussed in [276–282].

In particular, reference [279] performed a detailed analysis of collider, precision, dark

matter constraints in a similar model based on gauged Lµ − Lτ symmetry. The main

practical difference between our setup and that model is the presence of Z ′ couplings to

b-quarks in equation 5.32, which affects the LHC phenomenology.

5.3 RK(∗) anomalies and flavour constraints

In this section we review and update the constraints on the parameter space of Z ′ models

motivated by the current B-meson anomalies. One possible explanation of the RK and

RK∗ measurements in LHCb is that the low-energy Lagrangian below the weak scale

contains an additional contribution to the effective 4-fermion operator with left-handed

muon, b-quark, and s-quark fields:

∆Leff ⊃ Gbsµ(b̄Lγ
µsL)(µ̄LγµµL) + H.c., Gbsµ ≈

1

(31.5 TeV)2
. (5.33)

Above, the numerical value of the effective coefficient corresponds to the best fit quoted

in [237]. In our model, this operator arises from tree-level Z ′ exchange and the analogous

operator with µL replaced by eL does not appear due to vanishing charged lepton mixing.

We can express the coefficient Gbsµ as function of the couplings in equation 5.32,

Gbsµ = −gbsgµµ
M2
Z′

= −Vtsgbbgµµ
M2
Z′

. (5.34)

Together, equations (5.33) and (5.34) imply the constraint on the parameters gbb, gµµ

and MZ′ :
gbbgµµ
M2
Z′
≈ 1

(6.4 TeV)2
. (5.35)

There are additional constraints on these parameters coming from flavour physics and
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low-energy precision measurements. In the following we determine the region of the

parameter space where the RK(∗) anomalies can be explained without conflicting other

experimental data.

5.3.1 Bs − Bs mixing

The Z ′ coupling to bs leads to an additional tree-level contribution to Bs −Bs mixing.

Low-energy observables are affected by the effective operator arising from integrating

out the Z ′ at tree level:

∆Leff ⊃ −
Gbs
2

(s̄Lγ
µbL)2 + h.c, Gbs =

g2
bs

M2
Z′

=
g2
bbV

2
ts

M2
Z′
. (5.36)

Such a new contribution is highly constrained by the measurements of the mass difference

∆Ms of neutral Bs mesons. In this chapter we follow the recent analysis of reference [286]

which, using updated lattice results, obtains a stronger bound on Gbs:

− 1

(180 TeV)2
. Gbs .

1

(770 TeV)2
, @ 95%CL. (5.37)

The resulting constraints in the (gµµ, gbb) plane are shown as the light blue region in

figure 5.2. The updated constraint is particularly strong for the models that generate a

strictly positive Gbs [286] (as is the case in Z ′ models) due to the ∼ 1.8σ discrepancy

between the measured ∆Ms and the updated SM predictions which favours Gbs < 0.

As a consequence, Z ′ models explaining the B-meson anomalies requires MZ′ . 1 TeV,

assuming weak coupling gµµ . 1. For easy reference, we also show the Bs mixing

constraints based on the previous SM determination of ∆Ms [287], − 1
(160 TeV)2

. Gbs .
1

(140 TeV)2
, see the dark blue region in figure 5.2 labelled “Bs mixing 2015”.

5.3.2 Neutrino trident

The Z ′ coupling to left-handed muons leads to a new tree-level contribution to the

effective 4-lepton interaction

∆Leff ⊃ −
Gµ
2

(¯̀
Lγ

µ`L)2, Gµ =
g2
µµ

M2
Z′
. (5.38)

This operator is constrained by the trident production νµγ
∗ → νµµ

+µ− [288–290]. Using

the results of the global fit in [291], the bound on the effective coefficient is given by

− 1

(390 GeV)2
. Gµ .

1

(370 GeV)2
, @ 95%CL. (5.39)

The limits in the (gµµ, gbb) plane are shown as the orange region in figure 5.2. Since

the trident constraints probe much lower scales than the Bs mixing, a much larger Z ′
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Figure 5.2: The parameter space in the (gµµ, gbb) plane compatible with RK(∗) anomalies
and flavour constraints (white). The Z′ mass varies over the plane, with a unique Z′ mass
for each point in the plane as determined by equation 5.35. We show the recent Bs mixing
constraints (light blue), the trident bounds (orange), the Z → 4µ constraints (pink), and the
ATLAS constraints from dimuon resonances Z′ → µµ (purple); for reference we also display
the previous weaker Bs mixing bounds (dark blue). The green, red, purple and black lines
correspond to MZ′ = 10, 100, 1000, 10000 GeV respectively.

coupling to muons is allowed, gµµ & 1 for a heavy enough Z ′. Nevertheless, together

with the Bs mixing constraints, the trident leaves only a narrow sliver of the parameter

space that could address the B meson anomalies.

5.3.3 LHC searches

Further constraints on our model come from collider searches. For light Z ′ masses, the

LHC measurements of the Z decays to four muons, with the second muon pair produced

in the SM via a virtual photon [292, 293], pp → Z → 4µ, sets relevant constraints in

the low mass region of Z ′ models, 5 . MZ′ . 70 GeV. The Z → 4µ constraints on

the magnitude of the Z ′ coupling to muons were analysed in [247, 279, 290]. Projecting

these results onto our model, the excluded parameter space is marked as the pink regions

in figures 5.2 and 5.3 and in the upper-left panel of figure 5.4. All in all, the Z → 4µ

constraint is non-trivial but for any Z ′ mass it always leaves some available parameter

space to explain the B-meson anomalies.

For a heavier Z ′, the strongest constraints comes from LHC dimuon resonance searches,

pp → Z ′ → µ+µ−, see also [269]. In our model the Z ′ is dominantly produced at the

LHC through its couplings to bottom quarks, bb̄ → Z ′. The cross section σ(pp → Z ′)

from bb̄ collisions is taken from figure 3 of reference [294]. The contribution of bottom-

strange collisions, which is secondary in our model, is estimated using Madgraph [295].
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The Z ′ boson can subsequently decay into muons, muon neutrinos, bottom or strange

quarks, and also into top quarks and dark matter when kinematically allowed. The

partial decay widths are given by

ΓZ′→µµ̄ =
1

24π
g2
µµMZ′ = ΓZ′→νµν̄µ ,

ΓZ′→bb̄ =
1

8π
g2
bbMZ′ , ΓZ′→bs̄ =

1

8π
g2
bbV

2
tsMZ′ ,

ΓZ′→tt̄ =
1

8π
g2
bbMZ′

(
1− m2

t

M2
Z′

)√
1− 4m2

t

M2
Z′
,

ΓZ′→ν4ν̄4 =
1

24π
g2
ννMZ′

(
1− m2

ν

M2
Z′

)√
1− 4m2

ν

M2
Z′
,

(5.40)

from which we calculate Br(Z ′ → µµ) analytically. Then σ(pp→ Z ′ → µµ) is estimated

using the narrow-width approximation, and compared with the limits from the recent

dimuon resonance search by ATLAS [296], which allows us to constrain Z ′ masses be-

tween 150 GeV and 5 TeV. We verified that the analogous Tevatron analyses give weaker

constraints, also in the low mass regime. Figure 5.4 shows the ATLAS constraints for

specific Z ′ masses (200, 500 and 1000 GeV) with dark matter couplings set to zero and

arbitrary (gµµ, gbb) couplings. Figure 5.2 shows the same limits for the Z ′ mass fixed

in function of (gµµ, gbb) by the condition in equation 5.35. In the plane (gµµ, gbb), the

Z ′ mass is fixed to explain the observed RK(∗) anomalies, therefore for each gµµ, gbb

and Z ′ mass we compute the cross section and we check if this is excluded by ATLAS

or not. We conclude that in the parameter space of our model relevant for explaining

the B-meson anomalies the ATLAS dimuon limits are always weaker that the new Bs

mixing constraints.

5.3.4 Constraints from lepton-flavour violation

So far we were assuming zero mixing in the charged-lepton sector. It is interesting to

discuss the constraints resulting from relaxing that assumption. In particular, for a

non-vanishing mixing angle between charged leptons of the second and first generations

(V ′eL)21 6= 0, a non-diagonal Z ′ coupling to left-handed muons and electrons would be

present

L ⊃ gµµ(V ′eL)21µ̄Lγ
µeLZ

′
µ + H.c. , (5.41)

which could generate an additional contribution to the transition µ→ eγ whose partial

decay width can be estimated, according to [270], as

Γ(µ→ eγ) '
α m5

µ

1024π4M4
Z′
g4
µµ|V ′eL|221F

2(m2
µ/M

2
Z′) , (5.42)

where F (x) is a loop function, as defined in [270], whose limit for MZ′ � mµ is

limx→0 F (x) = 2/3. The branching ratio of µ → eγ is severely constrained by the
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Figure 5.3: The parameter space in the (gµµ,MZ′) plane compatible with RK(∗) anomalies
and flavour constraints (white). We show the recent Bs mixing constraints (light blue), the
trident bounds (orange), the Z → 4µ limits (pink) as well as the expected limits from µ→ eγ
for several values of |V ′eL|21 (black dashed).

MEG experiment [297] which set the bound BR(µ → eγ) ≤ 4.2× 10−13 at 90%CL. An

analytical approximation of this branching ratio is given by

BR(µ→ eγ) ' 1.24× 10−6 g4
µµ|V ′eL|221

(
MZ′

1 TeV

)−4

, (5.43)

implying that µ→ eγ is expected to set a stronger constraint than the neutrino trident

production for values of the mixing angle |V ′eL|21 & 10−4 as represented in figure 5.3,

while |V ′eL|21 & 10−3 would rule out the entire parameter space. As a result, in the

viable parameter space of our setup, the mixing angle |V ′eL|21 is expected to be |V ′eL|21 .

10−4. Similarly, the experimental limit on the lepton-flavour-violating of the tau lepton

into 3 muons, BR(τ → 3µ) ≤ 2 × 10−8 [298], constrains the mixing angle between

charged leptons of the second and third generation (V ′eL)32:
g2µµ|V ′eL|32

M2
Z′

. 1
(16 TeV)2

. This

is stronger than the trident bound in equation (5.39) for (V ′eL)32 & 3 × 10−4, while

(V ′eL)32 & 3× 10−3 would rule out the entire parameter space.

5.3.5 Other constraints

Finally we comment on other precision observables which yield secondary constraints on

our model.

The contribution of Z ′ to the muon magnetic moment is given by

∆µ
g−2 =

1

12π2
m2
µ

(
gµµ
MZ′

)2

. (5.44)
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Figure 5.4: Bounds on the parameter space in the (gµµ, gbb) plane for fixed Z′ masses: 50,
200, 500 and 1000 GeV, as indicated on each panel. The red bands explain RK(∗) at 1σ. The
blue and orange areas show the Bs−Bs mixing [286] and neutrino trident [291] 2σ exclusions,
respectively. For low Z′ masses we have additional constraints from Z → 4µ as shown in pink.
The ATLAS limits [296] from dimuon resonance searches for 36 fb−1luminosity are given in
purple for larger Z′ masses.

The measured discrepancy of the muon magnetic moment is ∆µ
g−2 = (290± 90)× 10−11

[299]. This sets weaker limits on the ratio gµµ/MZ′ than the trident production.

Next, Z ′ exchange generates the effective interaction between b-quarks and muons:

Leff ⊃ Gbµ(b̄Lγ
µbL)(µ̄LγµµL), Gbµ = −gbbgµµ

M2
Z′

= − 1

(6.4 TeV)2
, (5.45)

where we used equation 5.35. The operator in equation 5.45 is constrained by lepton

flavour universality of upsilon meson decays [300]. Focusing on the Υ1s state, given the

measured ratio [301]

R
τ/µ
1s =

Γ(Υ1s → τ+τ−)

Γ(Υ1s → µ+µ−)
= 1.008± 0.023, (5.46)

and the SM prediction R
τ/µ
1s = 0.9924, one finds the constraint

− 1

(150 GeV)2
< Gbµ <

1

(190 GeV)2
@ 95%CL. (5.47)

This is automatically satisfied in our model in the parameter space where theRK(∗) anomalies

are explained.
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5.4 Summary

We have presented a new Z ′ model to accommodate the observed RK(∗) anomalies. We

extend the Standard Model, including three right-handed neutrinos, with an U(1)′ gauge

symmetry and a fourth family of vector-like fermions. In the absence of mixing, the Z ′ is

fermiophobic, having no couplings to the SM three chiral families, but does couple to a

fourth vector-like family. Due to mixing effects, the Z ′ gets induced couplings to second

family left-handed lepton doublets and third family left-handed quark doublets. These

couplings add a tree-level contribution to the b → s flavour-changing neutral-current

process, as shown in figure 5.1b. Since the Z ′ couples to muons but it does not couple to

electrons, this model can account for the measured B-meson decay ratios RK and RK∗ .

We identify the parameter space where this explanation is consistent with existing exper-

imental constraints from LHC searches, precision measurements of flavour mixing and

neutrino processes. In this chapter, the relevant parameter space is effectively three-

dimensional, and spanned by the Z ′ couplings to muons (gµµ) and b-quarks (gbb) and

by the mass of the Z ′ gauge boson (MZ′). For each gµµ and MZ′ , gbb is fixed accord-

ing to equation 5.35 to the best fit value reproducing the RK(∗) measurements. The

coupling gbb is further strongly constrained by precision measurements of the Bs meson

mass difference leading to MZ′ . 1.2gµµ TeV. In our model, the Z ′ coupling to muons

is suppressed by a mixing angle between the SM 2nd generation lepton doublet and

the 4th generation vector-like lepton doublet, and thus MZ′ is expected to be close to

the weak scale. The coupling gµµ is also constrained by neutrino trident production.

Further restrictions from LHC searches are shown to be weaker than the Bs mixing

constraints, see figure 5.2. Figures 5.2 and 5.4 show that there is narrow band in which

RK(∗) anomalies can be understood for Z ′ masses between 10 GeV . MZ′ . 1 TeV.

Larger Z ′ masses would require a large Z ′ couplings to muons gµµ > 1, which seems

unnatural, and smaller Z ′ masses are allowed for gbb . 10−3.

Incidentally, that parameter space can be probed by several distinct methods. First of

all, the allowed window can be further squeezed by better precision measurements of

the trident νµN → µ+µ−νµN process, and by improving the theoretical precision of the

SM prediction for the Bs meson mass difference. The above statement is in fact valid

for all models where the B-anomalies are addressed by a tree-level Z ′ exchange. What is

more specific to models where the Z ′ interactions with the SM fermions originates from

mixing of the latter with vector-like fermions is a non-vanishing Z ′ coupling not only to

muons but also to b-quarks. This results in a non-negligible rate of the partonic process

bb̄ → Z ′ → µ+µ− which can be probed by dimuon resonance searches at the LHC. In

fact, the preferred MZ′ range is where the LHC sensitivity is optimal. Targeted searches

for b-quark-collision initiated process (rather than recast of generic dimuon searches)

could lead to a discovery signal in the near future, or to better constraints that are more

stringent than the Bs mixing one.
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Even though, in this chapter, we do not discuss the dark matter candidate naturally aris-

ing in this model, i.e. the fourth vector-like neutrino, the analysis has been performed

in [4]. Here, it is shown that the model is compatible with both, fitting RK(∗) anomalies

and reproducing the correct relic abundance of dark matter while satisfying all experi-

mental and cosmological constraints. To summarize the results shown in [4], assuming

our model is indeed the correct explanation of the observed RK(∗) anomalies and dark

matter relic abundance, the analysis hints at a particular corner of the parameter space

where 300 GeV .MZ′ . 1 TeV, mν & 1 TeV, gνν & 1, gbb ∼ 0.1gµµ and 0.1 . gµµ . 1.





Chapter 6

Conclusions

In this thesis we have addressed the flavour puzzle and the origin of neutrino masses

within a SUSY flavour GUT framework in chapters 2-4, while the last chapter 5 was

dedicated to flavour at the electroweak scale. In the following, we summarize the main

successes of each chapter as well as some drawbacks that in most of the cases motivated

the subsequent chapter.

Chapters 2-4 were based on flavour SUSY GUTs, driven by the aim of resolving as many

open questions in particle physics as possible simultaneously. We followed a guiding

principle, given by the discrete family symmetry group, to tackle the flavour puzzle.

We introduced flavon fields that after acquiring VEVs give a dynamical origin to the

Yukawa parameters of the Standard Model. We have also addressed neutrino masses

and mixing within a type-I seesaw mechanism. Charge quantisation and gauge coupling

unification were assured by the GUT group and we ensured that only the two MSSM

Higgs doublets remained at low scales.

In chapter 2, we constructed a model based on an S4 × SO(10) grand unified theory of

flavour. SO(10) was chosen since it predicts three right-handed neutrinos and makes

neutrino mass inevitable. In the model, the flavon vacuum alignments preserve the SU

generator of S4, leading to the CSD3 vacuum alignments. All known fermions are con-

tained at the high scale within a single representation ψ which is (3′,16) representation

of S4 × SO(10).

The model relies on “universal sequential dominance”, meaning that the Yukawa ma-

trices are sums of low-rank matrices and each matrix in the sum naturally accounts for

the mass of a particular family. The hierarchy between all fermion masses is explained

by assuming only a rather mild hierarchy in the flavons VEVs, i.e. 〈φ1〉 < 〈φ2〉 < 〈φ3〉,
with differences of an order of magnitude between each flavon VEV. With this set up,

the model successfully reproduces all the observed fermion masses and mixing, even in

the quark sector, although we had to assume some SUSY threshold corrections to the

121



122 Chapter 6 Conclusions

running of Yukawa parameters. The milder hierarchy in the down-type quarks compared

to the up-type quarks is explained by a mixed term involving φ1φ2, which introduces

a texture zero in the (1, 1) element of the down-type Yukawa matrix Y d. This feature

leads to the GST relation for the Cabibbo angle θq12 ≈
√
yd/ys. In the lepton sector, an

excellent fit to data was performed and we gave some predictions as normal hierarchy

and CP phase deviating both from zero and maximal CP violation.

To achieve fermion masses and mixing, there is no need of tuning of O(1) parame-

ters. We ensured naturalness within the model with all dimensionless parameters in

the renormalisable superpotential being O(1). The model is also simple, meaning that

we employed the smallest possible field content. We also addressed the doublet-triplet

splitting and the µ problem and we provided an ultraviolet renormalisable model. How-

ever, we did not discuss the origin of the hierarchy of flavon VEVs, nor did we derive

the CSD3 vacuum alignments which would require additional field content. Similarly,

we did not show explicitly how SO(10) was broken to the MSSM. Furthermore, even

though the second right-handed neutrino has a mass of O(1010) GeV, which is in the

preferred range to reproduce the observed BAU, N2 leptogenesis does not survive the

washout due to the inverse decays into the lightest right-handed neutrino N1. These

features motivated us to construct a new model presented in chapter 3, which is still

based on an S4 × SO(10) symmetry but with different CSD2 vacuum alignments.

In chapter 3, we also unified the fermions in a 16 representation of SO(10) and a

triplet 3′ of S4. The Yukawa couplings are given again a dynamical origin and arise

from the CSD2 vacuum alignments of the flavon fields. The model contains similar

characteristics to the ones in chapter 2, the Yukawa matrices are derived from sum

of low-rank matrices, where each matrix accounts for a particular fermion, while the

hierarchy between different fermions is due to a milder hierarchy between the flavon

VEVs. Similarly, the CSD2 structure and the mixing term φ1φ2 in the down-type quark

Yukawa matrix give rise to the GST relation and to a milder hierarchy in the down-type

quarks compared to the up-type quarks.

Additionally, in this model a set of driving fields was added which together with the

supersymmetric F -term equations fix the CSD2 vacuum alignments. We also showed

the symmetry breaking superpotential that fixes the hierarchy between the flavon VEVs

〈φ1〉 < 〈φ2〉 < 〈φ3〉 as well as a working doublet-triplet splitting mechanism and a µ

term generated at the correct scale.

In this model, the second right-handed neutrinoN2 has an expected natural mass value of

the order O(1011) GeV, in the favoured range to produce the observed BAU through N2

thermal leptogenesis. To verify if it is feasible to obtain the measured baryon asymmetry,

we took into account the washout due to inverse decays into N1 and we computed

all relevant parameters, i.e. decay asymmetries, efficiency factors and flavour effects.

Interestingly, the CSD2 vacuum alignments lead to a zero in the (3, 1) entry of the Dirac
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neutrino mass matrix in the flavour basis so that there is not suppression due to taus

decaying into N1. Therefore, this model naturally generates sufficient BAU through N2

leptogenesis, fixing the second right-handed neutrino mass M2 ' 1.9× 1011 GeV, in the

natural range predicted by the model.

We also performed a fit to the Standard Model fermion masses and mixing angles with

some predictions such as normal neutrino mass ordering and a CP violating phase of

200◦. However, the fit relies on specific large SUSY threshold corrections and it still

depends on O(1/MP ) terms for the right-handed neutrinos.

The main difference between chapters 2 and 3 is given by the distinct flavon alignments

which results in different predictions in the Yukawa couplings and mixing parameters.

Chapter 2 is based on CSD3 while chapter 3 is based on CSD2. In chapter 2, we have

19 free parameters to fit 18 data points (we decided not to include δl in the fit and we

left it as a pure prediction of the model since it was not yet well measured) and we

found a χ2 ≈ 3.4 with all the predictions within the 1σ range. In chapter 3, we have

a larger χ2 ≈ 11.9, with the leptonic sector perfectly fit while we found larger pulls in

the quark sector, for example, the top Yukawa coupling deviates almost 2σ. However,

in chapter 3 the number of free parameters is reduced to 15 and additionally we can

find the correct baryon asymmetry of the Universe through leptogenesis what was not

possible in chapter 2. In both cases most of the contribution to the χ2 function comes

from the quark sector and we still have to rely in large SUSY threshold corrections.

Heretofore, in chapter 2 our guiding principles were naturalness, with only O(1) dimen-

sionless parameters and minimality, with only low-dimensional representations and a

minimal field content. In chapter 3, we went one step further and we focused also in

completeness, where we added a set of driving fields to reproduce the desired flavon

vacuum alignments and we also showed an explicit symmetry breaking leading to the

hierarchy between flavon VEVs. Then, in chapter 4 we aimed at combining all these

guiding principles in a useful way with the introduction of extra dimensions. In this

case, the number of fields was largely reduced since the boundary conditions on the orb-

ifold compactification introduce GUT-symmetry breaking, reproduce a doublet-triplet

splitting and additionally align the flavon VEVs.

In chapter 4 we focused on a supersymmetric SU(5) theory in 6-dimensions, where the

two extra dimensions were compactified on a T 2/Z2 orbifold. We showed that within

this orbifold, if there is a finite modular symmetry, it can only be A4 with fixed modulus

τ = ω = ei2π/3 or τ = ω + 1, where we focused on the first possibility. However, we did

not address the problem of moduli stabilisation. The finite modular symmetry A4 plays

the roll of the flavour symmetry and the structure of the matrices is dictated not only

by the flavon VEVs but also by the Yukawa couplings which become modular forms.

In this model, the hierarchy between fermions is understood through the Froggatt-

Nielsen mechanism. The down-type quarks and the charged leptons have diagonal and
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hierarchical Yukawa matrices, with quark mixing due to a hierarchical up-type quark

Yukawa matrix. The neutrino mass matrix is µ− τ reflection symmetric at low energies,

predicting maximal atmospheric mixing angle and maximal leptonic CP violation. The

model also predicts normal neutrino mass hierarchy. The rest of the PMNS observables

are fit to the best present measured values, while the quarks can be perfectly fit using

only O(1) parameters.

Finally, chapter 5 was devoted to flavour physics at the electroweak scale. In this

chapter, we abandoned the idea of solving simultaneously most of the open questions of

the Standard Model presented in chapter 1, and we focused on explaining the present

anomalies in semi-leptonic B-meson decays, which if confirmed, may be the first signal

of new physics beyond the Standard Model, apart from neutrino masses. In particular,

we accounted for the deviations from µ − e universality, predicted by the Standard

Model, which have been reported by the LHCb Collaboration in B-meson decays. Since

these decays are b → s flavour-changing neutral-currents, forbidden at tree-level in

the SM, they become sensitive to any new physics that introduce additional tree-level

interactions.

In the model presented, we introduced an additional U(1)′ symmetry to the SM (in-

cluding three right-handed neutrinos) and a fourth family of vector-like fermions. The

only fermions charged under the new U(1)′ are the ones in the fourth family. However,

due to mixing effects, the Z ′ gets induced couplings to the second family of left-handed

lepton doublets and to the third family of left-handed quark doublets. We showed that

the model can account for the measured B-decay ratios consistently with existing ex-

perimental constrains from LHC searches and precision measurements of flavour mixing

and neutrino processes. Additionally, the model provides a natural dark matter candi-

date, the neutrino in the fourth family, although we did not discuss the relic abundance

neither the dark matter direct and indirect experimental constraints on this thesis.

Beyond the above successes of the different chapters, there are still a few drawbacks

that deserve further study. Chapter 2-4 did not explain SUSY breaking. A more de-

tailed phenomenological study will take into account experimental constraints on SUSY

observables. Furthermore, to achieve a good fit large SUSY threshold corrections were

necessary, studying the underlying SUSY model which can reproduce the required cor-

rections is beyond the stated aims of this thesis. Furthermore, we did not discuss the

strong CP problem, inflation or Dark Matter (which may in principle be the lightest

SUSY particle, stabilised by the R-parity).

In chapter 5, the available parameter space of the model can be proved in the future

since the preferred MZ′ range is within the LHC sensitivity scope. Better precision

measurements and resonance searches at the LHC can test the allowed window as well

as an improvement in the theoretical precision of the SM prediction for the Bs mass

difference can further squeeze the parameter space.
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In summary, we have presented three different SUSY flavour GUT models in chap-

ters 2-4 addressing some of the known Standard Model open questions such us neutrino

masses, the flavour puzzle, charge quantization and gauge coupling unification, and the

baryon asymmetry of the universe, among many others. In chapter 5, we introduced

an extension of the Standard Model which has implications at the electroweak scale, in

particular, it may explain the recent anomalies in B-meson decays.

I hope that the results presented in this thesis give a deeper insight into physics beyond

the Standard Model and that they will be helpful for future research.





Appendix A

S4 and A4 group theory

In this section, we introduce the group theory properties of S4 and A4. S4 is the

symmetric group consisting of all possible permutations among 4 objects and it also

corresponds to the rigid rotational symmetries of a cube. A4 is a subgroup of S4 and

consists of all even permutations in S4. A4 is also given by the rigid rotational symmetries

of a tetrahedron. There are 24 independent transformations (group elements of S4) of

which 12 are symmetries of A4 (group elements of A4). We will define the groups in

terms of their presentation, where the generators (subsets of elements from which we

can obtain all elements of the group by multiplication) have to satisfy certain rules.

In the case of S4, we need three generators S, T and U which satisfy the presentation

rules [302]

S2 = T 3 = U2 = (ST )3 = (SU)2 = (TU)2 = (STU)4 = 1. (A.1)

If we drop the generator U , this reduces to the presentation of A4 [303]. All group

elements can be constructed from these generators, following the rules above.

A.1 S4 symmetry group

We shall now present the irreducible matrix representations for S4 in the T -diagonal

basis, see [101, 304, 305] for proofs and other bases. S4 has the following irreducible

representations: two singlet representations 1 and 1′, one doublet representation 2 and

two triplets denoted by 3 and 3′ which are independent. The matrix representations in

the T -diagonal basis are given in table A.1 [102] (where ω = ei2π/3).

The Kronecker product rules are basis independent but the Clebsch-Gordan coefficients

depend on the basis. We list the Kronecker products and Clebsch-Gordan coefficients

of S4 in the T -diagonal basis given by table A.1 [129], where n counts the number of

primes which appear, e.g. 3 ⊗ 3′ → 3′ has n = 2 primes. The products involving at

127
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S4 1,1′ 2 3,3′

S 1

(
1 0
0 1

)
1
3

 −1 2 2
2 −1 2
2 2 −1



T 1

(
ω 0
0 ω2

)  1 0 0
0 ω2 0
0 0 ω



U ±1

(
0 1
1 0

)
∓

 1 0 0
0 0 1
0 1 0


Table A.1: Generators S, T and U in the irreducible representations of S4, where ω = ei2π/3.

least one singlet or doublet are given by

1(′) ⊗ 1(′) → 1(′)


1⊗ 1→ 1

n = even 1′ ⊗ 1′ → 1

1⊗ 1′ → 1′

 αβ,

1(′) ⊗ 2→ 2

{
n = even 1⊗ 2→ 2

n = odd 1′ ⊗ 2→ 2

}
α

(
β1

(−1)nβ2

)
,

1(′) ⊗ 3(′) → 3(′)



1⊗ 3→ 3

n = even 1′ ⊗ 3′ → 3

1⊗ 3′ → 3′

1′ ⊗ 3→ 3′


α

β1

β2

β3

 ,

2⊗ 2→ 1(′)

{
n = even 2⊗ 2→ 1

n = odd 2⊗ 2→ 1′

}
α1β2 + (−1)nα2β1,

2⊗ 2→ 2
{
n = even 2⊗ 2→ 2

} (
α2β2

α1β1

)
,

2⊗ 3(′) → 3(′)



n = even 2⊗ 3→ 3

2⊗ 3′ → 3′

n = odd 2⊗ 3→ 3′

2⊗ 3′ → 3


α1

β2

β3

β1

+ (−1)nα2

β3

β1

β2

 ,

(A.2)

while the products of two triplets going into either a singlet, a doublet or a triplet are
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given by

3(′) ⊗ 3(′) → 1(′)


3⊗ 3→ 1

n = even 3′ ⊗ 3′ → 1

3⊗ 3′ → 1′

 α1β1 + α2β3 + α3β2,

3(′) ⊗ 3(′) → 2


n = even 3⊗ 3→ 2

3′ ⊗ 3′ → 2

n = odd 3⊗ 3′ → 2


(

α2β2 + α3β1 + α1β3

(−1)n(α3β3 + α2β1 + α1β2)

)
,

3(′) ⊗ 3(′) → 3(′)


3⊗ 3→ 3′

n = odd 3⊗ 3′ → 3

3′ ⊗ 3′ → 3′


2α1β1 − α2β3 − α3β2

2α3β3 − α1β2 − α2β1

2α2β2 − α3β1 − α1β3

 ,

3(′) ⊗ 3(′) → 3(′)


3⊗ 3→ 3

n = even 3⊗ 3′ → 3′

3′ ⊗ 3′ → 3


α2β3 − α3β2

α1β2 − α2β1

α3β1 − α1β3

 ,

(A.3)

where αi and βi refers to the components of each multiplet such that no index is needed

when referring to the singlet multiplet.

A.2 A4 symmetry group

A4 is the even permutation group of four objects, which is isomorphic to the symme-

try group of a regular tetrahedron. It has 12 elements that can be generated by two

generators, S and T , with the presentation

S2 = T 3 = (ST )3 = 1. (A.4)

A4 has four inequivalent irreducible representations: three singlet 1,1′,1′′ and one triplet

3 representations. The one-dimensional representations are determined uniquely by the

conditions in A.4, while the three-dimensional representation is determined up to an

unitary transformation, representing a change of basis. We choose to work with the

same complex basis as [212] and the representation matrices of the generators are shown

in table A.2.

The product of two triplets ϕ = (ϕ1, ϕ2, ϕ3) and ψ = (ψ1, ψ2, ψ3), decomposes as 3×3 =

1 + 1′ + 1′′ + 3s + 3a, where 3s,a denote the symmetric or antisymmetric product,

respectively. The component decomposition of the products are shown in table A.3.

The 12 elements of A4 are obtained as 1, S, T, ST, TS, T 2, ST 2, STS, TST, T 2S, TST 2
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A4 1 1′ 1′′ 3

S 1 1 1 1
3

 −1 2 2
2 −1 2
2 2 −1



T 1 ω ω2

 1 0 0
0 ω 0
0 0 ω2


Table A.2: Generators S and T in the irreducible representations of A4, where ω = ei2π/3.

Component decomposition

(ϕψ)1 ϕ1ψ1 + ϕ2ψ3 + ϕ3ψ2

(ϕψ)1′ ϕ3ψ3 + ϕ1ψ2 + ϕ2ψ1

(ϕψ)1′′ ϕ2ψ2 + ϕ3ψ1 + ϕ1ψ3

(ϕψ)3s
1√
3

 2ϕ1ψ1 − ϕ2ψ3 − ϕ3ψ2

2ϕ3ψ3 − ϕ1ψ2 − ϕ2ψ1

2ϕ2ψ2 − ϕ3ψ1 − ϕ1ψ3


(ϕψ)3a

 ϕ2ψ3 − ϕ3ψ2

ϕ1ψ2 − ϕ2ψ1

ϕ3ψ1 − ϕ1ψ3


Table A.3: Decomposition of the product of two A4 triplets ϕ,ψ in the T -diagonal basis. The
subscript of the bracket refers to the representation in which the product is contracted since
3× 3 = 1 + 1′ + 1′′ + 3s + 3a.

and T 2ST . The A4 elements belong to 4 conjugacy classes

1C1 : 1

4C3 : T, ST, TS, STS

4C2
3 : T 2, ST 2, T 2S, ST 2S

3C2 : S, T 2ST, TST 2,

(A.5)

where mCkn refers to the Schoenflies notation where m is the number of elements of

rotations by an angle 2πk/n.

A.2.1 Generalised CP consistency conditions for A4

In this section, we check the compatibility of the Z2 symmetry on the fixed points with

the A4 flavour symmetry in chapter 4. The remnant Z2 symmetry behaves as an effective

generalized CP transformation and the brane fields will transform under Z2 as

ψ(x)→ Xrψ
∗(x′), (A.6)
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where x′ = (t, x1, x2, x3, x5,−x6) and Xr is the representation matrix in the irreducible

representation r. To combine the flavour symmetry A4 with the Z2 symmetry, the

transformations have to satisfy certain consistency conditions [306, 307], which were

specifically applied to A4 flavour symmetry in [219]. These conditions assure that if

we perform a Z2 transformation, then apply a family symmetry transformation, and

finally an inverse Z2 transformation is followed, the resulting net transformation should

be equivalent to a family symmetry transformation. It is sufficient to only impose the

consistency conditions on the group generators:

Xrρ
∗
r(S)X−1

r = ρr(S
′), Xrρ

∗
r(T )X−1

r = ρr(T
′), (A.7)

where ρr denotes the representation matrix for the generators S and T , see table A.2.

As shown in [219], S′ and T ′ can only belong to certain conjugacy classes of A4

S′ ∈ 3C2, T ′ ∈ 4C3 ∪ 4C2
3 , (A.8)

(see equation A.5 to find out the elements in each conjugacy class). The transformations

under the generalised CP symmetry Z2 are then:

ψ1′ → ψ∗1′′ , ψ1′′ → ψ∗1′ , ψ3 →

1 0 0

0 0 1

0 1 0

ψ∗3, (A.9)

which are consistent with equations A.7 and A.8 for S′ = S and T ′ = T . However in the

model under consideration in chapter 4, we do not have any brane field transforming

under the 1′ and 1′′ representation. Thus the Z2 transformation only affects the 3

representations.

We conclude that the 3 representations on the fixed points transform under A4 n Z2 as

shown in table A.2 and equation A.9.

A.2.2 Modular forms for Γ3 ' A4

In this section, we explicitly show the construction of modular forms for Γ3 ' A4

following reference [212]. These modular forms are necessary to understand the structure

of the Yukawa couplings in chapter 4.

To build invariant terms under the modular group Γ3, the couplings have to become

modular forms with weight kY [127], transforming according to

Y (τ ′)→ (cτ + d)kY ρY (τ), (A.10)

where ρ is the representation under the modular group and τ ′ is the transformed modular
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parameter after a modular transformation, given by

τ → τ ′ =
aτ + b

cτ + d
. (A.11)

To get an invariant term, we need to satisfy two conditions, first the weight kY has to

cancel the overall weights of the fields and second the product of ρ times the repre-

sentation matrices of the fields has to contain an invariant singlet. When kY = 0 for

every constant, we have the usual discrete symmetry. Therefore, the modular form with

weight 0 is simply a constant and a singlet under A4.

In reference [212], it is shown that a weight 2 form can only transform in the three-

dimensional representation of Γ3 and each component of the triplet Y T
3 = (Y1, Y2, Y3) is

given by

Y1(τ) =
i

2π

(
η′
(
τ
3

)
η
(
τ
3

) +
η′
(
τ+1

3

)
η
(
τ+1

3

) +
η′
(
τ+2

3

)
η
(
τ+2

3

) − 27η′(3τ)

η(3τ)

)
,

Y2(τ) =
−i
π

(
η′
(
τ
3

)
η
(
τ
3

) + ω2 η′
(
τ+1

3

)
η
(
τ+1

3

) + ω
η′
(
τ+2

3

)
η
(
τ+2

3

) ) ,
Y3(τ) =

−i
π

(
η′
(
τ
3

)
η
(
τ
3

) + ω
η′
(
τ+1

3

)
η
(
τ+1

3

) + ω2 η′
(
τ+2

3

)
η
(
τ+2

3

) ) ,
(A.12)

where η(τ) denotes the Dedekind function

η(τ) = q1/24
∞∏
n=1

(1− qn) , q ≡ ei2πτ . (A.13)

Therefore, there are no weight 2 singlets. In the model presented in chapter 4, the

modulus is fixed by the orbifold to be τ = ω. In this case, up to an overall coefficient,

we have

Y1(ω) = 2, Y2(ω) = 2ω, Y3(ω) = −ω2, (A.14)

and the triplet for weight 2 is

Y
(2)
3 = (2, 2ω, − ω2), (A.15)

where the superscript refers to the weight and the subscript to the representation under

A4.

Higher weight modular forms can be written in terms of the weight 2 forms by taking

products of them following the decomposition rules in table A.3. Then, the weight 4
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modular forms are written as

Y
(4)
3 = (Y 2

1 − Y2Y3, Y
2

3 − Y1Y2, Y
2

2 − Y1Y3),

Y
(4)
1 = Y 2

1 + 2Y2Y3,

Y
(4)
1′ = Y 2

3 + 2Y1Y2,

Y
(4)
1′′ = Y 2

2 + 2Y1Y3,

(A.16)

where the subscript corresponds to the representation under A4. In our model, the

modulus field is fixed by the orbifold to be τ = ω. In this case, the only non-zero weight

4 modular forms are

Y
(4)
3 |τ=ω = (2, − ω, 2ω2), Y

(4)
1′ = ω (A.17)

The weight 6 modular forms can be found in a similar way and are written as

Y
(6)
1 = Y 3

1 + Y 3
2 + Y 3

3 − 3Y1Y2Y3,

Y
(6)
3,1 = (Y 3

1 + 2Y1Y2Y3, Y
2

1 Y2 + 2Y 2
2 Y3, Y

2
1 Y3 + 2Y 2

3 Y2),

Y
(6)
3,2 = (Y 3

3 + 2Y1Y2Y3, Y
2

3 Y1 + 2Y 2
1 Y2, Y

2
3 Y2 + 2Y 2

2 Y1),

Y
(6)
3,3 = (Y 3

2 + 2Y1Y2Y3, Y
2

2 Y3 + 2Y 2
3 Y1, Y

2
2 Y1 + 2Y 2

1 Y3),

(A.18)

where we have three different triplet representations labelled by the subscript 3, i for

i = 1, 2, 3. Due to relations of the Dedekind functions, the modular forms satisfy [212]

Y 2
2 + 2Y1Y3 = 0, (A.19)

which reduce the number of possible modular forms. Furthermore, in our case with the

modulus parameter being fixed to τ = ω, we also have the constraint

(Y 2
1 + 2Y2Y3)|τ=ω = 0, (A.20)

which reduces even further the possible modular forms. Therefore, the only triplet of

weight 6 that is different from zero in equation A.18 is

Y
(6)
3,2 |τ=ω = (−1, 2ω2, 2ω). (A.21)

All modular forms are built from products of the weight 2 triplet. We can build the

modular forms for weight 8. Following [212], this is a 15 dimensional space that must be

decomposed as 2× 1 + 2× 1′+ 2× 1′′+ 3× 3. For simplicity we can work out only the

specific case where τ = ω. This case is greatly restricted and can be checked by doing

all possible multiplications of 3× 3× 3× 3 that the only non zero modular forms are

Y
(8)
3 = (2, 2ω, − ω2) and Y

(8)
1′′ = ω2, (A.22)
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where we can see that the triplet has the same structure as the weight 2 one. From this,

we conclude that any higher weight triplet would only repeat the previous structures

without having any new one.

For weight 10 we would have the same triplet as in weight 4 but two singlets since we

can have the non-trivial products

Y
(6)
1 × Y (4)

1′ → 1′, and Y
(6)
3 × Y (4)

3 → 1′′, (A.23)

such that this is the first weight that has two singlets. The next weight that has the three

singlets is built from powers of these singlets, so the modular form must have weight 20.

This is important in chapter 4 when building the up-type quark Yukawa matrix since

we need the three types of singlets to construct the invariant term and therefore the up

Yukawa coupling yuij must have weight 20, constraining the value of γ in table 4.2 to be

γ = 7.
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Running Yukawa parameters

The models in chapters 2-4 are defined at the GUT scale, while experimental data is

available at the Standard Model scale. Therefore, to test the model we need to have

the running from fermion masses and mixing parameters at the high energy scale where

the model is defined. Additionally, one needs to include the supersymmetric radiative

threshold corrections when deriving the running parameters at MGUT .

An analysis of the running of MSSM Yukawa parameters up to the GUT scale has been

performed in [199], where they propose a useful parametrisation of tanβ enhanced 1-

loop threshold corrections to the charged fermion Yukawa couplings and quark mixing

angles.

The analysis assumes that, when matching the SM to its SUSY extension, all super-

partners are integrated out at once at a single threshold scale MSUSY. The matching

conditions at the SUSY scale MSUSY are parametrised in terms of four parameters η̄q,b,`,

which take into account the contribution from loops involving SUSY particles, and β̄,

as

yMSSM
u,c,t ' ySM

u,c,t csc β̄,

yMSSM
d,s ' (1 + η̄q)

−1 ySM
d,s sec β̄,

yMSSM
b ' (1 + η̄b)

−1 ySM
b sec β̄,

yMSSM
e,µ ' (1 + η̄`)

−1 ySM
e,µ sec β̄,

yMSSM
τ ' yMSSM

τ sec β̄.

(B.1)

The CKM parameters also get corrections

θq,MSSM
i3 ' 1 + η̄b

1 + η̄q
θq,SM
i3 ,

θq,MSSM
12 ' θq,SM

12 ,

δq,MSSM ' δq,SM.

(B.2)
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To a very good approximation θq12 and δq are not affected by the threshold corrections.

The running of couplings yMSSM
i up to the GUT scale, yMSSM

i → yMSSM@GUT
i , depends

to a good approximation only on η̄b and tan β̄. In the limit where threshold corrections

to yτ are negligible, β reduces to the usual β. We will assume just such a scenario. We

will also set η̄q = η̄` = 0 for simplicity, as these are found not to affect the quality of

the fits. Meanwhile, the neutrino masses and mixing angles are expected to be largely

insensitive to group running.

Conversely, the remaining SUSY parameter, η̄b, will be important and prefers a large

(negative) value for both fits in chapters 2 and 3. The leading contributions to this

parameter come from loops either sbottoms and gluinos or stops and higgsinos that add

up to [308]

η̄b '
tanβ

16π2

(
8

3
g2

3

mg̃µ

2m2
0

+ λ2
t

µAt
m2

0

)
, (B.3)

where m0 represents the squark masses, g3 the strong coupling, mg̃ the gluino mass and

At the SUSY softly breaking trilinear coupling involving the stops. We see that a large

contribution can be achieved when

mg̃, µ,At > m0, tanβ & 5. (B.4)

Since SUSY breaking lies beyond the scope of this thesis, it is sufficient for us to show

that there is a parameter space in the softly broken SUSY that generates the necessary

corrections.
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Conventions

C.1 Dirac gamma matrices

First, we introduce the notation that will follow for the rest of the appendix. We define

1n as the n×n identity matrix and when no subindex is added, we will be assuming 1 as

the integer number. We present the Weyl or chiral representation of the Dirac gamma

matrices γµ in 2× 2 block form:

γ0 =

(
0 12

12 0

)
, γi =

(
0 σi

−σi 0

)
, (C.1)

where i = 1, 2, 3 and σi are the Pauli matrices

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
. (C.2)

The additional gamma matrix γ5 in a 2× 2 block diagonal form is given by

γ5 = iγ0γ1γ2γ3 =

(
−12 0

0 12

)
. (C.3)

The gamma matrices satisfy the anticommutation relations

{γµ, γν} = 2ηµν14, {γ5, γµ} = 0, (C.4)
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where µ, ν = 0, 1, 2, 3 and ηµν = diag(1,−1,−1,−1) is the Minkowski metric. Addition-

ally, in the Weyl basis the gamma matrices comply with

γ0∗ = (γ0)T = γ0† = γ0,

γi† = −γi, γ5† = γ5,

(γ0)2 = 1, (γi)2 = −1, (γ5)2 = 1,

γ0γµ†γ0 = γµ.

(C.5)

The chiral projectors are defined as

PL ≡
14 − γ5

2
=

(
12 0

0 0

)
, PR ≡

14 + γ5

2
=

(
0 0

0 12

)
. (C.6)

Left-(right-) handed fields are eigenvectors of the operator γ5 with eigenvalues −1(+1).

We define the left-handed ψL and right-handed ψR fields from the four-component fields

ψ as

ψL := PLψ, ψR := PRψ. (C.7)

The fields ψL and ψR are known as chiral fields.

C.2 Charge conjugation matrix

Charge conjugation is defined to take a solution of the Dirac equation

(iγµ(∂µ − ieQAµ)−m)ψ(x) = 0 (C.8)

into a solution ψc of the charge conjugate Dirac equation

(iγµ(∂µ + ieQAµ)−m)ψc(x) = 0. (C.9)

A solution is given by

ψc = Cψ(x)
T
, (C.10)

where ψ = ψ†γ0 and the charge conjugation matrix C must fulfil C(γµ)TC−1 = −γµ.

In the chiral representation of the gamma matrices given in equation C.1, one finds that

C = eiαγ2γ0 for α ∈ R (arbitrary) is a solution.

If ψ is a chiral field, then the charged conjugated field ψc has the opposite chirality. For

example, if ψL is a left-handed chiral field, under conjugation the chirality of the field

changes, i.e. ψcL transforms as a right-handed field.
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