
 

University of Southampton Research Repository 

Copyright © and Moral Rights for this thesis and, where applicable, any accompanying data are 

retained by the author and/or other copyright owners. A copy can be downloaded for personal 

non-commercial research or study, without prior permission or charge. This thesis and the 

accompanying data cannot be reproduced or quoted extensively from without first obtaining 

permission in writing from the copyright holder/s. The content of the thesis and accompanying 

research data (where applicable) must not be changed in any way or sold commercially in any 

format or medium without the formal permission of the copyright holder/s.  

When referring to this thesis and any accompanying data, full bibliographic details must be given, 

e.g.  

Thesis: Author (Year of Submission) "Full thesis title", University of Southampton, name of the 

University Faculty or School or Department, PhD Thesis, pagination.  

Data: Author (Year) Title. URI [dataset] 

 



MASTER COPY 

RANDOM VIBRATION ANALYSIS OF GRAVITY PLATFORMS 

SUBJECTED TO WIND-GENERATED WAVES 

AND EARTHQUAKES 

A thesis submitted for the degree of 

DOCTOR OF PHILOSOPHY 

of the 

UNIVERSITY OF SOUTHAMPTON 

Faculty of Engineering and Applied Science 

by Mario H. Chavez Gonzalez 

September, 1979 



UNIVERSITY OF SOUTHAMPTON 

ABSTRACT 

FACULTY OF ENGINEERING AND APPLIED SCIENCE 

DEPARTMENT OF CIVIL ENGINEERING 

Doctor of Philosophy 

RANDOM VIBRATION ANALYSIS OF GRAVITY PLATFORMS 

SUBJECTED TO WIND GENERATED WAVES AND EARTHQUAKES 

by Mario H. Chavez Gonzalez 

In this work a methodology is proposed to perform the dynamical 

analysis of a concrete gravity platform, e.g.p., subjected to wind 

generated waves and earthquakes. Particular emphasis is put on the 

prediction of the so-called long-term structural responses, i.e. the 

probable responses during and beyond the structure proposed lifetime. 

The uncertainties on the properties of the material of the structure, 

the ones related to the supporting soil, as well as the ones associa-

ted to the mentioned environmental loads, are taken into consideration 

in the proposed methodology. 

An important feature of the methodology is that it allows to carry 

out parametrical studies aiming to determine not only the structural 

responses of interest but also to define in a statistical sense the 

relative influence of each of the parameters in those responses. An 

application of the proposed methodology is presented. 

A parametrical study on the maximum responses of a concrete gravity 

platform located in the North Sea was carried out. The parameters 

included were: Youngs modulus and critical damping of the reinforced 

concrete, soil media idealization and soil shear modulus, wave and 

seismic excitation. A seismic risk analysis for the platform site was 

performed because of the lack of seismic information of the North Sea 

region. The responses considered here were the deck displacement, 

the base shear force and the overturning moment. 

The study showed that the uncertainties about the mentioned 

excitations provide the largest contribution in the dispersion 

values of the responses. The mean values of the long-term responses 

were about 30 % higher than the short-term ones for the considered 

case. This shows tha importance of their computation as an important 

step in the assessment of the dynamical behaviour of this type of 

structures. 
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1. INTRODUCTION 

1.1 The Problem 

The search and exploitation of hydrocarbons in deeper waters, 

as in the North Sea, have brought interest in the analysis and 

design of the so-called gravity platforms. In particular, the 

concrete gravity platforms, e.g.p., which are structures made of 

concrete monoliths supported directly on the sea bed, have attracted 

the attention of a number of researchers. The reason for this is 

the wide range of problems which are required to be solved in order 

to provide with an appropriate design for this kind of structures. 

In comparison with an onshore structure, a e.g.p. is set in 

an environment which, apart from contributing to the loading of the 

former, interacts with the e.g.p. to a high degree. Among other 

types of environmental loads on a e.g.p. the following ones should 

be mentioned: waves, currents, wind, floating ice, temperature 

gradients and earthquakes. Waves, earthquakes and floating ice 

could be considered of primary importance for the design of a 

e.g.p. because the amplitude of the forces associated to them. 

However, the wind and current loading and the loads associated to 

temperature gradients should also be considered in the final 

analysis of a e.g.p.. 

A rigorous structural analysis of a e.g.p. should be formii-

lated as the analysis of a three—dimensional fluid—structure—soil 

system. The analysis of this system could, in principle, be 

performed by using finite element techniques; however, there are 

several aspects . which do not favour this global approach. Among 

them, the following ones may be mentioned: 

1) The different kinds of uncertainties surrounding the 

description of the properties of the components of the system, even 

when they are considered separately. For example, in relation with 

the waves, although there are some theories which propose certain 

mechanisms for the wind-generated waves, it has not been possible 

to confirm them fully as yet. As far as the soil is concerned, there 

is still a bulk of its properties to be better studied and deter-

mined, in particular the ones connected with its dynamic behaviour, 

which are of particular relevance in the dynamic analysis of a 



c,g.p.. As for the structure itself, there is a lack of knowledge 

about the structural properties of the concrete, including the 

dynamic ones and others under the field condition at sea. 

From the above paragraph, it can be concluded that the data 

which could be input to a rather sophisticated finite element code 

under these conditions, will be of poor quality, therefore, the 

results obtained from it will be alike, and would not reflect reality. 

2) Due to the characteristics of each of the components of 

the system to be modelled, i.e. fluid, structure and soil, the 

number of degrees of freedom to be used must be very high. As a 

consequence, this brings increases of computational costs, assuming 

that the computer at hand is provided with the required storage. 

3) From the last incise it follows that parametrical studies 

are ruled out (on economical grounds). 

In this work a general methodology is proposed to perform the 

dynamical analysis of a c.g,p. subjected to wind-generated waves 

and ground motions. The other environmental loads could be treated 

in a similar way. Particular emphasis is put on the prediction of 

the so-called long-term structural responses, i.e. the probable 

responses during and beyond the structure proposed lifetime. The 

uncertainties on the environmental loads, about the properties of 

the material of the structure, as well as those of the supporting 

soil, are taken into consideration in the proposed methodology. 

This work consists of the following chapters: Chapter 2 

treats the idealization of the structure itself by using the 

finite element technique. The effect of shear deformation as 

well as flexural deformation are included in the computation of 

the stiffness of the elements. The main subject of Chapter 3 is 

the modelling of the soil environment. It includes a general 

discussion of the dynamic properties of soils and also of the 

condition of the soils found underlying the North Sea. The 

different kinds of soil-foundation interaction models are discussed. 

Finally one of them is chosen, taking into consideration the 

characteristics of the North Sea soils. 

The determination of the probable seismic activity for a site 

located in the North Sea is performed in Chapter 4 . As this is 

a region of mild to low seismicity, the corresponding information 



is rather scarce, therefore, it was necessary to use a seismic risk 

model to evaluate the probable activity at a chosen site in the 

region. The information from this model was drawn from different 

sources related to the seismic activity in the region of interest 

and other similar regions of the world. 

In Chapter 5 the modelling of the wind-generated waves is 

presented. It is divided in two parts: in the first part, fhe 

characteristics of the waves, including the statistical ones as well 

as its spectral Representation are introduced. In the second part, 

the determination of the wave loading on e.g.p. structures is 

introduced. 

In Chapter 6 the main results of the previous chapters are 

utilized to obtain the expressions to compute the dynamic response 

of a e.g.p. resting on rigid and flexible soils when it is 

subjected to seismic loading and wave loading. The chapter starts 

with the formulation of the governing equation for a linear 

structural system on rigid and on flexible soil under a general 

dynamic load, and the introduction of the current techniques to 

solve that equation. The chapter ends with the application of the 

previous part to the derivation of expressions to compute the 

dynamic response of a e.g.p. under wave loading and seismic 

loading when it rests on rigid soil and flexible soil. 

Chapter 7 deals with the determination of the expression which 

will provide with the long term statistics of the dynamic response 

of the e.g.p. under seismic load and wave load acting separately 

or simultaneously. The case of a single degree of freedom is 

treated first, followed by the multidegree of freedom one. Then 

the application of these results to the case of a e.g.p. under 

the mentioned environmental loads is presented. Finally the effect 

of the uncertainties of the dynamic properties of the e.g.p. as 

veil as the uncertainties on the environmental loads on the long-

term dynamic response are presented here. 

In Chapter 8 as an example of the application of the 

methodology introduced in the previous chapters, a parametrical 

study of the maximum responses of a c,g,p, located in the North 

Sea was carried out. In particular the expected maximum deck 

displacement, base shear force and overturning moment when the 



platform is subjected to seismic and wave loading, acting separately 

or simultaneously, were computed. The influence on these responses 

of the uncertainties about the values of the reinforced concrete 

elasticity modulus and its critical damping were included. The 

influence on the platform dynamic response of the properties of the 

soil media under the platform site was also taken into consideration 

by varying those properties within an appropriate range. Finally 

the uncertainties surrounding the seismic and wave excitation at the 

platform site were also considered. 

In Chapter 9 the conclusions about the study and for the whole 

work are drawn. 

In Chapter 10 a list of references is presented. 



2. STRUCTURAL MODELLING 

2.1 Introduction 

The main feature of a concrete gravity platform, e.g.p. , is 

the ability to keep itself stable by virtue of its own weight without 

making use of special anchoring. A typical e.g.p. can be described 

as a framed superstructure supported by a large caisson whose base 

lies directly on the sea bed, fig 2.1. The caisson is usually made 

of a number of cylindrical cells with a height varying between one 

half&nd one third of the total water depth. The number of towers 

forming the columns of the frame is usually two or four. These 

towers are built as an extension of some of the cells forming the 

caisson. Finally, a deck supported by the towers completes the super-

structure. The caisson and the towers are usually made of concrete, 

whereas the deck is built of steel. 

In order to assess the dynamic behaviour of a e.g.p. subjected 

to wave and earthquake loading, fig. 2.2, it is essential to evaluate the 

dynamic properties of the platform. In general, the structural 

topology of the e.g.p. briefly described above is rather complex. 

Therefore,the structural idealization is a fundamental step towards 

the computation of the dynamic properties of the structure, i.e. its 

mass, stiffness and dissipative characteristics. 

The description of a structural modelling technique and its 

use to idealize a e.g.p. is the main objective of this chapter. 

The topics included are the following ones: in Section 2.2 , the 

governing equations for an elastic body subjected to dynamic loading 

and related matter is presented; Section 2.3 starts with a discussion 

of the displacement based finite element method, f.e.m. , the 

section ends with the application of this method to a beam element 

type of discretization; the chapter ends with the idealization of 

a e.g.p. subjected to a general dynamic load by using the f.e.m. . 

2.2 Governing equations 

The dynamical analysis of any structure requires the computation 

of its inertial, elastic and damping properties [2.l]* These properties 

can be represented as distributed over the spacial domain of definition 

or concentrated at discrete points of this domain. Once one of these 

* A list of references is presented in Chapter 10 



representations is chosen, the external loading is usually defined 

to match with the former. 

The computing facilities available together with the finite 

element techniques such as those described in [2.2,2.3]have favoured 

the discrete modelling of structural properties. These properties 

are usually represented by coefficients arranged in a matricial 

form. Therefore, there will be mass M , stiffness K and 

damping ^ matrices corresponding to the inertial, elastic and 

damping properties of the idealized structure respectively. These 

matrices are associated to vectors made of the discrete points 

(known as nodal points in the finite element method): accelerations 

y , displacements U , and velocities U respectively, through 

the equation of motion of the discretized structure [2.1] i.e.: 

M U + C U + K U = P . . . (2.1) 

where a dot over U means its derivative with respect to time, and 

, jK , jC and P are defined as follows: 

Mass matrix: 

The elements of the mass matrix M are called the mass influence 

coefficients m.. ; they are defined in this case as the inertia 

force at a nodal point i due to a unit acceleration applied at 

nodal point j . 

Stiffness matrix; 

The elements of the stiffness matrix K are called the stiffness 

influence coefficients and defined as the force corresponding 

to nodal point i due to a unit displacement of nodal point j . 

Damping matrix: 

If a viscous damping mechanism is assumed, the elements of the 

damping matrix ^ called the damping influence coefficients c.. 

are defined as the force corresponding to nodal point i due to a 

unit velocity of nodal point j . 

Load vector; 

An element of load vector P is simply defined as the 

external load applied to node i . In general P. will be a 

function of the spatial coordinates and time. 



2.3 The finite element method 

In order to compute the mass, stiffness and damping matrices 

which are required in the equation of motion of the discretized 

structure, equation (2.1), the original structure has to be idealized. 

In the particular case of a concrete gravity platform this can be 

achieved satisfactorily by using the displacement-based finite element 

method (f.e.m.). A brief review of this method as generally applied 

to structural analysis is outlined in this section and its application 

to a e.g.p. is presented in the following one. 

The f.e.m. can be considered as a particular form of the Ritz 

method of analysis, through which a continuum can be discretized in 

such a way that its displacement field can be approximated by a 

finite series of displacement functions. The latter, also known as 

interpolation functions, satisfy the geometric boundary conditions 

of the system. The continuum is divided into a finite number of 

small elements i.e. the so-called finite elements. Neighbouring 

finite elements are linked to each other by nodal points selected 

along the boundary of the elements; the displacements of the nodal 

points are taken as the degrees of freedom of the resulting system 

of finite elements. 

The f.e.m. has the advantage over other methods of analysis 

that continua of complex shapes and with different material properties 

can be approximated as a system of finite elements of simple shapes 

and uniform or simply varying properties. To obtain the convergence 

and bounding of the solutions which are characteristic of a Ritz 

type of analysis, the interpolation functions used in the finite 

elements should include the rigid body displacements and lead to 

uniform strain states. Finally, those functions should maintain 

displacement compatibility along the boundary between elements and 

the external boundary. 

Once the continuum has been divided into a finite set of 

finite elements, the mass, stiffness and damping properties 

of each of them may be computed; their corresponding external loads 

aretransformed to an element load. The contribution of each of 

the elements to the mass, stiffness and damping matrices of the 

whole discretized continuum is achieved by superposing the corre-

sponding properties of the individual elements. This superposition 



is obtained by simply adding the contribution of each of the 

elements coinciding at a nodal point. The vector of nodal loads 

can be calculated by following a similar procedure. 

The mass properties of an element may be computed by evaluating 

the kinetic energy of the element expressed as the integral of th6 

product of the unitary mass of the material and its nodal point 

velocities. This integration is carried out over the domain of 

definition of the displacement function selected. Similarly, the 

stiffness properties of an element may be calculated through the 

evaluation of the strain energy of the element. In this case the 

nodal point displacements are multiplied by the elastic constants 

of the material, and their product is integrated over the domain 

of definition. 

The damping properties of an element could be evaluated 

by techniques similar to the above-mentioned ones for the element 

mass and stiffness, if reliable estimates of the internal damping 

characteristics of the material were available. Unfortunately, 

this is not the case, therefore, the usual practice is to express 

the element damping properties as a function of the element mass, 

the element stiffness, or a linear combination of both element prop-

erties [2.1]. Furthermore, another common practice is to define 

the damping properties as a function of the so-called fraction of 

critical damping (Section 6.7.1) based on tests of typical full-

scale structures. 

From the above discussion, it can be concluded that, from the 

practical point of view, the mass and stiffness matrices can be 

determined with a relatively high level of confidence, but this is 

not true for the damping matrix. 

Concerning the external loads, they can be transformed into 

a load vector by evaluating the virtual work done by the loading 

acting through virtual displacements of the nodal points. In the 

case of distributed loads, the expression for the virtual work has 

to be integrated over the domain of definition. 

The actual application of the f.e.m. for the computation of 

the mass M and K matrices and the nodal load vector g of a 

structure should include the following steps: 

a) Divide the structure into a number of finite elements connected 



by thexr nodal points• It is assuinsd that only beam elements 

B'4] are required to discretize the structure and that the material 

behaves elastically. 

b) Assume an interpolation function which, after some algebra. 

Provides with an expression that links the displacements at any 

point of a typical element N , with its nodal displacements, i.e.: 

u(x,t) = A(x)U^(t) . . . (2.2) 

where u is the displacement seeked, A is a matrix whose elements 

functions of the coordinate x , and is a vector formed 

by the element nodal displacements, being a function of time. 

c) The strain and stress vectors for the element are given by the 

following strain-displacement and strain-stress relations: 

~ . . . (2.3) 

S = D S . . . (2.4) 

where e is the vector of strains, ^ is a matrix which is formed 

by derivatives of A , a is the vector of stresses and D is a 

matrix whose components are the material elastic parameters. 

d) Evaluate the kinetic energy of the element, T , to obtain the 

corresponding mass matrix ^ i.e.: 

T = yJI m u? u dVol . . . (2.5) 
^ Vol 

where m is the mass per unit of volume of the material and u(x,t) 

has been expressed as a vector. Substituting equation (2.2) into 

equation (2.5): 

^ ~ T ~N ~N . . . (2.6) 

where 

^ ~ vil'^ - ^ • • • (2.7) 

e) Compute the strain energy of the element to derivate its 

stiffness matrix ^ i.e.: 
s 

Ug = Y / ^ o dVol . . . (2,8) 
s vol ~ -
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Substituting equations (2.3) and (2.4) into (2.8) gives; 

"s = tBN ^ % • • • (2-9) 

where 

^ b"̂  D B dVol . . . (2.10) 
Vol - - -

f) Compute the mass M and stiffness K matrices for the whole 

discretized structure. The elements of both matrices can be eva-

luated by performing the following operations: 

n 
^ Z (m..) . . . (2.11) 

XJ 2 " 

n 
k.j - Z . . . (2.12) 

where n takes the value of the number of elements connected at a 

node. 

g) Apply the boundary conditions, i.e., impose the restrictions on 

the relevant degrees of freedom, accordingly to the previously-

specified displacement conditions. 

h) Compute the load vector P . This can be achieved by first 

evaluating the element load vectors , and then superposing 

their components in the appropriate nodes. An individual P^ is 

obtained by using the expression for the virtual work VW done 

by the external loads P,(x,t), i.e.: 
d 

VW 
- \ T <Su P^Cx,t) dx . . . (2.13) 

where 5u is the vector of virtual displacements of the element, 

Pj is the distributed load as a function of x and time and Z 

is the length of the element. Substituting equation (2.2) into 

equation (2.13), the following result is obtained: 

VW = uj P„(t) . . . (2.14) 

where 

& T 
Pjj(t)= I A (x) P^(x,t) dx . . . (2.15) 
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2.4 Structural modelling of a concrete gravity platform 

As mentioned in the introduction, a typical concrete gravity 

platform (e.g.p.) is composed of three parts: a cellular caisson 

resting on the sea bed, several towers superposed to the caisson 

and a deck resting on the top of the towers (fig. 2.1). The caisson 

and towers are usually made of concrete whereas the deck is made of 

steel. The dimension and design strength of the caisson are such that 

for analysis purposes it could be considered as a rigid body, mean-

while the towers and deck are usually designed with flexible elements 

as opposed to the stiffness of the caisson. The e.g.p. to be 

studied in this work is the one shown in fig. 2.1. This structure is 

symmetric with respect to. the plants xy and xz; therefore, if the 

dynamic loading acts at one of these planes, it is only necessary to 

analyze its effects on one half of the structure. 

Taking the above paragraphs into consideration and assuming 

(for the sake of simplicity in the analysis) that the motion allowed 

to the structure only occurs in the x - y plane, the structural 

topology of the e.g.p. can be discretized by using beam elements 

for the towers and the deck and a rigid body for the caisson, as 

shown in fig. 2.3. 

Due to the large diameter of the cross-section of the towers, 

apart from the bending stiffness and translational inertia, it is 

necessary to include the shear and rotational effects on the beam 

elements used [2,5] , In [2.4] the stiffness matrix of a prismatic 

beam element which includes the effect of shear deformation was 

presented; this element will be used in this work. In [2.6] the 

mass matrix of the prismatic beam element, which includes the 

translational inertia as well as the rotational one was proposed; 

this mass matrix will be used here. 

In order to use the prismatic beam elements to represent the 

part of the towers whose cross-section changes with height, equi-

valent prismatic elements with . inertia moments resulting from 

averaging the inertia moments of the ends of the real structure have 

to be computed first. An extra simplification of the formulation is 

to use a lumped mass matrix (a diagonal matrix) instead of a. con-

sLatent one [2.4, 2.7] . By doing so, the computational effort 
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is substantially reduced, without losing accuracy in the final 

results obtained in a dynamical analysis [2.4, 2.7] . 

The idealization of the deck by using beam elements is by no 

means the most exhaustive one; however, it is adequate to compute 

the displacement of the deck, whose maximum value is particularly 

relevant when assessing the overall dynamic behaviour of a e.g.p. . 

Once ^ and have been computed, the associated element 

damping matrix can be evaluated by using the Rayleigh damping 

criteria ]l2.l] for example, i.e.; 

where a, and a^ are proportionality factors. In the case of 

Cjj it is also computationally convenient to neglect its off-diagonal 

elements. The results of this practice have proved to be satisfac-

tory, as reported in |̂ 2.8]. 

Once the element matrices ^ , and have been 

computed for all the elements used, the global matrices M , K and 

JC for the whole structure can be evaluated by using equations (2.11) 

and C2.12), for the first two matrices and an equivalent expression 

for the latter. Finally the nodal load vector P for the discretized 

structure can be computed by superposing appropriately, at each node, 

the nodal loads resulting from the application of equation C2.15) for 

the distributed loads to the external loads which are directly applied 

to those nodes. In this work it will be considered that the external 

loads are directly applied to the nodes. 
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3. SOIL MODELLING 

3.1 Introduction 

A common assumption about the dynamical analysis of a structure 

is to consider that its foundation is attached to a bedrock. This 

assumption implies that the base of the structure does not move 

when an external load is applied to the superstructure; or in the 

case of a seismic perturbation, the foundation will experience the 

same displacements as the surrounding soil. In many practical 

situations the above-mentioned assumption is not fulfilled, i.e. 

the soil is not rigid but shows a capability to strain under dynamic 

(or static) loading. As a consequence, the relative displacements 

(translation and rotational) between the foundation and the surroun-

ding soil may occur during the loading process. This means that a 

soil-foundation interaction effect may occur. Due to this 

interaction effect the stiffness and damping characteristics of the 

structure are usually modified. The dynamic properties of the soil 

may also be affected by the presence of the structure. 

From the previous paragraph it can be concluded that the 

influence of the soil on the dynamic analysis of a structure has 

to be taken into consideration when the field conditions require so. 

This can be achieved by including the soil flexibility properties 

in the mathematical model used to idealize tte soil-structure 

system. A possible way of doing so is by splitting the original 

problem into two parts: 

a) the study of the interaction between the soil medium and the 

foundation, 

b) the study of the dynamic response of the soil-structure system. 

This chapter is devoted to the description of part a) of the 

problem whereas part b) will be treated in Chapter 6. As mentioned 

above, the dynamic properties of the soil play an important role 

in the soil-foundation interaction (s.f.i.) effect; therefore, it 

is relevant to discuss those properties separately from the soil-

foundation system. This is briefly presented in Section 3.2.1. 

In Section 3.2.2 the general features of the North Sea soils are 

commented upon, meanwhile in Section 3.2.3 the behaviour observed 
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on those soils when supporting a concrete gravity platform is 

introduced. The actual modelling of the soil-foundation system 

is the subject of Sections3.3.1 and 3.3,2. Finally in Section 

3.3.3 the soil-foundation interaction model for a concrete 

gravity platform located in the North Sea is discussed. 

3,2 Dynamic properties of North Sea soils 

3.2.1 Generalities about the dynamic behaviour of soils 

The soil is a two or three phase material made up of solids, 

water and/or air. The state of stress of a soil can be described 

only if the state of stress of each, of its components is known. 

In practice this is rather difficult to ascertain and instead,a 

description of the behaviour of the whole mixture has been pursued. 

The mechanical behaviour of soils is a function of their 

initial state as described by their void ratio, degree of satura-

tion, and state of stress. Other factors which also have an influ-

ence on the soil behaviour are the stress path, stress rate and 

drainage conditions. However-, experimental evidence has shown that 

a reduced number of parameters may describe the soil behaviour 

satisfactorily, such parameters being the following ones: strain 

rate, stress path, and state of effective stresses [3J.J . 

The soil changes its structure during the process of loading, 

and this effect is particularly noticeable during dynamic loading 

in which its non-linear behaviour is clearly shown. A typical 

stress-strain curve obtained during the cyclic loading of a soil 

sample shows that after a certain number of cycles, an increasingly 

permanent strain appears following each cycle (in fact even after 

a single loading cycle). However, if the amplitude of the dynamic 

load is less than a certain value, after a number of cycles, little 

or no additional permanent strain appears, and instead a hysteresis 

loop is developed. As there are different kinds of soils, to 

assess their dynamic behaviour, laboratory and in situ tests have 

to be carried out for each of them. Most of the experiments on the 

dynamic behaviour of soils have been performed on different types 

of soil samples (sands, clays, silty clays, etc.) under cyclic 

loading, by using simple shear, triaxial,resonant column, and 

torsion devices as shown in [32,33,34] . From such studied it 
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may be concluded [ai] that the following parameters characterize 

the soil behaviour under dynamic loads: a) the shear modulus, G , 

for a small amplitude Cyclic deformation^' h) the stress-strain 

relationship for a large amplitude cyclic deformation; c) the 

strength during cyclic loading; and d) the internal damping of the 

soil. In the following paragraphs each of these parameters will 

be briefly commented upon. 

a) The shear modulus, G , of soils under cyclic loading is 

smaller than the one observed under static loading; this decrease 

is a function of the ratio between the applied cyclic strain and 

the failure strain |^33j. The shear modulus, G , can be obtained 

from the average slope of the stress-strain curve (a hysteresis 

loop) resulting from the small amplitude cyclic deformation test. 

The strain amplitude, initial effective stress, void ratio, and 

shear stress level are the main parameters, affecting the value 

of G for soils, but for cohesive soils additional parameters 

are involved [aij . The value of G for a given soil can be 

evaluated by using the following formulae which were proposed in 

[as,16,3.7] . 

G 
max 

G = . . . (3.1) 

where G is the value of G for strain amplitudes lower than 
1Q3X 

lO"** ; Y is the strain amplitude associated to G and the 

maximum strain amplitude. In equation C3.1) the values of 

and can be computed by the following expressions; 

^max 

Y. 
. . . (3.2) 

where 

1 + K. 
T = {( a' Sin$' + c' Cos*')* 
max 2 V 

1 - K. 1 
- c 2 °'v >> • • • (3*3) 

and K = coefficient of lateral stress at rest; = vertical 
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effective stress and c' , f, ' static strength parameters in terms 

of effective stress. The value of G depends on the kind of . 

soxl under consideration i.e.: 

i) for cohesive soils (clays); 

Gmax " (O(a)k , , , (3 4) 
(1 + e) 

ii) for cohesionless soils with, rounded grains (sands): 

- « 3 0 - f . . . (3.5) 
(1 + e) 

Ce < 0.8) 

iii) for cohesionless soils with angular grains (sands): 

=.ax ' • . . C3.6) 

(e >0.6) 

where e represents the void ratio; is the mean effective 

stress in pounds/square inch; OCR is the consolidation ratio; 

and k is a function of the plasticity index of the particular 

soil. 

The value of G can also be evaluated by using the average curves 

shear modulus -shear strain suggested in . These curves were 

obtained by averaging the available experimental data on G . 

Finally, the value of G may also be determined by first performing 

field experiments leading to the velocity of the shear waves in the 

soil, Vg , and substituting its value in the expression: 

G " PVg . . , C3.7) 

where p is the mass density of the soil. The value of G com-

puted through equation (3.7) corresponds to an amplitude strain 

of less than 10 ** ; therefore, it could be considered as the 

®max ^he soil under study. 

b) Stress-strain relationship for large amplitude cyclic 

deformation. In general the main effect of the large amplitude 

cyclic deformation is a reduction in the shear capacity of soils. 

Stress-strain curves can be obtained by using the Rambert-Osgood 
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model calibrated with the observed experimental behaviour of soils 

under consideration [ll]. 

c) The strength of soils during cyclic loading depends on: 

the stress level, the number of loading cycles and the strain at 

which the soil fails in a conventional undrained test [33] . It 

has also been reported [l3] , that the strength after cyclic 

loading is a function of the peak cyclic strain experienced by the 

soil. In [3-9] it was found that the strength under seismic condi-

tions may be approximated by the normal strength obtained during 

an undrained test. Loose saturated sands and silts are very 

susceptible to sudden loss of their shearing strength when subjected 

to cyclic loading i.e. to experience liquefaction [3.I0] . 

d) The internal damping of soils is produced by the friction 

between the soil grains when the soil is under dynamic loading. 

The amount of internal damping of soils under cyclic loading can 

be measured by the area of the hysteresis loops of the stress-strain 

curves developed during the loading. Among other parameters the 

internal damping of soils depends on: strain amplitude, effective 

stress, void ratio, and in the case of clays in the number of 

applied cycles [ill] . The internal damping increases with strain 

amplitude, and decreases with increasing void ratio and the loga-

rithm of the number of cycles [ill] . The damping ratio (i.e. the 

ratio between the viscous and the critical dampings) is one of 

the parameters commonly used to represent the internal damping of 

soils. It can be computed by the following expression [3L8] : 

, { . ^ . . . y.3) 
1 + Y/Y 

max 

where is the maximum damping ratio corresponding to very 

large strains. The value of varies depending on the soil 

and drainage condition i.e.: 

i) for clean, dry sands: 

^max " percent - 1.5 logj(,N . . . (3.9) 

ii) for clean, saturated sands: 
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m 

^max percent - 1.5 log^^N . , . (3.10) 

iii) for saturated, cohesive soils: 

C = 31 percent - (3 + 0.03f) a + 1.5f̂ °'®̂  
max xn 

- 1.5 log,gN . . . C3.ll) 

where N is the number of cycles; f is the frequency of applied 

cyclic load in cycles per second . The mean effective stress o 

is given in Kg/cm^. From equations (3.9) and (3,10) it can be 

observed that the damping ratio for sands is independent of f 

The damping ratio ^ can also be evaluated by using the average 

curves proposed in [35] . These curves which relate ^ with the 

shear strain amplitude, y , were obtained by averaging available 

experimental data on g (as the ones reported in [3.11,312]) . 

3.2.2 General features of North Sea soils 

The sediments of geotechnical interest underlying the North 

Sea were laid down during the late or post-glacial period [3.13,314, 

3^5]. The North Sea soils consist mainly of alternating layers of 

clay and sand. The latter is the most common material to be found 

in the sea bed, except in sites as the Norwegian Channel where 

d a y is the dominant material to be found; in other areas coarser 

materials are found [ai3]. 

In situ soil samplings have revealed that in many locations 

in the North Sea the layers of both clay and sand (or clayed silts 

and silty clays) are normally consolidated or overconsolidated 

(probably excepting in some cases, where the first layer under 

the mud line is not consolidated). For example, in the location 

of the Ekofisk tank, a uniform superficial layer of sand with a 

depth of about 25 meters produced some resistances varying 

between 70 and 500 Kg/cm^. It has been suggested that the 

relative density of these layers, which in many cases is more than 

100 percent, is due to the effect of passing waves which produce 

pressures on the sea floor [3.13] . The layers of overconsolidated 
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clays for the same Ekofisk site showed undrained strengths of 

about 5Kg/cnf or more [ai3j . Similar findings were reported in 

[3J.5jfor a site in the northern North Sea and in [3,13] for several 

sites. 

In short, it can be said that most of the North Sea sites 

sampled up to now are made of a mantle of soft material, usually 

sand, overlying hard or moderately to heavy, overconsolidated soils, 

on many occasions being clays. Generally the strength of the soil 

layers increases with depth, the exception being some soft layers 

found near the sea bed. 

3.2.3 Dynamic behaviour of North Sea soils supporting a 

concrete gravity platform 

When a structure such as an offshore concrete platform is set 

on the sea bed, the soil underneath is subjected to static and 

cyclic loads. The static loads are associated with the submerged 

weight of the platform, and the cyclic loads with the horizontal 

forces and moments resulting from the wave action on the platform. 

The soil near the platform foundation is under alternate increas-

ing and decreasing pressures generated by the passing waves. An 

increase occurs below the crests of waves and a decrease under 

the troughs. 

The mentioned cyclic loads subject the soil underneath the 

platform foundation to alternating shear stresses of similar 

amplitudes but opposite directions [313] . A similar situation 

could arise if an earthquake occurred in the vicinity of the 

platform site. In this case the seismic waves would generate 

random seismic forces on the platform which in due course would 

produce shear stresses on the soil underneath the structure and 

on the surrounding soil as well. 

Most of the studies on the cyclic behaviour of North Sea 

soils have been carried out on triaxial and/or simple shear 

devices, subjecting the soil samples to cyclic loading [3.13,314]. 

Centrifugal models have also been used [316] to that end. 

The main objective of these tests was to simulate the cyclic 

behaviour of soil samples located at the centre (simple shear) 

and at the edges (triaxial) of the platform foundation [̂ 3̂ ] . 

A fundamental problem of these experiments was the sampling 

techniques which, under the difficult environmental conditions 
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of tlie North Sea made the gathering of representative undisturbed 

samples almost an impossible task [3.17] . Other problems related 

to laboratory tests are: a) the difficulties arising during the 

sample preparation aiming at reproducing the unusual high densities 

of the sands and clays of the North Sea sediments; b) the effect . 

of the boundary conditions resulting from the test devices 

utilized, which may not represent the field conditions [il7,3J8,3.19] . 

Because of the large cross-section of the concrete gravity 

platform foundation in contact with the sea bed, it has been sug-

gested [3.18] that an undrained condition (i.e. a condition in 

which no significant drainage occurs in the soils during the 

loading) is the most likely to occur in the sea during storms or 

earthquake loadings. The main results observed during the cyclic 

loading of North Sea soils and soils of other regions under un-

drained conditions [SA,3.18,329] may be summarized as follows: 

For clays: 

i) The shear modulus and failure shear stress are reduced by cyclic 

loading. 

ii) At the same ratio of imposed cyclic loading, normally consoli-

dated clays are more resistant than overconsolidated ones. 

iii) Below a certain stress level, the behaviour of clays under 

cyclic loading is such that a hysteresis loop is produced. This 

stress level depends on the clay type, the overconsolidation ratio 

and the kind of cyclic loading. 

iv) Sensitive, normally consolidated clay can experience a build up 

of pore pressure and a decrease in the value of the effective stress; 

hence a shear failure occurs. 

For sands: 

Ihe general behaviour of sands under cyclic loading is similar to 

that observed in clays [318] i.e. conclusions i) and iii) of 

clays apply directly to sands, and conclusion iv) corresponds to 

that observed in a loose sand. Another result drawn from those 

tests is that relatively dense sands experience an increase in 

their resistance when subjected to shear reversal, probably due to 

a preshearing effect |J3] . 

However, the results obtained on dense sands (as those found 

in the North Sea sediments) under undrained cyclic loading have 

to be taken with particular caution because only the amplitude 
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of the pore pressure observed at small strains can be relied upon 

[3,18] • This is so because in addition to the relative density of 

sands which have to be reproduced in the laboratory, other para-

meters such as the sand structure and the age of the deposit play 

an important role in considering cyclic behaviour [3.18] . 

3.3 Soil-foundation interaction models 

The soil-foundation interaction (s.f.i,) effect, i.e. the 

generation of relative displacements between a foundation and the 

surrounding soil, may be observed when a dynamic perturbation is 

transmitted to a soil-foundation system a) through a super-

structure and/or b) through the soil media. An example of the 

first case could be the dynamic loads generated by a turbo genera-

tor supported by a framed superstructure and transmitted to the 

foundation; the second case could arise when an earthquake occurs 

and the seismic waves are transmitted through the earth layers 

and reach the site where the structure of interest is located. 

In any of the mentioned cases the soil surrounding the foun-

dation of the structure would behave in a certain fashion depending 

on its dynamic properties (Section 3.2.1). At present, the models 

available to study the soil—foundation effects could be lumped into 

two kinds depending on the form in which the soil media is idealized. 

One is the so-called continuum approach and the other is the finite 

element approach. In the former approach the soil medium is usually 

idealized as a half-space (fig.3.1).With the finite element method 

approach the soil medium is modelled by a finite discrete region 

(fig-3.2). 

-As far as the foundation is concerned, a common assumption is 

to idealize it as a rigid solid; however, this assumption can be 

•relaxed and the flexibility of the foundation can be taken into 

account. The main objective of the continuum and finite element 

method approaches as applied to s.f.i. problems is to model the 

inertia, stiffness and dissipative properties of the soil-foundation 

system, when a harmonic load is acting on the foundation. The main 

features of the continuum approach and the finite element method 

approach are presented in Sections 3*3.1 and 3.3.2 respectively. 
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continuum modelling of a soil-foundation system 

The continuum approach (which can be considered as the classical 

one) models the soil medium as a semi-infinite half-space [3..20] , a 

layer [3.21] or a layered half-space [3.22] . The soil material prop-

erties can be treated as linear elastic [3.2o] , or viscoelastic ones [3.23], 

meanwhile the foundation is idealized as a massless rigid disc (fig.3.1) 

The continuum approach models lead to mixed boundary value problems• 

The kind of elastodynamic problem which results, depends on the 

assumptions made for the boundary conditions existing at the inter-

face made up of the idealized foundation and the free surface of the 

half-space (Fig.3.1) If complete continuity of stresses and dis-

placements is prescribed at the interface, a complete mixed bound-

ary value problem arises [3.20] . When some of these continuity 

conditions (generally stresses) are modified, relaxed mixed bound-

ary value problems appear [3.24] . 

Both complete or relaxed mixed boudary value problems have 

been formulated in such a way that they lead to integral equations 

[1̂ 20,3.24], which have mainly been solved by using numerical tech-

niques. Recently, [3.25] a formulation which uses potential theory 

has extended the capabilities of the continuum approach to include 

three dimensional models. In this formulation the superposition 

principle has been applied to point sources (loads) on the founda-

tion surface. The resulting integral equations were approximated 

by sets of algebraic equations which were solved numerically [3.25] . 

From the models described above, expressions relating the 

stress resultants of the area of contact or the applied harmonic 

external loads to the displacements of the foundations are obtained. 

These expressions are the impedance functions of the problem. 

A number of solutions i.e. impedance functions for different 

types of loading and foundation shapes have been proposed but only 

some of them will be mentioned here. For a rigid circular found-

ation on an elastic half-space [i20,3L24,3L26] ; for a rectangular 

foundation on an elastic half-space [3i27,3.28] ; for a strip footing 

on an elastic half-space [328,329] ; for the effect of layering of 

the soil medium [330,^2] ; for embedded foundations [l30,332] ; 

for three dimensional flat foundations of arbitrary shape [3.25]. 
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The impedance functions are usually expressed as the addition 

of a real component and an imaginary component. Due to this math-

ematical representation, which resembles that obtained for the 

response of a linear spring-dashpot system, these components of 

impedance function have been associated to equivalent springs and 

viscous dampers respectively [3.33] . From the physical point of 

view the spring can be associated to the stiffness properties of 

the soil, and the damper to the energy dissipated by waves propaga-

gating away from the foundation. This is known as the radiation 

damping property of soils. Both springs and dampers are a function 

of the soil medium properties, the geometrical characteristics of 

the foundation, and the frequency of the excitation. 

As it was mentioned in Section 3.2.1, experiments have shown 

[334] that soils also dissipate energy through friction between the 

soil grains i.e. they have a material or internal damping. To 

take this into account for a particular soil foundation system, 

the equivalent damper should be computed as the sum of the contri-

butions of the radiation and material dampings of that soil. Another 

possibility is to consider the material damoine effect explicitely 

into the impedance function derivations [3.35] . 

For a circular disc resting on a half—space the expression for 

the impedance function associated to an external harmonic force, 

Pj » applied in the j direction (fig.3.1)is given by [3.24] ; 

Pj - Kj [k.(a,,v,D) + ik, Cj(a,,\VD)] Uj . . .C3.12) 

where represents the amplitude of the force; K. is the static 

stiffness of the disc xn the j direction; k. and c. are dimen-

sionless real-valued functions depending on the Poisson ratio, V , 

loss ratio D of the half-space material and a dimensionless para-

meter ag. 

The following expressions 

kj " Kj ,v,D)] - . . . C3.13) 

Cj " Kj &o Cj(a, ,V,D)] . . . (3.14) 

represent the springs and viscous-dampers mentioned above,(Fig.3.3). 
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The static* stiffness Kj is a function of the half-space 

material elastic properties and the characteristic dimension of 

the disc,(fig.3,J).For example, the following expression of 

corresponds to the horizontal,x , vertical, y , and rocking, 6 , 

uncoupled displacements of the disc resting on an elastic.half-

space: 

= 8Gr , . . (3.15) 

(2 _ V) 

K 4Gr__ , , , (3,16) 
y (1 - V) 

where G is the shear modulus of the half-space material and r 

is the radius of the disc. 

In equation (3.12) the dimensionless parameter â  is given by: 

wr 
ao = . . . (3.18) 

s 

where w ig the frequency of the applied load and represents 

the velocity of the shear waves for the half-space material (see 

equation (3.7)). 

The loss ratio D represents the internal or material damping 

of the half-space material. It can be assumed to be linearly hys-

teretic in which case it can be defined as J 

1 h 
D = — — . . . (3.19) 

4̂ ^ E 

s 

where represents the energy dissipated per cycle by a soil 

sample under steady-state harmonic loading and E the maximum 

strain energy stored in the soil sample. 

The inertial properties of the soil—foundation system can be 

represented by an equivalent mass (fig 3.3), which is equal to the 

mass of the foundation plus the mass of a certain volume of soil. 

This volume depends mainly on the characteristic dimension of the 

foundation and the direction of the applied loads (fig 3 . 1 ) . The 

actual computation of the equivalent mass will be introduced in 

chapters 6 and 8. 

Once an equivalent mass-spring-damper set has been obtained, a 

soil-foundation system can be treated as an equivalent lumped linear 
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system,, whose analysis is straigthforward, as it will be shown in 

6.2 and 6.3. Frequency-independent impedance functions have been 

proposed to simplify the analysis [3.32,3.36,3.3?] . Satisfactory 

results have been obtained when such functions are used appropriately 

[3.37,3.381 . 

The dynamic loading for the model of the continuum approach 

is usually specified at the free surface level (Fig.3.1).In the 

case of seismic excitation the input of the s.f.i. system is 

the so-called free field motion. However, for deeply embedded 

foundations the seismic excitation at different depths should be 

considered, in order to obtain better results [338] , 

The following advantages and limitations of the continuum 

approach reported in different studies [338,339] will be mentioned: 

The advantages are: 

i) The real problem can be represented by a minimum of the relevant 

parameters of the s.f.i. phenomenon. 

ii) It is fundamentally correct and leads to the recognition of the 

importance level of the s.f.i. effect. 

iii) Three dimensional effects are automatically included in the 

analysis. 

iv) A layered soil medium can be represented by this approach. 

v) Both radiation damping and hysteretic damping of soils can 

be included in the analysis. 

vi) Low computing costs make it suitable for simulation purposes. 

The limitations are: 

i) It is restricted to linear elastic or viscoelastic representa-

tions of the properties of the soil medium. 

ii) It is limited to a number of foundation shapes for which the 

exact or approximated solution of the associated elastodynamic 

problem can be obtained. 

3.3.2 The finite element modelling of a soil-foundation system 

The finite element method (f.e.m.) approach models the soil 

medium as a finite region made up of small elements ( Fig3.2). The 

material and geometrical characteristics of each of the elements 

may differ from the characteristics of the rest of the elements 

forming the soil region. Thus, in principle, the f.e.m. allows 

the modelling of the soil media with material and geometrical 
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nonlxnearities with relative ease. 

As mentioned in Chapter 2, the f.e.m. applies the Ritz method 

to find an approximate solution to a particular set of governing 

equations and boundary conditions, i.e. the f.e.m. reduces the set 

of partial differential equations describing the motion of a conti-

nuum to a coupled set of ordinary time-dependent differential equa-

tions. According to the formulation of the f.e.m. approach util-

ized for the soil-foundation system, the method can be used to gen-

erate impedance functions (as those obtained by the continuum ap-

proach) [3.4, or to compute directly the displacements associated 

to the proposed degrees of freedom [3i41,3.42 J , 

A number of finite element models has been proposed to solve 

s.f.i. problems by using three—dimensional solid elements [3.43 ] , 

two—dimensional plane strain elements [3.4Oj or axisymmetric solid 

elements [^41] . The last two models are the most widely used at 

the present time, due to economical and computer storage limita-

tions [144 ]. 

The main difficulties found in the development of finite 

element models for solving s.f.i. problems arise from: a) the 

introduction of artificial boundaries to produce a finite region 

^^8*3.2),b) the size of the elements used (fig.3.2)jc) the modelling 

of the damping of the system and d) the idealization of the non-

linear behaviour of soils. 

The use of artificial boundaries in the model leads to the 

so-called box effect, i.e. the reflection on the artificial bound-

aries of the waves originated at the foundation which otherwise 

should propagate and dissipate freely in the soil medium. In order 

to eliminate the wave reflection phenomena which introduce artifi-

cial spurious waves in the response of the system, the artificial 

boundaries can be set far away from the foundation; if this is not 

possible (because of storage computer capabilities) it is recommended 

to use quiet [3.45 j or transmitting boundaries [3L46,3ii7,3A8] . 

However, the effectiveness of these kinds of boundaries for s.f.i 

problems has been questioned [3.39] . 

The size of the elements utilized is a function of the frequencies 

of the excitation which should be propagated through the discretized 

media. The value of one-fifth of the shortest excitation wavelength 
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has been suggested as the maximum size of a quadrilateral finite 

element [3A9] . 

The modelling of the soil damping in finite element models is 

a subject of great controversy [350] . The fact that a properly 

performed finite element analysis should automatically include both 

hysteretic and radiation damping is generally accepted [3l5l] , but 

there is disagreement concerning the way in which they should be 

implemented [350,151,3152] . Some authors have introduced the soil 

material damping as a function of the strain that occurs in the 

finite elements [3̂ 42] ; the radiation damping is accounted for 

through the size of the model [3Al] . Other authors have advocated 

the use of quiet boundaries to model the radiation damping and 

recommended the use of an appropriate material damping in the soil 

finite elements so that the hysteretic behaviour of soils can be 

taken info consideration [3A4,350] . Most of the f.e.m. codes 

for s.f.i. purposes provide with a single value of damping for 

all the elements per vibration mode, and a value within the inter-

val limited by the values of the structure foundation damping and 

the damping of the soil media has to be adopted [3.42] . However, 

there are models as the one described in [3.53] which allow the use 

of a variable and different damping value, for each element. 

The idealization of the non-linear strain properties of soils 

is crucial for the analysis of s.f.i. effects when using the 

f.e.m. approach [3;42,33l] . This is so because the stiffness and 

damping characteristics of a soil are strain dependent (Section 

3.2.1). Due to the absence of any established criteria for de-

scribing an appropriate measurement of the strain of soils in two 

and three-dimensional conditions, the extension of a finite equi-

valent linear model [3.54] (originally developed for one-dimensional 

wave propagation applications) has been pursued [335,356] . 

These models assume that the soil behaves as a linear-visco-

elastic material with parameters G and C defined as a function 

of the maximum strain (as those proposed in [3.8] ). Through an 

iterative scheme, the soil strains are computed for a set of shear 

modulus and damping values chosen for each iteration until they 

agree (within a tolerance limit) with the strain level assumed in 

the previous iteration. For one-dimensional problems the level of 
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strain is feaken as a percentage of the computed peak strain (usually 

0.66 of the peak strain), and for the two-dimensional case the level 

of strain has been chosen as a weighted fraction of the maximum 

principal shear strain [356] . 

In s.f.i. systems subjected to seismic waves, two kinds of non-

linearities have been observed [356] : the so-called primary non-lin-

neaiities which occur in the whole of the soil region and are associ-

ated with the seismic motion, and the secondary non-linearities which 

are confined to the soil at the immediate vicinity of the foundation 

and related to the s.f.i. effects. The results obtained by using 

an equivalent linear model have shown that the secondary non-linear-

ities of soils do not significantly affect the structural response 

of s.f.i. systems under seismic disturbances [356] . However, if 

a study of the potential deformation is being pursued, the secondary 

non-linearities should be taken into account [356] . The results of 

these linearization models have been questioned for the latter purpose 

[l56]and also in more general lines in [3/̂ 4] , The criticism in both 

cases is about the validity of the iterative linear approximation to 

a non—linear problem, as well as the reliability of procedures used 

to estimate the parameters used in those models. 

The excitation to the finite element model in a s.f.i. problem 

is generally specified at the base of the foundation or in the case 

of seismic disturbances at the base of the proposed mesh. The latter 

case requires the deconvolution of the surface recorded motion by 

usingthteone-dimensional wave propagation theory [3^9,353,357 ] , This 

theory implies that the surface motions are only produced by verti-

cally propagating shear waves i.e. neglecting the contribution of 

surface waves as well as non-vertically incident body waves. 

As a summary the following comments could be made with respect 

to the advantages and limitations of the f.e.m. approach as 

applied to s.f.i. problems [3.38,3A2] ; 

The advantages are: 

i) The material and geometrical non-linearities (in the dynamical 

analysis) of the problem can be included. 

ii) Complex geometrical shapes can be satisfactorily modelled. 

The limitations are; 

i) Due to computer storage capacity at present available, artificial 

boundaries for a finite soil region must be introduced in the model. 
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ii) There are still difficulties with the stress models used. 

iii) The modelling of the radiation damping still appears to be 

unsatisfactory. 

iv) The two-dimensional representation of a three-dimensional 

Problem yields to an underestimation of structural responses. 

3«3.3 Soil—foundation interaction model for a concrete gravity 

platform 

In principle both procedures i.e. the continuum or the f.e.m-

approaches could be utilized to study the s.f.i. effect on gravity 

platforms subjected to dynamic loads because, as it was shown in [3. 

38] the two methods should lead to similar results if they are used 

correctly to solve the same problem. This means that the selection of 

an approach for a particular application should be made by consid— 

the characteristics of the soil—structure system to be analysed, 

the advantages and limitations of the methods (i.e. the continuum 

and f.e.m.) and the objectives of the study. 

The soil-structure system under consideration consists of a 

massive concrete foundation supporting one or several towers and 

resting on the surface of a horizontally-layered soil medium. The 

system will be subjected to wave and (possibly) earthquake loading, 

and therefore the s.f.i. effects may be of importance on the 

overall dynamical behaviour of the system. As it was mentioned 

in Section 2.4 the foundation of an offshore concrete gravity plat-

form consists of a circular or square caisson made up of a number 

of concrete cells [358] . The caisson is provided with concrete 

and steel skirts which, among other functions, prevent the gener-

ation of high contact pressures on the base of the caisson when 

this is lying on the sea-floor [358] . 

The characteristics of the soil medium to be found in typical 

sites of the North Sea were discussed in Sections 3.2.2 and 3.2.3. 

It was stated there that the general feature of the soil medium in 

the region was that of deep alluvial deposits, consisting of alter-

nating horizontal layers of sand and clay. It was also commented 

about the consolidated or overconsolidated condition of those layers, 

as well as about the increase of the strength of the layers with 

depth. Concerning the values of the dynamical parameters of the 

sands and clays forming the layers, attention was drawn to the 

uncertainties in the values of those parameters, those uncertainties 
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being inherent in current soil sampling techniques and laboratory 

testing capabilities. 

Measurements of the caisson-soil contact pressures developed 

on prototype offshore gravity platforms have shown that all the 

cells forming the caisson made contact with the sea—floor, and that 

the values of the recorded contact pressures were similar but not 

uniform throughout the caisson-soil interface [l58] . It can also 

be concluded from these measurements that the base of the caisson 

has not been deformed. 

Studies (analytical and experimental) of s.f.i. effects 

performed on prototype structures based inland have been reported 

[359,3.60]. In [359] the s.f.i. system was a multistorey concrete 

building resting on a soft-layered soil medium, subjected to forced 

vibration and micro-tremors. Among other conclusions reached in 

that study, it was stated that the total force acting at the 

interface soil—foundation, and the average motion observed were 

practically independent from the flexibility of the foundation 

Cthe analytical study compared the dynamical response of the building 

supported on a rigid and a flexible foundation). Therefore, the 

assumption of a rigid foundation could be used in s.f.i. studies 

aiming at predicting the overall dynamical response of the super-

structure, but the same assumption would not be suitable to compute 

the relative deformation of structural elements near the foundation 

level [339J. In ^60] experiments on a massive shaking table 

subjected to forced vibration and seismic excitations revealed that 

the s.f.i. non-linearities (usually of importance on small footings) 

were not shown in any appreciable degree. 

Taking into account the following items: a) the characteristics 

of the offshore gravity platform -North Sea soil system described 

above, b) the advantages and limitations of the continuum and f.e.m. 

approaches to include s.f.i. effects. Section 3.3.1 and 3.3.2, 

c) the results of the s.f.i. studies on prototypes [358,359,3J6O] 

and d) considering that the objective of this study is to predict 

the overall dynamic behaviour of an offshore gravity platform, it 

seems appropriate to use the continuum approach to compute the 

s.f.i. effects on the dynamical response of the system under 

consideration. 
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The model selected is the one which assumes a rigid circular 

foundation resting on the surface of a layered soil—medium. The 

assumption of a rigid foundation is generally fulfilled when com-

paring the rigidities of a concrete gravity platform and the soil 

in the North Sea bed [159]. Even if it was not the case, the 

results of the study reported in [3.59J support this assumption in 

terms of the aims of the present study expressed in above incise d). 

As far as the assumption of circular shape of the foundation is 

concerned, it agrees with one of the shapes proposed for the 

caisson cross—section, but if the foundation shape was rectangular 

or square, these shapes could be transformed to a circular one by 

using formulae as the ones presented in [3.36] . 

The effect of the layering of the soils under the North Sea 

will be taken into account by using available impedance functions 

which consider this soil condition. Furthermore, because the field 

condition prevailing on North Sea sites is that of deep alluvial 

deposits, which do not have a natural vertical boundary (i.e. a 

bedrock) at reasonable depths for modelling purposes, it may be 

concluded that the use of the continuum model can avoid the un-

wanted effects associated with the artificial boundary of the 

f.e.m. models necessary in cases like this one. 

Another advantage resulting from the use of the continuum model 

for a structure with shallow embedment (as it is the case for an 

offshore gravity platform) is that when considering the seismic 

excitation, the free field motion can be applied at the base of the 

foundation directly, i.e. avoiding the deconvolution and related 

assumptions required when utilizing the f.e.m. approach. 

The uncertainties about the soil dynamic parameters (Section 

3.2.1) can be accounted for in an indirect fashion by varying the 

values of those parameters within a reasonable range. This technique 

should also be applied when using f.e.m. models [36l] . Finally, 

the use of a continuum model allows to perform parametrical studies 

with great economies comparing with the costs involved when using 

a f.e.m. model for that purpose. 

Two types of impedance functions will be utilized, one proposed 

in 1^62] for a rigid foundation on a layered visdoelastic soil medium 

in which the spring and dashpot elements are frequency dependent. The 
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other impedance functions to be used are the ones proposed in[a23] , 

which correspond to a rigid foundation on a viscoelastic half-space 

and are also frequency dependent. The former impedance functions 

will be taken from [3.23, 3.62] and the rest of the parameters 

necessary for the s.f.i. study will be introduced in Chapter 8. 
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4. SEISMIC LOADS 

4.1 Introduction 

Seismic loads are generated by the sudden random movement of 

the ground/surrounding the foundation of a structure. This 

movement is transmitted to the structure as inertial forces acting 

on its elements. The amplitude of these forces mainly depend on 

the dynamical properties of the structure and the intensity of 

the earthquake. 

A well-recognized feature of seismic events is the uncertain-

ties about the sizes, locations and number of future earthquakes. 

Therefore the design of a structure in a region of potential seismic 

activity should incorporate those uncertainties. A rational way 

of doing so is by defining levels of intensity of the expected 

maximum ground motion parameters (such as acceleration, velocity, 

etc.) in a site for different time-spans (including the life-span 

of the structure). This is, to evaluate the seismic risk of the 

site where the structure will be built. 

The seismic risk in a site can be obtained by using the 

so-called seismic risk models. Ideally, these models should 

synthesize all the seismological information available about the 

region in which the site is located as well as the present know-

ledge about the earthquake process itself. The output derived 

from those seismic trisk models is usually presented as granhs or 

tables relating values of the ground motion parameters at the 

site of interest with periods of time, known as "return periods", 

and/or probabilities of exceedance ̂  

Once the seismic risk for the site of interest has been 

obtained, the designer can analyse and assess the performance and 

economic implications of different designs under various levels 

of ground motion intensities. 

In this chapter the following topics will be treated: 

in Section 4.2 a brief summary about the seismic phenom-

enon and its engineering implications is presented; in 

4.3 some of the seismic risk models available are reviewed; in 
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4.4 expressions for a seismic risk model are presented, mean-

while in 4.5 the application of this model to a site located in 

the North Sea is produced and finally, in 4.6 the results of the 

application are discussed in terms of earthquake loads. 

4.2 Generalities about seismic events 

Before starting to deal with the determination of the 

seismic load, a brief summary of concepts and definitions associa-

ted with the earthquake phenomenon will be given in this section. 

4.2.1 Origin of earthquakes 

The earthquakes which are of interest for engineering 

purposes are considered to be of tectonic origin. This kind of 

earthquakes is generated when the crust of the Earth releases 

elastic energy through slips of geological faults. This energy 

is propagated in the form of seismic waves through the crust of 

the Earth which manifest themselves as a chaotic movement of the 

surface of the Earth. It is this random ground motion which 

produces damages to the structures located in the sites reached 

by the earthquakes if the structures have not been designed to 

withstand the former. 

The point below the surface of the Earth where, presumably, 

a geological fault is first ruptured, is known as the focus of 

an earthquake. The depth of the focus below the surface of the 

Earth is called focal depth, and the distance from a site to the 

focus is named focal distance. As for the vertical projection of 

the focus on the surface of the Earth, it is known as the epicenter, 

and the distance from a site to the epicenter is called epicentral 

distance. The longitude of the ruptured fault is named fault 

length. 

4.2.2 Modified Mercalli Intensity and Magnitude of an 

earthquake 

The Modified Mercalli Intensity, I(MM), is a subjective 

descriptive measurement of the level of damage produced on man-

made structures and superficial geologic environment by an 

earthquake in a site or region [4.1 ] . Depending on the level of 

damage caused by an earthquake in a site, a number which ranges 
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from I to XII is assigned to the I(MM) of that earthquake for 

that site. The lines separating regions which have experienced the 

same I(MM) are denominated isoseismal lines of an isoseismal map. 

The Richter magnitude, M , is an objective measure of the 

energy released during an earthquake; it is defined as follows: 

* " . . . (4.1) 

where M is the magnitude of the earthquake, A the maximum 

amplitude recorded by a Wood-Anderson seismograph at a distance of 

100 Km. from the epicenter, and A^ an amplitude of 10~^ milli-

meters j^j . It is a general practice to produce an average 

value of M for an earthquake recorded in different seismological 

stations. 

4-2.3 Seismic Energy, Strain and Moment 

The following expression is widely used to compute the 

seismic energy E released during an earthquake j42j : 

log^^E = 11.8 + 1.5M . . . (4.2) 

the units of E in equation (4.2) are ergs. Another quantity of 

interest during seismic events is the seismic strain which occurs 

during the deformation process in the focal region. The seismic 

strain is related to the seismic energy of an earthquake by the 

expression [43] ; 

S . E? . . . (4.3) 

seismic moment, M^ , is a measure of earthquake size, which 

mainly depends on the physical mechanism of the earthquake, and can 

be computed for large magnitudes with formula [4.4] : 

H o \ = 19-9 + M . . . (4.4) 

4.2.4 Attenuation Law: Magnitude—Modified Mercalli Intensity 

Due to the subjectivity of the Modified Mercalli Intensity 

Scale, the records of I(MM) constitute the only source of seismic 
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information for some sites or regions, especially for historical 

earthquakes occurred before the beginning of the century. While 

records of the magnitude M of earthquakes have been available for 

some regions since the early thirties, semi—empirical expressions 

-the so-called attenuation laws- relating the magnitude M of 

earthquakes with their I(MM) (and some of their geometrical char-

acteristics) have been proposed for different regions in the world 

0^] " Those expressions are particularly useful to generate sets 

of data of M , from I(MM) records or vice-versa when required; 

for example, the following attenuation law: 

M = I I (MM) + 1.4 logjjj h - 1.25 . . . (4.5) 

has been proposed for Northern Europe [4.6J ; in this expression 

h represents the focal depth of the earthquake. 

4.2.5 Accelerograms 

From an engineering point of view the basic information for 

estimating the seismic forces acting on structures is provided by 

the accelerograms, which are the time history of the ground 

acceleration. An accelerogram is composed of a random sequence 

of acceleration pulses and can be obtained by direct recording of 

the ground motion accelerations experienced at a site during an 

earthquake, by using an accelerograph; it can also be simulated by 

using an analog [4.?] or a digital computer . The velocity and 

displacement records of a ground motion can be computed by 

integrating once and twice the associated accelerogram respectively. 

It has been observed that the maximum responses of elastic 

structures subjected to seismic loads are mainly sensitive to the 

intensity and distribution in the frequency domain of the ground 

motions. It has also been concluded that the time distribution of 

the intensity and duration of earthquakes are of importance for 

the values of those maximum responses [4.9] . The intensity of a 

ground motion can be estimated from the values of the maximum 

acceleration (a^^^), maximum velocity (v ) and maximum displace-

ment (d ) of the respective records. These values of a 
max ' 

Vmav ^max provide the so-called ground spectra, when 

plotted on a special log paper. The ground spectra supply a 
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rough estimate of the frequency distribution of the ground motion 

[4.1, 4.2] . 

Only very few regions in the world (for example California,U.S.) 

have enough accelerograms available to produce a satisfactory sample 

of the possible behaviour of structures located in those regions to 

future earthquakes. For regions in which the number of accelerograms 

is small or nonexistent (for example the U.K. where there are no 

accelerograms available) the computation of a , v and d 
max max max 

relies on other estimates of the intensity of earthquakes, namely 

the Modified Mercalli Intensity I(MM) , and the Richter magnitude, 

M , of earthquakes. 

A number of attenuation laws which relate the M (or I(MM)) 

and geometry parameters (usually the epicentral and focal distances) 

of earthquakes with their corresponding a , v and d 
^ max ' max max 

has been suggested [45,4.10 ] . 

Other estimates of ground motion intensity distribution are 

given by the Fourier Spectra, the Power Spectral Density Function 

and the Response Spectra. All of them require the accelerogram 

as a starting point in their computation as it will be made clear. 

4,2.6 Fourier Spectra 

The Fourier Spectra, (f.s.), of an accelerogram is defined as: 

F(w) = / a(t) exp [-iut] dt 

= / a(t) cos(wt) dt - i / a(t) sin(wt) dt 
0 0 

. . . (4.6) 

where a(t) is the ground motion acceleration and t^ its dura-

tion [4.2] . The modulus of the f.s. gives the Fourier amplitude 

spectra, i.e.: 

^ ^1 2 i 
|F(W)| = {[f a(t) cos(wt) dt] + [/ a(t) sin(oat)dt] 

. . . (4.7) 

It has been shown [4l] that when |F(w)| is plotted as a function of 

the natural period or frequency of an undamped single degree of 
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freedom system, the f.s. represents an estimate of the final 

energy put into the system by the ground motion. 

4.2.7 Power Spectral Density Function 

The power spectral density function (p.s.d.f.), G(w), is 

related to the Fourier amplitude spectrum as follows: 

G ( w ) = lim ^ , . . (4.8) 

where the expectation E is taken over a family of accelerograms, 

in which each of them is assumed to be a stationary stochastic 

process [411] . The plot of G(w) as a function of the natural 

frequency w provides an advantageous estimate of the energy 

content in a family of accelerograms. Equation (4.8) provides 

a way to compute the p.s.d.f. of real or simulated accelerograms 

whxch can be used as the seismic input to structural systems. Semi 

empirical expressions of p.s.d.f. resulting from studies on real 

earthquakes have been proposed; a widely used one is the so-called 

Kanai-Tajimi formula [412]: 

2 2 

[i + 4E (to/o! ) ] G 
G(w) = S 8 0 . . (4.9) 

r 2^2 2 2 
[1 - Cw/o) )J + 4E (to/co ) 

O o S 

in which and represent the dominant natural frequency and 

damping of the ground respectively, and is a measure of the 

intensity of the ground motion. Equation (4.9) has been applied to 

a set of accelerograms recorded in the U.S. [413]; the resulting 

G(w) is given by: 2 

0.01238 (1 + ) 

GCw) = J — . . . (4.10) 

CI - + w 
242 147.8 

4.2.8 Response Spectra 

The response spectra (r.s.) are plots of maximum responses of 

single degree of freedom systems (s.d.f.) versus natural period or 

natural frequency [4J,4^- The r.s. represent a measure of the 
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maximum value of the energy put into the s.d.f, system by an 

earthquake. This maximum energy produces maximum responses of the 

system, such as its maximum displacement S^ which can be computed 

by the following expression [^2] : 

' J i f "• ( t - T ) 

. . . (4.11) 

where W and C represent the damped natural frequency and 

percentage of critical damping of the system, a(t) and tj the ground 

acceleration and its duration respectively. S^ is customarily used 

to derivate the maximum pseudo velocity of the system, S , and its 

maximum pseudo acceleration, S^, i.e.: 

Sy . w Sj . . . (4.12) 

Sg = wZ Sj , . , (4,13) 

Sg and are reasonably good estimates of the maximum velocity 

and maximum absolute acceleration of the system [4.2]. The values 

of and , associated with different dampings of the 

s.d.f. systems, are usually plotted in a special logarithmic graph 

[ 4 . 1 , 4 . 2 ] . 

There are several procedures to compute the r.s. depending 

on the information used for that purpose. One direct procedure is 

by computing (equation (4.11)) for a family of s.d.f. systems 

using an accelerogram (real or simulated) as the input. There are 

two indirect techniques to compute the r.s.. One makes use of the 

ground spectra, the other one is based on attenuation laws. 

The ground spectra are of particular relevance to the computa-

tion of the r.s. because they correlate satisfactorily with the 

latter. In particular the a correlates with the maximum 
max 

responses of short natural period systems, meanwhile v and d 
max max 

correlate with intermediate and long natural period ones respectively. 

The ratio of the r.s. ordinate to the corresponding values of the 

ground spectra ordinate is called the spectral amplification factor. 

Based on the existing relationship between the r.s. and the 

ground spectra, different techniques basically recommend to 
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multiply the values of the.ground spectra by spectral amplification 

factors. The latter ones have been obtained by carrying out 

statistical studies on ground and response spectra computed from 

accelerograms recorded in the Californian region (U.S.) and else-

where [4.14,4.15] . 

The other indirect technique to compute the r.s. is based 

on another statistical study performed on ground motions occurred on 

the West coast of the U.S.[4.16j. From this study attenuation laws 

for the (and the ground spectra) were obtained. In fact, the 

study provided the expected value and the coefficient of variation 

of (for different values of the percentage of the critical 

damping and natural period) as a function of the magnitude M and 

hypocentral distance R . 

4.2.9 Relationship between response spectra and power spectral 

density function 

In several studies the relationship existing between the 

response spectra and the power spectral density function has been 

pointed out. Among those studies the following can be mentioned: 

a) In [4.9J it has been suggested (after [Z-J?]) that the undamped 

velocity response spectra represent an upper estimate of the 

Fourier amplitude spectra, and therefore (see Section 4.15) an 

upper estimate of the p.s.d.f.. In this case the expected 

p.s.d.f. can be computed by simply squaring the values of the 

corresponding expected undamped velocity response spectra, i.e.: 

E [GCa))J = {E [S^ (0,w)]}^ — . . . (4.14) 

to 

In equation (4.14) the 0 inside the parenthesis represents the 

percentage of the critical damping of the system, w its natural 

frequency, and tg the duration of the accelerogram. 

b) An expression relating the p.s.d.f., G(w) (expressed by 

equation (4.10))with the average undamped pseudovelocity spectra, 

, obtained from an ensemble of real (U.S.) and simulated 

accelerograms has been proposed in [^3], i.e.: 

0.237 
E [GCW)] = {E [S^ (0,w,ti)]}2 . . . (4.15) 
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in which is the duration of the accelerograms ensemble; the 

0 and the oj inside the parenthesis were defined previously; the 

tj used in that study was 18.6 sec. 

c) In [4.18] a procedure to compute the p.s.d.f. from a r.s. 

has been proposed. This procedure is based on the random vibration 

analysis of ground motions applied to the determination of response 

spectra. After finding an approximate solution to the so-called 

first passage problem, the response spectra value, y , for an 

exceedance probability, p^ and ground motion duration, t^, are 

expressed as the product of the standard deviation of the response 

of the system ay(t ) multiplied by a peak factor, r , i.e.: 
^ t J, p 

ft,.; " . . . C4.16) 

where y can be acceleration, velocity or displacement. The 

values of r for typical accelerograms vary between 1.25 
r 

and 3,5 [4l8j. Gy(t^) is related to the p.s.d.f., G(w), of the 

ground motion by the following expression: 

0y(t ) = [G(w ) w ( — — - 1) + / G(wj dw]^ 
n n 0 

. . . 0L17) 

where o)̂  is the system natural frequency, and represents an 

equivalent damping of the system, which can be obtained by: 

^ , . . C4.18) 
f 1 1 - expC-2 0)̂  t^) 

in which C is the percentage of critical damping of the system. 

Based on those results an estimate of the G(w) can be 

computed from a given pseudovelocity spectrum S ; the steps to be 

followed are [4.18] : 

a) Divide the values by a chosen peak factor r^ ^ at 

selected natural frequencies, ; this leads to the a^y(t^) spec-

trum; b) Use equation (4.17) iteratively to calculate the values 

of G(w) at the proposed values. The procedure is reversible, 
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therefore a spectrum may be obtained from a given G(w). 

4,2.10 Other techniques to obtain accelerograms and response 

spectra 

As in the case of accelerograms availability for a region, there 

are some regions in which the files of I(MM) and/or M are 

incomplete (from a statistical point of view) or totally absent to 

derivate expressions relating them with the ground motion parameters 

^max ' ̂ max ' '̂ max ' such regions or sites the following 

techniques can be followed to produce a seismic input: 

a) A historical set of accelerograms is chosen, and (if possible 

scaled in time and amplitude) it is considered as representative 

of the possible future earthquakes to occur in the site. The 1940 

El Centro earthquake is widely used for this purpose because of 

the high value of the a ^ ^ which was recorded for this event [4.1 ] . 

b) A set of artificial accelerograms which includes different 

kinds of ground motion characteristics is selected and taken as 

a sample of the future earthquakes in the site [48,4.13] 

c) A set of scaled standard or average response spectra is used 

[4J] . These sets of response were obtained by averaging the response 

spectra of a sample of earthquakes which occurred in different 

sites in the U.S. 

4.2.11 Accelerograms and Response Spectra on soft grounds 

The techniques described in the last sections for obtaining the 

response spectra or accelerograms in a site are suitable for sites 

located on firm ground. If this is not so, the local soil should 

be taken into account. The local soil effect of softer soils is 

translated in a filtering of the ground motion, leading to an 

increase (or decrease) of the amplitude of the waves at certain 

frequencies and thus causing a dynamic amplification of the seismic 

waves. 

Local soil effects become particularly relevant when the 

site is on a subsoil which is made of layers of rather different 

characteristics, and the earthquake has a moderate intensity and a 

large epicentral distance [419]. For short epicentral distances 

and stable soil behaviour the local soil effects are overshadowed 
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by the source mechanism of the earthquake [Ajg] . 

The practical outcome of the dynamic amplification of 

soils is that the seismic forces on a structure are larger, and act 

in a wider band of periods than the ones expected on the same 

structure on a firm ground [420] . 

The procedure used for the determination of a response spectrum 

or accelerogram depends on the seismic and geotechnical information 

available for the site on a soft ground. Four main methods can be 

listed as follows: 1) A direct application of historical (or 

simulated) accelerograms, 2) A selection of an average response 

spectra, 3) The use of spectral amplification factors, 4) The 

application of numerical simulation models. 

1) A set of historical or simulated accelerograms (Section 

4. 2.10), or their associated response spectra are chosen. This 

procedure is usually applied when there are no accelerograms for 

the site and the local geology is partially known. 

2) Direct use of average or envelope response spectra 

(Section 4.2.10) obtained from regions with similar geology as 

that of the region in which the site is located. This procedure 

is followed when the regional geology is known. 

3) A set of spectral amplification factors is used in 

combination with values of the maximum acceleration or ground 

spectra for the site. This technique can be applied when a^^^ 

and V or the ground spectra and the surface geology of the 

soil in a site are available. Sets of spectral amplification 

factors have been obtained from statistical studies of events 

occurred on the West coast of the U.S.; and, among other parameters, 

they take the type of soil and a probabilistic percentile level 

into account [421,422] . 

4) The numerical simulation of local soil effects can be 

performed by using finite element [423] or finite-difference 

models [424^ which directly compute the filtering effects of 

the subsoil when subjected to a reference ground motion. This 

technique requires detailed knowledge about the dynamic properties 

and geometry of the subsoil under the site 

The main problem when applying the last technique arises 

from the difficulty of dhoosing the site where the reference ground 

motion should be applied. The uncertainties surrounding the 
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material properties, and mainly the ones attached to the earthquake 

characteristics should also be taken into consideration when 

deciding to use a 2D or 3D model instead of a ID model. This 

is so because the application of the 2D and 3D models may become 

very expensive when performing statistical studies leading to the 

computation of the site accelerogram of response spectra [419]. 

As a general rule, whenever it is possible, a combination of 

techniques 3) and 4) should be used to determine the accelerograms 

or response spectra in a site. 

4.3 Seismic risk models 

In the previous section the current techniques to obtain 

accelerograms, response spectra or power spectral density functions 

were presented. Once obtained, any of them could be used as a 

seismic input to a structure located in a seismic region. Whichever 

representation of the ground motion is chosen, the final objective 

of the exercise is to produce a design seismic input. This input 

should include the possible future different ground motions on a 

site,each one with its own characteristics like frequency, content, 

intensity, duration, etc.. 

An example of a design seismic input could be the Californian 

average response spectra discussed previously (Section 4.2.10). 

Similar average response spectra could be computed and used as 

design spectra for other regions of the world, if a satisfactory 

sample of accelerograms recorded in sites of those regions were 

available. Unfortunately this is not the case for most sites, 

and use has to be made of the so-called seismic risk models. 

The seismic risk models are mathematical models which 

combine the knowledge about the earthquake phenomena with the 

seismic information available for a region; they are used to 

compute the values of the maximum ground motion intensities on a 

site and their corresponding probabilities of exceedance and/or 

associated time spans called return periods. 

4.3.1 Seismic information 

The information available about the seismic activity in a 

region could be classified depending on its nature as geophysical. 
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statistical and miscellaneous. Each of them could be further 

specified as follows; 

- The geophysical information includes: a) the geotectonic 

features of the region, b) the energy stored in the region and 

c) the regional strain. 

" The statistical data can be associated to: a) the magnitude, 

M , of earthquakes occurred in the region, b) the epicentral 

distance and focal depths observed, c) the energy released in the 

region and other regions of the crust of the Earth, d) the recurrence 

of earthquakes in the region, e) the attenuation laws derivated from 

the earthquakes observed in the region and f) the record of ground 

motion intensities in the region such as I(m) , a , etc.. 
max 

Finally the miscellaneous information includes: a) the qualita-

tive description of the earthquake history of the region, such as 

Isoseismal Maps, and b) similarities of earthquakes with related 

phenomena. 

4.3.2 Size, number and location of seismic events 

The whole of the seismic information should ideally be included 

in the seismic risk model in order to consider the uncertainty about 

the size , number and location of future earthquakes which may occur 

in the vicinity of a site. 

The size of an earthquake can be associated to its magnitude, 

M . The probability distribution of the magnitude for a region 

can be calculated by using magnitude-frequency laws, such as the 

Richter law: 

N = a - bm . . . C4.19) 

where N is the number of earthquakes per year in excess of 

magnitude m occurred in a region, and a and b are regional 

constants. The upper limit to the magnitudesin a region, m , can 

be obtained by applying the analysis of extreme-value techniques 

to the record of magnitudes in. thâ t region [^410,42^; the lower limit 

in a region m^ is usually chosen from engineering considerations. 

The number of earthquakes in a region can be computed by using 

stochastic models of earthquake occurrence. In [4.10] a comprehensive 
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discussion of the earthquake occurrence models currently available 

is presented. One of the models acceptable for engineering purposes 

is the Poisson process; this implies that the probability of the 

waiting times between events is independent of the time passed since 

the last event. The probability that N earthquakes with a 

magnitude m>M will occur in a time interval CO,t) is given by: 

N! 

where is the mean rate of exceedance of earthquakes with 

magnitude M for a given volume of earth crust. 

location of an earthquake in a region can be taken into 

account by considering that a region can be divided into several 

seismic sources, and that their contribution to the intensities in 

the site are functions of the distance from the site to the source. 

The random characteristics of this distance can be represented by 

a probability distribution [426] . 

4.3.3 Seismic risk models available 

Several seismic risk models have been proposed [426,427,428,4. 

29], all of them share the basic assumptions that the ground 

motion intensities, I , in a site are the result of the contribu-

tions of the seismic activity of a number of sources, into which 

a region has been divided i.e. a superposition principle is 

implicitely accepted in all the models. However these models differ 

in the way they handle the uncertainties attached to the geophysical, 

statistical and miscellaneous information available, as well as to 

the uncertainties related to the conceptual models of the earthquake 

process. In [427,429j the explicit handling of the mentioned uncer-

tainties by using Bayesian statistics has been advocated. This 

technique consists in using statistical information to judge the 

likelihood of each of the assumptions made, and a posterior 

probability function is obtained. The generality of the Bayesian 

approach makes its application highly desirable whenever it is 

possible; this is fully discussed in , A non—Bayesian 

approach is proposed in [426j and [428J in which the uncertainties 

connected to the assumptions made are dealt with directly i.e. any 

assumption can be changed if the data or the judgement of the 
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specialist (say a geologist) rule against it. 

In Appendix B Cornell's seismic model [4.26] is briefly 

described; other models [4.28,4.29] are commented upon in the same 

appendix in relation to the former model. 

From Appendix B'. the following conclusions can be drawn: the 

seismic risk model proposed by Cornell [4.26] performs satisfactorily 

in general, but better results can be obtained from it if the 

uncertainties about the different parameters which intervene are 

taken into account, whenever it is possible. 

For the purpose of this study, i.e. to obtain the seismic 

risk for a site in the North Sea (where, as it will be made clear 

in Section 4.4 , the seismic information is scarce) the Cornell's 

seismic risk model will be used. 

In order to take into account the uncertainties about the 

attenuation law utilised, the one proposed in [4.16] will be used. 

This attenuation law implicitely takes into account the uncertainties 

about the actual and predicted values of the ground intensity [4.16] . 

The uncertainties about the seismic source zones, activity rate y , 

b , and I(MM) values for the seismic region under consideration 

will be discussed in Section 4.4. 

4.4 Application of a seismic risk model 

In this section Cornell's seismic risk model [4.26] (Appendix B) 

will be applied to derivate expressions to evaluate the maximum 

expected ground intensity in a site. The expressions for the 

expected maximum response spectra and the expected maximum ground 

spectra will be obtained. The attenuation laws to be used are the 

ones proposed in [4J6] , Section 4.2.8. 

The region in which the site is located is discretized into 

several seismic sources. Each source is associated to the following 

geometrical shapes depending on geotectonic and geophysical consid-

erations: a point source, fig. 4.1, a line source, figA.2 , and an 

areal source, fig. 4*3. The following derivations apply to any of 

the three types of seismic sources: - The attenuation law reads: 

bgM - b, 
V = b 10 ( E + 2 5 ) . . . C4.21) 
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where Y represents the ordinate of the ground spectra (Section 4.2,5) 

or the pseudovelocity spectra, , (Section 4.2,8), M is the random 

magnitude of the earthquake, R its random focal distance and b. , 

i = 1, 2, 3 are parameters given in [416 j , table 4.1 

- The conditional probability that Y - y for R = r is given by; 

P[y ̂  y|R = rj = [bj 10 ^ (R +25) y|R = rj 

. . . (4.22) 

where y and r are particular values of Y and R respectively. 

— If M and R are assumed to be statistically independent, after 

some algebraic manipulations of equation (4.22) the following 

expression is obtained for M > m : 
0 

p[Y_y|R = r] = 1 - F [ L n{ — ( r + 2 5) ^ }] 

Z.Sb, bi 

. . . (4.23) 

and by considering that m^_ m — <» i.e. by using equation (A3) : 

P[Y - y|R = r] = exp (Bm^) b^ y~°'(r + 25)~^^3 

. . . (4.24) 

where 3 is a regional constant, and a = 6/(2.3b ). 

- The probability that Y - y , given that M - m ^ , is obtained 

by substituting equation (4.24) into equation (A 6): 

r 
P[Y- y] = exp (gm ) b^ y~°'(r + 25)"°^3f (r)dr 

j * y 

. . . (4.25) 

where j p, a refers to a point, line and areal source 

respectively, and f^ (r) adopts the following form depending on 

the geometrical shape^selected for the source, i.e.; 

2r 
. for a line source, £ , fig.4.2: f_ (r) = ± 

\ K r ' - d')! 

. . . (4.26) 1 

. for an areal source, a, fig.4.3:fj^ (r) = r = [ĥ  + (x^ + x)*]* 

^ . . . (4.27) 

Substituting equations (4.26) and (4.27) into equation (4.25), the 



49 

following expressions are obtained; 

P[Y - y]^ . expCgm^) b* y-* (int)^ . . . (4.28) 

in which (Int) stands for: 

Cint) = — ^ sec*6 d9 

^(ab^ - 1) (sec8 + 

. . . 29) 

r̂ j , d , and 6 are the line source geometry parameters (fig.4.2) 

when the geometry of the source is not symmetrical with respect to 

the site, (Int)^ can still be calculated by superimposing equivalent 

symmetrical sources appropriately [426] ; and: 

>y. 

a 

(Int) = 2n ^ / ° ' 0 

yj - exp (Bmg) b" y"" (Int)^ . . . (4.30) 

- x_) (x + x) dx 

*o {[h* + (x^ + x)*]2 + 25}°'̂  3 

. . . (4,31) 

where x , x^ and h are defined in fig.4_3;the factor 2ir is 

due to the fact that an area covered by a complete circle is 

considered. If the areal source covers a segment of the circle, 

the corresponding (Int)^ can be computed by multiplying equation 

C4.31) by the quotient Y/lrr, fig.4,3. If the source is represented 

by a point, there is no uncertainty about the distance R i.e. 

R = r fig.4.1 therefore: 

P[y-y]p = exp (Bm^) b* y-G (Int) . . . (4.32) 

in which 

(Int)p = (r + 25) "^3 . . . (4.33) 

If the annual probability of exceedance is less or equal to 0.05, 

the distribution of is obtained by substituting equations 

(4.28), (4.30) and (4.32) into equation (B9) i.e.; 

P - Fy (y)]. = expfgm ) b" y"" (Int). v. 
max J " 1 J 3 

. . . (4.34) 
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j = P , a 

where is the mean rate of exceedance of earthquake per year for 

the source j. 

- The average return period is given by: 

expCgnip) b y~"(Int). v. 
^ J J 

. . . (4.35) 

J 

The Tg years intensity is obtained from equation (4.35): 

1 
y = [exp(gmg) (Int)^ '̂ o ] ^ ' C4.36) 

or substituting the value a = g/(2.3b ) 

2.3b^ 
2 

C4.37) 

y = exp(2.3mQ b^) b;[(Int). v- T^ ] $ 

- Finally the probability of the maximum value of Y — y 

produced by the n sources at a site can be computed by using 

equation (All); the associated T years intensity is given by: 

n ^'3^2 

y = Z {exp(2.3m^b2) [(!"%) v i j g 

. . . (4.38) 

In this case the subindex k may correspond to any of the three 

types of sources i.e. point, line or areal; the parameters involved 

in equation (4.38) may be different for each source. From the 

same equation it can be seen that the values of m^ , g, y, b^ , 

bg , bj , as well as the geometry parameters implicit in the 

expressions for (Int) need to be known for each source. The 

value of the return period, Tg , is fixed by a code or chosen by 

the design engineer. 

- In the case where the distribution of magnitudes in the region 

should correspond to equation (B4) i.e. when m — m^, it can 

be shown that for small probabilities of exceedance, 
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k\,[exp($mg) b^ y-<^ (Int)]} 
^ j 

. . . (4.39) 
j = p, &, a. 

where k is given by equation (85) and V and (Int) correspond to the 

seismic sources with a focal distance less or equal to: 

_b, b 1 
fy " :0 m,]G- - 25 (Km) . . . (4.40) 

in which y is a chosen value of Y , for example the value 

obtained by using equation (4.38). 

The return period (T̂ j)̂ . is given by: 

max j 

and for the n independent sources, 

1 
^0 - . . . (4.42) 

l [l - Fy (y)] 
j=l max j 

Seismic risk in a site in the North Sea 

The seismic risk for a site in the North Sea, fig. 4.4, will be 

obtained in this section. The seismic risk model to be used is the 

Cornell's model described in Appendix B. The expected maximum 

ground intensity parameters at the site to be computed are the ground 

spectra, the pseudovelocity spectra, and the power spectral density. 

The site is located in a region of low to mild seismic activity, 

[4^5], but which nevertheless has experienced recent earthquakes with 

magnitudes of importance, such as the one occurred in April 1884 

near Colchester with an M = 5 to 5.5 {431] , fig.4.4, and the one 

occurred in June 1931 in the Doggers Bank, fig.^ ̂ ,with an M = 6 

[425].Earthquakes have also occurred in or nearby the Norwegian 

channel, fig. 4.4, such as the one occurred not far from Bergen in 

January 1927 with an M = 5.1 to 5.7 and others mentioned in [432]. 

From the geological point of view there is some evidence which 

points out the seismic activity of the region. For example in [̂ 3̂3], 
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it is suggested that the pockmarks found in different sites under 

the sea bed of the North Sea are the result of seismic disturbances 

acting on normal of underconsolidated sediments. 

Seismic information for the site 

The seismic information available for the region in which the 

site is located, fig. 4.4 , has been mainly collected for inland 

events, in the U.K. and the Continental shelf [46,4.25,434]. Offshore 

seismic information for the region is by enlarge scarce and most of 

it is confined to the Norwegian Coast [432] . 

Both inland and offshore information are mainly of macroseismic 

origin i.e. computed from seismographs located at large distances 

from the epifocus. 

In [46] and [425] information about the seismic activity in 

the European area during the period 1901-1955 has been gathered and 

processed to generate homogeneous data of the seismicity in the 

European area. From these references [46,425] the seismic 

information about Fennoscandia (i.e. Norway, Sweden and Finland), 

and the one associated to the United Kingdom and Ireland are of 

interest for this study because the North Sea includes parts of 

both regions. 

In the next paragraphs the geophysical, statistical and miscel-

laneous information drawn from [46,425] and elsewhere relevant to 

this study will be presented. 

Geophysical information 

a) Geotectonic features of the region [46,425] ; it is located 

in what could be considered the middle part of the Eurasian plate; 

the Caledonian Hercynian and Alpine orogenies are present in its 

faults and foldings, for example the Caledonian orogeny runs from 

Northern Norway to Western Ireland; the Great Glen fault is the 

only one in the U.K. which clearly correlates with detected seismic 

activity in the region; there is also some evidence of the relation 

between the seismic activity and the faulting in the Norwegian coast 

and the Oslo fjord [432] . 

b) Energy stored in the region [434], based on the assumption 

that the seismic events in Fennoscandia are due to post-glacial 

uplift of the region, an estimate of the value of the energy stored 
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during the period 1891-1920 was given; however its validity has been 

questioned in [4.32] . In the United Kingdom region, such studies 

have not been carried out as yet. Therefore there is not for the 

time being an answer about the value of the energy stored in the 

region of interest for this study. 

c) Regional strain: its distribution in time can be observed 

in fig. 4 of [4.25J , which shows that the largest amplitudes of the 

regional strain curves have been produced by largest events in 

Norway and the United Kingdom regions; i.e. events such as the earth-

quake occurred in the sea South of Oslo in October 1924 with an 

M ~ 6.5 , and the ones already mentioned, one near Bergen in Norway 

in 1927, and in the South of the North Sea (near the Dogger Bank) in 

1931. The space distribution of the regional strain can be appreci-

ated through the map of seismic energy release (EE) given in [4.25] 

(the regional strain is related to the energy released by equation 

C4.3)). From this map, it can be seen that most of the regional 

strain (energy) is concentrated: a) in the South—western coast and 

the Oslo region in Norway; and b) in the United Kingdom along the 

Great Glen fault and a line passing through Birmingham, Nottingham 

and Hull. 

Statistical information 

a) Files of magnitude for the region: by applying equation (4.5) 

to the files of I(MM) in the seismic zones of Fennoscandia, U.K. and 

Ireland, the set of data for M shown in table 4.2 was obtained 

in [4.6] . The lower limit of the earthquake magnitudes in the region 

™o» taken as 4.1 in [4.6] (it usually varies between 3.5 and 

4.5 in seismic risk studies [4.26]). The upper limit of the magnitudes 

observed in the region, m^, were 6.25 and 6.3 for seismic zones of 

Fennoscandia, the United Kingdom and Ireland respectively [4.6,42] . 

These values were taken from the frequency laagnitude graphs obtained 

in those references. In [4.35] a m^ = 5.72 was obtained by applying 

the analysis of extreme -technique to the magnitudes of earthquakes 

occurred in the United Kingdom. 

b) File of earthquakes depths, h; in [4J!5] the average depths 

h = 50 Km and 15 to 20 Km were found for earthquakes occurred in 

Fennoscandia, the U.K. and Ireland respectively. 
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c) Energy released in the region; in Table 13 of [46] the 

values of the total seismic energy in Fennoscandia and the United 

Kingdom and Ireland during the period 1901-1955 are given. Those 

values represented approximately 0,1% of the total energy released 

in the whole European area which was 7.9 x 10 ^ ergs for the same 

period of time. 

d) Recurrence of earthquakes: the frequency-magnitude law 

expressed by equation (4.9) was used in [46,425] and [436]; by 

different fitting techniques to the magnitude data, the 

values of the coefficients a and b shown in table 4.3 were 

obtained in those references. 

e) Attenuation laws: the lack of accelerograms in the region 

of interest has prevented the derivation of attenuation laws for 

ground spectra for the region. Other studies [435,436] have 

utilized laws proposed in [437] and [438] but in the present 

study the attenuation laws proposed in [416] , equation (4.21), will 

be used instead. The reason behind this choice is that the latter 

laws have the advantage that the coefficients of variation are 

provided for the expected values of the ground motion parameters 

to be computed, table 4. land that the can be computed directly 

instead of using the ground spectra in combination with amplification 

factors, Section 4.2.8. 

f) Records of I(IIM), a^^^, S^, etc.: there are records of ICMM) 

for the region and they have been used to derivate the values of M, 

when records of the latter were not available for the period of time 

considered [46,423,435]. Samples of a ^ ^ are very reduced for the 

region in general and inexistent for the U.K. region [436] . 

Miscellaneous information 

a) Qualitative description of an earthquake history: most of the 

information available for the inland parts of the region of interest 

is in the form of isoseismal and epicentral maps such as the ones 

presented in [425,435] and [436] . In fig.4.5 a map of isoseismals 

for the region of interest is presented and in fig. 4.6 the 

associated map of epicenters can be seen. Both maps are based on the 

ones proposed in Qk25] . 

b) Similarities of earthquakes with related phenomena; the 
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information of earthquakes related to phenomena for the region is 

very reduced, such as the one proposed in [434] which was briefly 

discussed in incise b) of the geophysical information of this 

section. 

4.5.2 Selection of seismic sources and their parameters B > 

TOp ,v , h, b^, i = 1,2,3 

In this section, the seismic information of the region where 

the site is located, which was described in the last section will be 

used to select the geometries of the sources as well as their 

associated parameters. 

Division of the region in seismic sources: 

From the geophysical information of the region and the isoseismal 

maps, figs. 4.5 and 4.6, the choice of sources shown in fig. 4.7. was 

made. The radius of the outer circle limiting the seismic region 

was chosen on the basis of the recommendation of [4-28] in which 

a distance of 300Km between the site and the potential seismic 

source is suggested. However in this study 500Km will be used in 

order to be able to include tlie Great Glen fault as well as part of 

the Norwegian epicenters, figs.4. 4 and 4.6 . The offshore sources 

resulted from the fact that very little information exists 

about the offshore seismic activity of the region. It is also due 

to the fact that the geological structure of the North Sea is not 

known in detail. Therefore the offshore parts' of the region will 

be treated as if any future earthquake was equally likely to occur 

in any unit area of their sources. 

The inland sources will also be considered as equally likely 

to generate an earthquake in any unit area, except the line source 

associated to the Great Glen. This is so because the period of 

observation 1901-1955 is too short (in the geological and statis-

tical sense) and there is the possibility that the present seismicity 

of the different provinces may change in the future in such a way 

that "aseismic" regions may become active. The only source which 

can be chosen relying on the seismotectonic information available is 

the line source associated to the Great Glen, fig. 4.4 . Finally 

a point source will be associated to the epicenter of the Dogger 

Bank earthquake of 1931, figs 4.4 and 4. 6 . 
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Determination of the average rate v for each seismic 

source; 

The average rate for each source was obtained by dividing 

the number of earthquakes with M > 4.1 observed in each source (on 

the basis of the epicentral map shown in fig.4. 6) by the period of 

time of observation i.e. 55 years. In table 4.4 the resulting Vj 

are shown. For the associated to the seismic sources 1,5 and 7 

in which no seismic event was observed during the time period 1901-

1955, three different values were assumed: a low seismicity case 

^1,5 7~ 0'018 = observed ; an intermediate seismicity v. _ = 

0.1-27 = observed and a high seismicity case Vj 5 7 = 0,163 = 

observed , table 4.4. These values were chosen in order to represent 

three levels of the possible seismic activity in the region on the basis 

of the activity observed in the 55 years'record. 

Determination of the value of g: 

The value of g can be obtained fromg = 2.3b, [4,261, in which b 

is the parameter of the frequency-magnitude law, equation (4.9) . The 

value of b can be chosen from table4.3; for this study the value 

b = 0.96,which is an average value of b for the seismic regions of 

Fennoscandia, the U.K. and Ireland [46] will be used. This value was 

chosen by taking into consideration the fact that it represents a 

regional value obtained from a larger sample of events than the samples 

used for the individual regions, as in [429], 

Selection of the value of m^: 

The value mo = 4.1 will be used in this work. A value of 4,0 

is usually chosen [4.26,4.28]| because it is considered to be the low%t, 

limit of magnitude which can cause damage to engineering structures, 

but a lower value could be selected if it is considered appropriate. 

Selection of geometrical parameters; 

The depth of sources can be chosen from the average depths G 

discussed in Section 4.5 . The depths selected are shown in table 

4.4. These values were chosen because they represent regional averages 

and because they minimize the value of (Int)^,equation (4.31). For 

the point and line sources the values of their depths were taken 

( ̂  directly from the catalog in [4.25 ]. The rest of the source geometrical 

parameters such as Y, d, and x ̂ were obtained on the basis of fig.4.3 

Selection of values b,, b,, b,: 

3 t 

equation (4.21) are the ones shown in table 4.1 [4.16] . 

The values of b^ i=l, 2, 3 to be used in the attenuation law 
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Selection of values of T : 

The following values of the return period were chosen; 25, 50, 

100, 200 and 500 years. The 25 and 50 year values may correspond to 

the life—span of the offshore platform, and the other values provide 

the lower probability levels ofexceedance from which other levels of 

structural behaviour can be obtained. 

With the parameters listed above and the seismic risk model discussed 

in 4.4 , a set of ground spectra, pseudovelocity spectra and their 

associated power spectral density functions were computed. The 

p.s.d.f. were calculated by using equation (4.17) and a peak factor 

equal to 3.5 (Section 4.2.9). These results are discussed in 

Chapter 8. 

4.6 Resulting seismic loads 

In general, the seismic loads acting on an inland structure are 

defined as the inertia forces resulting from the motion of the base 

of the structure during an earthquake. If the structure is assumed 

to be rigidly attached to the ground and if it has been discretized 

in such a way that its mass properties have been lumped (Section 2.4) 

the inertia force acting on nodal point i is expressed as 

follows: 

FjCt) = + m_((^) . . . (4.42) 

where is the resulting inertial force, m^^ is the lumped mass 

at nodal point i , (%^)^ is the total acceleration of m^^ ; is 

the acceleration of m^^ relative to the base of the structure and 

is the ground acceleration. According to the governing equation, 

equation (2. 1) ,Section 2.2,the term corresponds to the ele-

ment ii of the diagonal matrix resulting from the product M U ; 

the term represents the ith component of the vector P 

i.e.: 

P^^Ct) = - . . . (4.43) 

where Pg (t) is the effective seismic load acting on the ith nodal 

point of &he discretized structure. 
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In Chapter 8 a number of p.s.d.f. of ground acceleration are 

presented. As shown in Section 4.2.7, they represent one of the 

forms to express the energy content of a set of accelerograms u ; 

therefore they are implicitely included in equation (4.43). The 

actual use of those p.s.d.f. to define the seismic loads acting 

on a e.g.p. will be shown in Chapters 6 and 7 . 
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5. WAVE EXCITATION 

5.1 Introduction 

The wave loads are generated when sea waves incide over the 

surface of a structure placed in the sea environment. The differ-

ence in the relative motion between the fluid and the structure 

results in an interaction process. In this process the kinematic 

characteristics of the waves are usually modified by the presence 

of the structure. The waves which are of interest from the offshore 

design point of view are the so-called wind generated waves. The 

mechanisms underlying its generation are not completely explained 

as yet; however, a number of theories about them have been proposed 

[51,52,53]- A common assumption in those theories is the contribu-

tion of the wind in the wind-fluid energy transfer process; however, 

the way in which this energy acts on the fluid surface is different 

from one approach to the next. For example, the resonance model 

proposed in [5.1] assumes that the fluid surface motion is induced 

by pressure fluctuations in the wind, which are in random phase with 

the waves; meanwhile, the shear flow model J suggests that the 

waves modify the field of the air flowing at a certain distance over 

them. A mixed model based on both mentioned approaches was presented 

[53 ] , which assumed that the two mechanisms are complementary in 

the wave generation process. 

The theories of wind wave generation discussed above have in 

common the assumption that a sea wave results from the random super-

position of a number of waves which propagate in different directions 

and have different kinematic characteristics, i.e. a wind generated 

wave can be considered as a random process. From the above paragraph 

it can be concluded that the generation process of the wind waves is 

not fully explained as yet; therefore, the description of these waves 

has to resort on a combination of deterministic and non—deterministic 

theories to reach that end[5.^. The classical hydrodynamic prin-

ciples used to approximate the kinetic characteristics of the^^ves 

are discussed in Section 5.2.1; the random process utilized to 

formulate the non-deterministic characteristics of the sea waves is 

presented in Sections 5.2.2 to 5.2.4. 

ftice the kinematics of the wind generated waves is formulated, 

the fluid structure interaction which produces the wave loads can be 

studied. Depending on the combination of the wave and geometrical 
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structure parameters involved, the wave forces resulting are associ-

ated to different wave loading regimes, such as the so-called drag, 

inertia, diffraction and other wave loading regimes. The different 

wave loading regimes typical of concrete gravity platforms are dis-

cussed in Section 5.3.1. The drag, inertia and diffraction regimes are 

presented in Sections 5.3.2, 5.3.3 and 5.3.5 respectively. Finally, 

in Section 5.4 the expressions for wave loading used in this work are 

discussed. 

5.2 Wave characteristics 

5.2.1 Basic hydrodynamics 

As it was briefly commented in the introduction, the wind gener-

ated waves can be considered as random processes; therefore, it is 

expected that their full description requires the use of a three-

dimensional random process. However, as most of the reliable field 

data has been obtained for unidirectional waves, only this case will 

be presented in this work. Neglecting the randomness of the waves 

for a while, the simpler idealization of the waves is to represent them 

by simple harmonic waves. This idealization nevertheless is useful 

to establish the basic elements for the derivation of the kinematics 

of the sea waves; furthermore, the linear wave theory [5.5] can be 

used to this end (there are other higher order theories which could 

also be used); a brief summary of the linear wave theory [5.4,5.5] is 

presented in this section. 

The sea state is represented by simple harmonic waves based on 

the following assumptions: 

a) the fluid is incompressible, b) the fluid is non-viscous, c) the 

waves are two-dimensional Cfig.5.1),d) the waves are stationary in 

space and in time, e) Coriolis effect is neglected. 

The equation of continuity of a fluid is given by: 

+ pV.v = 0 " . . . C5.1) 
Dt " 

The equation of motion is expressed by: 

Dv 
— = 5* _ i Vp • • • C5.2) 
Dt ~b P 
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where represents the total derivative of a variable, p is the 

fluid density, V is the nabla vector and v is the vector of 

fluid particles velocities; represents the body forces and Vp 

is the pressure gradient. 

From assumption a), equation (5.1) is reduced to; 

V'Y = 0 . . . (5.3) 

and assumption b) implies: 

V X Y = 0 

. . . (5.4) 

v = - V(j) 

where cf) is the velocity potential. 

Substituting equation (5.4) into equation (5.3), 

. . . ( 5 . 5 , 

From fig.5.1 , the boundary conditions (b.c.) associated to equation 

(5.5) are: 

^ = _ 34. 
y ay ~ ° . . . (5.6) 

y = -D 

. . . (5.7) 

where v^ is the fluid particle velocity in the y direction and 

n is a particular value of the wave height. The last b.c. equation 

(5.7) has to be expressed in terms of the potential 4>, in order to 

have a system of equations in which the variable is (J) only. 

Integrating equation (5.2) for the x and y directions plus 

assumption b) leads to Bernoulli's equation: 

- it + + gy - o . . . (5.8) 

*Aere v^ is the fluid particle velocity in the x direction and 

g the acceleration of gravity; the other parameters were already 
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defined. 

By considering the small amplitude wave theory. Airy Theory, 

which assumes that the amplitude of the surface wave is small com-

pared to the length of the wave, or to the depth of the water where 

it propagates (see Fig J J) equation (5.8) is reduced to: 

at 
V P 
H" + •*• + gy = 0 p . . . (5.9) 

Substituting equation (5.9) into equation (5.7) allows to express 

this b.c. as a function of <P i.e.: 

b.c. 

3t| y = n 

the system 

= 0 

ay 
y = -D 

M 
at 

ill 
3t = gn . . . (5.10) 

= 0 

= gn 

(5.11) 

y = 0 

The solution to the system of equations (5.11) is: 

to 
. . . (5.12) 

which is a progressive wave travelling in the positive direction of 

the x axis with a circular frequency to , fig^J.. In equation 

(5.12) a represents the amplitude of the harmonic wave, to is its 

frequency, K is the wave number, D is the total depth and x , 

y and t are the space and time coordinates respectively. 

Another consequence of the small amplitude assumption is: 

' S - 0 

and from equation (5.10): 

9(1) 
3v 

y = 0 
. . . (5.13) 

_1 
g ii 

at (5.14) 
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Combining equations (5.13) and (5.14): 

g + By = 0 ' ' ' C^15) 

By substituting equation (5.12) into equation (5.15) and taking 

the deep water conditions, D » y , into consideration, the following 

relations are derivated: 

= gK 

w = 2 TTf = = KC . . . (5.16) 

C = /g/K = — 
T 

where f is the frequency of the wave in cycles per unit of time, 

c is the wave celerity, A is the length of the wave and T is 

the wave period. The particle velocity in the x and y directions 

is obtained from the gradient of ({> : 

(5.17) 

v = e agK sinh ic(y + D) sin (kx - wt) 
y 3y w sinh (KD) 

• • • \D 9 ioJ 

The particle accelerations in the x and y directions can be 

computed from equations (5.17) and (5.18): 

'x - sin (Kx - "t) . . . (5.19) 

- - ag< • • • (5.20) 

The particle trajectory r can be obtained from: 

r = / V dt 
X 0 X 

• » ...(3.21) 



64 

'y - ; 'y 

" - = """Snh'cKD)"' • • • (5 22) 

From equations (5.21) and (5.22) it can be concluded that the particle 

trajectories describe circles with radii that tend to zero as y 

tends to D . If y = 0 , equation (5.22) becomes: 

r " n = - a cos (tcx - wt) . . . (5.23) 

Substituting equation (5.12) into (5.9), the pressure p is obtained; 

p(%,y,t) = pg br+ * (kx - wt% 

y - 0 . . . (5.24) 

The main feature of Airy's wave theory is that a wave can be defined 

by using three independent parameters, namely, period (T) , wave 

height CH) and mean water depth (D) . All other parameters are 

functions of the above-mentioned ones. In [ 5 . a classification of 

wave theories based on their behaviour to fulfill the boundary condi-

tions is presented; among other conclusions it is mentioned that the 

Airy's wave theory is satisfactory in medium deep waters (i.e. 

100-200 m. for example). 

An average of the wave energy content over the wavelength and 

per unit area of the sea surface can be computed as a sum of the 

kinetic energy (KE) of orbital motion and potential energy (PE) of 

water level change. By using C5.18), (5.21) and (5.22) it can 

be shown that the average energy, % , contained per unit area equals: 

E = PE + ^ 

•ip g a^ + -J- p g a* 

8 a* . . . (5.25) 
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5.2.2 Modelling of sea waves 

From the coastal engineering point of view the main interest lies 

in the so—called wind generated waves; these waves contain larger 

amounts of energy which, at a certain time, will be transferred to 

the structures built up in the ocean environment. As mentioned in 

the introduction, the wind generated waves are rather complicated in 

nature; therefore, any mathematical representation of them should 

preserve this essentially random (non-deterministic) characteristic, 

fig.5.2. 

Among other criteria for the mathematical modelling of wind gener-

ated waves, there are two which are widely accepted, namely [5.7] : 

a) the random superposition of periodic wave patterns, and 

b) the continuous juxtaposition of random impulses. 

In criterion a), steady state solutions with a random phase are super-

posed, and in criterion b), transient solutions are sequentially added. 

Model a) has the advantage of using the sinusoidal wave representation 

derivated from Airy's wave theory, which makes its use simpler than 

the one associated to model b). In this section, only the former 

approach will be presented. 

The representation of wind generated waves by using model a) was 

introduced in [5-8] . It assumes that the vertical movement of the 

particles, r) , on the sea surface, generated by a unidirectional 

wind, can be represented by the superposition of N simple harmonic 

waves (as the ones obtained in equation (5,23)) of amplitude a^ 

(i = 1,2, ... N), frequency and random phase ; i.e.; 

N 
nCx.t) = I n-Cx,t) 

i=i ^ 

N 
= Z a. cos Ck.x - w.t + E.) . . . (5.26) 

i=i 1 ^ ^ ^ 

N ->• 00 

< < 
— wj. — with 0 

0 < < 27r 

The frequencies are uniformely spaced at intervals Aw , and 

the phase is random and uniformely distributed (i.e. the value 

of its probability density function is equal to l/2n ). 
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If the abscissa tc is kept constant in equation (5.26), the 

associated wave height will be a function of time only. From the 

frequency spacing condition the wave height will have a period 

2n/Ato . The average energy content per unit area of sea surface 

CE) given in equation (5.25) shows that E is proportional to a 

By analogy, in the case of equation (5.26) this definition can also 

be applied; but it will be associated to the amount of wave energy 

contained in a band frequency Ao) centered at 
Wj. i.e.: 

E(W^) 
w.+Ao) 

— p g Z a? 
''i Aw " ' " w. 1 

= P g , . . (5,27) 

where S^^(w^) is called the energy or power spectrum. 

If the random process represented by equation (5.26) is assumed 

to be a zero mean, stationary, gaussian and ergodic process, it can 

be shown [5,9] that its mean square value is given by: 

< n(t)2 > = R (0) 
nn 

oo 

= / dw , . . (3,28) 

Equation (5.28) implies that the amplitude a. must tend to zero 

in order to produce a finite mean square value of the wave height. 

As a consequence, the formal definition for S (io) is: 
nn 

. w.+Aw a? 
= T z 

Wi 

because a* + * , when N + * , whereas a* /Aw does not. 

From equation [5.29): 

Wi+Ato 

^ . . . C5.30) 

end substituting equation (5.30) into equation (3.26): 

if. " + e_) 

. . . (5.31) 
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By analogy, the counterpart of equations (5.17) to [5.22) can be 

written as follows for this random representation of the sea waves: 

00 cosh K . (y+D) 
v = lim Z w/2S (w. )Aw cos(k .x-w. t+e .) 

Aw .» 0 i.o nn 1 sinh (KD) 1 1 1 
n6w <» 

. . . (5.32) 

°° sinh K. (y+D) 
V - - lim Z w/~ . sin(K-x-u). t+£.) 

Au) ->• 0 i=o sinh (kD) i i i 
nAo) -*• °° 

. . . (5.33) 

00 cosh K. (y+D) 
~ Z w / . — — sin(K .x-w. t+e.) 

Aw 0 i=o sinh (kD) i i i 
nAio °° 

(5.34) 

" 2 7 — sinh K. (y+D) 
V = - lim E w / . cos(K.x-u.t+e.) 

Aw ^ 0 i=o sinh (kD) i i i 
nAw oo 

. . . (5.35) 

oo cosh K. (y+D) 
r^ = lim E / _ sin(K .x-w. t+e.) 

Aw ->• " i=o sinh (kD) i i i 
nAw oo 

. . . (5.36) 

00 sinh K. (y+D) 
r = - lim E / — cos(k.x-w.t+e.) 

Aw 0 i=o " sinh (kD) i i i 
nAw ^ 00 

. . (5.37) 

Equations (5.32) to (5.37) provide the kinematics of the random 

representation of unidirectional wind generated waves. 

5.2.3 Statistics of sea waves 

The recording of the time history of sea surface elevation (fig6.2) 

and the stochastic modelling of time series [5.9] provided the tools 

for a more realistic representation and understanding of sea waves. 

This led to the computation of practical results based on statistics 

of field data and theoretical studies. Some of these results will 

be mentioned in this section. 
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The statistical characterization of sea waves has been mainly 

concentrated in two wind generated wave parameters, namely height 

and period. A reason for this lies in the fact that the height is 

associated to the energy of a wave (Section 5.2) and the period is 

linked to the frequency of that wave. 

A very important step toward the derivation of analytical expres-

sions of the statistics of wave heights was given in [5.10,5.11] . The 

main assumption in both papers is to represent the sea surface by a 

zero mean, ergodic gaussian process (equation (5.6)). Among other 

results they found out the following ones: 

a) The process representing a wave height record can be narrow 

or wide band, depending on the value of the so-called spectral width 

parameter . This parameter varies between 0 and 1 , and can 

be computed by: 

- m! 

= 0 * . . . 0.38) 
0 4 

where the nth spectral moment is 

00 ^ 

= / S^^(w) w dw . . . (5.39) 

and n = 0, 1, 2, ... 

(w) = power spectral density of wave heights. 

b) If the process is narrow band i.e. Eg o (which implies 

that the energy is mainly concentrated in a small frequency band of 

the associated energy spectrum), the maximum of surface elevation 

follows a Rayleigh probability density function, i.e.: 

exp[ -nZaax/ZmJ . . . (3.40) 

Based on this result and taking into account that for a narrow 

frequency spectrum the wave height, H , is twice the maximum ampli-

tude, the following statistics of wave height and wave period were 

obtained: 

"mode = 2 
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H = 2.507 

. . . (5.41) 

„ = 4.0 /mo 

HI_ = 5 . 1 Y'^ 

i 0 
= 2ir /m/mg 

where j®2 be computed by using equation (5.39) 

'̂ mode ~ most probable value of wave heights, 

'̂ r m s ~ root-mean square value of wave heights, 

Hi = average of the highest one third of the 
3 

waves, also known as significative wave 

heights, , 

H = mean value of wave height, 

= average of the highest one tenth of the 
10 

waves, sometimes taken as the expected 

value of maximum wave height, 

Tg = average time between successive zero up-

crossings (fig.5.2). 

c) If the process is broad-band i.e. 0 < Eg £ 1 (this means 

that the energy is distributed on a wide frequency band of the asso-

ciated energy spectrum) the statistical distribution of the maxima 

of surface elevation is given by: 

pCx) = {Go exp [- x*/2 Eg] 
/2Tr 

x/l-e^/ G 
+ /l - Eg X exp [- x^/2j / exp [-t^/2] dt } 

' _oo 

. . . (5.42) 
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where 

When Efl -> 0 , the expression for p(x) becomes a Rayleigh 

distribution (narrow band process), and for Eg ^ i , p(x) is 

reduced to a Gaussian distribution. Based on these results the fol-

lowing statistics were obtained: 

H 
max 

- 2 [/2 Ln N + ] . . . (5.43) 

where 

(H ) J - most probable value of maximum wave height, 
max mode o > 

H = mean value of maximum wave height, 
max ° 

T 

0̂ ~ "x~ ~ number of zero upcrossings in the record 

(fig. 5,2), 

T = the record duration and 

was previously defined. 

5.2.4 Empirical wave height spectra 

Several empirical formulae (based on the analysis of wave ampli-

tude records) have been proposed to express the power spectral density 

function of the wave heights, » ss a function of the frequency, 

(A) . The wind velocity W or the significant wave height and 

significant wave period are used in those expressions. The gen-

eral equations for these spectral density functions are as follows 

[512] : 
a) For wind velocity W : 

Snq(w) = ^ exp[-B/W^ w^] . . . (5.44) 
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where 

A and B are empirical constants, W is the wind velocity at 

approximately 20 m. above sea level and w is the frequency in 

rad./sec.. 

b) For significant wave height and period: 

AH^ 

*** "A] - - -

s 

Tg is usually expressed as a function of H . The empirical 

constants A and B can be computed by solving the system: 

4B " "o 

. _ . . . (5.46) 
A /rr 

where and -previously defined- should be computed for the 

particular sea state considered. 

Two expressions for the computation of the power spectral density 

function of the wave heights are listed here: 

1) Pierson and Moskowitz P-M [5.12] (fig. 8.13). 

For fully developed seas Ci.e. seas in which the fetch length and 

duration are long enough for a given velocity to produce the highest 

possible waves): 

2 
^ exp [-gCg/Ww)"*] . . . (5.47) 

or 

[- ' ' ' (5-48) 

^ max 

where the units of S^^(w) are (m^ -sec.) and, 

^ (40/5)7 (g/W), 

a is a dimensionless constant = 0.0081 (for the 

North Sea), 

3 is a dimensionless constant = 0.74 (for the North 

Sea), 
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W is the wind velocity at a height of 19.5 m. above 

the sea surface, 

g is the acceleration due to. gravity and 

W 
max is Che frequency associated with the maximum value 

of snnCw). 

2) Jonswap [513] (fig. 8.13). 

This IS similar to the P-M with an extra term called "overshoot", 

a term which takes the fetch limited condition into account. 

SrinCw) = exp 
w I ( . — r " 0) 

max 
Y*XP 

(w - Umax) 

20^ 
max 

. . . (5.49) 

where the units of SnnCw) are (m* - sec.), Y is the ratio of the 

maximum spectral energy level to the corresponding level of the P-M 

spectrum, usually called overshoot parameter, which is equal to 3.3 

for the North Sea. 

for w — w a 

for w > w 

max 

. . . (5.50) 

max 

The average value of o* and in the North Sea are 0.07 and 0.09 

respectively. The rest of the parameters were previously defined in 

relation to equation (5.48). 

5.3 Wave loads 

5.3.1 Wave loading regimes 

The determination of the forces exerted by sea waves on structures 

represents a complicated task. The main difficulty lies in the fact 

that these forces are the result of an interactive process between the 

structure and the waves. In this process the former will usually 

modify the kinematics of the latter, with respect to the case in which 

no structure exists in the sea environment. Due to this characteristic 
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of the problem, the models used to determine the wave loads on struc-

tures have aimed at isolating the effects observed in the kinematics 

of the wave for specific combinations of wave and structure parameters, 

A summary of the different loading regimes derived from analytical, 

field and laboratory experiments on the interaction flowing fluid-

structure has been suggested in [5.14] . This summary is listed here; 

a) d/X > 1 . Condition near to pure reflection 

b) d/X > 0. 2 . . Diffraction increasingly predominant 

c) d/W, > 0. 2 . . Inertia increasingly predominant 

d) d/W, < 0. 6 . Incipience of lift and drag 

e) d/W, < 0. 2 . . Drag increasingly predominant 

where d is the structure characteristic dimension, A is the wave 

length, and Wq is the wave orbit width parameter. 

If the offshore structure is a concrete gravity platform placed on 

deep waters, the parameter "d" mentioned above could be the diameter 

of the caisson or the diameter of the towers. The parameters W and 

X correspond to the wave height and the wave length respectively. 

For the caisson, the typical values of the ratio d/X are larger 

than 0.2 ; therefore, the loads acting on the caisson are mainly pro-

duced by diffraction effects. For the towers, typical values of the 

ratios d/X and d/W^ are such that while portions of their length 

are subjected to loads produced by diffraction effects other parts 

are under loads associated to inertia and (sometimes) drag effects. 

Prom the above paragraph it is clear that the loading regimes of 

interest for typical concrete gravity platforms are the diffraction, 

inertia and drag ones; therefore, in the following paragraphs, only 

those loading regimes will be discussed. 

The actual determination of the forces resulting from any of the 

mentioned wave loading regimes implies the solution of the following 

problem: evaluate the forces acting on a body immersed in a non-uni-

form, unsteady, viscous fluid flow. 

This problem is difficult to solve, because it requires, among 

other things, the finding of the kinematics of the 

boundary layer formed around the body [515] . This "boundary layer 

problem" is difficult to be solved even for simple geometrical shapes 
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immersed in a steady flow [5.7] . Therefore, the original problem 

has been idealized in such a way that its solution consists in the 

determination of the net force associated to the pressure and shear 

distribution on the surface of the object. This force is represented 

by the product of a coefficient (obtained experimentally) multiplied 

by a term which includes the structural characteristic parameters 

and the wave resulting kinematics. 

5.3.2 Drag loads (d/W^)< 0.2 

The flow in a viscous fluid is characterized by the presence of 

normal (pressure) and tangential (shear) forces between adjacent in-

finitesimal layers of fluid. If a body is immersed in this fluid and 

kept stationary, the shear forces will cause an adhesion of the fluid 

particles close to the surface of the body. Due to this friction 

effect, a large velocity gradient field is generated around the body 

i.e. a boundary layer is produced QxlS] . In addition, a wake of 

flow is produced and consequently the pressure distribution around 

the body is not in equilibrium. The non-equilibrium resultant forces 

can be decomposed into two components; the drag force, acting parallel 

to the flow direction, and the lift force, which acts perpendicularly 

to the first. For symmetrical bodies the lift force is null [5.7] . 

The drag force is composed of two parts: a form drag and a skin 

friction drag. The first is related to the fluid pressure forces 

over the body surface, and the second one is associated to the shearing 

forces which are a function of the fluid viscosity. The form drag 

is dominant in bluff shapes, such as cylinders, and for large numbers 

of Reynolds it is proportional to the square of the undisturbed 

velocity [5.15] . For streamlined shapes the skin friction is dominant. 

The body shapes of a typical e.g.p. components are of the bluff 

type; therefore, in what follows, when the term drag is used, it will 

refer to the form,drag. The actual determination of the drag force 

from a mathematical model includes the solutions of the boundary layer 

problem for a cylindrical shape immersed in an unsteady flow [5.7] . This 

problem is extremely complicated even when dealing with the same shape 

immersed in a steady flow; therefore its solution has required the exper-

imental determination of a so-called drag coefficient which replaces 

an integral involving the flow velocity far and close to the boundary 
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layer [5.?] i.e. the expression for the drag force P 
drag ' 

00 . . 2 

^drag " P dn . . . (5.51) 

(where p is the mass density of the fluid, v is the fluid velocity 

far from the body, v, is the fluid velocity within the boundary layer, 

d is the diameter of the cylinder and is the direction perpen-

dicular to the surface of the boundary layer) can be substituted by 

the following expression [s.?] : 

V* 
^drag ~ ^ 2 ^d . . . (5.52) 

where represents the integral in equation (5.51) and is called 

the drag coefficient; the other parameters have previously been 

defined. has been determined experimentally for steady flow 

conditions; it depends on the shape of the structure and the number 

of Reynolds (R^ = Vgd/y , in which y is the kinematic viscosity 

of the fluid). 

The values of obtained for cylinders show a great scatter; 

for example, in [5.16] , it is reported that varies between 1.0 

and 1.4 , meanwhile in [517] a value of = 0.5 is recommended. 

Another author [Sjs] has suggested = 1.0 whereas in [5.19] a mean 

value of Kj 1.05 is proposed. In practice,,the higher values of 

are associated to slender members, which, combined with large 

values of the fluid velocities produce large drag forces. 

5.3.3 Inertia loads (d/Wg) > 0.2 

When a body is submerged into an unsteady, non-uniform, viscous 

fluid flow, in addition to the drag forces discussed in the previous 

section, an inertia force is observed. This inertia force is gene-

rated by the difference of relative velocities existing between the 

body and the fluid flow. The existence of this inertia force is 

confirmed when studying a simpler case such as the one associated to 

a vertical cylinder travelling with uniform velocity in a stationary 

fluid. By using potential flow theory (Section 5 .2 ) the fluid 

velocity distribution can be found, and the total kinetic energy of 

the fluid per unit length of cylinder can be evaluated. This 
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kinetic energy is equal to a mass of fluid associated to the volume 

of the cylinder multiplied by the square of the velocity of the 

fluid [5.7J ; the mass of fluid into question is known as the "dis-

placed mass . The total kinetic energy in the system is equal to the 

kinetic energy of the fluid plus the one generated by the movement of 

the cylinder. In this case it can be shown |\7 J that the mass involved 

is equal to the mass of the cylinder plus the displaced mass. 

From the case described above, when considering a fix cylinder 

immersed in an accelerating fluid, the inertia force, P. , required 

by the cylinder to keep its equilibrium position is equal to the mass 

of the cylinder, , plus the displaced mass, , multiplied by 

the fluid acceleration, v . For this case [5,7] ; therefore; 

Pin - (%c + Mf) V 

= c&y) V . . . 0.53) 

where is the so-called coefficient of inertia (equal to 2 in this 

theoretical case) and is the volume of the cylinder. The other 

parameters were previously defined. The inertia coefficient K 

depends on the shape of the immersed part of the body and the flow 

characteristics around the body. Its theoretical evaluation becomes 

a difficult task even for relatively simple geometrical shapes; 

therefore, experiments have been carried out to compute K , For 
m 

example, for cylinders the following values of have been 

suggested: in I.5 ; in [518] ILO ; in [5I9] an 

average value = 1.4 , and finally in [516] 0.5 < < 2.5 . 

5.3.4 Morison et al. equation 

In what is -by now- a classical paper [5J20j Morison et al. sug-

gested that the force exerted by a fluid on an accelerating cylinder 

could be computed as the superposition of a drag force plus an inertia 

force. The main assumption which is implicit in this formulation is 

that the characteristic dimension of the cylinder is such that the 

flow field is not disturbed by the presence of the immersed body. 
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Therefore, the total force per unit length, P (t) , of a fix 
w 

cylinder immersed on an accelerating fluid can be computed by the 

following expression: 

P^Ct) = p v + i Kj p d v|v| . . . (5.54) 

where all the terms have been previously defined when equations (5.52) 

and (5.53) were introduced. It is worthwhile to remark that the 

symbols v and v stand for the fluid acceleration and velocity 

respectively as if no structure was immersed in the fluid. If in 

equation C5.54) the following terms are introduced: 

V = C"^^) X 1 meter 

Cm" P V . . . (5.55) 

Cd= i KdPd 

equation (5.54) can be rewritten as follows: 

Pw(t) = V + Cj V . . . (5.56) 

If the displacement of the cylinder is taken into consideration, it 

can be shown that equation (5.56) can be written as follows: 

^w^^^ " ^m ^ ~ (Km " P V " + 

. . . (5.57) 

where u is the body acceleration, 

5.3.5 Diffraction loads (d/A) > 0.2 

When d/A > 0.2 , i.e. when the characteristic size of the body 

submerged in the sea is large compared to the length of the waves, 

the diffraction effects become important and dominate the resulting 

force regime [5Jl4J • For the case of plane waves propagating in a 

certain direction, diffraction occurs when the waves reach the body 

and the flow field is modified by the waves reflected on the body. 

This means that the resulting flow field is made up of the combination 
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of incident and reflected waves instead of incident waves only as 

it is assumed in the Morison equation. 

Diffraction theory 

Most of the mathematical models which have been used to study the 

diffraction effects on fluids [521,522,52)] have the following 

assumptions in common: the fluid is considered inviscid, incompres-

sible and irrotational; the resulting velocity field can be represented 

by the superposition of incident and diffracted velocity potentials 

I.e. 

" *i + *d . . . (5.58) 

where (p̂  is the resulting velocity potential and and ij) 

represent the incident and diffracted velocity potentials respectively. 

The potential <p̂  is linear and satisfies the Laplace equation, 

V (p^ = 0 , within the fluid region, as well as the following 

boundary conditions: 

a) The kinematic condition on the sea floor: 

= 0 
. . . (5,59) 

y = -D 
ay 

b) The kinematic condition on the surface of the body: 

3(f) rigid body 
__d ^ I 

3 0 1 . . . . (5.60) 

[u vibrating body 

where 0 is the direction normal to the surface of the body; 

c) The condition on the free surface: 

ir - o| . . . (5.61) 
'y = 0 

d) The radiation condition at a large distance from the body: 

• Kr.e.y) . C(6, r- 1 exp(iKr) , 0| 

'r 00 

. . . (5.62) 
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where r, Q, and y are the cylindrical coordinates of a point in 

the flow field. 

The solution of the system of equations made up by the Laplace 

equation and the b.c. a), b), c) and d) yield to the velocity 

potential from which the pressure field can be computed i.e.: 

3(f) 
P " -P BE . . . (5.63) 

and by integrating equation (5.63) throughout the surface of the 

body, the acting hydrodynamical forces can be computed i.e.: 

* 9 P . . . (5.64) 

where s represents the surface of the body. 

Solutions to the diffraction problem 

The solutions proposed for the diffraction problem in different 

works [1x21,5.22 , 5.23,524] can be divided into analytical, numerical 

and experimental; some of them will be described here. 

Analytical solutions 

The analytical solution to the diffraction problem stated by 

equations (5.58) - (5.62) represents a complex task and only a few 

solutions for simple body shapes have been obtained. For example, 

in ^dl] 4 solution was proposed for the diffraction problem of 

a single cylinder iamarsed in a fluid which propagates plane waves 

xn a direction,perpendicular to the longitudinal axis of the cylinder. 

The resulting horizontal force acting on a unitary length of cylinder 

is given by: 

P^Ct) = ^ + °> A ( % cos (wt - 6) 

Cosh C k D ) ^ 

where 
(5.65) 

. . . ( 5 . 6 6 ) 

t a n 6 = i l J 3 L _ 
, .nd. . . . (5.67) 
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In these expressions and are respectively j:he derivatives 

of the Bessel functions of the first and second kind,of order one 

with respect to their arguments; the other parameters have already 

been defined. 

Numerical solutions 

Among the numerical solutions which have been suggested for the 

diffraction problem there are two which have a wide acceptance, namely, 

a) the source distribution method [522,523,525] and b) the finite 

element method [5.24], 

The source distribution method makes use of the Green's theo-

rem to express the velocity potential at points in the fluid region 

as function of sources located on the surface of the body. These 

sources are considered to act at the center of N small plane sur-

faces in which the surface of the body is divided. The mentioned 

sources pulsate with the same frequency as the known incident wave 

[55]and its strength is such that the boundary condition represented 

by equation (5.60) is satisfied. The sources produce a disturbance 

of the incident field associated to the scattered wave which includes 

local effects (i.e. the added mass), as well as diffraction of the 

incident wave. Details of the computational aspects of the method 

are described in [5.22,523]. Once the diffracted potential (J)̂  is 

obtained, it can be linearly superposed to the incident potential 

pressure and forces follow by using equations (5.63) 

and C5.64) respectively. 

For example in [523] the previously-described technique has been 

used to study the diffraction effects on circular cylinders resting 

on the bottom of the fluid, for different combinations of the geo-

metric characteristics of the cylinders and the deep water regular 

waves. Among other results which were calibrated against experi-

mental ones, the following diffraction coefficients for the resulting 

horizontal and vertical forces and the overturning moments on 

circular cylinders were obtained in [5.23] : 

c, - 1 + 0.75 (^)i (1 - 0.3 [Zf!) . . . C5.S8) 

C 
y 

1 + 0.74 i c V ( | ^ for {1,48 Kr(^)}< 1 

1 + 0.5 Kr for {1.40 Kr(^)}> 1 

. . (5.69) 
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= 1.9 - 0.35 Kr . . . (5.70) 

where and are the coefficients for the horizontal 

and vertical forces and the overturning moment respectively; h and 

r are the height and radiusof the submerged cylinder. Equations 

(5.68) — (5.70) are valid for the following ranges: 

a) the three equations for h/d <0.6 

b) equations (5.68) - (5.69) for 0.3 < h/2r < 2.3 

c) equation (5.70) for 0.6 < h/2r < 2.3 

However, it is suggested that its validity may be extended to a wider 

range of values of h/2r and that for large values of h/2r. the 

values of and tend to the value predicted by the theory 

proposed in [5.21]. 

By using the suggestion proposed in [523] about identifying the 

diffraction forces as the result of a diffraction coefficient multi-

plied by the corresponding Froude-Krylov-force, expressions were 

obtained in [S26] for the horizontal diffraction forces on a circular 

cylinder P^Ct) , and on a caisson of square area P''(t). Further-

more, expressions to evaluate the overturning moments in the caisson 

produced by the diffraction pressures on its sides, M , and on its 
W] 

top, , were also obtained. These equations are: 

P^(t) = [prXiUjOrd/A)]v . . . (5.71) 

sinh (Kht) 

H ] a . . . (5.721 
K cosh OcD) 

where 

" CovfPSY H i--.- { sihh (Kh ) 
cosh (kD) 

+ ^ (1 - cosh [KhJ)}] a . . . (5.73) 

M' , V r cosh (Kh,) . 
W2(t) = C [pgY H {yB - - a}] . . . (5.74) 

< cosh (kD) 

t = length of the cylinder 

a sin 9j - sin 6 2 
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3 = Cos 8 ̂  + Cos 6 2 

Qj = KY - OJt 

8 2 = - KY - wt 

Jj is the Bessel function of the first kind with 

respect to the argument; 

Y is the length of the equivalent square section 

required to obtain the circular area of the caisson; 

hĵ  is the height of the caisson; 

The rest of the parameters were previously defined. 

Other results obtained in [523] were: a) the interaction effect 

between cylinders is unimportant at radial distances larger than two 

cylinder diameters; b) the effect of currents in the North Sea on the 

hydrodynamical forces on offshore gravity platforms is negligible; 

c) as a consequence of b), the drag forces associated to the dif-

fraction effect are very small compared to the inertial forces and 

therefore the former can be neglected; d) the difference on the 

hydrodynamical forces using the linear theory and the Stokes V 

order theory, is small for typical North Sea conditions. 

The finite element method has also been used to solve the 

diffraction problem stated by equations (5.58) - (5.62). In this 

case both the fluid and the body are discretized by using standard 

two and three dimensional finite element techniques [5-24,5.27̂  , The 

fluid part of the domain is usually divided into different sub-

domains to separate the regions where the incident and the diffracted 

potentials apply. The coupling of finite elements with analytical 

and source distribution methods, [5J?4] , and infinite elements [5.27] 

have also been proposed to solve wave diffraction problems. The 

results obtained with this technique agree within reasonable limits 

with the source distribution method results, but the computational 

costs are larger in.the former. 
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Experimental results 

Several experiments have been carried out to study the diffraction 

problems as the ones already mentioned above, reported in [523] . In 

general, the results obtained are in good agreement with some 

diffraction theory [5.2lJ predictions [5.22,5.23,5.25] , The main 

differences have been found in the vertical forces but this seems to 

be inherent to the models used [5.23] . 

5.4 Wave forces used in this work 

In Section 5.1, the wave loading regimes to which a concrete 

gravity platform could be subjected were mentioned. Due to the 

characteristic dimension and shape of its elements, the dominant 

loading regimes on a e.g.p. are the inertia and diffraction ones. 

The drag loading regime can be neglected for this type of structure 

because its contribution to the total hydrodynamic load is very small 

compared to the inertia and diffraction loads [5.9j. The inertia 

force to be used in this work corresponds to the inertia term of the 

Morison equation,expressions (6.6) or (5.7). It will be applied to 

compute the forces on the length of the towers which satisfy the 

condition d/W^ >0.2 . The loads acting on the lower part of 

the towers and the caisson, which fall into the ratio d/A > 0.2 

will be computed by equations (5.22) - (5.23) i.e. through a 

diffraction coefficient multiplied by the corresponding Froude-

Krylov force. The choice of those equations is based on the following 

reasons; a) the satisfactory agreement they provide when compared 

with experimental results [5.23]; 1,^ computational cost 

compared with the full source distribution method or the finite 

element approaches [5.2|] . 
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6. DYNAMIC RESPONSE OF A CONCRETE GRAVITY PLATF0RI1 SUBJECTED TO 

SEISMIC AND WAVE LOADING. 

6.1 Introduction 

The dynamic response of a e.g.p. subjected to seismic loading 

and wave loading can be obtained by first formulating the governing 

equations for the cases under consideration and then applying numer-

ical methods to solve those equations. The first part could be a-

chieved by modelling the dynamic characteristics of the e.g.p. and 

its surrounding environment. The latter includes the idealization 

of the soil media. The modelling of the wave environment and represen-

tation of the seismic activity for the site where the structure is 

located are also necessary to establish the governing equations. 

The modelling of the structure and the soil idealization were 

presented in Chapters 2 and 3 ; the seismic and wave loadings were 

the subjects of Chapters 4 and 5, respectively. Based on these 

chapters, the governing equations for a e.g.p. under those loadings 

are formulated in this chapter. The current techniques utilized to 

solve those equations are also presented herewith. 

Taking into consideration that the e.g.p. is idealized as a 

linear structural system (see Chapter 2), the computation of the 

dynamic response for this system under arbitrary load, when its 

base rests on rigid soil and flexible soil is treated in 6.2 and 

6.3 respectively. The particular case of a e.g.p. resting on a 

rigid soil and subjected to seismic load and wave load is presented 

in 6.4 . Finally, the case of a e.g.p. under the same types of 

loading but considering the flexibility of the soil is the subject 

of 6.5 . 

^ Dynamic response of a linear structural system fixed to a rigid 

soil and subjected to an arbitrary load 

The dynamic response of a linear system subjected to an arbi-

trary load may be obtained by solving the equation of dynamic equi-

librium, which represents the forces acting on the system. Examples 

of these types of equations are the governing equations for a discre-

tized structural system introduced in Section 2.2 i.e.: 

M y + (;y + K y - gCt) . . . (6.i) 
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As it was mentioned in that section, M , £ , and K stand for the 

mass, damping and stiffness properties of the structural system 

respectively; the vectors U , U , U and P represent the acceler-

ation, velocity and displacement of the system and external loading 

respectively. Equation C6.1) is valid for linear and nonlinear 

systems but in this case it will be associated to a linear structural 

system i.e. a system with linear dynamic properties and subjected 

to a load which can be described through a linear mathematical expres-

sion. 

The solution of equation (6.1) can be achieved in the time 

domain or in the frequency domain. The choice of the domain in 

which the solution is obtained depends on several factors such as 

the characteristics of the dynamic properties of the system, the 

number of degrees of freedom used for the discretization and the 

time characteristics of the external loading. The accuracy and 

the cost of the procedure adopted should also be considered in the 

choice. 

6.2.1 Modal superposition method 

As the principle of superposition holds for a linear system, 

a numerical technique widely used to solve equation (6.1) is the 

so-called modal superposition method [6.l]. This technique is 

valid in both time and frequency domains, Through it, the response 

of the system expressed by the vector of displacements U is 

computed as follows; 

BCt) . R YCtl , . . (6.2) 

where R is the modal matrix and Y is the vector of normal 

coordinates. R_ can be obtained by solving the eigenvalue 

problem associated to equation (6.1) i.e.: 

|K - Wg M I = 0 . . . (6.3) 

s = 1, 2 n 

The solution of equation (6.3) provides the undamped natural 

frequencies of the system, , and the associated modal vectors 
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R . The modal matrix R is formed by the vectors R ; in 
n.s — "'S 

equation C6.3) n stands for the number of degrees of freedom 

used to discretize the system. The elements of the normal 

coordinates vector, Y , are computed by solving the n simple 

degree of freedom system equations, resulting from the application 

of the orthogonality properties of ^ with respect to M and 

K i.e.; 

M* = R* M R = I . , . C6.4) 

K* = R^ K R = n* . . , C6.5) 

and by assuming•that: 

C* = R^ C R = C . . . (6.6) 

where !_ is the identity matrix, and ^ are diagonal 

matrices whose elements are and 2E w respectively. E 
s s s ^ •' s 

is the fraction of critical damping for the sth mode [6.l] . This 

means that a system of n equations associated to n simple 

degree of freedom systems is obtained by substituting equation (6.2) 

into equation C6.1) and premultiplying it by R i.e.: 

M* Y + C* Y + K* Y = P* . . . C6.7) 

or: 

\ 
s = 1, 2, ...,n 

where: 

P*(t) = Sg ECt) . . . (6.9) 

From the solution of equation (6.8) the elements Y^ of the 

vector Y are obtained. 

Once R and Y are computed, the vector of displacements U 

can be calculated by using equation (6.2). A very important 

feature of the modal superposition method is that for most of the 
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structural systems considered in practice, the contribution of the 

high frequency modes to their dynamic response is very small [6.l] . 

Therefore, it is only necessary to solve p(p«n) equations of the 

system represented by equation (6.8) to obtain a satisfactory degree 

of accuracy in the response. 

Solution of the equation of motion in the time domain 

The solution in the time domain of the sth equation of the 

system of equation (6.8) can be obtained by using any of the 

following methods: a) the Duhamel integral [6.1J , b) the step by 

step techniques [6.2] . The main features of these methods will 

be briefly discussed here. 

a) The Duhamel Integral: 

It can be shown [6.1j that the solution of equation (6.8) for 

an arbitrary loading pjCt) can be expressed by the convolution 

integral: 

Yg(t) - / P*(t) h (t - T) dx (6.10) 

where 

expC- SgWgt) sin u/t . . . (f.u) 

is the unit impulse response function and 

(4 " "L (A - Cf)2 's - Sg/" . . . C6.12) 

is the damped natural frequency of the sth mode. 

Equation (6.JO) has to be numerically integrated by using 

methods such as the one proposed in [6.3] . A shortcoming of this 

method is that the integration interval used should be small for 

high frequencies, in order to obtain accurate solutions. 

b) The step by step technique: 

This name has been given to the numerical techniques which are 

based on the finite difference method pL2] . An example of these 

kinds of techniques is the g method of Newmark[6.2] . In this 

method the displacement of the system represented by equation (6.8) 
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at time (t + At) is expressed in terms of the value of its velocity 

and acceleration at time t , the value of its acceleration at time 

(t + At) and certain coefficients. The scheme requires to make some 

assumptions concerning the behaviour of the system at time (t + At); 

it is also necessary to know its initial conditions. Other similar 

techniques are described in . 

The main difficulties found when applying these kinds of tech-

niques are related to the stability of the schemes used and the in-

troduction of the so-called numerical damping on the system [i.i] . 

G"2.3 Solution of the equation of motion in the frequency domain 

The solution of equation (6.8) in the frequency domain may be 

obtained by using the so-called direct solution method in the frequency 

domain. With this method the response of the system expressed by 

its displacements is first computed in the frequency domain and then 

may be transformed to the time domain [̂6.lJ . The procedure requires 

to express the velocity and the acceleration of the system and the 

time dependent load in the frequency domain; this can be achieved 

through the Fourier transform. 

It can be shown [6.1] that the solution for the sth of equation 

(6.8) is given by: 

OO 

Y (t) = i - Y (w) exp(ia)t) dw . . . (6.13) 
2tt 

where 

YgCw) = H^Cito) P*(w) . . . (6.14) 

In equation (6.14) ^gCw) is the Fourier transform of Y^(t); 

Hg(ia)) represents the complex frequency response (c.f.r.) of the 

system and P*(w) stands for the Fourier transform of P*(t) i.e.: 

00 

Yg(w) = / Yg(t)exp(-iwt)dt . . . (6.15) 
—00 

s [1 + (g-)' + g j 

00 

P*(w) = / P*(t)exp(-iwt)dt . . . (6.17) 
—00 



89 

It is convenient to keep in mind that H^Ciw) and h^Ct) form 

a Fourier couple and that the former can also be written as follows; 

Hg(iw) = |Hg(iu))| expCif) . . . (6.18) 

|Hg(iw)| = {[l } 2 . . . (6.19) 

and o c- JiL 

m -1 S 
^ = tan - . . . (6.20) 

1 _ JiL 
% 

In equation (6.18) |Hg(iw)| is the amplitude of the c.f.r. and Y 

the phase angle. If equation (6.14) is replaced in equation (6.13) 

the term — d e f i n e s the amplitude per unit of frequency of the 

load component at frequency w 

In practice equations (6,13) and (6.14) are only solved for 

a reduced number of frequencies w. . This is valid because outside 

a certain frequency band the contribution of the terms — 

in those equations is nil. Once equation (6.13) has been solved 

for the chosen number of normal coordinates p , the displacement 

Ug can be computed through equation (6.2), 

From the above paragraphs, it can be seen that the direct 

solution method in the frequency domain could be applied directly 

to equation (6.2) if this is convenient for the analysis at hand. 

In this case equation (6.14) is related to the original discretized 

system, i.e. to the displacements U instead of the normal coor-

dinates , therefore, the resulting expression is: 

M + io) _C + k} U(w) = P(w) . . . (6.21) 

where U(w) and P(w) are the Fourier transforms of U(t) and 

P(t) respectively. Equation (6.21) represents a system of n 

complex algebraic equations. After this system of equations has 

been solved the solution in the time domain can be achieved through 

the following equation: 

UCt) =. ^ / y(w) exp(iwt)dto . . . (6.22) 
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To avoid the solution of the whole system of equations (6.21) and 

C6.22), (which for some cases is computationally expensive) the 

modal superposition technique can also be applied; in this case 

the expression corresponding to equation (6.2) is; 

U(w) = R Y(w) . . . (6.23) 

where R is the modal matrix discussed in Section 6.2.1 and Y(w) 

is the vector of normal coordinated in the frequency domain. Once 

equation (6.23) is substituted in equation (6.21) and the result 
T 

premultiplied by R the solution in the time domain can be deter-

mined through equations (6.14), (6.23) and (6.22). 

6.3 Dynamic response of a linear structural system resting on a 

flexible soil and subjected to an arbitrary load 

The dynamic response of a linear structural system resting on 

a flexible soil (in what follows, this system will be referred to 

as a soil-structure system, i.e. s.s.s.) under an arbitrary load 

may be computed by combining the dynamic properties of the struc-

ture, the corresponding properties of its soil-foundation system and 

the dynamic load. If the structure is modelled as proposed in 2.4 

and the soil-foundation system is represented by an impedance func-

tion as the one presented in 3.3 , the governing equations for 

the s.s.s. can be formulated for the loiad under consideration. 

It can be shown {6.^that by considering the dynamic equilibrium 

of both the discretized structure and the idealized soil-foundation 

subsystems, the governing equations for the s.s.s. can be written 

as follows: 

Mo Ho + 5. H. + ^0 K. - !o(« • • • w-2'') 

In this equation Mg , £(, and Kg represent the mass, damping 

and stiffness of the s.s.s. and Ug , , Ug are the acceler-

ation, velocity and displacement of the system respectively. Pg 

is the vector of applied loads. Equation (6.24) is similar to 

equation (6.1), however, the vector and matrices of the former have 

extra elements which take the flexibility of the soil into account. 
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Therefore the vector U (as well as U„ and U„ ) is formed by 

the degrees of freedom of the structure resting on rigid soil, u: 
plus the degrees of freedom of the idealized foundation, U* 

Accordingly to this, the matrices ^ and as well as 

Pg(t) have elements which correspond to those degrees of freedom. 

From C6.24) it follows that consists of the relative 
fS, " 

displacements of the nodal points with respect to the foundation as 

well as the slopes associated to those displacements. 

Therefore, the dimension of U® , n® is equal to In, where n 

is the total number of nodes used to discretize the structure. If 

the degrees of freedom considered for the idealized foundation are 

its horizontal translation, u^ , and its rocking 6^ , and their 

interaction is neglected, see fig. 3.2, the explicit form of equation 

(6.24) is given by; 

M §2 ' Si c 0 

i f " ^ + 0^ c 

'xj' _ 
.. 

i " v 2' 
0 

K 0 0 
' 4 

+ k 
xs 

0 

0^ 0 

xs 

/ .s\ 
U, 

{ Uq > 

In equation (6.25), M 

(6.25) 

and K are the mass, damping and 

stiffness matrices for the structure on a rigid soil respectively. 

In the same equations, the products and BgGg represent 

the inertial forces of the translational and rotational degrees of 

freedom, due to the foundation horizontal displacement and its 

rotation about an axis through the center of gravity of the foundation. 

It can easily be shown that: 
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Bj - 0 0 . . . O] 

. . . #.26) 

Sl-fi.'-, m,, m,,h, ... »2 . _ . ,2n_,hn " , „ , J 

. . . (6.27) 

where represents the ith lumped mass, h^ the height of its 

associated node with respect to the center of gravity of the found£ 

tion, and n is the number of nodes. It can also be shown [6.^ that: 

n 
I 

i=l 
= Z mjj + . . . (6.28) 

n 
mj = E m-^h^ . . . (6.29) 

i=i 

+ I. + * mjjhi . . • (6.30) 
i=i i=i 

j = 2i - 1 

where and are the equivalent mass and mass moment of inertia 

of the soil-foundation subsystem respectively. The contribution of 

the soil to mg and 1^ can be computed by using equation (8.17 ) 

and (8J.8 ) respectively. stands for the ith centroidal moment 

of inertia of the masses of the structure. Cjg and kjg ( j=x,9) in 

equation (6.25) can be computed by using equations (3.14) and (3.13) 

respectively. 

The elements of represent the nodal loads acting on the 

structure. Concerning and P^ , they stand for the horizontal 
0 0 

load and the moment applied at the center of gravity of the foundation. 

From equation (6.25) it can be seen that the extra elements of 

^ and Kg are frequency dependent ones; due to this, the solution 

of equation ( 6.24) is relatively complex compared with the solution 

of equation (6.1). The methods currently in use to solve equation 

(6.24) are the modal superposition method and the direct solution 

method, both introduced in 6.2 . 

As the modal superposition method is strictly applicable to 

time invariable systems which have classical normal modes [6.^ , 
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some assumptions with respect to ^ and ^ have to be made in 

order to apply it to solve equation (6.24). With the direct solution 

method the system of equations (6.24) is expressed in the transformed 

field (Fourier or Laplace), and the resulting set of algebraic equa-

tions Cas many as the number of degrees of freedom considered) has 

to be solved for each frequency of excitation. Finally in order to 

obtain the solution in the time domain the use of the inverse Fourier 

Cor Laplace) transform is required in the latter method. An outline 

of both methods for solving equation (6.24) is given in 6.3.1 and 

6.3.2 . 

6.3.1 Modal superposition method applied to soil-structure 

systems 

As mentioned above, the modal superposition method is strictly 

applicable to systems which do not change their dynamic properties 

with time. This is not the case for the s.s.s. represented by 

equation (6.24), in which both and have some elements 

which are frequency dependent. However, experiments with prototypes 

§4,6.7] have shown the existence of orthogonal modes of vibration 

in s.s.s. . This evidence, as well as the availability of 

frequency independent impedance functions {^6,6.9,610] have encour-

aged the development of approximate modal superposition methods to 

be used for the dynamic analysis of s.s.s. 

The approximate modal superposition methods proposed in 

different works {66,6J.l.,6Jl2,6l| make the following assumptions 

with respect to Kq . It is assumed that its elements k. 

(equation 3.13) are time invariant but that the value they adopt 

are functions of a chosen frequency. This frequency is usually 

taken as the fundamental undamped natural frequency of the s.s.s, 

[6.133. this frequency is not known at the outset, some iterations 

have to be performed on equation C6.31); the undamped natural fre-

quency of the superstructure attached to a rigid soil could be taken 

as the iteration starting frequency [6.13] . Another possibility 

with respect to the elements k^^ of ICg is to use frequency 

independent impedance functions [6-6] . 

Whichever way has been adopted with respect to the soil stiff-

ness elements k^^ , the s.s.s. undamped natural frequencies, 

Wg , and the associated modal shapes, R° , can be computed by solving 



94 

the following eigenvalue problem; 

M^l = 0 . . . 05.31) 

Once equation (6.31) has been solved, the s.s.s. represented by 

equation (6.24) can be transformed into an equivalent system of N 

uncoupled single degree of freedom systems resting on a rigid soil 

by following the procedure outlined in Section 6.2 . 

The modal damping associated to each normal coordinate should 

include the contributions of the damping of the structure (section 

2.4) as well as the soil damping (Sections 3.2 and 3.3). Several 

suggestions have been made to estimate the modal damping of s.s.s. 

For example, in [6j6,6J1̂  612 ,6JL3] the Jacobsen energy ratio criterion 

§14] was applied to calculate a weighted modal damping. In [6.I2] 

the modal dampings of a s.s.s. were computed by matching the modulus 

of the transfer functions of the exact solution and the modal solu-

tion. In [6.133 the classical method of modal analysis was used to 

compute the weighted modal dampings. The assumption made in the 

latter proposal is equivalent to the Jacobsen energy criteria used 

in ,6.11] ; therefore, it will be briefly presented here. 

The method suggested in [6.I3J assumes that the fraction of 

critical damping of the equivalent single degree of freedom systems, 

Cg , can be expressed by equation (3.19), i.e.: 

" W E" ' ' ' 
s 

where represents the energy dissipated per cycle when the s.s.s. 

vibrates with a frequency and modal shape R° ; is the 

maximum strain energy stored in the system, i.e.: 

" " " s S f C,(w|)Rg . . . (6.33) 

and 

E, - i " f j f 

1 2 T 
1 R° M R» 
2 s ~s —0 ~s 

, (6.34) 
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Notice that inequation (6.34) it is assumed that the elements k. 

of Kg have been computed for the fundamental undamped natural 

frequency of the s.s.s. . However, equation (6.33) refers to 

the sth modal frequency of the system. 

The modal vector R° can be partitioned into two vectors, one 

associated to the structure degrees of freedom, , and the other 

related to the foundation degrees of freedom, . By expressing 

as a linear combination of the modal shapes^of the same structure 

attached to a rigid soil R^ and substituting equations (6.33) and 

(6.34) into equation (6.32) the following result is obtained [(J.13] : 

Gig Cg + Xg . , . (6,35) 

where s = 1, 2, ...N 

B - g "i 
is ,nT » _ , ,_nT „ — . . . (6.36) 

« i M M. R«, m 

~ S —0 ~ s 

In equations (6.35) and (6.36) and w. are the fraction of 

critical damping and the undamped natural frequency of the structure 

resting on a rigid soil respectively; the matrix C^(w°) of equation 

(6.37) includes the elements Cj^ of the impedance function (see 

equation (3.14))which represents the soil damping. From equation 

(6.35) It can be seen that the fraction of critical damping for the 

sth mode of the s.s.s. is expressed as the combination of the 

fraction of critical damping of the structure on a rigid soil and 

the damping associated to the soil foundation system. 

Once the undamped natural frequencies, , and the fraction 

of critical damping, , of the s.s.s. have been computed by 

using equations (6.31) and (6.35) respectively, the following 

system of equations is obtained by considering the orthogonal pro-

perties of ^ with respect to ^ and by assuming that the 

product ^ CQ R° gives a diagonal matrix whose elements are 

0 

s ' ~ S 
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K <. 
il + 25' Y« + w"' Y" . P'(t) . . . (6.38) 

s = 1, 2, .,.N 
. T 

where P (t) results from the product R° P. . 
° —s 

Thia system of equations is similar to equation (6.8) but the former 

refers to a s.s.s. . Equation (6.38) can be solved by any of the 

numerical methods presented in Sections 6.2.2 and 6.2.3 . Finally 

the dynamic response of the s.s.s. can be determined by using the 

following expression: 

Hs • (6.39) 

In equation (6.39) the matrix is formed by the vectors R® ; 

the comments made with respect to the modal superposition method in 

Section 6.2.1 are also valid here. 

6.3.2 Direct solution method applied to soil—structure systems 

The direct solution method in the frequency domain introduced 

in Section 6.2.3 can also be utilized to solve equation (6.24). In 

this case the system of equations to be solved in the frequency 

domain is: 

{-w* Mg + iw C, + UgCw) = P^(w) 

. . . (6.40) 

where UgOu) and PqCw) are the Fourier transforms of Ujj(t) and 

pQ(t) respectively. As mentioned in Section 6.2.3 this system 

of N complex algebraic equations has to be solved for each excita-

tion frequency. The solution of equation (6.24) in the time domain 

can be obtained by an expression similar to equation (6.22) i.e.; 

1 " 
Eoft) - ^ / UgCw) exp(iwt) dw . . . (6.41) 

An important feature when the method is used to calculate the 

dynamic response of a s.s.s. such as the one represented by 

equation (6.24), is the fact that ft is not necessary to make extra 

assumptions with respect to the matrices ^ and ^ . This means 
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that the actual values of their elements c. and k. respectively 
js js 

are used in the evaluation of (w) for a given frequency. This 

can be of great importance when the impedance function utilized varies 

drastically with frequency. However, the direct solution method 

applied through equations (6.40) and (6.41) can be expensive, because 

the computational effort increases as the cube of the number of degrees 

of freedom (N) of the s.s.s. .[6.1^ . This shortcoming of the 

direct solution methods can be improved if the modal superposition 

in the frequency domain (equation (6.23)) is used as shown in 

Section 6.2.3. 

6.4 Dynamic response of a e.g.p. 'resting on a rigid soil 

The dynamic response of a e.g.p. attached to a rigid soil and 

subjected to wave load and seismic load may be computed by solving 

the equations of motion for this type of structure. If the discreti-

zation of the e.g.p. is carried out by using the scheme introduced 

in 2.4 , the resulting governing equation will be expression (6.1) 

The vector U of this equation consists of 2n degrees of freedom, 

n being the total number of nodes after applying the boundary conditions 

and 2 the number of degrees per node, i.e. u^ » u^ where the subindex 

t means that both the displacement and the slope at a node include the 

bending and snear deformations. 

Concerning the matrices M , C and K of equation (6.1), 

their elements correspond to the degrees of freedom included in U 

and can be computed as mentioned in Chapter 2. In this case M 

will be formulated as a lumped matrix (sections 2.3 and 2.4) 

and ^ results a banded matrix. ^ can be obtained by using 

equation (2.23), but here it will be assumed that it is such that 

equation (6.6) holds. The elements of P of equation (6.1) can 

be evaluated accordingly with sections 2.3 and 2.4 for the 

type of load considered. 

Once matrices M , C and K as well as P(t) are evaluated 

for the e.g.p. under consideration, its dynamic response may be 

computed by using the procedures outlined in 6.2 . 

6.4.1 Solution for seismic loading 

The right hand side of equation (6.1) represents a general 

dynamic load acting on a linear structural system. When this load 

is the result of a seismic perturbation i.e. an earthquake. 
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the terra P(t) of equation (6.1) is made of the so—called seismic 

loads. This type of loading was discussed in Chapter 4 , and the 

particular case of an inland structure subjected to an earthquake 

was presented in Section 4.6 , As it was shown in that section 

for the discretized structure, the resulting seismic load for its 

lumped mass is given by equation (4.43) i.e.; 

" *ii "g ' ' " (6:42) 

where the ith lumped mass and u^ is the ground accelera-

tion in the direction indicated in fig.2.2. Equation (6.42) is a 

part of the associated inertia force, the other part being given by 

the product m^^ u^^ , where is the acceleration of the ith 

mass with respect to the foundation of the structure. 

In the case of an offshore structure such as a e.g.p. sub-

jected to an earthquake, the resulting inertia forces are generated 

from the acceleration of a mass formed by the mass of the structure 

plus the mass of the displaced fluid. This is so because, as it 

was mentioned in Section 5.3.3 with relation to the inertia wave 

loading on a submerged body, the inertia force acting on an acceler-

ating body is equal to the mass of the body plus the mass of the 

displaced fluid, multiplied by the acceleration of the body. There-

fore, in the case of an earthquake acting on a e.g.p. the seismic 

load is given by: 

Ŝj. ' - (®ii + ®ii) "g • • • (6.43) 

where m^^ and were previously defined and m^^ represents the 

mass of the displaced fluid associated to the ith node. The other 

contribution to the resulting inertia force is given by the product 

('"ii ̂  • where u^ is again the relative acceleration of 

the ith mass with respect to the foundation of the structure. 

From the above paragraph it follows that for the case under 

consideration the governing equations are: 

M U + C U + K U = - M I I 

. . . (6.44) 
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where 

% - % + Wf . . . 05.45) 

The terms involved in equations (6.44) and (6.45) have been defined 

previously except for the matrix and the vector U . 

represents the mass of the displaced fluid, being a dil|^nal matrix 

whose elements are equal to m*. for the translational degrees 

of freedom in the direction of the ground motion, and nil for the 

other degrees of freedom. The components of U are equal to u 

for the translational degrees of freedom in the^direction of the ^ 

ground motion and nil for the others. 

Equation (6.44) can be solved by using any of the procedures 

presented in 6.2 . It may be noticed that the drag forces associa-

ted to the velocities of the structure have been neglected in the 

formulation of equation (6.44). The validity of this assumption is 

based on the discussion presented in Section 5.4 . 

6.4.2 Solution for wave loading 

The wave loading on a e.g.p. was discussed in Chapter 5. 

The different types of wave loading regimes to which this kind of 

offshore structure may be subjected were commented upon in that 

chapter. In Section 5.4 it was concluded that the main wave loading 

regimes for a c.g .p. are the inertia and diffraction ones. Another 

conclusion was that the drag loads acting on the c.g .p. structural 

elements could be neglected without noticeably affecting the 

accuracy of the value of the total computed wave loading. Finally, 

expressions for the inertia and diffraction wave loading regimes 

were introduced in 5.3.3 through 5.3.5 . 

The wave nodal loads on the discretized structure can be 

computed as follows. If its ith node belongs to beam elements which 

satisfy the ratio d/W, > 0.2 (where d is the diameter of the 

elements and % the wave height), the wave inertia load acting on 

the node can be evaluated by using equation (5.57), i.e.: 

••w ̂(t) - \ P Vi - (K^ - 1) p u^ 

. . . (6.46) 
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where, as mentioned in 5.3.4 , is the coefficient of inertia 

for the immersed body, P the mass density of the fluid, V . the 

tributary volume of the beam elements ending at the ith node, 

is the acceleration of the water particles at that node as if 

no body existed and u^ is the relative acceleration of that node 

with respect to the structure foundation. 

The second term of the right hand side of equation (6.46) is 

the displaced mass mentioned in Section 6.4.1 , i.e. m*̂ . u . 
11 1 

This term can be added to the associated term m..u. of the corres— 
11 1 

ponding row of equation (6.1); therefore, the final expression of 

the wave inertia load is: 

- Km P Vi Vi • • • « • " ) 

If the ith node of the idealized structure corresponds to 

beam elements in which the relation d/X >0.2 is satisfied 

(where A is the wave length), the associated diffraction force can 

be evaluated by using equation (5.71). For the horizontal diffrac-

tion force on the caisson, equation (5.72) should be used. Finally 

the overturning moments produced by the diffraction forces and 

acting at the center of gravity of the caisson, can be evaluated by 

using equations (5.73) and (5.74). 

From the above paragraphs it follows that the governing 

equations for the case under consideration are: 

I U + G U + K U = P^, . . . (6.48) 

where 

*I . M + V(Km - l)p . . . (6.49) 

P' 

Iw = { • • • (6-50) 

P' 

The elements of equations (6.47)-(6.49) have already been defined 

except for V and P^ , V is a diagonal matrix whose elements are 
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ti'he volumes, V^(i=l,...n) associated to each nodal point. 

The elements of can be emputed by using equations (6.47) 

or (5.71) depending on the node under consideration, i.e. if the 

inertia or diffraction regime apply, respectively. Notice that the 

components of M , equation (6.48), are arranged in such a way that 

the correspond to their respective wave nodal loads. Again, the 

solution of equation (6.48) can be achieved by utilizing the methods 

presented in 6.2 

Pynamic response of. a e.g.p. resting on a flexible soil 

The dynamic response of a e.g.p. resting on a flexible soil 

and subjected to seismic loading can be obtained by solving the 

associated governing equations. If the structural modelling of 

the e.g.p. is made as described in Chapter 2, and if the interac-

tion between its foundation and the surrounding soil is idealized by 

impedance functions as discussed in Chapter 3, the dynamic response 

of the e . g . p . can be computed by solving equation (6.24) for the 

type of load under consideration. 

As already mentioned in 6.3 , equation (6.24) includes the 

degrees of freedom of the structure, n® = 2n , plus those associa-

ted to Its idealized soil-foundation, n^ . Therefore, the dimension 

of the vector (also of and Uo) in this equation is equal 

to N = n + n . The degrees of freedom n® of correspond to 

the relative displacements of the nodal points with respect to the 

foundation, and the associated slopes at these nodal 

points. 

In this work Uq consists of the foundation horizontal trans-

lation and its rocking with respect to the axis z , accordingly to 

fig.3.3 . The coupling between these two degrees of freedom is 

neglected in the formulation. The contribution of the vertical 

impedance, fig,3.3 is not included in the present formulation. 

Both effects could be considered in equation (6.24) without repres-

enting major complications for its solution. 

Concerning the matrices ^ and of equation (6.24) 

they can be computed for the e.g.p. based on 2.4 and 3.3 

and accordingly with equation (6.25). The vector (t) in the 
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same equation has to be evaluated accordingly with equation (6.25) 

and the type of load being considered. The actual solution of 

equation (6.24) may be obtained by using the techniques presented 

in 6.3 . 

6.5.1 Solution for seismic load 

The expressions for the seismic loads which may occur in a 

e.g.p. resting on flexible soils are basically the same as for the 

e.g.p. resting on a rigid soil. Therefore, the discussion about 

them introduced in 6.4.1 is valid here, i.e. the elements of vector 

P®(t) in equation (6.25) are given by: 

= -Cm.. + mu.) Ug . . . (6.51) 

and the expressions corresponding to P and P. are given by: 
Uo 00 

. . . (6.52) 

*8o * i^i (mjj + ajj) hi "g - - - (6-53) 

j = 2i - 1 

where all the elements included in equations (6.50) to (6.52) were 

defined in 6.4.1 and 6.4.2 . Concerning the elements of Mo in 

equation (6.25) for the case under consideration, they include the 

contribution of the displaced mass for the nodes which correspond to 

the submerged part of the e.g.p. . Therefore, instead of m-• , 
d T ̂  

they should read mjj + mjj in equation (6.26) through to (6.30), 

j=2i-l(i=l,...n).The solution of equation (6,24) for seismic load 

can be achieved by substituting equations (6.51)-(6.53) into the 

former one and applying any of the methods introduced in 6.3 

6.5.2 Solution fax wave loading 

The wave loading for this case can be obtained by following 

6.4 because the comments expressed there also applied to a e.g.p. 

resting on flexible soil. Therefore^ the components of the vector 

PqCt) are as follows for this case: 
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P' 
, s , . . . 
Eo(t) f p' } . , . (6.54) 

w 
n 

= P (associated to m^) . . . (6.55) 

' ' ' (6-56) 

where the elements of ?= were defined in relation to equa 

tion (6.50). in equation (6.55) can be computed by 

using equation (5.7%). and NT are given by equations (5.73) 

and(5.74) respectively. Again, the*elements mjj included in 

equations (6.26) through to (6.30) for j=2i-l(i=l,...n) should read 

in this case (mjj + m^j) for the appropriate nodes. The solution 

of equation (6.24) for wave loading can be performed by using any of 

the schemes presented in 6.3 . 
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7. STATISTICS OF THE RESPONSE OF A CONCRETE GRAVITY PLATFORM UNDER 

SEISMIC AND WAVE LOADS ACTING SEPARATELY OR SDIULTA-

NEOUSLY 

7.1 Introduction 

In Chapter 6 the current techniques to solve, the governing 

equations of a discretized e.g.p. resting on rigid (and flexible) 

soil and subjected to seismic and wave loads were presented. The 

solution of these equations provides with the time history of the 

nodal displacements or other linearly-related structural responses. 

The random nature of the mentioned loads plus the assumption about 

the linearity of the systems lead to responses which are also random 

variables. Furthermore, the statistical characteristics of the res-

ponses can be derivated from those of the loading. This latter 

feature is very useful in the assessment of the safety of a struc-

ture, because the application of probabilistic methods to this end 

follows immediately. For example, the second-moment probabilistic 

structural safety analysis and design method [7.lJ requires the 

knowledge of the mean and variance of a structural response; these 

are used in combination with the variance of the random structural 

resistance and yield an estimate of the expected value of the struc-

tural response. 

The present chapter will be devoted to the derivation of 

expressions to compute the statistics of the structural response 

of the discretized e.g.p. (Chapter 2) under seismic loading (Chapter 4) 

and wave loading (Chapter 5) acting separately or simultaneously. 

Due to the type of loading considered in this work, special emphasis 

will be given to obtain expressions associated to the statistics 

of peak responses, in particular its mean and variance. 

In 7.2 the statistics of the response of a linear structural 

system subjected to a single application of a stationary load is 

treated. The long term statistics of the response of the same 

system but now under the action of two stationary loads acting 

simultaneously is the subject of 7.3 . In 7.4 expressions for 

the extreme value statistics of the response of a e.g.p. under 

seismic and wave loading and acting separately and simultaneously 

are presented. Finally, the influence of the uncertainties in the 
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knowledge of the dynamic properties of the e.g.p. on the 

statistics of its structural response is introduced in 7.5 . 

^ Statistics of the response of a linear system subjected to 

Stationary loading 

7-2.1 Single degree of freedom system 

In Chapter 6 the current techniques utilized to solve the 

equations of motion of a linear structural system were introduced. 

There, it was shown that the solution of the equation of motion of 

a single degree of freedom system subjected to a dynamic load can 

be expressed as the convolution of the unit impulse response function 

of the system, h(t - T) and its dynamic load, P(t) , i.e. 

equation (6.10). Furthermore, the same solution could be achieved 

in the frequency domain by multiplying the complex frequency response 

of the system, H(iw) , and the Fourier transform of the load, 

P(W) , as shown by equation (6.14). Since both h(t - T) and H(iw) 

represent the time invariant dynamic properties of the linear system 

in those equations, and considering that the load is a random station-

ary process, the statistical properties of its response, Y(t) , 

uniquely depend on the statistical properties of the dynamic load P(t) 

[Z2] . 
It can be shown [7.2] that if the dynamic load F(t) is a 

Gaussian ergodic process with a zero mean value, the response Y(t) 

will also be a process with the same characteristics as P(t) . The 

statistics of a Gaussian ergodic process can be completely defined 

once its autocorrelation function R(T) (or its associated power 

spectral density function) is computed [7 .2] . This is so because the 

parameter of the probability density function of a stationary normally 

distributed random variable is its variance which, for a zero mean 

value process, is equal to the autocorrelation function evaluated at 

~ ® for the response of the system Y(t) , 

Ryy(T) = E [Y(t) Y(t + T ) ] . . . (7,1) 

0 0 

Syy(w) = _/ Ryy(T) exp(-ia)T)dT . . . (7.2) 

0*y - R y y ( O ) - 7 Syy(u)dw . . . (7.3) 
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P [y(t)] = — r — exp(- y ) . . . (7,4) 
/2'iT Oy 2 a^y 

where , o^y stand for the autocorrelation function, 

the power spectral density function and the variance of the random 

variable, Y(t) . E represents the expectance of what is inside 

the rectangular parenthesis; equation (7.4) is the probability den-

sity function of Y(t). 

Another statistics of practical interest for the Gaussian ergo-

dic processes represented by Y(t) is that the probability density 

function of the peak amplitudes approaches the Rayleigh distribution, 

and as a consequence, the mean and the standard deviation of the 

extreme value of Y(t) are given by [7.3j : 

= ay {(2LnVr)T + , (7 5) 

(2Lnvr)2-

where ay is the standard deviation of Y(t) , i.e. the square 

root of o^y , and 

V . i_ V " " " i 
27r ^ ' " ' (7.7) 

Syy(w)dW 

and T is the time-interval of the process Y(t) 

7*2.2 Multidegree of freedom system 

The statistics of the response of a multidegree of freedom system 

as the one represented by equations (6.1) and (6.24) can be obtained 

from expressions similar to equations (7.1) to (7.7) if it is assumed 

that the components of the loading vector are Gaussian ergodic pro-

cesses. For the displacements, U , of the lumped masses or any 

linearly-related response, their statistics can be obtained by using 

the following expressions: 

RyuCr) = E [iKt) uT(t + T)] . . . (7.8) 
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1 # 
" IFF =n,(-iwndT . . . (7.9) 

- 2^w(0) = jTSyyO^dw . . . (AlO) 

" 2uu {(akA%)i + °'5772 ) 

C2L^aOT 

0*1 - 1 . . . Or.12) 
»̂ 6 C2LnVT)T 

where j^^(t) , ^^(w) , are the correlation matrix, 

the cross spectral density function (c.s.d.f.) matrix, the covariance 

matrix and the standard deviation matrix of the displacements, U(t) , 

respectively. Equations (7.11) and (7.12) provide with the mean 

and the covariance matrices of the extreme value of the displacements 

UCt) J the matrix ^ in the same equations is computed from: 

' 

V 1 [ -L i . . . ( 7 . 1 3 ) 

^ 7 s (w)dw 
_00 -liu 

In this case the term T stands for the duration of the loading P(t). 

A typical element of the covariance matrix, equation (7.10), can be 

computed as follows: assuming that the solution to equation (5.1) or 

(6.24) is expressed by equation (5.2) (i.e. using the modal super-

position method) the displacement u^ can be calculated by 

= ifA,... ,m 

where r^j is the modal amplitude of the £th mass in the j th 

mode and corresponds to the £th row, j th column of the modal 

matrix R . The cross correlation function for the responses u^ 

and u_ is: 
in 

E Um<t + 
X. m 

n n 
® Cjli k=i^£j r̂ok + T)] 



109 

-jf. + 

. . , (7.15) 

Substituting equation (6.10) into equation (7.15), it can be shown 

that the latter can be written as: 

n n 00 oo 

' jEi k=i -m ^kCTg) 

X R . .(T - Tj + dTg . . . (7.16) 

where Tj , tg are dummy time variables and 

I . 

V P S ' " ' • + . . . (7.17) 
j k 

is the cross correlation of loads K and which can be computed 
J ^ 

by using equation (6.9). 

Substituting equation (7.16) into the appropriate element of 

equation (7.9) and considering the relationship between h^(t) and 

H (ioj) (mentioned in 6.2.3 ), the c.s.d.f. for displacements u 
s 3o 

and u is obtained: m 

• j h kii ' i j V W ' " ' 

£ m -J J 3 k 

. . . (7.18) 

where H(iw) is given by equation (6.18) and H*(iw) is its 

complex conjugate. The c.s.d.f. for loads P|(t) P^(t) i.e. 
So*p*(w) is given by: 

j k 

Sp*p*(w) " iw_I Rp*p*(t) exp(-iWT)dT . . . (7.19) 
j k ^k 

Finally, substituting equation (7.19) into the corresponding element 

of equation (7.10) leads to the covariance of the displacements u^ 

and u , i.e. 
m 

. . . (7.20) 

Expressions of the same form as equations (7.18) and (7.20) can be 
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obtained for the statistics of other structural responses of interest 

which can be expressed as a linear superposition of the normal coor-

dinates Yg(t) ; i.e. if a(t) is the response of interest, the 

condition is that a(t) can be expressed as follows: 

n 
a(t) = E b Y (t) . . . (7.21) 

3=1 S S 

where the b's are known coefficients which link a(t) with Y (t). 
s s 

It can be shown that in this case the covariance of the response a(t) 

is given by: 

. . . (7.22) 

The limits of the integrals in equations (7.20) or (7.22) range 

from to +<» ; however, the actual dynamic loading is usually 

restricted to a band of frequencies of practical engineering interest, 

let us say from to . Therefore, those limits can be 

changed as follows: to and +<» to , without loosing 

accuracy in the final result of the integration, 

7.3 Long term statistics of the extreme value of the response of a 

linear system subjected to stationary loads acting simultaneously 

7.3.1 Single degree of freedom system under a single type of 

loading 

Equations (7.5) and (7.6) provide with the mean and the standard 

-deviation of the extreme value of the response Y(t) for a single 

application of the load; therefore, the term T in those equations 

refers to the duration of such loading. However, if the load is 

acting for a number of times during a period of time Tq with 

Tg » T , equations (7.5) and (7.6) will not yield the extreme 

statistics of Y(t) for Tq . In this case those statistics could 

-be obtained by following [7.4] i.e.; 

= Y? + P oy^ . . . (7.23) 

- q . . (7.24) 
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where and ay^ are the mean and the standard deviation of the 
0 0 

extreme value of Y(t) for the period of time Tg ; Y and ay^ 

represent the mean and the standard deviation of the response Y(t) 

for the load acting during time T . The parameters p and q in 

equations (7.23) and (7.24) are the mean and the standard deviation 

of the normalized variate, 0 = (y^ - Y^j/Oy , respectively. 

The former two parameters are function of the power spectral 

density function of Y(t) , S^^(co) , the occurrence rate of the 

loading, Vp , the period of time T^ and the instantaneous 

intensity distribution of Y(t). If it is assumed that the load forms 

a filtered Poisson process i.e.; a) that the load occurrences during 

the length of time Tq follow, a Poisson process, b) that the load 

intensities at various occurrences are statistically independent and c) 

identically distributed random variables;the parameters p and q 

can be computed as follows: 

P = 

y fy (y)dy - Y 
To . . . (7.25) 

ay^ 

y* fy (y)dy - (?? + pcyr)*}? . . . (7.26) 
To 

where the expression for the probability density function f is 
y 

derivated in Appendix C . The rest of the parameters in equations 

(7.25) and (7.26) were previously defined. 

Single degree of freedom system under two different types 

of loads acting simultaneously 

In the case of two loads acting simultaneously on a single degree 

of freedom system during a time interval Tq such that Tg » T, 

where T is the duration of each loading, the extreme statistics of 

its response Y(t) can be evaluated with expressions similar to 

equations (7.23) and (7.24). Accepting assumptions a), b) and c) 

of Section 7.3.1 and making the following extra ones: d) there 

is a linear superposition of load effects, i.e. Y(t) = Y^(t) + Y2(t), 
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e) the responses Yj(t) and YgCc) associated to the loads P,(t) 

and Pg(t) are statistically independent |he mean and the standard 

deviation of the extreme value of Y(t) can be computed by [7.4] : 

2 - . 2 2 .1 
''l. • • • • (7-27) 

1 

2 
0%? = y? )* . . . (7.28) 

0 x- 1 £ 

where 

j . Pj 

J. . . . (7.29) 

"1 

jS. ° 

A 
. . . (7.30) 

and In equations (7.27) to (7.30) the parameters Y , a , p . 
i ^T- ^ 

i*̂ l,2 are associated to the responses of the system under 

loads , i=l,2 . The parameters p^ and are evaluated by 

using equations (7,25) and (7.26). 

7'3'3 Multidegree of freedom system under a single type of 

loading 

The computation of the long-term statistics of a multidegree of 

freedom system under a single type of loading can be obtained by 

following the procedures underlined in Section 7.3.1 . The results 

obtained there can also be applied to the present case in which 

the statistics of the extremes of the response U(t) are seeked 

I.e.: 

" "T 2^ -"T • • • (7.31) 

Ewu = q* O . . . (7.32) 
^0 
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where IL and au are computed from equations (7.11) and (7.12) 
T T 

respectively, p and q are made with the p's and q's para-

meters corresponding to each degree of freedom. This means that 

once the vectors p and q are evaluated by using equations (7.25) 

and (7.26) with uuj(t) instead of y(t) as parameters, a typical 
extreme value statistics of the response u.. for a time interval 

33 
Tg can be calculated as follows: 

• • • (7-34) 

7.3.4 Multidegree of freedom system under two different types 

of loads acting simultaneously 

When two types of loading are acting simultaneously on a multi-

degree of freedom system, the extreme statistics of its response 

U(t) could be computed by following the assumptions made in Section 

7.3.2 . Therefore, the expressions equivalent to equations (7.27) 

and (7.28) are in this case the following ones: 

% 
0 

-2 "r, = . . . (7.36) 

where (U^i)and (_a u^^ i=l,2 are computed for the associated 

load Pj. , i=l,2 from equations (7.11) and (7.12) , the elements 

of the vectors p and q are evaluated for each degree of freedom 

using equations (7.29) and (7.30) respectively with parameters 

(t) instead of Y^(t) • It can be shown that the expressions 

corresponding to the extreme value statistics of the jth degree of 

freedom are given by: 

2 2 
+ Pij Z (o2u.,) 

(7.37) 
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2 
E (a^u..) 

jj'Tj (7.36% 

where ((u.,)_). and stand for the mean and variance 
j j i x j j "l 

of the displacement of the Jth node when the structure is under 

a type of load i for a time T . It should be noticed that p.. 
1] 

and q^j 1=1,2 in equations (7.37) and (7.33) are associated to 

the loads , i=l,2 and to the jth degree of freedom. 

7.4 Statistics of the response of a e.g.p. subjected to seismic 

and wave loading 

With the expressions already presented in 7.3 of this chapter 

plus the onesintroduced in chapters 4 to 6 the evaluation of the 

statistics of the response of a e.g.p. under seismic and/or wave 

loading could be obtained in a straightforward manner. This is so 

because the e.g.p. has been discretized in such a way that the 

governing equations for the structure supported on a rigid or 

flexible soil, i.e. equations (6.1) and (6.24) respectively, corre-

spond to multidegree of freedom systems. Concerning the loading, 

in Chapters 4 and 5 it was seen that both seismic and wave loading 

could be assumed to be Gaussian stationary processes, and that their 

occurrences could be associated to the Poisson process. From a 

physical point of view these types of loadings can be considered as 

statistically independent. Therefore, both types of loading satisfy 

the assumptions made in Sections 7.2.1 , 7.3.1 , and 7.3.2 , 

From the above paragraphs, it can be concluded that the 

expressions presented in Sections 7.2.2 , 7.2.3 and 7.2,4 can be 

-utilized to evaluate the statistics of the response of a e.g.p. under 

seismic and wave loading acting separately or simultaneously. However, 

equation (7.19) has to be determined for the type of load considered, 

7.4.1 Statistics of the response of a e.g.p. : seismic loading 

In this section, equation (7.19) will be derivated for the 

seismic loading. Equation (4.43) provides the expression for the 

seismic loading acting on a lumped mass. From this equation and the 

definition of the generalized load, equation (6.9), it can be con-

cluded that the jth generalized load associated to the discretized 

structure is given by; 
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. . . (7.39) 

It can be shown that by substituting equation (7.39 ) into equation 

(7.17) and this one into (7.19), the cross-spectral density function 

Sn*n*(w) is given by: 
PjPk 

i i , J . "^ij • • • <'•«•) 
J K g 

where is the power spectral density of the ground acceleration, 

examples of which can be seen in figs. 8,9 to 8.12. 

Once S» is computed and equation (7.40) is evaluated, the 

latter can be substituted into equation (7.20) and then it is possi-

ble to carry on with the calculation of the statistics of interest 

for the e.g.p. under consideration following Sections 7.2.2 , 

7.3.3 and 7.3.4 . 

7"4«2 Statistics of the response of a e.g.p. ; wave loading 

Here the expressions for the cross—spectral density function for 

wave loading, equation (7.19), will be derivated. In particular, the 

case of the inertia load (Section 5.3.3) will be treated in detail. 

As the case of the diffraction load (Section 5.3.5)can be obtained 

in a similar way, the resulting expressions will only be quoted. The 

inertia wave load for the ith lumped mass is given by; 

• • • (7.41) 
1 1 

and the jth associated generalized wave load by; 

- ii, r v. . . . (7.42) 
J 1 

substituting equation (7.42) into equation (7.17) gives; 

" G[iSi til lij 9m. + T)] 

. . . (7,43) 
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and putting (7.43) into (7.19) leads to: 

- i l A 

where r is the modal amplitude of the ith mass in the jth mode, 
ij 

T . cosh K(y. + D) cosh K(y^ + D) 

^ sinh^ (kD) 

and S^^(w) is the power spectral density function of wave heights 

which can be computed by equations (5.48.) or (5.49). 

For the diffraction forces the corresponding expression 

is: 

n h 
S, „,2 

. (7.46) 

where 

^ C* P A JjCvd^/X) , . , (7.47) 

p 4^ X Ji(nd^/X) . . , (7.48) 

Having computed expressions (7.4^t) and (7.46) the computation of 

the statistics of the response of interest of the e.g.p. can be 

carried out accordingly to Sections 7.2.2, 7.3.3 and 7.3.4. 

7.4.3 Statistics of the response of a e.g.p. : seismic and 

wave loading acting simultaneously 

The computation of the statistics of the response of a e.g.p. 

subjected to seismic loading and wave loading acting simultaneously 

can be achieved by applying the expressions presented in Section 7.3.4, 

Those expressions require the previous computation of the parameters 

included in equations (7.35) and (7.36) for each type of loading, i.e. 

the ones associated to the seismic loading and the ones to the wave 

loading, the derivation of which was presented above, i.e. in Sections 

7.4.1 and 7.4.2 respectively. 
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^ Statistics of the response of a e.g.p. considering uncertainties 

on its dynamic properties and on the excitation forces 

The expressions presented above to evaluate the statistics of 

the response of a e.g.p. subjected to seismic loading and wave 

loading include only the uncertainties on both types of excitations. 

However, there are other uncertainties associated to the imperfect 

knowledge of the dynamic properties of the structure under consider-

ation. For example, the uncertainties concerning the stiffness and 

damping characteristics of the structural materials. 

In this section, a scheme to take those uncertainties into 

consideration when evaluating the statistics of the response of a 

e.g.p. is presented. In [7.5] a procedure was suggested to compute 

an estimate of the nth statistical moments of the distribution of 

a function of random variables in terms of the first few moments of 

the later variables. The procedure consists in approximating the 

nth moment of the function from the Taylor expansion of the function 

about the expectation of the random variables [7.5] 

The case of a two-point estimate is of particular interest here 

because it allows to introduce the mentioned uncertainties in the 

computation of the mean and the coefficient of variation of the 

response of interest. It can be shown [7.5̂  that if this structural 

response, Y , is expressed as follows 

Y = Y(k,c,e) . . . (7.49) 

where k,c, and e are random variables which stand for the stiffness, 

the damping of the structure and the applied excitation respectively, 

the mean Y and the coefficient of variation V of the function Y 

are given by: 

Y . YCk) Y(c) Y(e) . . . (7,50) 

Ytk,c,e) 

Vy " {[1 + [l + Vy(c)]* [i + Vy(e^: - l}: 

. . . (7.51) 
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where 

Y(k) = 2 {Y(k t Ok,c,e) + Y(k -ak,c,e)}. . . (7.52) 

Y(k,c,e) = Y(k,c,e) . . (7.53) 

VyCk) 
{Y(k + ak.c.e) - Y(k - ak.c.e)} 

{Y(k + ak,c,e) + Y(k - ak,c,e)} 
. (7.54) 

, Vy(e) 

Y(k ±0k,c,e) and V^(k) are the mean value and the coefficient of 

variation of the response Y(k,c,e) evaluated for k = k ± (Jk , 

c = c and e = e respectively. The expressions for Y(c) 

and YCe) , V (e) are similar to (7.52) and (7.54) bu „ 

the mean values and the standard deviations of the corresponding 

parameters. Finally Y(k,c,e) in equation (7.53) corresponds to the 

mean value of the response evaluated for the mean value of parameters 

k, c, and e. 

The set of equations (7.50)-(7.51) and (7.31) to (7.34) can 

be used to obtain the statistics of the degrees of freedom of 

interest. A similar procedure could be followed to compute the 

statistics of other responses of the e.g.p. . 
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8. PARAMETRICAL STUDIES ON THE MAXIMUM RESPONSES OF A CONCRETE 

GRAVITY PLATFORM 

8.1 Introduction 

In order to implement the methodology introduced in the previous 

chapters to obtain the maximum responses of a c.p.n. under seismic 

and wave loading, a computer program written in Fortran was developed, 

A block diagram of the program is shown in fig. 8.1. 

As an example of the type of results which can be obtained with 

the program, the maximum expected responses of a e.g.p. under the 

mentioned environmental loads were computed. It was assumed that the 

return period of interest was 50 years. The maximum responses calcu-

lated include the effect of the imperfect knowledge on the properties 

of the structural material and the uncertainties surrounding the 

seismic and wave excitations. The uncertainties associated to the 

properties of the soil media were taken into consideration by varying 

those properties within an appropriate range. 

The topology of the e.g.p. selected for the study is shown in 

fig. 2.2. This geometry corresponds to a platform with two towers or 

could be associated to one half of a symmetric e.g.p. with four 

towers, fig. 2.1. The platform site, located in the North Sea, is 

shown in fig. 4. 4. 

The geometrical characteristics of the e.g.p. under consider-

ation and the uncertainties on the properties of the structural 

material are discussed in 8.2 . The properties of the soil media 

for the selected site, which characterize its dynamic behaviour are 

the subject of 8,3 . The uncertainties about the values of the 

seismic and wave excitations for the site shown in fig, 4,4 are 

introduced in 8.4 and 8.5 respectively. 

In 8.6 a parametrical study of the influence of the uncer-

tainties about E^ , as well as the idealization of the soil 

media on the free vibration characteristics of the e.g.p. was 

carried out. In 8.7 the effect of the mentioned parameters, as 

well as the uncertainties about the seismic and wave excitations on 

some characteristic dynamic responses of the c,g,p. were exam-

ined. The platform dynamic responses selected were the maximum 

•values of deck displacement, base shear force and overturning moment. 

In particular, the first two statistical moments of these 
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responses when the platform is under seismic and wave loads acting 

separately or simultaneously were computed. In addition, the 

influence of the caisson storage mass on the mentioned responses of 

the platform was studied in 8.8 . 

8.2 Selected concrete gravity platform and the uncertainties about 

the properties of its structural material 

The e.g.p. selected for this study is shown in fig. 2.2; 

as it can be observed, this topology corresponds to a platform with 

two towers or to one half of a symmetric platform with four towers, 

fig. 2.1. The general characteristics of the platform are the ones 

already mentioned in Chapter 2, i.e. it consists of a caisson, two 

or more towers and a deck. The platform site has been located in 

the North Sea, fig, 4.4'. As far as the uncertainties about the 

properties of the platform structural material are concerned, the 

variability of the elasticity modulus, , and the percentage of 

critical damping, , will be considered. 

8.2.1 Geometry of the platform under study 

The caisson is a reinforced concrete structure with rectangular 

shape in plant view and a height of about one third of the water 

depth. The towers are also reinforced concrete structures having 

tapered shape for the lower two thirds of their height and a 

constant diameter in the upper third,. The deck is made of steel 

girders and usually has a rectangular shape in plant. Some details 

of the geometry of the platform are given in Table 8.1. 

The structural discretization of the c,g.p. was performed 

accordingly with 2.4, i.e, the caisson was considered as a rigid 

block and the towers and deck were represented by beam elements, 

fig. 2.3. Seven elements of constant length were used to represent 

each tower, and the deck was idealized by one beam element whose 

stiffness was considered several times larger than the stiffness 

associated to the former elements. 

8.2.2 Uncertainties about the reinforced concrete elasticity 

modulus, E 
c 

From statistical studies [8,l] it has been found that the 
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value of Eg varies according to a number of parameters, i.e. it 

should be considered as a random variable. The results of these 

studies are such that the histograms of can be adjusted to a 

normal distribution pattern. The following values of its mean and 

coefficient of variation, C.V. , have been reported in p.lj : 

Eg = 2.2 X 10® to 3.6 X 10® (Ton/m?) 

. . . (8.1) 
C.V. of = 0,10 to 0,25 

In this work the lower limits of and C.V. will be used as a 

conservative measure of the E^ value which can be achieved in 

practice. 

8-2-3 Uncertainties about the critical damping. . of the 

reinforced concrete 

The value of is also a random variable as it has been 

shown in [8.2] . In this reference, a study of the value of g on 

real multistorey buildings was performed. The histograms obtained 

from experimental results were adjusted to lognormal or gamma 

distribution patterns, and the following values of g were found; 

Sg = 0.0426 

. . . (8.2) 
= 0.0323 

for small deformations, and; 

Eg = 0,0663 

. , . (8.3) 

= 0.1799 

for large deformations. 

In this work the values associated to the small deformations 

will be used, because only the linear elastic behaviour will be 

considered for this type of structures. 

8-3 Dynamic parameters of the soil media under the platform site 

In order to apply the soil structure interaction model discussed 

an 3.3.3., the following properties of the soil at the platform site 
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are required: mass density, , shear modulus, , and internal 

damping, . The shear wave velocity of the soil, , is nearly 

associated to shear modulus as it was shown in equation (3.7 ) . 

Finally, the contribution of the soil to the equivalent mass of the 

soil-foundation system has to be determined. The soil data reported 

in for a site located in the North Sea will be assumed to be 

the soil properties existing at the platform site (fig. 4.4). 

The soil media found up to a depth of 40 meters from the mud 

line are layers of sand, clay and silty clay with variable thickness. 

Four layers are clearly distinguished in this type of soils: a) a 

layer of sand about three meters deep (medium dense) with a negli-

gible shear strength; b) a layer of silty clay about 20 meters deep, 

whose undrained shear strength varies from 0.25 to 1.0 Kg/cm^; c) a 

seven meter layer of sand with an undrained shear strength of about 

4 Kg/cm^, d) a layer of silty clay of about 11 meters with an 

undrained shear strength of 4 Kg/cm^. 

On the basis of the characteristics of the soil medium described 

above, two different idealizations will be considered for it: a layer 

over a half space and a half space. For the former idealization, a 

layer of 23 meters deep was used. These idealizations of the soil 

media will be selected considering that enough information is 

available to compute their associated equivalent dampers and springs 

[8.4 - 8.5] . 

8.3.1 Mass density of the soil, Pg 

In order to determine pg for the two soil idealizations, 

a weighted average of the soil densities reported in fig. 7 of [8.3] 

was taken. These weights were obtained as the ratio of the depth 

of the selected layer to the sum of the depths of all the layers. 

The resulting mass densities were as follows: 

a) for the layer over a half space: 

Pg = 0.178 (Ton-sec*)/m^ , . . (8.4) 

b) for the half space: 

Pg = 0.163 (Ton-sec*)/m^ . . . (8.5) 
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8.3.2 Soil shear modulus, Gr 

The values of for the layer over the half space and the 

half space were computed by using equation (3.6), i.e. it was 

assumed that G = G^^^, taking into account that sand is the predom-

inant material in the soil media under study. The void ratios, e , 

for each idealization were calculated by using weighted averages (as 

the ones used to compute p ) of the voild ratios of the layers. 

The value of e for each layer was computed for the data on humidity 

content, W , reported in fig. 7 of {TS.3] and the following expression 

[8.6] : 

e = Sg X W . . . (8.6) 

where an = 2.7 was assumed as a typical value for sands. The 

following void ratios resulted frome these computations: 

a) for the layer over the half space: 

e = 1.280 . . . (8.7) 

b) for the half space: 

e = 1.043 . . . (8.8) 

The mean effective stress, , appearing in equation (3.5) was 

calculated by using the following expression ĵ 8.62 : 

2 

7 % (pounds/sq. inch) . . . (8.9) 

where , the soil vertical stresses, can be computed as follows: 

Oy = % (2 foeq)?' + 
^ eq 

where is the equivalent radius of the foundation, Y' is the 

absolute density of the soil, the total weight applied 

to the foundation and is the equivalent area of the foundation 

(see Table 8.1). The following values of a were obtained: 

a) for the layer over a half space: 

Ojjj = 37.84 (Ton/m*) . . . (8.11) 
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b) for the half space: 

0 = 33.07 (Ton/m^) . . . (8.12) 
m 

Finally, by substituting the values of e and for each 

idealization, the following values of G are obtained: 

a) for the layer over a half space: 

G = 7,490 (Ton/m^) . . . (8.13) 

b) for the half space: 

G = 11,603 (Ton/m^) . . . (8.14) 

The following values of will be used in this work: 5,000 , 

7,500 , 10,000 and 15,000 (Ton/m^). These values were selected 

in order to include the ones associated to both soil media ideal-

izations. 

' " / 
8.3.3 Shear wave velocity, Vg 

The values of V for the soil idealization can be obtained 
s 

by substituting the assumed values of and G^ into equation 

(3.7). The results were: 

a) For the layer over a half space: 

Vg = 214 m/sec^ . . . (8.15) 

b) for the half space: 

Vg = 255 m/sec^ . . . (8.16) 

8.3.4 Soil internal damping, 

A value of 0.05 for the hysteretical damping of both 

idealizations was assumed. This value was selected considering that 

the data given in [8.4]| is restricted to this value. However, this 

value agrees reasonably well with reports of experimental data on 

this kind of soils onshore [8.7] . 

8.3.5 Soil foisson modulus, v ̂  

The Vg used in this work was 0.25 in order to allow the 

«se of the results of 18.4]]. 
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8.3.6 Equivalent mass for the soil—foundation interaction 

model used 

The contribution of the soil media to the inertial properties 

of the equivalent soil-foundation system, fig. 3.3 , can be computed 

by applying the following expressions reported in 18.81 (based on 

[8.9]): 

= 0.095 . . . (8.17) 

I. - 0.240 (Ifoundacion'/BO ' ' ' <8-18) 

where m^ and Ig are the mass and mass moment of inertia of the 

virtual volume of soil and 

c _ 2 -Vs Mfounjation . . . (8,19) 

^ " 8 p( roeq): 

Be ° ^foundation . . . ( 8 . 2 0 ) 

" p( roeqJ 

By substituting the values of parameters included in equations 

(8.19) and (8.20) the following m^ and 1^ were obtained: 

a) for the layer over the half space; 

~ 2,486 (Ton-sec^)/in . . . (8.21) 

lo = 4.937 X 10® (Ton-sec*- m) . . . (8.22) 

b) for the half space: 

mq = 2,277 (Ton-sec*)/m . . . (8,23) 

Iq = 4.523 x 10® (Ton-sec*- m) . . . (8.24) 

8.4 Seismic excitation at the platform site 

The seismic excitation at the platform site represented by the 

p.s.d. function of ground acceleration, , was obtained by 

applying the seismic risk model discussed in 4.4 to the seismic 

information presented in 4.5 , Different and their 

associated pseudovelocity response spectra (Section 4.2.8-4.2.9) 

as well as their related ground spectra were computed for several 
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values of the return period. 

8.4.1 Expected maximum ground acceleration, amay , ground 

velocity, Vma-/- » and ground displacement, dmax , at 

the platform site for different return periods 

The value of the expected a , v and d for the 
max max max 

platform site are presented in figs. 8.2, 8.3 and 8.4 respecti-

vely. From these figures, it can be seen that the expected values 

and the dispersion of those parameters increase as the value of 

is longer, the increase being more important for ^max v^^v • 

The values obtained are similar to the ones reported in [ 8 . f o r 

other seismic risk studies in sites of the region. 

8.4.2 Expected ground and pseudovelocity spectra, , 

at the platform site for return periods of 50 and 500 

years 

The expected and at the platform site are shown in 

figs. 8.5 to 8.8 . The spectra resulting for return periods of 

50 and 500 years and a structural critical damping, ^ , equal to 

0.05, are shown in figs. 8.5 and 8.6 respectively. The spectra 

for the same return periods but for a g = 0.02 are shown in 

figs. 8.7 and 8.8 . The comments made in 8.4.1 about the 

expected values of a , v and d can also be applied 
^ max ' max max 

here. 

8.4.3 Expected power spectral density function of ground 

acceleration, > at the platform site for return 

periods of 50 and 500 years 

From the shown in figs. 8.5 to 8.8 and by applying 

to them equation(4.17), the p.s.d functions shown in figs. 8.9 

to 8.12 were obtained. As it would be expected, both the mean 

value and the standard deviation of increase for a longer Tg. 

It can also be observed that the maximum value of occurs within 

a band of frequencies limited by 5 and 6 (rad/sec). 

8.5 Wave excitation at the platform site 

In order to introduce the uncertainties surrounding the wave 

excitation, the uncertainties about the value of the wind velocity 

at 19.5 m. above sea level, W , which is one of the parameters 
19-5 
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of the power spectral density function of wave heights, S 
nn 

equation (5.44)), will be evaluated here. This can be done by 

evaluating the mean value, W , and the standard deviation, 
1 9 • 5 

OW , for the platform site shown in fig. 4.5 . 
19-5 

8.5.1 Expected maximum velocity, W , at the platform 

site for a return period of 50 years 

In [8.11] , it has been suggested that as for the peak gust 

velocities, their associated mean velocities appear to follow the 

extreme value distribution, i.e.: 

M ~ exp{-exp [-a(w - z)]} . . . (8.25) 

where w is a particular value of W and a and z are the 

parameters of the distribution; a provides a measure of its 

dispersion and z is the mode (most probable value) of the distri-

bution. The mean and the standard deviation of the distribution are 

given by: 

w = z + 0.5777/a . . . (8.26) 

0% = 1,282/a . . . (8.27) 

In [8.I2Q the most probable values of the height of the highest 

wave, , and its zero upcrossing period, T^ , occurring on British 

waters during a 12-hour storm were presented. These values 

correspond to a 50 year return period. The values of H and 

T™ for the considered site can be drawn from figs. 1 and 2 of 
max 

[8.12! respectively. Those values are H = 26 m. and T^ 
max ^max 

13.4 sec.. A possible way of computing the most probable value of 

W associated to H and to T? is by using Table 3-VII 
B .5 max 4nax •' ^ 

of [8.13] . In this table, the values of several of the parameters 

characterizing the waves for a fully developed sea are presented. 

Among others, H „ , , T_ and W are included. For example, 
^ max % a x 19.5 ^ * 

from the mentioned table, to the and quoted above 

correspond a (W ) = 2 5 . 7 m./sec. and a (W ) = 
^ ^ ig.smax ig.gmax 

20.6 m./sec. respectively. Those values of W can be 
1 9. smax 

considered as the parameter z in equation (8.26) . 
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As for the quotient 1/a in the same equations, from studies 

reported in [8.11] for the extreme mean/hourly wind speed over the 

British Isles, it can be assumed to be equal to ten per cent of the 

parameter z mentioned above-

From the above considerations and by using equations (8.26) and 

(8.27), the mean value and the standard deviation of W can 
' 19* 

be evaluated. The results of this computation are shown in Table 8.2, 

8.5.2 Expected power spectral density functions of wave heights, 

S , at the platform site for a return period of 50 
—nn 
years 

By following 7.5 the computation of the expected and 

^ ± aS at the platform site for a return period of 50 years 
nn nn 

was performed by substituting the corresponding values of tlie highest W 

(Table &.2) in equations (5.47) and (5.49). These equations 

represent the P-M and Jonswap p.s.d.f. of wave heights for a 

fully developed sea respectively. The resulting S^^'s p.s.d. 

functions are shown in fig. 8.13. From this figure it can be 

observed that the maximum value of S occurs within a band of 

frequencies limited by 0.25 and 0.375 (rad/sec). It can also be 

observed that the dispersion is large as in the case of seismic 

excitation. 

8.6 Influence of the uncertainties about , as well as 

the soil idealization on the free vibration characteristics 

of the concrete gravity platform 

The influence of E^ and as well as the soil idealization 

on the free vibration characteristics of the e.g.p. were studied 

by solving equation (6.31). The mean values and the mean values plus 

and less a standard deviation of E^ and were used by 

following 7.5 . The effect of the soil idealization was introduced 

by considering the two soil idealizations mentioned in 8.3 i.e. 

a half space and a layer over a half space- The effect of was 

introduced by varying its value accordingly to the values selected 

in 8.3.2. 

8.6.1 Expected fundamental frequency, a)° 

The expected fundamental frequency as a function of soil shear 

modulus is shown in fig. 8.14 . From this figure, it can be 

19.5 
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observed that the influence of the uncertainties about on , 

as measured by awj , is more important for increasing values of 

G . This result reveals that the structural stiffness coefficients 
s 

dominate the solution of equation (6.31) as the soil stiffness 

increases. As far as the soil idealization influence on the value of 

t it can be asserted that the frequencies obtained with the 

layer are higher for about five percent than the ones calculated 

with the half space idealization, except for a = 10,000 (Ton/m^), 

For this particular value of G^ the soil stiffness on both ideal-

izations are practically the same. 

8.6.2 Expected critical damping, , associated to the 

fundamental mode 

The resulting expected is presented in fig. 8.15 as a 

function of soil shear modulus. There, it is observed that as In 

the case of the uncertainties about , the influence of the 

uncertainties about ^ is more important as the soil becomes more 

rigid. This is shown by the coefficient of variation of , 

which increases from 1.37 for a G^ = 5,000 (Ton/m^) to 1.83 

for G^ = 15,000. 

The uncertainties about E^ do not contribute in any appreciable 

degree to the computed expected value of for the values of G__ 
c 

- 0 

''s 
considered in this work. 

The influence of the soil idealization on the value of is 

shown by the larger value of this parameter obtained for the layer 

idealization. This is so because a larger amount of energy is 

dissipated by the layer than by the half space. This effect is 

more important for low values of G^ . As it would be expected, the 

value of tends to for increasing values of G^ . 

8.6.3 Expected complex frequency response, (co) , associated 

to the fundamental mode 

In order to illustrate the influence of the uncertainties about 

and the soil idealization on the expected Hj(to) , the 

variation of |HjC(jo) | with frequency is presented in figs. 8.16 

and 8.17 . From these two figures, it can be observed that the 

expected maximum value of |H^(w) | decreases as the soil becomes more 

rigid. In addition, this reduction in |H^(w) | corresponds to a 

higher natural frequency, as it would be expected. 
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8-7 Influence of the uncertainties about and as well as 

soil idealization on the maximum responses of the concrete 

gravity platform when it is subjected to seismic and wave 

loads acting separately or simultaneously 

In order to study the influence of the uncertainties about , 

E and the soil idealization on the maximum responses of the e.g.p. 
c 

when it is under seismic and wave loading, the mean values and the 

mean values plus and less a standard deviation of the structural 

parameters as well as the excitation were used accordingly to 7.5 

and Chapter 6. Equation (7.20) was only used to compute the 

autocovariance of u The results of the expected deck displacement, 

u , base shear force, V , and overturning moment, M , are shown in figs. 

8.18 to 8.61. 

From the analysis of the figures mentioned above, it can be 

asserted that the first mode of vibration (rocking) was predominant 

for the three responses; therefore, it was only necessary to super-

pose the responses associated to the first three modes of vibration 

of the system. Due to this, the study mainly dealt with the results 

associated to the first mode i.e. first generalized load, first 

generalized coordinate, etc. . 

The pattern followed for the study can be synthesized as 

follows; 

a) Analysis of the responses in the frequency domain, 

b) analysis of the responses as a function of , 

c) analysis of the C.V, associated to each of the parameters 

considered. 

With the results obtained in a) , the influence of the soil 

idealization and the type of excitation on the p.s.d. functions of 

the responses can be studied. From the results of b) , the 

influence of the soil idealization, parameter , and the type of 

excitation on the expected values (and the dispersions) of the 

responses can be analyzed. The short and long term responses (for 

a return period of 50 years) can also be compared by using this type 

©f results. Finally, with the results obtained in c) , the relative 

influence of the different parameters on the C.V.'s of the responses 

can be analyzed. Here only the study on V presented. 

Jbnswap (fig. 8.13) of wave heights was used to 

the responses associated to the wave excitation. The P-M 
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spectra (fig. 8.13) was utilized in some cases in order to be 

compared with the Jonswap results. As mentioned in 8.5.1, it was 

assumed that these spectra correspond to a twelve hour storm (a 

fully developed sea) and a return period of 50 years; the mean rate 

of occurrence of the storm, Vp (Section 7.3 .1) is assumed to be 

equal to 2/year. 

The p.s.d.f. of ground acceleration, , shown in figs. 8.9 

and 8.10 were used in the study for the seismic excitation. A 

return period of 50 years and a mean rate of occurrence, Vp , 

(Section 7.3.1) of 0.163/year (Table 4.4) was utilized foi this 

study. 

8.7.1 Expected deck displacement, u 

The results of this study concerning deck displacement, u , are 

shown in figs. 8.18 to 8.39. In figs. 8.18 to 8.30, the results 

associated to wave excitation are introduced; the ones related to 

seismic excitation are shown in figs. 8.31 to 8.38. Finally, in 

fig. 8.39, the expected deck displacement is shown as a function of 

when both types of excitations are acting simultaneously on the 

platform. 

a) Analysis of the expected u for wave excitation in the 

frequency domain 

In figs. 8.18 to 8.20, the p.s.d.f. of the first generalized 

load for wave excitation, S^ ^ , as a function of frequency is 

presented. By comparing both fig. 8.18 and fig. 8.19, it can be 

observed that for the same type of soil and the same values of 

G , the peaks of S __ 
s p,w_ 
the peak obtained for W 

+ 
G , the peaks of S „ for W is about 75 % higher than 
s p,w_ 19.5 

19.5 

It can also be observed that both peaks occur at the frequency 

of their associated Ŝ ^̂ ŝ (fig. 8.13). From figs. 8.18 and 8.20, 

it can be asserted that for the same values of G and W but 
s 19.5 

with a different soil idealization, the maximum value of S is 
p,w 

about 5 % higher for the half space soil representation than for the 

layer one. 

In figs. 8.21 to 8.23, the p.s.d.f. of the first generalized 

coordinate for wave excitation, ^ , as a function of frequency 

is shown. From these figures, it can be asserted that, in general, 
the behaviour of S „ is as the one described above for S 

y,w p,w 
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i.e. the comments about figs. 8.18 - 8.19 can be applied to figs. 

8.21-8.22 . However, the peak value of for the half space 

idealization is about 30 % higher than the value obtained from the 

layer idealization, figs. 8.21-8.23- The latter result is due to 

the smaller damping of the system associated to the half space 

idealization (fig. 8.15). 

In figs. 8.24-8.28, the p.s.d.f. of deck displacement for 

wave excitation, ^ , as a function of frequency, are presented. 

From figs. 8.24, 8.26, and .8.27, it can be observed that for the 

same soil idealization and the same value of , the peak value of 

S for W is about 50 % smaller and higher"than the values 
U,W 19.5 + = 

of the S J, peaks associated to W and W respectively. 
U , w 1 9 . 5 1 9 . 5 

(About the same ratio between the peak values of the corresponding 

is observed in fig. 8.13.) It can also be noticed from these 

figures, that the peaks occurred at the same frequencies as for the 

respective spectra. From figs. 8.24-8.25, it can be concluded 

that for the same value of all the parameters and soil idealization 

but for different values of G , a reduction in the value of the 
s 

maxima of S occurs as the soil becomes more rigid. This is a 
u,W 

result of a reduction in the value of |Hj(ai) | ̂  as well as an increase 

in the value of for G^ = 15,000 (Ton/m^), when compared with 

the values of the same parameter for G^ = 5,000 (see figs. 8.16-8.17). 

In figs. 8.24-8.28, it can be observed that for the same values 

of all the parameters but for a different soil idealization, the ^ 

are practically independent from the soil idealization. This is so 

in spite of the higher value of the first generalized coordinate for 

the half space representation, (figs. 8.21-8.23). Nevertheless, the 

amplitudes of the modal shapes associated to the half space idealiz-

ation are smaller than the ones associated to the layer idealization, 

b) Analysis of the expected u for wave excitation as a function 

of G= 

In fig. 8.29, the expected deck displacement, u^ , as a function 

of soil shear modulus, G^ , for both soil idealizations is presented. 

From this figure, it can be asserted that the mean values of u^ are 

particularly the same ones for the layer and the half space soil 

idealizations. The C.V. is about 2 for all the values of G^ . It 

can also be observed that the mean value of u^ is smaller for an 
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increasing value of . For the same fig. 8.29, the value of u^ 

for = 5,000 (Ton/m ) obtained by using the P-M p.s.d.f. (fig. 

8.13) was identified with a mark: X . This value is about 20% smaller 

than the one obtained for the Jonswap spectra. 

In fig. 8.30, the expected short and long term displacements, 

Uy , for wave excitation are shown. This figure corresponds to a 

layer soil idealization. The short term displacement is associated 

to a 12 hour storm and the long term displacement to the same storm 

and to a return period of 50 years. From this figure, it can be 

observed that the expected value for the long term u^ is about 

35 % higher than the short term u^ for all the values of the G^ 

considered in this study. It can also be observed that the C.V. 

for both short and long term u^'s is about 2. Finally, for both 

cases there is a reduction in the value of u^ for an increasing 

value of G 
s 

a) Analysis of the expected u for seismic excitation in the 

frequency domain 

In figs. 8.31-8.33, the p.s.d.f.'s of the first generalized 

coordinate for seismic excitation, ^ , as a function of frequency 

are shown. All these curves correspond to G^ = 5,000(Ton/m^). 

Similar curves for S ^ were obtained when considering higher 

values of G 
s 

By comparing figs. 8.31-8.32, it can be observed that the 

peak value of S „ for is about three times higher than the 
y,Q _ aa . , , . 

value obtained for S . Both peaks occur at the fundamental fre-
aa 

quency of the system, 1.83Crad./sec). 

From figs. 8.32-8.33, it can be asserted that for the same 

value of all the parameters but with a different soil idealization, 

the peak value of S ^ is about three times higher for the half 

space soil idealization than for the layer one. It can also be 

observed that the peak of S „ in the half space soil idealization 
y »x 

occurs at = 1.73 (rad./sec.). 

This high value of S ^ is due to the combination of lower 

values of and compared to the ones obtained for the layer 

idealization. 

The p.s.d.f.'s of deck displacement for seismic excitation, 

S , as a function of frequency, w, are shown in figs, 8.34-8,36. 
"»Q 
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From figs. 8.34-8.35, it can be observed that for this response, 

two peaks are present: one at ' = 1.832 (rad./sec.) and the 

second at w® = 3.36 (rad./sec.). The peak occurring at 0)° is 

higher than the other one. This is due to the higher damping 

associated to the rocking mode of vibration, = 0.076, 

compared to the damping associated to the second mode, 5° = 0.0426. 

The values of the peaks of ^ for (fig. 8.35) are about 

three times higher than the peaks of S „ obtained for ? 
u,Q aa 

(fig. 8.34). This is due to the fact that the values of S are 
_ aa 

about three times higher than the ones associated to S (see fig. 

8.9). 

From fig. 8.35 compared to fig. 8.36, it can be seen that by 

keeping the values of all the parameters constant and varying the 

soil idealization, the first peak of S occurs at = 1.73 
u 5q 1 

(rad./sec.) for the half space idealization. It can also be seen 

that the value of the second peak of S is about the same for 
u,Q 

both soil idealizations, but the value of the first peak obtained 

for the half space idealization is about twice the corresponding 

one to the layer soil representation. This is due to the smaller 

damping associated to the first mode (rocking) for the half 

space idealization, = 0.0466. 

b) Analysis of the expected u for seismic excitation as a 

function of Gq 

In fig. 8.37, the expected deck displacement for seismic 

excitation, u , as a function of G for both soil idealizations 
Q s 

is shown. From the figure, it can be observed that the values of 

"q about 5 % higher for the half space idealization than for 

the layer one. It can also be seen that the value of u increases 
Q 

for an increasing G . In addition, the C.V. is about 3 for 

all the values of G considered. 
s 

In fig. 8.38, the expected short and long term deck displace-

ments for seismic excitation, u^ , are shown. The short term 

response is associated to an earthquake of 15 sees of duration 

and the long term to the same earthquake but for a return period of 

50 years and a mean reccurrence rate of 0.163/year. From fig. 

8,38, it can be seen that the values for the long term deck displa-

cements are about 30 % higher than the ones associated to the short 



135 

term ones. For both cases, the value of increases for a 

higher value of . Finally, it can be observed that the C.V. for 

both Uq's is about 3. 

In fig. 8.38, the expected deck displacement for seismic and 

wave excitation acting simultaneously, u^ ^ , is displayed as a 

function of . By comparing this figure with fig. 8.29, it can 

be seen that u^ ^ behaves basically as u^ , except that the 

values of the former are higher (3 %) than the ones associated to 

the latter. The comments expressed about u^ also apply to u^ ^ 

and they will not be reported here. 

8.7.2 Expected base shear force, V 

The results of the study on V are shown in figs. 8.40 

8.50. The results about V for wave excitation are presented in 

figs. 8.41-8.45; the corresponding results for seismic excitation 

can be seen in figs. 8.46-8.49, 

The expected value of V when both types of excitation 

are acting simultaneously on the platform is shown in fig. 8.50. 

The p.s.d.f. of V was computed accordingly with equation (7.22) 

where the coefficient bj was calculated as follows: 

n 
b. = (w?)* Z m.. (r^) , , , (8.28) 
J J i=i 11 s 13 

j = 1,2, ..., p (p = last mode of vibration consid-
ered) 

i = 1,3,..., N (i.e., the i's associated to the 
translational degrees of freedom) 

where (r̂ )̂ ĵ is the amplitude of the jth modal shape associa-

ted to the ith nodal point; the other parameters were already 

defined in Chapter 6. Equation (7.22) is only valid for a 

structure resting on a rigid soil. For the case under considera-

tion, the p.s.d.f. of the base shear force associated to the 

soil equivalent spring displacement has to be considered. It 

can be shown that the general expression of the term associated 

to the latter p.s.d.f. is given by: 

-£ sLJ- "I'-) 

. . . (8.29) 
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where ~ j,k) is the amplitude of the i modal shape 

associated to the equivalent mass translational displacement, and 

can be computed with equation (3.13). The rest of the terras 

were already defined in relation with equation (7,22) . 

a) Analysis of the expected V for wave excitation in the 

frequency domain 

In figs. 8.40-8.44, the p.s.d.f. of base shear force for wave 

excitation ^ as a function of frequency is presented. From 

figs. 8.40, 8.42 and 8.43, it can be observed that, as for ^ , 

for the same soil idealization and the same value of , the peak 

value of S,, for W is about 50 % smaller and higher than 
V,W 19.5 

the values of the S„ peaks corresponding to W and W 
V,W 19.5 19.5 

respectively. 

The same ratios result from considering the values of the 

respective spectra. From figs. 8.40 and 8.41, it can be 

seen that when the soil becomes more rigid and the values of the 

rest of the parameters are kept constant, the values of ^ are 

smaller. This is due to the smaller |Hj(w)|* associated to 

=15,000 (Ton/m^) compared to the one related to G^ = 5,000 

(Ton/mf) (figs. 8.16-8.17). 

From figs. 8.40 and 8.44, it can be observed that for all the 

parameters kept at the same value and only varying the soil 

idealization, the resulting S^'^^'s are practically the same for both 

the half space and the layer soil idealizations. The reason behind 

this was expressed above in 8.7,1. 

b) Analysis of the expected V for wave excitation as a function 

of Gq 

The expected V for wave excitation as a function of G^ for 

both soil representation is shown in fig. 8,45. From this figure, 

it can be concluded that the mean values of for the half space 

idealization are higher for about 5 % than the ones obtained for 

the layer idealization, except for G^ = 10,000 (Ton/m^) where 

the mean values coincide. This comes from the fact that the 

equivalent soil stiffness for both idealizations coincide for this 

value of G . The C.V. is about 0.9 for both soil idealization, 
s 

It can also be observed in fig. 8,45 that for a F-M p.s.d.f. 
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of wave heights, the resulting mean value of is about25 % 

smaller than the one calculated with the Jonswap one and the layer 

idealization. The V„ associated to P-M has been marked with 

an X in fig. 8,45. 

Finally, from this figure, it can be observed that the value 

of V decreases for an icreasing value of . This is so because 

the caisson displacements are smaller for a higher value of . 

a) Analysis of the expected V for seismic excitation in the 

frequency domain 

In figs. 8.46-8.48, the p.s.d.f. of base shear force for 

seismic excitation, ^ , is presented as a function of frequency. 

By comparing figs. 8.46 and 8.47, it can be seen that for all the 

parameters being the same except the intensity of the seismic 
-f-

excitation, the peak value of S„ „ for S is about 4 times 
_ V,Q aa 

the one obtained for S . This result is so because the ratio 
+ _ aa 

between S and S for OJ = w? is as well about 4. 
aa aa i 

From figs. 8.47-8.48, it can be asserted that if all the 

parameters are kept constant but the soil idealization is different, 

the peak of ^ is about 2.5 times higher for the half space 

soil idealization. This is due to the smaller system damping and 

soil stiffness associated to this soil idealization than the ones 

related to the layer soil idealization. 

b) Analysis of the expected V for seismic excitation as a 

function of Gr 

In fig. 8.49, the expected V for seismic excitation, V , 

as a function of G^ for both idealizations is presented. 

According to this figure, it can be observed that the mean values 

of Vq for the half space soil idealization are about 15 % 

higher than the ones obtained for the layer soil idealization. It 

can also be seen from fig. 8.49 that the values of increase 

for growing values of G^ . This is a result of several combined 

effects i.e. for a higher value of G^ , the values of u)j are 

also higher (fig. 8.14); the value of the associated _ diminishes 

(see fig. 8.15) and the value of corresponding to the mentioned 

w = ojj is higher than values associated to a growing G^ 

within the range of studied here (see fig. 8.9). 



138 

It can also be observed from fig. 8.49 that the dispersion 

in the values of V increases for an increasing , in this 

case the C.V. being of about 2.3. 

The expected base shear force for seismic and wave excitation 

acting simultaneously ^ is shown in fig. 8.50. By comparing 

fig. 8.45 to 8.50 it can be concluded that the influence of the 

wave excitation dominates the behaviour of the expected • 

However, the mean values of ^ are about a 5 /o higher than 

the ones of showing the contribution of the seismic excitation. 

In general, the comments expressed about also apply to • 

8.7.3 Expected overturning moment, M 

The results of the study on M are shown in figs- 8.51-8.61. 

The results concerning M for wave excitation are introduced in 

figs. 8.51-8.56; the corresponding ones to seismic excitation are 

presented in figs. 8.57-8.60. Finally, the results obtained when 

both excitations are acting simultaneously are shown in fig. 8.61. 

The p.s.d.f. of M was computed by using equation (7.22), 

with a coefficient bj equal to: 

''j • '"P' J i "ii ''s'ij \ 

j = l,2,...,p (p = last mode of vibration considered) 

i = 1,3,...,N (i associated to the translational degrees 

of freedom only) 

where all the parameters have been defined in relation to equation 

(8,30), except h^ wliich is the height of the nodal point 1 with 

respect to the center of gravity of the foundation. 

in the case of V , there is an extra term associated to the 

soil rocking stiffness which has to be added to the right hand side 

of equation (7.22) i.e. 

i y . J . <'s'ek " L ' " " 

, . . (8.31) 

in this expression (r^^g^ (i = j i s the amplitude of the ith 

modal shape associated to the equivalent mass displacement, ^Qs 

can be computed with equation (3.13). 
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a) Analysis of the expected M for wave excitation in the 

frequency domain 

In figs. 8.51-8.55, the p.s.d.f, of overturning moment for 

wave excitation ^ is shown as a function of frequency. Accord-

ingly to figs. 8.51, 8.53 and 8.54, it can be seen that for the same 

soil idealization and the same value of G , the peak value of 
— s 

^M,W ''̂19 5 about 50 % smaller and higher than the values 

of the S associated to W and W respectively. This 
19.5 19.5 

is because the ratios of the associated S are the same as the 

mentioned ones. 
By comparing figs. 8.51-8.52, it can be concluded that (as for 

^u,W ^V,W^ values of ^ are smaller for a higher value 

of Gg . This i,s so because they are related to a |Hj(a3)|̂  smaller 

than the associated to a softer soil. From figs. 8.51-8.55, it 

can be observed that for a different soil idealization but the rest 

of the .parameters having the same values, the resulting S_ „'s are 
M,w 

very similar for both soil idealizations. 

b) Analysis of the expected M for wave excitation as a function 

Of Gg 

The expected M for wave excitation as a function of G for 
s 

both soil representations is shown in fig. 8.56. From this figure, 

it can be asserted that the values of for both soil idealiza-

tions are practically the same for all the range of G values 

studied here. The reason behind this result is that in spite of 

having smaller and for the half space idealization than 

for the layer, the amplitudesof their associated modal shapes are 

also smaller. The C.V. is about 1,06 with a slight reduction 

of its value for increasing calue of Gg . 

The mean value of obtained for a layer idealization of the 

soil and a P-M p.s.d.f. of wave heights is also shown in fig. 8.56. 

This result has been marked with an ' X in fig. 8.56. The mean 

value for the P-M spectra is about 25 % smaller than the 

one obtained with the Jonswap spectra. Finally, from fig. 8.56, it 

can be asserted that there is a reduction of 11̂  for increasing 

values of . This is so because the amplitude of the foundation 

rotation for a harder soil is smaller than for a softer soil. 
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a) Analysis of the expected M for seismic excitation in the 

frequency domain 

In figs. 8.57-8.59, the p.s.d.f. of overturning moment for 

seismic excitation, ^ , is presented as a function of frequency. 

From figs. 8.57 and 8.58, it can be seen that (as for q) for 

different intensities of seismic excitation and keeping the other 

parameters constant, the peak value of ^ for is about 

4 times the one obtained for S . The reason for this result was 
aa 

given above, related to S _. 

When figs. 8.50 and 8.59 are compared, the comments made about 

figs. 8.47-8.48 can be applied to the former two, but now, in 

relation to M . 

b) Analysis of the expected M for seismic excitation as a 

function of 

In fig. 8.60, the expected M for seismic excitation, , 

for both idealizations is presented as a function of . From 

this figure, it can be seen that the mean values of Mq for the 

half space soil idealization are about 20 % higher than the ones 

obtained for the layer soil idealization. It can also be seen that 

as for Vq , the values of increase for increasing values of 

. The reason for this was commented upon with relation to V^. 

From the same fig. 8.60, it can be observed that the dispersion of 

M increases for a larger value of G ; the C.V. is about 2.3 
X s 

as in the case of . 
Q 

The expected overturning moment for seismic and wave excitations 

acting simultaneously, , is shown in fig. 8.61. The comments 

expressed about ^ also apply to yj ; therefore, they will 

not be repeated here. 

c) Analysis of the C.V. associated to each of the parameters 

considered 

The analysis of the C.V.'s associated to each of the parameters 

considered will be discussed here. Those C.V.'s were computed by 

applying equation (7.54). The C.V.'a for responses ur̂  and Uq 

were calculated with equation (7.51). The results reported here 

correspond to the layer soil idealization. For the half space soil 

idealization, similar results were obtained. The values of G 
s 

utilized are the ones already mentioned in analyses type a) and b) 

above. 
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The results of the study can be seen in Table 8,3. The 

results concerning u^ are discussed first followed by the ones 

associated to u^ . 

Influence of the uncertainties about E and about the 
c—z c ' — — 

wave excitation, W , on û ^ 

From Table 8.3, it can be observed that the influence of the 

uncertainties about W largely dominate, followed by the ones about 

, the uncertainty corresponding to is negligible. 

The influence of on u^ decreases as the value of 

increases; this is a consequence of the higher values of 

obtained for a harder soil, which yield smaller values of u^. 

The influence of on u^ is nil for the whole range of 

G . This can be explained by the fact that the contribution of ^ 

to the critical damping first mode , , is negligible when 

compared to the contribution of the soil damping (see equation (6,35)) 

As expected, the influence of W on u^ remains at the same 

level for all the G 's considered here, because S is independent 
s nn 

of Gg . The influence of and W on u^ diminishes with 

an increasing G^ , showing the influence of on the final res-

ponse under consideration. 
Influence of the uncertainties about E , E and the seismic 

— , — '—'—'—c—-—^c — 
excitation, Q , on u^ 

From Table 8.3, it can be concluded that the uncertainties on 

the seismic excitation largely dominate, followed by the ones related' 

to , the last influence being the uncertainties associated to E^. 

The influence of E on u^ does not show a definite trend; 

however, it reaches a maximum for G^ = 10,000 (Ton/m ) 

The influence of on Uq decreases for an increasing G^ . 

This behaviour can be explained as follows. While the mean value 

of increases with an increasing G^ , the value of the 

differences between Fu^(C +oC _) - uu(C - aS )] remains 
C (2 C C 

almost the same for the range of G^'s considered here; therefore, 

when equation (7.59) is applied, the ratios indicated in that 

equation diminish for an increasing G^ . 

The influence of the uncertainties about Q on u^ remain at 

about the same level for all the values of G considered here. 
s 

Finally, the influence of E^ , and Q on diminishes 

for an increasing value of G^ . This is so because that is the trend 

of g (discussed above) whose contribution is important in the final 

value of the C.V. of Uq. 



142 

8'8 Influence of caisson storage mass on the free and forced 

vibration responses of the concrete gravity platform 

A study of the influence of the caisson storage mass, m^^ , 

on the free and forced vibration responses of the selected e.g.p. 

was carried out. This analysis is limited to the expected long 

term responses, and was performed by using the mean values of E^, 

^c ' ^aa figs. 8.2, 8.4 and 8.5). The soil was 

idealized as a layer over a half space and was varied in the 

same range as in the previous studies. The study consists in 

varying both the caisson storage mass and while keeping the 

values of the other parameters constant. 

The experiment aimed at simulating a real situation in which 

by a planned or unforeseen action, the caisson storage mass takes a 

value within the proposed range, i.e. 0.25 m ^ m^^ < m , where 

m is the mass of a full caisson. The results of the study are 

presented in figs. 8.62-8.72. 

8.8.1 Expected fundamental frequency oi? 

In fig. 8.62, the variation of the expected fundamental 

frequency with m^^ as a function of G^ is presented. 

From this figure, it can be observed that for m^^ =0.25 is 

higher (about 2.5 %) than the obtained for the full caisson. 

This pattern is kept through all the G^'s considered in this study. 

As it would be expected, the lower value of 0J° corresponds to an 

m = m. The results which have been described reveal that the 
cs 

variation of m^^ has an almost negligible influence on the value 

of the mass moment of inertia of equivalent foundation, and there-

fore, on the fundamental frequency of the system which is associated 

to rocking mode. 

8.8.2 Expected critical damping, , associated to the 

fundamental mode 

In fig. 8.62, thg variation of the expected with m^^ as 

a function of G^ is presented. From this figure, it can be 

concluded that the variation of m does not affect the value of 
cs 

the expected . However, it can be observed from this figure 

that the higher damping is associated to the larger . The 

reason for this is that for a smaller m the w? increases and 
cs 

the ratios in equations (6.36) and (6-37), where wj is involved, 

are smaller than for m = m. 
cs 
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8.8.3 Expected deck displacements, u 

Tlie results obtained from the study are presented in figs. 

8.64, 8.65 and 8.66. In these figures, the values of the expected 

n , u and u„ „ as a function of G are shown respectively, 
w Q Q,W s 

From fig. 8.64, it can be seen that for the softer soil, the 

for m^g = m is about 5 % larger than the one for = 0.25 m, 

and that this difference almost vanishes for the harder soil. The 

reason for this behaviour of û ^ is that the amplitude of the 

rocking displacement of the foundation is larger for the maximum 
value of m which implies a lower oj? and therefore a larger wave 

cs 

loading intensity (see fig. 8.13). However, this effect vanishes 

as the soil becomes stiffer i.e. for a soil with a larger equi-

valent rocking spring. 
In fig. 8.65, the variation of u. with m can be seen. 

° Q cs 
Here, as in the case of û ,̂ the larger values of u^ for the 

whole ranee of G are associated to m = m; however, the minimum 
° s cs 

values of u„ for all the m 's occur for the softer soil This 
Q cs 

is explained by the fact that the lower coj's (see fig. 8.62) are 

associated to this soil, and therefore the lower values of 

(see fig. 8.9) are associated as well. The opposite occurs for the 

harder soil as shown in the same figure. The relative differences 

between the highest value of Uq (m^ = «) and the minimum one 

(m = 0.25 m) at G = 15,000 (Ton/m ) is about 2.5 %. 

In fig. 8.66, the variation of deck displacement for seismic 

and wave excitation, u^ ^ , is presented as a function of m^^ . 

Comparing this figure with fig. 8.64, it can be concluded that 

the behaviour of u^ ^ is very similar to the one observed for 

, except that the'values of the former are about 3 % higher 

than the values associated to the latter, due to the contribution 

of the displacements associated to the seismic excitation. The 

comments made about also apply to ^ , therefore, they 

-will not be repeated here. 

8.8.4 Expected base shear force, V 

m e results concerning the variation of V with m^^ can 

be aeen in figs. 8.67, 8.68, and 8.69, which correspond to , 
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V- and respectively.. By comparing fig. 8.66 with fig. 8.64, 
Q Q, W 

it can be observed that the trend in the behaviour of is 

similar to the one presented for . However, for the former, 

the differences between the higher and the smaller values of V̂ j 

are of about 8 % and remain of the same value for the whole range 

of G 's. The reason for this behaviour of is that its 
s w 

value is largely dominated by the contribution of the shear force 

associated to the foundation displacement. The values of the 
soil equivalent stiffness (K and ) are the same for 

xs 8s 
different values of m and a given G ; in addition, the 

cs ° s 
ratios between the equivalent foundation displacements for 

different m 's are the same as for their associated shear 
cs 

forces. Therefore, as the ratios between foundation displacements 

remain the same for the range of G^ considered here, the ratios 

of the associated shear forces do so as well. Larger shear forces 

are associated to larger m^^'s because their corresponding toj's 

are smaller , i.e. closer to the peak value of (see fig. 8.13) 

The results of the analysis for are presented in fig. 8.68. 

From figs. 8.65 and 8.68, it can be concluded that the behaviour of 

Vq is similar to the one observed for u^ due to the reasons given 

for the behaviour of the latter. As in the case of V„ , the 
w 

resulting is closely related to the behaviour of the equivalent 

foundation displacements. However, the highest values of are 

associated to harder soils, for which the uf's are higher, i.e. 

closer to maximum values of S (see fig. 8.9). It can also be 
33 • 

»cs observed from fig. 8.68 that the differences between for 

= m and the one associated to m = 0.25 m and about 16 % for 
cs 

the whole range of G^ considered here. 

The results of the study on ^ are shown in fig. 8.69, 

By comparing figs. 8.67 and 8.69, it can be observed that ^ 

behaves basically as , except that the values of the former are 

about 3 % higher than those the latter. This increase is due to 

the contribution of the V^'s to the final values of ^ . 

The comments made about also apply to ^ , therefore they 

will not be repeated here. 
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^^8.5 Expected overturning moment, M 

The results of the study on the expected overturning moment, M, 

are introduced in figs, 8.70-8.72. The values of the overturning 

moment due to wave excitation, , are presented in fig. 8,70; 

the moments related to the seismic excitation, , are shown in 

fig. 8.71; finally, the moments resulting from both types of 

excitation acting simultaneously are shown in fig. 8.72, 

By comparing figs. 8.70-8.72 with 8.67-8.68, it can be 

concluded that the behaviour of M is very close to the one 

observed for V . As the comments made about V_ V and V 
x W Q ,W 

can also be applied to and respectively, they will 

not be repeated here and only a few observations concerning M 

will be made here. 

For example, as far as is concerned, it can be seen from 

fig, 8.70 that the difference of the values of for an m g=m 

and the M^'s associated to a = 0,25 m is of about 2 % for 

the whole range of considered here. This is due to the ratio 

obtained for the rotational displacements of the equivalent 

foundation. 

From fig, 8,71, it can be seen that the ratio of for 

®cs ™ for = 0.25 m is about 5 % for the Softer 

soil, and that for the harder soil it is about 7 %. Finally, in 

fig. 8.72, it can be observed that the ratio of the mentioned 

differences are of about 2 % and 3 % respectively. Again, the 

influence of the seismic excitation is reflected by the higher 

ordenates of fig. 8.72 when compared to the ones of fig. 8,70, 
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9. CONCLUSIONS 

In this chapter, the main conclusions which can be drawn from 

the study as well as the future work on the subject will be 

commented upon. 

One conclusion is that with the methodology proposed in this 

work the computation of a e.g.p. dynamic responses when it is 

Subjected to wave and earthquake loading can be performed in a 

straightforward manner. The methodology allows the inclusion of 

the main parameters which ̂ contribute to the dynamic behaviour of 

the platform. Furthermore, the uncertainties surrounding the 

values of those parameters can be taken into account in a rational 

manner with relative ease. This is of particular importance when 

designing the e.g.p. structures, because the particularly 

hazardous environment in which they are set calls for a special 

care concerning its possible behaviour. 

The computation of estimates of the maximum expected dynamic 

responses of the platform is an important step forward to this end. 

With the methodology suggested in this work, the determination of 

those estimates for different return periods can be achieved. 

Another important feature of the proposal is that the uncertainties 

about relevant structural parameters as well as the uncertainties 

related to the environmental loading can be considered at a 

reasonably economical computing cost. This allows to.carry out 

parametrical studies aiming to determine not only the structural 

responses of interest but also to define in a statistical sense the 

relative influence of each of the parameters used in those 

responses. 

The application carried out in Chapter 8 is an example of the 

type of studies which can be performed by using the proposed 

methodology. In that chapter, the analysis of the influence of the 

uncertainties about the structure properties (E^ , ̂  ) as well as 

the ones associated to the wave and seismic excitations (W,Q) and also 

the related soil idealization and soil shear modulus, G , on the 

structural responses of a e.g.p. was performed. 

From the results commented upon in Chapter 8, the following 

conclusions may be made about the influence of the parameters 
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mentioned above on the platform fundamental frequency, (rocking), 

its associated critical damping, Cj , deck displacement, u , base 

shear force, V , and overturning moment, M . 

1. The influence of the uncertainties about E on , as 

measured by cruj , is more important for increasing values of G . 

The values of obtained with the layer are higher for about 

five percent than the ones calculated with the half space idealiza-

tion. 

2. The influence of the uncertainties about ^ on is more 

important as the soil becomes more rigid. The uncertainties about 

do not contribute to the computed expected value of for the 

values of considered in this work. The influence of the soil 

idealization on the value of is shown by the higher value of 

this parameter obtained for the layer idealization, 

3. The mean values of are almost the same ones for the 

layer and the half space soil idealizations. In addition, the mean 

value of u^ is smaller for an increasing value of . A high 

coefficient of variation, C.V. (of about 2) is obtained for all the 

values of G c 
s 

4. The values of u^ are about five percent higher for the 

half space idealization than for the layer one. Those values of 

Uq increase for an increasing G^ . In addition, the C.V. is 

about 3 for all the values of G considered. The values for the 
s 

long term deck displacements are about 30 % higher than the ones 

associated to the short term ones. For both cases, the value of 

Uq increases for a higher value of G^ . The C.V. for both 

Uq's is about 3 . 

5. The mean value of u^ ^ behaves basically as u^ , except 

that the values of the forme: are higher (3 %) than the ones 

associated to the latter, showing the influence of seismic excitation, 

6. The mean values of V^ for the half space idealization are 

higher for about 5 % than the ones obtained for the layer ideali-

zation, except fot G = 10,ooo (Ton/m^) where they coincide. The 
s 

value of V^ decreases for an increasing value of G 
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7. The mean values of for the half space soil idealization 

are about 15% higher than the ones obtained fro the layer soil 

idealization. The values of increase for growing values of G . 

The dispersion in the values of V increases for an increasing G , 

in this case the C.V. being of about 2.3. 

8. The influence of the wave excitation dominates the behaviour 

of the expected . However, the mean values of V„ „ are 
Q, W 

about a 5% higher than the ones of V^, showing the contribution of 

the seismic excitation. 

9. The expected values of for both soil idealizations are 

the same for all the range of G values studied here. There is a 

reduction of for increasing values of G^. The C.V. is about 

1.06 with a slight reduction of its value for increasing values of 

Gs" 

10. The mean values of for the half space soil ideali-

zation are about 20% higher than the ones obtained for the layer 

soil idealization. The values of increase for increasing 

values of G . 
s 

11. The influence of the wave excitation dominates the 

behaviour of the expected Nevertheless, the mean values 

of ^Q,W about a 5% higher than the ones of showing 

the contribution of the seismic excitation. 

As for the future work which could be interesting to perform, 

the following points could be mentioned: 

a) To include other parameters (apart from the wind velocity) 

concerning the wave excitation modelling. For example the wave 

direction occurring at a given site. 
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b) As soon as more seismic information is available about 

the region, try to include it in the seismic risk model used. This 

may be done in the context of bayesian statistics, for example. 

c) In the light of new information about the diffraction forces 

on gravity platforms, particularly the ones occurring on proto-

types, use a more sophisticated analytical modelling of these types 

of forces. 

d) To improve the structural modelling of the concrete 

gravity platform. In particular to include more degrees of 

freedom for each node used to discretize the towers and the deck. 
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LIST OF SYMBOLS 
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ag proportionality factor, equation (2.23) 

aj proportionality factor, equation (2.23) 
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a^ amplitude of simple harmonic wave 

A matrix used in equation (2.2 ) 
-3 

A Q amplitude of 10 millimeters; maximum amplitude recorded by 

a Wood-Anderson seismograph at a distance of ICQ Km. from the 

epicentre 

b parameter used in equation (4.19) 

bg coefficient used in equation (7.22) 

matrix formed by derivates of A 

Bj vector used in equation (6.25) 

Bg vector used in equation (6.25) 

c wave celerity 

c' static strength parameter in terms of effective stress 
c.. damping influence coefficient 
ij 

Cj dimensionless real-valued function depending on the Poisson 

ratio 

Cjg soil-foundation equivalent damping 

c^g equivalent viscous damper in the x direction 

Cg^ equivalent viscous damper in rocking 

coefficient used in equation (3.56) 

diffraction coefficient for the overturning moment 

C diffraction coefficient for the horizontal forces 
X 
C diffraction coefficient for the vertical forces 
y 

^ structural damping matrix 

Cf' generalized damping matrix 
C damping matrix of the nth finite element 
—N 

Cg damping matrix of the soil-structure system 

d line source geometrical parameter; diameter of the cylinder 

D loss ratio; total depth of water 

D matrix of the material elastic properties 

e void ratio 
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expectance; seismic energy; Young's modulus of elasticity of 

the material. Young's modulus of reinforced concrete 

energy dissipated by a soil 

Eg maximum strain energy stored in the soil 

E average energy 

f frequency in cycles per sec. 

fj<i) cumulative power spectral density function 

Jf(w]( Fourier spectra 

body forces 

g acceleration of gravity 

G shear modulus of elasticity of the material 

^max of G for strain amplitudes lower then ICT^ 

G(w) power spectral density function 

Gp measure of the intensity of the ground motion 

h defined in fig. 4. ; height of submerged part of a cylinder 

h^ height of the caisson 

h^ height of the ith node with respect to the center of gravity 

of the foundation 

bgCt-T) unit impulse response function 

H wave height 

average of the highest one third of the waves, also known as 

significative wave heights, H 

^"iT of the highest one tenth of the waves, sometimes taken 

as the expected value of maximum wave height 

^^max^mode probable value of wave heights 

^r.a.s. root-mean square value of wave heights 

Hg significant wave height 

complex frequency response of the system 

H mean value of wave height 

^max value of maximum wave height 

I amplitude of the complex frequency response 

i nodal point 
• T 

i transpose of matrix of i 

i mean of variable i 

1 ground motion intensities 

I(MM) Modified Mercalli Intensity 

I^x) Roment of inertia of a cross—section 

itb centroidal moment of inertia of. a mass 

Meat fly matrix 



i6i 

J J derivate of the Bessel functions of the first kind, of order 

one 

k function of the plasticity index of a particular soil 

k.. element of K 
ij — 

kj dimensionless real-valued function used in equation (3.12) 

k. soil-foundation equivalent stiffness 
js 

equivalent stiffness of the soil in the x direction 

kgg equivalent stiffness of the soil in rocking 

Kj drag coefficient 

Kj static stiffness of the disc in the j direction 

K coefficient of inertia 
m 

Kg coefficient of lateral stress at rest 

K structure stiffness matrix 

^ stiffness matrix of the nth finite element 

Kg stifP-n#ss op soil - 3tfuct.ur& system 

K* structure stiffness matrix 

Kj mean value of 

KE kinetic energy 

^ length 

Ln natural logarithm 

m mass per unit of vlolume 

ith lumped mass 

element of M 

nth spectral moment 

mCx) mass per unit length 

lower limit of magnitude in a seismic region; mass of the 

foundation 

mj mass used in equation (6.25) 

M magnitude of the earthquake 

mass of a cylinder 

displaced mass 

M diffraction overturning moments 

M structure mass matrix 

M* generalized mass matrix 

23̂  mass matrix of the nth finite element 
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M mass of the soil-structure system 

M mass of the displaced fluid 

M defined in equation (6.49) 

A defined in equation (6.45) 

U number of cycles 
T 

No = -rr" = number of zero up crossings in a record 
io 

OCR consolidation ratio 

p probability of excedence; parameter of equation (7.23) 

p^ distributed load 

p^Cxjt) external loads 

Pĵ  ith applied load 

pCt) dynamic load 

*drag drag 2°?=* 

Pg^Ct) effective seismic load acting on the ith nodal point of the 

discretized structure 

P. inertia force 
in 

P*(t) dynamic load 

P*(a)) = P( w) = Fourier transform of applied load 

P^ horizontal load applied at the center of gravity of the foundation 

P tc) wave load 
w 

P^(t) horizontal diffraction forces on a circular cylinder 

P^(t) horizontal diffraction forces on a caisson of square area 

Pq^ overturning moment applied at the center of gravity of the 

foundation 

Pjj probability of occurrences of earthquakes 

PE average potential energy 

P(t) structure load vector 

P« element load vector 
~N 

Pg vector of applied loads for soil-structure system 

P ( ^ Fourier transform of P(t) 

q parameter of equation (7,24) 

r radius of the disc; line source geometrical parameter; parti-

cle trajectory; cycliudrical coordinate of a point in the flow 

field; radius of the submerged cylinder 

r . element of modal matrix # 
— 
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r peak factor used in equation (4.16) 
1 

displacement of water particles in the x direction 

r displacement of water particles in the y direction 

R random focal distance of the earthquake 
R.. autocorrelation function of i 
11 

Rnn(O) autocorrelation function of wave height 

R(t) autocorrelation function 

R modal matrix of a structural system on a rigid soil 
R® modal matrix of a structural system on a flexible soil 
—s 
R sth modal vector associated to R 

— 

R° sth modal vector associated to ̂  
~s —s 
R® modal vector associated to the structure degrees of freedom 
"w s 
Rf modal vector associated to the foundation degrees of freedom 
zs 

s surface of the body 

S seismic strain 

pseudo-acceleration response spectra 

Sj displacement response spectra 

^ii power spectral density function of i 

pseudo-velocity response spectra 

power spectral density function of wave heights 

t time 

to duration of the accelerogram 

t duration of the accelerogram ensemble 

T kinetic energy of the element; wave period; duration of a 

process 

T return period; time between succesive zero upcrossings 
0 

Tg significant wave period 

u displacement of the structure 

u^ nodal displacement which includes bending and shear deformations 

u^ nodal slope which includes bending and shear deformation 

Uq horizontal translation of the foundation 

iig ground acceleration 

u. acceleration of m.. relative to the base of the structure 
1 11 
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U structural displacment 

strain energy 

^ ased in equation (7.11) 

U -sector formed by the element nodal displacements 

gg displacement of the soil-structure system 

^ sector of displacement of the foundation 

vector of nodal displacements of the structure 

D(w) Fourier transform of U(t) 

V vector of nodal velocities of the structure on a rigid soil 

U(j vector of nodal velocities of the soil-structure system 

II vector of nodal acceleration of the structure on a rigid soil 

U vector of ground acceleration 

Dg vector of nodal acceleration of the soil-structure system 

V f l u i d p a r t i c l e v e l o c i t y a t t h e i t h n o d e a s i f n o b o d y e x i s t e d 
i 

V fluid velocity 

fluid particle velocity in the x direction 

Vy fluid particle velocity in the y direction 

Vg fluid vector within the boundary layer 

V vector of fluid particle velocity 

V fluid acceleration 

v^ acceleration of the water particles at the ith node as if no 

body existed 

v^ fluid particle acceleration in the x direction 

Vy fluid particle acceleration in the y direction 

vdlume of the cylinder 

tributary volume of the beam elements ending at the ith node 

Vg velocity of the shear waves in the soil 

V coefficient of variation of y 
y 

W virtual work 

w, wave orbit width parameter 

wind velocity at a height of 19.5 m. above the sea surface 

X horizontal axis; coordinate 

Xj defined in fig. 4.3 

^ defined in fig. 4.3 

y vertical axis; coordinate 

W (t) generalized coordinate 
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Yg(u) Fourier transform of Y^(t) 

Y response spectra value ; equation (4.16) 
1 »P 

Yj derivate of the Bessel function of the second kind, of order 

one 
—T 
Y mean of the response of Y(t) 

Y„ mean of the extreme value of Y(t) 

Y vector of normal coordinates 

Y(oj) vector of normal coordinates in the frequency domain 

Ct a dimensionless number; equation (5.47), and C4.24) 

g a regional seismic constant used in equations (4.24) and 

(5.47) 

Y strain anqjlitude; activity rate; parameter of equation (5,14); 

kinematic viscosity of a fluid; equivalent length for the 

foundation 

£ ̂  random phase of simple harmonic wave 

el spectral width parameter, used in equation (5.38) 

g vector of strains 

n a particular value of the wave height; vertical movement of the 

particles on the sea surface 

Ti itf mean square value of n 

6 rocking displacement; line source geometrical parameter 

00 rocking of the foundation 

X wave length 

K wave number 

Y Poisson ratio; parameter of equation (7.7); occurrence rate 

mean rate of excedence of earthquakes per year for source j 

\}± mean occurrence rate of i 

Vjj mean rate of excedence of earthquakes with magnitudes M for 

? damping ratio; percentage of critical damping 

value of reinforced concrete fraction of critical damping 

dancing of the ground 

Cs fraction of critical damping for the sth mode on the soil 

Cs fraction of critical damping for the soil-structure system 

equivalent damping of the system,used in equation (4.18) 

^ generalized damping, used in equation (6.6) 

P mass density of the soil; fluid density 



169 

Cf̂  parameter of equation (5.49) 

ĉ b parameter of equation (5.49) 

C;jn mean effective stress in pounds/square inch 

0y(tj) standard deviation of the response of the system 
2 

variance of i 

(J.. standard deviation matrix 

^2. COvariance matrix 

n ' mean effective stress 

^ shear stress 

dummy time variable 

dummy time variable 

mean duration 

(() velocity potential; normalized variateo 

diffracted velocity potential 

incident velocity potential 

total velocity potential 

static strength parameter of soils 

frequency in rad./sec. 

0^ dominant natural frequency of the ground 

ith undanqjed natural frequency 

parameter of equation (5.48) 

J damped natural frequency 

damped natural frequency of the soil-structure system 

undamped natural frequency of the soil—structure system 

^ increment of frequency 

D domain of a variable; direction perpendicular to the surface 

of the boundary layer 

diagonal matrix whose components are the square of the 

undamped frequency 

jp phase angle 

g virtual displacement 

y Laplace operator 

^ total derivative 

El . I expectance of , 

P(.) probability density function of (.) 

^ partial derivative with respect to time 

z derivative of z with respect to time 
'T 

transpose of matrix i 



170 

LIST OF TABLES 

Table No. 

4.1 Values of coefficients bu , i = 1,2,3 for 

the attenuation law y = bj 10^2^ (R + 25)"^3 

and values of the coefficient of variation of 

y 

4.2 Record of magnitudes M for earthquakes 

occurred in seismic zones 3 and 10 during 

period 1901-1955 

4.3 Values of a and b (log^Q N = a - bM) for 

different seismic zones 

4.4 Values of seismic parameters of sources shown 

in fig. 4.7 

8.1 Geometrical characteristics of the selected 

concrete gravity platform 

8.2 Values of statistical estimates of wind 

velocity at the platform site, W , for 
19-5 

a 12 hour storm (fully developed sea) and 

a return period of 50 years 

8.3 Influence of the uncertainties about , 

Cg and about the seismic and wave excitations 

on the structural response of the e.g.p. as 

measured by the coefficient of variation C.V. 



171 

LIST OF FIGURES 

Fig. No. 

2.1 Schematic representation of a four-tower concrete 

gravity platform 

2.2 Environmental loads acting on a concrete gravity 

platform 

2.3 Finite element idealization of a concrete gravity 

platform 

3.1 Continuum modelling of a soil-foundation system 

3.2 Finite element modelling of a soil-foundation 

system 

3.3 Soil-foundation interaction model 

4.1 Point source cross-section 

4.2 Line source: a) perspective, b) plant 

4.3 Areal source, perspective 

4.4 North Sea site used for seismic risk analysis 

4.5 Map of isoseismals and I(MM)max observed during 

the period 1901-1955 in Norway and the U.K. 

4.6 Map of the epicenters of earthquakes observed 

during the period 1901-1955 in Norway, the U.K. 

and the North Sea 

4.7 Seismic sources contributing to the seismic risk 

of the site 

5.1 Wave parameters used in the linear wave theory 

5.2 Typical wave record 

8.1 Block diagram of computer program 

8.2 Ground acceleration in the site, ajj^, as a 

function of the return period, Tq 

8.3 Ground velocity in the site, as a function 

of the return period, Tq 

8.4 Ground displacement in the site, dmax, as a 

function of the return period, Tq 

8.5 Ground and pseudovelocity spectra, Sg, S^, for a 

return period of 50 years, as a function of 

period, T (5=0.05) 



172 

8.^ Ground and pseudovelocity spectra, Sg, for 

a return period of 500 years as a function of 

period, T C?=0-05) 

B.7 Ground and pseudovelocity spectra, Sg, S^, for 

a return period of 50 years, as a function of 

periof, T (5=0.02) 

8-8 Ground and pseudovelocity spectra, Sg, S^, for 

a return period of 500 years as a function of 

period, T (5=0.02) 

8.9 P.s.d.f. of ground acceleration, for a 

return period of 50 years (5=0.05), as a 

function of frequency, w 

8.10 P.s.d.f. of ground acceleration, for a 

return period of 50 years (5=0.02), as a 

function of frequency, w 

8.11 P.s.d.f. of ground acceleration, S^^, for a 

return period of 500 years (5=0.05), as a 

function of frequency, w 

8.12 P.s.d.f. of ground acceleration, S^^, for a 

return period of 500 years (5=0-02), as a 

function of frequency, w 

8.13 Pierson-Moskowitz, P—M, and Jonswap p.s.d. 

functions of wave heights, S^^, for a return 

period of 50 years 

8.14 Fundamental frequency, u)°, as a function of 

soil shear modulus, 

8.15 _ Percentage of critical damping, 5°, as a 

function of soil shear modulus, Gg 

8.16 Amplitude of complex frequency response of the 

first normal coordinate, |Hj(a))|^, as a function 

of frequency, w 

8.17) Amplitude of complex frequency response of the 

first normal coordinate, |H^(w)|^, as a function 

of frequency, w 

8.18 P.s.d.f. of the first generalized load for wave 

excitation, y,as a function of frequency, u) 

8.19 P.s.d.f. of the first generalized load for wave 

.excitation, as a function of friHiaency^ tu 



173 

8.20 P.s.d.f. of the first generalized load for wave 

excitation, S as a function of frequency, w 
p,w 

8.21 P.s.d.f. of the first generalized coordinate for 

wave excitation, as a function of 

frequency, w 

8.22 P.s.d.f. of the first generalized coordinate for 

wave excitation, as a function of frequency, 

0) 

8.23 P.s.d.f. of the first generalized coordinate for 

wave excitation, as a function of frequency, 

OJ 

8.24 P.s.d.f. of deck displacement for wave excitation, 

as a function of frequency, w 

8.25 P.s.d.f. of deck displacement for wave excitation, 

as a function of frequency, w 

8.26 P.s.d.f. of deck displacement for wave excitation, 

as a function of frequency, w 

8.27 P.s.d.f. of deck displacement for wave excitation, 

as a function of frequency, w 

8.28 P.s.d.f. of deck displacement for wave excitation, 

as a function of frequency, w 

8.29 Deck displacement for wave excitation, u^, as a 

function of soil shear modulus, 

8.30 Short and long term deck displacement for wave 
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APPENDIX B 

Cornell's seismic risk model [4.26"| 

The Cornell's seismic risk model makes the following assumptions: 

a) The seismic region in which the site is located can be di-

vided into n sources based on the tectonics, geology and earthquake 

history of the region. The shape of the sources has to be assimilated 

to a point, a line or an area depending on their specific characteris-

tics figs. 4.1, 4.1,4.3 respectively; 

b) The earthquake generating mechanism is concentrated in a point; 

c) The isoseismals produced by earthquakes are circular; 

d) There is equal likelihood of earthquake occurrence along or 

over a line or areal source respectively; 

e) The occurrence of earthquakes can be represented by a Poisson 

process; 

f) The occurrence rate remains constant in time. 

Some of the assumptions can be altered if the information available 

in a specific case allows it, but this will usually imply increased 

mathematical complexities [426] . 

As it has been mentioned in the text, the final objective of a 

seismic risk model is to compute the maximum ground motion intensities 

in a site and their return periods. To do sĉ  the following steps are 

implied: 

1) An attenuation law for the desired ground motion intensity 

at the site, I , is selected i.e. I = f(M, R, C.) . . .( Bl) 
] 

in which f stands for function of, M is the earthquake random 

magnitude, R its random focal distance, and C^ (j = 1, 2, 3) are 

regional constants. From equation(Bl) the following expression can 

be derivated: 

M - g(I,R,Cj) 

where g reads 'function o f . 

2) Assuming probabilistic independence between M and R , the 

conditional probability that the intensity I will be equal or exceed 

a value i , when an earthquake occurs at R « r can be expressed as 

follows: 
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P[l - ilR = r] = p[m - g (i, r, C )] 

- b (i, r. Cj)] . . X B 2 ) 

where F^[m| is the cumulative distribution function (c.d.f.) of 

magnitudes and g (i, r, C.) was defined previously. 
^ • 

3) In order to compute the complementary distribution function 

30f M i.e. 1 - F^(m), the Richter Magnitude frequency law, equation 
TT-rn r-acac -matT Ko " a \ 

C4.19), is used. Two cases may be considered: a) when m.~ m — <» ; and 

b) when — m — ; where m^ and m^ are the lower and upper 

limits of the magnitude in a region. 

For case a) the following equation is obtained: 

1 - F^(m) » e fflg— m — 00 . . .(B 3) 

in which g is a regional constant which varies between 1.5 and 

2.3 [^6] ; and for case b) : 

1 - F (m) = CI - k) + ke 

mg— m — fflj . . XB 4) 

where: 

k - [1 - . . (8 5) 

4) The c.d.f. of I , F^(i) given that M — is: 

1 - F (i) = P[l - i] 

= / P[l - i|R = r] f (r) dr . . (B6) 

ri 

where P[l — i|R = rj is obtained by combining equations(B2) with 

equations(B3) or(B4), depending on the distribution of magnitudes 

considered, and f^(r) is the probability density function of R 

and r̂  and r^ the limits of r . 

5) The probability distribution of I^^^(t) for a period of 

'time of t years can be obtained by using equation (4.20) for 

# * 0 i. e.: 
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exp(-p.vt) • . . .(B7) 
1 

vAiere in equation (4.20) has been multiplied by p^v in which 

p£> the probability that an event with m ~ nig occurs is given by 

equation (B6) and v is the mean rate of eKceedance of earthquakes per 

year. For t = 1 year, 

• 'Pmax(" " 

= (1 - PiV) . . , (B8) 

6) If the annual probability of excedence is - 0.05 the 

distribution of can be approximated by: 

1 - F-j- (i) = 1 - exp(-p.v) 
nnax i 

= (1 - p£v) 

" . . .( B9) 

7) The average return period for I - 1 is defined as: 

T . ' 

1 - V (i) 
nnax 

" . . .(BIO) 

8) The Tg years intensity can be obtained from equation (BIO) 

when p^ is given explicitely. 

9) The contribution of the n independent sources to the 

intensity in a site leads to the probability of the maximum value of 

I — i at the site i.e.: 

n (i) - * F (i) 
"inax j=i \axj 
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n 
« TT exp(-p.v). 
j-1 1 J 

n 
« expC- Z (p-v).) ' . . .Oil) 

j-i ' 

^his result is drawn from the property of the Poisson process that 

^ays: a process made up of independent Poisson processes is a new 

Eoisson process with average arrival rate equal to the sum of the 

individual rates. 

10) The return period T„ for I at the site follows from 
0 max 

equation CBll). 

Other seismic risk models 

The seismic risk model proposed in [/i28] makes the same assump-^ 

tions as Cornell's model except for assumptions b) and c) of the 

latter. This is so because the former model assumes that the total 

energy released during an earthquake is distributed along the ruptured 

atone, the slip length of which can be calculated from a semi-empirical 

expression which includes the magnitude of the earthquake and regional 

constants. It was found [4283 that the value of the slip length af-

fects the values of the ground motion parameters to be computed, 

finally the uncertainties due to the attenuation law and the slip 

length expressions used were taken into consideration following the 

criterion underlined in [410,439] i.e. by assuming that the actual 

intensity is equal to the product of a random coefficient by the 

intensity predicted by the model. The application of the model [4.28] 

to a site in San Francisco, U.S. showed that the ground intensities 

computed with Cornell's model underestimate the actual values by a 

factor or two, when compared with the ones obtained by using the 

•proposed model [428] specially for earthquakes of large magnitudes 

Cthe magnitudes reported in [4.28] varied from M = 7 onwards) . 

In [4.29] the Cornell's seismic risk model was applied taking 

the uncertainties in seismic source zone, activity rate v , b 

value and I(MM)max value into consideration. The technique used 

130 include the uncertainties about the mentioned parameters was done 

in a Bayesian context [410,4.27] i.e. posteriori distributions of 

$he parameters were calculated on the basis of their associated 

fractions and their a priori distributions. The scheme was applied 
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to compute the seismic risk of sites in the Eastern Coast of the 

U.S. and among other the following conclusions were drawn: 

a) The inclusion of the uncertainties of y and I(MM)max values 

caused that the I(MM) values predicted for low risks (low probabi-

lity of excedence) to be insensitive to the sources used to represent 

the seismicity at sites located in the East Coast of the U.S.; 

b) The absence of geologic or tectonic evidence which would 

limit the size of events in a region makes it logical and conservative 

to assume a uniform distribution on the lCMM)max, between the lCMM)max 

observed and I(MM) = XII; 

c) The risks associated with a deterministic risk criterion (i.e. 

based on the maximum observed value in a site) vary by factors of ten 

or more for sites considered depending on the geometry source used. 
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APPENDIX C 

Derivation of the probability density function 

From the assumptions made in 7.3.1 about the process y(t), 

it follows that the cumulative distribution function of y„ , 

r -1 " 
F (y) , can be expressed as L?.^ : 

Tq 

^0 

= Z P(Y < y I N = n) P(N = n) . . . (CI) 
n=o 

where N is the random number of occurrences of the load during the 

period of time. To , 

(vTo)" exp(-vTo) 
P(N = n) = . . . (C2) 

V" is the mean occurrence rate of the load and 

P(Y < y 1 N = n) = [F^Cy)]" n = 1,2,3... 

P(Y < y I N = n) = 0. y < 0. n = 0 . . . (C3) 

P(Y < y I N = n) = 1. y > 0. n = 0 

Substituting equations (C2) and (C3) into (CI) yields: 

F = exp{-vTo[l - Fy(y)] } + [H(y) - l] exp(vTo) 
^To 

. . . (C4) 

where the step function, H(y) , is nil for y < 0 and one for 

y > 0 . From equation (C4) the probability density function f (y) 
^Tn 

is obtained, i.e.: 

f = vTo f (y) exp{-vTo[i - F (y)]} 

4- 6(y) exp(-vTo) . . . (C5) 

where the probability density and the cumulative distribution 

functions, f (y) and F (y) of the process y during time T 
y.j y^ 

-are Raleigh distributed, i.e.: 

2 
f <y) = ^ exp(- ^ — ) . . . (C6) 

20^ 
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y Yi Yi 
F Cy) = / pr expC- dyi . . . (C7) 

° y y 

where yj is a dummy variable; in equation (C5) 6(y) is the 

Dirac delta function associated to a spike of unit area at y = 0. 

By substituting equations (C6) and (C7) into equation (C5) the 

following result is obtained: 

2 2 

f (y) = v'ToC^ exp(- ) exp{-vTo e x p ( - — ) )] 

. . . (C8) 

The actual evaluation of p and q, equations (7.25) and (7.26) 

respectively, can be carried out by substituting equation (C8) 

into them. 
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Expected ground 

motion parameter 

y 

Period 

T 
sec. 

bi b2 b3 

Coefficient of 

variation of 

y 

a cm/sec! 
max 

V cm/sec. 
max 

d cm 
max 

472.3 

5.64 

0.278 

0.401 

1.301 

1.202 

0.548 

0.696 

a cm/sec! 
max 

V cm/sec. 
max 

d cm 
max 

0.393 0.434 0.885 0.883 

0.1 10.090 0.233 1.341 0.651 

0.15 45.350 0.197 1.408 0.639 

0.2 31.450 0.226 1.323 0.577 

0.3 27.780 0.290 1.416 0.560 

0.4 11.630 0.333 1.309 0.628 

0.5 5.740 0.356 1.197 0.591 

2.54 cm/sec. 0.6 2.350 0.415 1.171 0.609 

0.8 1.245 0.415 1.020 0.635 

5 = 0.05 1.0 0.432 0.399 0.704 0.703 

1.5 0.132 0.439 0.574 0.837 

2.0 0.122 0.466 0.675 0.941 

3.0 0.0934 0.485 0.709 1.007 

4.0 0.0728 0.520 0.788 1.191 

5.0 0.0706 0.557 0.938 1.193 

6.0 0.1045 0.483 0.806 1.173 

8.0 0.1475 0.435 0.767 0.976 

Table 4.1 Values of coefficients b. . i=l,2,3 for 
attenuation law y = b^ io 2^ (R + 25) -
values of the coefficient of variation of [4.16] 
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N. Seismic 
zone 

3 

Fennoscandia 

10 
U.K. & 
Ireland 

3 

Fennoscandia 

10 
U.K. & 
Ireland 

Magnitude N, <tep th h ^ 50 Km. depth h > 50 Km. 

4-1 - 4-6 24 18 0 0 

4-7 - 5.1 26 5 0 0 

3.2 - 5.6 7 5 1 0 

5.7 - 6.2 1 1 0 2 

6.3 - 6.7 1 0 0 0 

6.8 - 7.2 0 0 0 0 

7.3 - 7.7 0 0 0 0 

7.8 - 8.2 0 0 0 0 

Table 4.2 Record of magnitudes M for earthquakes occurred in 
- seismic zones 3 and 10 during period 1901-1955 [4.1^ 

Seismic 
zone 

a b Observations 

3 6,08* 0.97* M>4.1,Eye fitting [4.6] 

10 4.40* 0.76* M>4.1,Eye fitting [4.6] 

3 and 10 6.13* 0.96* M>4.1,Eye fitting [4.6] 

3 5.96 ± 1.32* 0,95 ± 0.23* M>4.1,Least squares 
[4.25] 

10 6.82* 1.10* M>4.1, Maximum 
1ikelihood 4.25] 

3 1.04* M>4.1,Eye fitting >.25] 

10 0.82* M>4.1,Eye fitting [4.25] 

U.K. 4,13** 1.09** 3.25 < M < 5.5, 
[4.35] Least squares [4.35] 

Great Glen 2,9** 0.95** 3.25 < M < 5.5, 
[4,35] Least squares [4,35] 

fable 4.3 Values of a and b Clogjg N = a - bM) for different 
seismic zones period 1901-1955), (** period 1800-

1970) 
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Number of 
Towers 

D A T A 

1) Height of caisson = 61 m, 
2) Width of caisson = 80 m. 
3) Length of tapered shape of towers = 70 m. 
4) Length of parallel shape of towers = 45 m. 
5) Maximum diameter of towers = 20 m. 
6) Minimum diameter of towers = 12 m. 
7) Maximum thickness of towers = 0.9 m. 
8) Minimum thickness of towers = 0.4 m. 
9) Tower spacing = 30 m. 

From 1) to 9) 
4 tower platform 

(except 2)) the same as for the 

10) Height to bottom of platform deck = 175 m. 
11) Equivalent diameter of caisson = 54 m. 
12) Mass of caisson and content = 12,500 (Ton-s2)/m. 
13) Mass of deck and equipment = 1,250 (Ton-s2)/m. 
14) Mass density of reinforced concrete = 2.5 Ton/irf 
15) Mass density of sea water = 1.0 Ton/m 
16) Coefficient of fluid added mass for caisson = 1.0 
17) Coefficient of fluid added mass for towers =1.0 
18) Coefficient of fluid inertia = 2.0 
19) Water depth = 145 m. 
20) Towers filled with water up to mean sea water level 

Table 8.1 Geometrical characteristics of the selected concrete 
gravity platform 
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Fig. 2.2 Environmental loads acting on a concrete gravity platform 
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Fig. 4.4 North Sea site used for seismic risk analysis 
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Fig. 5.1 Wave parameters used in the linear wave theory 
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Fig. 5.2 Typical wave record 



200 

R E ^ DATA ABOUT 

'GEOMETRY 

a) STRUCTURED MATERIAL 

.PROPERTIES 

b) SEISMIC EXCITATION 

c) WAVE EXCITATION 

d) SOIL PROPERTIES 

e) RETURN PERIOD AND 

RATES OF OCCURRENCE 

OF EXCITATIONS 

PRINT 

DATA 

GENERATE 

STIFFNESS K 

MASS M 

OF RIGID SOIL STRUCTURE 

1 

SgiME EIGENVALUE PROBLEM 

|K - W^Mlx = 0 

PRINT 

RESULTS 

PRINT 

RESULTS 

GENERATE 

STIFFNESS Kn 

MASS M 0 

OF SOIL-STRUCTURI SYSTEM 

PRINT 

RESULTS 

Fig. 8.1 Block diagram of computer program 



200 bis 

PRINT 

RESULTS 

END 

PRINT 

RESULTS 

RESULTS 

PLOT 

-PRINT 

RESULTS 

PLOT 

SOLVE EIGENVALUE PROBLEM 

gOMPyxi SHORT TERM 

STRUCTURAL RESPONSES FOR: 

SEISMIC LOADING 

COMPUTE SHORT TERM 

STRUCTURAL RESPONSES FOR: 

WAVE LOADING 

COMPUTE LONG TERM 

STRUCTURAL RESPONSES FOR: 

a) WAVE LOADING 

b) SEISMIC LOADING 

c) WAVE AND SEISMIC 

LOADING ACTING 

SIMULTANEOUSLY 



201 

\ 

\ 

\ 

\ 

\ 
o o 
+ I 

6 a fl 
\ \ 

I 1 
: I 
: I 

I I 

\ \ 

\ 

CO • 
u 
S 

\ 
\ 

N \ 
N \ 

J I r 

( D D S / U I D ) ^ 

O 
o 
m 

o 
o 

o 
o 
cn 

o 
o 

o 
o 

c 
u 
o 
4-> 
<u 
u 
(U 
X 
4J 
m 
o 
c 
o 
4 J 
u 
§ 
tw 

CO 
0 

X 
03 
E 

cd 

o 

•r-i 
CO 
0) 
4-1 
a 
•H 
C 
o 
•H 
4J 
CO 
k 
Q) 
1—4 
0) u o 
u H 
(0 
'O 13 c o 
3 •H 
o 
>4 Q) o P. 

CM 

00 

00 
• H 



202 

\ 

\ 

CO 

s 
CJ 

o 
-O 
m 

o 
"O 

£ 
3 
4J (U 
k 
0) 

JZ 

<4-1 
o 
c 
o 
•H 
4 J 
U 
B 
IM 

CO 
cd 

\ 

\ 

\ 
© 
+ 

\ 

I I \ 

I \ 
: I 
1 1 

\ 

o 
, o 
m 

\ 
o 
o 
CM 

\ \ 
o 
o 

\ \ 

(oas/DD) 
m 

V \ 

X \ 

T 1 

X 

§ 

Q) 
u 

• H 
CO 

0) 
X 
u 

c 
•H 

'H 
V 
O 
*H C 
> ^ 
u 

c O 
3 
o 
w 
o 

cn 

00 

to 

H 
W 
01 
CU 



.203 

\ 

P 
+ 

fl 

\ 

I I 

I I 

\ 

\ 

U ^ \ 

•CO 
u 
<D 

o 
o 
ir> 

o 
o 

(mo) 

f3 
U 
o 
4J 
t) 
u 
Q) 
•C 

a 
o 
•H 
4-> 
O 
c 
D 

0 
0} 
cd 

1 

o o 
o XJ 
cn •H 

m 

0) 
4J 
C 
•H 

o 4J o c 
CM Q) CM B 

(U o 
o 
7-1 
A . m o 

O •H 
•o 

H 
o 

•H 
•o 
-a XJ 
c o 
3 •H 
O W u 0) o a 

o CO 

to 
•H 



204 

& + 

fl 
O 
I 
• 

I I 
I I 

I I 

/ 

CO 

13 
0) 

o 
m 

o 

o 
•H 
U 
<D 
P. 
C 
3 
4-> 
<U 
M 

>-i 
O 
«4-J 

09^ 
CO m o 

cd o u 1! 
4-> u 
0) 
CL 
CO 
H >, 4J 

•H 'O CJ o 
O •H 
*—1 
Q) qj 
> Cb O 
13 IN 
3 O 
Q) 
CO CJ o. o 
•H 

T) 
c U 
(Q c 
3 

'O c 
3 cd 
O u (0 o cd 

( o a s / u i D ) s ' S 

m 

00 . 

00 



205 

D 
4 
0 

& 
+ • 

« 0 

I I I 

i l l 
I I I I 

/ 

0) 
M 
S 
o 
o 
m 
(W 
o 
'O 
o 
•H 
(D 
a, 
c p 
3 
4J 
0) 

o 
144 

c/a 

6 0 
( C 

i n 
o 

CO 
W o 

4-J II 
u 
<u 
C L 

(0 
H 

>. 4 J 
• H 
a O 
o • H 
r—i 
o 0 ) 
> cx 
o 
T) M-1 
3 o 
<U 
CO c 
p4 o 

• H 
no 4J C u 
(0 c o 
•4H c 

3 (tJ o 
M W 
O cd 

(oas/uiD) ̂ s'^S 

vO 

CO 

M 
•H 



206 

O + 

I ! I 
1 

I I I I 

r 

(0 
u 
0 
Q) 
>s 
O 
m 
m 
o 
'O 
o 
•H 
0) 
a 
c 
k 
d 
4J 
Q) 
U 

U 
o 
U-l 

o 

cd 
ki 
A J 
u 
Q) 
O. 
(0 

4-1 
•H 
U 
o 

o 
II 

13 o 

(U 5 
cu > 

o 
' 2 

o 

(OBS/tao) 

0) 
CO a, 
"O 
c 
(Q 
no 
§ 
o 
Li 
u 

CO 

ci 
•H 

c 
o 
•H 
u 
c 
3 
u-i 

CO 
(0 



207 

D • 
0 0 

• • • 

i l l 
11 

CO 
u 
0 
Q> 

O 
O 
in 
u-l 
o 

o 
'H 
0) 
cx 
c 
3 
jj 
a 

k 
O 
tw 

GO N 
O 

(0 
yt 
o 
0) 
CL 
co 
?s 
4-) 
•H 
u 
o 
rH 
a > 
o 
n3 
3 
Q) 
CO 
CL 
TJ 
C 
CO 
XJ 
c 
3 
O 
u 
o 

o 
11 

13 
O 
•H 
k 
O 
A 

c 
o 
•H 
4J u 
c 
3 
U-( 

M 
(0 

(33S/U13) ̂ S'^S 

CO 

CO 

CO 



2oa 

•"Cn 

S ̂  

H 
• I 
• a 

G 
' + 

B 

V V: 

" C O 

u 
o 
(0 

Cv u 

..so 

(0 
CO 

m 
o 
o 
II 
w* 

0) 
u 
cc 
(U 

o 
m 
M-l 
o 
73 
O 
•H 

a 
a 
d 
u 
3 
4J . 
a 
u 

u 
o 
y-t 

i f 

J 

cn 

00 

(03S/ppa)/( oas/ mo) BU 

(0 
CO 

c 
o 
•H 
4J 
CO 
k 
a 
a 
u 
u 
(0 

u 
c 
0) 

II 
bO 4_| 
w ° 
O c 
."g 

- M 

^ <0 

o> 

00 

00 
•H 



209, 

• , 

; 1 

I I 
-t I 
•m o 

D 
4-
E 

V 

tD 
I 

e 

— CO 

u 
o 

tU 

V V ! 

_ vD 

40 
rj 

CM 

o 
o 
II w 

to 
u 
to 
o 

o 
tn 

o 
"T3 
o 
$4 
0) 
CL 
g 

3 
OJ 
9-1 
CJ 

o 

t3 
Q 

C 
o 

TO 
3 

o 
u 
o 
Q 
•o 
c 
3 
o 
u 
CO 

u 
c 
o 
3 
rr 
0) 
u 

u-\ ^ 
O c 

o 

: 

to 

o 

C O 

CO 

to 

fQ w 
^DasypBJ)/( DSS/ no). g 



210 

e 

•i 

H 
• I 
« t> 

D 
+ 

G 

D 
1 I 

u 
a 
w 

> 'O 
(0 
u 

N 

W 
(0 

m 
o 
d 
11 
w* 

to 
M 
(0 
QJ >. 
O 
o 
m 

13 
o 
•H 
a 
a 
g 

d 
4J 
0) 

w 
o 
vw 

r3 
(0 

w 

C 
o 
•H 
AJ 
CO 
U 3 o 
i-H 
0) X u u 
u c 
CO . o 

3 XJ o* c <u 
3 
o M-l 
k 
00 

o 
o c: 

o 
•H 

U-l 4J u 
'O c 

(0 ̂ 4 
PL, «d 

00 

I — r ~ i — r CO 
00 

(oas/pT?j)/( D3S/ UID) s 
o o 



211 

I i 
• e 

D 
+ 

E 

D 

I 

E 

CO 
(0 o 

Qj 
W 

c\j 
TS o 

CO r) o 
i) 
w* 

3 

vO 

I : 
i : 

T — I — I — r I I 1 r 
CO 

w 
M 
cd 
<D 
>> 

O 
O 

m 

o 

o 
•H 
CJ a 
d 
u 
o 
4J 
(U 
w 

u 
o 
iw 

CO 
(0 

( / ) 

C 
o 

CO 
S 3 
1-H 
S ^ 

^ § 
? -
C QJ 
S ^ 
O M-i 
U 
60 W_| 

^ ° 
o c 

o 
• 'H 4-1 jj 
c 

• 3 
to m 

k tg 

CM 

00 

60 
•H 

Be (oas/pBa)/( 03S/ DD) s 



212 

'O 
u 

r 
if 

>-} Pi 

m 

o 
m 

T 
o 

cx 
& 

§? 
>-) Ph 

fO 

T " 

m 
CN 
o 
m 

o 

m r-v 

o 
in 

a, 

§ 
i f 
•-J Pk 

m 
(N 

O 
m 

ui 

O 
m 

N 

CM 
d 
m 

d 
UU. 

0) 
u 
cd 
o 

o 
m 

•o 
o 
•H 
M 
0) 
PL 
C3 

<u 
U 

U 
O 
«4-l 

CO 

e . CO 

u CO 
•H 
0) 

0) 
> 
cd 
3 
iw 
O 
en 
C 
o 
•H 
4J 
U 
G 
3 
tw 

I D 

CO 
O 

Cu 
+ 
G a 

cd 
3 

c CO 
o C 
'H o 
4J *~} 

cd 
'H 
> CJ 
O cd 

• o 

n : * % 
>4 1 
( d a . ng 
C 
cd N 
4J 4 J 
( 0 'H 
It O 

G CO 

5 

cT T 
3 c 
M o 
«d CO 
> u 

o 
c •H 
cd PH 
0) 
G 

S m 
u #-4 

CO a CO 

(oas/pBj) lu OT X s a 



213 

tj u 
eg oj 
4̂  m 
O 
3 

3 -

2 -

1 

Soil Weallzcd 
Wyer over 
a b«lf ,p«c. . . _ a _ 0 

BAlf apac<* «_ _ 
_ m + a 

m • mean value 

OaCandard deviation 

I 
7.5 10 - 12.5 15 

Gg X igs (Ton/m^) 

Fig. b. 14 Fundamental frequency,' , as a function of soil shear 
modulus, G„ 

I 
=) 

X 
O 

10-

5 -

Soil idealized mg: 

Layer over 
# half space 

Sal£ apace 

n " " mean value 
• MQ — O o Standard deviation 

7-5 
~T~ 
10 12.5 1.' r 

^ig. fi, 15 Percentage of critical damping, • as a function of soil 

•shear modulus, C 



<s 
I 

214 

§ H 

33 

X 

2 -

1 -

0 

- 2.2 * 10* (Ton/n') 

(g - 0.0426 

- 5,000 (Ton/m') 

W,, , • 27.2 (n/>cc) 

Soil represeaced by a 

layer over « half space 

0.78 1 

Fig. 8. 16 Amplitude of complex frequency response of tlie first normal 

coordinate, |HJ((jo)1̂  , as a function of frequency, w 

N 
L 

I 
3 

W 

1 -

«c 

- 2.2 X 10* (Toa/m') 

- 0.0426 

- 15,000 (Too/m̂ ) 

- 27.2 (m/sec) 

Soil reprtsented by a 

layer over a half gpaw 

1 1 

0.78 1 _ "sec 

Fig. 8. 17 Amplitude of complex frequency response of the first normal 

coordinate, |Hj(u))1^ , as a function ot frequency, w 

T 
2 ) 



2 1 5 

m 

'O 
(0 
M 

5 

T 

m p< 

o 
m 

m 
CM 

o 
m 

M 
i2 

T) 
(U c 
o o 
rH •H 

4-> -o u 
0) C 
N 3 
•H U-4 
fH 
(0 td 
W 
0) M c 0 
Q) 
OO 
4J D= 
CO 
W P. 
•H CO 
U-t 
(U c 

o 
4J •H 

4J 3 
U-l (0 
O 

P4 

00 

u 
s g 

<u cr 
> Q) 
CC !-i 
5 iw 

M CM 

(33S/pej)/ uoi o r X " S 
M'd, 

60 
•H 
fXH 

I 

•S 

l» 

3 S 5 

5 :5 

m' d 
(03S/pej)/^u0X ^OT X S 

M 
O 
tw iw 

o T) 
cd 
o 

0) 
N 
•H 
1—1 
(0 m w 
0) c 

O 0) 
60 
4J 
W u 
•H 
iw 

o 0) m 
4J o 

• 

iw 
'O m 

CNI 0) 
o PH 

m 00 
*—4 

o 00 ̂  . 
60 
•H 

C 
O 
•H 
4J 
u 
c 
3 
iw 

:2 
CL 

CO 

11 
OJ §-
> 0) 
to w 



216 

1 
2 
•M II 

1 t 

•a 
to 
k 

(03S/pBa)/^m gO% X s 

to 

o 
to 

m 
(N 

0) 
4J 
0 
•S 
nd 
u 
o 
o 
. o 

-o 
o 
N 
•H 
r—I 
cd 
0) g 
60 
U 
CO 

•H 
tw 

C 
o 
•H 
U 
c D 
M-l 

:s 
>> 

Si (0 ^ jj 
-»-> 'H 

U 

tw 
-o 
% 

% 
u 
c 
Q) 
3 
cr 

0 d) 

j-i 
«• o 
PH 4-1 O 

m cs 

00 

60 
•H 

•0 
I 

1; 
U 
j 9 
fSi w 

;(oas/pFj)/^uoi ^OT x MS 

c 
c 
•H 
TD 
M 
O 
O 
u 

lO XJ 
0> 

O N 
•H 
fH ca 

<D 
a 
0) 
bO 

o 
m 4J 

% 
o u 

•H 
tw 
<U 
X 
4J 
iw 

m O 
Cvi 
o M-i 

13 
m 
i-H (0 
o PL, 

O 
cs 

00 

60 
•H 
P&4 

cC 
w 

r . 
Q) O 
> c 
CO <U 
3 a 
^ S" 
O M 



217 

I 

N 
N 

a 
1 K 
8 « 

2 
i a « 

O s o N 
f t • t 

w o* «A 

0) 3 
xi a > 
cd 0) cd 
>-i CO > u 

C 
3 w <D 

o Z3 
M - l cr* 

(D 
' O M 
(0 M - l 
o 

m f -H 

o 
o <D 0 N o 

• H • H 
i - H J-) 
CTJ u 
U c 
g Of 3 iw 

o 00 CO 
m 

4J CO 
o CO CO u 

•H 

cs 

(D9S/PEJC)/ UOl _0T X ^ 

o 

4J CO 
in 
CM o c 

o o •H 
4J 
cO 13 •U m •H 

f—H CO c; 
• X o PU o 

m 
<r̂  

00 

J 

bO 
•H 

I 
^ i i 
s ^ £ I 

« i i 2 

• • • I 

Q) 
4-1 
(0 
C2 

•H 
T? 
U 
o 
o 
u 

T " 
fn 

""T" 
<s 

(oas/puj)/ m 01 % 

T) 
0) nl 
N 

• H CO 

in 

«d 
Q) 
g 

00 
4J 
CO 
u 
•H 
U-i 

CO 

c 
o 
•H , u 

pCJ AJ 
O 

—m 

TD 
(0 

s g 
0) 

: g-
§ % 

in 
CM 
o 

in 

o>^ 
CLi (4_| O 
CM 
CM 
00 

to 



218 

I 

I 3 g 
" S - " 
3 d 3 R 
• . t # t 

Ik? o" jaT w M 

— 1 
m 

(oas/pcj)/ m OT % 

C M 

T3 o 
CT3 0) 0) 
M w > 

(T3 
3 > U-l 

o 
u 
o 
IN 
4 J 

c 
o 

• H 
4 J 

m c O 
c o 
O 
c 

B D 
O d) W-( o 

cd CO cd 
rH a, (0 
0) 
•rl 
T) 

CO 

O 12 
m U 

OJ :) 
o 13 cc 

3 
4-1 
O C #» 

q >. 

V-I 
XJ 

" g ^ 

(0 Qj 
t! m •H cr 

CO O (J X 
o Pk o 
m 
r- m 

w 
C ) • 

00 

60 
»rl 

i 
O 

I i 

e 

i 

"T" 
&n 

— r 
-4" 

"-r 4 
<N| 

o 
in 

m 

o 
m 

& U-J 
3 o 

O 
i w 

4J 

c 
o 
• H 
4J 

m C u 
<u c 
E D O (U 
u y-t 
(Q tO 
f-H 
Cu (0 
0) CO 
•H 

'S 

^ .3 
o c ~ 

o >% 
• -H O 
W4 tJ C 

CO 4) 

H S 
W U C) 
' % w 
Pw <U w-l 

<r 
(N 

00 

•o w 

ipas/pvx)/^m ^_oi x 

6C 
'H 
(M 



219 

•o 
2 

I 
M 

"S 
m 

o 

m 
CM 

o 

m 

o 
<NJ 

(33S/pBJ)/gm ^_0T X 

Of 
> 
CO 
> 04 o 
o c 
M-i o •H 
•U 4-) c U 
Q) c 
E 3 
<u U - l 
CJ 

0 CO 
r - i 
C L 05 
w CO 

• H 
1 3 

Z z 

U 
(U : 3 

' O CO 

3 
U-i o C ^ 

o >. 
•H o 

U-i 4J C 
(0 a 

T 3 ^ 3 
• H Q ' 

( 0 u a 
X 4̂ 

014 OJ U_| 

rs. 
Of 
CO 

bO 
•H 

I 
s 
N 
N 

n3 
(0 
w 

o V 

I ! \ "1 1 r 1 r 

o 
m 

m 
CM 

(03S/pEa)/^m g_OT % 

! o; 

L 
^ g 

• u J J 
C O 
§ § 
0) m 
a 
(0 CO 
CX CO 
0) (0 

T? #. 

u 
(U 

3 
3 

T D t o 
3 

o c 
o > \ 
•H u 

U-t W c 
CO G) "O 3 
•H cr cn U Q) 
% U P 4 o 144 

\0 
(M 

00 

•H 



o 
0) 
CO 

2 
5 -

4 -

CO 

3 
3 3 

2 -

220 

Eg - 2.2 % 10* (Ton/o») 

— 0.0426 

• - 5.000 (Taa/m') 

W|,.; - 27.2 (m/«ec) 

Soil r#pr###oced by a 

half #pac* 

0.15 0.25 
I r 

0.50 0.75 

Fig. 8.28 P.s.d.f. of deck displacement for wave. 

excitation, S „ , as a function of frequency, w 
u, w 

• O 

X 

5.0 

2^ ~ 

so 

Soil idealized as: 

- Layer over y, 

half .pace . _ g 

- JUlf apaca 

m - mean value 
C " atandcrd dcviotioa 

- r ~ 
7.5 

r 
10 12.5 

— r 
15 

Cg X 10^ (Ton/m*) 

iEig. 29 Deck displacement for wave excitation^ "w "* a function 
o f soil shear modulus, G 



221 

n-

7 

6 -

5-

4 

3 J 

long term 

short term 

I — . . — 

» • mean value 

O • standard deviation 

7.5 10 12.5 15 Gg X 10' (Ton/m=) 

Fig. 8. 30 Short and long term deck displacement for wave excitation, 

, as a function of soil shear modulus, ; soil 

idealized as a layer over a half space. 



222 

n) 
P 

•s 

s 

O \v> 

-r 

( o a s / p e a ) / m 

I-

, 

m 
b'X 

O T X s 

T -

CO 
CO 

O" 
>> 

0 
o 

• H 
4 J 
CO 
4 J 
• H 
O 

S 

- f o U 
• H 
B 
( 0 

• H 
O 
M 

U 
O 

i w 

— O 
4-> 
CO 
c 

• H 
T D 

O 
o 
u 

— C N — C N 
a 
N 

• H 
r H 
CO 
M 
<U 
C 
0 ) 3 
0 0 

4 J 
( 0 

% 4 J 
( 0 a u c 

0 ) 
MH D 

QJ 
c r 
a 

4-1 V - l 

* W t W 
^ . - H O o 

t w a 
o 

C O • H 
r > 1 3 

u 
o CO c 

(U 
3 

m 

00 

60 •H 



223 

'O 
(0 
u 
u 
0) 
U) 

i 

3 : 
0 wC 
1 • 

Z a 

•CJ 

CO 

w 
CC 

cy 

w 

c 
o 
•H 
4J 
(0 
4J 
•H 
U 
o 
u 
•H 
G 
m 
•H 
a 
(0 

o 
4̂ 

(0 
c 
•H 
T) 
U 
o 

-T" 
ui 

o 
u 

T3 a 
N 
•H 
rH a 
u 
a 
c 
<D 3 
60 
u 
CO O M c 
•H <u 

3 cr 
0) a 
X w 
4J 
KW U-i o o 
• c 

o 
•H 

T) •u 
O % c 
3 (Xi 

(39S/pej)/ a 
(N 
CO 
CO 

60 •H 



224 

o 
0) 
0) 

n3 
(0 
U 

3 

(0 
CO 

"5 

2 & 

« i 1 
€4 0 in 

—CO 

O* 
% 

c 
o 

•rl 
iJ 
cd 
u 
•H 
o 
X 
a 
u 
•fH 
E 
(0 
«H 
0) 
(0 
}-i 
o 

—jCS 

(0 
c 
•H 
J-l 
o 
o 
u 
"O 
a 
N 
•H 
td 
u 
Q) 
C 
Q) 
oo 
U 
W 
M 
KW 
QJ 
x: 

X 
o 
c 
<u 
3 
cr 
o 
w 

00 
r-s. 

(oas/pea)/ ui 

— r 
ri 

b'x. 
CvJ 

44 

j s 
Ph <4-1 
n 
m 

00 

60 
•H 



225 

(0 
u 

u 
Of 
(0 

I 
N 
w 

|v» 

5 

1 : 

(oas/pca)/ m 
s -

J 

CM 

t)'n 
01 X S 

M-l 
o 
c 
o 
•H 
4-» 
a 
c 
0 

CO 
CO 

cy 
3 

— m (A 

c 
o 
'H 
4J 
(0 
4-J 
•H 
U 
X 
0) 
u 
•H 
E 
(0 
•H 
QJ 
(0 
J-i 

- <N O 
U-l 
4J c 
a 
E 
O 
u 
CO 
r-4 a. 
to 
•H 

CJ 
Q) 
'v3 
y-J 3 y-J o 

— 1—4 X u 
(w G 

Q) TD 3 
00 cr rs. 0) cu 

M O 0-4 

<r 
m 

CO 

•H 



226 

'O 
(0 
u 

o 
(U 
w 

o 

3 B 

H-' 

& 3 
X « 
a % 
£ & 

P 
JTI 
o 

— cn 

CO 

<3ias//pE3])/ JUI ©13!: S 

tw 
O 
C 
o 
•H 
4J 
a 
§ 

CO 
(Q 

cy 
0 

cc 

c 
o 
•H 
4J 
cd 
4-) 
•H 
a 
2 

E 
M 

• r ! 

Ci 
(0 

kl o 

4J 
d 
0 
6 
<u 
u 
CO 
1-4 
CL 
(0 
'H 

U 
0) 
13 

3 
O 

u 
M-l c 

0) 
13 D 

a* W a 
u 

P4 tw 

m 
m 
CO 

00 
•H 



227 

2 
o 
o 
CO 

a 
& 'e + 

'c s .A 
O g « "2 
K g 

> g 
s s 5 

cJ • O a W W 
1 • : • • fi s-

J" « • 
+ 3 3 3 

in 
O 

(03s/pBa)/^m ^_0T x 

o 
c 
o 
•H 
4J 
O 
§ 

« CO 

C 

..rn 

c 
o 
•H 
JJ 
(3 
4J 
•H 
O 
X 

— a 
u 
•H 
e 
(0 •H 
0) 
CO 
M 
O 

w 
c 
<u 
G 
o 
u 
(Q 
(-4 
A 
0) 
•H 

U 
0) x> 
*w 
o 

CO 

o CO 

U 
G 
<D 
3 
Cf 
0) 
w 

\o 
m 

00 

00 
•H 
U4 



228 

I 
o 

1 0 _ 

5 -

#of I 
Lay«r over ^ 
# half #pAc# ̂  

Half «p«c# 

•m X3 

• - 0 

—. e + O 

value 
X3 — •tandard ^vj at ion 

7-5 J I T 

Gg X 10^ (Ton/n^) 

Fij,. 8.37 Beck displacement for seismic excitation, u , as a function 

of soil shear modulus, G 

CM 
I 
o 

1 0 -

5 ^ 

lo%% tero 

shorr teres 

{ 
S 

m G 

.-•* a -f 
•• « • •« — I- g 

V « mean value 
O — •tandiKl <teviation 

] 
7,5 

r-

10 12.5 15 X 10^ (Ton/m*) 
rig, a,38 S h o r t a n d l o n g t e r m deck d i s p l a c e m e n t f o r s e i s m i c excitation 

^ -a f u n c t i o n o f s o i l s h e a r a a c K k i i l u s , s o i l - i d e a l i z e d ' 

• -<*s a l a y e r o v e r a h a l f s p a c e . 



229 

c 
3 

1 _ 

0.5 -

-Soil idealized aa: 

Layer over m + 0 

a half space 

Half apace — 
—II !• m + o 

B " mean value 
O • alaodard deviaUott 

7.5 
J 

10 12,5 
— r 
15 

G X 10^ (Ton/in^) 
8.39 Deck displacement for seismic and wave excitation, u 

a function of soil shear modulus, G Q»W ' 
as 



230 

1 

"T3 
to 
h* 

6 3 j 

m 

o 

tn 
c\j 

a 

S o 

4J 
QJ U 
u c 
^ 3 
o tw 
<4-1 

CO w CO 0) 
<U CO 
CO 
(U 3 
m 
TO > 

VM 

w 
3 

o c 
o 
•H u 

MM 4J c 
CO Q) 

%3 <u 3 •H C 
0) U a 

% :-! -
P4 a <44 . 

(p3s/pBa)/^uox ,01 X \ 
CO 

00 
•H 
>4 

%) 
CO 
u 

g 
c « 2. 

s 

1 J 
8 % 9 
#A CM U g 
# 1 t 

•» 

•» 

o" \> A 

m rsi 

.<oasypca)/ uoi OT x , h'K 

3 cu 
> 
CO *W 

— 3 o 
u c o o 

m *4H -T-< r~s 4J ID u 
O O c 

3 o ua 
<w 

CO u 
to 10 <u CO . CO . 

o CO 
tn 

XD 3 o tn o > • 
X) 

3 
o C 
O >\ 
*ri V 
-U c m to o tM TJ -U =) 
-TH TT O OD c o 
X 4-1 & 3 tw 

tn 
O 

o 
3 

CO 

AD 
-$(4 



231 

'U o 
CO O 
k (0 

• • 

r 
CM 

(33S/pE%)/ UOl gOT X ^ 

<u 
> 
<Q U-l 
:% o 

u c 
o o m U-4 •H 4J 
o U o u c 
u 3 
o U-i 
U-l (0 u 
d CO 
Q) (0 

XI o w 
to 

<u o 0) 
CT3 > ,n CO 

3 
1-1 o c ^ 

O >\ 
•H U 

U-I W C in rj a 
N 'O 4J 3 •H CT 
O CO u o 

X k, 
CU iw m 

i-H CO 
o <r 

CO 

•H 

3 
o • 
!! 

-a o 
tfl aj 
n w 

T r 

m 
r~s 

o 
m 

a 
cd ̂  
> o 

° s 
W-l TH 

ii 
0) o 
U C 
k, 3 
O 

cd CO 
(U (0 
« 
Q) 
W 
(U > 

J O 
3 

t M 
o a 

o >, 
• H u 
4 J c 

i n (0 Q) 
CN| • o 3 • H c r 
o CO U O 

M 
i n pL, oi i w 

CM 

(oas/puj)/ uoi OT X ^'Ag 

00 

•t? 



232 

u 
(U 
(0 

•o 
n) 

5 -

4 -

> 3 -

2 -

1 -

0.15 0.25 

Eg - 2.2 * 10* (Ton/a') 

(g « 0.0426 

- 3,000 (Ton/*') 

",,.5 " 27.2 (d/««C) 

Soil r*pr«s«nced by m 

half #pac« 

I 
0.50 

—J 
0.75 

Fig. 8.44 P.s.d.f. of base shear force for wave excitation, 
, 'as a function of frequency, w 

C 
H 

J-
o 

X 

5 _ 

2. 

Soil iOeftli^cd aa: 

Layer over 
a half apace 

Half apace 

marnmm • # *< ' " • • B — 9 . 

m - mean value 

O " standard dcviatioo 

15 5 TTs To li.5 
Gg X 10' (Ton/in^) 

Fig, 8, 45 Base shear force for wave excitation, , as a function 
of soil shear modulus, G 

' s 



233 

CO u 

C\ 

fi - « b i 
g S 

1 
M 
N s 8 5 

O *n 8 
• • 1 1 

u u • < 3 "S 

1 r "T r 

Ifl (U 
3 

m 

(oBS/pca)/ uoi 01 X 

cr 
(U 

M-l 
O 
c 
o 

• H 
4J 
u 
§ 

CO 
cd 

m G / f 

c 
o 

•H 
4J 
(0 •u 

•H a 
X 
0) 
CJ 

•H 
E 
CO 

•H 
O 
CO 

CM u 
o 

tw 
<u 
u 
u 
o 

U-l 
u 
CO 
0 ) 

• C 
CO 

QJ 
CO 
CO 

• o 

iw 
o 

'O 
C O 

(0 
O P4 

vo 
< • 

xo 
* 

60 
ft4 

c 
> 



234 

n3 
CO 

O 
Q) 
cn 

i 
i % 

.a> 

! I 
4 

3 

>3-

i 

CO 

(t)as/pEa)/jUox ^OT % b ' A , 

( 4 - 1 

O 
c 
o 
•H 
4J 
u 
c 
3 

0) 
Q 

O" 
> 

m to 

c 
o 
•H 
4J 
CC 
4J •H 
O 
X 
Q) 
O 
•H 
E 
(0 
•H 
O 
0) 
w 

CNJ o 
U-I 
o 
u 
w 
o 
04 
$4 Q 
m 
X 
CO 

CJ 
m 
m 
•o 

<4-1 3, o 

o 
c 
QJ •o 3 CO 

m o 
u O PL, < U-l 

CO 



235 

o 
<D 
CO 

TJ 
(0 
U 
N-X 

3 

L.<r 

I 
0 
H 
«s 
A 
1 

o 
+ 

I I 

a 
d I- i K m 

' • s 

o " V i 

T — -r 
m 
o 

— d 

— cs 

CO 

(oas/pBj)/ uox -OT X O'A. 

U-l 
o 
c 
o 

•H 
4J 
a 
c 
3 

CO 
(0 

cy 
> 

w 

c 
o 

• H 
4-) 
0 
4 J 
• H 

U 
X 
Q) 

U 
• H 
E 
0 ) 

• H 
0) 
( 0 

M 
O 

U - i 

0) a 
w 
o 

m 

0 
0 ) 

CO 

Q} 
CO 
( 0 

3 
O 
u 
c 
a 

TJ a 
c r 

CO a 
u 

O i •4-1 

00 

00 
« 

6 0 
•H 



236 

c 
o 
H 

>°'4 J 

2 -

Sdil Ideolircd • m 

Layer over 
# iialf #pmce 

Half #pac# 

m — mean VHIUC 
_ * + G o * standard deviation 

- W 
« • — O 

/ 

/ 

7.5 10 12.5 15 

Gg X 10^ (Ton/m ,) 

Fxg. 8. 49 Base shear force for seismic excitation, V , as a function 
of soil shear modulus, G 

I 
o 

X 

<y 
5 _ 

2.5-

Soil idealized as; 

Layer over 
- m half space 

Half space 

tn + O 

— m — J 

— m + a 

a • acaa value 

O • stciiiditrd dcviAfioQ 

7.5 10 
— J — 
12,5 15 

X 10̂  (Ton/m-) 

Fig. 8. 50 Base shear force for seismic and wave excitation, V as 
'# function of soil shear modulus, G ^ 



237 

1 

•a 
(T) 

•c 
•3 'o & 

# 

5 "S lo 
g 8 J « 

o 2 £ g 
• 1 1 C o 

u e «*4 1 o* IS* CO 

(oas/pBj)/^(ui-uox) 

G) > 

3 03 3 > 
k o 
O 
U-i c 

o 
m 4J •H 
r~. c 

c 
O E G o 3 

• B 4-1 
00 CO c 
•H CO c cd 
k 

O 
m 4J 

k :s 
o 0) 

> 
o ( / ) 

3 
o G 

O >\ •H a 
iw 4J C m (C 

CM T) 4-» 3 
'H cr 

o (0 u a 
X k, PL, 0) m m 

w 
o ;n 

00 

60 
•H 

S 8 

TD U 
Q a 
U\ M 

3 2 a 
m 

o 
in 

m 
(N 

o 
m 

n r 
m 

I 
<s 

<u 
> 
c3 

• M 
o 

O 
M-J c 

o 
4 J •H 
G U 
a u 
6 G 
O 3 
6 M - i 

W) G 
• H CO 
G (Q 
M 
3 

4 J 

5 
Q) 
> % 
O CO 

3 
U - l 
o G 

O >\ 
•H U 

U - l 4-J G 
(9 O 

'O 
•H cr 

CO CJ o 
X w 

CL, a m 

in 
CO 

(03S/pBa)/^,(ui-uox) jjOT % 
a 



238 

•f % 

" i 

m 

(D9s/pBj)/^(m-uoi) ;,0T X M'Kg 

'V 1 CJ 
to <D 0) 
k CO > 
Sw/ (U 
3 3 

W4 u o 
o 

c 
o 

4J •H m c iJ 
r~% <u a 

— • B c o o 3 B W-l 
to m c 
•H ( 0 
c (Q 
3 o 4J 

* m u 3 
(U o > Z 

• * o CO 
U-i . 3 
o C ^ 

o X 
«H O 
" (J c 
( 0 a 

m 'U 4J ID CNJ H cr 
(0 U Qj o X 

O i a ; ( w 
i n 

o m 

CO 

60 
•H 

I i 

1 • < 

Ul 
n r 
sr CO 

r 
(N 

m r~s 

O 
tn 

m 
(N 

(03S/pt?j)/^(m-uox) 2,01 X 

<u 
> 
cd 
> 

o 
c 

c 
o 

4 J 
c 4 J 
<D O 
e c 
o 0 
E M-( 

to cd c cd 

• H CO 
g cd 

D 
4 J 
U 
o 
> o Z 

CO 

o c T 

TJ 
to 

cC 

•S u 
c 

(0 a 
4J 3 
H cr 
U Q) 
X 4̂ 

in 
r-1 m 
O m 

00 
« 

to 
•H 



239 

o 
0) 
to 

•v 
2 

f 
a 

3 -

2 -

w 

1-

0 

- 2.2 X 10* (TOO/B') 

- 0.0426 

- 5,000 (Ton/o') 

• 27.2 (n/aec) 

Soil reprtseoccd by a 

hsl£ #pace 

c 

«c 

<=. 

w... 

T 
0.15 0.25 0.50 0.75 

Fig. 8.55 P.s.d.f. of overturning moment for wave excitation, S 
as a function of frequency, co 'm,W ' 

B 
I 

C 
H 

iO 
O 

5 -

2.5 -

Sbll idea]izrd 

Layer over 
# half space 

Half apace 
— m + C 

B 

» " mean value 

a - «candard deviation 

7.5 
— r 
1 0 

—I 
12.5 

"T— 
13 

Gg X lO' (Ton/m^) 

Fig. 8. 56 Overturning moment for wave excitation, , as a function 
of soil shear modulus, G 



240 

u 

u 
Q) 
w 

I 
"I s 

M !</ o 

— CO 

— 

CO 

m 

(D9S/pBa)/ (ui-uox) OT X 

~1 

m 

b'K. 

-T 

O 

c 
o 
•H 
u 
u 
c 
3 

to 
to 

cr 

c 
o 
'H 
cd 
4J •H u 
X 
0) 
U 
•H e 
0) •H 
0) 
(0 
u 
o 
m 
4J c 
0) e o 
e 
60 c 
•H 
d 
-̂1 D 
4J M <D 
> 
O 
3 U-i o 
% o 

tM G 
(U 
3 cr 

CO O w 
P-i 

m 

00 
* 

60 
• r l 



241 

(0 
u 

o Q) 
CO 

— 
o 
c 
O 
•H 
U 
U 
c 
D 
U-l 

(0 
cd 

O' 

— m 

r 

CM 

CO 

c 
o 
•H 

•H 
U 
X 
0) 
u 
•H 
E 
0) 
•H 
0) 
W 
>4 

. o 
— CM 14_| 

U 
C 
a 
6 
e 
W) • 
r: 
•H 
c 
D 

4 J 
u 
> 
o 

O m 

« w 
>4-1 

CD 

(oas/pBj)/ (ui-uox) .01 X b'HL CO 
m 

00 

60 
•H 



242 

u 
o 
0) 
CO 

3 

i 

i D 
£ + 

o 
"e 
a 1 

% > 

N S 1 
o C 

• t • 

« " wX o* 

c 
o 

o 
c 
o 
iw 

(0 
d 

o 

•H 
U 
s 
u 
'H 
B 
w 
'H 
CJ 
CO 

w 
o 
tw 

*r 

so 

T " 

m O" 

T " 

CO 

ro 

CM 

(oas-pBa)/^(ui-uox) ^OI x ^ 

d 
§ 
o 
B 

•H 
e 
3 
4J 
u 
0) 
> 
o 
M-l 
o 

U-l 
13 
03 

ON 
in 
00 

60 
•H 
4̂ 

o 
c 
a 
3 
cr 
a 
w 

U-i 



.243 

G 
I 
a Soil idealized aa; 

5 

2.5-

• + O Layer over 

a half apace « . • - o 

mm mm » • — • + C7 

" •*• • • ——™ » o 
m • mean value 

0 • atandard deviacion 

Half #pac# 

7.5 
—r-
10 12.5 

r 
15 
G X 10^ (Ton/m*) 
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