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RANDOM VIBRATION ANALYSIS OF GRAVITY PLATFORMS
SUBJECTED TO WIND GENERATED WAVES AND EARTHQUAKES

by Mario H. Chavez Gonzalez

In this work a methodology is proposed to perform the dynamical
analysis of a concrete gravity platform, c.g.p., subjected to wind
generated waves and earthquakes. Particular emphasis is put on the
prediction of the so-called long-term structural responses, i.e. the
probable responses during and beyond the structure proposed lifetime.
The uncertainties on the properties of the material of the structure,
the ones: related to the supporting soil, as well as the omnes associa-
ted to the mentioned environmental loads, are taken into consideration
in the proposed methodology.

An important feature of the methodology is that it allows to carry
out parametrical studies aiming to determine not only the structural
responses of interest but also to define in a statistical sense the
relative influence of each of the parameters in those respdnses. An
application of the proposed methodology is presented.

A parametrical study on the maximum }esponses of a concrete gravity
platform located in the North Sea was carried out. The parameters
included were: Youngs modulus and critical damping of the reinforced
concrete, soil media idealization and soil shear modulus, wave and
seismic excitation. A seismic risk analysis for the platform site was
performed because of the lack of seismic information of the North Sea
region. The responses considered here were the deck displacement,
the base shear force and the overturning moment.

The study showed that the uncertainties about the mentioned
excitations provide the largest contribution in the dispersion
values of the responses. The mean values of the long-term responses
were about 30 7 higher than the short-term ones for the considered
case. This shows the importance of thebr computation as an important
step in the assessment of the dynamical behaviour of this type of

structures.
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1. INTRODUCTION

1.1 The Problem ; ;

The search and exploitation of hydrocarbons in deeper waters,
as in the North Sea, have brought interest in the analysis and
design of the so-called gravity platforms. In particular, the
concrete gravity platforms, c.g.p., which are structures made of
concrete monoliths supported directly on the sea bed, have attracted
the attention of a number of researchers. The reason for this is
the wide range of problems which are required to be solved in order
to provide with an appropriate design for this kind‘of structures.

In comparison with an onshore structure, a c.g.p. is set in
" an enviromment which, apart from contributing to the loading of the
former, interacts with the c.g.p. to a high degree. Among other
types of envirommental loads on a c.g.p. the following ones should
be mentioned: waves, currents, wind, floating ice, temperatute
- gradients and earthquakes. Waves, eafthquakes and floating ice
could be considered of primary importance for the design of a
c.g.p. because the amplitude of the forces associated to them.
However, the wind and current loading and the loads associated to
temperature gradients should also be considered in the final
analysis of a c.g.p..

A rigorous structural analysis of a c.g.p. should be formi-
lated as the analysis of a three-dimensional fluid~structure-soil
system. The analysis of this system could, in principle, be
performed by using finite element techniqués; howevei, there are
several aspects. which do not favour this global approach. Among
them, the following ones may be mentioned:

1) 'The different kinds of uncertainties surrounding the
description of the properties of the components of the system, even
when they are considered separately. For example, in relation with
the waves, élthough there are some theoiies which propose certain
mechanisms for the wind-generated wéves, it has.not been possible
to confirm them fully as yet. As far as the soil is concerned, -there
is still a bulk of its properties to be better studied and deter- |
mined, in particular the ones connected with its dynamic»bghaviour,

which are of particular relevance in the dynamic analysis of a



c.g.p.. As for the structure itself, there is a lack of knowledge
about the structural properties of the concrete, including the
dynamic ones and others under the field condition at sea.

From the above‘paragraph, it can be concluded that the data
which could be input to a rather sophisticated finite element code
under these conditions, will be of poor quality, therefore, the
results obtained from it will be alike, and would»not reflect reality.

'2) Due to the characteristics of each of the components of
the system to be modelled, i.e. fluid, structure and soil, the
number of degrees of freedom to be used must be very high. As a
consequence, this brings increases of ébmputational costs, assuming
that the computer at hand is provided with the required storage.

3) From the last incise it follows that parametrical studies
are ruled out (on economical grounds).

In this work a general methodology is proposed to perform the
dynamical analysis of a c.g.p. subjected to wind-generated waves
and ground motions. The other environmental loads could be treated
in a similar way. Particular emphasié is put on the prediction of
the so-called long-term structural responses, i.e. the probable
responses during and beyond the structure proposed lifetime. The
‘uncertainties on the environmental loads, about the properties of
the material of the structure, as well as'those of the supporting
soil, are téken into consideration in the proposed,methodolqu.

This work consists of the following chapters: Chapter 2
treats the idealization of the structure itself by using the
finite element technique. The effect of shear deformation as
well as flexural deformation are included in the computation of
the stiffness of the elements. The main subject of Chapter 3  1is
the modelling of the soil environment, It includes a general
discussion of the dynamic properties of soils and also of the
condition of the soils found underlying the North Sea. The
different kinds of soil—foundation‘interaction models are discussed.
Finally one of them is chosen,'taking;into;conSideration:the
characteristics of the North Sea soils.

The determination of the probable seismic activity for a site
located in the North Sea is performed in Chapter 4 . As this is

a region of mild to low seismicity, the corresponding information



is rather scarce, therefore, it was necessary to use a seismic risk
model to evaluate the probable activity at a chosen site in the
region. The information from this model was drawn from different
sources related to the seismic activity in the region of interest
and other similar regions of the world.

In Chapter 5 the modelling of the wind-generated waves is
presented. It is divided in two parts: in the first part, the
characteristics of the waves, including the statistical ones as well
as its spectral depresentation are introduced. In the second part,
the determination of the wave loading on e.g.p. -structures is
introduced.

In Chapter 6 the main results of the previous chapters are
utilized to obtain the expressions to compute the dynamic response
of a c.g.p. resting on rigid and flexible soils when it is
subjected to seismic loading and wave loading. The chapter starts

with the formulation of the governing equation for a linear

structural system on rigid and on flexible soil under a general

dynamic load, and the introduction of the current techniques to
solve that equation. The chapter ends with the aup11cat10n of the
previous part to the derivation of expre551ons to compute the
-dynamic response of a c.g.p. under wave loadlng and seismic
loading when it rests on rigid soil and flexible soil,

:Chapter 7 deals with the determination of the expression which
will provide with the long term statistics of the dynamlc response
of the c.g.p. under seismic load and wave 1oad acting separately
~or simultaneously. The ccase of a single degree of freedom is k
‘treated first, followed by the multidegree of freedom one. Then
«the application of these results to the case of a bc.g.p. under
the mentioned environmental loads is presented. Finally the effect
©0f the uncertainties of the dynamic properties of the c.g.p. as
~well as the uncertainties on the environmental loads on the long-
:termfdynamic reésponse are presented here.

In Chapter 8 as an example of the aﬁplicatien of the

-methodology introduced in the previous chapters, a parametrical
-study of the maximum responses of a c.g.p,‘ located in the North

8ea was carried out. In particular the expected maximum deck

-displacement, base shear force and overturning moment when the



platform is subjected to seismic and wave loading, acting separately
orvsimultaneously, were computed. The influence on these responses
of the uncertainties about the values of the reinforced concrete
elasticity modulus and its critical damping were included. The
~influence on the platform dynamic response of the properties of the
s0il media under the platform site was also taken into consideration
by varying those properties within an appropriate range. Finally
the uncertainties surrounding the seismic and wave excitation at the
platform site were also considered.

In Chapter 9 the conclusions about the study. and for the whole
work are drawn. |

In Chapter 10 a list of references is presented.



2. STRUCTURAL MODELLING

2.1 Introduction

The main feature of a concrete gravity platform, c.g.p. , is
the ability to keep itself stable by virtue of its own weight without
- making use of special anchoring. A tybical c.g.p. can be described
as a framed superstructure supported by a large caisson whose base
lies directly on the sea bed, fig 2.1. The caisson is usually made
of a number of cylindrical cells with a height varying between cue
halfand onethird of the total water depth. The number of towers
forming the columns of the frame is usually tws or four. These
towers are built as an extension of some of the cells forming the
caisson. Finally, a deck supported by the towers completeé the super-~
structure. The caisson and the towers are usually made of concrete,
whereas the deck is built of steel. "

In order to assess the dynamic behaviour of a ¢.g.p. subjected
to wave and earthquake loading, fig. 2.2, it is essential to evaluate the
dynamic properties of the platform. In general, the structural
- topology of the c.g.p. briefly described above is rather complex,
Therefore, the structural idealization is a fundamental step towards
the computation of the dynamic properties of the structure, i.e. its
mass, stiffness and dissipative characteristics.

The description of a structural modelling technique and its
use to idealize a c.g.p. is the main objective of this chapter.

The topics included are the following ones: in Section 2.2 , the
governing equations for an elastic body subjected to dynamic loading
and related matter is presented; Section 2.3 starts with a discussion
- of the displacement.based finite element method, f.e.m. , the

section ends with the application of this method to a beam element
type of discretization; the chapter ends with the idealization of

a c¢.g.p. subjected to a ggneral'dynamic load by using the f.e.m. .

2.2 Governing equations

The dynamical analysis of any structure requires the computation
*
of its inertial, elastic and damping properties [2.1]. These properties
can be represented as distributed over the spacial domain of definition

or concentrated at discrete points of this domain. Once one of these

- * A list of references is presented in Chapter 10




representations is chosen, the external loading is usually defined
to match with fhe former.

The computing facilities available together with the finite
element techniques such as those described in @LZ,Z.}]have favoured
the discrete modelling of structural properties. These properties
are usually represented by coefficients arfanged in a matricial
form. Therefore, there will be mass M , stiffness K and
damping C matrices corresponding to the inertial, elastic and
damping properties of the idealized structure respectively. These
matrices are associated to vectors made of the discrete points
(known as nodal points in the finite element method): accelerations
ﬁ s displacements U , and velocities Q respectively, through

the equation of motion of the discretized structure [Z.H i.e.:

MU+ C

.

‘+: E .I.J = g . s a (2.1)

where a dot over U means its derivative with respect to time, and
M,K, Cand P are defined as follows:

Mass matrix:

The elements of the mass matrix M are called the mass influence
coefficients mij.; they are defined in this case as the-inertia
force at a nodal point i due to a unit acceleration applied at
nodal point j .

Stiffness matrix:

The elements of the stiffness matrix K are called the stiffness
influence coefficients kij and defined as the force corresponding
to nodal point i due to a unit displacement of nodal point j.

Damping matrix:

If a viscous damﬁing mechanism is assumed, the elements of the
damping matrix C called the dgﬁﬁing influence ;oefficients cij
are defined as the force corresponding to nodal point i due to a
unit velocity of nodal boint i. | |

Load vector:

An element Pi of load vector P is simply defined as the
external load applied to node i . 1In general Pi will be a

function of the spatial coordinates and time.



2.3 The finite element method

k In order to compute the mass, stiffness and damping matrices
which are required in the equation of motion of the discretized
structure, equation (2.1), the original structure has to be idealized.
In the particular case of a concrete gravity platform this can be
achieved satisfactorily by using the displacement-based finite element
method (f.e.m.). A brief review of this method as generally applied
to structural analysis is outlined in this section and its application
to a c.g.p. 1is presented in the following one. |

The f.e.m. can be considered as a particular form of the  Ritz
method of analysis, through which a continuum can be discretized in
such a way that its displacement field can be approximated by a
finite series of displacement functions. The latter, also known as
interpolation functions, satisfy the geometric boundary éonditioﬁs
of the system., The continuum is divided into a finite number of
small elements 1i.e. the so-called finite elements. Neighbouring

_finite elements are linked to each other by nodal points selected
ﬁalong the boundary of the elements; the displacements of the nodal
points are taken as the degrees of freedom of the resulting system
of finite elements.

The f.e.m. has the advantage over other methods of analysis.
that continua of complex shapes and with different material properties
can be approximated as a system of finite elements of simple shapes
and uniform or simply varying properties. To obtain the convergence

. and bounding of the solutions which are characteristic of a Ritz
type of analysis, the interpolation functions used in the finite
eléments should include the rigid body displacements and lead to
uniform strain states. Finally, those functions should maintain
displacement compatibility along the boundary between elements and
the external boundary.

Once the continuum has been divided into a finite set of
finite elements, the mass, stiffness and damping properties
of each of them may be computed; their corresponding external loads
aretransformed to an element load. The contribution of each: of
the elements to the hass, stiffness and démping matrices of the
whole discretized continuum is achieved by superposing the corre-

sponding properties of the individual elements. This superposition




is obtained by simply adding the contribution of each of the
elements coinciding at a nodal ﬁoint. The vector of nodal loads
can be calculated by following a similar procedure.

The mass properties of an element may be computed by evaluating
the kinetic energy of the element expressed as the integral of thé
product of the unitary mass of the material and its nodal point
velocities. This integration is carried out over the domain of
definition of the displacement function selected. Similarly, the
stiffness properties of an element may be calculated through the
evaluation of the strain energy of the element. In this case the
nodal point displacements are multiplied by the elastic constants
of the material, and their product is integrated over the domain
.of definition.

The damping prdperties of an element could be evaluated
by techniques similar to the above-mentioned ones for the element
'mass and stiffness, if reliable estimates of the internal damping
. characteristics of the material were available. Unfortuhately,
‘fthis is not the case, therefore, the usual practice is to express
the element damping properties as a function of the element mass,
the element stiffness, or a linear combination of both element prop-
erties [2.1]. Furthermore, another common practice is to define
the damping properties as a function of the so~called fraction of
critical damping (Section 6.7.1) based on tests of typical full-
scale structures.

From the above discussion, it can be concluded that, from the
practical point of view, the mass and stiffness matrices can be
determined‘with‘a relatively high level of confidence, but this is
not true for the damping matrix. ’

Concerning the external loads, they can be transformed into
a load vector by evaluating the virtual work done by the loading
acting»through virtual'displacements of the nodal points., In the
case of distributed loads, the ekpression for the virtualvwork has
to be integrated over the domain of definition.

The actual application of the f.e.m.. for the éomputation of
the mass M and K matrices and the nodal load vector P of a
structure should include the following steps:

a) Divide the structure into a number of finite elements connected



by their nodal points. It is assumed that only beam elements

?.4J are required to discretize the structure and that the material
behaves elastically.

b) Assume an interpolation function which, after some algebra,
provides with an expression that links the displacements at any

point of a typical element N , with its nodal displacements, i.e.:
u(x,t) = A(x)U(t) ' ... (2.2)

where u is the displacement seeked, A is a matrix whose elements

are functions of the coordinate x , and U_ is a vector formed

N
by the element nodal displacements, being a function of time.
¢) The strain and stress vectors for the element are given by the

following strain~displacement and strain-stress relations:

"

£ B(x)Uy (t) coe. (2.3)

o =D ¢ . (2.4)

- where ¢ 1is the vector of strains, B is a matrix which is formed
by derivatives of A , g is the vector of stresses and D is a
matrix whose components are the material elastic parameters.
d) Evaluate the kinetic energy of the element, T , to obtain the
corresponding mass matrix My i.e.:

T =1 J ol aver : ... (2.5)

2 Yol :

where m 1is the mass per unit of volume of the material and u(x,t)
has been expressed as a vector. Substituting equation (2.2) into

equation (2.5):
T =1t w 0 ... (2.6)
2 ~N MN *N ' '

where

By

]

-
=]
>l'-3
[
0.
«<d
9]
ey

Vo]_ a a . e e (2. 7)

e) Compute the strain energy Us of the element to derivate its

stiffness matrix Ky i.e.:

u_=1 g &L o dvol ... (2.8)

8 vol
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Substituting equations (2.3) and (2.4) into (2.8) gives:

- 1.7
US - 'E-VN _I% EN . . . (209)
where
kK, = / 8" pBave ... (2.10)
Vol B

f) Compute the mass M and stiffness K matrices for the whole
~discretized structure.  The elements of both matrices can be eva=-

-luated by performing the following operations:

n

mij = % (mij)N e o . (2.11)
n

kij = % (kij)N e . (2.12)

where n takes the value of the number of elements connected at a
node.

g) Apply the boundary conditions, i.e., impose the restrictions on
the relevant degrees of freedom, accordingly to the previously-
specified displacement conditions.

h) Compute the load vector P . This can be achieved by first

evaluating the element load vectors P , and then superposing

~N

their components in the appropriate nodes. An individual EN is
obtained by using the expression for the virtual work VW done

by the external loads Pd(x,t), i.e.:
LL 265T_PdCx,t) dx ..o (2.13)

where du is the vector of virtual disblacementé of the element,
Pd is the distributed load as a function of x and timé and £
is the length of the element. Substituting equation (2.2) into
equation (2.13), the following result is obtained:

VW == T '
, Uy By (®) C e (2.18)

where

o

(D)= AT P (x,0) dx .. (2.15)
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2,4 Structural modelling of a concrete gravity platform

As mentioned in the introduction, a typical concrete gravity
platform (c.g.p.) is composed of three parts: a cellular caisson
resting on the sea bed, several towers superposed to the caisson
and a deck resting on the top of the towers (fig. 2.1). The caisson
and towers are usually made of concrete whereas the deck is made of
steel, The dimension énd design strength of the caisson are such that
for analysis purposes it could be considered as a.rigid bpdy,tméad4
while the towers and deck are usually designed with flexibie élements
as opposed to the stiffness of the caisson. The c.g.p. to be
studied in this work is the one shown in fig. 2.1. This structure is
symmetric with respect Ui.the planés xy an& xz; therefore, if the
dynamic loading acts at one of these planes, it is only necessary to
analyze its effects on one half of the structure.

Taking the above paragraphs into consideration and assuming )
(for the sake of simplicity in the analyéis) that the motion allowed
to the structure only occurs in the x - y plane, the structural
topology of the c.g.p. can be discretized by using beam elements
for the towers and the deck and a rigid body for the caisson, as
shown in fig. 2.3.

Due to the large diameter of the cross-section of the towers,
apart from the bending stiffness and translational inertia, it is
necessary to include the shear and rotational effects on the beam
elements used [2.5] . In [2,4] the stiffness matrix of a prismatic
beam element which includes the effect of shear deformation was
presented; this element will be used in this work. In [2.6] the
- mass matrix of the prismatic beam element, which includes the
translational inertia as well as the rotational one was proposed;
this mass matrix will be used here. ‘

In order to use the prismatic beam elements to represent the
part of the towers whose cross-section changes with height, equi-
valent prismatic elements with . inertia momentsresulting from
averaging the inertia moments of the ends of the real structure have
to be computed first, An extra simplification of the formulation is
to use a lumped mass matrix (a diagonal matrix) instead of & con-

sidtent one [2.4,»2.7] . - By doing so, the computational effort
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is substantially reduced, without losing accuracy in the final
results obtainéd in a dynamical analysis [2.4, 2.7] .

The idealizationvof the deck by using beam elements is by no
means the most exhaustive one; however, it is adequate to compute
the displacement of the deck, whose maximum vaiue is particularly
relevant when assessing the overall dynamic behaviour‘&f a c.g.ps .

Once ‘EN and KN have been comﬁuted, the associated element
damping matrix QN can be evaluated by using the Rayleigh damping

criteria [2.1] for example, i.e.:

Sy = aM + aky .. (2.16)

where a, and a; are proportionality factbrs. In the case of
EN it is also computationally convenient to neglect its off-diagonal
elements. The results of this practice have proved to be satisfac~
tory, as reported in [2.8].

Once the element matrices ~EN s KN , and EN have been
computed for all the elements used, the global matrices M , K and
C for the whole structure can be evaluated by using equations (2.11)
and (2.12), for the first two matrices and an equivalent expression
for the latter. Finally the nodal load vector P  for the discretized
structure can be computed by superposing appropriately, at each node,
the nodal loads resulting from the appliéation of equation (2.15) for
the disfr'ibuted loads to the external loads which aré directly api)lied
to those nodes. In this work it will be considered that the external

loads are direct;y applied to the nodes.
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3. SOIL MODELLING

3.1 Introduction

A common assumptioﬁ about the dynamical analysis of a structure
is to consider that its foundation is attached to a bedrock. This
assumption implies that the base of the structure does not move
when an external load is applied to the superstructure; or in the
case of a seismic perturbation, the foundation will experience the
same displacements as the surrdunding soil. 1In many practical
situations the above—méntioned assumption is not fulfilled, i.e.
the soil is not rigid but shows a capability to strain under dynamic
(or static) loading. As a consequence, the relative displacements
(translation and rotational) between the foundation and the surroun-
ding soil may occur during the loading process. This means that a
soil-foundation interaction effect may occur. Due to this
interaction effect the stiffness and damping-characteristiés of the

Sstructure are usually modified. The dynamic properties of the soil
may also be affected by the presence of the structure.

From the previous paragraph it can be conqluded’that the
influence of the soil on the dynamic analysis of a structure has
to be taken into consideration when the field conditions require so.
This can be achieved by including the soil flexiki 1ity properties
in the mathemétical model used to‘idealize the soil-structure
system. A possible way of doing so is by éplitting the original
problem into two parts:

a) the study of the interaction Between the soil medium and the
foundation, k ’

b) the study of the dynamic response of the soil-structure system.

This chapter is devoted to the description of part a) of the
problem whereas part b) will be treated in Chapter 6. As mentioned
above, the dynamic properties of the soil play an important role
in the soil-foundation interaction (s.f.i.) effect; therefore, it
is relevant to discuss those properties separately from the soil-
foundation system. This is briefly presented in Section 3.2.1.

In Section 3.2.2 the general features of the Nofth Sea soils are

commented upon, meanwhile in Section 3.2.3 the behaviour observed
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on those soils when subﬁsrting a concrete gravity platform is
introduced. The actual modelling of the soil-foundation system
is the subject of Sections3,3.1 and‘3.3,2. Finally in Section
3.3.3 the SOil-fpundation interaction model for a concrete

gravity platform located in the North Sea is discussed.

3.2 Dynamic properties of North Sea soils

3.2,1 Generalities about the dynamic behaviour of soils

The soil is a two or three phase material made up of solids,
water and/or air. The state of stress of a soil can be described
only if the state of stress of each of its components is known.

In fractice this is rather difficult to ascertain and instead,a
description of the behaviour of the whole mixture has been pursued.
The mechanical behaviour of soils is a function of their

initial state as described by their void ratio, degree of satura-
tion, and state of stress. Other factors which also have an influ-
ence on the soil behaviour are the stress path, stress rate and
drainage conditions. However, exﬁerimental evidence has shown that
a reduced number of barameters may describe the soil behaviour
satisfactorily, such ﬁarameters being the following ones: strain
rate, stress ﬁath, and state of effective stresses [31].

The soil changes its structure during the process of loading,
and this effect is ﬁarticularly noticeable during dynamic loading
in which its non-linear behaviour is clearly shown. A tyﬁical k
stress-strain curve obtained during the cyclic loading of a soil
sample shows that after a certain number of cycles, an increasingly
permanent strain aﬁpears following each cycle (in fact even after
a single loading cycle). However, if the amplitude of the dynémic
load is less than a certain value, after a number of cycles, little
or no additional permanent strain apbears, and instead a hysteresis
looé is develoﬁed. As there are different kinds of soils, to
assess their dynamic behaviour, laboratory and in situ tests.have
to be carried out for each of them. Most of the experiments on the
dynamic behaviour of soils have been performed on different types
of soil samples (sands, clays, silty clays, etc.) under cyclic
loading, by using simple shear, triaxial,resonant.column, and

torsion devices as shown in [32,33,34] . From such studies it
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may be conclqded [31] that the following parameters characterize
the soil behaviour under dynamic loadafa) the shear modulus, G ,
for a small amplitude éyclic deformation; b) the stress-strain
relationship for a large amblitude cyclic deformation; c) the
strength during cyclic loading; and d) the iﬁternal damping of the
soil. In the following paragraphs each of these parameters will
be briefly commented upon.

a) The shear modulus, G , of soils under cyclic loading is
smaller than the one observed under static loading; this decrease
is a function of the ratio between the applied cyclic strain and
the failure strain [33]. The shear modulus, G , can be obtained
from the average slope of the stress-strain curve (a hysteresis
-loop) resulting from the small amplitude cyclic deformation test.
The strain amplitude, initial effective stress, void ratio, and
shear stress level are the main parameters, affecting the value
of G for soils, but for cohesive soils additional parameters
are involved [3ﬂ. The value of G for a given soil can be
evaluated by using the following formulae which were proposed in
[35,36,37] ,

G

max

G = N & 15 D)

1+ Y/Ymax
where Gmax is the value of G for strain amplitudes lower than
10™* ; y is the strain amplitude associated to G and Yy_  the

maximum strain amplitude. In equation (3.1) the values of Ymax

and Gmax can be computed by the following expressions:

T max
Yoox = G . .. (3.2)
max
where
1+ Ko . )
= e 1 . 1 + 1 1
Thax {C ; _GV, Sind c¢' Cosd')
1 - Ko "i'
- —— oYy)} Cee s (3.3)

and Kg = coefficient of lateral stress at rest; o;, = yertical
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effective stress and ' » ¢ '  static strength parameters in terms
of effective stress, The value of G ax depends on the kind of

soil under consideration i.e,:

i) for cohesive soils (clays):

e |
G = 1230297 = )" cé°5) oc)® ... G
a+ e)

ii) for cohesionless soils with rounded grains (sands):

(2.17 - e)? ns)
= 2 e S .
Gmax 630 A O | (3.5)
(e < 0.8)

iii) for cohesionless soils with angular grains (sands):

- e)2
G = 1230 (2.97 - e) (es)

max m O‘m . e e (3-6)

(e >0.6)

where e represents the void ratio; o is the mean effective

stress in pounds/square inch; OCR is the consolidation ratio;
and k is a function of the plasticity index of the particular
soil,

The value of G can also be evaluated by using the average curves
shear modulus -shear strain suggested in [38] These curves were
obtained by averaging the available experimental data on G .

Finally, the value of G may also be determined by first performing
field experiments leading to the velocity of the shear waves in the -

soil, V_ , and substituting its value in the expression:
G = pv2 cee (3.7)

where p is the mass density of the soil. The value of G com-
puted through equation (3.7) corresponds to an amplitude strain
of less than 10™ " ; therefore, it could be considered as the

Gmax for the soil under study.

b) Stress-strain relationship for large amplitude cyclic
deformation. In general the main effect of the large amplitude
cyclic deformation is a reduction in the shear capacity of soils.

Stress-strain curves can be obtained by using the Rambert-Osgood
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model calibrated with the observed experimental behaviour of soils

under consideration [31].

¢) The strength of soils during cyclic loading depends on:
the stress level, the number of loading cycles and the strain at
which the soil fails in a conventional undrained test [&3] . It
has also been reported [33]', that the strength after cyclic
loading is a function of the peak cyclic strain experienced by the
soil. In-[39] it was found that the strength under seismic condi-
tions may be approximated by the normal strength obtained during
an undrained test. Loose saturated sands and silts are very
.susceptible to sudden loss of their shearing strength when subjected

to cyclic loading i.e. to experience liquefaction [310] .

d) The internal damping of soils is produced by the friction
between the soii grains when the soil is under dynamic loading.
The amount of internal damping of soils under cyclic loading can
be measured by the area of the hysteresis loops of the stress—strain
curves developed during the loading. Amongvother parameters the
internal damping of soils depends on: strain amplitude, effective
stress, void ratio, and in the case of clays in the number of
applied cycles [311] - The internal damping increases with strain
amplitude, and decreases with increasing void ratio and the loga-
rithm of the number of cycles [311] . The damping ratio (i.e. the
ratio between the viscous and the critical dampings) is one of
the parameters commonly used to represent the internal damping of

soils. It can be computed by the following expression [38] :

= Emax Y/Ymax
1+ Y/Ymax

€ o e (3.8)‘

where gmax is the maximum damping ratio corresponding to very
large strains. The value of Emax varies depending on the soil
and drainage condition i.e.:
i) for clean, dry sands:

£

max = 33 percent - 1.5 log, N ... (3.9)

ii) for clean, saturated sands:
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“

gmax = 28 percent -~ 1.5 log, N . . . (3.10)

iii) for saturated, cohesive soils:

13 = 31 bercent - (3 + 0.03f) gﬁ(mé) + 1.5¢(08)

max

- 1-5 lOgION . * e (3.11)

where N is the number of cycles; f is the frequency of applied
_cyelic load in cycles per second . The mean effective stress Bﬁ
is given in Kg/cm?. From equations (3.9) and (3.10) it can be
observed that the damping ratio for sands is independent of f .
The damping ratio & can also be evaluated by using the average
curves proposed in Eﬁﬂ. These curves which relate £ with the
shear strain amplitude, y , were obtained by averaging available

experimental data on £ (as the ones reﬁorted in[311.312]) .

3.2.2 General features of North Sea soils

The sediments of geotechnical interest underlying the North
Sea were laid down during the late or post-glacial period [&13,314,
3l5]- The North Sea soils consist mainly of alternating layers of
clay and sand. The latter is the most common material to be found
in the sea bed, except in sites as the Norwegian Channel where
clay is the dominant material to be found; in other areas coarser
materials are found [31{].

In situ soil samplings have revealed that in many locations
in the North Sea the layers of both clay and sand (or clayed silts
and silty clays) are normally consolidated or overconsolidated
(probably excepting in some cases, where the first layer under
the mud line is not consolidated). For example, in the location
of the Ekofisk tank, a uniform superficial layer of sand with a
depth of about 25 meters produced some resistances varying
between 70 and 500 Kg/cm?. It has been suggested that the
relative density of these layers, which in many cases is more than
100 percent, is due to the effect of éassing waves which produce

pressures on the sea floor [113] . The layers of overconsolidated
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clays for the same Ekofisk site showed undrained strengths of
about Sthxf or more [31ﬂ . Similar findings were reported in
[315]for a site in the northern North Sea and in [313] for several

sites.
In short, it can be said that most of the North Sea sites

'sampled up to now are made of a mantle of soft material, usually
sand, overlying hard or moderately to heavy, overconsolidated soils,
on many occasions being clays. Generally the strength of the soil
layers increases with depth, the exception being some soft layers

found near the sea bed.

3.2.3 Dynamic behaviour of North Sea soils supporting a

concrete gravity platform

When a structure such as an offshore concrete platform is set
on the sea bed, the soil underneath is subjected to static and
cyclic loads. The static loads are associated with the submerged
weight of the platform, and the cyclic loads with the horizontal
forces and moments resulting from the wave action on the platform.
The soil near the platform foundation is under alternate increas-
ing and decreasing pressures generated by the passing waves. An
increase occurs below the crests of waves and a decrease under
the troughs. k

The mentioned cyclic loads subject the soil underneath the
platform foundation to alternating shear stresses of similar
amplitudes but opposite directions E&13] . A similar situation
could arise if an earthquake occurred in the vicinity of the
platform site. In this case the seismic waves would generate
random seismic forces on the platform which in due course would
produce shear stresses on the soil underneath the structure and
on the surrounding soil as well,

Most of the studies on the cyclic behaviour of North Sea
soils have been carried out on triaxial and/or simple shear
devices, subjecting the soil samples to cyclic loading [113,314].
Centrifugal models have also been used [316] to that end.

The main objective of these tests was to simulate the cyclic
behaviour of soil samples located at the centre (simple shear)
and at the edges (triaxial) of the platform foundation [34] .
A fundamental problem of these experiments was the sampling

techniques which, under the difficult environmental conditions
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of the North Sea made the gathering 6f representative undisturbed

samples almost an impossible task [ilﬂ . Other problems related

to laboratory tests are: a) the difficulties arising during the

sample preparation aiming at reproducing the unusual high densities

of the sands and clays of the North Sea sediments; b) the effect .

of the boundary conditions resulting from the test devices

utilized, which may not represent the field conditions[&l7,318,319] .
Because of'the large cfoss-section of the concrete gravity

platform foundation in contact with the sea bed, it has been sug-

gested [&lSJ that an undrained condition  (i.e. a condition in

which no significant drainage occurs in the soils during the

loading) is the most 1ikely to occur in the sea during storms or

earthquake loadings. The main results observed during the cyclic

loading of North Sea soils and soils of other regions under un-

drained conditions [3A,318,319:] may be summarized as follows:

For clays: |

i) The shear modulus and failure shear stress are reduced by cyclic

loading.

ii) At the same ratio of imposed cyclic loading, normally consoli-

dated clays are more resistant than overconsolidated ones.

iii) Below a certain stress level, the behaviour of clays under

cyclic loading is such that a hysteresis loop is produced. This

stress level depends on the clay type, the overconsolidation ratio

and the kind of cyclic loading.

iv) Sensitive normally consolidated clay can experience a build up

of pore pressure and a decrease in the value of the effective stress}

hence a shear failure occurs.

For sands:
The general behaviour of sands under cyclic loading is similar to
that observed in clays [318] i.e. conclusions i) and iii) of
clays apply directly to sands, and conclusion iv) corresponds to
that observed in a loose sand. Another result drawn from those
tests is that relatively dense sands experience an increase in
their resistance when subjected to shear reversal, probably due to
a preshearing effect @13] .

However, the results obfained on dense sands (as those found
in the North Sea sediments) under undrained cyclic loading have

to be taken with particular caution because only the amplitude
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of the pore pressure observed at small strainscan he relied upon
[}13]. This is so because in addition to the relative density of
sands which have to be reproduced in the laboratory, other para-
meters such as the sand structure and the age of the deposit play

an important role in considering cyclic behaviour EllS] .

3.3 Soil-foundation interaction models

The soil-foundation interaction (s.f.i,) effect, i.é. the
generation of relative displacements between a foundation and the
surrounding soil, may be observed when a dynamic perturbation is
transmitted to a soil-foundation system a) through a super-
structure and/or b) through the soil media. An example of the
first case could be the dynamic loads generated by a turbo genera-
tor supported by a framed superstructure and transmitted to the
foundation; the second case could arise when an earthquake occurs
and the seismic waves are transmitted through the earth layers
and reach the site where the structure of interest is located.

In any of the mentioned bases the soil surrounding the foun-
dation of the structure would behave in a certain fashion depending
on its dynamic properties (Section 3.2.1). At present, the models
available to study the soil-foundation effects couid be lumped into
two kinds depending on the form in which the soil media is idealized.
One is the so-called continuum approach and the other is the finite
element approach. In the former approach the soil medium is usually
idealized as a half-space (fig.3.1).With the finite element method
approach the soil medium is modelled by a finite discrete region
(fig.3.2). '

As far as the foundation is concerned, a common assumption is
to idealize it as:a rigid solid; however, ﬁhis assumétion can be
relaxed and the flexibility of the foundation can be taken into
~~account. The main objective of the continwum and finite element
~method approaéhes as.appliéd to s.f.i. problems is to model the
dinertia, stiffness and dissipative properties of the soil-foundation
‘system, when a harmonic load is acting on the foundation. The main
features of the continuum approach and the finite element method

"approach are presented in Sections 3.3.1 and 3.3.2 respectively.
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3.3.1 The continuum modelling of a soil-foundation system

The continuum approach (which can be considered as the classical
one) models the soil medium as a semi-infinite half~space ELZO] , a
layer ElZl] or a layered half-space ELZZ] .~ The soil material prop-
erties can be treated as linear elastic ELZO] » Or viscoelastic ones [3.23},
meanwhile the foundation is idealized as a massless rigid disc (fig.3.1)
The continuum approach models lead to mixed boundary value problems.
The kind of elastodynamic problem which results, depends on the
assumptions made for the boundary conditions existing at the inter-
face made up of the idealized foundation and the free surface of the
half-space (Fig.3.1) If complete continuity of stresses and dig-
placements is prescribed at the iﬁterface, a complete mixed bound~-
ary value problem arises ElZO] . When some of these continuity
conditions (generally stresses) are modified, relaxed mixed bound-
ary value problems appear Elz&].

Both complete or relaxed mixed boudary value problems have
been formulated in such a way that they lead to integral equations
[&20,&24} which have mainly been solved by using numerical tech-
niques. Recently, E&ZS] a formulation which uses potential theory
has extended the capabilities of the continuum approach to include
three dimensional models. 1In this formulation the superposition
principle has been applied to point sources (loads) on the founda-
tion surface. The resulting integral equations were approximated
by sets of algebraic equationé which were solved numerically ElZS] .

From the models described above, expressions relating the
stress resultants of the area of contact or the applied harmonic
external loads to the displacements of the foundations are obtained.
These expressions are the impedance functions of the problem.

A number of solutions i.e. impedance functions for different
types of loading and foundation shapes have been proposed but only
some of them will be mentioned here. For a rigid circular found-
ation on an elastic half-space [320,324,326] ; for a rectangular
foundation on an elastic half-space [&27,328} ; for a strip footing
on an elastic half-space [328,329] ; for the effect of layering of
the so0il medium E330,332] ;3 for embedded foundations [330,332} 3
for three dimensional flat foundations of arbitrary shape ELZSJ.
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The impedance functions are usually expressed as the addition
of a real component and an imaginary component. Due‘to this math-
ematical representation, which resembles that obtainéd for the
-response of a linear spring-dashpot system, these components of
impedance function have been associated to equivalent springs and
viscous dampers respectively E&BB] . From the physical point of
view the spring can be associated to the stiffness properties of
the soil; and the damper to the energy dissipated by waves propaga-
gating away from the foundation. This is known as the radiation
damping property of soils. Both springs and dampers are a function
of the soil medium properties, the geometriéal.characteristics of
the foundation, and the frequency of the excitation.

- As it was mentioned in Section 3.2.1, experiments have shown
[334]that s0ils also dissipate energy through friction between the
soil grains i.e. they have a material or internal damping. To

take this into account for a particular soil foundation system,
the equivalent damper should be computed as the sum of the contri-
butions of the radiation and material dampings of that soil. Another
possibility is to consider the material damping effect explicitely
into the impedance function derivations El35].

For a circular disc resting on a half—sbaee the exbression for
the impedance function associated to an external harmonic force,

P; , applied in the j direction (fig.3.1)is given by [3.24] :

P, = K, [kj(ao,y,n) i e WD) ] u L. G12)

where Pj represents the amplitude of the force; Kj is the static

stiffness of the disc in the j direction; kj and c; are dimen~

sionless real-valued functions depending on the Poisson ratio, V ,

loss ratio D of the half-space material and a dimensionless para-
meter a,.

The following expressions

k. = K. k. a, ,D - . .
J J [J( 0 ’\) )] ) . (3'13)
j ‘j [0 j( e 2 3 )] ¢ s . (3. 14)

represent the springs and viscous-dampers mentioned above,(Fig.3.3).
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The static. stiffness Kj is a function of the half-space
material elastic properties and the characteristic dimension of
the disc,(fig.3.1),For example, the following expression of Kj
corresponds to the horizontal,x , vertical, y , and rocking, 8,

uncoupled displacements of the disc resting on an elastic.half-

space:
K =_—8_g£"- e s e (3.15)
* o@2-v
K = 26T ... (3.16)
Yooa -V |
K ="‘°'—8‘g"‘r"3~'_ o e e (3.17)
8 3010 -V)

where G is the shear modulus of the half-space material and r
is the radius of the disc.
In equation (3.12) the dimensionless parameter a is given by:

wr .
ao = --V_-— » . . (3. 18)

s
where W 1is the frequenéy of the applied load and Vs represents
the velocity of the shear waves for the half-space material (see
equation (3.7)).

The loss ratio D represents the internal or material damping
of the half-space material. It can be assumed to be linearly hys-

teretic in which case it can be defined as?

E
p=1 4 ... (3.19)
4 E_

where Ed represents the energy dissipated per cycle by a soil

sample under steady-state harménic loading and Es the maximum -
strain energy stored in the soil sample.

The inertial properties of the soil-foundation system can be
represented by an equivalent mass (fig 3.3), which is equal to the
mass of the foundation plus the mass of a certain volume of soil.
This volume depends mainly on the characteristic dimension of the
foundation and the direction of the applied loads (fig 3.1). The
actual computation of the equivalent mass will be introduced in
chapters 6 and 8.

Once an equivalent mass-spring~-damper set has been obtained, a

soil-foundation system can be treated as an equivalent lumped linear
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system, , whose analysis is straigthforward, as it will be shown in
6.2 and 6.3. Frequency-independent impedance functions have been
proposed'to simplify the analysis [3.32,3.36,3.32] . Satisfactory

results have been obtained when such functions are used appropriately

[3.37,3.38] . ,
The dynamic loading for the model of the continuum approach

is usually specified at the free surface level (Fig.3.1).In the
case of seismic excitation the inbut of the s.f.i. system is
the so-called free field motion. However, for deeply embedded
foundations the seismic excitation at different depths should be
considered, in order to obtain better results B38] .

The following advantages and limitations of the continuum
approach reported in different studies [&38;339] will be mentioned:

The advantages are:

i) The real problem can be represented by a minimum of the relevant
parameters of the s.f.i. phenomenon.

ii) It is fundamentally correct and leads to the recognition of the
importance leyel of the s.f.i. effect.

iii) Three dimensional effects are automatically included in the
analysis.

iv) A‘layered soil medium can be represented by this approach.

v) Both radiation damping and hysteretic damping of soils can
be included in the analysis. “

vi) Low computing costs make it suitable for simulation purposes.

The limitations are:

.1) It is restricted to linear elastic or viscoelastic representa-
tions of the proﬁerties of the soil medium.

ii) It is limited to a number of foundation shapes for which the
exact or approximated solution of the associated elastodynamic

problem can be obtained.

3.3.2 The finite element modelling of a soil-foundation system

The finite element method (f.e.m.) approach models the soil
medium as a finite region made up of small elements ( Fig3.2). The
material and geometrical characteristics of each of the elements
may differ from the characteristics of the rest of the elements
forming the soil region. Thus, in principle, the f.e.m. ailows

the modelling of the soil media with material and geometrical
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nonlinearities with relative ease, ,

As mentioned in Chapter 2, the f.e.m. apﬁlies the Ritz method
to find an approximate solution to a particular set of governing
equations and boundary conditions, i.e. the f.e.m. reduces the set
of partial differential equations describing the motfbﬁ of a conti-
nuum to a coupled set of ordinary time-dependent differential equa-
tions. According to the formulation of the f.e.m. approach util-
ized for the soil-foundation system, the method can be used to gen-
erate impedance functions (as those obtained by the continuum ap-
proach) [34@ » Or to compute directly the displacements associated
to the proposed degrees of freedom [341,342],

A number of finite element models has been proposed to solve
s.f.i. problems by using'thfee—dimensional solid elements [143] s
two-dimensional plane strain elements [140] or a#isymmetric solid
elements [341] . The last two models are the most widely used at
the present time, due to economical and computer storage limita-
tions [344 ]. :

The main difficulties found in the development of finite
element models for solving s.f.i. problems arise froh: a) the
introduction of artificial boundaries to produce a finite region
(fig.3.2),b) the size of the elements used (£ig.3.2),c) the modelling
of the damping of the system and d) the ideaiization of the non~
linear behaviour of soils.

The use of artificial boundaries in the model leads to the
so-called box effect, i.e. the reflection on the artificial bound-
aries of the waves originated at the foundation which otherwise
should propagate and dissipate freely in the soil medium. In order
to eliminate the wave reflection phenomena which introduce artifi-
cial spurious waves in the response of the system, the artificial
boundaries can be set far away from the foundation; if this is not
possible (because of storage computer capabilities) it is recommended
to use quiet [145] or transmitting boundaries [346.347,3A8] .
However, the effectiveness of thesé kinds of boundaries for s.f.i
problems has been questioned [339] .

" The size of theelements utilized is a function of the frequencies
of the excitation which should be propagated through the discretized

media. The value of one-fifth of the shortest excitation wavelength
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has been suggesfed as the maximum size of a quadrilateral finite
element [3#9] .

The modelling of the soil damﬁing in finite element models is
a subject of great controversy {350] . The fact that a proﬁefly
performed finite element analysis should automatically include both
hysteretic and radiation dambing is generally accepted CiSl] » but
there is disagreement concerning the way in which they should be
implemented '[350,351,352]. Some authors have introduced the soil
material damping as a function of the strain that occurs in the:
finite elements [342] ; the radiation damping is accounted for
through the size of the model [3A1] . Other authors have advocated
the use of quiet boundaries to model the radiation damping and
»recommended the use of an appropriate material damping in the soil
finite elements so that the hysteretic behaviour of soils can be
taken info consideration [344,350]. Most of the f.e.m. codes
for s.f.i. purposes provide with a single value of damping for:
all the elements per vibration mode, and a value within the inter-
val limited by the values of the structure foundation damping and
the damping of the soil media has to be adopted [&42J . - However,
there are models as .the one described in ELS3J which allow the use
of a variable and different damping value. for each element. .

The idealization of the non-linear strain'ﬁroperties of soils
is crucial for the analysis of s.f.i. effects when using the
f.e.m. approach [342,351] . This is so because the stiffness and
damping characteristics of a soil are strain deﬁendent (Section
3.2.,1). Due to the absence of any established criteria for de-
scribing an appropriate measurement of the strain of soils iﬁ two
and three-dimensional cénditions, the extension of a finite equi-
valent linear model ElSA] (originally developed for one-dimensional
wave propagation applications) has been pursued ‘[&55,356] .

These models assume that the soil behaves as a 1inear~visco—
elastic material with parameters G and & defined as a function
of the maximum strain (as those proposed in[ﬁ.B] ). Through an
iterative scheme, the soil strains are computed for a set of shear
modulus - and damping values chosen for each iteration‘until théy
agree (within a tole;ance limit) with the strain 1eve1 assumed in

the previous iteration. For one~dimensional problems the level of
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strain.is.cakep as a percentage of the computed peak strain (usually
0.66 of the peak strain), and for the two-dimensional case the level
of strain has been chosen as a weighted fraction of the maximum
principal shear strain [35@ .

In s.f.i. systems subjected to seismic waves, two kinds of non-
linearities have been observed {35@ ¢ the so-called primary non-lin-
nearities which occur in the whole of the soil region and are associ-
ated with the seismic motion, and the secondary non-linearities which
are confined to the soil at the immediate vicinity of the foundation
~ and related to the s.f.i. effects. The results obtained by using
an equivalent linear model have shown that the secondary non-linear-
ities of soils do not significantly affect the structural response
of s.f.i. systems under seismic disturbances [35@] . However, if
a study of the potential deformation is being pursued, the secondary
non-linearities should be taken into account'[}56] . The results of
these linearization models have been questioned for the latter purpose

f156]and also in more general lines in [344] . The criticism in both
cases is about the validity of the iterative linear approximation to
‘a non-linear problem, as well as the reliability of procedures used
to estimate thé parameters used in those models,

The excitation to the finite element model iﬁ a s.f.i. problem
is generally specified at the base of the foundation or in the case
of seismic disturbances at the base of the proposed mesh. The latter
case requires the deconvolution of the surface recorded motion by
using theone~-dimensional wave propagation theory [}49,353f357] . This
theory implies that the surface motions are only produced by verti-~
cally propagating shear waves 1i.e. neglecting the contribution of
surface waves as well as non-vertically incident body waves.

As a summary the following comments could be made with respect
to the advantages and limitations of the f.e.m. approach as
applied to s.f.i. problems E138,342] :

The advantages are:

i) The material and geometrical non-linearities (in the dynamical
analysis) of the problem can be included.
ii) Complex geometrical shapes can be satisfactorily modelled.

The limitations are:

i) Due to computer storage capacity at present available, artificial

boundaries for a finite soil region must be introduced in the model.

-
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ii) There are still difficulties with the stress médels used,
iii) The modelling of the radiation damping still appears to be
unsatisfactory.

iv) The two-dimensional representation of a three-dimensional

problem yields to an underestimation of structural responses.

3.3.3 Soil-foundation interaction model for a concrete gravity

‘ platform

In principle both procedures i.e., the continuum or the f.e.m

'approaches could be utilized to study the s.f.i. effect on gravity
~platforms subjected to dynamic loads because, as it was shown in [3
38] the two methods should lead to similar results if they are used
correctly to solve the same prbblem.  This.means'thét the selection of
an approach for a particular application should be made by consid-
ering the characteristics of the soil-structure system to be analysed,
the advantages and limitations of the methods (i.e. the continuum
and f.e.m.) and the objectives of the study.

The soil-structure system under consideration consists of a
massive concrete foundation supporting one or several towers and
resting on the surface of a horizontally-layered soil medium. The
system will be subjected to wave and (possibly) earthquake loading,
-and therefore the s.f.i. effects may be of importance on the
overall dynamical behaviour of the system. As it was mentioned
in Section 2.4 the foundation of an offshore concrete gravity plat-
form consists of a circular or square caisson made up of a number
-of concrete cells [358]. The caisson is provided with concrete
and steel skirts which, among other functions, prevent the gener-
-ation of high contact pressures on the base of the éaisson when
“this is lying on the sea-floor [&58].

‘The characteristics of the soil medium to be found inktypical
sites -of the North Sea were discussed in Sections 3.2.2 and 3.2.3.
It was stated there that the general feature of the soil medium in
the region was that of deep alluvial deposits, consisting of alter-
-mating horizoptal layers of sand and clay. It was also commented
about the consolidated or overconsolidated cohdition of those layers,
+as well as about the increase of the strength of the layers with
depth. Concerning the values of the dynamical parameters of the
-sands and clays forming the layers, attention was drawn to the

uncertainties in the values of those parameters,. those uncertainties
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being inherent in current soil sampling techniques and 1aBoratory
testing capabilities. '

Measurements of the caisson-soil contact pressures developed .
on prototype offshore gravity platforms have shown that all the
cells forming the caisson made contact with the sea~floor, and that
the values of the recorded contact pressures were similar but not
uniform throughout the caisson-soil interface [358] . It can also
be concluded from these measurements that the base of the caisson
has not been deformed.

Studies (analytical and experimental) of s.f.i. effects
performed on prototype structures based inland have been reported
[359,360}. In[359] the s.f.i. system was a multistorey concrete
building resting on a soft-layered soil medium, subjected to forced
vibration and micro-tremors. Among other conclusions reached in
that study, it was stated that the total force acting at the
interface soil-foundation, and the average motion observed were
practically independent from the flexibility of the foundation
(the analytical study compared the dynamical résponse of the building
supported on a rigid and a flexible foundation). Therefore, the
assumption of a rigid foundation could be used in s.f.i. studies
aiming at predicting the overall dynamical response of the super-
structure, but the same assumption would not be suitable to .compute
the relative deformation of structural elements. near the foundation
level [&59]. In @60} experiments on a massive shaking table
subjected to forced vibration and‘seismic excitations revealed that
the s.f.i. non-linearities (usually of importance on small footings)
were not shown in any appreciable degree.

Taking into account the following items: a) the characteristics
‘of the offshore gravity platform -North Sea soil system described
above, b) the advantages and limitations of the continuum and f.e.m.
approaches to include s.f.i. effects, Section 3.3.1 and 3.3.2,

c) the results of the s.f.i. studies on prototypes [358,359,360]
and d) considering that the objective of this study is to predict
the overall dynamic behaviour of an offshore gravity platform, it
seems appropriate to use the continuum approach to compute the
s.f.i. effects on the dynamical response of the system under

consideration,
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The model selected isithe one which assumes a rigid circular
foundation resting on the surface of a layered soil-medium. The
assumption of a rigid foundation is generally fulfilled when com-
paring the rigidities of a concrete gravity platform and the soil
in the North Sea bed [159].> Even if it was not the case, the
results of the study reported in EBSQ] support this assumption in
terms of the aims of the present study expressed in above incise d)
As far as the assumption of circular shape of the foundation is
concerned, it agrees with one of the shapes proposed for the
caisson cross-section, bﬁt if the foundation shape was rectangular
or square, these shapes could be transformed to a circular one by
using formulae as the ones presented in El3§} ‘

. The effect of the layering of the soils under the North Sea
will be taken into account by using available impedance functions
which consider this soil condition. Furthermore, because the field
condition prevailing on North Sea sites is that of deep alluvial |
deposits, which do not have a natural vertical boundary (i.e. a
bedrock) at reasonable depths for modelling purposes, it may be
concluded that the use of the continuum model can avoid the un-
wanted effects associated with the artificial boundary of the
f.e.m. models necessary in cases like this one.

Another advantage resulting from the use of the continuum model
for a structure with shallow embedment (as it is the case for an
offshore gravity platform) is that when considering the seismic
excitation, the free field motion can be applied at the base of the
foundation directly, i.e. avoiding the deconvolution and related
)assumptions required when utilizing the £, e.m. apﬁroach.

The uncertainties about the soil dynamic parameters (Section
3.2.1) can be accounted for in an indirect fashion by varying the
values of those parameters within a reasonable range. This technique
"should also be applied when using f.e.m. models [361]'. Finally,
the use of a continuum model allows to ﬁerform parametrical studies
with great economies comparing with the costs involved when using
a f.e.m. model for that purpose.

Two types of impedance functions will be utilized, one proéosed
in ‘?62] for a rigid‘foundation‘on a layered visdoelastic soil medium.

in which the spring and dashpot elements are frequency dependent. The
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other impedance functions to be used are the ones proposed inE?Zé] s

which correspond to a rigid foundation on a viscoelastic half-space

and are also frequency dependent. The former impedance functions

will be taken from [3;23, 3.62] and the rest of the parameters

necessary for the s.f.i. study will be introduced in Chapter 8.
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4. SEISMIC LOADS

4.1 Introduction

Seismic loads are generated by the sudden random movement of
the ground surrounding the foundation of a structure. This
movement is‘transmitted to the structure as inertial forces acting
on its elements. The amplitude of these forces mainly depend on
the dynamical properties of the structure and the intensity of

the earthquake.

A well-recognized feature of seismic events is the uncertain-
ties about the sizes, locations and number of future earthquakes.
Therefore the design of a structure in a region of potential seismic
activity should inéorporate those uncertainties. A rational way
of doing so is by defining levels of intensity of the expected
maximum ground motion parameters (such as acceleration, velocity,
etc.) in a site for different time-spans (including the life~span
of the structure). This is, to evaluate the seismic risk of the

site where the structure will be built.

The seismic risk in a site can be obtained by using the
so~called seismic risk models. Ideally, these models should
synthesize all the seismological information available about the
region in which the site is located as well as the present know-
ledge about the earthquake process itself., The output derived
from those seismic wisk models is usually presented as granhs or
tables relating values of the ground motion parameters at the
site of interest with periods of time, known as "return periods",

and/or probabilities of exceedance |

Once the seismic risk for the site of interest has been
obtained, the designer can analyse and assess the performance and
economic implications of different designs under various levels

of ground motion intensities.

In this chapter the following topics will be treated:
in Section 4.2 a brief summary about the seismic phenom—

enon and its engineering implications is presented; in

4.3 some of the seismic risk models available are reviewed; in
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4.4 expressions for a seismic risk model are presented, mean~
while in 4.5 the application of this model to a site located in
the North Sea is produced and finally, 1n 4.6 the results of the

application  are d1scussed in terms of earthquake loads.

4,2 Generalities about seismic events

Before starting to deal with the determination of the
seismic load, a brief summary of concepts and definitions associa-

ted with the earthquake phenomenon will be given in this section.

4.2.1 Origin of earthquakes

The earthquakes which are of interest for engineering
purposes are considered to be of tectonic origin. This kind of
earthquakes is generated when the crust of the Earth releases
elastic energy through slips of geological faults. This energy
is propagated in the form of seismic waves through the crust of
the Earth which manifest themselves as a chaotic movement of the
surface of the Earth. It is this random ground motion which
produces damages to the structures located in the sites reached
by the earthquakes if the structures have not been designed to
withstand the former. :

The point below the surface of the Earth where, presumably,
a geologicél fault is first ruptured, is known as the focus of
an earthquake. The depth of the focus below the surface of the
Earth is called focal depth, and the distance from a site to the
focus is named focal distance. As for the vertical projection of
the focus on the surface of the Earth, it is known as the epicenter,
and the distance from a site to the epicenter is called epicentral
distance. The longitude of the ruptured fault is named fault
length.

4.2.2 Modified Mercalli Intensity and Magnitude of an

earthquake
The Modified Mercalli Intensity, I(MM), is a subjective

descriptive measurement of the level of damage produced on man-
made structures and superficial geologic enviromment by an
earthquake in a site or region [41] . Depending on the level of

damage caused by an earthquake in a site, a number which ranges
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from I to XII is assigned to the I(MM) of that earthquake for

that site. The lines separating regions which have experienced the

same I(MM) are denominated isoseismal lines of an isoseismal map.
The Richter magnitude, M , is an objective measure of the

energy released during an earthquake; it is defined as follows:

M= log -% | : c e (4.1
whefe M 1is the magnitude of the earthquaké,kA the maximum
amplitude recorded by a Wood-Anderson seismograph at a distance of
100 Km. from the epicenter, and A0 an amplitude ofA10_3‘ milli=-
meters @1] . It is a general practice to produce an average
value of M for an earthquake recorded in different seismological

stations.

4.2.3 Seismic Energy, Strain and Moment

The following expression is widely used to compute the

seismic energy E released during an earthquake [;2] :

l°g1oE = 11.8 + 1.5M s o . (4.2

the units of E in equation (4.2) are ergs. Another quantity of

interest during seismic events is the seismic strain which occurs

during the deformation process in the focal region. The seismic
strain is related to the seismic energy of an earthquake by the

expression [43] :

1
S = g? | ... (4.3)

The seismic moment, Mo , 18 a measure of earthquake size, which

mainly depends on the physical mechanism of the earthquake, and can

be computed for large magnitudes with formula Euq :

l'oglo Mo:" = 19.9 + M ¢« e (4.4)

4.2.4 Attenuation Law: Magnitude-Modified Mercalli Intensity

Due to the subjectivity of the Modified Mercalli Intensity

Scale, the records of I(MM) constitute the only source of seismic
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information for some sites or regions, especially for historical
earthquakes occurred before the beginning of the century. While
records of the magnitude M of earthquakes have been available for
some regions since the early thirties, semi-empirical expressions
~the so-called attenuation laws- relating the magnitude M of
earthquakes with their I(MM) (and some of their gebmetrical char-
acteristics) have been proposed for different regions in the world
[45] - Those expressions are particularly useful to generate sets
of data of M, from I(MM) records or vice-versa when required;
for example, the following attenuation law:

M = IMM) + 1.4 1og10 h - 1.25 . . . (4.5)

wir

has been proposed for Northern Europe E&6] ; in this expression

h represents the focal depth of the earthquake.

4.2.5 Accelerograms

From an engineering point of view the basic information for
estimating the seismic forces acting on structures is provided by
the accelerograms, which are the time history of the ground
acceleration. An accelerogram is composed of a random sequence
of acceleration pulses and can be obtained by direct recording of
the ground motion accelerations experienced at a site during an
earthquake, by using an accelerograph; it can also be simulated by
using an analog [47] or a digital comﬁuter ELS] . The velocity and
displacement records of a ground motion can be computed by
integrating once and twice the associated accelerogram respectively.

It has been observed that the maximum responses of elastic
structures subjected to seismic loads are mainly sensitive to the
intensity and distribution in the frequency domain of the ground
motions. It has also been concluded that the time distribution of
the intensity and duration of earthquakes are of importance for
the values of those maximum responses [49] . The intensity of a
ground motion can be estimated from the values of the maximum

acceleration (amax)’ maximum velocity (Vmax) and maximum displace-~

ment (dmax) of the respective records.  These values of amax R
v and d provide the so-called ground spectra, when
max max

plotted on a spécial log paper. The grouhd‘spectra supply a
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rough estimate of the frequency distribution of the ground motion
[6.1, 4.2] .

Only very few regions in the world (for example California,U.S.)
have enough accelerograms available to produce a satisfactory sample
of the possibie behaviour of structures located in those regions to
future earthquakes. For regions in which the number of accelerograms
is small or nonexistent (for example the U.K. where there are no
accelerograms available) the computation of a , v

ax. max
relies on other estimates of the intensity of earthquakes, namely

and d
max

the Modified Mercalli Intensity I(MM) , and the Richter magnitude,
M , of earthquakes.

A number of attenuation laws which relate the M (or I(MM))
and geometry parameters (usually the epicentral and focal distances)
of earthquakes with their corresponding a , V and d

max max ma
has been suggested [&5,&10 J.

Other estimates of ground motion intensity distribution are

X

given by the Fourier Spectra, the Power Spectral Density Function
and the Response Spectra. All of them require the accelerogram

as a starting point in their computation as it will be made clear.

4,2.6 Fourier Spectra

The Fourier Spectra, (f.s.), of an accelerogram is defined as:

t;
{ a(t) exp [-iwt] dt

F(w)

Y i

{ a(t) cos(uwt) dt - i { a(t) sin(wt) dt

e o . (4.6)
where a(t) is the ground motion acceleration and t, its dura-
tion [42] . The modulus of the f.s. gives the Fourier amplitude
spectra, i.e.:
t ' 2 t
1 1 2 -
|F(w)] = {[{ a(t) cos(uwt) dt] + [{ a(t) sin(wt)dt] }?
. e« o (407)

It has been shown [4l] that when |F(w)| is plotted as a function of

the natural period or frequency of an undamped single degree of
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freedom system, the f.s. represents an estimate of the final

energy put into the system by the ground motion.

4.2.7 Power Spectral Density Function

The power spectral density function (p.s@d.f.), G(w), is

related to the Fourier amplitude spectrum as follows:

2
G(w) = lim ~E[E@]

ty>® t,

e . (4.8)

where the expectation E is taken over a family of accelerograms,
in which each of them is assumed to be a statidhary stochastic
process BJI]. The plot of G(w) as a function of the natural
frequency w provides an advantageous estimate of the energy
content in a family of accelerograms. Equation (4.8) provides

a way to compute the p.s.d.f. of real or simulated accelerograms
which can be used as the seismic input to structural systems. Semi
empirical expressions of p.s.d.f. resulting from studies on real
earthquakes have been proposed; a widely used one is the so-called
Kanai-Tajimi formula [412]:

2 2
[1+ 48 (w/w) ]
G(w = & & 0 C e (4.29)

2 2 2
[ - )]+ 4, (wlw)

in which u% and Eg represent the dominant natural frequency and
damping of the ground cespectively, and G0 is a measure of the
intensity of the ground motion. Equation (4.9) has been applied to

a set of accelerograms recorded in the U.s. @J3]; the resulting

G(w) is given by: ‘ df~
0.01238 (1 + ——)
G(w) = - 147;8 e v o. (4.10)
~ (1 -9y 4 _w
242 147.8

4.2.8 Response Spectra

The response spectra (r.s.) are plots of maximum responses of
single degree of freedom systems (s.d.f.) versus natural period or

natural frequency [41,4ﬂ. The r.s. represent a measure of the
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maximum value of the energy put into the s.d.f. system by an
earthquake. This maximum energy produces maximum responses: of the
system, such as its maximum displacement Sd‘ which can be computed

by the following expression [&2] :

sin w' (¢t -1) dT|
max

e (4011)
where ®' and £ represent the damped natural frequency and
percentage of critical damping of the system, a(t) and t, the ground
acceleration and its duration respectively. Sd is customarily used
to derivate the maximum pseudo velocity of the system, Sv’ and its

maximum pseudo acceleration, Sa’ i.e.:

S =Wws§ .. (4012)

a d eoeo. (4013)

Sa and Sv are reasonably good estimates of the maximum velocity
and maximum absolute acceleration of the system DLZJ. The values
of Sa ’ SV and Sd » associated with different dampings of the
s.d.f. systems, are usually plotted in a special logarithmic graph
(4.1, 4.2 7.

There are several procedures to compute the r.s. depending
on the information used for that purpose. One direct procedure is

by computing S (equation (4.11)) for a family of s.d.f. systems

d
using an accelerogram (real or simulated) as the input. There are
two indirect techniques to compute the r.s.. One makes use of the
ground spectra, the other one is based on attenuation laws.

The ground spectra are of particular relevance to the computa-
tion of the r.s.because they correlate satisfactorily with the
latter. In particular the) amax correlates with the maximum
responses of short natural period systems, meanwhile Voax and dmax
correlate with intermediate and long natural period ones respectively.
The ratio of the r.s. ordinate to the corresponding values of the
ground spectra ordinate is called the spectral amplification factor.

Based on the existing relationship between the r.s. and the

ground spectra, different techniques basically recommend to



40

multiply the values of the.ground spectra by spectral amplification
factors. The latter ones have been obtained by carrying out
statistical studies on ground and response spectra computed from
accelerograms recorded in the Californian region (U.S.) énd else-
where [414,4.15].

The other indirect technique to compute the r.s. is based
on another statistical study performed on ground motions occurred on
the West coast of the U.S.EL16]. From this study attenuation laws
for the Sv‘ (and the ground spectra) were obtained. In fact, the
study provided the expected value and the coefficient of variation
of Sv (for different values of the percentage of the critical
damping and natural period) as a function of the magnitude M and

hypocentral distance R .

4.2.9 Relationship between response spectra and power spectral

density function

In several studies the relationship existing between the
*response‘spectra and the power spectral density function has been
pointed out. Among those studies the following can be mentioned:
a) In [%9] it has been suggested (after [Ldf}) that the undamped
velocity response spectra represent  an upper estimate of the
Fourier amplitude spectra, and therefore (see Section 4.15) an
upper estimate of the p.s.d.f.. In this case the expected
p.s.d.f. can be computed by simply squaring the values of the
corresponding expected undamped velocity response spectra, i.e.:
1

E [6(w] = {E [sv (0,w)]}? o c .. (4.14)
In equation (4.14) the O inside the parenthesis represents the
percentage of the critical damping of the system, g its natural

frequency, and t, the duration of the accelerogram.

b) An expression relating the p.s.d.f., G(w) (expressed by
equation (4.10))with the average undamped pseudovelocity spectra,
ASv , obtained from an ensemble of real (U.S.) and simulated

accelerograms has been proposed in BJ3], i.e.:

0.237

E [cw)] = e s, (»,c_),m,cl)]}2 .. (4.15)
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in which t, is the duration of the accelerograms ensemble; the
0 and the w inside the parenthesis were defined previously; the

t, used in that study was 18.6 sec.

¢) In [418] a procedure to compute the p.s.d.f., from a r.s.

has been proposed. This procedure is based on the random vibration
analysis of ground motions applied to the determination of response
spectra. After finding an approximate solution to the so-called
first passage problem, the response spectra value, Ve p for an
exceedance probability, p, and ground motion durationf t,, are
expressed as the product of the standard deviation of the response
of the system dy(tl) multiplied by a peak f;ctor, rtl,p , i.e.:

= oy(t,) r£ « o . (4.16)

Yep P

where y can be acceleration, velocity or displacement. The
values of r, 0.5 for typical accelerograms vary between .1.25
and 3.5 @18]. Gy(tl) is related to the p.s.d.f., G(w), of the
ground motion by the following expression:

W

n 1
T =
oy(t,) = [6(w) w_ (~——~4€ - D+ 6w dw] ?

t
. . . (4-17)
where w is the system natural frequency, and Et represents an
1
equivalent damping of the system, which can be obtained by:

g = 3 o v« (4.18)

3y 1 ~ exp(~2 W tl)

in which & 1is the bercentage of critical damping of the system,
Based on those results an estimate of the G(w) can be

computed from a given ?seudovelocity spectrum Sv ; the steps to be

followed are [4.18]:

a) Divide the Sv values by a chosen peak factor r, : at

selected natural frequencies, w3 this leads to the ézy(tl) spec~-

trum; b) Use equation (4.17) iteratively to calculate the values

of G(w) at the proposed W values, The procedure is reversible,
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therefore a Sv spectrum may be obtained from a given G(w).

1 4,2,10 Other techniques to obtain accelerograms and response

spectra

As in the case of accelerograms availability for a region, there

are some regions in which the files of I(MM) andfor M are
incomplete (from a statistical point of view) or totally absent to
derivate expressions relating them with the ground motion parameters
8 ax * Vmax ° and dmax . ‘In such regions or sites the following
techniques can be followed to produce a seismic input:

a) A historical set of accelerograms is chosen, and (if possible
scaled in time and amblitude) it is considered as rebresentative

of the possible future earthquakes to occur in the site. The 1940
El Centro earthquake is widely used for this purpose because of

the high value of the & ax which was recorded for this event[@l].

b) A set of artificial accelerograms which includes different
. kinds of ground motion characteristics is selected and taken as

a sample of the future earthquakes in the site E@8,413J .

c) A set of scaled standard or average response spectra is used
Bﬂ]. These sets of response were obtained by averaging the response
spectra of a sample of earthquakes which occurred in different

sites in the U.S.

4.2,11 Accelerograms and Response Spectra on soft grounds

The techniquesdescribed in the last sections for obtaining the
response spectra or accélerograms in a site are suitable for sites
located on firm ground. If this is not so, the local soil should
be taken into account. The local soil effect of softer soils is
translated in a filtering of the ground motion, leading to an
increase (or decrease) of the amﬁlitude of the waves at certain
frequencies and thus causing a dynamic amplification of the seismic
waves, |

Local soil effects become particularly relevant when the ‘
site is on a subsoil which is made of layers of rather different
characteristics, and the earthquake has a moderate intensity and a
large epicentral distance [419]. Fof short epicentral distances

and stable soil behaviour the local soil effects are overshadowed
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by the source mechanism of the earthquake [419] .

The practical outcome of the dynamic amplification of
soils is that the seismic forces on a structure are larger, and act
in a wider band of periods than the ones expected on the same

‘structure on a firm ground [ﬁzo] .

The procedure used for the determination of a response spectrum’
or accelerogram depends on the seismic and geotechnical information
available for the site on a soft ground. Four main methods can be
listed as follows: 1) A direct application of historical (or
simulated) accelerograms, 2) A selection of an average response
spectra, 3) The use of spectral amplification factors, 4) The

application of numerical simulation models.’

1) A set of historical or simulated accelerograms (Section
4.2.10), or their associated response spectra are chosen. This
procedure is usually applied when there are no accelerograms for
the site and the local geology is partially known.

2) Direct use of average or envelope respomse spectra
(Section 4.2.10) obtained from regions with similar geology as
that of the region in which the site is located. This procedure
is followed when the regional geology is known.

3) A set of spectral amplification factors is used in
combination with values of the maximum acceleration or ground
spectra for the site. This technique can be applied when a x
and Voax or the ground spectra and the surface geology of the
soil in a site are available. Sets of spectral amplification
factors have been obtained from statistical studies of events
occurred on the West coast of the U.S.; and, among other parameters,
they take the type of soil and a probabilistic percentile level
into account E121,422J .

4) The numerical simulation of local soil effects can be
performed by using finite element [423] or finite-difference
models [424] which directly compute the filtering effects of
the subsoil when subjected to a reference ground motion. This
technique requires detailed knowledge about the .dynamic ﬁroﬁerties

and geometry of the subsoil under the site

The main problem when applying the last technique arises
from the difficulty of choosing the site where the reference ground

motion should be applied. The uncertainties surrounding the
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material properties, and mainly the ones attached to the earthquake
characteristics should also be taken into consideration when
deciding to use a 2D or 3D model instead of a 1D model. This
is so because the application of the 2D 'and 3D models may become
very expensive when performing statistical sﬁudies leading to the
computation of the site accelerogram of response spectra EQIQL

As a general rule, whenever it is possible, a combination of
‘techniques 3) and 4) should be used to determine the accelerograms

or response spectra in a site.

4.3 Seismic risk models

In the previous section the current techniques to obtain
accelerograms, .response spectra or power spectral density functions
were presented. Once obtained, any of them could be used as a
seismic input to a structure located in a seismic region. Whichever
representation of the ground motion is chosen, the final objective
of the exercise is to produce a design seismic input. This input
should include the possible future different ground motions on a
site,each one with its own characteristics like frequency, content,
intensity, duration, etec..

An example of a design seismic input could be the Californian
average response spectra discussed previously (Section 4.2.10).
Similar average response spectra could be‘computed and used as
design spectra for other regions of the world, if a satisfactory
sample of accelerograms recorded in sites of those regions were
available. Unfortunately this is not the case for most sites,
and use has to be made of the so-called seismic risk models.

The seismic risk models are mathematical models which
combine the knowledge about the earthquake phenomena with the
seismic information available for a region; they are used to
compute the values of the maximum ground motion intensities on a
site and their corresponding probabilities of excéedance and/or

associated time spans called return periods.

4.3.1 Seismic information

The information available about the seismic activity in a

region could be classified depending on its nature as geophysical,
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statistical and miscellaneous. Each of them could be further
specified as follows:

- The geophysical information includes: a) the geotectonic
- features of the region, b) the energy stored in the region and
c) the regional strain.

-~ The statistical data can be associated to: a)‘the magnitude,
M , of earthquakes occurred in the region, b) the epicentral
distance and focal depths observed, c) the energy releaséd in the
region and other regions of the crust of the Earth, d) the recurrence
of earthquakes in the region, e) the attenuation laws derivated from
the earthquakes observed in the region énd f) the record of ground
motion intensities in the region such as I(MM) , a x? etc..

Finally the miscellaneous information includes: a) the qualita-
tive description of the earthquake history of the region, such as
Isoseismal Maps, and b) similarities of earthquakes with related

phenomena.

4.3.2 Size, number and location of seismic events

The whole of the seismic information should ideally be included
in the seismic risk model in order to consider the uncertainty about

the size , number and location of future earthquakes which may occur

in the vicinity of a site.

The size of an earthquake can be associated to 1ts magnltude,
M . The probablllty distribution of the magnitude for a region
can be calculated by using magnitude-frequency laws, such as: the

Richter law:

log N =a-bn e oo (4.19)
10

where N is the number of earthquakes ber year in excess of
magnitude m occurred in a region, and a and b are regional
constants. The upper limit to the magnitudesin a region, m , can
be obtained by applying the analysis of extreme-value techniques
to the record of magnitudes in chax";egion [410,42@; the lower limit
in a region'm, 1is usually chosen from engineering considerations.

The number of earthquakes in a region can be computed by using

stochastic models of earthquake occurrence. In E&lo] a comprehensive
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discussion of the earthquake occurrence models currently available
is presented. One of the models acceptable for engineering purposes
is the Poisson process; this implies that the probability éf the
waiting times between events is independent of the time passed since

the last event. The probability P that N earthquakes with a

N
magnitude m>M will occur in a time interval (0,t) is given by:
exp(=Yy ) (¥ o : '
P, = ooe . (4.20)
N N _ .

where VM is the mean rate of exceedance of earthquakes with
magnitude M for a given volume of earth crust.

The location of an earthquake in a region can be taken into
agcount by considering that a region can be divided into several
seismic sources, and that their contribution to the intensities in
the site are functionsof the distance from the site to the source,
The random characteristics of this distance can be represented by

a probability distribution [426].

4.3.3 Seismic risk models available

Several selsmlc risk models have been proposed [420 427,428 4.
29], all of them share the basic assumptions that the ground
motion intensities, I , in a site are the result of the contribu-
tions of the seismic activity of a number of sources, into which
a region has been divided i.e.  a suéefﬁosition principle is
imblicitely accepted in all the models. However these models differ
in the way they handle the uncertainties attached to the geophysical,
statistical and miscellaneous information available, as.well as to
the uncertalntles related to the conceptual models of the earthquake
process. In [427,4291 the explicit handling of the mentioned uncer-
tainties by using Bayesian statistics has been advocated, This
technique consists in using statistical information to judge the
likelihood of each of the assumptions made, and a posterior
probability function is obtained. The generality of the Bayesian
approach makes its application highly desirable whenever it is
possible; this is fully discussed in [}JO]. A non-Bayesian
approach is proposed in [426] and [428] in which the uncertainties
connected to the assumptions made are dealt with directly i.e. any

assumption can be changed if the data or the judgement of the
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specialist (say a geologist) rule against it.

In Appendix B Cornell's seismic model BL26] is briefly
described; other models [428,&29] are commented upon in the same
appendix in relation to the former model.

From Appendix B:. the following conclusions can be drawn: the
seismic risk model proposed by Cornell [4.26] performs satisfactorily
in general, but better results can be obtained from it if the
uncertainties about the different parameters which intervene are
taken into account, whenever it is bossible.

For the ﬁurpose'of this study, i.e. to obtain the seismic
risk for a site in the North Sea (where, as it will be made clear
in Section 4.4 , the seismic information is scarce) the Cornell's
seismic risk model will be used.

In ofder to take into account thé uncertainties about the
attenuation law utilised, the one proposed in [&16] will be used,
This attenuation law implicitely takes into account the uncertainties
about the actual and ﬁredicted values of the ground intensity E%16] .
The uncertainties about the seismic source zones, activity rate vy ,
b, and I(MM) values for the seismic region under consideration

will be discussed in Section 4.4.

4.4 Application of a seismic risk model

In this section Cornell's seismic risk model [4.26] (Appendix B)
will be applied to derivate exbressions to evaluate the maximum
expected ground intensity in a site, The expressions for the
expected maximum response spectra and the exﬁected maximum  ground
spectra will be obtained. The attenuation laws to be used are the
ones proposed in [&16], Section 4.2.8.

The region in which the site is located is discretized into
several seismic sources. Each source is associated to the f.ollowing
geometrical shapes depending on geotectonic and geophysical consid-
erations: a point source, fig. 4.k, a line source, figh.2 . and an
areal source, fig. 4.3. The following derivations apply to any of
the three types of seismic sources: - The attenuation law reads:

b .M -b

Y=b 10 @®+ 25 °

oo (4.21)
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where Y represents the ordinate of the ground spectra (Section 4.2.5)
or the pseudovelocity sﬁectra, v » (Section 4,2,8), M is the random
magnitude of the earthquake, R its random focal distance and b s
i=1, 2, 3 are parameters given in [AIGJ table 4.1

~ The conditional probability that Yu— y for R=r is given by:

b M

Py Zylr=x] = [b, 10 ° (R+25) =

~yIR = 1]
.o (6.22)

where y and r are particular values of Y and R respectively.
-~ If M and R are assumed to be statistically independent, after
some algebraic manipulations of equatlon (4.22) the following

expression is obtained for M > m,:

1 y . b3
Lo{ —(r + 25) }]
2.3b2 b,

P[Yile=r]=1—FM[

o o e (4.23)
<

. < - . .
and by considering that md_ m— % i.e. by using equation (A3):

Py 2 y|R = r] = exp (Bm;) b v % + 25)70P
oo . (4.24)
where B 1is a regional constant, and o = B/(Z 3b,).
- The probability that Y 2 y , given that M m, , is obtained
by substltutlng equation (4.24) into equation CA 6):

r
> - -
Py~y] = % exp (Bm,) b% y %r + 25) oLb3fR (r)dr
3 r ! 3
1
e oo« (46.25)

where j = p, £, a refers to a point, line and areal source

respectively, and ‘fR (r) adopts the following form depending on
Jselected for the source, i.e.:
" 2r

the geometrical shape

. fér a line source, £ , fig.4.2: fR (r) ~f*;——-;r§-
2 1(1’ - d )
| . oL (4.26)
r = [hz + (xo + x)2]-2—
A (W.Y))
Substituting equations (4.26) and (4.27) into equation (4.25), the

. for an areal source, a, fig.4.3sz (r)
‘ a
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following expressions are-obtained:
> ‘ Y - : .
BY =y], = ex(8n ) bY 3™ (me), c .. (4.28)

in which (Int)z stands for:
r
0

2 sec“lcg“)

7 sec?6 do
0

(secH + 25)ab

(Int)z =

d(ab3 - 1)

coeo. (£29)
r, , d, and 6 are the line source geometry parameters (fig.4.2)
when the geometry of the source is not symmetr1ca1 with respect to
the site, (Int) can still be calculated by superimposing equivalent

" symmetrical sources appropriately E@ZG}; and:

P[Y i.yJ = exb (Bra,) b? y—a (Int)a <. . (4.30)
a
(xf - xo) (x0 + x) dx

(Int) = 21
a x 2 274 ob
0 {[n% + G+ x)?]2 + 25175

. .. (4.3
where x , Xe and h are defined in fig.4 3jthe factor 21 is
due to the fact that an area covered by a complete circle is
considered. If the areal source covers a segment of the circle,
the corresponding (Int}a can be comﬁuted by multiplying equation
(4.31) by the quotient Y/2m, fig.4.3. If the source is represented
by a point, there is no uncertainty about the distance R 1i,e.

" R=1r fig.4,1 therefore:

oy > - a _-o
P[¥ =y], = exp (Bm) b}y (Int) . . . (4.32)
in which

(nt) ) = (& + 25)7Ps e (4.33)

~ If the annual probability of exceedance is less or equal to 0.05,

the distribution of 'Y ax is obtained by _Substituting equatlons
(4.28), (4.30) and (4. 32) into equation (B9) i.e.

L0 =0 _
Q- FYmax(y)]j = exp(gm ) b 'y (Int)j vy
(4.34)
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j=p, % a ;
where Vj is the mean rate of exceedance of earthquake per year for
the source j.

~ The average return period T, is given by:

T = 1
J [1 - Fmax(}’)j]

- 1 e v . (4.35)

-
m ) b_ - Int), v,
exp(fmy) by "(In )3. s

- The T, years intensity is obtained from equation (4.35):

J
1
y = [exp(fm)) (Int); v, T, ] % by ... (4.36)
J
or substituting the value a = B/(2.3b2)
' 2.3b,
y = exp(2.3m, b2) bl[(lnt)j v To,] R

I 3D

= Finally the probability of the maximum value of Y z-y

produced by the n sources at a site can be computed by using

equation (All); the associated To years intensity is given by:
2.3b,

n
y = kfl {exp(2.3m0b2) b, [(Int) vT,] B h(

. .. (4.38)
In this case the subindex k may correspond to any of the three
types of sources i.e. point, line or areal; the parameters involved
in equation (4;38) may be different for each source. From the
same equation it can be seen that the values of my, , B, Y, b,
b, , b, , as well as the geometry parameters implicit in the
expressions for (Int)‘ need to be known for each source. . The
value of the return period, TD', is fixed by a code or‘chosen by
the design engineer.
- In the case where the distribution of magnitudes in the region
should correspond to equation (B4) i.e. when 'mof-m §~m1, it can

be shown that for small probabilities of exceedance,
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[l - Fmax(y)]- = {(1 - kK)v+ kv[éxp(Bmo) b? y & (Int)]};
J J
ooeoe (4.39)

j=p, % a.
where k is given by equation (B5) and V and (Int) correspond to the

seismic sources with a focal distance less. or equal to:
b b2 1 :
r,= [GF 102 m]57 - 25 (km) .o . (4.40)

in which y is a chosen value of Y » for example the value
obtained by using equation (4.38).
The return period (To)j is given by:

T, = 1 e e (4.61)

1-F ]
[ Ymax ]j

and for the n independent sources,

T = 1 . (4.42)

o [l-F, )]
=] max j

4.5 Seismic risk in a site in the North Sea

The seismic risk for a site in the North Sea, fig. 4.4, will be
obtained in this section. The seismic risk model to be used is the
Cornell’'s model described in Appendix B. The expected maximum
ground intensity parameters at the site to be computed are the ground
spectra, the pseudovelocity spectra, aﬁd the power spectral density.

The site ié located in a region of low to mild seismic activity,
[425], but which nevertheless has experienced recent earthquakes with
magnitudes of importance, such as the one occurred in April 1884
near Colchester with an M =5 to 5.5 [431] , fig.4.4,and the one
occurred in June 1931 in the Doggers Bank, fig.4~@;with an M =6
[425],Earthquakes have also occurred in or nearby the Norwegian
channel, fig. 4.4, such as the one occurred not far from Bergen in
January 1927 with an M = 5.1 to 5.7 and others mentioned in [432].
From the geological point of view there is some evidence which

points out the seismic activity of the region. For example in [433],
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it is suggested that the pockmarks found in different sites under
the sea bed of the North Sea are the result of seismic disturbances

acting on normal or underconsolidated sediments.

4.5.1 Seismic information for the site

The seismic information available for the region in which the
site is located, fig. 4.4., has been mainly collected for inland
events, in the U.K. and the Continental shelf [46,425,434]- Offshore
seismic information for the region is by enlarge scarce and most of
it is confined to the Norwegian Coast [432]

Both inland and offshore information aré mainly of macroseismic
origin i.e. computed from seismographs located at large distances
from the epifocus.

In [46] and [425] information about the seismic activity in
the European area during the period 1901-1955 has been gathered and
processed to generate homogeneous data of the seismicity in the
European area. From these references [46,425] the seismic
information about Fennoscandia (i.e. Norway, Sweden and Finland),
and the one associated to the United Kingdom and Ireland are of
interest for this study because the North Sea includes parts of
both regions.

In the next paragraphs the geophysical, statistical and miscel-
laneous information drawn from [46,425] and elsewhere relevant to

this study will be presented,

Geophysical information

a) Geotectonic features of the region [46,425] ! it 1is located
in what could be considered the middle part of the Eurasian plate;
the Caledonian Hércynian and Alpine orogenies are present in its
faults and foldings, for example the Caledonian orogeny runs from
Northern Norway to Western Ireland; the Great Glen fault is the
only one in the U.K. whichclearly correlates with detected seismic
activity in the region; there is also some evidence of the relatlon
between the seismic activity and the faulting in the Norwegian coast
and the Oslo fjord [432].

b) Energy stored in the region'[434], based on the assumption
that the seismic events in Fesnoscandia are due to post-glacial

uplift of the region, an estimate of the value of the energy stored
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during the period 1891-1920 was given; however its validity has been
questioned in'EQBZ]. In the United Kingdom region, such studies
have not been carried out as yet. Therefore there is not for the
time being an answer about the value of the energy stored in the
region of interest for this study.

c) Regional strain: its distribution in time can be observed
in fig. 4 of [425] , which shows that the largest amplitudes of the
regional strain curves have been produced by largest events in
Norway and the United Kihgdom regions; i.e. events such as the earth-
quake occurred in the sea South of 0slo in October 1924 with an
M = 6.5, and the ones already mentioned, one near Bergen in Norway
in 1927 and in the South of the North Sea (near the Dogger Bank) in
1931. The space distribution of the regional strain can be appreci-
~ated through the map of seismic energy release (IE) given in ELZS]
(the regional strain is related to ﬁhe energy released by equation
(4.3)). From this map, it can be seen that most of the regional
strain (ehergy) is concentrated: a) in the South-western coast and
the Oslo region in Norway; and b) in the United Kingdom along the
Great Glen fault and a line passing through Birmingham, Nottingham
and Hull.

Statistical information

a) Files of magnitude for the regibn:‘by applying equation (4.5)
to the files of I(MM) in the seismic zones of Fennoscandia, U.K. and
Ireland, the set of data for M shown in table 4.2 was obtained
in [46]. The lower limit of the earthquake magnitudes in the region
m,, was taken as 4.1  in E&Q] (it usually varies between 3.5 and
4.5 in seismic risk studies [426]). The upper limit of the magnitudes
observed in thelregion, m,, were 6.25 and 6.3 for seismic zomes of
Fennoscandia, the United Kingdom and Ireland respectively E&6,42]
These values were taken from the frequency magnitude graphs obtainedv

in those references. In EL35] a m, = 5,72 was obtained by applying

the analysis of extreme ~technique zo the magnitudes of earthquakes‘
occurred in the United Kingdom.
b) File of earthquakes depths, h: in EkZS] the average depths
= 50 Km and 15 to 20 Km were found for earthquakes occurred in

Fennoscandia, the U.K. and Ireland respectively.
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¢) Energy released in the region; in Table 13 of [}5] the
values of the total seismic energy in Fennoscandia and the United»
Kingdom and Ireland during the period 1901-1955 are given. Those
values represented approximately 0.1% of the total energy released
in the whole European area which was 7.9 x 1024 ergs for the same
period of time. ‘

d) Recurrence of earthquakes: the frequency-magnitude law
expressed by equation (4.9) was used in [46,425] and [436]; by
applying different fitting techniques to the magnitude data, the
values of the coefficients a and b shown in table 4.3 were
obtained in those references.

e) Attenuation laws: the lack of accelerograms in the region
of interest has prevented the derivation of attenuation laws for
ground spectra for the region. Other studies [&35,436] have
utilized laws proposed in @37] and BBS] but in the present
study the attenuation laws proposed in [416] s equation (4.21), will
be used instead. The reason behind this choice is that the latter
laws have the advantage that the coefficients of variation are
provided for the expected values of the ground motion parameters
to be computed, table 4.1and that the Sv can be computed directly
instead of using the ground spectra in combination with amplification
factors, Section 4.2.8.

f) Records of I(M), CI.

for the region and they have been used to derivate the values of M,

, Sv’ etc.: there are records of I(MM)

when records of the latter were not available for the period of time
considered [ﬁ6,423,435]- Samples of 8 ax are very reduced for the

region in general and inexistent for the U.K. region [}36].

Miscellaneous information

a) Qualitative description of an earthquake history: most of the
information available for the inland parts of the region of interest
is in the form of isoseismal and epicentral mabs such as the ones
presented in [ﬁ25,435j and [436]. 1In fig.4.5 a map of isoseismals
for the region of interest is presented and in fig. 4.6 the
associated map of epicenters can be seen. Both maps are based on the
ones proposed in [ﬁzs] .

b) Similarities of earthquakes with related phenomena: the
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information of éarthquakes related to phenomena for the region is
very reduced, such as the one proposed in E&34] which was briefly
discussed in incise b) of the geophysical information of this

section.,

4.5.2 Selection of seismic sources and their parameters 8,

m Vv, h, b, i=1,2,3

In this section, the seismic information of the region where
the site is located, which was described in the laét section will be
used to select the geometries of the sources as well as their
associated parameters.

Division of the region in seismic sources:

From the geophysical information of the region and the isoseismal
méps, figs. 4.5 and 4.6, the choice of sources shown in fig. 4.7. was
made., The radius of the outer circle limiting the seismic region
was éhosen on the basis of the recommendation of»E@ZS] in which
a distance of 300Km between the site and the potential seismic
source is suggested. waever‘in‘this study. 500Km will be used in
order to be able to include the Great Glen fault as well as part of
the Norwegian epicenters, figs.4. 4 and 4,6.'The offshore sources
resulted from the fact that very little information exists
anut the offshore seiémic’activity of the region, It ié also due
to the fact that the geological structure of the North Sea is not
known in detail. Therefore the offshore parts’ of the region will
be treated as if any future earthquake was equally likely to occur
in any unit area of their sources.

The inland sources will also be considered as equally 1ike1y
to generate an earthquake in any unit area, excebt the line source
associated to the Great Glen., This is so because the period of
observation 1901-1955 is too short (in the geological and statis-—
tical sense) and there is the ﬁossibility that the present seismicity
of the different provinces may change in the future in such a way
that "aseismic" regions may become active. The only source which
can be chosen relying on the seismotectonic information available is
the line source associated to the Great Glem, fig. 4.4 . Finally
a point source will be associated to the epicenter of the Dégger
Bank earthquake of 1931, figs 4.4 and 4.6 .
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" 'Determination of the average rate V for each seismic

source:

‘The average rate vj for each source was obtained by dividing
the number of earthquakes with M > 4.1 observed in each source (on
the basis of the epicentral map shown in fig.4.6) by the period of

time of observation i.e. 55 yeérs. In table 4.4 the resulting \Z

are shown. For the \,j associated to the seismic sources 1,5 and 7
in which no seismic event was observed during the time period 1901-
1955, three different values were assumed: a low seismicity case

vi 5, ~ 0.018 = observed V3 ; an intermediate seismicity Vz,
0. 127 =

observed vV, , table 4.4. These values were chosen in order to represent

5,7
observed V, and a high seismicity case Vis 7 = 0.163 =

three levels of the possible seismic activity in the region on the basisg
of the activity observed in the 55 years'record.
Determination of the value of R:

The value of g can be obtained fromB = 2.3b,[@26], in which b

is the parameter of the frequency-magnitude law, equation (4.9) . The
value of b can be chosen from table4.3; for this study the value
b = 0.96,which is an average value of b for the seismic regions of
Fennoscandia, the U.K. and Ireland [46] will be used. This value was
chosen by taking into consideration the fact thatkit represents a
regionél value obtained from a larger sample of events than the samples
used for the individual regions, as in [429].

Selection of the value of my:

The value mg = 4.1 will be used in this work. A value of 4.0

is usually chosen [426 428] because it is cbnsidered to be the lowest,

limit of magnltude which can cause damage to englneerlng structures,

but a lower value could be selected if it is considered appropriate.
Selection of geometrical parameters: ‘

The depth of sources can be chosen from the average depths h

discussed in Section %4-5 . The depths selected are shown in table
4.4. These values were chcsen because they represent regional averages
and becauge they minimize the value of (Int)a.equation (4.31). For

the point and line sources the values of their depths were taken

directly from the catalog in U«ZSJ The rest of the source geometrical

parameters such as Y, d, and x o vere obtained on the basis of fig.4.3

Selection of values b,, b,, b,:

2

The values of bi i=1, 2, 3 to be used in the attenuation law

équation (4.21) are the ones shown in table 4.1 [&16]
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Selection of values of T :

The following values of the return period were chosen: 25, 50,
100, 200 and 500 years. The 25 and 50 year values may- correspond to
the life-span of the offshore platform, and the other values provide
the lower probability levels of exceedance from which other levels of
structural behaviour can be obtained.
With the parameters listed above and the seismic risk model discussed
in 4.4 , a set of ground spectra, pseudovélocity spectra and their
associated power spectral density functions were computed. The
p.s.d.f. were calculated by using equation (4.17) and a peak factor

equal to 3.5 (Section 4.2Q9). These results are discussed in
Chapter 8. '

4.6 Resulting seismic loads

In general, the seismic loads acting on an inland structure are
defined as the inertia forces resulting from the motion of the base
of the structure during an earthquake. 1f the structure is assumed
to be rigidly attached to the ground and if it has been discretized

- in such a way that its mass properties have been lumped (Section 2.4)

the inertia force acting on nodal point i 1is expressed as
follows:
Fi(t) = mii(ui)t = mii(ui)-+ mii(*g) ... (4.42)

where Fi is the resulting inertial force, m. . is the lumped mass
at nodal point 1., ({53._)t is the total acceleration of m,. - i is
the acceleration of m. . relative to the base of the structure and
{{, 1is the ground acceleration. According to the governing equation,
equation (2.1),Section 2.2,the term mii({&) corresponds to the ele-
ment ii of the diagonal matrix resulting from the product M G
the term mii(ﬁg) represents the ith component of the vector P

i.e.:

psim = - m; Gy e o (4.43)

where Pg (t) is the effective seismic load acting on the ith mnodal

point of the discretized structure.
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In Chapter 8 a number of p.s.d.f. of ground acceleration are
presented. As.shown in Section 4.2.7, they represent one of the
forms to express the energy content of a set of accelerograms Gg 3
therefore they are implicitely included in equation (4.43). The
actual use of those p.s.d.f. to define the seismic loads acting

on a c¢.g.p. will be shown in Chapters 6 and 7 .
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5. WAVE EXCITATION

5.1 Introduction

The wave loads are generated when sea waves incide over the
surface of a structure placed in the sea environment. The differ-
ence in the relative motion between the fluid and the structure
results in an interaction process. In this process the kinematic
characteristics of the waves are usually modified by the presence
of the structure. The waves which are of interest from the offshore
design point of view are the so-called wind generated waves. The
mechanisms underlying its generation are not completely explained
as yet; however, a number of theories about them have been proposed
[51,52,53]. A common assumption in those thebries is the contribu-
tion of the wind in the wind-fluid energy transfer process; however,
the way in which this energy acts on the fluid surface is different
from one approach to the next. For example, the resonance model
proposed in[}.lj assumes that the fluid surface motion is induced
by pressure fluctuations in the wind, which are in random phase with
the waves; meanwhile, the shear flow modél [?2]'suggests that the
waves modify thefield of the air flowing at a certain distance over
them. A mixed model based on both mentioned approaches was presented
in [53] , which assumed that the two mechanisms are complementary in
the wave generation process.

The theories of wind wave generation discugsed above have in
common the assumption that a sea wave results from the random super-
position of a number of waves which propagate in different directions
and have different kinematic characteristics, i.e. a wind generated
wave can be considered as a random process. From the above paragraph
it can be concluded that the generation process of the wind waves is
not fully explained as yet; therefore, the description of these waves
has to resort on a combination of deterministic and non-deterministic
theories to reach that end[g.é]. The classical hydrodynamic prin-

~ciples used to approximate the kinetic characteristics of the wGaves
are discussed in Section 5.2.1; the random process utilized to
formulate the non-deterministic characteristics of the sea waves is
presented in Sections 5.2.2 to 5.2.4.

Once the kinematics of the wind generated waves is formulated,
the fluid structure interaction which produces the wave loads can be

studied. = Depending on the combination of the wave and geometrical
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‘i
structure parameters involved, the wave forces resulting are associ-

ated to different wave loading regimes, such as the so-called drag,
inertia, diffraction and other wave loading regimes. The different
wave loading regimes typical of concrete gravity platforms are dis-
cussed in Section 5.3.1. The drag, inertia and diffraction regimes are
- presented in Sections 5.3.2, 5,3.3 and 5.3.5 respectively. Finally,
in Section 5.4 the expressionsfor wave loading used in this work are

discussed.

5.2 Wave characteristics

5.2.1 Basic hydrodynamics .

As it was briefly commented in the introduction, the wind gener-
ated waves can be considered as random processes; therefore, it is
expected that their full description requires the use of a three-
dimensional random process. However, as most of the reliable field
data has béen obtained for unidirectionalbwaves, only this case will
be presented in this work. Neglecting the randomness of the waves
for a while, the simpler idealization of the waves is to represent them
by simple harmonic waves. This idealization nevertheless is useful
to establish the basic elements for the derivation of the kinematics
of the sea waves; furthermore, the linear wave theory[ﬁ.S] can be
used to this end (there are other higher order theories which could
also be used); a brief summary of the linear wave theory'Eié,SSJ is
presented in this section.

The sea state is represented by simple harmonic waves based on
the following assumptions:

a) the fluid is incompressible, b) the fluid is non-viscous, c) the
waves are two—-dimensional (fig.s.l),d) the waves are stationary in
space and in time, e) Coriolis effect is neglected.

The equation of continuity of a fluid is given by:

P_Q V.' = : - T e (551)
Dt+p. v 0

The equation of motion is expressed by:

Vp e (5.2)
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where %? represents the toEal derivative of a variable, p 1is the
fluid density, V is the nabla vector and vV is the vector of
fluid particles velocities; gb represehts the body fofces.and vp
is the pressure gradient.

From assumption a), equation (5.1) is reduced to:
V.i = 0 . : . . . (5.3)

and assumption b) implies:

Vxy = 9
i.e. e .. (5.4)
P--w
where ¢ ‘is the velocity potential.
Substituting‘equation (5.4) into equation (5.3),
V% = ¢ .. . (5.5)

From fig5.l1 , the boundary conditions (b.c.) associated to equation
(5.5) are:

.« . (5.6)

y=n e o . (5.7)

where ﬁy is the fluid particle velocity in the y direction and

N is a particular value of the wave height. The last b.c. equation

(5.7) has to be expressed in terms of the potential ¢, in order to

have a system of equations in which the variable is ¢ only.
Integrating equation (5.2) for the x and y directions plus

assumption b) leads to Bernoulli's equation:

f
¥l
obv

+.;_(°; + v;) + +gy = 0 e« . (5.8)

where ﬁx is the fluid particle velocity in the x direction and

8 the acceleration of gravity; the other parameters were already
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defined. .

By considering the small amplitude wave theory, Airy Theory,
which assumes that the amplitude of the surface wave is small com-
pared to the length of the wave, or to the depth of the water where
it propagates (see Fig.5.1) equation (5.8) is reduced to:

_-_-é-t—-{--—-}-gy_o e oo. (5.9

Substituting equation (5.9) into equation (5.7) allows to express

this b.c. as a function of ¢ 1i.e.:

= 8N e o . (5.10)

V3¢ =0
boe. %%? =0 .. (5.11)
y =-D
I
ot
y=20

The solution to the system of equations (5.11) is:

o = ag cosh K(y + b)

© cosh (D) Sin(kx - wt) . v . (5.12)

which is a progressive wave travelling in the positive direction of
the x axis with a circular frequency w , fig.5d. 1In equation
(5.12) a represénts the amplitude of the harmonic wave, w is its
frequency, K 1is the wave number, D is the total aepth and x ,

y and t are the space and time coordinates respectively.

Another consequence of the small amplitude assumption is:

%% SR L c e (5.13)
y=20 Ty =0

and from equation (5.10):

n g ot e o . (5.14)
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Combining equations (5.13) and (5.14):

1 ¥ ks
—_— e 4 = « e e .
2 az?— 5y 0 (5.15)
By substituting equation (5.12) into equation (5.15) and taking
the deep water conditions, D >> y ,'into consideration, the following

relations are derivated:

we = gk
2 Te

w = 27f = X = Ke .« . (5.16)
A

where f is the frequency of the wave in cycles per unit of time,
¢ 1is the wave celerity, A is the length of the wave and T is
the wave period. The particle velocity in the x and y directions

is obtained from the gradient of ¢

06 _ agk cosh k(y + D) cos (Kx - wt)

Yx T T 5% w sinh (KD)
(5.17)
g = _ 9% _ agk sinh kK(y + D) sin (kx - wt)
y dy w sinh (KD) ‘ L (5.18)
The particle accelerations in the x and y directions can be
computed from equations (5.17) and (5.18):
8 = . cosh K(y + D) e _
V.= asK sinh (KDY sin (kx -~ wt) .. . (5.19)
. sinh K(y + D) _
vy = agk sinh (kD) cos (Kx - Wwt) .. (5.20)
The particle trajectory r can be obtained from:
t *
r =/ v dt
X 0 X
cosh K(y + D) sin (Kx - wt) e . . (5.21)

.sinh (KD)
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r = } v d;
0

sinh K(y + D)
sinh (kD)

cos (Kx - wt) e o . (5.22)

From equations (5.21) and (5.22) it can be concluded that the particle
trajectories describe circles with radii that tend to zero as y

tends. to D . If y =0, equation (5.22) becomes:

ry = n = ~a cos (kx - wt) .. (5.23)

Substituting equation (5.12) into (5.9), the pressure p is obtained:

| +
p(x,y,t) = pg [y + a cozgn:({KD)D) cos (kx - wt)]

vy<o0 .. (5.24)

The main feature of Airy's wave theory is that a wave can be defined
by using three independent parameters, namely, period (T) , wave
height (H) and mean water depth (D) . All other parameters are
functions of the above-mentioned ones. 1In[5.6] a classification of
wave theories based on their behaviour to fulfill the boundary condi-
tions is presented; among other conclusions it is mentioned that the
Airy's wave theory is satisfactory in medium deef waters {(i.e.
100-200 m. for éxample).

An average of the wave energy content over the wavelength and
per unit area of the sea surface can be computed as a sum of the
kinetic energy (KE) of orbital motion and potential energy (PE) of
water level change. By using (5.18), (5.21) and (5.22) it can

be shown that the average energy, ¥ , contained per unit area equals:
E = PE + KE

2

1
= 4bPga" + f'p g a?

= Zpga .. (5.25)
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5.2.2 Modelling of sea waves

From the coastal engineering point of view the main interest lies
in the so-called wind generated waves; these waves contain larger
amounts of energy which, at a certain time, will be transferred to
the structures built up in the ocean environment. As mentioned in
the introduction, the wind generated waves are rather complicated in
nature; therefore, any mathematical representation of them should
preserve this essentially random (non-deterministic) characteristic,
fig.5.2.

Among other criteria for the mathematical modelling of wind gener-
ated waves, there are two which are widely accepted, namely [57] 3

a) the random superposition of periodic wave patterns, and

b) the continuous juxtaposition of random impulses.

In criterion a), steady state solutions with a random phase are super—
posed, and in criterion b), transient solutions are sequentially added.
Model a) has the advantage of using the sinusoidal wave representation
derivated from Airy's wave theory, which makes its use simpler than
the one associated to model b). In this section, only the former
approach will be presented.

The representation of wind generated waves by using model a) was
introduced in [Sﬂ]i It assumes that the vertical movement of the
particles, n , on the sea surface, generated by a unidirectional
wind, can be represented by the superposition of N simple harmonic
waves (as the ones obtained in equation (5.23)) of amplitude a;

(i=1,2, ... N), frequency w, and random phase €, 3 i.e.:

N
nix,t) = I n; (x, t)
N
= 151 a; cos (Kix - wit + ei) .« . (5.26)
N »>
with 0 = 2w
<
0 < Ci < 27

The frequencies w; are uniformely spaced at intervals Aw , and
the phase €; is random and uniformely distributed (i.e. the value

of its probability density function is equal to 1/27 ).



66

If the abscéissa =x is keﬁt constant in equation (5.26), the
associated wave height will be a function of time only, From the
frequency spacing condition the wave height will have a beriod
2n/Mw . The average energy content éer unit area of sea surface
(E) given in equation (5.25) shows that E is proportional to a ,
By analogy, in the case of equation (5.26) this definition can also
be applied; but it will be associated to the amount of wave energy
contained in a band frequency Aw centered at wi i.e,:

w; +Aw

1
082
Aw wy

=y 2
E(“’i) as

"

og Snn(wi)_Aw « o (5,27)

where Snn(wi) is called the energy or power spectrum,
If the random process represented by equation (5.26) is assumed
to be a zero mean, stationary, gaussian and ergodic process, it can

be shown [59] that its mean square value is given by:

2 =
< nt)<s > er (0)
= ,g Snn(w) dw ¢ e (5128)

Equation (5.28) implies that the amplitude a; must tend to zero
in order to produce a finite mean square value of the wave height,

As a consequence, the formal definition for Snn(m) is:

wA+Aw a2 ‘
I e 1 i e e (5.29)
S =3 E 3,
wj

because a; > , when N - o , whereas ai /My does not.

From equation (5.29):

w4+Aw
z . o= DY « o v (5.30
. a; V2 §nniw1§Aw ( )

and substituting equation (5.30) into equation (5.26):

-]
nx,t) = lim £ /73 lwiiﬂa cos (KX - wyt + gi)

Aw =0 i=o0 m
nAw - e« oo (5.31)
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By analogy, the counterpart of equations (5.17) to (5.22) can be

written as follows for this random representation of the sea waves:

*
vV =
X

Aoy - -0
nlw -+ ©

™ cosh Ki(y+D)
T w28 (W.)hw

[+ ]

o . :
i=0 sinh (kD)

sinh (kD)

sinh Ki(y+D)

- cosh Ki(y+D)

T W/
i=0 sinh (kD)
@ sinh k. (y+D
N e 107*D)
i=0 sinh (kD)
© y cosh Ki(y+D)
5 _
i=0 sinh (kD)
® sinh k. (y+D)
e i
i=o * sinh (kD)

cos(K.x~Ww, t+£.)
i© i1

. . (5.32)
sin(K.x~w. t+e.)
i® i i

. . . (5.33)
31n(Kix-wit+€i)
. . . (5.34)
cos(Kix~wit+€i)
.« . (5.35)
51n(Kix—wit+€i)
. o« (5.36)
cos(Kix—wit+€i)

... (5.37)

Equations (5.32) to (5.37) provide the kinematics of the random

representation of unidirectional wind generated waves.

5.2.3 Statistics of sea waves

The recording of the time history of sea surface elevation (fig 5.2)

and the stochastic modelling of time series [59] provided the tools

for a more realistic representation and understanding of sea waves.

This led to the computation of practical results based on statistics

of field data and theoretical studies.

be mentioned in this section.

Some of these results will
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The statistical characterization of sea waves has been mainly
concentrated in two wind generated wave parameters, namely height
and period. A reason for this lies in the fact that the height is
associated to the energy of a wave (Section 5.2) and the period is
linked to the frequency of that wave.

| A very important step toward the derivation of analytical expres-—

sions of the statistics of wave heights was given in [510,511] . The
main assumption in both papers is to represent the sea surface by a
zero mean, ergodic gaussian process (equation (5.6)). Among other
results they found out the following ones:

a) The process representing a wave height record can be narrow
or wide band, depending on the value of the so-called spectral width
parameter €, - This parameter varies between 0 and 1 , and can

be computed by:

2

B i i c e (5.38)
0 m,m, ' )
where the nth spectral moment is
*® n
moo= { Snn(w) w dw .. -;(5-39)

and n=0, 1, 2, ...

Shn (w) = power spectral density of wave heights.

b) If the process is narrow band i.e. €, > 0 (which implies
that the energy is mainly concentrated in a small frequency band of
the associated energy spectrum), the maximum of surface elevation

follows a Rayleigh probability density function, i.e.:

_ max 2
p(nmax) m, exp[ n max/2m0] o .. (5.40)
Based on this result and taking into account that for a narrow
frequency spectrum the wave height, H » is twice the maximum ampli-
tude, the following statistics of wave height and wave period were

obtained:

2 iy

Hmode
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H = 2,828 Vm,
T.m,.S. ‘
H = 2.507 vm,
L] . . (5-41)
Hy = 4.0 vm,
3 ‘.
H1 = 5.1 ‘/I}‘_o—
10

where m,,m, can be computed by using equation (5.39)

o’

H = most probable value of wave heights,
mode
o8 = root-mean square value of wave heights,
(] . -
Hy = average of the highest one third of the
3
waves, also known as significative wave
heights, HS ,
H = mean value of wave height,
Hy = average of the highest one tenth of the
10 .
waves, sometimes taken as the expected
value of maximum wave height,
T = average time between successive zero up-

crossings (fig.5.2).

c) If the process is broad-band i.e. 0 < g, < 1 (this means
that the energy is distributed on a wide frequency band of the asso-
ciatedvenergy spectrum) the statistical distribution of the maxima

of surface elevation is given by:

1 2 2
p(x) = —— {g, exp [- x?/2 ¢ ]
Y21 ° [ ’

- 22/ e,
+ /1 —‘Ef x exp [-x*/2] f exp [-t?/2] dt)

oo . (5.42)
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where s

//m

X = Npax/7™,
When €0 » 0 , the expression for b(x) becomes a Rayleigh
distribution (narrow band process), and for €p » 1 s p(x) is
reduced to a Gaussian distribution. Based on these results the fol-

lowing statistics were obtained:

=2Vm [V21In N
(Hmax)mode 2 Vm, [ 2 Ln No]
- 0.5772 :
H =2Vn [V2In N + 1 ... (5.43)
max 0 0 [5 In ﬁo
where
H ) = most probable value of maximum wave height,
max’ mode ;
H = mean value of maximum wave height,
max
N = I . . ‘
o T < number of zero upcrossings in the record
‘ 0 .
(fig. 5.2),
T = the record duration and

T ~ was previously defined.

5.2.4 Empirical wave height spectra

Several empirical formulae (based on the analysis of wave ampli-
tude records) have been proposed to express the power spectral density
function of the wave heights, Snm » as a function of the frequency,
w . The wind velocity W or the significant wave height Hs and
significant wave period TS are used in those expressions. The gen-
eral equations for these spectral density functions are as follows

[512] -
a) For wind velocity W :

Spn(w) = —‘-Z:g exp [ -B/w" w*] ' ’ . .. (5.44)
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where .
A and B are empirical constants, W is the wind velocity at
-approximately 20 m. above sea level and W is the frequency in
rad. /sec..

b) For significant wave height and period:

2

S (W) = exp [——B/T; g“] « o (5.45)

T w
s
TS is usually expressed as a function of HS . The empirical

constants A and B can be computed by solving the system:
.. (5.48)

where m and m, -previously defined- should be computed for the
particular sea state considered.

Two expressions for the computation of the power spectral demsity
function of the wave heights are listed here:

1) Pierson and Moskowitz P-M [5.12] (fig. §8.13).

For fully developed seas (i.e. seas in which the fetch length and
duration are long enough for a given velocity to produce the highest

possible waves):

Sn@ = %5 exp [-8G/u)*] e . (5.47)
or \
== g&. - .‘.5.. i =t
Snn(w) o exp [ 4(—5;;;9 ] . - . (5.48)

where the units of Snn(w) are (m? -sec.) and,

Gpax = 4B/ (g/W),

o is a dimensionless constant = 0.0081 (for the

North Sea),

B ‘is a dimensionless constant = 0.74 (for the North
Sea),
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‘

w is the wind velocity at a height of 19.5 m. above

the sea surface,
g is the acceleration due to gravity and

Wy is the frequency associated with the maximum value

of Snn(w).

2) Jonswap [513] (fig. 8.13).
This is similar to the P-M with an extra term called "overshoot",

a term which takes the fetch limited condition into account.

, S . -(w = wy, )
Sl = 5 e ["z G ]Yexp[zoz o]

max max

.. (5.49)
where the units of Spn(w) are (m® - sec.), Y 1is the ratio of the
maximum spectral energy level to the corresponding level of the P-M
spectrum, usually called overshoot parameter, which is equal to 3.3

for the North Sea.

o for w < w
a ~ "max

o = .« . (5.50)

for >
cb w whax

The average value of O, and 9 in the North Sea are 0.07 and 0.09
respectively. The rest of the parameters were previously defined in

relation to equation (5.48).

5.3 Wave loads

5.3.1 Wave loading regimes

The determination of the forces exerted by sea waves on structures
represents a complicated task. The main difficulty lies in the fact
that these forces are the result of an interactive process between the
structure and the waves. In this Process the former will usually
modify the kinematics of the latter, with respect to the case in which

no structure exists in the sea environment. Due to this characteristic
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of the problem, the models used to determine the wave loads on struc-

tures have aimed at isolating the effects observed in the kinematics

of the wave for specific coﬁbinations of wave and structure parameters,
A summary of the different loading regimes derived from analytical,

field and laboratory experiments on the interaction flowing fluid-

structure has been suggested in Eil&] . This summary is listed here:
a) d/A > 1 + + . Condition near to pure reflection
b) d/A > 0.2 . .. Diffraction increasingly predominant

c) d/Wy, > 0.2 . . . 1Inertia increasingly predominant
d) d/WO < 0.6 . . . Incipience of lift and drag

e) d/Ww, < 0.2 ... Drag increasingly predominant

where d is the structure characteristic dimension, ) is the wave
length, and W, is the wave orbit width parameter.

If the offshore structure is a concrete gravity platform placed on
deep waters, the parameter "d" mentioned above could be the diameter
‘of the caisson or the diameter of the towers. The parameters wo and

A correspond to the wave height and the wave length respectively.,

For the caisson, the typical values of the ratio d/)\ are larger
than 0.2 ; therefore, the loads acting on the caisson are mainly pro-~
duced by diffraction effects. For the towers, typical values of the
ratios d/\ and d/Wo are such that while portions of their length
are subjected to loads produced by diffraction effects other parts
are under loads associated to iﬁertia and (sometimes) drag effects.

From the above paragraph it is clear that the loading regimes of
interest for typical concrete gravity platforms are the diffraction,
inertia and drag ones; therefore, in the following ﬁaragraphs, only
those loading regimes will be discussed.

The actual determination of the forces resulting from any of the
mentioned wave loading regimes implies the solution of the following
problem: evaluate the forces acting on a body immersed in a non-uni-
form, unsteady, viscous fluid flow.

This problem is difficult to solve, because it requires, among

other things, the finding of the kinematics of the
boundary layer formed around the body [}15] . This "boundary layer

problem" is difficult to be solved even for simple geometrical shapes
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immersed in a steady flow[ﬁ.i] . Therefore, the'original problem

has been idealized in such a way that its solution consists in the
determination of the net force associated to the pressure and shear
distribution on the surface of the object. This force is represented
by the product of a coefficient (obtained expeiimentally) multiplied
by a term which includes the structural characteristic parameters

and the wave resulting kinematics.

5.3.2 Drag loads (d/w,)< 0.2

The flow in a viscous fluid is characterized by the presence of
normal (pressure) and tangential (shear) forces between adjacent in-
finitesimal layers of fluid. If a body is>immersed in this fluid and
kept stationary, the shear forces will cause an adhesion of the fluid
particles close to thevsﬁrfaée of the body. Due to this friction
effect, a large velocity gradient field is gererated around the body
i.e. a boundary layer is produced[}.lS] . In addition, a wake of
flow is produced and consequently the pressure distribution around
the body is not in equilibrium. The non-equilibrium resultant forces
can be decomposed into two components: the drag force, acting parallel
to the flow direction, and the 1ift force, which acts perpendicularly
to the first. For symmetrical bodies the 1ift force is null[}.ﬂ .

The drag force is composed of two parts: a form drag and a skin
friction drag. The first is related to the fluid pressure forces
over the body surface, and the second one is associated to the shearing
forces which are a function of .the fluid viscosity. The form drag
is dominant in bluff shapes, such as cylinders, ahd'for large numbers
of Reynolds it is proportional to the square of the undisturbed
velocity Eilﬁ] . For streamlined shapes the skin friction is dominant.

The body shapes of a typical C.g.p. components are of the bluff
tyﬁe; therefore, in what follows, when the term drag is used, it will
refer to the form,drag. The actual determination of the drag force
from a mathematical model includes the solutions of the boundary layer
problem for a cylindrical shape immersed in an unsteady.flpw[}.i] .. This
problem is extremely complicated even when dealiﬁgfwith-thé same shape
immersed in a steady flow; therefore its solution has required the exper-
imental determination of a so-called drag coefficient which replaces

an integral involving the flow velocity far and close to the boundary
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layer [i7] i.e. the expression for the drag force P

drag °’
S v, Vi
= -2 L
Pdrag v d_i{ % vz} dq .. (5051)

(where p is the mass density of the fluid, v is the fluid velocity
far from the body, Vy, 1s the fluid velocity within the boundary layer,
d is the diameter of the cylinder and Q 1is the direction perpen-
dicular to the surface of the boundary layer) can be substltuted by

the following expression [57}

°2
Y x .. . (5.52)

=pd 5 Ky

Pdrag

where Kd represents the integral in equation (5.51) and is called
the drag coefficient; the other parameters have previously been
defined. Kd has been determined experimentally for steady flow
conditions; it depends on the shape of the structure and the number
of Reynolds (RN = vod/y » in which <y is the kinematic viscosity
of the fluid).

The values of Kd obtained for cylinders show a great scatter;
for example, in [516] » it is reported that Kd varies between 1.0
and 1.4 , meanwhile in [517] a value of Kd = 0.5 is recommended.

Another author [}JS] has suggested K

d 1.0 whereas in [§J9] a mean

value of 'fﬁ = 1.05 is proposed. In practice, the higher values of
Kd are associated to slender members, which, combined with large

values of the fluid velocities produce large drag forces.

5.3.3 1Inertia loads (d/wy) > 0.2

When a body is submerged into an unsteady, non-uniform, viscous

fluid flow, in addition to the drag forces discussed in the previous
sectidn, an inertia force is observed. This inertia force is gene-
rated by the difference of relative velocities existing between the
body and the fluid flow. The existence of this inertia force is
confirmed when studying a simpler case such as the one associated to
a vertical cylinder travelling with uniform velocity irn a stationary
fluid. By using potential flow theory (Section5.2) the fluid

velocity distribution can be found, and the total kinetic energy of

the fluid per unit length of cylinder can be evaluated. This
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kinetic energy is equal to a mass of fluid associated to the volume

of the cylinder multiplied by the square of the velocity of the

fluid EL7J 3 the mass of fluid into questioﬁ is known as the 'dis-
placed mass'". The total kinetic energy‘in the system is equal to the
kinetic energy of the fluid plus the one generated by the movement of
the cylinder.  In this‘case it can be shown E17] that the mass involved
is equal to the mass of the cylinder élus the displaced mass.

From the case described above, when considering a fix cylinder
immersed in an accelerating fluid, the inertia force, Pin » required
by the cylinder to keep its equilibrium position is equal to the mass
of the cylinder, Mc s plus the dis?laced mass, Mf s multiﬁlied by

the fluid acceleration, Vv . For this case Moo= M, [57] ; therefore:

Pin = (MC + Mf) v
= (M) ¥ ... (5.53)
= Kmp Vc v

where K.m is the so-called coefficient of inertia (equal to 2 in this
theoretical case) and Vc is the volume of thecylinder. The other
parameters were previously defined. The inertia coefficient Km
depends on the shape of the immersed part of the body and the flow
characteristics around the body. Its theoretical evaluation becomes

a difficult task even for relatively simﬁle geometrical shapes;
therefore, experiments have been carried out to cqmbute Km .,  For
example, for cylinders the following values of Km have been
 suggested: in [51?] K = 1.5 ; in [518] K =2.0; in [519] an
average value f& = 1.4, and finally in [816] 0.5 < K, <2.5.

- 5.3.4 Morison et al. equation

In what is -by now- a classical paper [520] Morison et al. sug-
gested that the force exerted by a fluid on an accelerating cylinder
could be computed as the superposition of a drag force plus an inertia
force. The main assumption which is implicit in this formulation is
that the characteristic dimension of the cylindér is such that the

flow field is not disturbed by the presence of the immersed body.
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Therefore, the total force per unit length, g”(t) , of a fix
cylinder immersed on an accelerating fluid can be computed by the
following expression:

P (t) =K pﬂﬁv + 2K, pd HG{ .« . (5.54)

m 4 d

where all the terms have been previously defined when equations (5.52)
and (5.53) were introduced. It is worthwhile to remark that the
symbols V and v stand for the fluid acceleration and velocity
respectively as if no structure was immersed in the fluid. If in
equation (5.54) the following terms are introduced:

2
V= (ﬂ%—) x 1 meter

.Cm= Km p v .+ . (5.55)

= A -
Cq= 5 Kypd

equation (5.54) can be rewritten as follows:
Py(t) =C ¥ + C, v [v] _ . . . (5.56)

If the displacement of the cylinder is taken into consideration; it
can be shown that equation (5.56) can be written as follows:

- o - - ‘ .. + . M

Pw(t) c ¥ K -1) pVid c, v|v]|

.« . (5.57)

d
where U is the body acceleration.

5.3.5 Diffraction loads (d/)) > 0.2

When d/A > 0.2 , i.e. when the characteristic size of the body

submerged in the sea is large compared to the length of the waves,
the diffraction effects become important and dominate the resulting
force regime [514]. For the case of plane waves propagating in a
certain direction, diffraction occurs when the waves reach the body
and the flow field is'modified by the waves reflected on the body.

This means that the resulting fl