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Abstract—A novel Direction-of-Arrival (DOA) estimation
method based on a plane wave sound field model was recently
proposed for circular microphone arrays [1]. This work presents
a detailed theoretical analysis of the method that relies on a Finite
Rate of Innovation (FRI) assumption, investigating the impact of
different theoretical acoustic source models. The method’s esti-
mation accuracy, and robustness against noisy measurement data
and deviations from the model are investigated. The estimation
performance is validated and assessed on the basis of results
obtained from both simulations and experimental data.

I. INTRODUCTION

Direction-of-Arrival (DOA) estimation with sensor arrays
is a problem of continued relevance, independent of the kind
of wave field under consideration. Whether the objective is
underwater source localisation or the optimisation of the beam
pattern of a controllable source or receiver (e.g. wireless LAN
router, teleconference systems with microphone arrays, etc.), a
high accuracy DOA estimate for a given source has become a
key element in many transmission systems.

In applications where the receiver is in the far field of
the source, often the exact source position (i.e. direction and
distance) is irrelevant and only the DOA is of interest. In that
case, it is common to model the wave field in which the receiver
is immersed as a number of plane waves [2]–[6]. A Plane Wave
(PW) is fully described, for a given frequency, by its complex
amplitude and DOA, yielding four parameters in 3D space,
thus making a wave field composed of a finite number of PWs
eligible for a sparse representation [7], [8]. Sparse wave fields
are particularly suitable for DOA estimation problems as they
do not require an infinite resolution of the estimator.

The DOA estimator presented in [1] belongs to the group of
parametric approaches. Parametric DOA estimation methods
rely on a sound field model, and prominent examples of well-
established parametric methods are MUSIC [9] and ESPRIT [2].
Both provide a high-resolution DOA estimation performance
yet only for a sound field generated by narrowband sources.
To overcome this limitation and enable DOA estimation with
wideband sources, Teutsch and Kellermann derived the EB-
ESPRIT algorithm [4]. This evolution of the ESPRIT algorithm
takes the latter’s subspace nature and instead of applying it to
the sensor signals directly, it is applied to the modal domain of
a circular microphone array. Using the EB-ESPRIT algorithm,
Teutsch and Kellermann reported estimates with less than three
degrees error for a single source, setting the benchmark for
this work.

In [1], the authors found that a sparse sound field with a
finite number of plane waves travelling in the same plane can

be described through a periodic function with a finite rate of
innovation [10], [11]. It was shown that the sampling method for
signals consisting of a finite number of Dirac pulses proposed
by Vetterli et al. [10] can be directly transferred to solve the
problem of DOA estimation with circular arrays in the frequency
domain. The work presented in [1] was based on a perfect
observation of an ideal sound field and the proposed method
requires further investigation to assess its realistic performance,
particularly the impact of noisy measurements. In that context,
the findings of Blu et al. [11] on how to improve robustness of
Finite Rate of Innovation (FRI) signal analysis against noise and
model imperfections are eligible for adaption to the proposed
DOA estimation method.

This work presents a complete description of sound fields
with plane waves travelling in the same plane and provides a
detailed investigation of the robustness of the proposed method.
Perturbations introduced by measurement noise, sound field
imperfections (i.e. point sources and plane waves that travel in
a different plane) and properties of the circular measurement
array are considered. The validation was carried out on the
basis of measured data. The remainder of this work is organised
in six further sections. The following section introduces the
sound field model. Section III derives expressions for the data
obtained from a circular microphone array while observing
different sound field types. Section IV recapitulates the robust
FRI signal analysis methods proposed by Blu et al. [11] and
presents a noise model based on the nature of the sensor
array observation. A simulation study of the DOA estimation
performance and its results with respect to the estimation error
are described and discussed in Section V. The results of the
experimental validation are presented and discussed in the
Section VI, followed by the concluding remarks in Section VII.

II. SOUND FIELD MODEL

This work uses predominantly the cylindrical coordinate
system, but sometimes also the elevation angle θ. These and
a diagram of the geometric entities relevant for this work are
depicted in Fig. 1. All considerations hereunder pertain to the
frequency domain and assume a (quasi-)stationary field. The
factor e−iωt and the various quantities’ explicit dependency on
the angular frequency ω are omitted for reasons of brevity.

The model assumes that the sound field within a bounded
area under consideration, V , is in the far field of isolated
point sources and satisfies the homogeneous wave equation, so
that the pressure is fully defined through a bounded Herglotz
Density (HD) [12], [13]. An expression for the sound field of
a number of plane waves is derived hereunder.



2

Cylindrical Baffle

z

x

y

A

Plane Wave

Point Source

φ

θ

zM ξ

k

r
z

r

Fig. 1: Cylindrical coordinate system with r = (r, φ, z)T , the
elevation angle θ and other entities as they are used in this
work.

A. Plane Wave Expansion in Cylindrical Coordinates
A single PW of unitary magnitude and zero-phase is defined

by its wave number vector k (see Fig. 1) that describes the
direction of travel. In cylindrical coordinates, the latter can be
expressed in the form

k = −

[
kr cosϕ
kr sinϕ
kz

]
(1)

where the azimuth angle, ϕ, as well as kr and kz are associated
with the DOA1 of the PW. The l2-norm of k provides the wave
number

k = ‖k‖2 =
√
k2
r + k2

z =
ω

c
(2)

at the angular frequency ω and the speed of sound c. The series
expansion of a single PW in cylindrical basis functions at the
point r = (r, φ, z)T is given through (see Appendix A)

eik·r = e−ik cos θz
∞∑

n=−∞
i−nJn(kr sin θ)ein(φ−ϕ). (3)

The above expression represents the sound field of a PW
through the product of angular and axial modes, where only
one of the latter is required for a single PW. It represents
the kernel for the Herglotz Wave Function (HWF) [14] that
expresses a sound field as the superposition of PWs.

B. The Herglotz Wave Function
The PWs forming the sound field can travel in any direction

associated with the points on the sphere

Ω := {r : ‖r‖2 = 1} (4)

1The minus sign in (1) converts the vector pointing in the DOA to a vector
pointing in the direction of travel instead.

around the origin. Each PW has an individual complex
amplitude q(k), k

k ∈ Ω. The sound field is then given through
the HWF [14]

p(r, φ, z) =

∫
Ω

eik·rq(k)dΩ

(
k

k

)
, (5)

where q(k) is known as the aforementioned HD. The HWF
poses an expression for any sound field that satisfies the
assumptions made at the beginning of this section.

C. Sound Field of L Plane Waves
Let the sound field consist of a finite set of L distinct far-

field sources, i.e. PWs. Each PW is specified by a complex
amplitude bl, and a DOA (ϕl, θl), and the HD is of the form

q(φ, θ) =

L∑
l=1

bl
sin θ

δ(φ− ϕl)δ(θ − θl). (6)

Using the PW series expansion in Eq. (3), the integral in (5)
then becomes the sum over all L PWs with the expression for
the pressure

p(r, φ, z) =

L∑
l=1

bl

∞∑
n=−∞

Rn(k(l)
r r)e−ik

(l)
z zΦ∗n(ϕl)Φn(φ)︸ ︷︷ ︸

eikl·r

,

(7)

where the notation

k(l)
r = k sin θl (8)

k(l)
z = k cos θl (9)

Rn(x) = 2πi−nJn(x) (10)

and

Φn(φ) =
einφ√

2π
(11)

was introduced for reasons of brevity and reasoning in sub-
sequent sections. Rn(x) and Φn(φ) are commonly referred
to as radial functions and angular basis functions (or modes),
respectively [4], [15], [16].

Equation (7) is used to describe the measurement signals
for a circular microphone array. In order to test the robustness
of the FRI method against non-plane wave components in the
sound field, the expression in Eq. (7) can be complemented
by adding the series expansion of the Green function for the
pressure field of a Point Source (PS) (see Appendix B).

III. CIRCULAR MICROPHONE ARRAY MEASUREMENT

Using the developed model, it is now possible to provide
expressions for the signals obtained from circular microphone
array measurements. This is a well-studied field that involves
the spatial sampling of a sound field, with the known limitations
associated to this process. This section introduces only the most
relevant aspects of the technique and the interested reader is
referred to the literature [4], [15], [16].
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A. General PW Sound Field Measurement
Let a circular microphone array sense the pressure of the

wave field continuously in the plane z = zM on the circle

A := {r : r = ξ, φ ∈ [0, 2π], z = zM}, (12)

depicted in Fig. 1. The pressure measured on A can then be
expressed as a Fourier Series [1], [16]

p(ξ, φ, zM ) =

∞∑
n=−∞

pnΦn(φ) (13)

with the coefficients pn uniquely defining the sensed pressure.
Multiplying both sides of (7) with Φ∗n′(φ) and integrating over
A w.r.t. φ yields

pn =

L∑
l=1

blRn(k(l)
r ξ)e−ik

(l)
z zM Φ∗n(ϕl). (14)

In practice, the integration over A can only be approximated
based on spatial sampling of the pressure through a microphone
array (see. Section III-E).

The definition of the factors Rn(k
(l)
r r) in (10) differs for a

microphone array with a rigid scattering body [1], [4], [17]. For
an infinite cylindrical scatterer of radius ξ (see Fig. 1), these
radial functions become a combination of Bessel functions,
Jn(·), Hankel functions of the first kind, Hn(·), and their
derivatives:

Rn(k(l)
r r) =

2π

in

(
Jn(k(l)

r r)− J ′n(k
(l)
r ξ)

H ′n(k
(l)
r ξ)

Hn(k(l)
r r)

)
. (15)

It can now be shown how the HD can be recovered from the
pressure coefficients pn.

B. HD Coefficients of PWs travelling parallel to z = zM

In the case where all L PWs are travelling parallel to the
plane z = zM , i.e. {θl}Ll=1 = π

2 , the expression for the pressure
coefficients in (14) can be further simplified to (n = n′)

pn = Rn(kξ)

L∑
l=1

blΦ
∗
n(ϕl) = Rn(kξ)qn. (16)

The right hand side of the above equation indicates that the
expression for pn can be separated into a radial function,
Rn(kξ), and the HD coefficients, qn, describing the incident
plane waves

qn =

L∑
l=1

bl
e−inϕl

√
2π

. (17)

These HD coefficients fully define the sound field with the
corresponding HD obtained through Fourier synthesis

q(φ) =

∞∑
n=−∞

qn
einφ√

2π
=

L∑
l=1

blδ(φ− ϕl), (18)

where the dependency on θ is henceforth omitted for the sake
of brevity (compare to Eq. (4)). An example of a HD with

Fig. 2: HD q(φ) for L = 5 distinct plane waves, where the
HD is periodic with q(φ) = q(φ+ u2π),∀u ∈ Z.

L = 5 distinct plane waves of unit magnitude is shown in
Fig. 2 and it can be seen that q(φ) must be periodic with a
period of 2π. Such a HD is fully defined by the set of tupels
{(ϕl, bl)}Ll=1. The extraction of the qn from the array signals is
crucial for the application of the FRI DOA estimation method.

At a later point it will be shown that a wave field specified
by the HD coefficients in (17) is ideal for the application of the
FRI DOA estimation method with circular arrays. The next two
subsections present expressions for the HD coefficients of two
source types that are likely to corrupt the performance of the
DOA estimation method in combination with the measurement
aperture under consideration.

C. HD Coefficients of a Single PW with θl 6= π
2

For a single plane wave impinging on the measurement
aperture at an angle θl 6= π

2 , the corresponding pressure
coefficients are given through (14), yielding

pn = blRn(k(l)
r ξ)e−ik

(l)
z zM Φ∗n(ϕl) (19)

A factor separation as shown in Equation (16) of the result in
(19) yields HD coefficients of the form

qn = bl
Rn(k

(l)
r ξ)

Rn(kξ)
e−ik

(l)
z zM︸ ︷︷ ︸

Ψn(k,k
(l)
r ,ξ)

e−inϕl

√
2π

(20)

for the sound field of the single PW with θl 6= π
2 . The main

difference to Eq. (17) is the additional factor Ψn(k, k
(l)
r , ξ).

D. HD Coefficients of a Single Point Source in the Array Plane
The derivation of the HD coefficients for the sound field of

a single PS located at r′ = (r′, φ′, zM )T

qn = b′
in+1

8π

∫∞
−∞Rn(krξ)H

(1)
n (krr

′)dkz

Rn(kξ)︸ ︷︷ ︸
ζn(r′)

e−inφ
′

√
2π

(21)

is given in Appendix C. Similar to the source type discussed in
the previous subsection, the key difference between Eqs. (17)
and (21) is an additional factor, namely ζn(r′).
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The introduced additional factors Ψn(k, k
(l)
r , ξ) and ζn(r′)

are later shown to negatively affect a DOA estimation using
the FRI method in combination with circular measurement
apertures (see Sections V-D and V-E, respectively, and also
Sec. IV-F).

E. Practical Limitations of Microphone Arrays
In practice, microphone arrays can only spatially sample the

pressure on A and therefore cannot recover all coefficients qn
needed to fully reconstruct the HD. However, a uniformly
distributed circular microphone array with M sensors can
recover the coefficients qn for |n| ≤ N , where N = bM−1

2 c,
if no angular modes Φn(φ) with n > N contribute to the
pressure field on A (i.e. no spatial aliasing). This is the case (to
a good approximation) for all frequencies that satisfy N ≥ kξ
[16]–[18]. At higher frequencies, the recovered coefficients qn
are corrupted by spatial aliasing [16], [18]. It shall for now
be assumed that the coefficients qn, |n| ≤ N can be recovered
perfectly from the array measurement, and that the frequency
range in question ensures that no spatial aliasing occurs.

At this point, the models for the description and analysis of
the proposed method are all defined.

IV. FINITE RATE OF INNOVATION ANALYSIS

The form of the HD given in (18) represents a set of distinct
Dirac-pulses, for which the FRI theory was originally developed
[10], [11]. Vetterli et al. originally addressed the problem
of sampling non-bandlimited time domain signals, e.g. such
as distinct occurrences of Dirac-pulses. The key difference
between their and other previous work, and that presented here
is that the observed signal, i.e. the HD, is not in the time
domain but in the spatial domain. This section serves to put
the theory into the perspective of a DOA estimation problem.

A. The System-Inherent Sampling Kernel
While the method proposed in [10] requires a sampling kernel

(i.e. a lowpass filter) for the observed time domain signal, it
must be said that this is not always required when sampling a
pressure field in the spatial domain. The following paragraph
shall briefly explain the reason that supports this statement.

It is known that modes of orders higher than a frequency
dependent threshold NA hardly contribute to the pressure
observed on the measurement aperture A [4], [19]. Their
corresponding radial functions Rn(kr) act as a system-inherent
lowpass filter, so that pn ≈ 0, |n| > NA. Therefore, at least
for frequencies at which the array does not suffer from spatial
aliasing, the coefficients {qn}Nn=−N can be recovered practically
uncompromised, so that a spatially lowpass filtered, i.e. order
limited, version of the HD can be reconstructed from them.

B. The Rate of Innovation of the HD
The HD coefficients qn of the form given by (17) describe

a (periodic) HD with finite rate of innovation. Every PW is
defined by its DOA, ϕl, and its complex amplitude, bl. In
other words, every PW is an entity with two ‘innovations’ for

the HD. It follows that a HD with L PWs incorporates 2L
innovations. Due to its 2π periodicity, the HD q(φ) has the
rate of innovation [10]

ρ =
2L

2π
=
L

π

that is finite for L < ∞ (see also Fig. 2). The value of ρ
or rather the number of innovations within the period, 2L,
determines how many consecutive coefficients qn are needed
to apply the Annihilating Filter (AF) method [10] [11] that
provides the estimates for the DOAs, ϕl. The exact relation is
derived in the following subsection.

C. Recovering the DOA Information
The exact procedure for the DOA estimation with ideal

coefficients qn is described in [1]. The key step of the
method is the identification of an AF defined by the sequence
{ak}Kk=0, K ≤ N , that, when convolved with the sequence
of HD coefficients qn, n ∈ Z, yields a zero result (hence
”annihilating”). It will become clear at the end of this subsection
that the the DOAs of the L PWs can be extracted from the AF.
In theory, a perfect AF can be calculated [1], [10]. In practice,
however, acoustical array data used to obtain the HD coefficients
may be compromised due to imperfections of the measurement
system (e.g. manufacturing tolerances, sensor mismatches, etc.),
model mismatches (e.g. point source vs. plane wave) and sensor
noise [19], [20], which ultimately affects the estimation of the
AF.

To make the estimator more robust against such, Blu et
al. [11] proposed the use of a ‘total least-squares approach’,
which was straightforwardly adopted for the proposed method
described hereunder.

The global objective of the DOA estimator mechanism is to
find an AF that satisfies

qn ∗ ak = 0, (22)

denoting the discrete convolution of the AF with the sequence
of HD coefficients, i.e.

K∑
k=0

akqn−k = 0, (−N +K) ≤ n ≤ N. (23)

The above equation defines a system of 2N + 1−K equations
that can be expressed in the algebraic form

Qa = 0, (24)

with the Toeplitz matrix

Q =



q−N+K q−N+K+1 · · · q−N
q−N+K+1 q−N+K · · · q−N+1

...
. . . . . .

...

q−N+2K
. . . q−N+K+1 q−N+K

...
. . . . . .

...
qN qN−1 · · · qN−K


︸ ︷︷ ︸

(2N+1−K)×(K+1)

(25)
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and a = [a0, a1, . . . , aK ]T . For an ideal sound field with
no measurement noise or other perturbations, the system is
overdetermined for N > K and the rank of Q cannot exceed
L. This is due to the nature of the coefficients qn. They can
only lead to K − L+ 1 independent, non-trivial solutions of
the AF a, one of which has zeros for the last K − L entries
[11]. It follows that

rank(Q) = L, (26)

i.e. the number of PWs in the sound field can be identified
from the rank of the Toeplitz matrix Q.

When the coefficients qn are corrupted by noise, a non-trivial
solution to Eqs. (22) and (24) may not exist. As an alternative,
Blu et al. [11] proposed to identify a Total Least-Squares (TLS)
estimate for the AF a by solving the optimisation problem

ã = argmin
a
‖Qa‖22, ‖a‖2 = 1. (27)

With the constraint for a, the solution to the above problem
can be found from a Singular Value Decomposition (SVD) of
Q = USVH . This provides the right-singular vectors {vk}Lk=0
(i.e. the columns of V) that all satisfy ‖vk‖2 = 1. The right-
singular vector vmin corresponding to the smallest non-zero
singular value σmin then provides a solution to the total least-
squares problem that yields

Qã ≈ 0, with ‖ã‖2 = 1, (28)

where ã = vmin. Unlike the AF presented in [1], the one
obtained from the TLS method can have a leading factor ψ
[11], yielding

ãn = ψ(δn +

K∑
k=1

αkδk−n).

Given that filter coefficients ãn are a sequence (mathematically
identical to a discrete time-domain signal), it is possible to
calculate its z-transform, which can be expressed in the form

Ã(z) = ψ

K∏
k=1

(1− ukz−1), z = Ae−iφ, A ∈ R. (29)

It is known from [1] that the roots {uk}Kk=1 of the characteristic
polynomial of Ã(z) are of the form uk = e−iϕk . Thus, the
DOA can be calculated through

ϕk = i ln(uk),∀k = 1 . . .K, (30)

where ln(·) denotes the principle value of the complex loga-
rithm. The full process for the DOA estimation is summarised
below.

DOA Estimation Procedure
1) Choose a value K ≤ N . If L is known, K = L,
2) construct Q according to Eq. (25),
3) solve the TLS problem in (27) to estimate the AF ã,
4) calculate the roots, {uk}Kk=1, of the z-transform of ã,
5) convert the K roots into DOA estimates using Eq. (30),

6) use {ϕ̃k}Kk=1 to calculate the complex amplitudes,
{b̃k}Kk=1, by solving the linear equation system defined
by (17) for a set of coefficients qn.

With respect to this work, the described procedure is the most
general approach to the FRI DOA estimation method, yielding
estimates for exactly K PWs, even if L < K or L > N . This
uncertainty about the number of PWs to be identified, K, is
clearly not ideal and is further investigated in Sections IV-E
and V-A.

Note that there are no restrictions on the complex values bl,
which uniquely define the source signals, hence the method
works for both incoherent and coherent sources. This is an
important distinction from other methods, e.g. MUSIC, ESPRIT,
EB-ESPRIT.

For particularly noisy data, additional Cadzow-Denoising
can be applied to the data before the AF method [11] to fit the
data closer to the model. This was done for all applications of
the DOA estimation method presented in this work, where the
steps of the Cadzow-Denoising were iterated 20 times.

With the method fully described, it can now be tested by
means of simulation. To make the latter’s sound field data
a better representative of practical measurements, the model
developed in Section III is extended by a suitable noise model
in the following.

D. A Measurement Noise Model

The applied noise model is a spatial transform of the
transducer noise model for microphone arrays used in [16].
A pressure measurement on a circular aperture around the
coordinate origin would lead to a noisy observation

p̃(φ) = p(φ) + d(φ),

where d denotes the measurement noise. In that case, the HD
coefficients become (compare Eq. (16))

p̃n = pn + σε
ei2πµ√

2π
= Rn(kξ)qn + σε

ei2πµ√
2π

. (31)

Division by Rn(kξ) provides the result for the HD coefficients
obtained from a simulated circular microphone array measure-
ment with noise,

q̃n = qn + εn, ∀|n| ≤ N. (32)

Each of the ideal coefficients qn can be corrupted by the additive
component

εn =
σε

Rn(kξ)

ei2πµ√
2π

(33)

that reflects the statistical properties of the measurement noise
in microphone arrays. σε denotes the standard deviation of
the noise in the observed pressure signal and µ is a random
variable that is uniformly distributed on the interval [0, 1].

The expected value for the magnitude of εn, E{|εn|}, can
be useful to estimate the number of PWs for the case that
L < N . The model assumes that the noise distribution in the
pressure domain is Gaussian, therefore the expected value of
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Fig. 3: Radial functions for a microphone array with radius
ξ = 7.5 cm and fc ≈ 5.1 kHz (N = 7, c = 343 m

s ).

the magnitude of the measurement noise in the pressure domain,
|d(φ)|, must be

E{|d(φ)|} =
σε√
2π
. (34)

To obtain a useful expected value for the measurement noise
in the HD coefficient domain, it is necessary to consider the
influence of the radial functions Rn(kξ). From the literature on
microphone arrays, it is known that the magnitude of the radial
functions as given by (15) for k(l)

r = k differs significantly for
different orders |n| ≤ N at frequencies lower than

fc =
Nc

2πξ

[4], [16], [17]. This is rather unfavourable, since this property
of the radial functions would affect the coefficients εn as
a consequence of Eq. (33). The components of qn that are
associated with the individual PWs are constant in magnitude
across the range |n| ≤ N . Hence it would be difficult to define a
clear ‘noise floor’ if the expected value for the noise magnitude
is a function of n. However, at frequencies higher than fc,
the magnitude of the radial functions can be approximated
by |R0(kξ)|, which can be seen in Fig. 3. It follows that the
expected value for the magnitude of εn can be approximated
by

E{|εn|} ≈
σε√

2π|R0(kξ)|
, n ≤ N, (35)

for frequencies higher than fc ≈ 5.1 kHz with ξ = 7.5 cm.
This value provides an estimate of the noise floor.

To acquire a value of σε for a specific array, which
may also be frequency dependent [16], one could simply
perform a measurement without active sources in an anechoic
environment.

E. Choosing K with Noisy Coefficients qn
If the number L of PWs is known a priori, then the value for

K should be simply chosen to be L. Otherwise it can always
be chosen to be the maximum number of DOAs that can be
estimated from the available array data, i.e. K = N . Three

cases can then be distinguished for a spatially stationary PW
distribution when the individual PWs’ energy exceeds that of
the background noise:

1) L < N : The DOAs corresponding to the L largest
values of |b̃k| will be consistent irrespective of the point
in time, where the N − L smallest estimates must be
expected to vary with every FFT frame due to noise.

2) L = N : All DOA estimates describe an individual PW.
3) L > N : The method provides N least-squares DOA

estimates.
In the case of L < N , the number of PWs, L, can be estimated
from the number of magnitudes |b̃k| that exceed the estimate of
the noise floor given by Eq. (35). This is however only possible
for frequencies higher than fc.

In the case of L > N , the rate of innovation is too high for
the available range of coefficients |n| ≤ N , i.e. the sampling of
the sound field is insufficient. The estimator can only provide
K = N DOA estimates, which will be shown to become
increasingly inaccurate as L approaches N . One explanation
for this is that the TLS solution for the AF ‘groups’ the L−N
surplus PWs together with the closest neighbours within the set
of the remaining L PWs. This is more thoroughly investigated
in Section V-A.

F. Interpretation of the Annihilating Filter

The z-transform of the sequence of HD coefficients

Q(z) =

∞∑
n=−∞

qnz
−n,

evaluated on the unit circle, z = e−iφ, is the HD weighted
with

√
2π, so that

Q(z) =
√

2πq(φ), |z| = 1.

The z-transform of the AF in Eq. (29), evaluated on the
unit circle, provides a complex-valued directivity pattern, the
annihilating pattern a(φ) (depicted in Fig. 4), that has nulls
in the directions ϕl, corresponding to the source directions.
Hence, finding the DOAs is equivalent to finding the zeros of
a(φ).

In this light, it can now be understood why both a PS and a
PW with θ 6= π

2 are likely to compromise the performance of
the FRI method. The sequences of the HD coefficients given
in (20) and (21) both describe an amplitude modulation of the
carrier sequence e−inφ

′
/
√

2π with the sequence Ψ(k, k
(l)
r , ξ)

and ζn(r′), respectively. From the theory of the spectra of
AM signals, it follows that the corresponding HD coefficient
sequences contain more than one distinct component in the
z-domain. The difference between the Q(z) of a PW and
that of a PS is conceptually depicted in Fig. 4, along with a
possible corresponding annihilating pattern (dashed line) with
its nulls located at φ = ϕPW and φ = ϕPS. While the PW is
responsible for just a single component, the PS has a ‘carrier’
component that refers to the position of the PS and modulation
components resulting from the term ζn(r′) described in Eq. (21).
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PW component
PS carrier

Modulation components

ϕPW ϕPS

ϕ

Magnitude

2π

Fig. 4: Conceptual z-domain spectrum (z = e−iϕ) of the HD
coefficients for the sound field of a PW and a PS, and the
magnitude response of the annihilating pattern a(φ) (dashed
line).

The same can be shown for the PW with θ 6= π
2 , where the term

Ψn(k, k
(l)
r , ξ) is responsible for the modulation components.

Nevertheless, depending on the modulating sequence, the
carrier sequence e−inφ

′
/
√

2π may still be the dominant
component. In that case, the FRI method may still be able
to detect the DOA of these types of sources. The TLS solution
would then provide a filter (indicated as a dashed line in
Fig. 4) that attempts to suppress the strongest components
in the sequence, i.e. those of the individual carriers. The DOAs
can then be identified as usual from the roots of the AF’s
z-transform (see Section IV-C). However, it must be expected
that the estimation accuracy is adversely affected for these
types of sources, e.g. if the different sources significantly differ
in magnitude or for very close PSs. This is confirmed by means
of simulation results given in Section V.

V. SIMULATIONS

For all simulations discussed hereunder, the DOA estimation
method was set to identify K = N plane waves (unless
mentioned otherwise) by choosing the matrix Q accordingly.
When the number of plane waves L is known a priori, only
those DOA estimates associated with the largest magnitudes
|b̃k| were taken into account. For those cases when L > N , only
N DOA estimates are provided due to the inherent limitation
of the method. Note that in this section, a DOA estimate ϕ̃k
refers to a value for ϕl.

All sound fields were calculated directly in the cylindrical
harmonics domain for f = 1 kHz, using the equations presented
in the preceding sections. That way the estimation method’s
accuracy and robustness can be studied without the influence
of effects that stem from the microphone array (e.g. spatial
aliasing, ill-conditioning etc.).

Before looking more closely at the simulation performance
for the unrestricted case, L ≤ N , the estimation behaviour
for L > N is investigated by means of a number of selected
samples.

A. Estimation Behaviour for L > N

The effects occurring when estimating K = N directions of
arrival from the HD coefficients of a sound field with L > N

(a) Two PWs grouped (Example I)

(b) Two PWs grouped (Example II)

(c) Interpolation

Fig. 5: Results of different FRI estimation performances for
L = 5 and N = K = 4.

PWs were briefly mentioned in Section IV-E. Figure 5 shows
a selection of estimation results for L = 5 and N = K = 4.

Figure 5a shows an example of the aforementioned grouping
behaviour. The estimates of the plane waves with a DOA at
around 0.25, 1.25 and 1.625 (on the abscissa) are very accurate,
as are the estimated magnitudes. Only for the second estimate
on the right it can be noticed that its magnitude is slightly
lower than the true value. The estimate beyond 1.75 on the
abscissa ‘groups’ two true PWs with very small difference in
their individual DOA. This is likely to explain why its estimated
magnitude is larger than that of the two true plane waves.

A similar behaviour of the method can be observed from the
result shown in Fig. 5b. The estimates of magnitude and DOA
beyond 0.5 on the abscissa show good accuracy. The leftmost
estimate ‘groups’ two plane waves, not quite as closely aligned
as those in the previous example, and shows a significantly
higher magnitude. In this case, the estimate to the right of 0.25
not only shows a magnitude mismatch but also a DOA estimate
deviation from the true value.

The result in Fig. 5c is very different from the others. A
grouping behaviour cannot be detected. Only three of the DOA
estimates are close to true plane waves, but the magnitude
estimate of one of them is significantly low. The fourth estimate
is significantly inaccurate.

While there are cases where some estimates may still be of
value, it becomes clear that the estimation accuracy decreases
when L > N . That makes the method unreliable in such cases.
For predominantly isotropic sound fields with L < N distinct
sources of sufficiently high level, the method may prove more
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robust, as will be seen in the next subsection.

B. The DOA Estimation Error (DEE)
As a measure to evaluate the quality of the estimated

directions of arrival, {ϕ̃k}Kk=1, the DOA Estimation Error (DEE)
in percent is used in this work. This is defined for a single
plane PW by

DEE = (|ϕ̃k − ϕk| mod π) · 100 %, (36)

where mod denotes the modulo operator. A DEE of 100 %
corresponds to the maximum difference between estimate and
true value of π ≡ 180◦.

C. Mean and Median DEE
In order to assess the estimation accuracy of the FRI DOA

estimation method, a simulation study was conducted for
different Signal-to-Noise Ratio (SNR) values and numbers
of PWs. For each combination of SNR and L, 10,000 samples
of randomised PW fields were simulated and averaged. Note
that the DEE does not depend on the PW magnitude |bl|, so the
results shown below may be different if the DEE was weighted
by |bl|.

The clean HD coefficients were calculated from Eq. (17).
The complex amplitudes bl of the individual plane waves were
calculated from

bl = (0.01 + 0.99ν)e−i2πµ, (37)

where ν, µ are uniformly distributed on the interval [0, 1]. The
maximum difference between the magnitudes of the individual
plane waves is thus 40 dB. The corresponding DOA parameters,
ϕl, are uniformly distributed on the interval [0, 2π].

The noise was generated directly in the HD coefficient
domain using

εn = σεξe
i2πµ,

where ξ is a normally distributed random variable and µ is
uniformly distributed on the interval [0, 1]. The value σε was
chosen so that the noisy coefficients q̃n = qn + εn have a
specified SNR given by

SNR = 10 log10

(∑
|n|≤N |qn|2∑
|n|≤N |εn|2

)
. (38)

Figure 6 shows the results of a simulation study for the
mean/median DEE in percent. The algorithm was applied to
the noisy coefficients q̃n = qn + εn within the range |n| ≤ 7.
This corresponds to the HD coefficient data that can be obtained
from a microphone array measurement with M = 15 sensors.
The maximum number of plane waves whose DOA can be
estimated is K = N = 7. For the conducted simulations, the
algorithm parameter for the number of plane waves was chosen
so that K = min(L,N). Note that with the given dynamic
range of the PW magnitudes specified in Eq. (37), some of
them may be covered by the noise floor.

The result in Fig. 6a shows that the mean accuracy of the
DOA estimates increases with the SNR and decreases with the
number of sources. At 0 dB SNR the values for more than one

(a) Mean DEE (b) Median DEE

Fig. 6: Performance of the FRI estimator averaged over 10,000
samples for different combinations of SNR and L.

PW range around a DEE of 20 %, with a maximum at L = 3
PWs . At high SNR values, the DEE increases significantly for
more than L = 7 plane waves, as a result of the limitation due
to the available range of coefficients qn.

The results for the median DEE given in Fig. 6b are similar
w.r.t. the overall trend, however the maximum values are
significantly lower than those shown in the mean results. This
suggests that, for a given combination of SNR and value L,
50 % of the estimates’ DEE are lower than the displayed value.
Accordingly, the other 50 % of estimates may suffer from
‘outliers’ that are significantly wrong compared to the true
value. These outliers cause the mean to be significantly higher
than the median DEE values.

D. Sound Fields with PWs not travelling parallel to the
Measurement Plane

The coefficients describing the sound field of a PW that is
not travelling parallel to the measurement plane z = zM is
given in Eq. (20). Such a plane wave is henceforth referred
to as an Out-Of-Plane Plane Wave (OOP-PW). It was postu-
lated in Section IV-F that the effect of the additional factor
Ψn(k, k

(l)
r , ξ) in the specific form of the coefficients qn would

have a negative effect on the accuracy of the DOA estimates
for more than one PW. It was also argued that the FRI method
may provide an adequate estimate of the DOA for a single
such plane wave regardless.

1) A Single OOP-PW: This subsection investigates the
influence of the elevation angle θl of a single OOP-PW on the
DOA estimation performance. Figure 7 shows the mean DEE
for a single OOP-PW for randomly chosen DOA component ϕl.
The elevation angle associated with the OOP-PW was tested
for 0.01π ≤ θl ≤ 0.99π. The DOA estimation would naturally
fail for values θl = 0 and θl = π, which were thus not tested.
The estimates were obtained from the coefficients {qn}|n|≤1,
which suffice to estimate the DOA of N = 1 plane wave. The
average result is below 1.6× 10−14 %.

The same simulation was repeated for a greater range of
coefficients, {qn}|n|≤5, and the result is shown in Fig. 8. While
for some values of θl there appears to be no difference, the mean
DEE is significantly higher for angles 0.07π ≤ θl ≤ 0.35π
and 0.65π ≤ θl ≤ 0.93π. This suggests that the estimation
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Fig. 7: Mean DEE for single OOP-PW for 0.01π ≤ θl ≤ 0.99π,
averaged over 100 samples with randomly chosen ϕl, N = 1.

Fig. 8: Mean DEE for single OOP-PW for 0.01π ≤ θl ≤ 0.99π,
averaged over 100 samples with randomly chosen DOA, as
obtained with a greater coefficient range (N = 5).

corrupting effect of the additional factor Ψn(k, k
(l)
r , ξ) increases

with N .

2) One PW and one OOP-PW: The DEE performance for
two PWs, where one is an OOP-PW, is shown in Fig. 9.
Following the findings in Section V-D1, the coefficient range

Fig. 9: Mean DEE for one OOP-PW with θ2 ∈
[0.01π . . . 0.99π] and one with θ1 = π

2 , averaged over 100
samples with randomly chosen ϕ1 and ϕ2, N = 2.

was chosen to |n| ≤ 2 = L so that both PWs can be identified
but the coefficient range is kept as low as possible. Both PWs
had the same magnitude. One plane wave is impinging at
θ1 = π

2 and the other is simulated at different angles θ2. The
two parameters ϕ1 and ϕ2 were randomly chosen for every
iteration. It can be observed that the accuracy of the DOA
estimates decreases up to a DEE of approximately 12 % as the
parameter θ2 deviates from π

2 .

E. Sound Fields with Point Sources

As with the plane waves discussed in Section V-D, the
specific form of the coefficients qn describing the sound field of
a single PS in the plane of the microphone array were predicted
to have a negative effect on the accuracy of the DOA estimates
associated with the waves impinging from more than one PS.
This is now investigated further with a set of simulations.

1) Estimation Accuracy for a Single PS: Figure 10 shows the
mean DEE for the DOA estimates obtained over 100 iterations
of the sound field with a randomly positioned (w.r.t. the angle
φ′) single PS as a function of the position parameter r′. The

Fig. 10: Mean DEE for a randomly positioned PS as a function
of r′, averaged over 100 samples per evaluation radius, N = 1.

set of coefficients {qn}|n|≤1 were calculated from Eq. (21), i.e.
the point sources lie in the same plane as the microphones. The
simulated array radius was a = 0.1 m and the FRI algorithm
was set to detect one source only (K = 1). It can be seen that
a very high estimation accuracy was obtained that supports the
reasoning given in Section IV-F. Note that the simulation did
not include any noise.

The influence of the compromising factor ζn(rl) in the
coefficients qn was found to increase with the range of
coefficients used for the estimation, as it was observed for the
OOP-PW in the previous subsection, thus negatively affecting
the performance.

2) Estimation Accuracy for Two Point Sources: A similar
simulation was conducted for two PSs, where the coefficients
are given through Eq. (21) and superposition as

qn = b1
e−inϕ1

√
2π

ζn(r1) + b2
e−inϕ2

√
2π

ζn(r2).

Three different scenarios were investigated using the parameters
b1 = b2 = 1, r2 = 0.2 . . . 9.7 m and:

1) First source located closely (r1 = 0.2 m),
2) first source located distantly (r1 = 9.7 m), and
3) both sources at the same distance, i.e. r1 = r2.

The FRI algorithm was set to detect two sources, i.e. K = 2,
using the set of coefficients {qn}|n|≤2. The results are shown in
Fig. 11. It can be observed that the average DEE has drastically
increased just by adding a second PS. The severity however
differs between the three scenarios.

In the first scenario, the results in Fig. 11a show that for
all radii r2 > 1 m the mean DEE is higher than 20 %. When
r2 < 1 m then the accuracy for both sources remains below
10 %.

In the second scenario, the results in Fig. 11b show that the
DEE is larger than 10 % for radii smaller than 1 m. For larger
radii, the DEE drops significantly below 10 %, reaching values
less than 1 % for r2 > 3.2 m. The mean DEE appears to have
a decreasing trend as the sources move to larger radii. This
can be expected since the wave field of a PS that is far away
approximates that of a plane wave.

As in the second scenario, the results of the third scenario
also describe a decreasing trend for the DEE as shown in
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(a) One close source, r1 = 0.2m

(b) One distant source, r1 = 9.7m

(c) r1 = r2

Fig. 11: Mean DEE for two randomly positioned PSs as a
function of r2, averaged over 100 samples, N = 2.

Fig. 11c. At r1 = r2 = 0.2 m the mean DEE is already clearly
below 10 % and dropping further. The DEE drops significantly
below 1 % for r1 = r2 > 2 m.

F. Discussion of Simulation Results
The simulation study of the DOA estimation performance

for different values of SNR and numbers of PWs confirm
the degrading influence of noise on the estimation accuracy.
The number of sources in the field also affects the accuracy.
As stated by Blu et al. [11], using a surplus of coefficients
(i.e. N > L) increases the robustness against noise for an
observation, i.e. the HD, with distinct Dirac pulses (compare
Section V-F6). The significant difference between the mean
and the median results suggest that 50 % of the estimates have
an accuracy with less than 7 % error, while the other 50 % may
suffer from outliers with DEE values larger than 20 %.

The relatively high DEE values would be lower if the
difference in magnitude between the individual PWs were
smaller (it was simulated as 40 dB). Due to the large differences
in magnitude, some of the plane waves may either vanish below
the noise floor or the estimates would be degraded due to a
low SNR for that specific source.

1) Single OOP-PW: As it was argued in Section IV-F, the
modulating sequence Ψn(k, k

(l)
r , ξ) had little effect on the DOA

estimation accuracy, but only when using a small range of
coefficients, |n| ≤ 1. When increasing the latter to |n| ≤ 5,
the performance degraded significantly for a distinct range of
angles. This suggests that the overall modulation due to the
factor Ψn(k, k

(l)
r , ξ) is so strong that it overpowers the carrier

in the extended sequence q−5, . . . , q5 and thus leads to a high
DEE (see also Section V-F6).

2) One PW and one OOP-PW: In light of the theoretical
considerations made in Section IV-F, the severe loss of accuracy
with the obtained estimates suggests that the modulating
sequence Ψn(k, k

(2)
r , ξ) is very strong in magnitude and its con-

tribution cloaks both carriers e−inϕ1/
√

2π and e−inϕ2/
√

2π,
and strongly alters the roots of the AF. The result is incorrect
DOA estimates.

3) Single Point Source: Similar to the results for the single
OOP-PW, the estimation performance for the single point
source have shown results of high accuracy. Following the
performance dependency on the range of coefficients qn found
for the single OOP-PW, it was found that the same applies for
the field of a single point source, though the results were not
presented for reasons of brevity. Accordingly, the modulation of
the additional factor ζn(r′) is also strong enough to affect the
estimation accuracy when using a wider range of coefficients.

4) Two Point Sources: The scenario where the first PS is
located at a small radius (r1 = 0.2 m) and the second source
is moved from r2 = 0.2 m to r2 = 9.7 m shows the worst
performance among the results for two PSs. This suggests that
the modulation component around the ‘carrier’ of the close
PS (see Sec. IV-F) in the spatial frequency spectrum of qn is
cloaking the ‘carrier’ of the far PS, even at radii where r2 is
only slightly larger than or equal to r1. The DOA estimate
for ϕ2 therefore becomes strongly inaccurate, leading to the
comparably high mean DEE of more than 20 %.

In the scenario where the first PS is located far away (r1 =
9.7 m), the DEE improvement that occurs as the distance of
the second source increases can be explained by looking at
the source strength. As discussed in Section IV-F, a strong
difference in strength of the PSs’ components in qn might cause
the modulation contributions to mask the ‘carrier’ associated
with the weaker source. That would lead to a bad DOA estimate
for the more distant PS, hence causing an elevated mean DEE
for r2 < 2 m. Once the levels become more comparable, the
mean DEE is similar to that obtained in the third scenario.

The third scenario had both PSs located at the same distance
from the origin. While still above 4 % for r1 = r2 = 0.2 m,
the mean DEE drops quickly towards very small values as the
source radii increase. The field of the PSs eventually effectively
resembles that of plane waves. Since their source strength is
equal, their estimates would on average be of similar accuracy.
The high mean DEE at very close range, r1 = r2 < 1 m,
suggests that the modulation components occurring in the
coefficient sequence are strong enough to cloak the dominance
of their carriers, leading to elevated DEE results.

5) Practical Implications of the Results for Point Sources
and OOP-PW: Point sources and OOP-PW are very relevant
for any practical implementation. The point source can model
any source whose dimensions are small compared to the wave
length that is located within close distance to the measurement
aperture. However, even if a sound source is sufficiently distant
from the microphone array for its wave fronts to resemble
those of a plane wave travelling parallel to the measurement
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plane, there may be floor or ceiling reflections that lead to an
OOP-PW in the sound field.

6) Influence of the Range of Coefficients: As stated by Blu
et al. [11], using the highest possible number of coefficients
as input to the estimation stage increases the robustness of the
estimates against noise through redundancy. It was however
found in this work that this only applies for sound fields
with distinct plane waves that propagate in the plane of
the measurement aperture. The simulations of both the point
sources and the plane waves travelling out of the measurement
plane have revealed that the imperfections introduced by the
additional factors ζn(r′) and Ψn(k, k

(l)
r , ξ), respectively, affect

the performance of the DOA estimates. For single sources,
the influence of the additional factors can be overridden by
keeping the range of coefficients qn used in the DOA estimation
algorithm as small as possible. As the number of sources
increases, the estimator requires a higher number of coefficients
(see Section IV-C). At the same time, however, the influence
of the modulating factors compromises the performance of the
estimator (see Section V-D1).

VI. EXPERIMENTAL VALIDATION

This section investigates the DOA estimation accuracy based
on measured sound fields. The sound fields were created
using ten different sources, both individually and in various
combinations.

One goal of the experiments was to test the dependency of
the accuracy of the DOA estimates on the number of sources
in the sound field. In order to do that, the data of the individual
sources were linearly combined to generate arbitrary fields
with multiple sources. The data that was measured with several
active sources at the same time was used to validate the results
obtained from the linear combination of the individual data.

A. Measurement Setup
The measurement array consists of 15 electret microphones

arranged in a circle with uniform distribution on an acrylic
cylindrical baffle with radius ξ = 7.5 cm (see Fig. 1). The
array was set up in the anechoic chamber of the ISVR. Nine
Genelec 8020C loudspeakers were arranged at different angles
to the array at a distance larger than r = 2.5 m, while one was
deliberately put at a radial distance of 1 m to simulate a point
source. A diagram of the arrangement is shown in Fig. 12. The
floor of the anechoic chamber consists of a steel grid over a
volume of absorbing fibre glass wedges. To reduce the amount
of reflections additional wedges were used to cover the floor
between the loudspeakers and the microphone array.

Exponential sweeps of 10 seconds duration were used as
measurement signals to exclude non-linear effects from the
data and obtain a high measurement SNR, using the method
proposed by Farina [21], [22]. The impulse responses obtained
from the inverse filtering were then transformed into the
frequency domain by using the MATLAB implementation of
the Fast Fourier Transform (FFT). As an alternative, the same
measurements were performed with band-limited noise (1 to
8 kHz) for comparison. All data was evaluated at the optimal
frequency fc ≈ 5.1 kHz (compare Eq. IV-D).

1

2

45

6

7 8 9 10

Fig. 12: (left) Microphone array and (right) diagram of the
arrangement of array and sound sources inside the anechoic
chamber.

Fig. 13: (Left) Angle laser gauge with Genelec 8020C, (Right)
Close-up view of tweeter with laser reflection on the diaphragm.

Source No. Dist. to Origin ϕl ϕ̃k SNR/dB
1 2.88 m 0◦ 2.4◦ 73.0
2 3.47 m 30◦ 33.9◦ 72.9
3 1.04 m 45◦ 43.8◦ 80.6
4 3.45 m 60◦ 58.2◦ 69.1
5 4.20 m 135◦ 138.3◦ 65.9
6 3.08 m 180◦ 182.7◦ 61.1
7 3.24 m 230◦ 233.7◦ 73.4
8 2.52 m 275◦ 276.6◦ 68.0
9 2.56 m 280◦ 282◦ 77.3
10 3.35 m 315◦ 314.1◦ 72.1

TABLE I: Reference location information for all ten loudspeak-
ers, estimated (ϕ̃l) DOA given in degrees and SNR obtained
from measurements of the individual sources at f ≈ 5.1 kHz,
N = 7.

B. Measured DOA of the Sources
The DOAs of the ten loudspeakers were individually mea-

sured using a laser angle gauge, located at the origin of the
coordinate system. The loudspeakers were adjusted so that the
laser pointed at the middle of the tweeter (see Fig. 13), ensuring
all tweeters were in the same plane as the 15 microphone
capsules. The distance of each tweeter from the origin was
obtained with a tape measure. The results are noted down in
Table I. It shows that the error of the estimates is less than 4◦,
and when ignoring the results for sources 2, 5 and 7, the errors
are even less than 3 degrees, making the method’s performance
directly comparable to that of EB-ESPRIT [4].

The depicted values will be used as reference for the
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(a) Without Source No. 3 (b) With Source No. 3

Fig. 14: Mean and median of the DEE in %, averaged over
1,000 randomised iterations for various numbers of sources.

testing of the DOA estimation performance based on the linear
combinations of individual sound fields. The SNR was estimated
using Eq. (38), where the value of the measured data q̃n was
used in the numerator. The noise coefficients εn were estimated
from data taken from the tail of the estimated impulse responses
as proposed by Stan et al. [23]. The SNR data suggests that
the level difference between the strongest and weakest source
is approximately 19.5 dB.

C. Mean & Median DEE for Linear Combinations of Individual
Measurements

The mean and median results for the DEE of DOA estimates
obtained from measurements are shown in Fig. 14a. The results
for each number of sources were averaged over 1,000 iterations,
during which sources were randomly chosen, where the near-
field source (No. 3) was excluded. The algorithm was set to
detect N = 7 sources, but only the L sources with the largest
magnitude |bl| were chosen for these results.

It can be seen that both the mean and the median have a
rising trend as L increases. The mean rises to approx. 9.7 %
for L = 6 and the median reaches slightly under 4.7 % for
L = 7. That makes for an uncertainty of ±17.46◦ and 8.5◦,
respectively.

Figure 14b shows the results of the same experiment, only
the near source was included in the pool of sources this time.
Both mean and median have a rising trend as L increases.
The mean peaks at approx. 11.6 % for L = 7 and the median
reaches slightly under 3.3 %. That makes for an uncertainty of
±20.9◦ and ±5.9◦, respectively.

The results of Table I indicate that the reference position of
sources 4, 5 and 7 may suffer from setup imperfections. The
influence of these were investigated by repeating the analysis
using the estimated values ϕ̃l in Table I as reference. It was
found that the mean and median DEE results then improve
slightly for L < 5, compared to the results given in Fig. 14.

D. Example: Measurement of Six Sources
Measurement data obtained from six simultaneously active

sources were analysed to confirm that the DOA estimation also
works for fields with several sources playing (uncorrelated)
noise at the same time. The results are given in Table II,
along with the results obtained with EB-ESPRIT [4]. The mean
accuracy of EB-ESPRIT is marginally higher than that of the

Source 1 4 5 7 9 10

(est.) ϕ̃l (deg) 3.7 60.6 126.7 230.9 284.4 309.8
(true) ϕl (deg) 0 60 135 230 280 315

(EB-ESPRIT) ϕl (deg) 4.4 70.5 136.8 231.4 282.9 315

TABLE II: Estimates from measurement signals obtained in a
field with six noise sources active at the same time, with a mean
DEE of 2.13 % (proposed method) and 1.94 % (EB-ESPRIT).

proposed method, however, the standard deviation of the error
is 3.7◦ with EB-ESPRIT and 2.9◦ with the proposed method.
EB-ESPRIT was implemented as described in [4], and 4096
time samples (≈ 85 ms) were used to obtain the result with
both methods. Note that the proposed method is implemented
in the frequency domain and was set to only evaluate data
from the frequency bin at 5.1 kHz, while another independent
set of estimates could theoretically also be obtained for other
frequency bands in a single FFT frame. While a comparison to
other established methods (e.g. MUSIC, ESPRIT, etc.) may be
possible in principle, it should be noted that, unlike EB-ESPRIT
and the proposed method, they are not designed for wideband
data [4] and they require interpretation of their associated
angular spectrum. This underpins the potential of the proposed
method.

E. Discussion
The values obtained for the mean and median of the DEE

compare well to those obtained from the simulations with
additional noise presented in Section V-C. The discrepancy
between mean and median results suggest that the estimates’
accuracy sometimes suffers from outliers. The effect of the
near-field source was reflected in the slightly degraded mean
performance, yet the median remains nearly entirely unaffected
by it; it even improves at high values of L, probably due to
a relatively high SNR. This suggests that, for the case under
consideration, real sources are sufficiently different from ideal
point sources to not entirely compromise the DOA estimation
performance.

It must be expected that the small angular distance between
sources 8 and 9 has a negative effect on the estimation
performance. If the resolution of the method is not high enough
to resolve the difference between the two sources, then this
will potentially lead to worse DEE results whenever these two
sources are randomly selected into the same set. The relatively
good result of the multi-source measurement supports this
hypothesis.

Another aspect that needs to be considered is the influence of
the floor grid of the ISVR’s anechoic chamber, which may have
generated some unwanted reflections at high frequencies. This
could then result in a wave field with plane waves that are not
travelling parallel to the measurement plane zM . It was shown
in Section V that OOP-PW can degrade the performance of the
DOA estimation mechanism due to the additional modulation
of the sequence of coefficients qn. It must thus be expected
that the estimation performance with the measured data may
have suffered from degradation due to grid floor reflections.
While this type of vulnerability of the estimation method is
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undesirable, it should be seen with relation to the fact that
the measurement aperture is designed for two-dimensional
measurements to begin with. It may be argued that this is
actually not a fault of the method but of the two-dimensional
measurement aperture.

VII. CONCLUSIONS

A thorough analysis of a previously proposed DOA estima-
tion method was presented. The work is based on theoretical
considerations, simulation and experimental results. The DOA
estimation method uses data obtained from circular arrays in
sound fields with a finite rate of innovation.

A set of theoretical models for the array output in such
sound fields was derived, considering both plane waves and
point sources. It has been argued that the proposed method
has a distinction over other methods (e.g. MUSIC, ESPRIT,
EB-ESPRIT) in not requiring the sources to be incoherent. For
example, the proposed method could be used to identify the
early reflections from the spatial impulse response of a room.
It was found through theoretical considerations that the DOA
estimates may suffer from point sources located within close
range of the array and plane waves that do not travel parallel
to the plane of the measurement aperture (OOP-PW).

The sound source models were applied in a simulation
study to investigate the robustness and accuracy of DOA
estimates against measurement noise and model imperfections.
Percentages of average estimation errors were given, indicating
the dependency of the DOA accuracy on the SNR and the
number of plane waves in the field. It was found that the DOA
estimation error for ideal sound fields increases significantly
for sound fields where the rate of innovation exceeds what can
be captured by the array.

Experimental results confirmed the findings on the perfor-
mance in ideal sound fields of the simulation study. It was
observed in both simulation and experimental results, that the
mean accuracy is notably higher than its median. This suggests
that the estimation method produces outliers that deviate from
the median by a significant step, while 50 % of the time, the
estimates have a much higher accuracy than is suggested by
the mean accuracy. A direct comparison to EB-ESPRIT found
that both methods yield a comparable accuracy.

Point sources and OOP-PW were shown to severely degrade
the DOA estimation performance if their number in the field
is larger than one. These types of sources were argued to be
practically relevant and thus pose an important factor to consider
in practical implementations. It can be concluded that, since
it captures only a two-dimensional subset of the sound field,
a circular array and the data obtained from it are particularly
vulnerable to any sound field components that deviate from a
two-dimensional scenario.
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APPENDIX A
GENERAL PLANE WAVE EXPANSION IN CYLINDRICAL

COORDINATES

Using Eq. (1), the propagation term of the PW is given
through

eik·r = e−ikrr(cosϕ cosφ+sinϕ sinφ)e−ikzz, (39)

where r = (r cosφ, r sinφ, z)T . Using the product theorems of
the sine and cosine functions [24] and exploiting the symmetry
of the latter yields

eik·r = e−ikrr cos(φ−ϕ)e−ikzz. (40)

The z-component of k can alternatively be written as a
function of the elevation angle θ associated with the DOA, so
that kz = k cos θ. It then follows from (2) that kr = k sin θ.

Using the Jacobi-Anger expansion [14] to expand the first
term of Eq. (40) provides the expression

e−ik sin θ r cos(φ−ϕ) =

∞∑
n=−∞

inJn(−kr sin θ)ein(φ−ϕ). (41)

It follows from the series expansion of the Bessel function
Jn(z) [17] that Jn(−z) = (−1)nJn(z). The conjunction of
this and the result in (41) applied to Eq. (40) leads to the series
expansion of a single PW in cylinder basis functions [17]

eik·r = e−ik cos θz
∞∑

n=−∞
i−nJn(kr sin θ)ein(φ−ϕ). (42)

APPENDIX B
SERIES EXPANSION FOR THE SOUND FIELD OF A POINT

SOURCE

In cylindrical coordinates, the Green function of the
Helmholtz equation can be expressed through cylinder basis
functions [25], [26], yielding

G(r|r′) =
i

4

∞∑
n=−∞

inΦ∗n(φ′)Φn(φ)

·
∫ ∞
−∞

eikz(z−z′)

2π
Rn(krr)H

(1)
n (krr

′)dkz (43)

for r < r′. It poses an expression for the pressure of a PS
located at r′ = (r′, φ′, z′), with kr = k sin θ′ and kz = k cos θ′,
where θ′ = arctan

(
r′

z′

)
.

Note that the integral in (43) is not trivial to solve and typi-
cally needs to be either calculated numerically or approximated
with a stationary phase approximation [17], [27].

APPENDIX C
HD COEFFICIENTS FOR THE SOUND FIELD OF A POINT

SOURCE

The pressure field of a single PS measured on the circle A
in the plane z = zM yields the result of the form in Eq. (13).
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A comparison of the factors with those in Eq. (43) yields the
expression for the pressure coefficients

pn = b′
in+1

4
Φ∗n(φ′)

∫ ∞
−∞

eikz(zM−z′)

2π
Rn(krξ)H

(1)
n (krr

′)dkz.

If the PS is located within the plane, i.e. z′ = zM , this
expression simplifies to

pn = b′Φ∗n(φ′)
in+1

8π

∫ ∞
−∞
Rn(krξ)H

(1)
n (krr

′)dkz. (44)

Equating the right hand side expression with Rn(kξ)qn (com-
pare Eq. (16)) and rigorous reformulation of Eq. (44) yields
the expression for the HD coefficients:

qn = b′
e−inφ

′

√
2π

in+1

8π

∫∞
−∞Rn(krξ)H

(1)
n (krr

′)dkz

Rn(kξ)
(45)
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