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ABSTRACT
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Doctor of Philosophy

USE OF A TWIN-INVERTED PULSE SONAR (TWIPS) TO DISCERN
BETWEEN SOLID OBJECTS AND BUBBLES

by Daniel Clark Finfer

This thesis shows how a twin-inverted pulse sonar (TWIPS) can take
advantage of nonlinear bubble dynamics to suppress undesirable
bubble clutter in sonar systems. This sonar requires the production
of two high-amplitude pulses in short succession, the second of which
must be 180° out of phase with the first. It will be shown that the
echoes from these excitations can be combined to selectively suppress
between even- and odd- harmonic energy. After a simulation is used
to prove the TWIPS concept, an experiment will be described wherein
this method was tested in a controlled environment on a replicated
oceanic bubble cloud. The novel bubble-cloud generating machine
will be described in detail. The results from a TWIPS sea-trial will
then be used to show that the method works not only in controlled
environments, but also in the open water. Finally, a review will
explore newly-discovered links between the echolocation abilities of
acoustically-active, coastally restricted cetaceans and TWIPS. That
review will show using pre-existing data that some coastal dolphin
species seem capable of generating pulse-pairs wherein the second

pulse is 180° out of phase with the first.
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Chapter 1 - Introduction

1 Introduction

One of the greatest challenges facing operators in the littoral zone is
the inability to distinguish solid objects from bubbles using sonar.
This challenge impedes mine-hunting capabilities, swimmer detection,
and the ability to differentiate hard surfaces from gassy entities in
boat-wakes. This thesis dissertation describes a novel method by
which it is possible to overcome the irregularities in acoustic
propagation due to the presence of bubbles, so as to reveal the
presence of solid objects in the water column. It will be seen that the
developed method could indeed find application in areas as varied as

ocean acoustics, biomedical ultrasound, lidar, and radar.

1.1 Sonar in littoral waters

The resolution of the Cold War and the onset of the Gulf conflict in
1991 marked a change in focus for naval strategists. In the 1970’s
and 80’s, NATO and Soviet efforts had aimed to master deep-water
acoustics and long-range propagation so as to dominate the deep-
ocean basins of the world [4]. However, the unique challenges faced
in the lead-up to the liberation of Kuwait exposed the fact that almost
no naval countermeasures existed which were capable of handling the
unique challenges presented by the shallow, turbulent, sandy, and
bubbly waters encountered in the Persian Gulf. The desire to
minimize system development overheads makes it advantageous for

military contractors to adapt for coastal waters those technologies
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water, is further complicated by the fact that, in acoustical terms,
shallow water is fraught with difficulty. These difficulties arise as the
result of several factors, including surface undulations [8], suspended
sediment [9], ambient noise issues [10], and especially bubbles [11].
Since the end of Operation Desert Storm, researchers have made great
strides towards understanding and predicting the acoustical effects of
these physical artefacts. However, large uncertainties still reside
within basic shallow water (SW) sonar propagation models. As SW
reverberation is often the limiting factor in relation to the use of active
sonar systems for target detection, localisation, and classification, SW
reverberation has become a research area of "intense interest” [12]. In
essence, the acoustical complexities of the littoral battle-space
facilitate the successful realisation of objectives by relatively
inexperienced enemies who may be equipped with only remedial

systems.

The danger presented by underwater asymmetric warfare was
highlighted during Operation Desert Storm (August 1990 - February
1991). The Desert Shield/Desert Storm summary report of US Naval
operations prepared by the Chief of Naval Operations in March of
1991 explained how experience in the Gulf exposed hardware and
intelligence shortcomings in mine countermeasures (MCM) operations
[13]:

Our Cold War focus on the Soviet threat fostered reliance on

our overseas allies for mine countermeasures in forward areas.
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The MCM assets of our allies - - - on whom we have relied for
MCM support in NATO contingencies for years - - proved their
mettle in the Gulf, both in Operation EARNEST WILL (during
the Iran-Iragq war) and DESERT STORM. Both operations
highlighted the need for a robust, deployable U.S. Navy MCM
capability. We are undertaking a comprehensive review of both
our mine countermeasures strategy and the readiness of our
forces to ensure our ability to conduct independent mine

countermeasures operations when required.

Modern MCM solutions tend to favour autonomous detection
platforms which are "mission reconfigurable"l. Reconfigurability is a
feature which is hardly trivial, given the potential for physical
variability of shallow water environments from one location to another

[14], or even from day to day [15].

Many western military strategists are currently concerned with the
potential for a conflict near the coast of China, and especially in the
Strait of Taiwan (100 miles across at its widest point, with a
maximum depth of only 70 m). According to The Economist for 4

August 2007 [16],

"American global supremacy is not about to be challenged by

1 Mission reconfigurability refers to the ease with which a system’s hardware and
software can be adapted to the needs of varying types of objectives (eg. from

reconnaissance to mine-hunting or bottom-surveying).
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China's tinkering with [large, deep-water craft such as] aircraft-
carriers. Even if China were to commission one—which analysts
think unlikely before at least 2015—it would be useless in the
most probable area of potential conflict between China and

America, the Taiwan Strait". [16]

The 1996 Taiwan Strait crisis highlighted the fact that quick response
by forces representing democratic power is essential to counter any
efforts by the People's Republic of China to intimidate Taiwan
militarily [17]. The speed of a safely advancing forward unit is
ultimately determined by the speed of MCM operations, which is a
"notoriously time-consuming task that can require meticulous
operations by participating surface ships, submarines, and
helicopters. The Navy's mine countermeasures (MCM) capabilities
have been an area of concern in Congress and elsewhere for a number

of years" [18].

It has been acknowledged that the US Navy "does not have a means
for effectively breaching enemy sea mines in the surf zone [or]
detecting and neutralizing enemy submarines in shallow water" [19].
Based on this analysis, the lessons learned during the Gulf crises,
and the strategic concerns of Congress for future conflicts, it is clear
that advancement of MCM capabilities for shallow waters is a relevant
and worthwhile pursuit. Therefore, the goal of this thesis - to develop
the first practicable solution for the detection of solid objects in surf

zone-like conditions - is well justified.
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1.2 Passive and active techniques

Acoustic detection and localisation methods fall into two categories:
passive and active. Passive methods take advantage of energy
introduced by the source. If sufficient multiple passive receivers are
used and noise does not overwhelm the signal of interest, it is possible
to estimate the location of the source in three-dimensions [20]. Active
methods, however, require that some acoustic energy be deliberately
introduced so that echolocation can be performed. Passive methods
are especially desirable in situations where environmental sensitivity
or covertness are required, but are difficult to implement in cases
where background noise levels are high [21]. As argued above, one of
the principal mission-types which is impeded by the presence of
bubbles is mine detection. Most mines are entirely passive, and emit
no significant acoustical energy of their own. A technique for finding
mines in bubbly water or gassy sediment will therefore require some

introduction of acoustical energy: an active technique.

This argument is further bolstered by the consideration of background
noise levels which will likely be encountered during system
application. Bubble clouds can be generated by either man-made or
natural sources, examples of each respectively being ship propellers
[22] and breaking waves [23]. As both of these sources are very noisy,
a technique intended for use near bubble clouds must be able to

compete with high background noise levels. To summarise this point,
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since the solution sought here will be implemented to search for
nearly-silent objects, and in environments with very high background
noise levels, it seems advantageous to pursue an acoustically active

system.

1.3 Attenuation: A limiting factor

Difficulties arise when studying sound propagation in bubbly water for
two reasons — bubbles both scatter and attenuate the sound. In
general terms, scattering is a source of problbems in many systems
which exploit wave propagation, regardless of the medium, frequency
range, or radiation-type of interest. As a result, scattering
suppression is a topic which has received a great deal of attention in
the scientific literature. The goal here is argue that the apparent loss
in acoustic information which results from wave scattering can, in

some sense, be regained.

By contrast, attenuation is an irreversible process. If a source sends
information to a receiver, but the useful information becomes
overwhelmed by noise, then it is not logically viable to develop some

algorithm which can reliably recover the now-missing data.

In concise terms, while scattering may be reversible, attenuation is
intrinsically irreversible. This fact presents a practical limitation on
how well targets in bubbly water can be detected, a subject which will

be treated in more detail within the analysis presented in Chapter 2.
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1.4 Solution inspirations

The suppression of acoustic bubble scattering was considered by
Leighton in 2004 [24]. In that publication, he called the following two
concepts to attention:

1) Scattering suppression is not altogether divorced from

scattering enhancement. Both efforts require some prior

knowledge of how the field will scatter ~ thus if some method
exists to enhance scatter, it might be possible to reverse that
method to suppress scatter. In fact, an entire facet of the field
of medical ultrasonics, pulse inversion, is dedicated to the
enhancement of bubble scatter.

2) The problem of detecting solid objects in bubbly water is not
limited to human marine operations. Cetaceans are known to
depend on active biosonar for at least some portion of their
hunting and navigation activities. Perhaps marine mammals
have evolved to cope with the difficulties presented by bubble
scattering in a way that can be exploited by human beings.

This doctoral investigation was prompted by the synthesis of these two

concepts, each of which will now be considered.

1.4.1 Biomedical contrast enhancement

Biomedical ultrasound is in principle very similar to an active sonar
system [25]. Acoustic pulses are introduced into the body, and the
temporal distribution of reflections corresponds to the physical

arrangement of various reflecting bodies within the patient. Thus, to

8
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be acoustically perceptible, an object must reflect sound. The degree
to which a particular object reflects sound is dependent on the
magnitude of impedance mismatch between that object and its
surroundings. The acoustic mismatch between blood and body tissue
is, practically speaking, very low. Thus, circulatory systems within
the body are essentially acoustically non-reflective [26]. In many
cases, however, it is desirable to highlight blood flow. To make it
possible for blood-flow to appear in ultrasound scans, it is common to
introduce “acoustical contrast agents” - engineered gas bubbles -
which are highly acoustically mismatched with the surrounding blood,
and so act as a flow-tracer (similar to the way in which paraffin is
used in some wind-tunnels to highlight flow streaklines [27]). The
acoustic visibility of contrast agents can be enhanced by causing the
bubbles to pulsate in a nonlinear manner. One common way to
exploit these nonlinear dynamics is by use of a pulse-inversion
scheme [28, 29]. In simplistic terms, pulse inversion works in the
following manner: Two pulses are emitted; a primary pulse, followed a
short time later by phase-reversed version of that pulse. The
scattered return from these two signals is then combined in a manner
such that the non-linear components from the signal are enhanced,
whilst signal components corresponding to linear scatter are
suppressed. It will be seen that pulse-inversion is the inspiration for
the solution implemented in this thesis. Biomedical ultrasound
contrast agents and pulse inversion will be considered in more detail

in Chapter 2.
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1.4.2 Biosonar in littoral waters

Many marine mammals are known to possess extraordinary biosonar
capabilities. According to Au, “dolphins have biological sonar abilities
that exceed those of any man-made system in an aquatic
environment” [30]. As a result, many researchers have studied the
biosonar abilities of dolphins, in the hopes of improving human-
operated echolocation methodologies. Despite the amount of
literature dedicated to so-called biomimetic sonars, it is not yet
understood how dolphins navigate and hunt in limited-visibility
bubbly water. To understand these abilities better, it seems logical
that scientists should pursue focused studies on those animals which
inhabit such waters exclusively. Indeed Odontecetes of the genus
Cephalorhynchus, all of which have been echolocate actively, inhabit
only littoral waters [31]. However, the acoustic abilities of the genus

Cephalorhynchus remain relatively undocumented.

As will be discussed in Chapter 3, microbubbles, entrained by
breaking wave action, remain within the water column of well-mixed
littoral seas for several hours after the entrainment activity has ceased
[23]. Thus, a hypothesis well worth investigating is the proposition
that acoustically-active animals in this habit might have some ability
to cope with microbubble scattering [32, 33]. A review of the literature
concerning the acoustic behaviour of members of the genus
Cephalorhynchus will be offered in Chapter 6. It will be shown that in
fact that these species may be using a dual-pulse method [32, 34],
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similar to that solution which was suggested by Leighton in 2004 [24],

and which is the main subject of this dissertation.

1.5 Overview of the thesis

This thesis will proceed in six chapters. This first chapter has
introduced the basic concepts relevant to this investigation. In the
next chapter, a description of basic bubble dynamics will be used to
prompt a review of the literature on the topic of bubbles and
biomedical ultrasonics. The degree to which those acoustic methods
which are used in biomedical ultrasound have also been applied to
ocean acoustic studies will then be discussed. One of these methods,
pulse inversion (PI), will then be used to form the basis of Twin
Inverted Pulse Sonar (TWIPS), the first-known viable engineering

solution for the detection of solid objects in bubble water.

Chapter 3 will discuss the sources and physical characteristics of
bubble clouds found in the ocean. It will be seen that many of the
methods used to study oceanic bubbles draw on or are identical to
those methods presented in Chapter 2. Also reported in Chapter 3 is
the development of an air/water mixing mechanism at the A.B. Wood
Underwater Acoustics Laboratory. This bubble fluid generator (BFG)
facilitated the creation and controlled distribution of bubbles clouds
having a size distribution comparable to that distribution exhibited by

oceanic clouds.

11
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The discussion of the viability of TWIPS will continue in the following
chapter with a report on an experiment designed to investigate the
operating characteristics of that sonar. Experimentally acquired data
will be used to show that, in detecting solid objects in bubbly water,
TWIPS outperforms the state-of-the-art technology. The chapter will
continue with a comprehensive analysis of the experiment results.
Chapter 5 will be used to the results of a field study performed to
justify the claim that TWIPS detect the seafloor when obscured by a

bubbly ship wake.

Chapter 6 will contain a study of littoral biosonar. This topic will be
introduced because, after successful target detection using TWIPS-
pulses had been simulated and published [33], the ISVR research
team became aware? that some cetaceans in fact use TWIPS-like
pulses when echolocating in bubbly water. This discovery prompted a
review of the literature concerning littoral cetacean biosonar, which
will appear at the beginning of Chapter 6. That chapter will then

continue with the study of some TWIPS-like biosonar sounds.

2 Dr Marc Lammers of Oceanwide Science Institute pointed out to the authors in
2005 that surface reflections of echolocation signals generated by bottlenose
dolphins are an oft-encountered artefact with which bioacoustics researchers are
generally familiar. This dialogue took place at the First International Conference on

Measurements in Acoustics in Heraklion, Crete.
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In the conclusions section (Chapter 7), the successes of this
investigation will be summarised. The information presented in the
preceding chapters will be synthesised and used to show how

research in this field might move forward.

At the end of the volume appears an appendix comprised of two parts.
The first is a treatise on the nature of receiver-operating characteristic
(ROC) curves. The second part is a reproduction of all publications

which the author has written or co-written whilst completing his PhD.
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2 A method for searching for solids in bubbly
water

Two sorts of truth: trivialities, where opposites are
obviously absurd, and profound truths, recognised by
the fact that the opposite is also a profound truth.

-Nils Bohr3

In this chapter, a potential algorithm for the detection of solid objects
in oceanic bubbly water is described. First, the state of the art will be
discussed, and it will be established that the presence of bubble
clouds in the water greatly reduces the degree to which modern sonar
systems are effective. Second, the dynamics of bubbles under
acoustic excitation will be discussed, and it will be shown that
bubbles tend to scatter in a highly nonlinear manner. Following the
section on bubble dynamics there is a review on the topic of bubble
contrast enhancement in the field of biomedical ultrasound. This
section is punctuated with a discussion on the methodology behind

“pulse inversion” technology.
gy

3 As quoted by his son Hans Bohr, in:

S Rozental, Niels Bohr. His Life and Work as Seen by His Friends and Colleagues,

Amsterdam: North-Holland Publishing Company, (1967}, p 328.
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As was reasoned in Chapter 1, scattering suppression is not
altogether divorced from scattering enhancement. The discussion
here will build upon that logic, and lead from the review of literature
on pulse inversion into the proposal for a new method, based on a
pseudo-reversal* of the pulse inversion approach. The feasibility of
this new method, the Twin Inverted Pulse Sonar (TWIPS), will be
analysed in the third section. This will be accomplished by using the
results of simple computational studies to differentiate between the
acoustic scatter from a target and a single bubble. Fourth, that
computation will be expanded to simulate the acoustic search for a
single fish surrounded by tens of millions of bubbles per cubic meter

beneath a breaking wave.

2.1 The state of the art

Active sonar technology developed for the detection of objects hidden
in or on the seabed has tended towards the production of images
based on scanning technology. As technology improves, scanning
sonars tend to the employ ever-higher frequencies. This is because
wavelength varies inversely with frequency; therefore higher frequency

scanners allow for higher resolution images (this will be explained in

4 The term "pseudo-reversal’ is used here to express the fact that, although a literal
reversal of pulse inversion technology is the logical predecessor of the TWIPS
method, further improvements are required to reveal the presence of solid objects in

bubbly oceanic water, as developed within the body of the text.
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more detail within section 2.7.1.2). In clutter-free conditions, the
practical upper limit for sonar scans is limited according to the signal-
to-noise ratio (SNR). Clutter, ambient noise, and absorption all
contribute to the diminution of the SNR. In bubble-free seawater,
absorption increases by roughly an order of magnitude for every order
of magnitude increase in frequency [21], thereby limiting the
usefulness of very high frequency (VHF) sonar systems. Currently, a
wide variety of side-scan sonars are available which operate from 30-
100 kHz (for long range surveys) up to 500-1000 kHz (for close-range

high-resolution scans).

Scanning sonar was developed for target identification and for ocean-
bottom surveying. In oceanic scanning, bubbles are generally
perceived as sources of noise and acoustic signal loss. Thorpe [23]
was innovative in realising that the tendency for bubbles to
backscatter sound could be exploited in the study of bubble plumes in
Loch Ness. Thorpe observed that bubbles, once generated by mild
wind-induced surface turbulence, were then dragged down several
meters within the water column, and persisted for several minutes
after the winds subsided. Bubbles scatter target-finding sonar
undesirably, so this physical observation suggested that sonar might
be difficult to use in both rough waters, and also in calm waters
following periods of surface disruption (such as that generated during
a high-wind period). This study represented an important advance in

terms of understanding the evolution of bubble clouds within the sea.
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The success of Thorpe’s method depended principally on the fact that
the properties which make scanning sonar inadequate when one seeks
to find a target in bubbly water can be exploited for the study of

oceanic bubble plume evolution.

While the prevailing technology in MCMs is dependent on the high-
resolution images created using high-frequency acoustics [35], some
competing technologies rely on mid-frequency (1-10 kHz) resonant
scatter by targets for detection [36]. High-frequency target imaging is
capable of revealing the visible profile of an unburied or only partially-
buried object but does not facilitate the perception of any information
concerning target construction. However, resonance scattering by a
target in the range of 4<kL<30 (k is the wavenumber and L is the
characteristic length of the object) makes it possible to obtain
information concerning the structural features of targets such as wall
thickness and elastic properties [37]. Furthermore, when compared to
the frequencies used for imaging, frequencies of this order (1-10 kHz)
offer improved seabed penetration [36]. In the case where the
structural behaviour of targets within the scanned Ilocation is
understood, this improved seabed penetration means that resonant
scatter detection systems are theoretically well-adapted to the
detection of fully-buried objects. Resonance detection will not be
exploited in the experiments conducted in connection with this study,
because only non-resonant targets were available for testing.

However, because of the frequency range eventually employed for
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TWIPS, it will be seen in later discussions that this topic will become

relevant.

Bubble scattering problems are not isolated to the upper part of the
water column. Bubble clouds trapped within sediment will tend to
interrupt acoustic propagation in the sea-bottom (regardless of
whether one is attempting to locate sub-bottom objects using sidescan
sonars, resonant scatter detection systems, or another technology).
The solution, as this document has already suggested, might be to
exploit the ability of bubbles to scatter nonlinearly. The next section
will discuss methods in use in biomedical ultrasound which take
advantage of nonlinear scatter for the purpose of bubble scatter
enhancement. It will then be argued that one of these methods, pulse
inversion, can be in a sense reversed for the purpose of bubble scatter
suppression. This hypothesis will then be tested using a computer

simulation.

2.2 Dynamics of an acoustically excited bubble

In response to low-amplitude acoustic excitation, bubbles will act as
simple linear oscillators. Consider a single degree of freedom system,

as depicted in Figure 2.1.

R

E

Figure 2.1 A single degree of freedom system
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The equation of motion for the single degree of freedom system shown

above is given by the following well-known equation [38].

d?z dz
+c1— + kl.’E

F(t)=m,—
Q L dy? dy (2.1)

For this oscillator, the resonance frequency can be obtained via the
expression fres = (ki mi1)1/2. With respect to the driving signal, the
frequency spectrum is comprised of three regions [39]. At frequencies
much below resonance the system is said to be in the stiffness region,
as the stiffness of the spring determines the motion of the mass. In
the stiffness region, the system mobility (the ratio of velocity and force)
is proportional to o ki1, where o is the radial driving frequency and ki
is the system stiffness. At resonance, the system will exhibit
damping-limited unstable oscillation. At frequencies much above
resonance, the system is said to be in the inertial region, as the
motion is dictated mostly by the properties of the mass. In the inertial
region, the system mobility is proportional to o'm;-!, where o is the
radial driving frequency and m; the system mass. A bubble can be
modelled as a single-degree of freedom system where the stiffness is
given by the compliant gas volume and the mass term refers to the
inertia of the fluid entrained in the motion observed as the bubble
pulsates [11]. The formula for the resonance frequency of a bubble is
of the same form as that for a mechanical system, but the stiffness
and mass terms are replace respectively by the bubble stiffness and
the sum of the bubble mass and the radiation mass [11]. Radiation

mass here refers a quantity equal to three times the mass of the water
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displaced by the pulsating bubble [11]. If the bubble is assumed to be
spherical, the system is treated as adiabatic, and the mass of the
bubble is assumed to be insignificant in comparison to the mass of
the water entrained in oscillation, then the bubble resonance w, is

given by [11]

w 2_}_\/372772,6 _ 20
° R, P PR, (2.2)

In this expression, R, is the radius of the undisturbed bubble, ¢ is the
liquid surface tension, y is the ratio of the specific heat of air at
constant pressure to that at constant volume, pi. is the pressure

inside the bubble when undisturbed, and p is the density of water.

When an acoustic wave encounters a static object, the incident
acoustic energy is either reflected, transmitted, or absorbed in
accordance with the relation between the geometry of the object and
the wavelength of the ensonifying energy [21]. The same holds true
when an acoustic wave encounters a dynamic object (such as a
bubble), although in addition an ensonified dynamic object will also
reradiate sound [11]. This reradiation is driven by oscillatory
excursions in the radius of the bubble, which will also result in
scattering. However, since bubbles are nonlinear oscillators, the type
of sound scattered by bubbles is classified as being nonlinear scatter.

Defintions of by linear and nonlinear scattering will now be given.

A linear system is defined according to the principles of superposition
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[40]. If y1[n] and y2[n] are the responses of a system when xi[n] and
x2[n] are the respective inputs, then the system is linear if and only if
T{z1[n] + z2[nl} = {Tz1[n] + Tza[n]} = yi[n] + y2[n] (2.3)

and

T{ax[n]}= aT{x[n]}= ay[n] (2.4)

where a is an arbitrary proportionality constant. The relationships
expressed in equations (2.3) and (2.4) are known respectively as the
properties of additivity and scaling. The properties can be combined to

express the principle of superposition, which can be written as

T {axl [n ]+ bxz[n]}= al {x, [n]}+ bT {x2 [n]} (2.5)

A target does not need to be perfectly rigid or non-porous to scatter
linearly, but such an object will indeed scatter all sounds in a linear
manner. When a target is not perfectly rigid, then the dynamics of the
target structure will influence the scattered field. In the case of a
target of weakly elastic material such as steel of a few millimetres
thickness excited by low-intensity, audio frequency® sounds, the
structure can be expected to exhibit resonances. At these resonances,
the target will "ring", and this will influence the re-radiated signal in

both the frequency and time domains.

5 The audio frequency range is generally accepted to be roughly 20 Hz - 20 kHz.
Here, the term 'low-intensity' pertains to a sound of a level which would be audible

but not uncomfortable for a listener.
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Bubbles are nonlinear oscillators as pointed out above [11]. A simple
example of a nonlinear system can be expressed by stating that a
system’s response is related to the driving force through a power
series expansion:

¥(O=s1fit)+ 520 53,0 )+ safP'()... (2.6)
where ¥ is the general response of the oscillator, and fi is the driving
force. The parameters s;, s, etc. are coefficients. Consider a single
frequency driving pulse defined as Pt} =Pacoswt, where « is the
angular frequency, Pa is the amplitude, and t is time. If this signal is
substituted into (2.6), it can be seen that frequencies which are
integer multiples of the fundamental driving frequency will be
generated. It should be noted that the power series expression of
bubble nonlinearity is useful, but incomplete. It does not for instance
predict subharmonics, which have been shown to be produced by
nonlinearly oscillating bubbles [41], or any dynamics following the end

of the excitation pulse (so-called ‘ringing)).

Rayleigh first showed bubbles to be nonlinear oscillators in a 1917
publication [42], and Plesset was the first investigator to apply this
equation to cavitating bubbles [43, 44]. The following result, which
has been reproduced in several places [11, 45], is thus known

commonly as the Rayleigh-Plesset equation:

3R2
RR + ”u&3n+v_gg"_po Pt
{( po(5)*) +py — % ®} .

In the equation above, R is the bubble radius, R is the first derivative
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of the bubble radius, R is the second derivative of the bubble radius, p
is the density of gas within the bubble, x is the polytropic index, ¢ is
the surface tension of the liquid, p, is the hydrostatic liquid pressure
outside the bubble, and P(t) is the time-varying driving acoustic
pressure. This result accounts for viscous damping, but not radiation
damping. More advanced formulations for the nonlinear response of a
driven bubble have been derived by several investigators to take
radiation damping, including a family of formulations known as the
Herring-Keller/Keller-Miksis equations. The Herring-Keller equation
[46] [47] is the result which was used to develop the numerical output

presented later in this chapter:

- . ) )
2 3¢y Cuw
R\ 1 R R d
1+ — —(PL*PO*P(H——))%— L
Cyw | Pu Cy PwCuw dt (2.8)

where values are defined for the variables as above, ¢, indicates the

sound-speed in the liquid, pw indicates the density of the water when
undisturbed, and py is the pressure within the liquid just outside the

bubble.

2.2.1 Scattering cross-section of a bubble

If a plane-wave were to travel from left to right through a field free of
any inhomogoneities, it would be expected that no energy would be
reflected to the left. However, if the wave were to encounter a rigid,

normal plate of cross-sectional area Q, then all of the sound incident
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on that surface would be reflected to the left; it could be said then that
the plate has a scattering cross-section of area Q. If that plate were to
vibrate, then further energy would have to be supplied by the acoustic
field to sustain the vibrating motion. This increase in supply of energy
to the plate could be accounted for by increasing the effective size of

the plate to give a larger effective scattering cross-section. For a

. . . t .
bubble, the time-averaged scattering cross-section o> b is

Qscag — wi‘47rR§

2 (kR,<<1) (2.9)
where w; is the driving frequency, R, is the equilibrium radius of the
bubble, IT is a function describing the frequency response of the forced
bubble, and k is the wavenumber. The function given above in (2.9) is
shown in graphical form in Figure 2.2 below. In Figure 2.2, q

indicates the so-called quality factor, which is defined as the number

of radians required for the energy to decay by a factor of e -1

__ Wdamped

28 (2.10)
where wampea is oscillatory frequency of the damped system and f is
the damping factor. Note that the natural system resonance in the
absence of damping w, is related to the damped oscillation frequency

: 2 p\122
via wdamped = (C()o - ﬂ ) .
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Figure 2.2 The scattering cross-section of a bubble, for which the damping is
assumed to be constant with frequency. Linear harmonic bubble pulsations
assumed. (a) Insonation at 30 kHz with q=10. (b) Insonation at 30 kHz for
bubbles having q=10 and ¢=30. (c) Insonation at 248 kHz for gq=15. (Figure and
caption after Leighton [11]; in this figure, q indicates the quality factor as
defined by the number of radians required for the energy to decay by e).

An analysis of Figure 2.2 leads to some interesting conclusions. For a
bubble cloud containing bubbles of many sizes and ensonified at

frequency w;, it might be hypothesised that the only bubbles to
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respond and thus cause variations in the sound field would be those
having a resonance frequency w,~ w;. The resonant peak in Figure 2.2
(a) makes it clear that these resonating bubbles would indeed
respond. However, this resonant peak is only a local maximum, as is
shown in Figure 2.2 (¢). In that figure, the rising tail on the cross-
section plot shows that with increasing insonation frequency, the
cross-section may attain values comparable or greater than the
resonance value [11]. This is a result of the fact that as the bubble
dimensions approach the wave size, geometric effects (such as
shadowing) begin to dominate even though physical effects on the
bubble caused by the sound may be relatively imperceptible. Usefully,
at low insonation powers, the emission of the second harmonic is a
global maximum when the insonation frequency coincides with the
bubble resonsance [11]; a point which will be expanded upon later in
this chapter. The next section will show how the physics of
acoustically excited bubbles can be taken advantage of for the

purpose of detecting the presence of bubbles in the blood stream.

2.3 Bubble scatter enhancement in ultrasound

Blood flow 1is essentially transparent to in vivo ultrasound
measurements. This is a result of the fact that the mismatch of
acoustic impedances is relatively low at the interfaces between blood
and tissue (Zwater/ Ztissue ~ 2.25 MRayl/1.5 MRayl [48] where Zwater and
Zussue are the specific acoustic impedances of water and tissue

respectively, and a Rayl is a Pa s m'!, known as a Rayleigh). As such,
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sonographers and other practitioners of biomedical ultrasound have
long sought ways to improve blood flow-measurements. Gramiak and
Shah provided a breakthrough in 1968 when they reported that,
during M-mode cardiography® [49], they noticed the appearance of a
cloud of echoes during intracardiac injections of indocyanine green
dye - a substance used to trace blood flow [50]. It was later discovered
that this contrast effect could reproduced by injecting almost any
liquid into a flow through a needle or catheter; and that the contrast
was caused by bubbles introduced into the flow in the injection
process. This detection resulted from the effects of impedance

mismatch and bubble scattering as described above.

2.3.1 Doppler imaging

Nishi [51] improved the contrast between bubbles in the bloodstream
and their static surroundings by taking advantage of the Doppler
effect. When driving a field at a frequency f, the motion of ensonified
bubbles within the blood stream results in the generation of
reflections at shifted a frequency f' which is given by:

f'=(c/(ctVy)) f (2.11)

where cis the sound speed, fis the operation frequency, and V' is the

6 M-mode, or "Motion-mode", ultrasound is the study of the acoustic returns from a
single acoustic beam. In this mode, the acoustic beam is projected onto an object,
which provides a single acoustic return. Any motion of that object will cause a

variation in the time-history of the reflection of the acoustic beam.
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velocity of the bubble along an axis extending between the bubble and
an observer. The system response may then be filtered for energy at
the Doppler shifted frequency f', thereby increasing bubble contrast
by suppressing the response of any non-moving objects which will
would have reflected energy at the input frequency f. It should be
noted that the ability of Doppler methods to increase contrast is
limited as a result of the fact that body tissue is not entirely static. As

a result, tissue echoes may also exhibit some frequency shift [52].

2.3.2 Resonance imaging

Fairbank and Scully [53] attempted to use resonance scattering to
identify pressure variations in the heart. They hypothosised that
pressure excursions in the heart would lead to a shift in the
resonance of bubbles contained within the bloodstream (see equation
(2.2), where the undisturbed bubble radius R, is a function of the
equilibrium pressure). This hypothesis is borne out by theory and
experiment. However the analysis of Fairbank and Scully does not
take into account that resonant bubbles will not be the only ones to
respond to the input pulse. According to Figure 2.2 (c), it may occur
that the response measured from an ensonified bubble cloud

containing a wide size distribution” would be dominated by bubbles

7 Greater in radius by more than about an order of magnitude
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much larger than those at resonance8. This is a result of the fact that
the resonant peak in scattering cross-section is only a local maximum
as shown in Figure 2.2. A problem therefore presents itself which
limits the applicability of both the method of Fairbank and Scully and
that of Nishi to only those clouds displaying a natrow size
distribution. It should be noted that in the tests of Fairbank and
Scully [53], the population distribution is reported to have only
extended from 30 um to 40 um, so the issue mentioned here no way
invalidates the results reported in that publication. This argument
merely limits the variety of bubble clouds to which resonance methods

can be applied succesfully.

2.3.3 Second harmonic® imaging

One way of in which the limits of resonance imaging can be overcome

is by taking advantage of second harmonic emissions. As discussed

8 Larger by more than about an order of magnitude.

9 In some texts concerning manners of acoustics, there is an ambiguity regarding
the meaning of “second harmonic”. In many writings on music and musical
acoustics, “second harmonic” is used to refer to the third frequency peak which
would appear on the frequency spectrum appropriate to a particular compound
sound, such as that generated by a musical instrument (see for instance Olson,
Music, Physics, and Engineering). Here as in many treatises on biomedical
ultrasound and sonar, “second harmonic” is used to indicate the second peak in the
ascension of the harmonic series for a given sound (the frequency which is one

octave above the fundamental; also 2w; where w; is the driving frequency).
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earlier, bubbles are nonlinear oscillators, the scatter of which can be
represented by using a power series representation as shown in
equation (2.6). If was shown that if a bubble is driven by a sinusoidal
signal such as P(t) = Pacoswt, frequencies which are integer multiples
of the fundamental driving frequency can be generated by the
scattering bubble. At low driving amplitudes, the bubble size
corresponding to resonance will act as the global maximum for
scattering cross-section if the signal is filtered for the second

harmonic.

Miller [54] took advantage of this fact when developing his resonant
bubble detector in 1981. Miller produced a cloud with a bi-modal size
distribution, and was able to use second harmonic emissions to
distinguish between bubbles with radius on the order of microns, and
the larger bubbles with radius on the order of hundreds of microns.
Vacher et al. [55] produced a device which operated on the same
principle, but used a frequency sweep in the source and a
corresponding sweep in the receiver (always higher than the source
frequency by a factor of two) so that bubbles of a large size range
could be monitored accurately. The success of these methods gave
way to the development of bubble design for the purpose of ultrasound
contrast enhancement. The first commercial version of these so-called
ultrasound contrast agents (UCAs) was developed by Meltzer et al. (all
of whom worked concurrently for Rasor Associates and Stanford

University) [56]. The bubbles designed by Meltzer et al. were reported
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to be of diameter 75 +/- 25 um.

A significant shortcoming in the application of second harmonic
imaging is that this method inherently involves a trade-off between
contrast and spatial resolution [52]. If a single-frequency, long-length
(50+ cycle) continuous-wave (CW) pulse is used for ensonification,
then it is possible to obtain very narrow frequency bandwidth in the
output signal, and so there will be a narrow frequency peak in the
second harmonic. However, in a dynamic environment it is not
practical to employ long-length CW pulses, because the physical
system may change considerably in the time period during which the
system is still being ensonified giving way to ambiguous result. Such
an approach would allow for excellent frequency resolution, but
spatial information of little or no use. Thus, in a dynamic system
short echolocation pulses are used. Short pulses reduce the
“smearing” of the returned signal which will occur as a result of the
presence of moving targets and decrease the blind time for the sonar,
but at the cost of broadened input pulse bandwidth. Any broadening
in the bandwidth of the driving frequency will result in result in a two-

fold broadening of bandwidth in the harmonic.

To illustrate the signal degradation that will follow as a result of this
fact, consider an outgoing pulse with half-power upper and lower
frequency limits from w, and ws, respectively. The outgoing signal

then has a half-power bandwidth of w; -w,. The second harmonic will
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therefore have half-power upper and lower limits of 2w, and 2w;, so
that the bandwidth is now 2(w; -0,) ~ twice that of the outgoing pulse.
This may result in a reduction the amount of usable bandwidth: If w,
is greater than or nearly equal to 2w,, then an ambiguity will be
present in the crossover region between the upper frequency limits of
the emitted pulse and the lower limits of the received pulse.

Transmit Receive

Echo Amplitude

veriap !

fo 2fo Frequency

Figure 2.3 Overlap between the transmit and receive passbhands results in
harmonic mode (This figure and caption taken from Simpson et al. [52] who in
turn cited Powers et al. [57] )

To summarise these points, this method may be useful in certain
restricted situations - especially where harmonic data becomes
available opportunistically within the results of other measurements.
However in those situations where an echolocation signal and
send/receive transducer can be custom-built, more advanced

methods such as pulse-inversion out-perform the second harmonic

approach.

2.3.4 Combination frequency techniques

As stated earlier, the echo from a nonlinearly driven bubble can be
approximated by a power series ¥(f)=s,fi()+ s2fi()+s:filW)+ safi'(r)...

(2.6). If such a system is driven using two multiple frequencies, then
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the system output will result in the presence of so-called sum and
difference frequencies. If two insonating frequencies are used, then
bubbles can be detected and sized [11]. Consider a driving pressure
Peomb consisting of two coherent pressure waves
Peomb= P, c0s w,t + Pscos wpt (2.12)
where w,> wp. If this input is substituted into the above power series
formulation, a result is obtained which contains a quadratic
component. This component can be expanded to show sum and
difference frequencies
2P, Pscos wqt - coswpt = P, PB[cos (wq + wg)t + cos (wx - wp)t ] (2.13)
Based on this phenomenon, Newhouse and Shankar described this
method, labelling the lowering frequency (selected near resonance) as
a “pumping” frequency, and the higher frequency as an “imaging”
frequency [58]. Shankar et al [59] employed this method to
successfully size UCAs and thereby monitor fluid pressure

fluctuations.

2.3.5 Pulse Inversion Doppler

Pulse-inversion (PI) Doppler, developed by Simpson et al. [52],
combines the advantages of nonlinear harmonic generation and
Doppler filtering to obtain results which can be superior to those
garnered when either of those technologies are exploited on their own.
Simpson et al. claim that PI Doppler can improve 3 to 10 dB more
agent to tissue contrast than harmonic imaging with similar pulses.

Further, they claim that so-called broadband PI Doppler can provide
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up to 16 dB greater contrast than conventional Doppler filtering.
Their approach is presented here in two parts: first the theory of PI
will be presented, and then it will be shown how Doppler shift can

manifest itself uniquely within PI data.

2.3.5.1 Pulse Inversion

Consider the result when a linear and a nonlinear scatterer are each
exposed to two pulses in succession, the second of which is the

switched polarity version of the first pulse, as shown below in Figure

2.4.

o
w

-0.5

Relative Amplitude)

(] 0.05 01
Time (ms)

Figure 2.4 A pulse-inverted signal consists of two pulses in succession, the
second of which is the switched polarity version of the first. The driving
frequency in the example shown is 200 kHz.

For the purpose of this initial analysis, assume that the linear
scatterer is highly damped, and so exhibits no ringing. In response to
the incident pressure signal (Ppos Or Preg) a heavily-damped linear
scatterer will return a signal (Ppos,1 Or Phegl), @ phase-identical version
of the incident pressure signal which has been scaled by a factor sr. A
nonlinear scatterer approximated using a power series will return
signals Ppos,ni and Pregm of the form shown in the third column in

Table 2.1.
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Table 2.1 Harmonic suppression and enhancement

Incident . .
Linear Scatter Nonlinear Scatter
Pulse
Positive Ppos,1 = S1Pincident Ppos,n1 = S1Pincident + S2Pincident? + S3Pincident3 + S4Pincident* + ...
Negative Pregt = -STPincident Pregnt = - $1Pincident T S2Pincident? - 53Pincident® + S4Pincident® + ...

Consider the linear scattering described in Table 2.1. The sum of the
returns (P:) from the linear scatterer is field described by
Ppos,1 + Pnegy = P+=0 (2.14)
while the difference of the returns is
Ppos,l = Preg)l = P-= 2 stPincident (2.15)
It can be seen from equations (2.14) and (2.16) that in the absence of
nonlinear scattering, P+ suppresses the all information. Conversely,
equations (2.15) and (2.17) show that P. enhances the signal by a
factor of two. The results become more interesting when nonlinear
scattering is taken into account. In that case, adding the scattered
terms suppressed the odd-numbered terms
Poos, ) + Pneg) = Pr =2 (S2Puncident? + Sa4Pincident* + ...}  (2.16)
And subtracting the scattered terms suppresses the even-numbered
terms
Pros,i - Pnegl = P.= 2 (S1Pincident + S3Pincident® + ...)  (2.17)
Simpson et al. [52] argue that body tissue scatters mostly linearly, and
so will only exhibit acoustic scattering at the driving frequency. Since
the driving frequency only appears in P. and not P., the nonlinear
scatterers present within the system (UCAs) will theoretically be the

only signal present in Ps.
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The contrast gained through PI, argue Simpson et al. [52], can be
enhanced by taking advantage of the Doppler effect. As discussed
previously, Nishi [51] sought a Doppler shift based on the driving
frequency; an approach which is limited in applicability as a result of
the fact that under clinical ultrasound conditions, the body tissue
surrounding the bubbles is not necessarily static [52]. Simpson and
Burns [28] and Simpson et al. [52] instead searched for Doppler shift

on the pulse repetition frequency (PRF), as explained here.

2.3.5.2 Doppler shift of the pulse repetition frequency

Having established above that a twin input pulse consists of two
portions, Ppos and Preg, the echoes from those driving pulses are now
denoted as follows:
(1) =Echo[Ppos] (2.18)
e3(t) =Echo[Preg] (2.19)
Where scattering is linear, successive echoes m will take the following

form:
e, (t(m-1)t)=-e,(t - m 71— A Taetect) (2.20)
where t is the interpulse delay, and Azt iS the change in

echolocation delay caused by the interpulse axial motion of a detected

object. The quantity Argeet can also be expressed according the

amount of motion as Argeec= 2Ad4etectCo ', Where Adgeeet iS the axial

distance the detected object travelled in the interpulse time and ¢ is
the speed of sound in the detection medium. The phase shift between

successive echoes Arderect measured relative to the operating frequency

36



Chapter 2 - A method for searching for solids in bubbly water

Jfop Will then be
A @getect = 27 fop Atdetectt 7 (2.21)

where the additive & is a result of the negative sign in front of en in
(2.20). Next is introduced the pulse repetition frequency for = At'. The
Doppler shift f'(see (2.11) ) can then be formulated as
= for A @aetect | (27) = fop * 2 Vdetect [Co + Y2 for  (2.22)
where Vietect is the relative axial velocity of the detected object with
respect to the transducer. Recall that echoes received as a result of
nonlinear scattering appear a shown in Table 2.1, so that the odd
harmonics are added to the positive incident pulse and subtracted
from the negative incident pulse. The Doppler shifts for the two
components can be formulated according to the previous equation as
flodd = fop *2 Vietect [Co+ Y2 for
Sfeven = fop * 2 Vdetect /Co (2.23)
According to this formulation, the even harmonics have a Doppler
shift which is the same as that produced by conventional Doppler.
The limiting factor in this approach is the velocity of all moving
scatters must obey the limit caused by the folding frequency
limitation, which in this case is have of the conventional limit
Joo * 2 | Vinax| [ Co< Vs fir (2.24)
This form of Doppler gives a spectrum wherein the region between -V,
and Yf, contains only Doppler signals arising from nonlinear
scattering, whereas the remaining half of the Doppler spectrum will
contain Doppler signals arising from both linear scattering and

possible higher order nonlinear scattering. Thus, the PI Doppler
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approach takes advantage of a two pulse technique through both

signal combination and Doppler filtering.

2.3.6 Section summary

The evolution of ultrasound bubble scattering detection techniques
has been presented. It was shown that basic resonant techniques and
Doppler filtering can be used to reveal the presence of bubbles in a
system, but are not necessarily effective at selectively highlighting
bubble scattering while neglecting tissue scattering. The contrast
between the two media can be increased by taking advantage of the
nonlinear scattering abilities of bubbles. Three methods for taking
advantage of nonlinear scattering were presented; second harmonic
imaging, combination input frequencies, and pulse inversion. Second
harmonic imaging is more effective than resonant imaging because the
acoustic cross-section for a resonant bubble is a global maximum for
all bubble sizes at the second harmonic, but not at the fundamental
frequency. Second harmonic imaging however yields images poor
resolution. Pulse inversion takes advantage of nonlinear scattering in
a more comprehensive manner than does second harmonic imaging,
and can be combined with Doppler filtering to produce pulse inversion
Doppler (PID). For the purpose of imaging, Pulse inversion Doppler
offers superior output when compared to all of the other technologies

discussed here.
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2.4 Oceanic bubble-cloud contrast enhancement and
suppresion

It was shown that bubble scattering can be used to differentiate
bubbles from surround tissue so that the bubbles act as ultrasound
contrast agents (UCAs). While the purpose of this investigation is to
develop a bubble scatter suppression technology, it has already been
argued that such a task might be made easier if bubble scatter
enhancement can be harnessed in the denominator of some detection
algorithm. On that basis, this section will now consider ways in which
it might be possible to enhance and suppress the contrast of bubble
clouds in oceanic sonar studies. The previous section described the
way in which linear and nonlinear bubble scattering of ultrasound
was exploited by various researchers to investigate micro-bubble
behaviour. Not all of these techniques translate well from the

ultrasonic laboratory to the oceanic setting.

2.4.1 Previous oceanic bubble cloud studies based on linear

dynamics

Of the UCA detection methods discussed, two rely on linear dynamics,

resonance imaging and Doppler filtering!®. Resonance imaging has

10 While Doppler can of course be applied to systems exhibiting nonlinear scatter,
filters of this type do not capitalise on information gained in driving the bubbles

nonlinearly. The exception to this is Pulse Inversion Doppler which, when discussed
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been applied in the ocean with limited success [60]. This approach
was already shown to be unreliable for those cases where the bubble
cloud may contain bubbles of a wide size distribution, as do those
clouds which are encountered in the ocean (see Chapter 3). Doppler
filtering might be useful in the ocean in cases where the median
bubble speed is high enough to overcome input signal bandwidth
limitations. However, the fact that the terminal rise speed of the
smallest oceanic bubbles (which make up the vast majority of oceanic
bubbles [11]) is on the order of 1/10000 as compared to the oceanic
sound speed suggests that such an approach is not appropriate for

the solution sought here.

2.4.2 Previous oceanic bubble cloud studies based on nonlinear
dynamics
Two of the nonlinear approaches used for the study of biomedical
UCAs have also been applied in the oceanic environment: combination
input frequencies [61, 62] and second harmonic methods (Sutin et al.
[63] cite Ostrovsky and Sutin [64, 65] as having applied a second
harmonic approach in oceanic waters, but the author was unable to
obtain these publications). Before this investigation [66], pulse-
inversion had not yet been applied to oceanic bubble clouds. In order

to take advantage of any of the three above-mentioned methods,

in this document, is always referred to in its complete form (PID).
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investigators must be able to drive oceanic bubble clouds nonlinearly.
This task is considerably more different in the ocean than in the
biomedical environment: in the ocean, clouds may have primary
dimensions of several meters and contain bubbles spanning four
orders of magnitude in radius, while in the body manufactured
bubbles of a size range varying by only +/- 10 microns can be

presented, and then only occupy a region of a few square centimetres.

2.4.3 Driving a large bubble cloud with the intention of causing

nonlinear scattering

In order to obtain a nonlinear response from the bubbles within in a
cloud by means of an acoustic source, some consideration must first
be given to the appropriate driving frequency. The response to an
acoustic excitation by a bubble is dependent on the frequency,
amplitude, and duration of the input signal. Since the amplitude of
response is maximal at resonance, the effects of nonlinearity are most
apparent for a bubble excited at the resonance frequency. A
formulation for the resonance frequency was given above in (2.2), and
is approximately proportionate with the reciprocal of the radius,
especially for larger bubbles (R,>~10 um) where surface tension effects

are nearly negligible [11].

Assuming negligible surface tension, Minnaert [67] derived bubble

resonance as
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L Pme (2.25)

where wy is the Minnaert resonance frequency, Ro is the bubble
equilibrium radius, y is the ratio of specific heats for air, po is the
equilibrium pressure, and p is the density of water. If the bubble is
driven with a sufficiently low amplitude signal, that system will séatt‘er
nearly linearly. As the driving frequency approaches zero (and the
system is being driven in the stiffness region), the output gain across
the system approaches unity. Above resonance however (in the
inertial region), the system transfer function exhibits a 6 dB octave-!
reduction (20 dB decade!) [68]. Therefore a bubble responds to
driving signals at frequencies far below resonance much more readily
than to those driving signals far above resonance [25]. This means
that to drive a given bubble non-linearly, less input force is required
at frequencies below resonance than would be required were the same
bubble driven above resonance. Since resonance frequency varies
with inverse proportion to the size of a bubble, it would seem that the
optimum frequency for driving a polydisperse bubble cloud

nonlinearly would be the resonance frequency of the largest bubble.

In using the plots showing the scattering cross-section of a bubble
versus frequency Figure 2.2, it might appear as if the use of a very low
frequency (much less than the resonance of any present bubble) is in
fact) would make any bubbles present complete invisible to the

detection system. This conclusion is reasonable, however it will be
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seen in the next chapter that the size distribution of bubbles within a
cloud covers many orders of magnitude, and that the largest oceanic
bubbles have a resonance on the order of a few kHz. In order to
render the bubbles inconsequential in terms of scattering, a frequency
on the order of a few hundred Hz would have to be used. While some
sonars do exist which use very low frequencies [69], such systems are
impractical in shallow water where the wavelengths of such low
frequency signals would be of the same order of magnitude as the
relevant depths. This conclusion provides motivation for the use of
signals on the order of a few kHz in applications where it is desired to
drive the bubbles within an oceanic cloud nonlinearly [70]. This
approach is contrary to the current trend of using the high frequency
sonar so adept at creating visually detailed images (see 2.7.1.2), but
commensurate with the use of low frequencies for resonance detection
[36]. The next section describes some limitations of low-frequency

sonar.

2.4.4 Sonar blindspots

In an active detection system, the total length of the outgoing pulse
(wavelength multiplied by the number of cycles) dictates the nearest
perceptible objects. This can be illustrated by considering the physics
involved in a simple sonar scenario. Consider a sonar system
operating in a noise-free acoustic free-field which contains a single
linearly scattering object (for instance, a rigid wall) at a distance of 10

meters from the target. For the purposes of this illustration, the
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operation frequency will be 1500 kHz so that the wavelength is 1 m.
The outgoing pulse will generally contain more than one acoustic cycle
so as to minimize driver overloading, improve phase-matching in the
detection algorithm, and minimize the frequency bandwidth of the
pulse. However, if the pulse is too long (in this example, more than 10
cycles), then the time periods during which the first echo is returned
from the wall will coincide with the period during which the acoustic
driver will be active. In this case, it will be impossible for the receiver
system to discern between the outgoing pulse and the received pulse.
Therefore, the sonar system will have a blind spot’ of range
corresponding to the amount of space occupied by the echolocation
signal within the detection environment. Consider now the case
where the detection pulse has two parts separated by a time Ar, as in
PI. The maximum lengths of the individual components of the output
pulse are limited by the same constraints as for the single pulse
system. However, the inter-pulse time At is determined by the
constraint that any detectable feature should not be ensonified by
both halves of the output pulse at any one time. In summary, the
limiting factor for the length of any ensonification pulse is determined
by the one-way travel distance from the sonar to the nearest
detectable target, whereas the minimum usable inter-pulse time is
determined by the two-way signal travel time to the nearest detectable
target. The next section shows how it might be possible to take
advantage of the en masse nonlinear behaviour of bubbles within a
cloud to give way to a method capable of suppressing bubble scatter.
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2.5 The Twin Inverted Pulse Sonar

Pulse Inversion (PI) is a technique which is used to solve a problem
which is essentially the opposite of target detection in oceanic bubble
clouds [29] as discussed in 2.3.5. PI depends on the enhancement of
nonlinear scatter by so-called biomedical ultrasound contrast agents
(UCAs), which were discussed earlier in this chapter. However,
oceanic target detection in bubbly water is more complex than UCA
detection for two reasons. First, PI techniques are designed to
enhance the scatter from many bubbles, the radii of which might span
a few micrometers. By contrast, in oceanic target detection, the goal is
to diminish the scatter from millions of bubbles the radii of which
span several orders of magnitude, whilst searching for a single target.
A second complication presents itself as a result of frequency response
consideration. In UCA detection, the bubbles will tend to scatter in a
strongly nonlinear manner, while the tissue will only scatter linearly
(though some nonlinear propagation may occur within tissue [70]).
However, in oceanic target detection, both the bubbles and any
linearly scattering target will respond together at the fundamental.
Practically, TWIPS depends on the existence of an amplitude range
where scattering by bubbles in nonlinear, but for that same range,
scattering by the semi-rigid structures of interest is linear. It is
proposed that PI output can be reversed for the purpose of enhancing
linear scatter and suppressing nonlinear scatter. Such a notion was

first published by Professor T G Leighton [24, 71] and was followed by
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several related publications and a patent, all of which were published
by Leighton, Finfer, and White [33, 70, 72-79]. The topic of twin-
pulse processing is now reintroduced as a model for oceanic bubble
scatter suppression, instead of UCA scatter enhancement, and the
derived system is referred to as the Twin Inverted Pulse Sonar, or

TWIPS.

2.5.1 Scattering of phase-reversed pulses

Re-consider the result when a linear and a nonlinear scatterer are
each exposed to two pulses in succession, the second of which is the
switched polarity version of the first pulse, as described in 2.3.5.
Earlier it was shown how the echoes from the individual components
of this pulse-pair can be manipulated to produce the sum and
difference quantities according to the method of Simpson and Burns
[28]. The difference of the returns, P. will retain odd harmonics
(including any linear scatter), while the sum quantity P. will retain
even harmonics. Assuming that the bubble cloud can be driven
nonlinearly on the logic of 2.4.3, P: will contain both bubble scatter (at
the fundamental frequency as well as at the higher odd harmonics)
and the target signal, while P. will contain only the bubble signal.
This means that P. is a less efficient discriminator than is P.. The

system is summarised below in Figure 2.5.
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contains both the desired information (the target scatter) and
undesired information (the bubble scatter). Thus an algorithm is
sought which will minimise the bubble scatter energy which appears
within the system output. This will be accomplished by manipulating
the physical system, employing a suitable low-pass filter, and using a

novel signal processing technique, as will now be described.

The physical system of interest — a bubble cloud — can be manipulated
to reduce undesired bubble scattering at odd harmonics (e.g. the
undesired signal in P.). The problem is two-fold: if the elements within
the bubble cloud are excited nonlinearly, P. will contain energy
scattered by bubbles at both the fundamental and at higher odd
harmonics. To reduce the amount energy scattered at the
fundamental is fairly straightforward. At the beginning of section 2.2,
it was stated that a bubble which is excited in a limited manner such
that the radial excursions are much less than the radius of the
undisturbed bubble will tend to scatter in a pseudo-linear fashion
[11]. As the magnitude of radial excursions increases, so increases
the nonlinearity present in the bubble dynamics. As the dynamic
nonlinearity increases, the bubble scatter will exhibit harmonics of
increasing amplitude. Thus, as the input power at the fundamental
frequency increases, the bubble will begin to “pump” energy to higher
frequencies [11, 80]. Input power in an acoustic system comes from
the driving source; so that increasing source power will result in

overall increase in the relative amplitude of harmonics, and thereby
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decrease the relative amplitude at the fundamental frequency. This
however does not solve the problem of higher harmonics within P.
This simplest solution to this physical problem is the employment of a
digital filter on P. for frequencies above the fundamental. This
approach has been termed as Twin Inverted Pulse Sonar 1, or
TWIPS1.

T1(1) = g(P)) (2.26)
where T1 is TWIPS1 and P. represents the difference of two halves of a
pulse pair. The function g represents a generic normalisation and

convolution routine, in addition to a filter of the type discussed above.

Up to this point in the development of the algorithm, only the ability
for P. to retain the target signal has been employed. It is instructive to
consider then how P., the quantity used in PI to enhance bubble
scatter, might be used to enhance the detection of linear scatterers.
Since P: will theoretically contain no signal corresponding to target
scatter, the reciprocal of this quantity could be used to suppress
further any bubble scatter present within P. Detection methods
based on this ratio are termed as TWIPS2.

T2a() = g(P.) g ' (P+) (2.27)
Where T2a is TWIPS2a, and P. and P: respectively represent the
difference and sum of two halves of a pulse pair. The function g
represents a normalisation and convolution routine similar to that

discussed in conjunction with TWIPS1.
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Consider two types of systems: (a) an environment containing no
nonlinear scatterers or (b) the responses caused by linear scatters and
nonlinear scatterers are temporally exclusive. If phase-matching is
perfect (e.g. the sample rate is infinitely high, and the acquisition
system presents no phase distortion), system (a) will return a response
for TWIPS2a which is infinite at all points. In this case, TWIPS1 could
be used to identify targets. System (b) however will return an infinite
result at only those points where a linear target is present. In reality
however such infinite results are not likely as P: is calculated based
on two echoes generated under conditions which are not necessarily
identical. Since the system requires two successive pulses, there is
necessarily some delay between the playback of each half of the input
pulse. The bubble cloud may evolve during this delay, meaning that
the physical conditions encountered by each half of the pulse will not
be identical. Further, in a controlled laboratory or in calm oceanic
conditions, the ambient and electronic noise during the acquisition of
each of these signals may be continuous and stationary, but will be
still be stochastic. The noise observed during the response to the two
successive sounds will not be identical, preventing the envelope of the

amplitude of P: from being zero.

Therefore, TWIPS2a offers the potential for good results, but the
technique is prone to unsteadiness as a result of its sensitivity to
noise and variation in boundary conditions. In contrast, success with

biomedical pulse inversion methods suggests that the TWIPS1
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approach is robust, but considerably less statistically successful than

a perfectly operating TWIPS2a system.

A steadying function can be introduced to reduce the impact of rogue
minima in the denominator of TWIPS2a (which might result in
misleading maxima in T2a output). When this steadying function is in
the form of TWIPS1, the system is termed as being of the type
TWIPS2b, T2b

T2b(t) = g*(P-)g~*(P;) (2.28)
where all variables are as for equations (2.26) and (2.27). In equation
(2.28), & and &, act as control variables which alter the extent to which
the respective algorithms TWIPS2a and TWIPS1 dominate the system

output.

2.5.1.1 Signal amplitude range independence

It is interesting to note that time series which are returned to a sonar
or radar system often suffer from a common characteristic:
dependence of signal amplitude on range. Consider a monostatic!!
radar system mounted at an observation station which is being used
to examine two objects; the first object is a tank and is at a range of 1
mile from the station, and the second object is an identical tank

located 15 miles from the station. The effects of geometric signal

11 Monostatic is used here to indicate that the source and receiver are co-located.
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spreading and attenuation are such that the signal which is reflected
by the furthest tank will be lower in amplitude than that signal which
is reflected by the nearer tank. To generalise the idea, those objects
closer to the source/receiver will return a signal which is
disproportionately high in level when compared to the response
corresponding to similarly-shaped objects at a greater distance. This
means that the amplitude of the signal received at the radar station
will have a range dependence, and that the energy within time series
resulting from successively further reflectors will exhibit a downward
sloping trend. This range dependence can be reduced by increasing
signal directionality and/or using source directionality information in
conjunction with estimates of the amount of absorption which may
have affected the signal. Amongst sonar developers and users, this
method of correction is known as “Time Varying Gain (TVG)” [81]. In
non-littoral waters where there is only limited attenuation by bubbles
and suspended sediment, it is reasonably straightforward to predict
the signal attenuation, and it can generally be assumed that the TVG
should remain constant from minute to minute. However, in shallow,
dynamic waters, much more uncertainty is introduced by making
estimates of the attenuation; and the applicability of assumptions
concerning steady-state conditions must be called into question if
there is any significant wave breaking and/or sediment transport in

progress.

One interesting feature of TWIPS2 is that there is no such dependence
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of range on amplitude, and so there is no need to introduce TVG. This
is because, in that algorithm, the entire range-dependent vector
representing the quantity P. is normalised by another vector with
identical range-dependence, that of the vector representing the
quantity P.. As per the above-explained limited applicability of TVG in
shallow water, this feature contributes to the suggestion that the

hypothesised sonar may be well-adapted to shallow water.

The feasibility of using TWIPS to detect solid objects in bubbly water
was assessed first by using a very simple simulation employing a
single bubble and a single pulse-pair. This simple simulation and its

results will be now be discussed.

2.6 The single bubble simulation

The case presented in this section concerns only a single bubble. For
the case shown here, a bubble of radius 22.5 microns was driven in

the stiffness region at fres/2 = 65.7 kHz.

Figure 2.6 summarises the results of the calculations used to show
one way in which nonlinear bubble dynamics might indeed be
exploited to differentiate linear from nonlinear scatterers. Figure 2.6
(a)(i) and (a)(ii) show the response by a solid object ensonified by the
outgoing pulse shown previously in Figure 2.4. Both the positive and
negative inputs result in scattered signals which are nearly identical

to the input signals. Figure 2.6 (¢)(i) and (c)(ii) show that the bubble of
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radius 22.5 microns, when excited by the same type of signal,
responds very differently. The successive responses by the linear
scatter can be added to give a result with a theoretical limit of zero
(Figure 2.6 (b)(i)). In contrast, successive responses by the bubble,
when added, give a complex odd-harmonic suppressed signal (Figure

2.6 (d)(i)), as predicted in the previous section.

When any pair of phase-reversed responses are subtracted, the linear
scatterer returns a signal which is of the same frequency content and
amplitude modulated shape as the input signal (Figure 2.6 (b)fii),
while the dynamic bubble returns a signal which is odd-harmonic
enhanced (Figure 2.6 (d)(ii). The maximum amplitude of the odd-
harmonic enhanced signal is only half that of the amplitude of the
odd-harmonic suppressed signal, as bubble dynamics have in the case
dictated that energy be pumped from the first harmonic (which is odd)

to the second harmonic (which is even).

The difference between the results obtained using odd-harmonic
enhancement and odd-harmonic suppression suggest that nonlinear
bubble dynamics might indeed be one way in which bubbles can be
distinguished acoustically from solid objects. However the question of
application still remains largely unanswered: how can the technique
described using the single bubble model be expanded to facilitate the
design appropriate for the ocean? To study the effect on the algorithm

of complicating factors encountered in the ocean, the results of the
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single bubble model were expanded into a simulation which attempts
to describe the bubble acoustics beneath a breaking wave. This

breaking wave simulation is described in the following section.
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Figure 2.6 The scatter that follows following insonification by the pulses from
Figure 2.4 The figure shows the linear scatter from the target (above the
horizontal dashed grey line, in (a) and (b)), and the scatter from a bubble (below
the horizontal dashed grey line, in (c) and (d)). The graph on the left in each
case (i.e. (a) for the target; (c) for the bubble) shows the scatter from the pulses
from Figure 2.4: the upper plot (i) shows the scatter when excited by the
‘positive’ pulse of Figure 2.4; the lower plot (ii) shows the scatter when excited
by the ‘negative’ pulse of Figure 2.4. The solid arrows indicate the process of
addition, and the dashed grey arrows indicate the process of subtraction. The
air bubble has radius 22.5 microns and is in water under a static pressure of 1

bar, insonified at its resonance frequency. (Figure and caption after Leighton
et al. [72])
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2.7 The breaking wave simulation

The single bubble simulation showed that the theory presented in
section 1.1 transfers well to the physical situation when the bubble
dynamics are calculated rigorously. However the problem of finding a
solid object within bubbly water is much more complex than section
1.2 might suggest. For instance, according to Phelps and Leighton
[82] a 1 m3 section within a breaking wave contains some 35 million
bubbles ranging in diameter from 1 micron to 1 cm. Each of these
bubbles scatters and absorbs sound, making it difficult to interpret
information gleaned from active acoustic systems used in bubbly

water.

It is difficult to find data in the literature on active sonar beneath
coastal breaking waves, largely because of the fact that such data is
difficult to gather. However, considerable effort has been made to
understand active sonar in boat wakes [22, 83, 84], which like
breaking waves contain large numbers of microbubbles and interfere
with scanning sonar. According to those studies, the degree to which
sonar is disrupted by a boat wake depends largely on the craft speed,
time since the craft has passed, and the below-waterline dimensions
of the craft. Additionally, a study by Trevorrow [84] showed that the
manoeuvrings of a ship can influence the way in which wake-borne
microbubbles are distributed. In that study, the acoustical

environment in the wake of a ship performing 90° turns was studied.
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It was observed that interference tended towards a maximum at the
outer edge of the wake. It can take several minutes for the

interference introduced by the bubbles within a ship's wake to

subside, as shown below in Table 2.2.

The papers reviewed, and the insight offered into bubble plume
evolution by Leighton [11], were used to inform the development of the
computations which will now be presented. The simulation developed
here is unique, and will be presented transparently so as to justify the

validity and applicability of the results.

Table 2.2 Wake persistence statistics for three different ships, after Trevorrow,
et al. [22]

USNS de CSS Parizeau CSS Vector
Steiguer
Length at 63.5m 64.5m 39.65m
waterline
Beam 12.1m 12.2m 9.46 m
Draft 5.5m 54 m 4.27 m
Wake depth 5.3m 6.2 m 6.4 m
Max bubble 9.0m 9.0m 124 m
depth (10 kn)
Average wake 6.8 £ 0.5 min 7.3 £ 0.5 min 8.0+ 1.0 min
persistence

2.7.1 Simulation components

2.7.1.1 Bubble populations in the surf zone
Bubbles are the most acoustically active entities in the ocean, and
breaking waves are the most significant natural sources of bubble

entrainment in the ocean [11]. An accurate model of the acoustic
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environment beneath a breaking wave therefore requires an accurate
count of the number of bubbles that will be beneath such a wave. The
simulation developed for this study uses the results of Phelps and
Leighton [82], who showed that the bubble population encountered
beneath a breaking wave can be approximated by:

0° e«0.0z(Ro /1um)

n, =6x1 (2.29)

where np(Ro)dR, is the number of bubbles per unit volume having a

radius between R, and R,+dR, and where Ro (which must be
expressed in microns for use in (2.29)) is the equilibrium radius of the
bubble at the centre of each radius bin in a discretised bubble
population. To simplify the computing process, the entire bubble
cloud was discretised and approximated as being comprised of
bubbles within 6 discrete logarithmically spaced radius bins with the
following centre radii: 10 um, 50 um (which would be the resonance
radius under 1 bar static pressure), 100 ym, 500 ym, 1 mm, and 5
mm. Using these centre radii, equation (2.29) was found to give void
fractions (the ratio of the volume of gas within a cloud to the total
volume occupied by the cloud) on the order of 107 (i.e. 10-5%). The
bubble population used to produce the simulation output presented in

this paper is shown in Table 2.3 below.
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Table 2.3. Bubble population used in the simulation.

Number of bubbles

Bubble Size bin radius limits in size bin per
radius (um) (um) cubic metre of
seawater
10 10075 < R, < 10125 3.5 x 107
50 10125 < R < 10175 3.3 x 10°%
100 10175 < g < 10225 3.0x 104
500 10225 < g, < 10275 3.1 x102
1000 10275 < R, < 103.25 3 x 109
5000 10325 < R0< 103.75 0

2.7.1.2 Source pulse design

2.7.1.2.1 Operating frequency

As stated at the beginning of the chapter, scanning sonars tend to be
designed to exploit the benefits of high-frequency scattering. Low
frequency sonars are poor at detecting small objects unless those
objects scatter in a resonant manner. This is partly a result of the
fact that an object which scatters according to Rayleigh scattering!? is
essentially acoustically invisible. At the outset of the chapter, it was
pointed out by increasing the sonar frequency of operation, it is
possible to increase the amount of detail in a sonar image. However,
there are practical limitations for the upper operation limit of a

scanning sonar system, since absorption increases by roughly an

12 Rayleigh scattering occurs where product of the wavenumber k and the primary

object dimension L is very small; e.g. kL<<1,
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order of magnitude for every order of magnitude increase in frequency
[21]. As was highlighted when discussing Thorpe's method of
scanning the reflection by bubble clouds [23] (see section 2.1),
scanning sonars are well-adapted for establishing the presence of
bubble clouds - though not for looking finding objects within such
clouds. If kL>>1, a bubble will scatter linearly, making each bubble
within a large cloud appear as a target. But scanning sonar systems
do not require the response of the elements within the water to be
non-linear. This special requirement can be used to justify working
instead at frequencies on the order of 10 kHz (see section 2.4 for the
justification of this statement), where only coarse images can be
obtained, but attenuation by bubble clouds is reduced considerably

(as shown in Figure 2.7).

H)) 2

Attenuation Coeflicient (dB/m).

i R ~ f
Hil i 10 0

Frequency (Hz).

Figure 2.7 Attenuation as a function of frequency typical of an oceanic bubble
cloud (bubble size distribution shown in Figure 2.8) [85]. Note the steady
reduction in attenuation as frequency is reduced from about 15 kHz (Figure

from [72]).
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Figure 2.8 Bubble size distribution used to calculate the attenuation shown in
Figure 2.7 (Figure from [72]).

2.7.1.3 Calculation of the acoustic response by the cloud to the input

pulse

The ensonifying wavetrain is shown in Figure 2.9. It consists of two
pulses of 50 kPa (zero-to-peak), identical except that the second (the
‘negative’) pulse has opposite polarity to the first (the ‘positive’) pulse.
The input pulse used for the simulation was a Gaussian-shaped
multiple cycle pulse. The use of multiple pulses increases the amount
of time during which each bubble is driven and so enhances the
degree to which nonlinear effects are realised. The Gaussian window
was used because the low amplitude at the beginning of the Gaussian
window reduces the initial inertial load on the acoustic driver, and the
overall shaping is useful for phase-matching acoustic returns when

locating objects [86].
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Pressure {(kPa)

e
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Figure 2.9 Simulation input pulse

Bubble-wall displacement time histories were for bubbles of each
radius using a modified non-linear Herring-Keller expression (see
equation (2.8)) [87]. Once the displacement, velocity, and acceleration
of the bubble wall are calculated, the pressure radiated by the bubble
can be calculated. In an incompressible fluid, the pressure at any
distance r from the bubble centre when the instantaneous bubble

radius is Ris:

* - .2 4
(—I-’-— - 1) P _ R (RR+2R2) ' (-—E—)
Poo p T 2 \r (2.30)

where P, is the pressure in the liquid at some distance far enough
from the bubble to be undisturbed by the excitation; R and R are
respectively the velocity and acceleration of the bubble wall [11]. The
final term in (2) is related to the kinetic wave, which is normally
treated as negligible at distances far from the bubble, although this

assumption breaks down for high amplitude pulses.

Figure 2.10 shows the radiated pressures from the bin-centre bubble

sizes (see Table 2.3) in response to the positive portion of the 60 kHz
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of 10 m from the transducer) (Figure 2.11). The bubbles were
randomly distributed within the perimeter of the cloud, but with no
bubbles outside its spherical outer boundary. The object the detection
of the target within the bubble cloud. In the model, this cloud does not
evolve significantly in the 1 ms interval between a given ‘positive’ pulse
and the subsequent ‘negative’ pulse. However after each ‘negative’
pulse, the cloud is allowed to evolve in keeping with known oceanic
behaviour [87] (with the restriction that the total number of bubbles in

the cloud does not change).

Target

Transducer

/
O

Cloud/Transducer
Seperation Distance

Target/Transducer
Seperation Distance

Figure 2.11 Diagram of simulation geometry for transducer, target and
spherical bubble cloud.

Having calculated the amplitude appropriate impulse response shown
in Figure 2.10, the following process was then followed for each
bubble size bin. The time limits for an acoustic response by the cloud
to an input pulse were calculated using the two-way travel time
appropriate to the near and far boundaries of the bubble cloud with
respect to the send/receive transducer. The time limits were

approximated assuming a constant sound speed for the entire region
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as would be found in clear water. The probability of a bubble being
excited at any instant during input wave propagation was calculated
to give a single number, an average bubble response time rate. This
bubble response time rate was then put in the form of a temporal
probability vector, with each position in the vector representing the
number of bubbles responding at a given instant in time according to
the sampling rate. The generic scattering waveform was then
convolved with the temporal probability vector to give the time history
at the source/receiver location. The total response for the bubble
cloud was then found by adding the set of responses calculated for

each bubble size.

2.7.1.4Target

The simulation requires the use of a simulated target; a device which,
when ensonified by a pressure wave of any amplitude, will scatter
linearly and predictably. For this study, a non-resonant scatterer has
been used so that the acoustic reflection from the target is of the same
temporal shape as that of the incident pulse, but will is scaled by
amplitude according to the two-way distance from the source to the
target. In the absence of inhomogenities within the water column, the
amount by which the amplitude of this acoustic return is reduced as
compared to the input pulse is dependent on the total source-target-

receiver path length and the target strength.

The target strength TS is defined by Pierce [3] as
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g
T =1 1 scat
5=10 T 7 (2.31)

where 0Oscat is the scattering cross-section and Lgrer is the reference
length. Most modern literature uses a reference length of 1 meter,
though Pierce notes that some earlier literature uses Lger as 1 yard
which is usually taken to be 1 meter. Note that oOscar the scattering
cross section is larger than ohack the backscattering cross cross-
section by a factor a 4. The 4x arises here by considering the solid
angle ratio; where scattering is omnidirectional, backscatter only
takes into account that energy which is directed back to the source
[2]. The target used in the simulation has a target strength TS = -20
dB. It should also be noted that the concept of target strength is not

valid for resonant scatterers [3].

2.7.2 Output

The results of this study were published initially in 2005 [33]. For
conventional sonar (Figure 2.12 (a)), TWIPS1 (Figure 2.12 (b)) and
TWIPS2b (Figure 2.12 (¢)), 50 pulse pairs were projected at the cloud,
spaced at intervals of 10 ms. The processed echoes were then stacked,
one above each other, to form an image. As a stationary feature in the
display, detection of the target in every ping would correspond to the
observation of a vertical white line which is visible when the target is
present, but absent from the corresponding sonar plot when the target

is absent.
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from the two pulses that make up each pulse pair, such that 50
averages are available for plotting. Each average was plotted as a time
history on a line, with a greyscale such that the amplitude of the
signal at the corresponding moment in the time history was displayed.
These processed echo time histories were then stacked, one above
each other, to form an image. In Figure 2.12 (b), the results of TWIPS1
processing of the 50 pulse pairs (no averaging) are displayed similarly,
by stacking the consecutive grey-scale time series one above the other.
The TWIPS1 processed echoes were plotted, each as a time history on
a one-dimensional line, as in Figure 2.12 (a). In Figure 2.12 (¢
TWIPS2b processing is used (no averaging) and the image displayed as

in Figure 2.12 (b).

The left hand plots in the individual panels of Figure 2.12 correspond
to the cloud when there is no target present, and the right hand plots
of each panel in Figure 2.12 correspond to the bubble cloud when the
target (TS = -20 dB) is present. In visually comparing the results!3, it
is inappropriate to compare against each other the ‘target present’
plots in (a)-(¢). Rather, one should consider the decision-making

process followed by a sonar operator, and consider the distinctions

13 Statistical analyses are performed on the experimental results. The goal here is to
establish proof-of-concept using the computational models, which can in turn be

used to justify the development of an experimental study.
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between the left and right plots in each panel.

On a visual basis, standard sonar processing fails to detect the target:
There is insufficient difference between the two plots in Figure 2.12 (a)
because scatter from the bubbles masks the presence of the target.
TWIPS1 detects the target on almost every occasion, such that there is
a vertical line on the right of Figure 2.12 (b) compared to the plot on
the left (where, importantly, it has suppressed the bubble signal). In
Figure 2.12 (c), it can be seen that TWIPS2 fails to detect the target
within the majority of echoes. However when it does detect one, the
amplitude is very high; when the target is not present (left hand plot),
it rarely delivers a high amplitude return, very effectively suppressing
the returned signal. The plots all have a linear greyscale and no
thresholding has been applied. By comparing the computation results
with those from the tank tests (Chapter 3) and the field studies
(Chapter 5), it will be seen this sporadic detection ability is
characteristic of the TWIPS2 algorithm. An explanation for the

behaviour is offered in the system analysis at the end of Chapter 5.

TWIPS covers a range of processing techniques, with different
capabilities. All are designed to enhance contrast of targets in bubble
clouds, both by increasing the scatter from the target and, very
importantly, at the same time suppressing the signals from the
bubbles. TWIPS1 is designed always to enhance target contrast,

producing a reliable enhancement with every ping. TWIPS2b gives
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much greater contrast enhancements, but not with every ping: the
particular form demonstrated here ‘glints’ on about 10% of pings.
However the contrast enhancement is much greater than occurs with
TWIPS1. It is particularly useful for sources that are capable of

ensonifying a region with multiple pings.

2.7.3 On the greyscales employed for visual comparisons in this

thesis

A relative greyscale was used to produce the contrasts visible in
Figure 2.12. The numeric scale used to produce that image, and the
others like it presented throughout this thesis, is linear and relative.
The absolute values to which each gradation within the greyscale
maps are meaningless, as the standard sonar and TWIPS were not
calibrated during the course of this investigation. A calibration would
have required continual monitoring of bubble size distributions - a
facility which was not available except in certain instances. As such,
the individual sonar output plots presented throughout this document
cannot be compared to each other in an absolute sense except where
the bubble size distribution is available (as indicated where

appropriate).

2.8 Potential non-oceanic applications of TWIPS

A twin-inverted pulse-based technology designed for the purpose of
acoustic bubble-scattering suppression has been presented. The

power of this method is rooted not in its specific suitability to bubble-
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scatter suppression, but in its general ability to reduce (or enhance by
inverse application) nonlinear scatter from any type of radiation.
Therefore, TWIPS might find application not only in the oceanic
environment, but might also be exploite in biomedical ultrasound,

RADAR, and LIDAR as considered here in brief.

2.8.1 Biomedical ultrasound

In biomedical ultrasound, bubbles are employed for a wide variety of
applications [88], including contrast enhancement (as described
above), drug delivery (via micro-encapsulation, where the bubble is
“wrapped” with a particular drug and then driven to a particular
location) [89], and cavitation (for the destruction of unwanted bodies,
such as kidney stones or circulatory clots) [90, 91]. Both contrast
enhancement and drug delivery applications require bubble scatter
enhancement, and so would not stand to benefit from TWIPS directly,
but rather from the process used to select the operating frequency in
the development of the computational study described above. Oceanic
bubble clouds contain bubbles with radii spanning several orders of
magnitude, whereas the bubbles used in biomedical bubble contrast
and drug delivery are monodisperse. It is straightforward to cause the
bubbles with in a monodisperse cloud to oscilate nonlinearly — one
can merely excite the system at or near the resonance frequency of the
individual bubbles. However, in a polydisperse cloud, it is necessary
to consider the bubble size distribution before designing the input

signal. It was shown here that for a cloud containing bubbles of an
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oceanic-type size distribution (where the distribution is inversely
proportional to the radius), it is possible to achieve nonlinear
scattering across several orders of magnitude of radius by driving the
cloud at the resonance frequency of the largest bubbles. This might
be used to facilitate any application of bubbles in biomedicine where a

polydisperse bubble population is desired.

One such application is cavitation-enhanced heating, where bubbles
“convert acoustical energy into mechanical energy which is
subsequently deposited as heat” [88]. In this application, high
intensity focused ultrasound (HIFU) is used to induce cavitation for
the purpose of lesion destruction. The bubble clouds used for this
HIFU-induced heating are typically not introduced from an external,
engineered source as in contrast enhancement. Rather, the source of
these bubbles is either pre-existing gas bodies, or the coaelesence of
gas already present within the tissue [92, 93]. The size distribution of
the active bubbles in this application is not well-known [94].
However, the size of the largest active bubbles might be used to design
an ensonation pulse which is capable of maximizing the response of

all bubbles present, following the method employed in section 2.4.3.

2.8.2 LIDAR

Lidar (Light Detection And Ranging) involves the use of laser systems
for the detection of media. Interest in the use of lidar for remote

sensing in industrial, environmental, and homeland security
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applications has increased since the early 2000’s [95]. The systems
employed for long-range detection operate at powers on the order of
terawatts (1020 W/cm?), and are capable of investigating targets at
ranges on the order of tens of kilometres [96]. It has been shown that
some bioagent stimulants can scatter lidar energy nonlinearly [97].
This nonlinear scattering can be harnessed for aerosol detection [98],
a result of particular importance as “the deadliest form of a biological
attack is aerosolized agents dispersed into the atmosphere. Early
detection of aerosolized agents is important for defense against these
agents” [99]. It is hypothesised that twin-pulse method could be
applied to lidar, thereby enhancing the ability to monitor for nonlinear
scattering with implications (for example) in environmental

monitoring.

2.8.3 RADAR

Radar can cause certain features (such as electrical circuitry) to
scatter nonlinearly. This so-called ‘rusty bolt’ effect arises in air gaps,
of width 1-10 nm, in for example imperfect riveting or welding [100].
Over time, the exposed metal surfaces are oxidised and metal-
insulator-metal (MIM) junctions are formed. When these are exposed
to radar or similar radiations, they can scatter nonlinearly as a result
of electron tunnelling through the insulator [101]. This widespread
phenomenon is simple to demonstrate [102], and affects many types of
radio- and micro-wave communications [101, 103]; including radio,

television, radar, and global positioning systems [104].
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The methods contained in this report could be used to detect such
MIMS junctions, whether their presence is intentional or not, by
enhancing the scatter from the nonlinear components with respect to
the linear ones. The applications could range from exploiting
electromagnetic radiation of the correct frequency range to test weld
strength or for crack detection, to allowing radar to detect complex
electrical circuitry in possible targets. Alternatively, it might be used
to suppress from the signal spurious ‘noise’ generated by such

nonlinearities (in for example, radomes or antennae).

In fact it could be suggested that the problems inherent in TWIPS2a
make it a technique better suited for radar than for sonar. In water,
sound travels at approximately 1500 m s-!. The frequency of interest
for the duration the TWIPS experiments (see Chapter 3) is 6 kHz,
giving a wavelength 4 of 0.25m. Through the analysis related to
testing, it will be seen (in 4.1.5 and 5.5.1) that the largest (that is, the
fastest-rising) oceanic bubbles rise under buoyancy at a rate of about
1, wavelength during a single interpulse pause. In contrast, consider
an observation plane. The speed of light is approximately 3 x 108 m s'1.
The two-way time for a signal emitted from the plane and reflected off
the observed ground-based target in that case is 4 x 10> seconds. If
an operation frequency of 100 MHz is used, the wavelength is about 3
meters. If the target or target field is moving a few meters per second,

and an interpulse time equal to the two-way travel time is used, then
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the target or target field only moves by some 0.001% of a wavelength

between pulses. Radar applications of TWIPS are considered further

in the relevant patent application [70].

2.9 Conclusions

It was established in Chapter 1 that MCM systems capable of coping
with bubble scattering in littoral waters are not yet commercially
available, and that the US Department of Defense is particularly
interested in rectifying that situation [13, 17-19, 105]. On that basis,
this chapter was used to introduce the theoretical basis and
computational justification for a new sonar method which is
theoretically capable of acoustically deciphering solid objects from
bubble clouds. The chapter began with a review of current
technologies which might be used in a sonar context when hunting for

mines in the presence of bubbles.

Next, the methodology used currently in biomedical ultrasound to
highlight bubble contrast was presented. It was shown that both
second-harmonic imaging and pulse-inversion are useful for contrast
enhancement. Both of these methods require that the bubbles in
question be driven nonlinearly. In practice, this goal is
straightforward to achieve as biomedical bubbles are designed to
exhibit a narrow size distribution, so all relevant bodies can be driven

near resonance to give high-amplitude responses. It was additionally
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shown that second-harmonic imaging suffers performance-wise as a

result of bandwidth considerations which in turn result in poor image

resolution.

Following the discussion of pulse inversion, it was argued that it
would be possible to suppress bubble scatter while enhancing that
scatter generated via rigid objects (linear scatterers). This concept
was then given the name “Twin Inverted Pulse Sonar” (TWIPS). The
application of TWIPS to the oceanic environment was seen to be
complicated by the fact that, while biomedical bubbles are of a narrow
size distribution and their location is contained by blood-flows which
are somewhat predictable, oceanic clouds contain hundreds of
millions of bubbles spanning several orders of magnitude in radius.
Thus, a consideration had to be given to the type of signal which
would be capable of generating nonlinear bubble-wall oscillations
throughout an oceanic cloud. One approach to this issue, it was
argued, is to drive all bubbles either at or below resonance, as it is
considerably easier to invoke a high-amplitude response for a given
dynamic oscillator in the mass-controlled frequency regime when
compared to attempts to perform the same task in the stiffness-

controlled regime.

After establishing the theoretical basis for TWIPS, a simulation was
then developed to test the TWIPS hypothesis. It was found that the

system is capable of out-performing standard sonar in attempting to
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identify a target of strength -20 dB in a cloud of some 50 million
bubbles having a size distribution which is realistic for the oceanic
environment. The TWIPS algorithm at this point appears to be a

promising solution for the detection of solid objects in bubbly water.

A brief treatise on the potential application of TWIPS-type systems for
use in biomedicine, radar, and lidar was offered. It was shown that
this algorthim, while promising for sonar, might in fact be even more

well-suited to radar applications.

The next chapter will be used to develop a method for the production
of oceanic bubble clouds in a controlled environment. In Chapter 4 the
results of the computational study developed here will be combined
with the developed bubble production technology to facilitate the

testing of the TWIPS hypothesis in a laboratory setting.
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3 Bubble clouds

Sophie opened her mouth, and very gently the BFG tipped the bottle
forward and poured some of the fabulous frobscottle down her throat.

And gosh, how delicious it was! It was sweet and refreshing. It tasted
of vanilla and cream, with just the faintest trace of raspberries on the
edge of the flavour. And the bubbles were wonderful. Sophie could
actually feel them bouncing and bursting all around her tummy. It was
an amazing sensation. It felt as though hundreds of tiny people were
dancing a jig inside her and tickling her with their toes. It was lovely.
"It's lovely!" she cried.

"Just wait," said the BFG, flapping his ears.

Sophie could feel the bubbles travelling lower and lower down her
tummy, and then suddenly, inevitably... the explosion came. The

trumpets sounded and she too made the walls of the cavern ring with
the sound of music and thunder.

"Bravo!” shouted the BFG, waving the bottle. "You is very good for a
beginner! Let's have some more!"

from The BFG, by Roald Dahl

In the previous chapter, computational models were used to support
the claim that TWIPS might offer a solution to the problem of target
detection in bubbly water. On those grounds, the discussion now
turns to consider the nature of oceanic bubble clouds. This chapter
will begin with a review of the results classic bubble-propagation
laboratory experiments. A short review will then follow on the topic of
sea trials conducted for the purpose of understanding oceanic bubble
clouds and acoustic propagation therein. Finally, the focus will turn
to the way in which a device (the Bubbly Fluid Generator, or BFG) was
developed for this project to reproduce oceanic-type bubble clouds
inside a controlled environment at the A B Wood Underwater

Acoustics Laboratory.
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3.1 Early laboratory experiments

Over the past 50 years, many attempts have been made at measuring
the change in phase speed and attenuation in the presence of bubbles
[87, 106]. The bubble population can be estimated by inverting these
measured characteristics using a model. The significant interest in
understanding bubble clouds has a wide variety of applications; to
quote Medwin, "A knowledge of bubble populations in the sea is
important in understanding such superficially diverse subjects as
sources of airborne salt nuclei, sea slicks and wind-rows, cavitation,
sea surface chemistry, and underwater sound scatter from the sea

surface" [107].

The first experimental work to quantify the effect of bubbles on
underwater acoustic propagation was by done in Germany by Meyer
and Skudryzk in the late 1930's, but was not published until 1953
[108]. Meyer and Skudryzk made bubble clouds in three different
ways: by pumping air thorough a porous material, electroloysis, and
by using a "pumping device". They then used reverberation times to
calculate the phase-speed and attenuation through the bubble cloud -
results which agreed with their own theoretical predictions.
Carstensen and Foldy [109] also developed a theory for propagation of
sound through bubbly water, and performed experiments using a
pumping device they called the "microdisperser" - a device which will

be discussed in more detail later in this chapter.
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In their theoretical analysis, Carstensen and Foldy [109] treated the
bubble screen as region of uniform bubble distribution with two
parallel plane surface boundaries, and then proceeded using standard
two-dimensional acoustics [110]. A particular weakness of this
approach, which the authors recognised, is that bubble clouds do not
in fact have "sharp boundaries" [111, 112]. Also contributing to the
lack of agreement between their theoretical predictions and
experimental results is insufficient description of the increased
backscattering cross-section of a bubble at resonance, a principle
desbribed in section 2.2.1. Carstensen and Foldy commented that
their model “could easily” account for the discrepancies between the
observed and calculated attenuations if the boundary conditions were
modified to account for gradual velocity gradients through the
bubbly/bubble-free water interface. Carstensen and Foldy reported
bubble-size distributions based on both optical observations and the
results of an acoustical inversion. Their results indicate (1) a
disproportionatly low number of microbubbles (a trivial number of
bubbles less than 0.1 mm in diameter, whereas it will be seen that the
majority of oceanic bubbles are less than 0.1 mm in diameter) and (2)
a void fraction of around 3% (whereas void fractions in oceanic bubble

plumes are typically 100 to 1000 times lower than that figure [11]).

Fox et al. [113] were successful in obtaining phase-speed and

attenuation results which they reported to be "in fairly good
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agreement" with the theories of Carstensen and Foldy [109] and Meyer
and Skudryzk [108], though they did not statistically justify this
statement. Fox et al. pointed out that the measurements of
absorption by Carstensen and Foldy indicate that the theoretical
approach by Meyer and Skudryzk underestimates acoustic

attenuation in the frequency region near bubble resonance.

Fox et al. used three methods to attempt to characterise the bubble
size distributions produced in their laboratory: direct observation
using a telescope, measurement of the bubble rise time in water, and
finally photography. It should be noted that, at the time of that study,
it was not know what type of bubble size distribution were found in
oceanic conditions. Fox et al. reported that "no bubbles in the region
of the sound beam were larger than 0.015 cm in diameter, but in
some instances small bubbles of diameters as low as 0.003 cm were
observed in quantity"' [113]. This is consistent with the bubble size
distributions used by Carstensen and Foldy [109], Meyer and
Skudruzk [108]. It will be seen in section 3.2 that oceanic clouds are
comprised mostly of microbubbles [87]. Thus, while the results of this
generation of these investigations were critical for advancing the state
of the art, the actual phase speeds and attenuations reported by
Carstensen and Foldy [109], Meyer and Skudruzk [108], and Fox et al.
[113] are in fact not representative of the phase speeds and
attenuations encountered in oceanic bubble clouds. It should be

noted, however, that Fox et al. measured a void fraction of 0.06% - a
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void fraction which is of the same order of magnitude as those

encountered in oceanic bubble clouds.

3.2 Measurements of oceanic bubbles at sea

Turner [114] noted that microbubbles (bubbles having radii on the
order of micrometers) persisted in his freshwater tank for much longer
than accounted for by classical theory. His investigation was
performed by measuring the attenuation of an ultrasonic beam
operating at 5.125 MHz. The implication of this work was the
realisation that very small bubbles, which had gone virtually
unnoticed in previous work, might be present in large number and in

fact have a substantial effect on acoustic propagation in bubbly water.

Medwin made acoustic measurements of bubble populations in
coastal ocean waters in 1970 [107]. Before that investigation,
"conflicting statements about the persistence of bubbles at sea" [107]
had appeared in the literature. To facilitate the proper design of the
acoustic system, Medwin undertook a preliminary photographic study
of bubble populations beneath white caps. The photographs revealed
the presence of millions of bubbles per cubic meter having a radius

between 10 and 100 microns.

Oceanic bubble clouds are primarily generated by surface turbulence
though some instances of some sub-surface sources appear within

the literature. Surface turbulence can be the result of either natural
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mechanisms, such as breaking waves [23], or can be through artificial
means, such as through boat/propeller hydrodynamics [22]. The first
portion of this section will be concerned with observations and
measurements of naturally-generated bubble clouds. As the
experimental methods developed for studying surface turbulence-
generated clouds were only later applied to the study of ship-wakes,
so too will this section use the concepts built up in the first portion of

the discussion to put artificially-generated bubble clouds in context.

3.2.1 Naturally generated bubble clouds within the water column

Quantitative knowledge concerning the physical characteristics
(especially population and size-distribution) of wave-generated
bubbles has been developed only in the past 30 years. In 1982,
Thorpe [23] wrote that "knowledge of wave-generated bubbles in the
sea is meagre and measurements few." Since then, several
investigators have used a variety of acoustic methods to establish
roughly the bubble size distribution beneath a breaking wave; as

shown in Figure 3.1 below.
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Figure 3.1 Bubble size distribution estimates based on field measurements by
Breitz and Medwin [115] and Farmer and Vagle [116, 117], Phelps and Leighton
[82], Deane [118], and Leighton et al. [87] (figure from [87], reproduced here
with permission).

3.2.2 Gas pockets trapped within sediment

Researchers and surveyors interested in sub-bottom profiling for the
purposes of resource exploration, geological study, buried object
location, or other endeavours are often limited in their efforts as a
result of gas pockets which are trapped with the sediment layer [119].
These gas pockets, known to some practitioners as “acoustic blanks”
because of their appearance on side-scan images [120], can give way
to discontinuous data which may be difficult to interpret. Therefore,
although a surveyor operating a high-amplitude sonar source might
generally be able to see tens of meters below the seabed, acoustically
impeneatrable gas pockets can limit their ability and effectively blind

sonar scanners.
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In Figure 3.2, the effect of gas deposits in the sea bed on sonar
performance is shown using a sonar image developed using a high-
amplitude acoustic source in conjunction with a high resolution
receiving array (240 hydrophones in a plane of dimensions 2.5 m x
2.0 m) [121]. In that figure, the sea bottom is visible as a bold line
running continuously across the top of the image. Below that line lie
several faint, semi-parallel lines. These lines represent interfaces
within the sediment layer where the composite type alters suddenly
with depth. Shallow gas deposits have been labelled as such. They
appear as dark amorphous bodies because they occupy large volumes
of the sediment, and they reflect most of the sound which is incident
upon them. As a result of this reflection, very little energy penetrates
through the clouds. This results in a general lack of information
concerning the spatial distribution of sediment layers below the gas;
apparent on the figure below as breaks in sediment contours below

the gas clouds.

POST GLACIAL SEDIMENTS

Figure 3.2 A sonar image, showing a cross-section of the seabed (maximum
penetration approximately 20 m) in Strangford Lough, Northern Ireland.
Reproduced by permission of National Oceanography Centre (J.S. Lenham, J.K.
Dix and J. Bull). The depth of the water was estimated to be 15.5 m.
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3.2.3 Ship-generated bubble clouds

Large vessels are known to generate visible “surface scars” which can
extend several miles behind the ships by which they were generated
(See Figure 3.3). These surface scars are visible as regions of slightly
discoloured water, and, at distances beyond about one ship-length
behind the ship, typically exhibit reduced surface wave activity when
compared to immediately surrounding waters. Surface scars have
been detected using high-altitude photographs taken by NASA at
distances up to 100 km behind ships [122]. Microbubble-wall
surfactants are at least partly responsible for these surface scars!*

[11].

However, regardless of the fact that surface scars are not well-

14 There are at least two competing theories for the source of these tracks —
turbulence; and microbubble-wall surfactants. The turbulence theory is as
follows: as a surface ship passes through a region of water, the combined
effect of the bow-wake, screws, and after-wake is to generate large-scale, high
Reynolds number turbulence which can extend ship-depths below the vessel.
This turbulence successively causes smaller-scale turbulence - a process
which is repeated until the flow energy is lost to thermal-viscous losses within
the water column. This theory, however, does not explain why the surface of
ship-wake exhibits reduced surface-wave activity at a distance of more than
about a ship length behind the ship. This “smoothness” can however be
explained by the microbubble-wall surfactant theory, explained later in the

main body of the text.
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source has passed. This is consistent with the fact that,
while large bubbles (radius greater than about 500
microns) rise quickly under buoyancy, small bubbles
can be trapped by local turbulence and remain in the
water column indefinitely [11].

(2) Microbubble stability in the water column will be further
enhanced by the large quantities of surfactant which is
present the water column in salt water [11] and is
scoured by rising bubbles onto their surfaces [123]. As
the microbubbles injected into the water by the ship
slowly rise to the sea-air interface, they will transport
those surfactants to the surface, leaving behind a region
of water in which there will be increased surface tension
when compared with immediately surrounding waters.
This is consistent with the observation of smooth water
in ship wakes.

Thus, it can be concluded that microbubbles are present in large
numbers both beneath breaking waves and in ship wakes. If one
wishes to recreate the conditions in those environments, one must be
capable of generating large numbers of microbubbles. Since one of
the eventual goals of this study is the injection of ocean-like bubble
clouds into a controlled environment, this chapter will now discuss
the way in which such a cloud can be created and one way in which
those bubbles can be measured. The results of such a measurement

technique will then be used to show that the bubble-generation
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method described here does in fact generate bubble clouds having

void fractions and bubble size distributions similar to those

encountered in the ocean.

3.3 Reproduction of ocean-like bubble clouds in a
laboratory environment

A variety of methods have been used by various experimenters in
attempts to generate bubble clouds in experimental tanks. The
advantages and disadvantages of a few of those methods are
considered here. Then, an advanced method is developed and

examined.

3.3.1 Background

Investigators have pursued a many different methods of bubble

production in experimental tanks. A few are reviewed here.

3.3.1.1 Microdisperser

Cartensen and Foldy [109] developed bubble clouds using a device
which they called a microdisperser. They described their bubble
production process as follows (an extraneous parenthetical bracket

has been removed from the quote):

To produce the bubbles, a device called a microdisperser, was
used, which consists of two concentric glass tubes. The central
one, of capillary dimensions, 0.01 cm [inner diameter| carried
air under a pressure of from 5 to 7 1b in2 above atmospheric
pressure or roughly 0.5 to 2.5 lb in? above hydrostatic

pressure at the mouth. The outer tube directed a flow of water
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about the capillary. The effect of the water flow was to tear off
the bubbles of air as soon as they were formed at the end of the
central air tube. A rough control over bubble size was thus
possible, for by increasing the velocity of water flow, and
consequently the rate of bubble formation, it was possible to

decrease the average size of the bubble produced.”

Several of these devices were set up in parallel at the bottom of a tank
to produce the bubble cloud which was used for their tests. The
clouds produced by Cartensen and Foldy contained far fewer relative
numbers of microbubbles when compared to oceanic clouds. However
their size distribution measurements were made using an optical
method. Visual methods for the measurement of bubble size
distributions should be treated with care lest they skew
measurements towards larger radii, as per the following analogy,

adapted from Leighton [124]:

Consider a traffic policewoman standing atop an overpass,
performing a survey on the speed at which traffic travels on a
given road. She plans to count cars and measure their
individual speeds using a standard radar gun. After one hour,
she draws a histogram showing the number of cars versus car
speed. Thinking she has characterised the traffic speed
distribution, she publishes the results. However, she is
mistaken. In one hour, she has sampled 70 miles of road
corresponding to those travellers going at 70 miles per hour,
but only 45 miles of road for those cars going 45 miles per hour.
She has in fact skewed the data and under-represented the

number of slow cars.
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Thus, when one wishes to characterise the bubble size distribution in
a given bubble cloud, one must be aware of the fact that big bubbles
rise faster than small ones. Depending upon the method applied, it
may be necessary to use a correction to account for under-
representation of slow-travelling bubbles. To summarise, the
microdisperser bubble production method is unsuitable for modelling
the oceanic environment for three reasons (1) the resultant void
fraction is too high (see 3.1); (2) almost no bubbles with a radius of
less than 100 microns are present; and (3) steady-state conditions

can not be achieved.

3.3.1.2 Aqualungs and pressure hoses

An aqualung (also known as a scuba-tank) can be used to make a
concentrated bubble screen. The aqualung (nominally pressurised to
3 kPSI, or about 20 kPa) is simply placed at the bottom of a water-
tank, and opened. The ensuing bubble screen will continue to
develop as long as the tank contains pressurised air. Aqualungs tend
to make very large bubbles, and only release over a limited area (as
determined by the orifice size). The footprint over which bubbles are
released can be increased, but the author knows of no way to reduce

the mean bubble size.

Conceptually similar to an aqualung is a pressurised air-hose with a
free-end open to the water. Such a system will tend to generate very

large bubbles, but is capable of distributing bubbles over a large
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micron-sized bubbles will be formed when this method is used.

3.3.1.4 Electrolysis

Electrical currents can be used to generate hydrogen and oxygen
bubbles. Electrolysis methods can be effective in producing micron-
size bubbles [63], but high currents are required in order to achieve
oceanic void fractions greater than about 107.  The footprint of the
bubble cloud generated using this method is limited to the region over

which electrolysis can be produced.

3.3.1.5 Hydrogen peroxide

Over time, a hydrogen peroxide solution will eventually break down
into water and oxygen. In the presence of a suitable catalyst, this

process can be sped up so that a bubbly solution can be produced:

2H509(00y — 20 + 2H50;
(aq) MnO2s) 2(9) (1) 2.1)

This method of bubble production, termed “Sedna’s Raven” within the
ISVR underwater acoustics group, is extremely effective in carefully
controlled environments, but is difficult to scale up for at least two
reasons:
(1) Hydrogren peroxide can be dangerous in large quantities.
(2) The reaction requires that the catalyst have continual contact
with the hydrogen peroxide. This is straightforward to achieve
in a sterilised glass with distilled water. However, in the A B
Wood tank, the water contains particulates which tend to

settle on top of the catalyst. Bubbles tend to cling to the
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3.3.1.6 Boston University method

Researchers at Boston University have developed a method for bubble
generation which takes advantage of the porous ceramic concept
described above, but with an improvement. Microbubble generation
is facilitated by the incorporation of a fluid flow which allows shear
forces to reduce the amount of time between when air is ejected from
the ceramic and subsequently released into the fluid. This reduction
in time results in a reduction in median bubble size. The complete
method is shown as a sketch below in Figure 3.7.
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Figure 3.7 A visual description of the bubbly fluid generator used at Boston
University. As per the diagram at top, Pump 2 passes water in a circuit past a
region where compressed air is supplied to the fluid. The flowing water shears
bubbles away from the porous ceramic tube, and into the reservoir. In the
reservoir, the large bubbles rise out, and the remaining fluid is then either re-
circulated past the air source or pumped to the test section. In the scenario
depicted, an imaging cell is being used to give real-time bubble size
distribution measurements. The fluid is then released to the tank at the end
of the cycle. (Image supplied by P Wilson, University of Texas at Austin).
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3.3.2 Bubble production the A B Wood Tank

As shown above, it is difficult to produce artificially large numbers of
micron-sized bubbles such as are found in oceanic bubble clouds. It
is even more difficult to perform this task in freshwater, as there are
fewer naturally occurring surface-active materials (surfactants) within
freshwater than in sea water. The reduction in surfactants means
that bubbles are more likely to coalesce and become too large to
represent oceanic clouds [11]. Several months were invested in
researching and in some cases testing the above listed methods so as
to identify an appropriate method for the repeatable generation of
steady-state ocean-type bubble clouds in the A B Wood Tank. It was
observed by the author that experimental physical oceanographers
are not the only types of practitioners which encouhter this challenge
— the same problem is dealt with by fish farmers. Within the
aquaculture industry, steps must be taken to ensure that farmed fish
are able to breathe. To this end, several companies manufacture
machinery specially designed to “aerate” water. Aeration, as it is
known in the aquaculture industry, is the introduction of many small
bubbles into a volume of water. The bubbles are typically small
enough that they do not rise in a straight-forward manner, their
motion being dictated by local turbulence effects (note that
microbubbles tend to be taken out of the water column by dissolution
as opposed to rising to the surface [11]). Thus it was decided that
such an aquaculture machine might in fact be appropriate for this
study, provided that a bubble distribution method could be developed
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to distribute the gas-liquid mixture into the acoustic test tank.

A design was sought which would maximize water aeration and
facilitate the generation of high-void fraction clouds containing large
numbers of microbubbles at minimum cost. In designing a solution,
some guidance was borrowed from Henry's law: If species A, a gas, is
only weakly soluble in a liquid, species B, Henry's law may be used to
relate the mole fraction of A in the liquid to the partial pressure of A

in the gas phase outside that liquid:

x, = Pspecies A "
H sol

The constant Hsa is temperature dependent, and pressure
independent up to about 5 bar. The purpose of showing this relation
here is simply to establish that, when building a system for the
purpose of aerating water, there are clear benefits to building a
pressure vessel capable of withstgnding pressures above atmospheric
pressure. To recreate a surf zone bubble cloud, Aqua Systems of

Renfrewshire, Scotland was commissioned to build a water aerator as

shown in Figure 3.8.
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Figure 3.8 - A sketch showing the operation of the bubbly fluid generator. This
image was produced by the manufacturer (Aqua Systems, Renfrewshire,
Scotland) and is available from their website: www.aquasystems.co.uk.

The bubbly fluid generator operates via the following process: Water is
pumped from the bottom of an above-ground mixing tank across a
pressure drop (the venturi shown in Figure 3.8). To reduce equipment
costs, a self-priming pump was not selected for the system. As such,
the water within the above-ground tank provides the pressure head
necessary for system operation. The tube labelled "oxygen reclaim" in
Figure 3.8 is filled initially with air, which allows air to mix with the
turbulent water immediately downstream of the pressure drop. The
bubbly mixture is then pumped into the pressurised contact column,
where further air/water mixing occurs per Henry's law [125]. Large
bubbles, which are unsuitable for the experiment, float to the top of
the contact column and refill the "oxygen reclaim" tube. The
air/water mixture is then pumped into a large (6700 liter) mixing take
(as shown in Figure 3.9), where the mixture is then either recirculated

through the aerating system, or pumped into the acoustic test tank.
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Figure 3.11 - An engineering drawing of the PVC drainage gutter used for
bubble distribution. The drain measures 0.10m x 0.10m x 1.5 m (drawing
source: NDS Inc., Lindsay, CA, USA)

As an illustration of the effectiveness of the bubbly fluid generator, the
machine is capable of reducing the visibility within the mixing tank
from effectively clear to less than 12 inches in about 5 minutes as
illustrated in Figure 3.12. As the flow cycle introduces no substantial
amount of particulates, this change in visibility is due entirely to the

introduction of microbubbles into the water.

The bubbly fluid emitted into the test tank varies with time in terms of
void fraction, foot-print, and bubble-size distribution. While careful
use of the BFG can minimise the variation in these characteristics,
variations in the bubble cloud tended to occur when the system was
operated for several hours at a time. Therefore, a pseudo-steady state
was generally sought during testing. The pseudo-steady state was
characterised by a well-balanced level within the mixing tank,

relatively unchanging surface activity within the test tank, and no
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large bubbles (> 1 cm radius).

Figure 3.12 A large-scale generator of small bubbles implemented by the
authors, the images corresponding to times of (a) O, (b) 1 min, (c) 2 min, (d) 3
mind and (e) 4 min after activation of the generator. They show the system
filling a tank of normal fresh water (measuring 1.5m by 2.5m by 1.5m) with a
dense cloud of minute bubbles, without the production of large bubbles. As a
result, the initially clear water turns milky white, obscuring from view the
Delta 22 anchor which lies under 1.5 m of water and measures 695mm end-to-
end and a maximum of 310mm between the fluke tips. No chemicals were
used.

3.3.3 Measurements

Bubble-size measurements were made using the acoustic method
which was published by Leighton et al. [87], and applied by Coles and
Leighton [126]. Coles and Leighton described two test equipment
configurations: one for the open water, and one for an experimental
tank. The latter configuration was used for monitoring the cloud used
here. A complete explanation of that method is beyond the scope of

this document, but a brief overview is given here. Acoustic tones were

103



Chapter 3 - Bubble clouds

emitted into the water, and the attenuation and propagation speed of
those pulses were monitored by an array of hydrophones placed
within the bubble cloud and directly in the beam of the source

transducer. A schematic of the test setup is shown in Figure 3.13.
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Figure 3.13 Schematic showing side-view of the A B Wood tank during bubble
size distribution measurements (drawing reproduced from Coles and Leighton
[126] and used here with permission).

The tone-burst pulse train used for these measurements is shown

below in Figure 3.14.
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Figure 3.14 (a) The pulse train measured at the second hydrophone with no
bubbles present (b) The increased attenuation at the same hydrophone with
bubbles present (drawing reproduced from Coles and Leighton [126] and used
here with permission).
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Measurements were made prior to the beginning of any TWIPS
experiments to ensure that the cloud was reasonably in accordance
with those which might be encountered at sea. Upon successful
completion of these measurements, the system was adapted so as to
be compatible with the equipment required for the TWIPS tests. It
was therefore possible to monitor the bubble size distribution during
the course of many!5 of the laboratory tests conducted in conjunction

with this study.

3.3.4 Results

The bubble clouds generated using the BFG seemed to be generally
consistent with the types of bubble clouds measured during sea trials.
The data reported here, which was recorded as explained in the
previous section, was published by Coles and Leighton [126] and is

labelled as such in the figure below:

Figure 3.15 summarises the acoustic bubble-size measurements,
which were made according to the method explained in the previous
section. Note that all of the measurements to which those of Coles
and Leighton are compared in Figure 3.15 were taken in open water

during sea-trials in salt water. The bubble size distribution obtained

15 Qccasional system failures, equipment shortages, and personnel limitations
dictated that it was not always possible to monitor the bubble size distribution

during TWIPS tests.
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Figure 4.4. Elevation schematic of the tank during tests. Note that the
hydrophone is located above the source array.

4.1.2 Source signal and transducer

This section will describe the signal production method used during
the TWIPS experiments. The experiment required the regular
generation of two high-amplitude pulses in rapid succession, the
second of which had to be opposite in phase to the first. It was
pointed out by Paul Doust, a recognised transducer expert and
student within the Ultrasonics and Underwater Acoustics research
team, that the acoustic requirements for our source would pose quite
a challenge for most off-the-shelf systems. He stated that the
electroacoustic production by a compact source system of two phase-
reversed high amplitude pulses, each no longer than a few
milliseconds, would require the development of specialised equipment
[127] which could cost several tens of thousands of pounds. In
response to this information, it was questioned whether surface

reflections might be used to generate the phase-reversed signals. The
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merits of a reflection-based approach and the eventual decision to
acquire specialised acoustic equipment of the type suggested by Mr

Doust will now be discussed.

4.1.3 A surface-reflection approach to TWIPS pulse generation

The reflection from a pressure-release surface will be opposite in
phase to the incident pulse [110]. It follows that the reflection from a
pressure release surface might be an effective way to generate a pulse
which is nearly equal in amplitude to, though 180° out of phase with
some incident pulse. The practicability of this statement can be
evaluated using the results of a study by Medwin conducted in 1966,
and entitled “Specular scattering of underwater sound from a wind-
driven surface” [1]. In that study, specular reflections were generated
using an upward-firing send/receive transducer placed at the bottom
of a wave-tank, as shown in Figure 4.5. The amplitude of these
reflections was then compared with that of the incident pulses in
order to determine the relationship between surface wave size/shape
and reflection amplitude!6. Concisely, it was shown that for anything
more than trivial surface disruptions, the probability of encountering
a specular reflection equal in amplitude to the incident pulse is very
low. This is illustrated below in Figure 4.6, which has been

reproduced from the original publication [1].

16 In this experiment, Medwin did not attempt to change the size scale of the surface

waves, but rather increased the frequency of the incident waves.
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exponential reduction in the likelihood of a specular reflection with
increasing surface roughness. In Medwin’s data, no perfect!” specular
reflections resulted for a surface roughness of greater than about 1.2.
In real terms, this means that at 6 kHz (1=0.25 m) for an RMS wave
height of greater than 17 cm, Medwin found approximately a 5%
chance of a perfect reflection. The function shown as equation (4.1)
has been plotted in Figure 4.7 using G =1.2. Since regular, controlled
reflections are the issue of interest here, the condition 6; = 6, according
to Snell’s law was enforced in the calculations performed to generate
Figure 4.7. This value has been used for surface roughness because,
in Figure 4.6, that is the maximum G for which a perfect reflection
was obtained. From this analysis, one can conclude that in the A B
Wood Tank, where there is only low-amplitude surface disturbance
when the bubble-generator is functioning, it might be possible to take
advantage of surface reflections to obtain twin inverted pulses, but the

system would only operate intermittently'8. Such a system would be

17 “Perfect” is used here to indicate a reflection which is equal in amplitude and
exactly out of phase with the incident wave.

18 Even with Medwin’s lucid results as a guide, the exact degree of this intermittence
is difficult to determine analytically. It would depend on the exact depth of the
source depth and the target, and the amplitude of surface ripples. Based on the
configuration which was finally employed for this experiment, it can be estimated
that G=27(0.02 m)/(1500 m s7/6000 Hz)(2 cos(22%)) = 0.94 was present during experiments.

According to the experimental results of Medwin shown above, the likelihood of a
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inadaptable to open-water conditions as a result of the increased
surface turbulence encountered in that environment. Further, a twin-
inverted pulse system which is dependent on surface reflection for
production of the second pulse would almost never function properly
were a high operating-frequency to be used. Although this high-
frequency result is not related to the immediate discussion, it will be

re-introduced in Chapter 6, where cetacean biosonar is considered.

4.1.4 Electroacoustic production of TWIPS pulses

As was argued in the previous section, a sea-air interface which is
even slightly disturbed will not tend to give a predictable, equi-
amplitude acoustic reflection. Thus, an electro-acoustic source
capable of meeting the requirements unique to this investigation was
sought. Dr Justin Dix of the National Oceanography Centre,
Southampton, agreed to loan to our research team a GeoAcoustics

Chirp 1I transducer and transceiver system [128].

The 3D-Chirp source consists of four separate high power
transducers, which can be mounted into whatever configuration the
user deems appropriate. They are powered by a matched amplifier
which is controlled by a trigger box and, in turn, a personal computer

(PC). The source characteristics have been documented by previous

perfect reflection was then somewhere between 5% and 30%.
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used to tell the bottle when to power the transducers with the desired
pulse. The pulse designed for this experiment consisted of three
components: (1) an eight-cycle Gaussian modulated pulse; the
'positive pulse'; (2) pause; (3) An exact opposite of (1) a pulse equal in
amplitude to but n-radians out of phase with the first pulse; this is

known as the 'negative pulse'.

The pulses generated are shown, without the pause time, in Figure
4.12. The amount of time needed for the pause requires consideration
of the physical environment in which the method is being applied.
Those considerations appropriate to the A B Wood Laboratory will now

be discussed.
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Figure 4.12. Reference signals as recorded in the AB Wood Tank in the
absence of bubbles. a) First half of out-going signal at a distance of 1 m from
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the source. b) Second half of out-going signal at a distance of 1 m from the
source. c) First half of outgoing pulse as measured at target location. d) Second
half of outgoing pulse as measured at target location.

4.1.5 Inter-pulse delay

The upper limit for pulse-pair spacing 7 is based on the rate of bubble-
cloud evolution. The TWIPS method assumes that there is insufficient
change in the bubble population and target position during the time
expired between the two pulses to degrade the correlation of the
boundary conditions which dictate scattering returns from the two
pulse halves. In the current experiment, the cloud in the beam will
evolve as a result of both buoyant rise and size change in response to
the steadily decreasing hydrostatic pressure. Therefore it might
reasonably be expected that the upper limit for pulse-pair spacing (z)
will be based on the rate of bubble-cloud evolution. If scatterers in
the acoustic field are allowed to move considerably during the pause
between the two outgoing pulses, then the physical parameters
dictating the scattering apparent in the first pulse return will not
correlate well with those dictating the scattering within the second
pulse return. In the tank, where the experiment has been designed to
allow the bubbles to rise through buoyancy forces (and not under
convective flow forces), an interpulse interval might be sufficiently
long to degrade the TWIPS pulse if enough bubbles rose through a

significant fraction of a wavelength.

A simulation of the effect of phase on the success of the TWIPS
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algorithm was conducted. The goal of this study was to establish the
degree to which system performance is degraded if the phase
relationship of the two-portions of the excitation pulse are not
identical. To conduct this study representative bubbles sizes were
selected from the entire bubble size distribution with radii of 10 um,
50 wm, 100 um, 500 um, 1000 um, and 5000 um. Each of these were
excited by a wave of phase ¢, and by and opposite wave of phase ¢+Ag.
By varying A¢ until nonlinear suppression reduced by 50%, it was
seen that the maximum tolerable motion for a bubble between two
halves of a TWIPS pulse is about 0.37 of a cycle at the driving
frequency (at the operating frequency of 6 kHz used here, 0.37
wavelength corresponds to about 92 mm if the sound speed were

around 1500 m s1).

Estimates of the speed at which a bubble rises are made somewhat
complex by the fact that the drag coefficient of a bubble varies with
bubble size, shape, and speed of travel [11, 44]. To estimate the speed
at which a bubble encountered in the tank will rise, an iterative
approach can be taken. This calculation will be made for a wide range
of bubble sizes, according to the range encountered in oceanic
conditions and the tank experiment. The bubble rise speed can be

determined to a first approximation using Stoke’s law [44]:

_ 297‘2
Vst = %, (4.2)

where Vs is the velocity according to Stoke’s law, g is the acceleration
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due to gravity, r is the bubble radius, and v is the kinematic viscosity
of water (10-¢ m2 s! [27]). Results obtained using this method tend to
largely underestimate the drag coefficient of a bubble (by as much as

an order of magnitude) as can be seen from Figure 4.13.
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Figure 4.13 The variation in drag coefficient with Reynold’s number for four
types of sphere (copied from Leighton [11], which was based on data of Clift et
al. [130]).

In the first iteration, the estimated velocity Vs: can be used to estimate
the Reynolds number which can in turn be used to find a first
estimate for the drag coefficient of the bubble. Further iterations then
use the terminal velocity calculated via the drag coefficient to re-
assess the estimated Reynolds number, and so on. The Reynolds
number Re is calculated as the ratio of inertial forces to viscous

forces, and indicates the relative turbulence of a given environment:

VL
v (4.3)

Re

In the above expression, Vs is the bubble velocity, L is the length scale
of the system (for a sphere, the diameter can be used to represent the

length scale), and v is kinematic viscosity of water. Having obtained
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the Reynolds number, the drag coefficient can be estimated from
Figure 4.13. This can in turn be used to calculate the drag force F4 on

the rising bubble

1
Fa= EPWVtQCdA

(4.4)
where pw is the density of water, V; is the terminal velocity of the
bubble, Cq is the drag coefficient of the bubble, and A is the cross-
sectional area of the rising gas volume. The net downward force on
the bubble is equal to the mass of the gas within the volume of the
bubble plus the drag force, while the net upward force on the bubble
is that of buoyancy. At terminal velocity, the upward force is equal in
magnitude to the downward force:

FgtF, = Fy (4.5)
where F, is the weight of the bubble, and Fy is the upwards buoyant
force on the bubble by the surrounding water, equivalent to p.¥g, the
product of the water density, the bubble volume, and the acceleration
due to gravity. This expression can then be solved for velocity, which
can in turn be used to re-calculate the Reynold’s number, the drag
coefficient, and so-on. The output from this iterative calculation

shows that the largest bubbles in the tank (those with a radius on the

order of 1 cm) will rise the fastest at a rate of approximately 1.1 m s-1.

Recall that the goal here is to establish the maximum interpulse
interval such that the fastest-moving bubbles do not travel more than

about 0.37 of a wavelength at during the interpulse interval. On this
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basis, with an operating frequency of 6 kHz and a sound speed of
approximately 1500 m s-!, the maximum allowable interpulse interval
before system performance will degrade by 50% can be argued to be
84 ms. This information was used to inform the design of the pulse
used during tests, but practical equipment considerations limited the

maximum interpulse interval to 100 ms.

In summary of this section, buoyant rise speeds in water are not
simple, and a complete description is beyond the scope of this
discussion. In general the largest bubbles rise the most rapidly unless
group effects occur [44]. From such considerations, it was calculated
that an interpulse interval of 100 ms (the largest used in this thesis)
would present the TWIPS pulses with a sufficiently stable
environment. In a confined space such as a laboratory tank, the lower
limit of the interpulse delay can be determined by the length of the
reverberation tail. The reverberation time of a space is defined
according to Sabine as the amount of time it takes for the level in a
space resulting from an impulse to decrease by 60 dB [131]. By
analysing the decay of the first 15 dB, and extrapolating linearly, it is
possible to estimate the reverberation time via the so-called Tis. In
Figure 8, the reverberation tail for the tank is shown, and has been

smoothed after the method of Pierce [3]:

00 (412
P (t) =10 log[Tjef /t p—;:f dt'] o)

where t’is time. tis the start time, p(t) is the pressure in the tank as a
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function of time, prer is an arbitrary reference pressure (chosen here to
be the maximum pressure), Tref is an arbitrary reference time, and

Prev(t) is the smoothed reverberation function.

From Figure 4.15, it can be seen that the Tis for the tank is 240 ms.
Further, it can be seen that, in order for the time-averaged sound
pressure level to reduce by 10 dB following a single band-limited burst
of the type designed for the TWIPS tests, the interpulse delay must be
least 65 ms. That is, if two acoustic pulses are released into the tank
in close temporal proximity, and a delay of less than about 65 ms is
used, a detectable amount of reverberation from the first signal will
still be present when the second signal is introduced into the water.
This is demonstrated in Figure 4.14, where the acoustic returns from
pulses played at different timing intervals have been displayed to show
clearly the interference resulting from reverberation. In Figure 4.14, it
is shown that the reverberant energy from the first pulse diminishes
the correlation between the first and second pulses unless a delay of
at least around 50 ms is used. It is unsurprising that Figure 4.14 (a)
shows poor correlation between the two pulses, as the reverberation
curve shown in Figure 4.15 shows that the time-averaged reverberant

energy within the tank is only reduced by about 3 dB after 20 ms.
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Figure 4.14. The effect of tank reverberation on pulse-pair matching. In each
plot, the initial outgoing pulse has been drawn in dark blue, and overlaid by
the inverse of the second pulse (which is an acoustical opposite of the initial
pulse). Thus, if the second pulse is an identical opposite to the first, then in
the plot shown, the red line should correlate perfectly with the blue line. The
results are shown for three different pulse separation times, as follows:

(a) T = 20 ms (b) T = 50 ms and (c) T =100 ms. The target is visible as a broad
peak in the region of 4 ms. Increasing agreement is gained as the interval is
augmented.
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Figure 4.15. A reverberation curve for the A.B. Wood Tank. The Tis
(reverberation time based extrapolation based on the rate of decay for the first
15 dB) for the A B Wood Tank at 6 kHz is 240 ms.
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4.1.6 Receiver

A single hydrophone was used to receive TWIPS data; a Blacknor
Technology D140, serial number 18938. That transducer was last
calibrated by the National Physical Laboratory at Wraysbury Acoustic
Laboratory on 30 June 2006. The results of that calibration are
available on file at ISVR, and are summarised below in Figure 4.16.
During experiments, the transducer was powered by a matched

amplifier which was designed and built by Blacknor Technologies.

-207 -

N
S ©
® @

-210

-211

-212

Sensitivity (dB re 1 V/uPa)
N
W

E
N
=
E-9

'
N
jve
w

0 20 40 60 80 100 120
Frequency (kHz)

Figure 4.16 Calibration data for the Blacknor Technology D140
hydrophone/preamplifer used in experiments. In summary, the frequency
response of the hydrophone/preamplifier was has flat to within +/-3.5 dB
throughout the frequency range of interest.

4.1.7 Target

The target used in these experiments is shown below in Figure 4.17.
The target was a steel disc of diameter 415 mm and thickness 50 mm.
Its calculated target strength (see (2.31)) is -10 dB for a target/receiver
along an axis extending normal to the face of the disc (that is, along

an axis extending out of the page according to the orientation shown
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4.1.8 Data acquisition

Data was acquired onto a PC using a 4-channel National Instruments
sound card acquiring data at 200 kilosamples per second per channel.
One channel acquired a trigger signal from the trigger box, and the
other two channels were set to acquire acoustic data. During TWIPS
tests, only one acoustic acquisition channel was used. Acoustic
signals were passed through a pair of Krohn-Hite model 3203 filter-
banks. The high-pass was set at 0.2 kHz to eliminate mains
contamination, and the low-pass was set at 100 kHz to avoid any

frequency-folding effects.

4.1.8.1 Standard processing

As discussed in the introductory chapter, the commercially viable
solutions for the detection of solid objects in bubbly water do not
currently exist. It is therefore difficult to establish a baseline for the
TWIPS measurements. A true baseline would probably involve the use
of high frequency scanning sonar - but a scanning towfish was not
available to our research group during the course of the experiments;
and it is well-known that such systems are effectively blinded by
bubble clouds [23] as explained in section 2.1. As such, a baseline
was invented which would detect targets in bubble-free water, but
would not take advantage of bubble dynamics (especially bubble cloud
evolution and nonlinear oscillations) and in turn would most likely be
confounded by the presence of a bubble cloud. The baseline

technique, here-to-fore referred to as 'standard processing', relies on
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the same data as the TWIPS technique, the difference being entirely in
the processing. In summary, what is referred to here as standard
processing is not necessarily the industry-standard problem solution,
but is a laboratory-contrived attempt at establishing a performance

baseline.

The standard processing technique involves three steps: matched-
pulse filtering, signal smoothing, and finally averaging of two pulses.
As the TWIPS approach takes advantage of the acoustic return from
two pulses, it would be unfair to compare that output with the
performance of a sonar system which only takes into account only a
single pulse. Convolution, used to facilitate matched-pulse filtering
and signal smoothing, is a linear process [40]. A 1 second delay
always existed between any two input pulses used for the standard

processing.

4.1.8.2TWIPS

The TWIPS processing can be described in the following manner:
First, P+ and P. are convolved with the ‘matched pulse’, a signal which
is identical to the signal sent by the bottle to the transducers. There
is a potential for error here caused by the distortion to the signal by
the transduction process. However, the experiments reported here did
not account for that factor, as highly variable loading was
encountered by the transducer throughout testing (as a result of both

changes in configuration and the presence of bubbles), and
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accounting for the change in loading in each condition would have
been prohibitively cumbersome. After convolving with the matched
pulse to enhance regions in the time history which appear to resemble
the output pulse, smoothing is accomplished by taking the absolute
value of the Hilbert transform of the matched-processed signal, and
convolving it with the envelope of the output (a Gaussian pulse with a

length equal to that of the input signal).

4.1.8.3 Procedural comments

Measurements were performed in a variety of configurations. Those
configurations were formed by varying the following variables in the
ways described here:
Target presence. All measurements were performed with the
target both in and out of the water. “Target in” measurements
and their respective “Target out” measurements were never
performed at intervals greater than 10 minutes. This was done to
maximise the similarity in bubble cloud conditions for the two

data sets.

Target position. The range from the source!® to the target was
altered by moving the target within the tank, both laterally and

vertically.

19 The source was never moved during the course of experiments.
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Bubble cloud void fraction. Limited control of the bubble cloud
void fraction was exercised via the valve controlling air flow from
the air compressor into the pressurisation tank (see Figure 3.8).
This control, while useful and effective, was not calibrated, and is
sensitive to external variables such as air tank pressure, water
level in the mixing tank, and flow rate through the cavitation
nozzle. In some instances, an exceedingly high void fraction
made it impossible to measure the bubble size distribution (the
presence of excess bubbles increased attenuation to the point
where no signal was available on the hydrophone furthest from

the source).

To reduce the void fraction, the valve was constricted, and the
test operator would wait until he had visually confirmed
increased visibility within the mixing tank. If the observation had
been made twice within 5 minutes, and a significant difference in
visibility was not apparent, then the operator would accept the

bubble cloud as being at pseudo-steady state.

4.1.9 Experimental accommodation of bubble measuring
equipment

The system used for bubble size distribution (BSD) measurements was

introduced in the previous chapter. Those measurements were made

concurrently with TWIPS experiments in order to facilitate a clear
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understanding of the bubble clouds in which the sonar was being
tested. Here is described the method which was developed to
minimise the interference presented by that system to the TWIPS

system.

The BSD equipment was described as consisting of a driver, three
hydrophones, and an electronic housing. The housing and driver
were large enough to be detectable by the 6 kHz TWIPS signal, but
were suSpended at across the tank from and out of the main
beampattern of the TWIPS transducer to minimise their visibility. The
equipment needed to suspend the BSD hydrophones within the
bubble cloud and capable of ensuring their stability within the high
currents within that environment was too large and massive to
obscure acoustically.  Therefore it was decided that the BSD
hydrophone array would be manually lowered into and raised out of
the test tank each time a bubble size distribution measurement was
desired. This system changeover was performed intermittently during
tests as described within the body of the results section of this

chapter.

4.2 Results

In this section, the output of the TWIPS algorithm will be compared to
that of the so-called “standard” sonar. A short section explaining the

way in which the data will be displayed precedes the reporting of that

data.
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To display the results of our testing, time histories are stacked and
displayed using colour intensity to communicate amplitude. This
process is shown in Figure 4.19. In the TWIPS experiments, a static
target was used. This means a successful sonar system should show
a vertical line (corresponding to the strong acoustic return from the
target) when several time histories are stacked and viewed as an

image.

Results are then processed according the “Receiver-operating
characteristic” method described in detail in Appendix 1. The ROC
curve is then studied for those properties which are advantageous to a

sonar which would be employed in a littoral hidden-ordnance search.
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Figure 4.19 An example showing an image (c) to describe the time histories
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shown in (a) and (b).

1 7
0t T
"o 3
1
o .:.’;"VJ,.A.,A,_\'_N_.«E., "o ,;*.;/‘:ﬂ.vufm,r:‘,‘a\d«,,,,-:\uf;\cs;v: o
; ;
1 2 3
P f
I3 i
2 3
/rn‘.",fu‘;\‘z:./
2 3
2 f-’\;r]\""‘z,ﬁv,f"‘*a:'-"‘u/-’wéf-ﬁw"*-fv‘-"v”":ﬁ":\;;’f&;’@f’vﬁglf .g‘\j]r"aj'-\‘r 0 -/r‘i"‘x,\f\x;’f\; S ‘; T EYATANY A SV R
AL i ; AL ; ;
10 1 2 3 0 1 2 3
0 j‘"ﬁe\'/f'l:.ﬁgﬁ\:/ ST RP NI iw 1av ﬁvr 3 s{ jl&
) ; i
0 1 2 3

Y, »,«,4, W T T

2 3

P T
i
o'}{"‘,{‘x’ ' g"\{‘y_(.“,ﬂ L TAR AT VRV
5

4 i
2 3
x;iv!h{’*;; et ;,“t k 3 A x \-
2 3

Time (ms) Time (ms)

Figure 4.20. The effect of bubble scattering on target detectability. On the
left are shown 10 echolocation traces taken in the A.B. Wood tank in the
absence of bubbles. The target is clearly visible as a high amplitude region
between 2.5 and 3 ms. On the right are shown 10 traces in the presence of
bubbles. The bubbles, which are located between O and 3 ms, render the target
invisible, and the time traces are highly inconsistent. The vertical axis in
each case is a nondimensionalised pressure axis.

4.2.1 Bubble contrast enhancement results

As explained when introducing the TWIPS theory, the numerator P.

functions to enhance linear target scatter while suppressing nonlinear
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target scatter. The denominator, P. does the converse. Therefore, it is
instructive to examine the output of P: before examining the combined

results of P./P.2.

The output of P+ may prove to be critical for commercial applications
of twin-inverted pulse sonar. In Chapter 2, the TWIPS method for
detecting solid objects in bubble clouds was arrived at by first
considering the pulse inversion method (used to highlight biomedical
contrast agents in bloodflows), and then reversing that method and
adapting it for the oceanic counter-analogy. However, the ability to
detect of bubbles in the open water is a matter of potential interest to
researchers in both environmental science [119] and defence

technology [126].

To show the effect of reverberation interference on TWIPS results, the
TWIPS experiment was repeated using the three different intervals
used in Figure 9: 20 ms, 50 ms, and 100 ms. It was attempted to
maintain a constant bubble cloud during these experiments. As
explained above, TWIPS functions as a result of the successful
performance of two tasks: target highlighting and bubble-scattering
suppression in the numerator (via P), and bubble scattering
enhancement in the denominator (via P:). Reported here is the
effectiveness of P., and the degree to which that effectiveness varies

with the inter-pulse time.
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distinguish between linear and nonlinear scatterers for =20 ms. As a
result, while there is the desired broad peak indicating a bubble cloud
between 0 and 2 ms, there is an undesired peak in the target location
between 2 and 3 ms. Figure 4.21 (¢) and (d) show that =50 ms
functions much better as a bubble-cloud enhancer, but the gradual
negative gradient from O ms to 3 ms is insufficiently resolute to show
clearly where the bubble cloud lies. This gradual gradient presumably
results from the fact that, while that =50 ms allows the algorithm to
enhance the bubble scatter, the target signal suppression is
incomplete. Figure 4.21 (e) and (f) show 7 =100 ms to offer superior
results. Figure 4.21 (e) shows consistent bubble cloud scatter
enhancement, and it is clear from Figure 4.21 (f) that the target
scatter has been virtually completely suppressed. It must be
emphasised that these results should theoretically indicate the types
of problems that one might encounter when using TWIPS. However,
the ideal interpulse interval = will vary from location to location, as
dictated by the mean bubble speed and reverberation conditions

encountered during a particular trial.

It has been shown that P. is capable of consistently enhancing
bubble-scatter on the basis of nonlinear-scattering. An alternative
nonlinear bubble-scatter enhancement method used extensively in
biomedical ultrasonics is known as second-harmonic imaging. That
method also requires the use of high-amplitude signals in a

nonlinearly scattering environment, but requires only a single ping.
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Figure 4.23. Harmonic content from line 1 of Figure 4.22, both unfiltered
(‘Fundamental’) and filtered for the second harmonic (‘Second harmonic’).
This result shows the smearing encountered when using this approach.
Information from the band corresponding to the fundamental frequency has
‘leaked’ into the second harmonic data. Narrow band-pass filters can be used
to overcome this, with the side effect being that fewer bubbles will be
detected. Note that the portion of the time record corresponding to the
outgoing pulse has been time-gated out.

The cloud visibility obtained using the second-harmonic technique is
limited when compared to the TWIPS output; this is a result of
bandwidth considerations. Recall that no frequency filters were used
to enhance bubble scatter in TWIPS. This means that any anti-phase
information present in the second pulse return, regardless of
frequency, will give contrast enhancement when inverted and
combined with the return from the first pulse. The second-harmonic
technique, however, can only give contrast enhancement when the
bubble scatter is within the frequency constraints of the band-pass
filter. As the output signal is limited in length (8 cycles at 6.5 kHz),
the outgoing pulse is broad in frequency content. While those bubbles
closest to the acoustic driver will tend to be very active at twice the

rate of the centre frequency, the remainder of the cloud will tend to be
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only weakly nonlinear as a result of attenuation, and may be relatively
inactive within the limits of the filter. Therefore, limiting the
bandwidth of the detector will limit the number of bubbles which can
be perceived. The harmonic content of the first line of Figure 4.22 has
been shown in Figure 4.23. This figure shows that it is difficult to
filter effectively for the second harmonic using the driving pulse
created for this experiment. Information from the band corresponding
to the fundamental frequency has ‘leaked’ into the second harmonic
data. Narrow band-pass filters can be used to overcome this, with the

side effect being that even fewer bubbles will be detected.

Bubble detection and contrast enhancement has applications within
both the biomedical ultrasound and oceanic sonar arenas. The
ultrasound contrast agent (UCA) market is already well-developed,
and accumulated revenues of just under $1 billion in 2006 [132]. That
market, however, stands to benefit from advances in research as
revenues in UCAs are expected to grow by 25-40% per year through
2010 [132]. By contrast, there is no record in the literature of a
purely bubble-detecting oceanic sonar: one which is capable of
highlighting only bubbles while suppressing reflections from linear
scatterers such as the surface, the bottom, boats, mines, and pipes.
Nonetheless, such a sonar could find application in environmental
studies and underwater resource exploration, as will be discussed
later in this chapter. Further, if bubbles are considered more

generally as nonlinear scatterers, then it can be argued that a method
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which is capable of revealing the presence of bubbles within an
environment using acoustics might be applied to other types of
radiation to reveal the presence of nonlinear scatterers in various
media. Thus, TWIPS derivatives might find use in lidar, radar, and

laser applications.

4.2.2 Target contrast enhancement

Having established that the TWIPS denominator is able to suppress
bubble scatter, we now demonstrate that TWIPS2a can exploit this
capability to perform target contrast enhancement. Presented here
are the results of several tests along with their corresponding ROC

analyses.

4.2.2.1 Results in the absence of bubbles

The first scenario presented here is that with and without the target
present, but with no bubbles in the water (Figure 4.24 through Figure
4.27). Since the environmental conditions in that case were steady-
state, the output is relatively constant, and only a few ping pairs were
measured. To process the data in the ROC curve, the maximum value
between 5 ms and 6.25 ms has been extracted for each block of 5
pings. This has been done instead of extracting the maximum for
each individual pulse pair, as TWIPS output tends to be intermittent.
The use of blocks made up of several pulse pair returns improves the
system performance, but reduces the number of points available for
the ROC curve (which is why the performance curves presented in this
section are not smooth). In real-world applications, the use of such
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blocks is somewhat disadvantageous, as the ability for the system to
cope with dynamic physics is limited by the amount of time required
for the acquisition of a single data block. In the tests presented here,
5 blocks of data corresponds to an elapsed period of between 5.02 and
5.10 s (dependent upon the length of the interpulse delay). Note that
this does not mean that the algorithm will fail if the bubble cloud
evolves during the acquisition of a data block, but that performance
will suffer if the overall system geometry is changed during that time
(that is if the relative position of the sources/acquisition devices and

reflection surfaces are altered).

In the first scenario analysed here, the ROC is perfect (Figure 4.27);
an unsurprising result, as there is a large metal target in the water
located directly in front of the source and receiver, and no bubbles are

present to scatter the sonar signal.
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Figure 4.26 Amplitude distribution for the time window corresponding to the
target location shown in Figure 4.25.
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Figure 4.27 ROC analysis for data collected in the absence of bubbles, as
shown in Figure 4.24 and Figure 4.25.

In the next experiment which is presented, bubbles were released into
the water from a location nearly directly below the target. This

allowed measurement of the degree to which TWIPS enhances target
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detection in the presence of a bubble cloud.

4.2.2.2Results in the presence of bubbles with targets of varying

target strength

Here, the results of two experiments are contrasted wherein the target
strength has been varied whilst the bubble size distribution and
source/receiver-target distance have remained constant. In the two
scenarios analysed here, the bubble cloud is located with its centre
almost 1 meter in front of the target. The cloud extends only 0.75
meters in either direction along the acoustic axis. Therefore, there is
a small transition zone from bubbly to bubble-free water in the region
between the centre of the cloud and the location of the target. This
configuration simulates the condition where an oceanic bubble cloud
is not co-located with a target. Such a condition might be
encountered when echosounding behind in the wake behind a ship, or
when searching for an object in stormy waters where the depth is

great enough that the void fraction approaches zero near the bottom.

In the geometry used to develop figures through Figure 4.29 - Figure
4.34, the target response occurs just after 3 ms, while the bubbly
region extends from about 1 ms to about 3 ms (see Figure 4.28). As a
result, the sound intensity of the field is greater in the bubble cloud
than at the target location. If this effect were not corrected for, there
would be an inherent energy bias favouring false positives (the bubble

cloud) and it would be difficult to construct a fair ROC. To correct for
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this effect in data analysis, a quadratic time-varying gain (TVG) has
been applied directly to the time-history data prior to post-processing
and to the production of ROCS. In the theoretical discussion of
TWIPS2, see section 2.5.1.1, it was argued that an advantage to this
particular algorithm is that TVG is not needed, as any time-bias in the
denominator should be identical to (and therefore cancelled by) any
time-bias in the numerator. Here, however, TWIPS2 has been forgone
for a modified version of TWIPS2 which uses the output of P./P:2. In
that algorithm, time-biases are no longer identical in the numerator
and the denominator. As a result, TVG has now become necessary
and has been introduced directly to the time history prior to post-
processing. The use of a time-varying gain has been mentioned in the
figure captions wherever appropriate. The ROC curves for these two
scenarios have been processed by searching for the maximum value
returned by either algorithm of each processed return within the
region extending from 1 to 4 ms. In Figure 4.29 and Figure 4.31, the
target is not in the water. In the standard sonar, bubble scattering is
visible in the region from 1.00 to 3.00 ms. This has been illustrated
using a plot of P:, which has been shown to exhibit maxima at the

location of bubble clouds (see section 4.2.1).

In Figure 4.29 - Figure 4.34, it is shown that the bubble scattering is
mostly suppressed in the TWIPS output, as evidenced by the lack of
small-scale ripples in the temporal region corresponding to their

location (1 ms - 3 ms). In Figure 4.30 and Figure 4.32, the bubble
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distribution has been maintained as nearly that used for Figure 4.29
and Figure 4.31, but the target has been introduced and is clearly
visible within both sonars centred near 3.50 ms. This measurement
in that it proves that TWIPS is useful not only when standard
correlation methods fail, a result confirmed by the ROC curves shown

below in Figure 4.34.
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Figure 4.28 Median of P. for all data in Figure 4.29 - Figure 4.32. In the region
before 1.50 ms, the data indicates even-harmonic nonlinear distoration in the
outgoing pulse. This is result (clipping in the outgoing pulse) is not
unexpected. The hydrophone was placed near to the source, where levels
exceeded those which could be measured accurately using the equipment
available for this experiment.

The bubble size distribution of the cloud present during TS=-10 dB

measurements is shown in Figure 4.42.
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Figure 4.29 No target present; bubbles present from 1 ms to 3 ms. Top-
Standard sonar; Bottom- a version of TWIPS2b (P./P:2). Time-varying gain has
been applied to the time history data before processing. This plot displays 100

records captured at 1 second intervals.
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Figure 4.30 Target present between 3 and 4 ms; bubbles present from 1 ms to

3 ms. Top- Standard sonar; Bottom- a version of TWIPS2b (P-/P.?).

varying gain has been applied to the time history data before processing. This

plot displays 100 records captured at 1 second intervals.
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standard sonar with very few false positives resulting; an unsurprising
result given the prominent visibility of the target in Figure 4.29-Figure
4.32. However, the fact that the TWIPS statistic is vertical from 0%
true detection up to ~80% true detection emphasises the following
point: it is possible to operate TWIPS in a variety of conditions with a
high threshold, and obtain ~50% detection without any false positives.
The advantages of such a system will be discussed later in the. The
next set of results presented here was obtained with the target and
bubble cloud in the same location as for the above analysis (that is,
for the data displayed in Figure 4.29-Figure 4.32), but the target
strength was reduced by 5 dB from -10 dB to -15 dB. The two data
sets, that is the TS=-10 dB and TS=-15 dB data, have each been
normalised locally. Therefore, in the data presented within this
chapter, a TWIPS or Standard Sonar output of “1” when TS=-10 dB is
not identical in an absolute sense to the corresponding algorithm

output of “1” when TS=-15 dB.
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Figure 4.35 Median of P. for Figure 4.36-Figure 4.39 (See caption, Figure 4.28).
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Figure 4.36 No target present; bubbles present from 1 ms to 3 ms. Top-
Standard sonar; Bottom- a version of TWIPS2b (P./P.?). Time-varying gain has
been applied to the time history data before processing. This plot displays 200
records captured at 1 second intervals.
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Figure 4.37 Target of TS=-15 dB present between 3 and 4 ms; bubbles present
from 1 ms to 3 ms. Top- Standard sonar; Bottom- a version of TWIPS2b (P./P:2).
Time-varying gain has been applied to the time history data before processing.
Note the significant suppression of bubble scatter between 1 ms and 3 ms in

the TWIPS output. This plot displays 200 records captured at 1 second
intervals.
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caused by bubble interference is the largest source of difficulty for
TWIPS. The simulation shows that a reduction in multiple reflections
(as may be encountered in open-water conditions) will improve the

performance of TWIPS.

4.3 Discussion

In shallow-water surveillance, false alarms can be costly. In that
scenario, an alarm might require the time-consuming deployment and
subsequent retrieval of assets such as divers, dolphins, or
autonomous underwater vehicles (AUVs). For this reason, we seek a
detection system which has the capability of performing at a very low-

false alarm rate.

For the purpose of understanding the detection statistics, consider the
two hypothetical detection systems described by the ROC curves
shown below2®. The overall performance of these two systems, as
measured by the sum total of the area beneath each curve, is nearly
identical. @However, in practice, these systems will behave very
differently. In the low-threshold regime, for a given number of search
“pings”, System A will have a higher probability of returning a true-
positive detection. Nonetheless, in that same threshold regime,

System A will return a significant number of false positives. If the

20 An introduction to ROC curves appears in the appendix.
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threshold is set very high, then System B will return a false positive
very rarely, while System A will be virtually unusable. Therefore,
given a choice between System A and B, the former is preferable the
situation where the result of a false positive is some sort of expensive
process, System B is more well-suited to shallow-water sonar search

operations.
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Figure 4.45 Two example ROC curves

Indeed in reviewing the TWIPS output, it is seen that the system
returns spurious results, but also occasionally returns very high
amplitude pulses. The results of the field studies give insight into the
physical mechanism responsible for this spuriousness, and so a
complete discussion of this topic is reserved for the next chapter. The
result of this spuriousness, however, is that it is possible to operate
TWIPS with very low false alarm rates. In the case of the ROC for the

TS=-10 dB case (Figure 4.34), TWIPS achieved a 95% true-positive
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rate before inaccurately reporting a false positive, while the standard
sonar achieved 85%. In practical terms, the 10% difference may not
indicate that TWIPS gives tremendous advantage; both systems
behave in a relatively similar manner (that is, the ROCs for the two
systems indicate similar trends). The tremendous advantage of TWIPS
in this case is instead visible in the time histories. In that output
(shown two different ways in Figure 4.30 and Figure 4.32), the
amount of bubble-scatter suppression can be seen by comparing
TWIPS with the standard sonar between 1 ms and 3 ms. That region
shows clear scatter suppression by TWIPS, while the standard sonar
shows the undesirable bubble scatter. This can be studied by looking

at the medians for those data sets, as shown in Figure 4.46.
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Figure 4.46 Median of all records for the TS=-10 dB data set. (Top) Standard
sonar (Bottom) TWIPS.

The medians of all the TS=-10 dB data reveal the impressive bubble
scatter suppression exhibited by TWIPS. In Figure 4.46, the bubble
cloud is located between 1 ms and 3 ms, and the target is centred

near 4 ms. By comparing the mean value in the bubbly region to the
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maximum target value for the two systems, the degree to which
bubble scattering has been suppressed can be quantified as shown in

Table 4.1.

Table 4.1 Bubble scatter suppresion statistics based on medians of TS=-10 dB
data {see Figure 4.46)

Maximum value: | Mean value: | Ratio: target to

target bubbly region bubble scatter
Standard 0.19 0.17 1.14
TWIPS 0.18 0.03 6

In Table 4.1, the ratio of the maximum system value at the target
location to the mean value in the bubbly region has been calculated
for TWIPS and for the standard sonar according to the medians of the
TS=-10 dB data. This gives a type of signal-to-noise (SNR) ratio which
can be used to evaluate the effectiveness of the bubble scatter
suppression by either algorithm. In Figure 4.46, it can be seen that
the standard sonar amplitude in the region of the bubble cloud is
nearly the equal to the system output in the target region. This is
reflected by the SNR ratio calculation in Table 4.1, which shows the
target signal to be only about 14% greater than the bubble signal
when the standard sonar is applied. However, TWIPS is much more
effective at suppressing the bubble signal, and so the corresponding
SNR is about 7.8 dB. Since on average the target signal is greater
than the bubble signal for both algorithms in this operating condition,
the resulting ROCs are nearly identical (see Figure 4.34). However, a

closer analysis of the SNR has revealed that the standard sonar

functioned in this case only because the target strength was strong
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enough to allow the target signal to overcome the bubble scatter. In
contrast, TWIPS has suppressed the bubble scatter considerably, and
it is therefore expected that TWIPS would continue to function well in
this condition even if the target strength were to be reduced. The SNR
data suggests that any significant reduction of the target strength in
this condition would cause the standard sonar to fail. This hypothesis
can be checked by reviewing the TS=-15 dB data. In the ROC for the
TS=-15 dB data (Figure 4.41) where the bubble size distribution has
been kept the same as for the TS=10 dB data, it can be seen the 5 dB
reduction in target strength has caused the standard sonar to fall far
below the performance level of TWIPS. It should be noted that the
TWIPS ROC for this case climbs to a 45% true positive detection rate
before any false positives confused the algorithm. This is consistent
with the above-described advantage of a system which can be
operated effectively. It was seen in the TS=-10 dB analysis that TWIPS
is effective at suppressing bubble scatter, making the bubble cloud
almost invisible in the median statistic (Figure 4.46). The same
approach has been applied here to the TS=-15 dB data, and similar

results are obtained.
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Figure 4.47 Median of all records for the TS=-15 dB data set.
sonar (Bottom) TWIPS.

{Top) Standard

Table 4.2 Bubble scatter suppresion statistics based on medians of TS=-15 dB
data (see Figure 4.47)

Maximum value: | Mean value: | Ratio: target to

target bubbly region bubble scatter
Standard 0.32 0.29 1.10
TWIPS 0.37 0.08 4.6

Table 4.2 summarises Figure 4.47, and shows that once again, the
SNR for the standard sonar makes that algorithm only just viable for
this condition (that is it performs better than a 50/50 guess according
to the ROC shown in Figure 4.41). In contrast, TWIPS suppresses the
bubble scatter in an impressive manner, and allows the target to be
clearly visible in Figure 4.47. This experiment has proven that TWIPS
is capable of suppressing bubble scatter. This result will be confirmed
and expanded in the next chapter, when TWIPS is tested during sea

trials at Empress Dock, Southampton and in Southampton Water.

4.4 Conclusions

In this chapter, it has been shown that TWIPS is capable of
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differentiating between bubble scatter and linear scatter. This method
is capable of functioning when the target of interest spatially
independent of the bubble cloud by which it is being obscured. In
clear water, TWIPS performed as well as a simple correlating sonar,
finding the target 100% of the time and returning 0% false positive. In
bubbly water, TWIPS tends to exhibit sporadic detection behaviour.
However, when detections are made, the algorithm returns very high
amplitude signals; as was predicted in the output the computational
model presented in the previous chapter. In water where standard
sonar is not able to perform better than about Q(D1]ni):Q(Do]ni)
100%:50%; these sporadic high amplitude spikes make it possible to
operate TWIPS with no false alarms Q(Di1]|ni):Q(Do|ni) 45%:0%. It
was argued that in an environment where false alarms can be costly
and inconvenient, the prospect of having a detection system with 0%

false alarm rate is very attractive.

The analysis in this chapter did not reveal the source of these
sporadically present, very high amplitude signals. The next chapter
will use the results of a TWIPS sea trial as a platform to offer an

explanation for their origin.
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5 Sea trials

UNITED STATES HAS SECRET SONIC WEAPON - JAZZ
Europe falls captive as crowd riot to hear dixieland

New York Times Headline, 6 November 1956, Felix Belair jr.

5.1 Introduction

The tank tests described in Chapter 3 suggested strongly that the
TWIPS method might improve sonar performance in bubbly water.
However, the limitations of bubble size distribution and tank size limit
the degree to which these conclusions can be extrapolated to real-
world conditions. To eliminate that uncertainty, a series of sea-trials
were conducted to test the effectiveness of TWIPS in real-world
conditions. These trials were conducted in two parts: dockside tests
(26 February 2008), and open-water tests (27 February 2008). This
section will describe the test methodologies, and will establish that the
Twin Pulse methodology can substantially improve sonar performance

in bubbly water.

5.2 Equipment

The same acoustic source/acquisition systems were used for the sea
trials as were used for the tank tests. Shore power was used to drive
the equipment during dock-side tests. During open-water tests, the
output of an on-board inverter was used to drive the systems. Two

mounting assemblies were used during the course of sea-trials. For
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sin(Nw(s/A)sinb,sing,) sin(Nw(s/A)sinb,cosp,)
Nsin((ws/A)sinb,sing,) Nsin((mws/A)sind,cosd,) (5.1)

E(fa, 0a) = Ec(6,)

In the equation above, the horizontal directivity each element is
represented as Ee(6:), s is the element spacing, and A is the
wavelength. The directivity of the individual elements was unknown,
so uniform (monopole) directivity was assumed. Monopole directivity
is a reasonable assumption where the product of the wavenumber and
the primary dimension kL is much less than one [131]. In this case,
however, the primary dimension and operating frequency are
identical, and so kL = 2x. As a result, it can be assumed that the
directivity of the individual array elements is better than was allowed
for in the calculation. This means that the output of equation in (5.1)
which is shown in Figure 5.3 underestimates the overall system

directivity.

180

210\

270

Figure 5.3 One-sided directivity pattern of a 2 x 2 array of monopole-like
pistons having a spacing of 250 mm and an operating wavelength of 250 mm.
In this plot, O deg corresponds to the direction the pistons face. Since the
array is arranged in an NxN pattern, symmetry can be used to argue that
directivity is independent of angular orientation about a vector normal to the
plane defined by the transducer faces.

Since the array is arranged in an N x N pattern, symmetry can be
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occur throughout the acoustic field (such as in the tank experiments),
such a gain is not appropriate. However, in those cases where there
are several meters of water of clear below a near-surface bubble cloud
but above the sea-bottom, some benefit might be realised from the use
of TVG. For the purpose of fairness in comparing the standard sonar
to TWIPS, quadratic TVG has been applied to all time series before

post-processing.

It should be noted that the driving source has 3 lobes: a main lobe,
and two side lobes (see Figure 5.3). The source in these field trials
has been arranged such that it is down-firing. As a result, in the
absence of bubbles, by merit of the fact that the only significant
reflective source in the water is the sea-bottom, most of the sound
emitted by the main lobe which reaches the hydrophone will be sea-
bottom backscatter. Further, sound emitted by the side lobes will
tend to be reflected away from the receiver according to the law of

reflection [11].

5.4 Experimental goals and limitations

From Figure 5.1, it can be seen that the sources were arranged in a
down-firing configuration. This allowed continuous monitoring of the
signal returned from the sea-bed. The goal of both the dock-side and
the open-water trials was to establish whether in fact TWIPS was

capable of identifying the sea-depth when standard correlation and/or
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high-frequency commercial echosounders?! failed as a result of bubble
scattering. During dockside measurements, bubbles were generated
by a rigid-inflatable boat (RIB) which was also tied alongside the dock.
When under way during open water tests, wake bubbles were
generated by three different sources in turn: the research vessel
towing the array and capturing the data, a RIB dispatched locally to

enhance bubble scattering, and ship traffic in Southampton Water.

One clear problem with these tests is the lack of a baseline
measurement. As established in Appendix 1, the development of a
ROC curve depends on the ability to measure the system with and
without the target present. Clearly, it is not possible to remove the
sea-bottom. An alternative to changing the shape of the sea-bottom
might be to conduct the same tests in waters of different depths?22.
However, these tests were trials of opportunity. The staff producing
bubbles during the dockside measurements were not available to
produce bubbles at different parts of the tidal cycle. Logistical
considerations made it impossible to take the research vessel out for

more than one day; and the channel in which open water

21 The echosounder was only in use during open-water trials, as this system was
mounted to the tow-vessel used for those tests.

22 This could be accomplished either by recreating test conditions in different
locations, or by repeating tests in the same location, but at different stages of the

tidal cycle.
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measurements were performed has a generally flat bottom (especially

in the region where large ships were followed).

A second limitation on the tests results from the fact that the bubble-
counting equipment was not available for these measurements. The
inability to capture bubble size-distribution data means that the
information presented in this chapter is certainly incomplete.
However, it can not be logically disputed that, when a vessel is
travelling in the wake of a large ship, and the depth sounder suddenly
ceases to operate, it is likely that large, dense bubble clouds are
located beneath that vessel. The final chapter of this document will
address the need for Dbubble-size distribution data taken

simultaneously with in-situ TWIPS performance measurements.

5.5 Dock-side tests

Before going to the open water, the TWIPS system was assembled at
Empress Dock, National Oceanography Centre, Southampton. After
completing basic diagnostic tests to ensure normal operation of the
sound production and acquisition systems, TWIPS measurements
were made in clear water. Then, the system was exposed to a variety
of different types of bubble clouds, all of which were generated by a
RIB located 7.8 m upstream of the receiver. The acoustic pontoon was
held in place by lines attached to the dock. The configuration for

these tests is shown below in Figure 5.6 and Figure 5.7.
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Observations of raw signal output suggested to the experimenters that
in fact that bottom was essentially invisible when the pontoon was
placed directly in the RIB engine exhaust plume, so efforts were made
to reduce the directness with which the exhaust plume was aimed at
the source/receiver. In fact, a review of the data shows that the cloud
was insufficiently dense to suppress completely the signal from the

sea-bottom in the so-called standard sonar output for more than a few

seconds at a time.

5.5.1 Interpulse delay

During initial tank tests (see Chapter 3), it was noticed that tank
reverberation made it impossible to obtain useful results with
interpulse?? delays less than about 50 ms. In fact, the best results
were obtained using inter-pulse delays of 100 ms, so that delay was
used during most tank tests. In the laboratory, the upper limit of this
delay was dictated by the amount of time it took any bubble to travel
more than about a 0.37 of a wavelength. This quantity was effectively
a function of the rise-rate of the largest bubbles. It can be reasoned
that, as a result of the fact that the bubbles studied in the dockside
measurements were propeller-generated, the median bubble velocity

was considerably higher than in the tank. The fact that the bubbles

23 That is, the delay within any pulse pair between a ping and its phase-reversed
compliment. This is not to be confused with the intra-pulse delay - the time

between any set of pulse pairs.
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are being propelled violently across the water column, rather than
rising naturally under their own buoyancy, reduced the amount of
time that it took any bubble to move more than about 0.37 of a
wavelength. In practice, this means that the best results for the
dockside measurements were made with an interpulse delay of 20 ms

and 50 ms.

5.5.2 Results

The data from this portion of the field measurements was analysed in
a variety of ways. First, the data gathered with no bubbles in the
water is reviewed to determine whether the bottom is visible in output

from both the standard processor and TWIPS.
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Figure 5.8 A sample ping taken dockside. The first large return (around 2 ms)
is most likely a result of the proximity of either the pier structure or the sea-
wall. The second largest return (near 12.5 ms) corresponds to the seabottom.
There are other low amplitude features between 2 and 12.5 ms, all of which
correspond to other static physical features within the acoustic environment
(as is evidenced by the fact that these features appear regularly in each record)

A sample ping is shown above in Figure 5.8. In this figure, returns
corresponding to several static physical features within the acoustic

field are visible. The largest feature is the first reflection, visible near
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2 ms. This reflection is the result of either the pier structure or the
sea, the proximities of which are both visible within Figure 5.6 and
Figure 5.7. While it was possible to alter the temporal structure of
this peak by moving the pontoon, it was not possible to altogether
eliminate its presence. This was nonetheless unimportant, as the
critical feature of interest was the sea-bottom, visible near 12.5 ms.
In the time period between 2.5 ms and 12.5 ms, there are a variety of
small-scale reflections. These reflections were all constant in temporal
location and amplitude throughout the bubble-free study, and so
correspond to stationary physical features located at various places
within the acoustic field. Those peaks located after 12.5 ms

correspond to multipath reflections and distant reflecting objects.

The data captured in the absence of bubbles was processed using the
standard sonar and TWIPS, as shown in Figure 5.9. This set of results
is shown with time as the vertical axis to emphasise the fact that this
data was obtained using a down-looking system. The TWIPS output in
this experiment was calculated using P./P:2 It is advantageous to
square the bottom, as this increased bubble scatter suppression. It
should be noted that in those cases where the bubble cloud and the
target are co-located (see the simulation described in the second
chapter), it is not practical to employ squaring in the denominator, as
even harmonic suppression can then overwhelm information carried

at the fundamental frequency which is in the numerator.
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5.6 Open water tests

On 27 February 2008, the TWIPS technique was tested in
Southampton Water using the R/V Bill Conway to drag the acoustic
source. Southampton Water is a stretch of sea leading from the
Solent to Southampton, and is the route used by all ship-traffic to and
from Southampton. The goal of these tests was to investigate the
effectiveness of TWIPS under various conditions. As stated in the
introduction to this section, two turbulence sources were used to
introduce bubbles into the acoustic field
1) The vessel generated its own bubbles by slowly increasing its
speed and allowing the source to drift in its wake. Tests of
this type were conducted at 2,4, and 6 knots.
2) The research vessel ventured into the wakes of ships travelling
through Southampton Water. The research vessel maintained
a speed of approximately 4 knots whilst in the wake of passing
ships. This made it possible to prolong the amount of time
during which measurements could be made in the wake, but
made it impossible to measure ship-wake scattering in the
absence of self-generated bubbles (e.g. those bubble generated
by the research vessel). Safety concerns made it impossible to
bring the R/V Bill Conway to rest whilst in the wakes of

passing ships.

5.6.1 Results from data acquired wakes

The acoustic platform was dragged in the wake of the R/V Bill
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soft, acoustically penetrable layer of a thickness on the order of 32 cm
(assuming a “slow”?* mixed layer with a sound speed of about 1300
ms). It is interesting to note that TWIPS indicates that the bottom is
about 1 ms further away from the surface than does the standard
sonar. Indeed this is most likely to do with the fact that peak in the
linear reflection is about 1 ms after the beginning of the return from
the bottom. The change in two-way travel time to the bottom contour
correlates well with increases in speed, and so may be the result of
either a slope in the sea bottom, the decreased sound speed with an
increase in void fraction (as a result of a thicker wake), or a

combination of these two factors.

The data acquired whilst travelling at 5 knots (records 250-300 in
Figure 5.16) has been shown in detail in Figure 5.17 below. The
output shows shortcomings in the output of both TWIPS and the
standard sonar. The output of the simple correlation process is noisy,
and the TWIPS output is sporadic and makes it difficult to identify the

bottom.

This data set would seem to be inconclusive. Visually, the bottom
contour is easiest to identify in the standard sonar output. The lack

bright region near the top of the standard sonar output seems to

24 That is, a layer of reduced sound speed compared to the open water just above it.
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Table 5.1 Ship data for B/V Season Trader {Source: Lloyd’s Register)

Flag Philippines

Dry weight 8995 metric tons
Draft 7.865 m

Length 139 m

Beam 20.6m

It was decided to follow this ship, and run the sonar acquisition
system whilst travelling in its wake. As the Bill Conway approached
the centreline of the Season Trader wake, the depth sounder on-board
the research vessel transitioned from showing the true depth (19 m),
to showing “O m”. This type of problem is commonly encountered by
ships travelling within wakes generated by the passage of other ships.
Conventional depth sounders operate via a simple transmit/receive
mechanism. The transmit transducer emits sound ultrasonic pulses
downwards from the bottom of the ship hull at regular intervals.
When one of these acoustic pulses reaches the bottom, a reflection is
returned to the boat, and is recorded by the receive transducer (on
simple echosounding systems, the send/receive operations are
handled by the same transducer). The depth sounding system
assumes a sound speed, and the two-way travel time is thereby
converted to a depth estimate. However, when travelling in the wake
of a large ship, backscattering from the bubbles within the wake can
prevent normal system operation when within a few ship-lengths of
the source ship [84]. This effect will tend to result in the echo-
sounder returning either an error message or an unrealistic depth
(such as 0 m). During this sea trial, when the on-board depth
sounder stopped working, and R/V Bill Conway had been positioned
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nonetheless. The bottom is visible in 4 records (55, 60, 63, and 97)
and the suspended scatterer in record 76 mentioned previously is also

visible here.

5.7 Discussion

In assessing the data presented in the previous section, four chief
aspects of TWIPS will be discussed here; environmental considerations
(which will in fact lead to a discussion on pulse separation time),

variations in processing, and overall system performance.

5.7.1 Environmental considerations: dockside versus open water

The data shown in this chapter was collected with the acoustic
pontoon in two different configurations: restricted statically alongside
a dock, and whilst being towed behind a boat travelling in
Southampton Water, a high-traffic shipping channel. The results
collected in the first configuration certainly appear to be more
favourable for showing TWIPS to be useful. In Figure 5.11, the sea-
bottom is visible consistently in both the output of both TWIPS and
standard sonar, but the bubble cloud is a dominant feature of the
standard output whilst TWIPS obscures the bubble scattering
completely. In principle, it is impressive that TWIPS is capable of
hiding the scatter from a ship while still revealing the location of the
sea bottom. However, the fact is that the bottom is simply not hidden
within the standard output makes it difficult to argue that TWIPS here
offers a technological improvement. To show how TWIPS is in this

case beneficial, the information shown in Figure 5.12 is reviewed.
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Figure 5.21 above lends some insight into how minute the detail of
interest is with respect to the entire time history. In this case, the
time record is about 18 ms long, and the visible portion of feature of
interest is only 2.5 cycles at 6 kHz (0.4 ms). While one might argue
that outgoing signal is 8 cycles at 6 kHz, and so the sought feature
must also be this length. However an acoustic wave which must
travels through a bubbly environment will tend to be attenuated, and
this reduction in level will tend to diminish the amplitude of the
detectable signal. When the maximum amplitude of the diminished
signal is either equal to or less than the mean acoustic level in the
environment being observed, the detectable portion of the wave packet

of interest will effectively be shortened.
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Figure 5.22 Producing the TWIPS output from the data shown in Figure 5.21,
after applying rectification and 0.15 ms averaging. At top is shown the
smoothed version of P.. In the middle, the smoothed verison of P.. At
bottom, is shown the ratio P./P.2, similar to (but less smoothed than) Figure
5.21{c), which has had multi-line averaging applied. The non-
dimensionalisation applied here is based on the maximum of the entire
respective record for each quantity, the whole of which is not shown here.
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In the case of the bubble cloud, studied in Figure 5.21 and Figure
5.22, the beginning and ending portions of the emitted Gaussian
pulse are not visible; the remaining visible portion of the sought pulse
is approximately equal in amplitude to the signal by which it is

surrounded?s.

This argument illustrates the point that the backscattering and
attenuation affect not only affect the outgoing pulse, but also the
return pulse. The laboratory study in the previous chapter was
limited to establishing a TWIPS proof-of-concept. The ROC statistics
are not necessarily those that might be encountered in the field,
because the highly reverberant conditions of the tank altered the
degree to which field conditions could be reproduced. Strong multi-
path reflections in that test environment dictated that even small
changes in target and receiver placement would change the entire

reverberant signature within the tank26. Further, even though the

25 Using the scale shown above, the RMS level for the signal corresponding to the
bottom-reflection is 0.104, while the RMS level for the entire signal for the period
extending from after bubble scattering has ended until the end of the record is
0.107.

26 By moving the receiver by a few centimetres, one could alter the interference
pattern such that reflections which were previously invisible became visible, and
vice-versa. Similarly, by changing the target orientation by only a few degrees side-

to-side or up-down, the target could be made acoustically invisible.
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target was the linear scatterer of interest, some of these multi-path
reflections were temporally coincident with the source-cloud-receiver
travel time. This means that it was never possible in that
environment to measure bubble cloud scattering suppression in the
absence of coincident though undesirable (and misleading) linear

reflections.

However, in the sea trials, large acoustic volumes with a smaller
number of reflection boundaries were ensonified than in the tank
tests. The decrease in reflection surfaces results in a commensurate
reduction in image-sources, which in turn reduces the probability of a
boundary-reflected ray arrival at any given point in time [3].
Especially reduced when going from the tank-tests to the sea-trials
was the presence of boundary reflections arrivals coincident with the
back-scattering from the bubble cloud. As a result, in analysing the
sea-trial data, it is possible to break the problem into the two requisite
scatterer/target parts. In each figure showing the data acquired in
cases where bubbles were present within the water column (Figure
5.11-Figure 5.20) bubble scattering is visible in the standard sonar
output in the upper portion of the water column, and yet is not visible
in the TWIPS output. It seems clear that the theoretical bubble
scattering-abilities of TWIPS are functional in practice. Interestingly,
TWIPS seems capable of functionally diminishing bubble scattering
well regardless of whether an interpulse delay of 20 ms or 50 ms is

used.
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However, it seems that small changes in the bubble cloud change the
target-receiver path length, and thereby interrupt target detection. The
point being made here is that the interference with sonar by bubble
scattering is two fold. The first difficulty presented by the presence of
a bubble cloud is back-scattering. Back-scattering will tend to affect
any sound passing into and/or through a bubble-cloud. It is however
particularly bothersome in monostatic active sonar situations where
bubbles lie between the send/receive transducer and the target of
interest. In that situation, back-scattering not only interferes with the
acoustic path between the source and the target, but also on the
return acoustic path between the target and the source. These

conclusions are summarised in the next section.

5.8 Conclusions

Based on these arguments, one could draw the following conclusions
concerning TWIPS performance:

1) Bubble scatter suppression within large bubble clouds is more
robust to the effects of cloud evolution than is target detection.
Interpulse spacings of as large as several seconds can still give
enough acoustic information to result in effective bubble
scatter suppression.

2) Target scatter detection is highly sensitive to bubble cloud
evolution. Detection ability degraded considerably during sea

trials as the interpulse space was increased from 20 ms to 50
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ms, from 50 ms to 100 ms, and finally from 100 ms to 5 s.
From a detection standpoint, the results obtained with an
interpulse time of 5s were unusable.

3) The variability in the performance of TWIPS is a function of
bubble cloud evolution during the interpulse pause. Small
changes in target-receiver path-length and sound-speed
during the pause can result in the already-diminished (see
Figure 5.21) signal not being properly aligned during signal

summation, thus eliminating the chance of detection.

As described at the beginning of Chapter 4, the acoustic system used
for tests was limited in terms of the number of pulses which could be
loaded on to it. The conclusions drawn above suggest that the target
identification ability of the algorithm could be improved if the inter-
pulse timing could be reduced to below =20 ms. This option would
only be viable if a system were available which allowed very short,
high power bursts, or if a mid-power high-bandwidth system was
available and would allow production of simultaneous, closely
temporally spaced, out of phase sinusoidal frequency sweeps. The
next and final chapter will question the way in which Nature deals

with the problems encountered when using sonar in littoral water.
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6 Cetacean acoustics in bubbly water

Although human subtlety may make various inventions
which, by the help of various machines reaching the
same end, it will never devise an invention more
beautiful, nor more simple, nor more to the purpose
than Nature does; because in her inventions nothing is
lacking, and nothing is superfluous...

-Leonardo da Vinci??

Many types of cetaceans possess extraordinary biosonar abilities [30].
For example, sperm whales are capable of producing transient sounds
as loud as 223 dB (peak-to-peak) re 1 yPa RMS at 1 m [135]; and
bottlenose dolphins are able to distinguish between the content within
various elastic shells using echolocation [136]. As was established at
the beginning of Chapter 2, no commercial device exists which is able
to echolocate successfully in bubbly waters. In contrast to this
human limitation, some dolphins are able to compete successfully in
habitats in which bubbles clouds are regularly present, such as

coastal waters.

27 Notebook XIV, as translated by Jean Paul Richter in 1888
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The focus here is on dolphins which are capable of echolocating in the
littoral zone. Shallow waters typically present two impediments to
acoustic surveying: scattering by sediments, and scattering by
bubbles. This chapter will address the knowledge base concerning
ways in which dolphins deal with the challenges presented by
sediment scattering, and use known data to draw inferences
concerning methodologies dolphins might employ to overcome bubble
scattering. It will be seen that some types of animals which inhabit
near-shore waters echolocate using dual-pulses of the type employed
for TWIPS. Analysis will show however that the amplitudes of the
sounds generated by these animals are too low to facilitate the
employment of TWIPS. Thus, it remains unknown what competitive

advantage is gained by the use of dual pulses by these animals.

It is well-known that the abilities of dolphins to seek, tag, and track
certain types of targets far exceeds the tactile abilities of many
human-designed platforms. As a practical testament to this fact, the
operational Marine Mammal Systems (MMS) arm of the US Navy uses
dolphins to find and mark underwater objects. Moore stated that
MMS are "an unusual, effective, and unique solution to current
problems of mine and obstacle hunting" [137]. Helweg et al. [138],
after the onset of war in Iraq in which MMS were used extensively
[139, 140], stated that "the US Navy's mine-hunting dolphin systems
have proven competence in shallow water and very shallow water

mine countermeasures”. Recent efforts by the Space and Naval
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The motivating question here is as follows: If man-made sonar devices
are not capable of identifying solid objects in bubble clouds, how is it
that some dolphins are capable of competing successfully in
environments where bubbles are regularly present in large numbers?
This section will proceed as follows. First, it will be argued that the
majority of extant scientific knowledge concerning cetacean acoustics
is based on studies of a very limited sample of species; all of which are
known to compete at least partially in deep waters. It will then be
shown that there are relatively under-researched acoustically-active
species of odontocetes which for at least 10 million years have
competed almost exclusively in littoral waters. Rare, hi-fidelity
recordings of these animals will then be analysed to show that
acoustic repertoire of these animals contains sounds which appear to
share many characteristics with the TWIPS-type signals developed in
Chapter 2. These recordings, however, are insufficient to establish
with certainty the nature of the vocalisations emitted by these types of
dolphins when echolocating in littoral waters. Thus, it will be argued,
a that further study of littoral-based acoustically-active odontocetes

may yield enormous benefit for the sonar community.

Data will be presented to show that for many cetaceans, the auditory
range far exceeds the vocal range. This data will be used to bolster
the argument that some cetaceans are dependent enough on

nonlinear propagation and/or scattering to have justified the
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evolutionary development of sensory abilities capable of taking

advantage of these physics.

6.1 Naval exploitation of marine mammal acoustic
abilities
The US Navy uses dolphins to locate, tag, and track underwater
objects and personnel. As illustrated in Figure 6.2, these dolphins are
highly trained, and can be loaded onto dry beds such that they can be
redeployed in any theatre worldwide (provided that the water
conditions are suitable for the dolphins). The Marine Mammal
Systems arm of the US Navy is the most advanced of its type
anywhere in the world. The bottlenose dolphins they use are critically
important for security operations. Furthermore, as a result of the
extensive training undergone by these animals, they are well-suited to
the unique needs of behavioural testing. As such, US Navy dolphins
have been used for a great number of the bioacoustic studies which

have been published in the literature.

It is not surprising that the USN MMS choose to use bottlenose
dolphins for their operations requiring advanced acoustic perception.
Bottlenose dolphins have outstanding acoustic capabilities, are well-
known for being behaviourally robust, and for interacting well with
people. Further, in response to their charismatic personalities, many
people anthropomorphise dolphins, making them desirable working

companions [108]. Bottlenose dolphins are the species of cetacean
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well-understood are amongst those which are most often found in

captivity, as shown in Table 6.1 [144].

Table 6.1 Species of cetaceans which are most commonly kept in captivity,
after Mayer [144]

Common Species Natural Habitat
name

Bottlenose | Tursiops Temperate and tropical waters. Absent only

dolphin truncatus from those waters 45 degrees poleward in
either hemisphere where the water is too cold
to support them. Appear to be two ecotypes: a
coastal forma and an offshore form [146].

Orca Orcinus orca Found in all waters of the world; more
abundant in cooler waters. [146].

Beluga Delphinapterus | Arctic/subarctic waters. Found both close to

leucas shore and in the open sea. [146].

Pacific Lagenorhynchus | Temperate waters of the North Pacific; avoids

white- obliquidens both tropical and Arctic waters [146].

sided

dolphin

Common Delphinus All tropical and warm-temperate waters.

dolphin delphis Long-beaked: more common in coastal water,
short-beaked: more common in offshore
waters [146].

Pilot whale | Globicephala sp | Both northern and southern hemispheres.
Tropical and temperate waters throughout the
world [146].

Hawaiian Stenella Hawaiian islands [146]

spinner longirostris

dolphin

All of the animals listed in the table above occupy mostly open
waters. From an engineering perspective, bioacoustic data gathered
on these species is therefore most likely useful for open water
missions. However, as stated in the opening chapter of this thesis,
modern ocean acoustic research is largely focused on the solution of
sonar problems encountered in the littoral zone. While all of the
species listed in Table 6.1 spend some amount of their time in the
littoral zone, none of them are confined to shallow water. The human

ability to study biocapability in the shallow water habitat has

therefore been hampered as a result of a limited accessibility to those
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cetaceans which specialise in shallow water applications of biosonar.
A logical conclusion might then be that the littoral sonar state-of-art
could stand to improve based on in-depth studies those acoustically-
active cetaceans which compete exclusively or nearly-exclusively in
shallow-water habitats. Interestingly, a review of the literature reveals
that several of the shallow-water based, acoustically-active cetaceans
waters are also associated with the production of pulse sets which at
cursory review seem quite similar to TWIPS-type pulses. The next
section of this chapter will offer a discussion of what little is known

about the effects of bubbles on biosonar.

6.2.1 The effect of bubbles on the echolocation abilities of captive

Beluga whales

A review of the literature reveals only one case where the effect of
microbubbles on the echolocation abilities of dolphins has been
observed in a controlled environment; a 1992 anecdotal publication by
Fasick [147]. Fasick, then an animal trainer at the National Aquarium
in Baltimore, Maryland, reported that a plumbing malfunction caused
large numbers of air bubbles to become entrained in the 1.2 million
gallon tank at their facility for a 14-day period. No void fraction or
bubble size distribution measurements were performed. The paper
does however state that the bubbles were fine enough in size to not
rise out under buoyancy, and sufficient enough in number to cause
the water appear more opaque than usual. Prior to the plumbing

malfunction, Beluga whales captive in the tank regularly performed a
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blindfolded echolocation demonstration for live audiences. The

demonstration is described as follows:

Eyecups are first placed over a whale’s eyes. The whale is then sent
on a retrieval behavior before the first ring is thrown to the left of the
center deck. The whale hears the splash of the ring and gains
directional information of the ring’s proximity in the pool.
Echolocation may then be used to pinpoint the ring’s exact location.
Upon finding the first ring, the whale must then locate the second ring
which is thrown to the right of the center deck, approximately thrity
feet from the first ring. The whale again turns in the direction of the
splash and pinpoints the exact location by echolocation. Performance
criteria for this behavior is that both rings are located and brought
back to the center deck ... All three beluga whales performed this
behavior at criteria level prior to the [bubble] entrapment situation.
However, for eleven days ... coincident with the period when air
bubbles were entrapped in the water, the whale’s echolocation
performance was exceptionally poor. Rings were sometimes located
perfectly, but more often either one or both of the rings were not
located. No similar problems with this behavior have been recorded in
the past and no other behaviors appeared to be affected by the air
entrapment problem ... Upon the realization that the air in the water
may be interfering with the whales’ echolocation capabilities, the
echolocation behavior was omitted from the daily presentations until
the air entrapment was eliminated ... When the echolocation behavior
was tested [following the reduction of air entrapment], the whales

performed it to the previously established criterion level.

This interesting source proves that cetacean echolocation abilities can
be affected negatively by bubbles suspended within the water column.

However, it might be wondered whether the whales in question
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previously had the ability to overcome bubble scattering, and lost that
ability once they became accustomed to bubble-free conditions in
captivity. Such a degradation in behavioural capability is not unheard

of, especially for feeding-related abilities [45].

6.3 Acoustic mammals in littoral waters

The point has already been made in this chapter that most marine
bioacoustic data has been collected from animals which are often
found in open (non-littoral) waters. This section will study what is
known of the vocal repertoire for those acoustically-active mammals

which spend the majority of their lives in littoral waters.

In 2004, Leighton [24] published the hypothesis that twin inverted
pulses might be used to detect solid objects in bubbly water. The
computational study published by Leighton et al. [24] and presented
at the beginning of Chapter 2 followed that approach, and showed the
twin-pulse hypothesis to be a viable solution to the problem of interest
[72]. Subsequent to the 2004 twin-pulse proposal by Leighton, Li et
al. [148], showed that the Yangtze finless porpoise creates pulses of
similar form to those proposed in Leighton et al., as shown below in

Figure 6.3.
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Figure 6.3 (a) A pulse recommended by Leighton et al. [72] for the purpose of
detection of solid objects in bubbly water. (b) A Yangtze finless porpoise
echolocation pulse published by Li et al. {148].

The striking visual similarity between the acoustic pulse designed by
our group (Figure 6.3 (a) ), and the Finless porpoise pulse reported by
Li et al. (Figure 6.3 (b) ) led to the following question: Do some
odontocetes use TWIPS-type pulses to “see” through bubble clouds?
This section will now proceed by reviewing what is known about
various odontocetes and double-pulse vocalisations. It will be seen
that all species which are associated with double- and multiple-
pulses?® (listed in Table 6.2) inhabit littoral waters exclusively or

nearly exclusively.

Further, it will be seen that, while some species of mammal may

produce audio signals which are similar to those shown in Figure 6.3

28 “Dual-pulses” and “multi-pulses” are defined within the body of the text later in
this chapter. “Dual pulses” are those signals where a second, equi-amplitude, phase
reversed, apparent echo follows an initial pulse. “Multi-pulses” are acoustic
structures which are similar in form to dual pulses, but consist of many apparent
echoes.
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(b), the amplitude of these bioacoustic signals is too low to be effective

in generating bubble nonlinearities.

This limit in signal amplitude

means that TWIPS does not appear to be a method in use by the

odontocetes considered here.

Listed below in Table 6.2 are all-known

species which produce signals of the type (or similar to that) which is

shown in Figure 6.3.

Table 6.2 Cetaceans associated with dual- and multi-pulses

Genus Species Primary Habitat
Hector’s dolphin, Coastal New Zealand, Dawson [34]
Cephalorhynchus hectori |often in estuaries
w0
E Commerson’s dolphin, JCoastal East Argentina, [Goodall et al]l
Q Cephalorhynchus South Chile, & Indian [149]; Kamminga}
§ commersonii Ocean & Wiersma [150];
= Evans et al. [151]
Q
i Heaviside dolphin, [West coast of South Watkins et al,
= Cephalorhynchus Africa [152]
o8
8 heavisidii -
Chilean/Black dolphin, [Coastal Chile Watkins et al,
Cephalorhynchus [153, 154], Gotz ef
eutropia al. [155]
Finless Porpoise, Coastal Asia. Li et al. [156]
g Neophocoena phocaena 11
8
8 jDall’s porpoise, Coastal and non-coastal, |[Evans et al [151],
S Phocoena. dalli warm temperate to sub- |Awbrey et al. [157]. v
& arctic waters of the
Northern Pacific Ocean.
Group I Have been recorded (single hydrophone) sustained sets of equal-
amplitude pulses with constant separation times
Group II: Near-shore habitats, but the authors have found no recordings
Group III:  Equal amplitude phase inverted pulses which Li et al. [154] call surface
reflections
Group IV:  Some evidence of multiple pulses but no evidence of equal amplitude

The pulse-production abilities of each of the species mentioned in

Table 6.2 will now be considered in more detail.
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[24]. Those two pulses share many features. Each acoustic signal
appears to be comprised chiefly of two 8-10 cycle tone-bursts, each of
which is within a Gaussian envelope. In both cases, the pulse
emissions are separated by a time period approximately equivalent to
the length of two tone-bursts. In the case of the sound designed for
the computer simulation (Figure 6.3. (a)), there is only silence between
the two pulses. However, in the figure depicting the alleged acoustic
emission of the finless porpoise, there are artefacts which are visually
similar to the two chief pulses, but reduced in amplitude by a factor of

about five.

If the pulse shown in Figure 6.3 (b) consisted of (1) two inverse pulses
and (2) high-amplitude energy, then it is conceivable that the sound
could be used to identify solid objects in bubbly water via a
methodology similar to TWIPS. To address these two queries, each of
the authors listed on the paper in which the pulse was printed were
contacted. During correspondence with one of the authors, Songhai
Li, it was established both that no reference sound had been recorded
(meaning that amplitude information was not available), and that a
digital version of the data was not available for analysis by our group

[173].

In a publication by Li et al. [154] on the structure of pulse trains
produced by finless porpoises, it is pointed out that finless porpoises

often produce sounds containing a so-called double-pulse or multi-
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pulse structure. In these cases, there appears a tone burst of length
Toust followed by a rest and then a second tone burst, usually of a
length which is approximately equal to wu of the first sound. The
onset of these acoustic emissions is separated temporally by a gap
Taelay. The quantity ty is usually somewhere between 1 and 3 times
longer than mus If this pulse pattern appears once (pulse, pause,
pulse), it is termed a “double-pulse” structure. If the pulse pattern
repeats itself many times, it is termed a “multi-pulse” structure.
Examples of these types of sounds are shown in Figure 6.5. The
double- and multi-pulse structures exhibit two features which are of
particular interest from the perspective of this dissertation:

(1) Each successive pulse is opposite in phase to the preceding pulse
within any multi-pulse set.

(2) The individual tone burst components of any given double- and
multi- pulse structure are at least equal in magnitude in both of
the examples given by Li et al. [154], and twenty of the examples
shown by Li et al [156]. In several of the examples, the

magnitude of the second pulse exceeds that of the first.
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distance between the porpoise and the hydrophone using the method
demonstrated with the vocalisations of spinner dolphins (Stenella
longirostris) by Lammers et al. [174] and Aubauer et al. [175]. In the
case of multi-pulse structures where there are three or more distinct
acoustic peaks, the third peak was generally observed to be in phase
with the first peak. Li et al. [154] suggest that these pulses are the

result of bottom-reflections.

It is posited here (following the original position of Kamminga and
Wiersma [150]) that these multiple pulses are not the result of surface
and bottom reflections, but rather are all vocalisations generated
directly by the porpoises in question. This proposition is based on
amplitude considerations, as will now be explained. Feature (2)
highlighted above pertained to the fact that the peak amplitude for
individual pulses within a multi-pulse click may remain equal or may
even increase with time. Such a feature would be highly unlikely were

the multi-pulse structures to be the result of surface reflections.

It was explained in 4.1.3 using data published by Medwin [1] that
reflections of water-borne sounds off the sea-air interface tend to have
an amplitude which is much less than the incident sound. The
calculation used there has been adapted to more closely represent the

situation in question as shown in Figure 6.6.
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Figure 6.6 These curves describe for energy at 115 kHz and at angles of
incidence from 0 °<f,;<89" the wave-height which will give perfect reflections for
no more than than the specified percentage of incident rays (based on
extrapolation from Medwin [1]).

This figure shows how unlikely it is to receive reflection off of a
pressure-release surface of amplitude equal to the input signal. To
understand how to compare the output from this analysis to the
assumptions of Li et al. [154], it is necessary to estimate the angle at
which reflections would have had to occur when vocalisations were
travelling from the porpoises to the receiver. The receiver in that paper
was placed in four different locations, all of which were located beyond
the exterior limit of the porpoise pen. For a porpoise located halfway
down into the water column, the angles of reflection (according to the
approach used for Figure 6.6) would have been between 87 and 89.5
degrees. At that angle of reflection, the probability of a reflection of
amplitude equal to the incoming pulse for an RMS wave height of more
than a centimetre is less than 50%. However, in the 20 pulses shown
in Figure 3 of Li et al. [163], the amplitude of the second pulse is at
least equal to that of the first pulse in 100% of the examples. Even

more unusual is the fact that the amplitude of the second pulse

212



Chapter 6 — Cetacean acoustics in bubbly water

exceeds that of the first in 90% of the examples! The authors
acknowledge this problem, and introduce the negligence of geometric
spreading within their model, saying:
“If we account for the loss of transmission caused by the
spherical or cylindrical spread and absorption of signals
in water, it is difficult to explain the phenomenon of
equal or higher amplitude of the second of third pulse
than of the initial pulse in double- and multi-pulse clicks.
However, considering the transmission beam pattern of
echolocation signals [145], this phenomenon may have
been caused by on-axis reflections and off-axis direct
incidence”
In other words, Li et al. are suggesting that the initial arrival may have
been in a side lobe, while the later arrival (which they suggest to be a

reflection) emanated from the main lobe.

Aubauer et al. [175] pioneered the use of a single hydrophone for the
estimation of source-distance estimates based on the time gap between
an initial arrival and the subsequent arrival of its reflection by the
surface. In that paper, the source-receiver geometry was relatively

similar to that used in Li et al. [154], as per Table 6.3 below.
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Aubauer et al. [175] can be used to inform an analysis of the results of
Li et al. [154] (compare the equi-amplitude apparent echoes in Figure
6.5 with the reduced amplitude true echoes found in Figure 6.7).
Such an analysis suggests that the results of Li et al. are not
conclusive. Indeed Au [145] writes that "it is often difficult to discern
whether multiple pulses are being emitted by the animal or are the
result of surface reflections. The animal-hydrophone geometry must
be known, or several consecutive signals from a moving animal must
be recorded.” The most straightforward way to establish without
uncertainty the source of this phenomenon would be to employ
multiple hydrophones [20, 176-178]. If the animals themselves were
creating these reversed-phase pulse structures, it would be instructive
to consider why these animals had gone to the trouble of developing
the unique ability. It might be posited that the habitat in which the
finless porpoise thrives has motivated the development of some
acoustic solution which calls upon the use of equi-amplitude phase
reversed pulses. A test for this logic would be to consider other
regions in the world containing similar habitats (e.g. shallow, turbid
waters), and to look for other animals which may have evolved similar

abilities [179].

One genus of dolphins which occupy a habitat similar to that
inhabited by the finless porpoise is that of Cephalorhynchus. It will be
seen in the next section that there is reason to believe that these

cetaceans also generate equi-ampltitude phase-reversed pulses.
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6.3.2 Genus Cephalorhynchus

In 1981, Kamminga and Wiersma [150] published a paper analysing
the sounds of the harbour porpoise (Phoceona phocoena), the beluga
whale (Delphinapterus  leucaq), and Commersons  dolphin
(Cephalorhynchus commersonii). It was found that recordings made in
the presence of each of these animals revealed pulse trains where,
upon closer examination, it was seen that each pulse contained one or
more “sub-pulses”. As the 1980’s progressed, the problem of dolphin
by-catch in fishing nets began to receive increased attention from
biologists and acousticians whom sought to reduce the tendency for
dolphins to get caught in fishing nets. Members of the genus
Cephalorhynchus seemed particularly susceptible to gill-nets; a
considerable concern, as at the time Cephalorhynchus was not well-
understood by the scientific community, but assumed to be rare (This
assumption was eventually justified by abundance studies. All four
species of Cephalorhynchus are currently recognised as being
endangered [180]). To this end, a report was issued by the

International Whaling Commission, entitled Biology of the genus

Cephalorhynchus [181]. This report elucidates the sounds made by

most members of this genus, and suggests that Commerson's dolphin
(Cephalorhynchus commersonii), Hector's dolphin (Cephalorhynchus
hectori), and the Chilean dolphin (Cephalorhynchus eutropia), all make
double- and triple-pulses. A study on Heaviside's dolphin
(Cephalorhynchus heavisidi) is included in the IWC report cited above,
but that publication contains no information on the acoustic
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emissions of that species. These double- and triple- pulses were

termed “multiple pulses” by both Dawson [34] and Evans et al. [151].

On that basis, this document now turns to consider multiple pulses
as the dolphins within this genus. Cephalorhynchus is comprised of
four dolphins: Hectors dolphin (Cephalorhynchus  hectori),
Commerson’s dolphin (Cephalorhynchus commersonii), the Chilean (or
Black) dolphin (Cephalorhynchus eutropia), and Heaviside’s dolphin
(Cephalorhynchus heavisidiz)‘ These species inhabit a widespread but
discontinuous distribution of habitats, all which of can be described
as being “similar types of neritic environments, including estuarine
river bars, surf zones, and headlands” [182]. These habitats are
spread around the Southern hemisphere, as shown in Figure 6.8.
Based on evidence gained during a study of mitochondrial DNA,
Pichler et al. [182] have attempted to map the development of the
genus. They hypothesise that Cephalorhynchus developed in West
Africa, and then dispersed eastward towards New Zealand and
continued east to South America. The South American population
moved northwards with the glaciation of Tierra del Fuego, where the
Chilean dolphin and Commerson’s dolphin formed. They also propose
that the population of Commerson’s dolphin which exists in the
Kerguelen Islands and the Cook Strait (within the Southern Ocean
between Africa and Australia) arrived more recently; perhaps even

within the last 10000 years).
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While the vocal repertoire for some dolphins is very well-known, very
little acoustic data has been collected on these dolphins. That
information which has been published suggests strongly that they are

capable of generating equi-amplitude phase-reversed pulses [150].

Figure 6.8 Shown as dark black are regions which are known to be inhabited by
members of the genus Cephalorhynchus as described by Pichler et al. [182].

6.3.2.1 Hector’s dolphin, Cephalorhynchus hectori

Of all the species in this genus, Hector’s dolphin is the most well-
documented acoustically. This endangered species is common to New
Zealand waters, and is fragmented into at least three genetically
distinct subpopulations [183]. Two of the subspecies inhabit the
South Island, while the third inhabits the North Island. This third set
is now recognised as a distinct subspecies, Maui’s dolphin
(Cephalorhynchus hectori maui). Hector’s dolphins have a marked
preference for inshore waters, and are rarely seen more than 4

nautical miles offshore [184]. Oliver noted in 1922 that this species is
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DS 150 Hz - 160 kHz +/- 1 dB) and a Sonatech 8178 hydrophone
(100 Hz - 160 kHz +/- 3 dB). The preamplifier used to record the
hydrophone output was reported by Dr Dawson to have a flat
frequency response over the frequencies contained within the
vocalisations analysed here. The sounds were digitised at an effective

sampling rate of 353 kHz (16 bit).

An initial visual inspection of the Hector’s dolphin data revealed
several possible candidates for inverted pulse pairs. A single example
was chosen randomly for the discussion here.

1

Normalised Amplitude

- . .
02 04 06 08 1
Time (ms)

Figure 6.10 An example of a segment of a recording of vocalisations by
Hector’s dolphin.

The example shown in Figure 6.10 at first glance exhibits some
qualities that one might expect to see in a pulse inverted pair. By
breaking visually the sample into two segments (0-0.6 ms and 0.6-1.2
ms), it appears that the first segment contains a negative asymmetry
with a single strong minimum near 0.35 ms, while the second
segment contains a positive asymmetry with a single strong maximum
just after 0.8 ms. This heuristic analysis suggests that further

investigation for evidence that the second segment is an inverted
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version of the first version is worthwhile.

The auto-correlation for an 10x oversampled version of the signal
shown in Figure 6.10 was analysed, and shows that the second
segment is very nearly the inverse of the second segment (See
Appendix 2 for a definition of the inverse of a signal). A review a single
6-second recordings set by Dawson contained 214 echolocation
pulses, 132 of which were identified as being double pulses. The data
set analysed, though adequate for documenting basic features of
sounds generated by Hector’s dolphin, was not well-suited in its raw
state for phase analysis. Phase-matching requires higher sampling
rates than does more general analysis, because the features of interest
are necessarily small scale with respect to the length of the overall

echolocation waveform.

The available Hector’s dolphin data was sampled at fs = 353 kHz
giving a folding frequency fs/2 = of 176.5 kHz, the folding frequency
being the upper limit for meaningful frequency information for the
ensemble. A power spectral density of the 401-point click recording
shown in Figure 6.10 was made using the Welch method with a 100
point Hamming windows and 50% overlap. Those results are shown

below in Figure 6.11.
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Figure 6.11 Frequency content of click shown in previous slide.

The important point to notice in Figure 6.11 is that the majority of the
click energy is near the folding frequency. The main peak extends
from near 100 kHz to the acquisition limit near 140 kHz. This
indicates that perhaps some information relevant to the click analysed
has been lost as a result of undersampling. Having presented the
relevant data on Hector’s dolphin, the extant data on Hector’s dolphin,
the next section presents the small amount of data on Commerson’s

dolphin which exists.

6.3.2.2 Commerson’s dolphin (Cephalorhynchus commersonii)

Commerson’s dolphin is distributed in two locations: the east coast of
South America, and in the Kerguluelen Islands some 8000 km to the
east of the Argentinean coastline. Although as remarked above
Commerson’s dolphin tends to occupy only near-shore waters, at least
one vagrant dolphin of this species has been observed off the African
continental subshelf some 4000 km from the nearest distribution

limits [186]. Despite the fact that several Commerson’s dolphins exist
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within captivity [187] very little has been published concerning the
acoustic vocalisations of the species. Watkins et al. [152] reported
having made acoustical observations of this species during a cruise on
the R/V Hero in December 1966 using equipment capable of recording
frequencies from 60 — 10000 Hz. In that work, the authors concluded
that this species was only capable of producing low-level sounds.
However, in 1980, Watkins and Schevill re-studied vocalisations of C.
commersonii [153] and recognised that in fact the sounds generated by
this species contain significant energy up to “at least 100 kHz”, in
contrast to the conclusions of their earlier study. Kamminga and
Wiersma in 1980 [150] studied captive samples of Commerson’s
dolphin at the Duisburg Zoo. These dolphins were in the same tanks
as a small pod Belgua whales, but the authors observed that their
recordings "did not appear to be disrupted by the sounds of the
Beluga, because of the abundant sonar production of the
Cephalorhynchus." Interestingly, although Kamminga and Wiersma
went to the trouble of submerging two hydrophones (separated
vertically by 15 cm) they never analysed the synchronicity of the two
signals to establish whether in fact the observed multiple pulses

emanated directly from the animals.

A detail of the individual components within a single pulse train
recorded by Kamminga and Wiersma has been reproduced below in
Figure 6.12. The energy within these signals is centred near 120 kHz,

20 kHz above the upper limit for vocalisations of C. commersonii
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a trained underwater acoustician might suggest that presence of
secondary pulses is indicative of reflection-boundary interactions
within the propagation path. Were this to be the case, then the first
pulse to arrive would be the sound emanated by the porpoise, and the
secondary pulses would be the result of reflections from either the air-
sea interface or sea-bottom. Kamminga and Wiersma state that the
multiple pulse structures they recorded appeared to be temporally
steady for a given animal during a given pulse sequence, meaning that
the inter-pulse rate did not appear to change over multiple pulses.

Based on that data, the authors drew the following conclusion [150] :

There is no doubt, in our opinion, that these reverberations are
characteristic of the sound-producing mechanism and possibly its
propagation path along the dolphin’s head and are therefore inevitably

connected to the emitted sonar pulse.

While this conclusion is indeed consistent with the concept proposed
in this chapter, Kamminga and Wiersma lack evidence for this
statement. If the dolphin/hydrophone geometry was static during the
click-train, then the reverberation structure resulting from multi-
paths exterior to the dolphin’s head would be unchanging. The only
conclusive way to determine the source of these clicks would have
been through the use of multiple receivers — a technique which the
authors did not employ. Nonetheless, it is worth noting that the cited
experts feel strongly that the multiple-pulse structure shown in Figure
6.12 was generated directly by the dolphin under observation. Evans

et al. [151] state that “Commerson’s dolphins also produce double
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pulses”, but did not show any evidence to this effect.

Dziedzic and Bueffrenil [188] produced a publication on the study of
sounds produced by the Commerson’s dolphins of the Kerguelen
Islands. In that study, it was attempted to measure the emissions of
free-ranging dolphins in a fjord, but their vocalisations were masked
by ambient noise. Two animals were then captured and secluded in a
creek within a 6 x 6 x 2.6 m cage built with a 10 cm x 10 cm mesh.
These specimens were kept there for 65 hours, during which time
their acoustic emissions below 130 kHz were monitored continuously.
The sounds reported were “similar to reports for other populations”
[188], though the centre-frequency for tone packets was 116 kHz
whereas Kamminga and Wiersma [150] observed a centre-frequency of
120 kHz in their South American study. Dziedzic and Bueffrenil noted
a reduction in vocal activity with increasing time in activity — a
behaviour the authors identified as a symptom of stress. There was
no report of any production of double pulses by the animals observed

in that study.

6.3.2.3 Heaviside’s dolphin (Cephalorhynchus heavisidii)

Heaviside’s dolphins are found around the tip of South Africa and
along the West coast to Nambia [189]. It is similar in size to the other
members of this genus, and is also generally only seen in coastal
settings. Reeves et al. [190] state that this species generally occurs in

waters less than 100 m deep, but has been seen up to 45 nautical
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miles in water as deep as 180 m. Watkins et al. [152] made the only
known acoustic field observations of this species in the 1970’s, but
the equipment used in those observations was unable to record

signals higher than 10000 Hz.

6.3.2.4 Chilean/Black dolphin (Cephalorhynchus eutropia)

The Chilean dolphin was labelled in 2002 by Folkens et al. [190] as
one of the “most poorly studied cetaceans”. Consistent with this
observation, very few little is known about the vocal repertoire of this
species [191]. This lack of information is presumably a result of the
fact that the Chilean dolphin lives only in waters which are difficult to
access, and so comes into contact with humans only rarely compared
to the other more visible members of the genus. According to Goodall
[149]:

[TJhe Chilean dolphin inhabits two distinct areas: (1} the channels

from Cape Horn to Isla Chiloé and (2} open coasts, bays and river

mouths north of Chiloé, such as waters near Valdivia and

Concepcion. It seems to prefer areas with rapid tidal flow, tide rips,

and shallow waters over banks at the entrance to fjords. The

dolphins readily enter estuaries and rivers.

Watkins et al. [152] attempted in 1977 to record the sounds of C.
eutropia, but heard only very low level sounds described as “a series of
rapid pulses, up to 500 per second, produced in a somewhat
stereotyped sequence. The sound varied in duration from 0.4-2.0
seconds.” The equipment used by Watkins et al. however had an

upper limit near 30 kHz. As Goodall et al. [149] point out, if the
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operating frequency used by C. eutropia is similar to that used by of C.
commersonii and C. hectori (120-150 kHz), it would be unsurprising
that the low frequency recording equipment used by Watkins et al

[152] captured returned only low level signals.

In 2005, Gétz, Antunes, and Heinrich [155] made recordings of free-
ranging Chilean dolphins using a two-element vertical array. In
correspondence, Antunes informed the author that he had identified
“many cases of clicks that could fit in [the] double- [or] multiple-pulse
category”. No data was available for review by the author. As such, it
continues to be unconfirmed that the Chilean dolphin is capable of

generating double- or multiple- pulses

In reviewing the genus Cephalorhynchus, it has been shown that the
available acoustic data either suggests that each species is capable of

producing double pulses, or is too sparse to rule out that possibility.

6.3.3 Dall’s porpoise (Phocoena dalli)

Some evidence exists which suggests that Dall’s porpoise (Phocoena
dalli) is capable of generating double pulses [151]. This habitat of this
mammal is not restricted to the near-shore zone, unlike the other
species which have been mentioned in this chapter so far. It is found
over the continental shelf and in offshore waters from approximately
the US — Mexico border (32 °N) and central Japan (35 °N) north to the

Bering and Okhotsk seas; but not in the shallow north-eastern Bering
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Sea [190]. In oceanic waters, Dall’s porpoise can be found in the
central North Pacific north of 41°N. In general, this animal has a
preference for deep (more than 600 ft/180 m), cool (less than
63°F/17°C) waters. Some Dall’s porpoises shift seasonally from north

and offshore in summer to south and inshore in winter.”[190]

Evan’s et al. [151] describe the double pulses they observed from

Dall’s porpoise as follows:

Each component of a double pulse is only about half as long as a
single pulse and may show considerable amplitude modulation.
The first component shows more spectral broadening above the
dominant frequency of 139 kHz than the second component
because of its more pronounced frequency modulation and

higher harmonics at the beginning”

6.3.4 Summary concerning the production of twin pulses by free-

ranging marine mammals

The major hindrance in determining the mammals discussed do in
fact generate TWIPS-type pulses is the lack of acoustic records which
were taken in a manner specifically designed to determine the relevant
features of the pulses. As stated above, the sampling frequency must
be sufficiently great to allow robust analysis of the phase. Multi-
element acquisition systems should be used to show undoubtedly that
multi-pulses emanate from the species in question, and are not the
result of environmental reflections as some investigators have

proposed [192].
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Sound level information concerning echolocation clicks generated by
the members of Cephalorhynchus is limited, but no sounds louder
than 160 dB have been recorded. This could either indicate that
indeed these dolphins are relatively quiet (as compared for instance to
Bottlenose dolphins Tursiops truncatus which are capable of
generating clicks as loud as 228 dB (peak-to-peak) re 1 uPa RMS, or
that all of the calibrated recordings gathered to date have not been on-
axis observations (a possibility, given the narrow beam-widths which

have been reported in the literature [34, 193]).

As was stated earlier, the purpose of this chapter is not necessarily to propose
that dolphins and porpoises employ TWIPS-type processing. Rather, it is
proposed that some actively-echolocating marine mammals which live almost
exclusively in shallow waters have evolved the unique ability to generate high-
frequency phase-inverted pulse-sets. These sounds happen to be similar to
those sounds used in conjunction with TWIPS, but higher in frequency by more
than an order of magnitude, and lower in level by 50-60 dB [34]. The fact that
no other marine mammals are known to possess this ability suggests that
these sounds somehow facilitate successful echolocation in the littoral
acoustic environment. A computational exercise was carried out to determine
whether it is in fact a plausible proposition that any of the animals which
seem to produce phase-inversed pulse pairs are capalble of employing TWIPS.
This method requires nonlinear responses by a majority of bubbles within the
ensonified cloud. It turns out that this hypothesis can be ruled out simply
through the analysis of an idealised best-case sceneario, where all of the
bubbles within the cloud are coincident with the resonant frequency of the
ensonifying pulse. Hector’s dolphin has been observed creating twin-inverted
echolocation pulses of the type shown in Figure 6.10 with a centre frequency
of around 120 kHz and an amplitude of 160 dB re 1uPa at 1 m. Here, that
signal is idealised as a band-limited twin pulse of the type shown in Figure 6.3
(a), and used to ensonify a single bubble of the size which would be at
resonance at 120 kHz (that is a bubble having an undisturbed radius of aroud
160 microns; see equation (2.2)). The pressure radiated to a distance of 1
meter from this ensonified bubble has been calculated and is shown in

Figure 6.13.
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Figure 6.13 This calculation, an idealised best-case scenario test case, has
been performed to evaluate whether or not any known dolphins might use
TWIPS. The pulse emission by a Hector’s dolphin used in the model (160 dB
reluPa at 1 m) as shown in (a) has been used to excite a resonant bubble which
is a distance of 1 m from the acoustic centre of the mammal. The calculated
pressure reradiation by that bubble to a distance of 1 m has been shown in (b)
The lack of superharmonics in the bubble suggests that it is unlikely that
members of the genus Cephalorhynchus employ TWIPS as a method for
identifying food and assisting navigation. Bubble dynamics calculated using
the Herring-Keller formulation as shown in (2.8) [46] [47].

Figure 6.13 shows that even the bubble most likely to display
nonlinear behaviour, a resonant bubble near the source, has
responded linearly to the input sound. This means that certainly no
other bubbles within the field respond nonlinearly, which suggests
that TWIPS is not being used by any of the dolphins which have been
discussed here. It should be noted that marine mammal observations
tend to be performed in calm conditions, where bubble populations
are minimal. The lack of dense bubble clouds may dictate that these
mammals do not have a need to echolocate at high levels at the time

of observation.

6.4 Conclusions

Here it has been suggested that sonar studies would benefit from an

increase in the number acoustic surveys which are dedicated to the
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study of coastal-based marine mammals. This impetus is coincident
with a parallel effort which is already underway in the conservation
community. As a result of the fact that coastal habitats are often
disturbed by human activities, dolphins and porpoises that thrive in
those settings face serious conservation threats. Some investigators
have already begun to call for an increase in abundance studies of
marine mammals in coastal habitats so that the human impact on
Natural life in these habitats can be understood quantitatively [194].
It would behove the scientific community at large to ensure that the
researchers who are now being funded to perform abundance studies
in coastal and riverine habitats are also in possession of acoustic

data-acquisition equipment.

It was shown to be likely that several types of cetaceans, including the
finless porpoise and all members of the genus Cephalorhynchus,
generate dual- and multiple-pulse signals. These assertations cannot
be confirmed until field-researchers acquire more data on these
species. It was seen that those species that may produce dual- and
multiple- pulses do not seem to generate sounds at levels very much
greater than 160 dB. This information was used to inform the
development of a brief computational study, the results of which led to
the conclusions that those animals which might generate dual- and

multiple-pulses probably do not use TWIPS.
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7 Conclusions

This thesis has documented the development, from theoretical concept
to sea trial, of a technology which has been shown to represent an
advance in the state of the art in littoral sonar. This concluding
chapter will be used to summarise the results, and to offer some

insight into ways in which TWIPS research might proceed.

It was shown in Chapter 1 that conflicts are increasingly taking place
in shallow waters, and that the navies of the world require significant
technological advances if they are to protect successfully the littoral
environment. In Chapter 2, the Twin Inverted Pulse Sonar (TWIPS)
concept was introduced. The principals behind this method were
developed by first reviewing basic bubble dynamics, and then studying
ways in which this theory had been used by other investigators to
increase bubble contrast in ultrasonic biomedical imaging. The Pulse
Inversion (PI) method was modified and adapted according to the
conditions predicted beneath a breaking wave to develop TWIPS. A
computationally-developed TWIPS virtual proof-of-concept was then
presented, and it was shown that this method could successfully
detect the presence of a target TS = -25 dB within an oceanic bubble
cloud containing 35 million bubbles. The results seemed to indicate
that the proposed algorithm is capable of operating with a very low

false-alarm rate. It was also argued in this chapter that the TWIPS
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concept could find application not only in sonar applications, but also
in biomedical ultrasound and technologies which are based on

electromagnetic radiation, such as radar and lidar.

Based on the success of the computational study, it was decided to
develop a laboratory test to evaluate the practicability of TWIPS. The
transferability of these results to the ocean would be completely
dependent on the degree to which the bubble cloud used in the
experiment resembled the types of clouds encountered in the ocean.
As a result, Chapter 3 was dedicated to a review of the literature on
bubble clouds, both naturally-occurring and artificially produced.
That chapter ended with the presentation and evaluation of the
Bubbly Fluid Generator (BFG), a device capable of producing bubble
clouds sufficiently ocean-like to facilitate the sought data

transferability.

The TWIPS hypothesis was then tested on bubble clouds produced in
a controlled environment. During those tests, it was seen that the
target resulted in occasional high-amplitude detection spikes, while
the bubbles almost never resulted in such returns - a result
consistent with the predictions of the computational study. The
usefulness of these results were studied using ROC charts, which
were used to establish that TWIPS is capable of operating as a
conservative detector. For such a system, high values can be achieved
for the ratio of true positive rate to false negative rate (Q(Di|ni):Q
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(Dilng) ). In practical terms, this means that the use of a sufficiently
high threshold gave occasional positive returns, almost all of which
were true positives. As a result, it was predicted that a field-
implementation of TWIPS would almost certainly require high
numbers of acoustic returns (on the order of tens) in order to facilitate

correct decisions.

After the development of a laboratory-based proof-of-concept for
TWIPS, a field trial was developed to test the system in real-world
conditions as described in Chapter 5. The trial was conducted in two
stages: the first stage was conducted with a down-firing static
acoustic source/receiver system mounted alongside a marina dock.
The second stage was conducted with the same acoustic
source/receiver system dragged behind R/V Bill Conway which
navigated through a shipping channel. In the first set of tests,
bubbles were generated using a nearby RIB. In the second set of
experiments, bubbles were generated using either the same RIB, the
R/V Bill Conway, or passing ships. The dockside results showed that
TWIPS enabled the detection of the sea-bottom when that feature was
either not visible or highly obscured within the standard sonar output.
The results of the open-water tests showed a lower percentage of
bottom-detections than did the dock-side results; a result which was
argued to be a function of the long path-length associated with the
deeper water encountered in the shipping channel. In both the

dockside and open-water results, the most striking difference between
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the standard sonar output and that of TWIPS occurred in the top two
meters of the water column. In that region, where the bubbles were
located, back-scattering dominated the standard sonar output, while
the TWIPS algorithm concealed this undesirable feature almost
entirely. Such bubble-scattering suppression is an important and
useful feature of this new technology. As argued in the body of the
text, a useful system for detecting the presence of objects in bubbly

water.

In Chapter 6, it was shown that inverted pulse sets of the type
developed for use with TWIPS have also been detected by biological
researchers during field studies on some types of marine mammals.
Particular attention was paid to the sounds of the finless porpoise,
and all of the members of the genus Cephalorhynchus (including
Hector’s dolphin, Heaviside’s dolphin, the Chilean dolphin, and
Commerson’s dolphin); all of which inhabit littoral waters almost
exclusively. The limited information available on vocalisations of the
members of Cephalorhynchus suggests that these animals may be able
to generate controlled pulse sets wherein each successive pulse is
180° out of phase with the last. Similarly, it was suggested that the
Finless porpoise may have such a capability. It was shown that
surprisingly little acoustic data exists for acoustically-active marine

mammals which inhabit only littoral waters.

Given the current strategic importance of the littoral zone, and the
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deficit in knowledge concerning acoustic know-how in that
environment, it seems prudent for researchers to develop the
knowledge base on acoustically active inhabitants of littoral waters. It
stands to reason that those animals which have competed in that
environment for the last several tens of millions of years may have
evolved acoustic solutions which have so far eluded the sonar

community.
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Appendices

1 Receiver operating characteristic (ROC)

curves

1.1 Overview

Detection algorithms are used in a variety of disciplines: wi-fi
networks, medicine, airport security, sonar/radar, hi-energy physics,
the search for extra-terrestrial life, etc. In each of these applications,
the goal of the detection algorithm is to attempt to determine whether
or not a target is present. In order for ROC analysis to be appropriate,
the detection system must be a discrete classifier; i.e. it can only

return one of two responses: positive or negative. In general, the

decision whether to return a positive or a negative result is based on
the outcome of a comparison between an observed quantity and some
threshold. That is, the data available to the algorithm is searched for
conspicuous factors. If those conspicuous factors are numerous
enough or high enough in amplitude (e.g. they are higher than allowed
for by some threshold), then the system returns a positive result.
Since such systems are not infallible, an observer evaluating the
algorithm output must allow for the following possible outcomes, as

outlined in Table 1.1 below.
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Table 1.1 Rubric of possible outcomes (known as the ‘confusion matrix’) for a
detection system. For the symbolic representations included in this table, Q is
the probability of a given outcome, D is the true decision class (1: target
present, 0: target absent), and n is the hypothesised class (where 1 and O are
as before).

Hypothesised class
Positive Negative
" True False
» S positive positive
3 Q (Din) Q (Doln1)
o
o False True
B 2 negative negative
Q (D1lno) Q (Dolno)

The probability of a true positive is known as the true positive rate
Oi1(v), while the false positive rate is then Qo(v). By plotting the true
positive rate against the false negative rate for a given system under a
particular condition, one can create a receiver operating characteristic
(ROC) curve which can be used to summarise system performance.
The goal of this dissertation is the development of a sonar system
which will advance the start-of-the-art with respect to target detection
in bubbly water. In order to qualify the new technology as a better
performer than the state-of-the-art technology, it is necessary to
quantify the system performance of both systems under the same
conditions, and compare the results. ROC curves are used in
Chapters 4 to facilitate this comparison. Excellent summaries of
concepts related to ROC graphs are given by McDonough and Whalen

[195] and Fawcett [196].

1.1.1 Detection analysis

As stated above, to develop a ROC curve, it is first necessary to
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Table 1.2 Some points of interest in ROC space

Point Explanation

(0,0) A strategy whereby no positive classifications are ever
issued. This classifier will never make a mistake, but will
also never give any positive information.

(1,1) The classifier indiscriminately returns positive decisions,
regardless of the input. This strategy is logically the
opposite of that represented by (0, 0).

(0,1) A perfect classifier. The system is always capable of
telling whether a positive or negative decision is
appropriate.

A system which when classified according to €(Qo(v), Qi(v)) tends
towards the left side of the graph (see Figure 1.2, ‘System A’) may be
thought of as a conservative system [196]. A conservative system is
one where positive classifications are only made with strong evidence
and so give few false positives; but such systems often have low-true
positive rates. This can be compared against systems which tend
towards the upper right-hand side of a ROC graph (see Figure 1.2,
‘System B’). Such classifiers may be termed liberal, in that they will
make positive classifications based on weak evidence. This will result
in the correct classification of nearly all positives, but often at the

expensive of high-false positive rates [196].

The line labelled in Figure 1.2 as the ‘50/50 line’, Q (Di|m) = Q (Dolno) is
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equivalent to a random guess. A random guess can be mapped as
follows: if the output of the system is a positive classification 50% of
the time, then it would be expected that % of all positive inputs and 2
of all negative inputs will have been correctly classified. This would
give the point (0.5, 0.5) in ROC space. If the rate of positive
classification is increased to 95%, then both the true positive and

false positive rates will rise accordingly, giving the point (0.95, 0.95).

0.8 ’
— 06' [
£
o
C 0.4
i ——System A
-~ System B
0.2} !
[ N 50/50 line
0 ' ‘ ‘
0 02 04 06 08 1

Q(Doln1)
Figure 1.2 An example of two ROC curves (identical to Figure 4.45).

Any classifier that results in a ROC curve extending below the 50/50
line performs worse than a random guess; thus this region of the plot
is generally empty. If a system produced, for instance, a point in ROC
space (0.4, 0), then the logical presumption is that decisions
corresponding to that threshold should be reversed, resulting in the
point (0, 0.4). It is therefore reasonable to say that a classifier which
is characterised by a point below the 50/50 diagonal has useful

information — but that information has been applied incorrectly [197].
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The area below a ROC curve is an indicator of the usefulness of the
decision classifier. Since random guesses result in the diagonal line
that goes from (0, 0) to (1, 1) as explained above, it is unrealistic for
any classifier to have an area under the curve (AUC) of less than 0.5.
The upper bound for this quantity is 1. According to Fawcett, [196],
“the AUC of a classifer is equivalent to the probability that the
classifier will rank a randomly chosen positive instance higher than a
randomly chosen negative instance.” The point on the ROC curve
which is furthest from the 50/50 line will correspond to the threshold

which results in the highest ratio of Q:(v)/ Q.(v) for that classifier.
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2 Definition of an inverse signal

The simplest way in which to establish whether one pulse is the
inverse of another is to auto-correlate the signal containing both
pulses and analyse the polarity of the peaks. Consider the simple

click train illustrated graphically in Figure 2.1 (a) and (c).
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Figure 2.1 (a) A simple click train. (b} A simple click train in which the first
segment (before 2000 samples) is the polarity-switched version of the second
segment (after 3000 samples). (c) and (d) represent the auto-correlation

function for figures (a) and (b} respectively.
The fact that the auto-correlation function for the positive-positive
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clicktrain (Figure 2.1 (a) and (c)) contains only positive "sidelobes”,
whereas the positive-negative clicktrain (Figure 2.1 (b) and (d))
contains negative sidelobes is indicative of a feature which can be

exploited to search data sets for inverted pairs.
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