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Discrete models of density-dependent population growth provide simple
examples of dynamical systems which exhibit complicated dynamics. Single
age-class models lead to the study of maps of an interval into itself and
we outline the main results which are known in this case.

Here our main concern is with a two age-class model, due to Maynard Smith,
which takes the form of a two¥parameter family of maps of the plane with s
quadratic non-linearity. After a description of the local bifurcations of
general two-parameter families in the plane we give a linear stability
analysis for the fixed points in our model and analyse their bifurcations.
This local theory is extended by finding numerically the boundaries of the
regions in the parameter space where the map has a periodiec orbit of low
period created by resonant Hopf bifurcation. A series of computer-drawn
phase portraits is presented for a one-parameter path through the parameter
plane, showing-the creation of an attracting invariant circle by a Hopf
bifurcation followed by a passage to a more complicated attractor.

We examine a three-parameter family connecting our map to the quadratic
diffeomorphism studied by Henon and conclude with a discussion of a more
realistic model which, however, contains the same complexities associated

with resonant Hopf bifurcation found in the simpler model.
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INTRODUCTION

Discrete models of density-dependent population growth have recently
attracted attention as examples of simple dynamical systems which exhibit
extremely complicated, and interesting, dynamics. The simplest models
describe the growth of a population with nonoverlapping generations by a
relationship of.the form x .. = f(xn), where x denotes the size of the
population at time n and f is some suitably chosen function. This leads
naturally to the study of maps of an interval into itself, and a reasonably
complete topological picture of the behaviour of such maps has been developed,
and is outlined below. Our main interest however is with a model of a
population with two age-classes, which takes account of the time delsy
involved as members of the first age-class mature into the second. For a
time delay of <t units we are led to a discrete system with a (1+1)-
dimensional phase space which extends the one-dimensional maps in two ways.
Firstly, when T = O the model reduces to a single age-class model which
is identical to those studied previously. Secondly, for 1 # O the model
involves two parameters, and for certain parameter values the behaviour of
the system is completely determined by knowledge of the one-dimensional case.

The model we shall study was originally proposed by Maynard Smith [29],
who derives the following relationship for the growth of a species with egg

and adult age-classes:
x(n+1) = ax(n) +bx(n-1) - cxg(n—r) (0.1)

Here x(n) denotes the size of the adult population at time n, 1 is the
time taken for an egg to develop into an adult, a € (0,1) 1is the
probability that an adult at time =n survives to time n+l, b > O is the
number of eggs laid per adult per unit time which in optimal conditions

(i.e. low x(n)) survive to become adults, and ¢ > O represents a density-
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s
dependent cod@raint on the fecundity of the adults. In fact c¢ 1is simply

a scaling factor which is removed by the change of scale x = x/c so that
x(n+1) = ax(n) + bx(n-1) - x°(n-1) (0.2)

We introduce new variables xl(n) = x(n-1), xe(n) = x(n-1t+1),...,

x _(n) = x(n) to obtain, in the usual way, a map of the phase space which

sends x,(n) to x,(n+1), 1 <1 < 7+1:

F: R + R -, Flx

l,...,x

- 2
r+l) = (x2,x3,...,axr+l + bxl—xl) (0.3)

If 1 =0 this gives a function F(x) = (a+b)x - x° which is equivalent,

by a linear change of coordinates, bo either of the quadratic families

fu(x) ux(1l-x), u € [o,u] (0.L4)

s H 6 [";5921 (O-S)

]
=
!
"

r (x)
U

The first family (0.4) was considered by May [28] as a simple population
model, but it has one slight disadvantage in that it has a 'non-generic'

bifurcation at u = 1, due to the fact that the origin is a fixed point for

all values of yu. However a linear coordinate change transforms (0.4) for

u € [1,4] into (0.5) for u€([-%,2] and the second family has a 'generic'

bifurcation at u = -%. The same non-genericity occurs for the map (0.3)

and it simplifies matters if we make the coordinate change X, » X, - %

to obtain

. 58X +D- xi (0.6)

vhere b = EE +'K' g-
We will study (0.6) in detail for the case of simplest non-zero time

delay: T = 1. Renaming the coordinates x1 = x, X, =y and omitting the
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tilde on b we have a two parameter family of maps of the plane:

F: R > R (0.7)

(x,7) & (y,ay+b-x")

For a certain range of parameters this family is studied in Griffiths
and Rand [11], where attention is restricted to those biologically relevant
orbits corresponding to positive populations. For the moment we ilgnore any
such restrictions and study (0.7) as a discrete dynamical system in its own
right. In Chapter Five we return to the ecological problem and discuss a
more realistic model.

The main insights into the behaviour of Maynard Smith's map (0.7) come
from bifurcation theory. In Chapter Two we describe the local bifurcations
of families of diffeomorphisms, starting with one-parameter familes in R
and working through Hopf bifurcation for one-parameter families in B2 to
the resonant Hopf bifurcations in two-parameter familes in the plane.

This theory is applied to our model in Chapter Three and the local
analysis of the bifurcation set is extended, in Chapter Four, with the help
of some numerical work. We also present a series of computer-drawn phase
portraits for Maynard Smith's map with a = 35, and describe a global bifurca-
tion which destroys an attracting set.

Another family of two-dimensionel maps which has received a considerable

amount of attention is the Henon map [16]:
2
G(x,y) = (y+1-bx",ax)
Now if a # O we can change coordinates so that

G(x,y) = (y,ax+b-y") " (0.8)
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which is clearly similar in form to Maynard Smith's map (0.7). In Chapter

Five we examine the three-parameter family

B (x,5) = tF(x,y) + (1-t)G(x,y) 0<%t <1

which connects (0.7) and (0.8), and we see that the map Hlé in the middle
of this family has (symmetry) properties very similar to those of a map
considered by Guckenheimer, Oster and Ipatchki [1L4].

To begin with, note that when a = O the behaviour of both the
Maynard Smith map (0.7) and the Henon map (0.8) is determined by the one-
dimensional family (0.5). Chapter One is devoted to a description of the

dynamics of such maps of the interval.



CHAPTER ONE

MAPS OF THE INTERVAL

For amap f: I+ I of an interval I < R and an initial point

x €I we are interested in the orbit of x, 0(x) = {fn(x)};_o, and its

w-limit set, w(x) = r\ U #(x). A point x € I and its orbit are
N>0 n>N

periodic, of period m, if (%) = x but £ (x)#x for O<n<m Of
particular relevance are periodic orbits which attract nearby points: a

periodic orbit is locally stable or attracting if it has a neighbourhood

of points which tend to the orbit under iteration.
Recent interest in maps of the interval stems in part from the work of
May [28], who examined several functions found in the biological literature,

notably the quadratic family \

f(x) = rx(1-x) (1.1)
and the discrete logistic relation

f(x) = x explr(1-x)] (1.2)

where the parameter 1r > O represents the growth rate of the population.
May noted that as r is increased from zero both the families (1.1) and
(1.2) have the same bifﬁrcaticn sequence. For low values of r both maps
have an attracting fixed point which becomes unstable as T increases,
throwing off a stable orbit of period two. This in turn becomes unstable
for higher values of r and gives birth to a stable orbit of period four.
As r increases further this period doubling continues: attracting
periodic orbits of period o®  become unstable and create stable orbits

of period P For sufficiently large values of r (r > 3.828 in (1.1),
r > 3.102 in (1.2)), May showed that these maps have orbits of period three

and it follows from the 'Period Three Implies Chaos' of Li and Yorke [25]
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that for these parameter values the maps have orbits of all periods.

Of course we do not pass immediately from the sequence of period
doubling bifurcations to a point of period three and a "echaotic" regime;
the transition is much more complicated. In fact Li and Yorke's result is

a special case of the following:

Theorem (Sarkovskii)

Order the natural numbers N as follows:

3

SASATA. .. .. A2.302.502.TA. . . .022.302%. 5022 T8 . .02P0. . . .02302P 0201

If f: R+ B is a continuous map which has an orbit of period n, them £

has an orbit of period m for every m € ¥ with naAm.

An account of Sarkovskii's proof of this result is contained in
Stefan [35]. It is clear from this theorem that periodic points play an
important role in determining the structure of maps of the interval, but in
general we wish to study points which display a weaker type of recurrence.
We say a point X € I wanders under a map f if there is a neighbourhood
U of x with the property that fn(U),\ U=¢ for each positive integer n.

Otherwise x is a non-wandering point and the set of all such points Q(f)

is called the non-wandering set of f. Q(f) is a closed subset of I

which contains all periodic points and g-limit points, and is invariant
under f: £(Q(f)) e alf).

Meny of the basic questions about maps of the interval, including the
structure of the non-wandering set, have been answered using the kneading
theory of Milﬁor and Thurston [30]. We will describe these results within

the class C of maps of the unit interval I = [0,1] with the following

properties:
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3 and f(0) = £(1) = 0.

(1) £: I +1 is C
(2) f has a single local maximum c. f£"(c) <0 and f is strictly
increasing on [0,c] and strictly decreasing on [ec,1].

(3) The Schwarzian derivative

Ce(x) 3 [E"(x)]°
sf(x) = S% - 3 [f'(f{)]

is negative on I \ {c}.

Much of the theory that we outline below applies to larger classes of
maps, in particular to functions which are simply continuous with a single
local maximum, but the theory is most complete, and the results are simpler
to state, withmthe class C. One of the main reasons for including the
conditionb(B) on the Schwarzian derivative is that it restricts_the number

of stable periodic orbits a map may have:

Theorem Singer {3k]

3

et f: I +1I bea C map with a finite numﬁer of critical points

and Sf(x) < O for each regular point x € I. If p lies in a stable

periodic orbit of f +then there ig a critical point of f or an endpoint

of I whose w-limit set is the orbit of p.

Thus the number of stable periodic orbits of a map with negative
Schwarzian derivative is limited by the number of critical points of the map.
For f € C if we further assume that either w(c) = {0} or £'(0) > 1 then
f has at most one stable periodic orbit.

Kneading theory encodes information about the orbit of a point in
terms of infinite sequences of symbols and then exploits the natural order
of the interval to investigate topological properties of a map. For a map

f€C and a point x € I let



0 if fx) = ¢
e (x) = +1 it (x) > ¢
-1 if fn(x) <c

-]
The sequence g(x) = (e (x)) _, 1is called the itinerary of x. It has the

property that sn(f(x)) =¢ .(x), i.e. e(f(x)) = oe(x) where ¢ is the

n+l

shift map

G((an)n=0) = (bn)n=0’ bn = )

However the mapping x b Eﬂx) does not reflect the ordering of the interval,
given the lexicographic ordering for sequences. Milnor and Thurston define

the invariant coordinate 6(x) to be the sequence (en(x))z~0 where

n
8 (x) = @I e.(x), or equivalently
n . i
i=0
0 if f(x) = ¢ for some m with 0 <m < n
en(x) “(+1 if £ is orientation preserving near x

-1 if % is orientation reversing near X.

If the sequences are ordered lexicographically then the map x#~ o(x) is
monotone decreasing and the shift invariance for g-sequences is replaced
vy ole(x)) = eo(x) 8(f(x)).
Jonker [20] recovers Sarkovskii's theorem by considering the relation-
ship between periodic orbits and the periodicity of invariant coordinates.
Besides the structure of the non-wandering set one of the main ques-.
tions about maps of the interval is to decide when two such maps have the

same topological properties. Two maps f, g of I are topologically

equivalent or conjugate if there is a homeomorphism h: I -+ I so that

hf = gh. An almost complete invariant of the topological equivalence class

of amap f € C is provided by the itinerary of the critical point ¢,
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which is called the kneading sequence y of f. Certainly if h is a

conjugacy between two maps f and g in C then it maps the orbit of the
critical point of f +to the orbit of the critical péint of g, and it does
so0 in an order-preserving way. Hence if two maps are topologically equival-
ent then they have the same kneading sequence.

The converse is not always true. If f and g have the same
kneading sequence y and do not have stable periodic orbits then it turns
out that f and g are conjugate. If they do have stable periodic orbits
then o(y) 1is periodic, of period n say, and there are three possibilities.

Y is said to be of critical type if y = 0. If vy # O then y is of

positive or negative type as the number of ~l's among YyoeeeoYy is even

or odd. The precise situation is described by the following result of

Guckenheimer [13].

Theorem (Topological Classification)

Let £ and g in C have the same kneading sequence Yy . Either

both f and g have stable periodic orbits or neither does. If £ and

g do not have stable periodic orbits then they are conjugate. If f and

g do have stable periodic orbits then o(x) is periodic, with period n

say, and there are three possibilities. If y 1is of critical type then

f is conjugate to g. If y is of positive type the stable periodic orbits

of f and g have period n and f and g are conjugate.if these orbits

are both stable from one side or both stable from both sides. If y is of

negative type then the stable orbits of f and g have period n or 2n

and f is conjugate to g if and only if these periods are the same.

To illustrate Guckenheimer's theorem we reproduce the following
figure from [13]. Figure 1 shows the bifurcation locus for the initial

period doubling sequence in a typical quadratic family fu and indicates
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which orbits have kneading sequences of the three types in the theorem.

Figure 1.1
Bifurcation locus of a one-parameter family.
a - y positive type, one sided stable orbit
B - y positive type, two sided stable orbit
¢ - y critical type
D - y negative type, period y = period of stable orbit
E - y negative type, period y = % (period of stable orbit)

Intervals D are closed on the right, intervals B and E are open.

To describe the non-wandering set of f € C we first need some

terminology from symbolic dynamics. Let X = {1,...,n} with the discrete

topology and let Zn = Xm be the set of infinite sequences

a= (ao,a ,...) of elements of X with the product topology. The

(one-sided) shift o on Zn is defined, as above, by ol(a) ='b where
= = 3 * N '

by = 8y, If A (Aij) is an nxn matrix whose entries are 0's and

1's, define the subset ZA of En by

XA={_§._€anA . =1, Vi)
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i.e. a sequence g 1is in I, if and only if each of its two-blocks

aiai+l give a2 1 when used as indices for the matrix A. ZA is a

closed g-invariant subset of Zn and o[zA is called a subshift of finite
type. If A 1is a permutation matrix then ZA is a single periodic
sequence, otherwise ZA is homeomorphic to a Cantor set. olZA is

s . . . n ©
transitive if there is a sequence a € I, whose orbit {o(a)} _, under
the shift is dense in ZA.

A closed invariant set A< Q(f) for & C° function f£: B~ R is

hyperbolic if there are numbers ¢ > O and T > 1 so that for x€ A either
l(fk)'(x)l > et™ or ](fk)'(x)l < c(%&k for all k € K.
Let Per(f) denote the set of periodic points of f.

Theorem (Decomposition of Q(f))

If f €C there is a decomposition of the non-wandering set a(f)

into a finite or countably infinite number of closed, invariant subsets,

Qj’ J=0,1,..., including a set Qw if the number of sets is infinite.
The decomposition has the following properties:
(1) a_ = {0}

(2) If the decomposition is finite, Q(f) = Qu - uips then @, N Qj =@,
if 1 #j,0<i<p, and Qp*lfﬁ Qp contains at most a finite
number of points.

(3) @, is hyperbolic for 0 < J < p.

J
Qj = PeerJ Cj’ 0 < 3 < p, where Perj is a finite subset of
Per(f), Cj is a Cantor set and £: Cj - Cj is conjugate to a

transitive subshift of finite type.
(4) The set of points {x|w(x) G‘Qp} is open and dense in I if p

is finite and residual if p = o.
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(5) If f has a stable periodic orbit then p < =

(6) If p < » there are four possibilities for @ .
(a) S& is a finite subset of Per(f) and contains at most one
non-hyperbolic orbit. There is an integer N >0 so that Qp
consists of one unstable orbit of each period N.Qi with
0 <i <n for some n, and one stable orbit of pericd N.2".
(b) 2, = Perpx) CP where Cp is an invariant Cantor set and
Fr(Perp) = Cp. A1l periodic orbits are hyperbolic but Cp is

non-hyperbolic. Per  consists of unstable periodic orbits, one

b

of period N.Ql for each i > 1, for some N > O.

(c) Qp = Perpu Cp where Perp is hyperbolic and is a finite

subset of Per(f). Cp is an invariant Cantor set which contains
exactly one non-hyperbolic periodic orbit. f: Cp -+ Cp is
conjugate to a transitive subshift of finite type.

(d) Qp consists of a finite set of unstable periodic points
together with a finite union of intervals. f:Qp - Qp is conjugate

to a pilecewise linear map.

(7) If the decomposition has infinitely many sets then Q(f) = 0(x)

o

for some x € I and Q(f) is a non-hyperbolic Cantor set.

The main parts of this theorem were proved by Jonker and Rand‘[20]
for continuous maps of the interval with a single extremum. The simplifi-
cations within the class C follow from Guckenheimer [12] and van Strien
(34, who proves the hyperbolicity statements. Jonker and Rand place more
emphasis on the connection with piecewise linear maps and include state-
ments concerning the topological entropy of the maps which we omit here.

A further property of maps of the interval is that the iterates of
nearby points may not remain close to one another. Guckenheimer uses

the following definition of this phenomenon: f has sensitive
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dependence on initial conditions.if there is a set X €I of positive

lebesgue measure and an € > O so that for each x € X and any neighbour-
hood U of x there is a point y € U and an intéger n> 0 with
a(tP(y), " (x) >e.

To decide whether or not a map f € C has sensitive dependence on
initial conditions it is necessary to consider certain special points.
Denote by x' +the unique point x' # x with f(x') = £(x). A fixed
point p of ., n> 1, is central if Df(p)> 1 and ! is a homeo-
morphism on the interval (p,c). The central point p is restrictive

if £%(c) € (p,p'), i.e. f% maps (p,p') into itself.

Theorem (Guckenheimer [13])

Suppose T € C has no.stable periodic orbit. Then £ has

sensitive dependence on initial conditions if and only if there is an

N >0 so that n >N implies " has no restrictive central point.

If f € C has a stable periodic orbit thenm f does not have

sensitive dependence on initial conditions.

The connection between sensitive dependence and the decomposition of
Q(f) is that those f with no stable periodic orbit and a decomposition
of Q(f) into a finite number of sets have sensitive dependence on initial
conditions, while if Q(f) consists of infinitely many sets then f has
neither a stable periodic orbit nor sensitive dependence on initial condi-
tions. Guckenheimer also shows how sensitive dependence is related to
topological entropy and piecewise linear maps.

There is one further aspect of the behaviour of maps of the interval
which deserves mention and this differs from the properties described
above in being)quantitative rather than qualitative. Suppose that a

differentiable map f: I » I with a single critical point ¢ has a point
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p of pericd m. If g = f* then the local stability of the periodic
orbit containing p is determined by the linear approximstion to g at

p. In a new coordinate y = x-p we have
- ! 2
gly) = yg'(p) + O(y")

and so g (y) »0 as n -+ e provided lg'(p)] <1. If r=|g'(p)| <1

then gn(y) or® and if r # O the convergence 1s geometric. Now if the

orbit of p contains the critical point ¢ then r = 0 and convergence

is faster than geometric, and such an orbit is called superstable. In the
initial period doubling sequence for a one-parameter family such as (1.1)

or (1.2) there is a sequence of parameter values ro,rl,rg,... so that

fr has a superstable orbit of period 29 and Feigenbaum [10] observed

J' .
that the limit

r -1
. n+l n
lim o = §
nre “n+2 n+l

exists and is independent of the particular family fr. 8§ depends only
on the type of the critical value and for a quadratic family § = 4.6692...
Also, as the period of an attracting periodic orbit doubles with a change
of parameter the behaviour of £ repeats itself for fgn on a smaller
scale. In the limit as n -+ « this rescaling approaches multiplication
by o1 where o = -2.5029... .

Feigenbaum's observations have been rigourously Jjustified by Collet,

l+g )
H

Eckmann and Lanford [7] for maps of the form f£(|x| for ¢ sufficiently

small, and by Campanino and Epstein [6] for c® maps.

As we mentioned in the introduction, all these results apply to
Maynard Smith's map (0.7) or the Henon map (0.8) when the parameter a = 0.
Much less is known about maps of the plane, for example if a # O in (0.7)

or (0.8). An analogue of Li and Yorke's 'Period Three Implies Chaos'
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result [25] is given by Marotto [27]. Suppose F: EB° + % is
differentiable in Br(z), the closed ball of radius r with centre

z € Bn, and that F is not one-to-one on Bn. The point =z € Rn is called
an expanding fixed point of F in Br(z) if F(z) = z and all the eigen-
values of the linearization dF(x) have modulus greater than one for each
x € Br(z). If z is an expanding fixed point of F in Br(z) for some

r > 0, then 2z is called a snap-back repellor of F if there exists a

point XQG Br(z) with x_ # 2, FanO) = z and lDFm(xo)[ # 0 for some

positive integer m. The main part of Marotto's result is the following

Theorem

If F has a snap-back repellor then there is a positive integer N

so _that for each integer n >N F has a point of period n.

Rather than search for snap-back repellors in Maynard Smith's family
to show that (0.7) has "chaotic" behaviour for certain parameter values we
will study (0.7) through the local bifurcation theory described in the

next chapter.



Chapter Two
Local Bifurcation Theory

In this chapter we describe the local bifurcations of fixed points in
two-parameter families of diffeomorphisms of the plane, and show how these
fit together to give an overall picture of the parameter space for a general
family of maps.

R P - ro.. . n

Let Diff (R ) denote the set of C -diffeomorphisms of R . Two

diffeomorphisms F, G € Diffr(Bn) are conjugate if there is a homeomorphism
k

n: B > B® with hF = Gh. If F: E- x B° + K, (u,x) ~F (x), is &

k-parameter family of elements Fue piff’ (EY) we say that uoé S is

a regular point. for the family if there is a neighbourhood U of Uy in

.Bk so that for each u € U, Fu is conjugate to Fu . If My is not a
- o]
regular point then it is a bifurcation point and the set of all such

points is called the bifurcation set of the family {Fu}. "
) u€ R
A fixed point p € B of F € Diff' (R") is hyperbolic if dF(p)

has no eigenvalues of unit modulus. If F“o has a hyperbolic fixed point
P, it follows that M is a regular point, so to study the bifurcations

of fixed points we must consider those maps F“o with a non-hyperbolic
fixed point P, In such a case we wish to describe the different topologi~
cal types of phase portrait which occur for Fu with yu near oo Without
loss of generality we may assume My = 0 and po = 0, and of course the
results we give apply to periodic points by considering the relevant

iterate of the map.

For a family Fu of elements of Diffr(Bg) with FO(O)= 0 1let us
consider the different ways in which O may be non-hyperbolic. The first
possibility is that a single real eigenvalue of dFO(O) lies on the unit
circle, in which case it is clearly +1 or -1. We may then choose

af
coordinates so that Fu(x,y) = (fu(x,y),gu(x,y)) with 5;9(0,0) = +1

-16-
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according to whether the critical eigenvalue is +1 or ~1, and

3g_ .
SEQ{O,O) # 1. This last condition means that the equation gu(x,y) =y

can be solved by the Implicit Function Theorem for a unique ol function

1

v(x,u) near x =0, u =0 with y(0,0) = 0 and gu(x,y(x,u)) yix,u).

i

The fixed points of Fu are then found by solving fu(x,y(x,u)) X,
where fu is now a family of maps in a single variable, so the problem is
reduced to a one-dimensional one. The bifurcations of one-parameter families
of maps in a single real variable are well known and we review the results
for this case in §2.1.

If the fixed point should lose stability by a complex conjugate pair
of eigenvalues passing out of the unit circle then in general an invariant
circle bifurcates from the fixed point through a Hopf bifurcation. In §2.2
we outline a proof, due to Lanford [23], of the Hopf Bifurcation Theorem
for one-parameter familes of maps of the plane. The dynamics of the map on
the bifurcated circle are rather delicate and, following Arnold [3], are
best understood in the context of two-parameter femilies. In a one-parameter
family we would not generally cross the unit circle at points where the eigen-
values A,K' of dFO(O) are roots of unity; we only expect these 'resonances'’
to occur in two-parameter families. In the:.case of weak resonance, A\ = 1,
k > 5, the Hopf Bifurcation Theorem guarantees a bifurcating circle and in
§2.3 we extend the analysis of Iooss [19] from the one-parameter to the
two~-parameter case to describe the behaviour of the map on the circle.

In §2.4 we discuss briefly the strong resonances Ak =1,
k =1,2,3 or 4, which involve some unsolved problems. These bifurcations
are studied by Arnold [3] and Takens [38], who approximate the map by
the time-one map of a vector field invariant under a rotation by 2n/k
and then investigate this vector field. Iooss [19] gives results for

one-parameter families of maps in the cases k = 3 and 4, and the
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latter case is also considered by Wan [40O] and Lemaire-Body [24].
We conclude with an indication of how these bifurcations fit together
in & femily such as the Maynard Smith map (0.7) or the Henon map (0.8).

Of course these results can also be applied to maps of Bn, or more

generally to maps of a Banach space when a fixed point loses (or gains)

stability by one or two eigenvalues crossing the unit circle. The results

for maps of BZ are also of interest for the bifurcation of a limit cycle
of a vector field intc an invariant torus and the resulting dynamics on

the torus. 1In both instances we refer to Iooss [19] for further details.

§2.1. Bifurcations in One Dimension

For a Cl ‘map f: B+ B recall that a fixed point p is asymptoti-
cally stable if l%ﬁ(p)] < 1 and unstable if [%ﬁ(p)l > 1. In a one-
parameter family F: R x B -+ B, (x,u) + Fu(x), with F(0,0) = O there are
two types of bifurcation which can occur, corresponding to the eigenvalue
A(0) = %%-(0,0) being +1 or -1, and the following propositions, due

to Guckenheimer [12], describe the behaviour of the map in each case. We

assume that F is C1 with respect to the parameter.

Proposition 2.1 (Fold Bifurcation)

et F: R x R+ R be a one-parameter family of C2 maps satisfying
2

- 3% - LR
(1) F(0,0) =0  (2) 32 (0,0) =1 (3) 2 (0,0) > 0

(&) %,% (0,0) >0

Then there are intervals (ul,O) and (0,u2) and ¢ > 0O so that
(i) If u € (ul,O) then Fu has two fixed points in (~-e,e). One
is stable and the other unstable.

(ii) If p € (O,ué) then Fu has no fixed points in (-g,e).
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Proof Let g(x,u) = F(x,u) - x, then we have

>
£(0,0) =0, -2 (0,0)=o0, 2£ (0,0) >0 ana & (0,0) > o.
X 3)(2 o

The first and last of these properties together with the Implicit Function
Theorem give a unique ¢® function u(x) for x near O with y(0) =0

and g(x,u(x)) = 0. Differentiating this equation we find

so u(x) has a maximum at x = O and the existence statements follow.
For the stability of‘the fixed points note that (3) implies that
%5-(x,u(x)) is monotone increasing at x = O, so the bottom branch in
Figure 2.1 consists of stable fixed points and the top branch of unstable

N

Figure 2.1. TFold Bifurcation

s denotes a branch of stable fixed points, u a branch of

unstable ones.

Remark. Reversing one of the inequalities (3) or (4) reverses the roles

of the intervals (ul,O) and (OﬂJg)-

Proposition 2.2. (Flip Bifurcation)

Let F: Rx B+ B De a one-parameter family of 03 maps satisfying

Con L oy AF _
(1) F(0,0) =0 (2) e (0,0) = -1
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Then there is a unique branch of fixed points x(u) for u near O

with x(0) = 0. If the eigenvalue A(u) = éz(x(u),u) satisfies

ox
dx
(3) Fm (0) >0
and also
3.2
(1) £ (0,0) <0
X

then there are intervals (ul,O) and (O,ug) and € > O so that

(1) if u € (ul,o) then Fu has one unstable fixed point and
one stable orbit of period two in (-e,e).
(ii) If un € (O,u2) then Fi has a single fixed point in (-g,€)

which is a stable fixed point of Fu'

Proof The existence of the branch of fixed points follows immediately
from the Implicit Function Theorem, and the assertions about the stability

of the fixed point come from (3). To find the periodic points let

h(x,u) = F°(x,u) - X, then
3h 3% 33

h(0,0) = 0, £2 (0,0) =0, —% (0,0) =0 and —= (0,0) < O
3x 3x2 8x3

Now factor out the fixed point by defining g(x,u) by

n(x,u) = (x-x(u))eg(x,u),
then we have

2

2(0,0) = 0, & (0,0) = 0, 38 (0,0) <0 ana & (0,0) < o.
3x ax2 du

As in the preceding proof, there is a unique C2 function u(x) for

x near O with u(0) =0 and g(x,u(x)) = 0. Again, %% (0) = 0 and

2
é—% (0) < 0 so u(x) has a maximum at x = O and the statements on the
dx
existence of the period two points follow. For the stability of the
2.2
periodic points note that g_g, (0,0) = 0 and together with (L) this implies

dx
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that %§-(x,u(x)) has a maximum at x = O.
4\1—

ot Xu)

\};Y

Figure 2.2. Flip Bifurcation.

u(x) represents a branch of period two points, x(p) a branch

of fixed points.

Remarks 1. Changing the inequality (3) reverses the stability of the
fixed point, while changing (4) reverses the stability of the period
two points. Changing either (3) or (L) reverses the interval in

which the period two points lie.

2, In Proposition 2.2 note that

3,2 3 2

3

T (0,0) = -2 2£ (0,0) - 3¢3E(0,0))®
ax ox 3x

and recall from Chapter One that the Schwarzian derivative of F at x is

sr(x) = Tl 3 (—--(a‘”""("H2
F'(x 2 ‘F'(x)
3F 3F i
where TF' denotes - . Thus, since <= (0,0) = -1, == (0,0) = 2SF (0)
3x ax ax3

and the sign of the Schwarzian derivative of Fu restricts the type
of flip bifurcation which can occur for Fu. In particular, for a
family of maps with negative Schwarzian derivative a flip bifurcation
necessarily involves a stable orbit of period two and the 'suberitical'

bifurcation shown in figure 2.3 cannot occur. In this example an
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unstable orbit of period two coalesces with a stable fixed point
at u = 0 to leave an unstable fixed point. This remark is the

basis for the paper of Allwright [1].

A x
u Fixed Points
Fbﬁad‘ﬁbo./;ﬁ
Points uw
A
s
wu

Figure 2.3. Subcritical Flip.

In many applications the class of maps to be considered is likely to be
restricted in some way and different bifurcations from those described
above may occur. Perhaps the most common restriction is that the origin
should be fixed for all values of the parameter and in this case rather

than the fold for A(0) =1 we have a transcritical bifurcation as

described by the following proposition.

Proposition 2.3.

Let F: B x B~ R be a one-parameter family of C2 maps satisfying

(1) F(o,u) =0

(2) %E-(o,u) = x(u), A(0) =1 and %%-(O) > 0
2

(3) 3——% (0,0) > 0.
oxX

Then F has a unique bifurcated branch of fixed points x(u) for u near
0 with x(0) = 0 and x(u) # 0 if u # O. The origin is stable if
u < O and unstable if u > O while the fixed points on the bifurcated

pranch have the opposite stability.



23—

Proof. The Taylor expansion of F11 at x = 0 dimplies that
F(x,u) = alu)x + xh(x,u) where h(0,u) = 0 and therefore %%-(o,o) = 0.

Differentiating F we have

%—i- (x,u) = () + x %ﬁj (x,u) + hi(x,u)

2
3—-—122 (x,u) = x 9___2}_ (x,u) + 2 %P* (x,u)
X
ax 90X
and
82F dA 32h oh
IZ —— o+ e ——
Y (X,U) du (U) X 0% (xau) au (Xau)
Therefore
2
b _13F
™ (Q,o) =3 ax2 (0,0) > 0
and
2
9 F = dr
Sox (0,0) = ™ (0) = 0.

The non-zero fixed points of F occur at the zeros of

g(x,u) = A(p)-1 + h(x,u). Here we find

O

g(0,0) =

g ah
3% (an) 9% (an) > 0

and

i

8 ax '
3 (0,0) a (0) > 0

so by the Implicit Function Theorem we may solve g(x,u) = 0 for either
x (p) or u(x), and these functions are mutual inverses. Thus the
branch of bifurcating fixed points exists on both sides of y = 0 and

crosses x = O transversely. For the stability, differentiating

g(x(u),u) = O we have
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90

L}

S °g
-£ (0,0)/ 3% (0,0)

2
= - RoypdE
= - 5015 (0,0)

X
and so
2 2

9 (oF 3 F dx 3 F
= [==(x(u),u)] = &= (0,0) + = (0) + == (0,0)
3y T9x =0 @xe du 9xoyu

_ dx

--2 (0

Hence the non-zero fixed point has the opposite stability to the origin

for u near O.
A*

8

P .

Y

Figure 2.4. Transceritical Bifurcation.

Notice that this is the bifurcation which occurs in the family
fu(x) = px(1-x) at u = 1.

A second possibility is that the map should be restricted by a
symmetry such as F(-x,n) = -F(x,u), i.e. F 1is an odd function of x.
Tn this case we necessarily have a trivial fixed point, F(O,u) = 0, but
the previous proposition does not apply since we also have éfg-(o,o) = 0.

9x

Tnstead we have a Pitchfork bifurcation as described in the following

result.
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Proposition 2.4.

Let F: R x B+ R be a one-parameter family of C3 maps satisfying

(l) F(-X:U) = ”F(XQU)

(2) %g-(o,u) = aln), A(0) =1 and %ﬁ-(o) >0

3
(3) a-%-(o,o) < 0.

3%

Then there are intervals (“1’0) and (O,u2) and ¢ > O so that

(1) if € (pl,O) then Fu has a single stable fixed point, at
the origin, in (-g,e).

(ii) If u € (o,ug) then Fu has three fixed points in (-g,e). The
ofigin is an unstable fixed point while the other two fixed points

are stable.

Proof. As in Proposition 2.3 put F(x,y) = a(p)x + xh(x,y), where

h(0,y) = 0, gg-(o,o) = 0; but now h is even, i.e. h(-x,y) = hix,y)
H 2
This implies that %2-(0,0) = 0 and therefore &% (0,0) = 2 %2-(0,0) = 0.
‘ o

The non-zero fixed points of F occur at the zeros of

glx,1) = Alu)x + xh(x,u)
and here

. - & =4 28 _ ah -
g(0,0) = 0 - (0,0) 2 (0) > 0 and v (0,0) §;<o) 0

Therefore we may solve g(x,u) = O for a unique y(x) for x near O

with
- du - . 28 98 =
u(o) - Oa ax (O) - 3% (8,0)/3ux(030) 0
and
a° 2 : 1 5% a
=2 (0) = - ££ (0,0)/ 2 (0,0) = - T 25 (0,00/22 (0) > 0
dx 5% u 3% H

Here y(x) has a minimum at x = O and the existence statements follow.
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2 3
For the stability note that —3——% (0,0) = 0 and 3——? (0,0) < 0 imply
; ax x
that SE'F(X’H(X)) has a maximum at x = O.
2>
5
= L -
;;L
5

Figure 2.5. Pitchfork Bifurcation.

2.2. Hopf Bifurcation.

We now turn to maps of the plane, Fu: Rz + Rz, depending on a single

real parameter pu . As usual we say that a hyperbolic fixed point p of
Fu is a sink, saddle or source according to whether dFu(P) has both

eigenvalues strictly inside the unit circle in the cdmplex plane, two real

eigenvalues X ,i,, with |a,] <1 < [x,]s or both eigenvalues with modulus
strictly greater than one. If a single real eigenvalue crosses threough

+1 as the parameter is changed then, as indicated in the introduction to
this chapter, we can reduce the problem to a family of maps in R and
apply the results of the previous section. The possibility of most inter-
est here however is that Fo has a fixed point at the origin and dFo(O)
has a complex conjugate pair of eigenvalues on the unit circie. Fu must
then have a fixed point for u near O, which we may assume to lie at

the origin, and if the eigenvalues pass out of the unit circle as
passes through O then the origin changes from a sink to a source. The
following theorem shows that, under certain conditions, an invariant circle
pifurcates from the origin. For simplicity of exposition we assume F

u
is smooth (i.e. Cm) and depends smoothly on the parameter.
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Theorem 2.5. (Hopf Bifurcation Theorem)

Let FU be a one-parameter family of maps of Bg satisfying
(a) Fu(O) = 0 for p near O

(b) dFu(O) has two non-real eigenvalues A(u),A(p) for yp near

0 with [x(0)] =1

alalu).
(c) _JE;P—LI > 0
=0

and (d) A = A(0) is not an m-th root of unity for m = 1,2,3 or L,

Then there is a smooth p-dependent change of coordinates bringing Fu

into the form

= 5 2
Fp(x) = Gu(X) +0(|x]7) X€ER

and there are smooth functions a, b and 6 so that in polar coordinates
3 2
Gu(r’¢) = (|atw)|r - alw)r”, o+ olu) + vlu)r’).

Moreoever, for all sufficiently small positive (negative) u Fu has an
attracting (repelling) invariant circle if a(0) > O (a(0) < 0); and
a(0) 1is given by the following formula:-

In complex notation we can write

F (z2) = Az + z Z £ 2Pz + o(|z|u)
© £=2,3 p+tg=L L
and then
.—2
-2 1 2 2 —
a(0) = Te [%J:%L E11800) * 5lEa 1" * [8gpl” - Belagy) (2.1

The bifurcation is said to be supercritical if the circle exists for

u > O and subcritical if it exists for u x O. The two possibilities
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are illustrated below, where the orbits of the map would be sequences

of points lying on the curves shown

Af; A%ﬁ;

3

Y /1N
VAL~ >
/

(a) Supercritical . (b) Suberitical

Figure 2.6. Hopf Bifurcation

The theorem was originally proved independently by Sacker [33] and
by Ruelle and Takens [32]. Below we sketch a proof due to Lanford [23]
who also includes the condition AS # 1. A modification to deal with
this case may be found in Iooss [19] who gives more precise details of
the differentiability conditions required and the regularity of the
bifurcating circles. The formula for a(0) is computed by Iooss 119]

and by Wan [39].

Sketech of Proof

Since the eigenvalues cross the unit circle with non-zero speed

(condition (c¢)), we may reparameterize so that the eigenvalues of

+i6 (p)

dFu(O) are (l+u)e and then we make a smooth p-dependent

coordinate change so that

‘ @j - NC>) / po

/ﬂ(O
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cosf{u) -sing(yu)

dFu(m = (1+u)
' sind(u) cose(n)

In complex notation we then have a map of the form
Fu(z)'= Au)z + R(z,z,u) z €L

where R contains the non-linear terms, and we use the following lemma

to bring Fu into the appropriate canonical form.

Lemma 2.6. If An #1, n=1,2,3 or L, then there is a smooth

u~dependent change of coordinates bringing Fu into the form

F (z) = Aulz + a(n)z%z + Bz + O(lZlS)

Furthermore, if AS # 1 we can make g{u) = O.

Proof Write R(z,z,u) = Z Z q(u)zpzq + O(‘zls) where the

gP

2=2,3,4 p+q=2
gpq are smooth for u near O. The idea of the proof is to remove
as many of the non-linear terms in R as possible, starting with the

quadratic terms and dealing successively with terms of higher order. For

the quadratic terms, define
w = z+y(z) (2.2)
where <Yy 1is a homogeneous function of degree 2 in z and Z:

_ o]
v(z) p+§=2 qu(u)z z

Inverting (2.2) we have

z =w-vy(w) + O(‘WlS) (2.3)
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and in the w coordinates the map becomes

F(w) = F(z) + y(F(z))

where, by (2.3),

F(z) = ow - ay(n) + ] g T+ o(fw])

ptq=2
and
y(F(2)) = yOu) + o([w]>)
Therefore

o 2 2 - = - =2
F(w) = v + (Ep0m Epg™A Yp)V * (Epy=dygg kg )i + (Egomdygo*a Yoo ¥ -

Since A # 1 and AB # 1 we can remove all the quadratic terms by

choosing

Epp(n)

E00 (W) £11 (W) )
A (-3 ()

VN CTO -
A(u)~l2(u) 1 Alp) (2-2(w))

Yoo(w)

Yoolu) =
In general, if we make a coordinate change of the form (2.2) with y
homogeneous of degree £ 1in 2z and ;; and if gpq(p) is the

coefficient of wrw: in F( w), then

gpq(u) = gpq(u) - (A(u)-kp(u) ‘)\_(u)q)ypq

~

Thus we can choose qu to make qu vanish except in the cases when

—q-1
W =1, pg = 4.

Therefore if xn #1 for n=1,2,3,4 or 5 the only term which cannot
5

be removed is that in ZQE; while if A~ = 1 we cannot remove the term
in Eh. If we carry through all the coordinate changes then a long

calculation shows that
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2

2
(22-1) 1801 | . 2| Egp |

£116 - - —
11720 A(1-2) 43 2 3

a(0) = (2.4)

ey

Having obtained a suitable normal form the the map the next step is to

change to polar coordinates. Let 2z = rel¢, F (z) = Relé, then

(1+u)r + a3(u)r3 + ah(u,cp)ru + O(rs)

d
]

(2.5)

o + o(u) + bg(u)r2 + b3(u,¢)r3 + O(ru)

©n
i

where

ie(u)]

- acu
a3(u) = Relal(nle b2(u) = Im[;%;%]

2y (u,9) = Re[B(u)e_ieé“)_5i¢] bo(us¢) = Im[%%ﬁ%-e'5i¢]

Let alu) = —a3(u) and assume a(0) # 0. Then a(0) = -Rela(0)A] may
be found from (2.4) and has the value given in the statement of the

theorem. Fo now takes the form

R = r(1 - a(0)r) + o(r™)

s+ 6(0) + 0(r)

k=4
It

so when u = O the origin is asymptotically stable if a(0) > O and
unstable if a(0) < O.
We illustrate the rest of the proof for the supercritical case
a(0) > 0. For a(0) < O the proof proceeds in a similar manner.
First suppose that AS # 1, then by lemma 2.6 we can make the

coefficients 8, and b3 vanish and the map is

(1+u)r - a(u)r3 + 0(z”)

>v}
1

*

L4
It

¢ + olp) + bg(u)rz + O(r
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Ignoring the terms O(rs) in the r coordinate and O(rh) in ¢
H

gives a truncated map which has an invariant circle of radius ry = aly)
u

for small positive n. Since the full map is only a small perturbation of
the truncated map we look for an invariant circle for the full map close
to the circle of radius ry which is invariant for the trumcation.
We make the following sequence of coordinate changes:

(1) Rescale so the invariant circle for the truncated map has
unit radius:

AN
U

(2) “ranslate the line r =1 in the (r, ¢)-plane to the ¢ —axis:

r v r-l

and (3) Rescale once more:

I‘l—f"‘l—r
u

The effect of all this is to introduce a new coordinate

()~ﬁ£l-r -1) (2.6)

and in the (x,¢)-plane the map takes the form

1
x ==
Yu

(1-2u)x + u3/2

>4
i

Xl(x>¢su)

(2.7)

©
|

=¢ + 8, (n) +u

where X1 and ¢, are smooth in x,4 and p for \x! <1, € [0,2n]

and p small.

For each small, positive u we look for an invariant manifold of

the form M = {x = u(¢)} where
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(i) wu(¢) is periodic in ¢ with period 2m,
(11) ¥ ¢, |u(e)] <1,

and(iii) u(¢) is Lipschitz continuous with Lipschitz constant 1

icer |ule)) = uley)] < o0,
Let U denote the set of all functions u: R+ B satisfying (i) - (iii).
Then U is a complete metric space with metric

d( s ) = ( )- ( )
1727 " etonen] o fe)-syle)

The main steps in the proof are now to start with a manifold
M={x = u(¢)} with u€ U and to show that the new manifold Fu(M)
obtained by acting on M by Fu also has the form {x = TU(¢)} with
3 € U. The non-linear mapping f: U+ U constructed in this way is
then shown to be a contraction for small u > O. The Contracting Mapping
Principle now guarantees a unique fixed point u¥*¥ of f and
{x = u¥(¢)} 1is the required invariant circle. We also have that the
circle is attracting, in the sense that if |x| <1 and (x_,6 ) denotes
F(x,6) then

iiﬁ (x - u*(¢ )) = o0.

In the case when AS = 1, defining x by (2.6) transforms (2.5) to

X = (1-2u)x + uf(¢) + uB/QXi(x,¢,u)
= ¢+ g§'+ Ap + u3/2 o (x,6,u)
where A = =0y and f(¢) = ————=— has period -— in ¢. We now
a3 0 a3(0)3/2 5

look for a change of coordinates so the map takes the form (2.7). Let
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x = x+g(¢) with g(¢ +~%§) = g(¢); then X = X + g(o) satisfies

21

2r 3/2 3/2
- ) 177

X = (1-21)[x-g(9)] + w£(s) + g(s + EL + ay + o(|u>/2)) + o |u

Thus we have
X = (1-2p)x + Of (u[3/2)

provided

A %—%(cp) + 2g(¢) + £(¢) = 0.

So we choose a smooth g(¢) of period gﬂ'which solves this linear

p)

differential equation and continue from (2.7) as before.

Remarks 1. The region |x| < 1 corresponds to an annulus of width
O(n) about the circle of radius ry for the truncated map. It is
not difficult to show that the basin of attraction of the invariant
circle is larger than this annulus and in particular it contains
all points inside the circle, except the fixed point. See Iooss

[19] for the details.

2. The proof sketched above uses the fact that Fu is Ck, k > 5,
and asserts that the invariant circle is Lipschitz continuous. By
assuming more differentiability of F we can obtain a smoother

circle. For details see Iooss [19] or Lanford [23].

3. The essential point in the proof is that when the full map is
considered as a perturbation of its truncation then the perturbation
must tend to zero faster than p as y -+ 0. i.e. in the uS/EXi(x,¢,u)
term which appears in the x-coordinate, and in the similar term in ¢ ,
the crucial fact is that the power of p which appears is larger than

one.
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Dynamics on the Invariant Circle

Having obtained a (locally) attracting invariant circle the next task
is to understand the behaviour of the map restricted to the circle. There
are essentially only two possibilities for the non-wandering set Q(F), and
to distinguish between the two we need the concept of the rotation number
p of F, an idea which dates back to Poincaré. We describe briefly the
definition and properties of p; a detailed account may be found in Nitecki
[31].

A homeomorphism F: Sl - Sl lifts to a map F: R +R via the
i t)-t
. n

projection exp: R -+ Sl.. The 1limit p(F) = 1lim exists, is

t -+ 62'"'11:. . N
independent of the choice of F and t, and is called the Rotation Number

of F. p(F) is a continuous function of F in the Co—topology and has
the following basic properties:
(a) If p(F)€ @, p(F) = p/q say, then F has a periodic orbit of
period q.
(b) If p(F)€ E\Q then F has no periodic orbit.

If we assume that F 1is Cl and its derivative dF has bounded variation

then a result of Denjoy states that if p(F)€ E\Q then F is topologi~-
cally conjugate to rotation by p(F). i.e. there is a homeomorphism

h: sl->sl with F = nt

Rph, where Rp:e -+ 0+p (mod 1). For further
results on conjugating F with an irrational rotation see Herman [18].
So assuming F is sufficiently smooth, the two possibilities are
either
(i) p(F) is irrational, in which case F 1is conjugate to an
irrational rotation and Q(F) = st with the orbit of each point

dense in the circle,

or
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(ii) p(F) is rational, and Q(F) contains a periodic orbit.
From the generic point of view the following theorem shows that it is this

latter case which occurs.

Theorem (Peixoto)

An open, dense subset of Diffr(Sl), r > 1, consists of diffeomorphisms

with the following properties

(i) The non-wandering set Q(F) is finite,

(ii) All periodic points of F are hyperbolic.

Any diffeomorphism satisfying (i) and (ii) is structurally stable.
For the proof see Nitecki [31].

Thus the structurally stable diffeomorphisms of the circle are those
with rational rotation number and Q(F) consists of a finite number of
periodic orbits, all of the same period, with sinks and sources alternating
around the circle. However, in our application above we have a one-parameter
family of diffeomorphisms Fu and Hermasn [17] has shown that in such a
family with u € [a,b] say, then provided p(Fa) # p(Fb) the set of
parameter values u with Fu conjugate to an irrational rotation has
positive Lebesgue measure. So if we pick a value of p at random and
examine the dynamics of Fu on the bifurcating circle then generically we
expect to see periodic orbits on the circle, but from a measure theoretic
point of view we may easily have chosen a yu with Fu conjugate to an
irrational rotation and see an orbit of Fu which is dense in the circle.
Clearly this makes it very difficult indeed to predict which type of behawv-
jour will occur--regardless of any problems we may have in identifying
periodic orbits with very large periods. A clearer picture of what

happens after the Hopf bifurcation emerges when we study the behaviour

of two-parameter families in the next section.



§2.3. Weak Resonance

To understand the dynamics of & family of maps after the Hopf bifurca-
tion requires a closer study of those cases where the eigenvalues cross the

unit circle at roots of unity: A = egﬂlp/q

, with p/q 1in lowest terms.
These cases fall into two types. The pair (p,q) is said to be a strong

resonance if q = 1,2,3 or L4, otherwise it is a weak resonance. We deal

here with the latter case; the strong resonances involve some unsolved
problems and are discussed in the next section.

Now for a one-parameter family FS:(RE,O) > (BQ,O) whose linearization
at the origin dFe(O) has a complex~conjugate pair of eigenvalues
A(e),XTZT crossing the unit circle transversely when € = 0, an orbit of
period g can bifurcate from O only if A(0) is a g-th root of unity.
But Brunovsky [5] has shown that, generically, the eigenvalues of a one-
parameter family do not cross the unit circle at roots of unity. So from
the generic point of view periodic points never bifurcate from a fixed point
of & one-parameter family of maps of R2 through Hopf bifurcation. How-
ever, this is rather misleading since, as we shall see below, in general
an infinite number of periodic orbits are created and destroyed on the
invariant circle soon after the Hopf bifurcation.

Consider a smooth two-parameter family “F(u’v):ifz,O) > (32,0) where
the eigenvalues of dF(u,v)(o) are A(u, Q,i?;:;j. and 2(0,0) is a g-th

root of unity. Both Arnold |3] and Takens [38]approximaste the map by

N

where N is arbitrarily large and g(u v) is the time~one map of a vector
2

field invariant under rotations by 2n/q. For the case of weak resonance,

q > 5, the bifurcation diagram for this vector field is shown in Figure 2.7,

and since each corresponding phase portrait for the time-one map g(u v)
3
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is structurally stable these phase portraits will persist for the map

F(u,v)'

»<

@ /B

Figure 2.7. Weak Resonance.

We will prove that this is the bifurcation diagram for F(u v)‘-up to
bl

a change of parameters and with the obvious changes from a continuous flow

to a discrete one - by adapting the analysis of Iooss [19] from the one-

parameter to the two-parameter case.

Theorem 2.7. (Weak Resonance)

Let F(u v) be a smooth, two-parameter family of maps of Rz such that
>

for all (u,v) in some neighbourhood U of O in B

and

(a) )(O) =0

F
(UsV

() ar (0) has a pair of complex conjugate eigenvalues
(u,u)

2 .
=R, with.p/q

A(u,v) and A(u,v) with [r(0,0)] =1 and Arg A(0,0)
in lowest terms and q > 5,

(c) The map (u,v) & A(u,v) is non-singular at p = v

]
o
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Then there is a smooth, parameter-dependent change of coordinates bringing

F into the form
(115\))

[%2)
Py gy(®) = Ausvz + ?E’ Gpag? 2 £ 8La)ZT 4 0(]2]) (2.8)

m=1
or - in polar coordinates, z = re*?, G(u v)(z) = Relo,
2
9-2
[ 5 ]
2m+l |~ -1 q
R =|A(u,v)|r + mzl 32m+l(u,v)r + aq_l(u,v,¢)rq + 0(r*)
(2.9)
[£2
C > g~2 g-1
_ ~240
o = ¢ + Arg Au,v) + ] Pom (v )r2® ¥ bq_Q(u,v,¢)r +0(r*")

m=1

Here [S%g] denotes the integer part of g%g , the a's and b's a's and B are
smooth functions of y and v for (u,v) near (0,0), and ;qﬁl and Eq.g

both have the form
A(u,v)cos(qe) + Blu,v) sin(qe) (2.10)

For all sufficiently small (u,v) with |[Alu,v)]| > 1 (|alu,v)| < 1) the

map F( has an attracting (repelling) invariant circle if

HsV

)
33(0,0)< 0 (a,(0,0) > 0).

%3
Moreover, if 8 = 8(0,0) # O and b, = b2(0,0) # O then the map has
two orbits of period q on the circle, one stable and the other unstable,

for values of u,v lying within a narrow "tongue" in the parameter plane

whose boundaries

-2
o Gz=
- aq g=2
2
a

3
have a common tangent at y = v = 0.

Proof The normal form (2.8) follows from the proof of lemma 2.6.
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and in polar coordinates this gives (2.9), where

rd3(uyv)

b = Im -
Q(p,v) L‘;Y;j;TJ

a3(“5V) = Re[as(u,v) e‘iArgA(uav)]’

(2.11)

“ - -igq¢=-iArgi(u,v) ~ - Blu,v) ~iqo
aq_l(p:Vs¢) Re[B(UaV)e ]3 bq_2(U9V9¢) Im[k(u,v) e ]
We now reparameterize, defining ﬁ,ﬁ by

. . 2
po=Alu,v)| -1, v = Argaly,v) - “§R

The map (u,v) » (u,v) is a diffeomorphism from a neighbourhood of the
origin in the (u,v)-plane to a neighbourhood of the origin in the (y,v)-
plane by (c). Omitting the tilde on the new parameters, the full map in

polar coordinates becomes

(u,v)r2m+l + & (H,V,¢)rq“l + o(r%)

(1+u)r + a1

>+
n

Bom+l

a-2 O(rq—l)

2 om ~
o= ¢+ _52 + v+ I b2m(u,v)r + bq_e(u,v,¢)r

b and ﬁ _ are of course different

Bom+1? “om? Fg-1 q-2

to those in (2.9), but their values atp = v = 0 remain unaltered.

where the functions

We now proceed as in the proof of Theorem 2.5, restricting attention
to the supercritical case a3(O,O) < 0. Truncating the map at terms of
order q-1 in the r coordinate and looking for a fixed point R =r

leads to

2m
u + I a2m+lr = 0

which has a unique positive solution ro(u,v) near ¥ =v = 0 for
u > 0 with

-1

2 _ 2
ro(p,\)) = g;m +0(m7).
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Returning to the full map, define a new coordinate x by

a-4
r= ro(u,v)(l +u 2 x).
so0 the map becomes
X = (1-2u)x + uf(u,v,¢) + 0(u3/2)
(&2, - -2 g-1
2p g - R AR A - 2
® = ¢+ q vt Z bm(u,v)u + 2 (1) x + 5 | ¥ +0(u )
n=1 3 =
a (Uﬂ)) 2
3
where .
. . a__,(u,v,9) A bg(u,\))
U9\’9¢ - _2 an l - 8.32“,\)5 .
a3(u,v)
Next we make a coordinate change similar to that for the case x5 = 1 in
Y

the proof of Theorem 2.5. Let x:= glu,v,¢) + u x, where 0 <y < %- and

g(u,v,9) = O(lull/g) has the form (2.9) and satisfies the differential equation

Qg(ua\)a(t’)' + 'i:' (V + Z%m(u,v)un) 'g'%' (ua\)>¢) = f(UaVaq))'

Now
X = (1-2p)x + O(uB/Q'Y)
5 (2.12)
g-= a
N a +y-1
= ¢ + ‘2'32 + v+ anun + blu,v,d)u 2 4 O(u2 )
where
. B (uvs)
b(l—b":‘b) = _g-—_Q________
a-2
a,(u,v) 2
3 5

has the form (2.10). The proof of Theorem 2.5 now applies since 3/2 -y >1,
(see remark 3 above), and the statements on the existence of the invariant

circle follow immediately.
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Now consider the map on the invariant circle given by the second
equation in (2.1 ), which we write as

= 2™
)(¢) ¢ + q + f

F
(usv

8+ 8T g () moczn)

HsV

For fixed u and v, f(u,v)(¢) takes the form A + Bcosq¢ + Csings and

the equation f(u,v)(¢> = 0 has two solutions ¢§,¢Z with

o] o 0 2 .
0 R ?l +~g < ?f- provided
-2
2
A n »
[v + zbnu | < sup blu,vodlu .

9€[0,27]

This defines the region of the parameter plane whose boundaries are
given in the statement of the theorem.

It now follows from the Implicit Function Theorem that the equation

a - . 2n
F(u,v)(¢)-¢ (mod 27) with O < ¢ < 1

has two solutions ¢l(u,v) and ¢2(u,v) which depend smoothly on

u,v within the cusped region and also

o, (w,v) = ¢z +o(n') i=1,2

The two families of periodic points are then F?u v)(¢i(u’V))’
*
n=0,1,...,9-1; i = 1,2.

> then the map

If the original family of maps were only C
restricted to the invariant circle is Lipshitz continuous and the
existence of the periodic points follows from a suitable version of

the Contraction Mapping Theorem, for example, see Dieudonné [9], p. 260.
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For the stability of the periodic points note that

F'(u’v)((bi(ua\))) = ] + {)'(p,\),q)g) + O(UQ/EW—.’L)

and since %'(p,v,¢i) = —g'(p,v,¢g) the two families of periodic points
have opposite stabilities, and the proof is complete.

Returning to the one-parameter family Fe’ we may embed it in a two-
parameter family by considering the real and imaginary parts of the eigen~
value A(e) as parameters. Now the eigenvalue A(e) corresponds to a path
in the (Re)x, Im))-plane which in general, as noted by Arnold, will inter-
sect an infinite number of these resonance tongues close to the unit circle,
as shown in figure 2.8. Thus we can expect to see many periodic orbits,
most with very large periods, on the  invariant circle soon after the Hopf
bifurcation, but the result of Herman implies that the set of parameter

values not belonging to any of these tongues has positive lebesgue measure.

A ImA

Ace)

Re?

Figure 2.8. (After Arnol'd)

2.4 Strong Resonance

The strong resonances, \ = egﬁip/q, q=1, 2, 3 and 4, vhich are
excluded in the Hopf Bifurcation Theorem 2.5, exhibit rather different
behaviour. For q = 1 and 2 the bifurcation diagrams for the associated
vector fields are again given by Arnol'd [2], [3] and Takens [38].

However these diagrams include a codimension one global bifurcation
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involving a saddle loop. That is, along a curve in the parameter plane
the vector field has an equilibrium point, a saddle, and the vector field
has a trajectory which is asymptotic to the saddle both as t + o and
as t » -=. The analogue of this situation for a diffeomorphism can be
perturbed so that the stable and unstable manifolds of the saddle intersect
transversely, giving homoclinic points and horseshoes (Smale [35]), but the
details of how this structure arises in the families of interest here are
not known.

For q = 3 the bifurcation diagram for the vector field is shown in

Figure 2.9.

‘ In the map the saddie
‘!I|.ib connections break to give

o homeocdlinic +¢m3‘e.

Figure 2.9. Strong Resonance: q = 3.

When viewed as the bifurcation diagram for the time-one map
the saddle connections which occur can be broken by & small perturbstion
as shown in the figure, though the saddle points persist as a period three

orbit for the map. In fact for a one-parameter family passing through a
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strong resonance with q = 3 Lemma 2.6 shows that the normal form is

Fo(z) = a(u)z + a(u)z7 + 8(n)22 + O(]z]h), A(0) = 2Ti/3

and Iooss [19] proves that if gl%%EJUEi)# 0 and B(0) # 0 then a

period three orbit of saddles bifurcates from the origin on both sides

of uy = 0.

The results for the case q = 4 are even less complete., For a

one-parameter family the normal form is

R (2) = Az + a(1)2°7 + Blu)z> +0(]z]°)

1 dp

and if we assume o 3}5 )‘L >0 and let ), = & l;[ the following
=0 p=Q

theorem holds.

. Then no orbit of

Theorem 2.8. (l) Suppose that ‘Im d(O)! > ‘B(O)I

A Ay

period four bifurcates from the origin. If Re(ia(0)) > 0 (< O)

then an attracting (repelling) . invariant circle bifurcates from the

origin for u > 0 (< 0).

B;O)} then two families of fixed points of r
L

.

bifurcate from the origin. If |a(0)] > |8(0)| the two families

bifurcate on the same side of yu = 0 and at least one of the families

is unstable, while if |a(0)| < |8(0)| the two families bifurcate on

opposite sides of u = O and both are unstable.

The statements concerning the periodic points are due to Iooss [19]
and the existence of the invariant circle in (1) is proved by Wan [40].
In (2), conditions ensuring the bifurcation of a circle along with the
periodic points are unknown.

For a two-parsmeter family two possibilities for the bifurcation

diagram are: (i) the same as in the case of weak resonance, but with
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periodic orbits on the circle inside a sector in the parameter plane
rather than a cusp, or (ii) the same as figure 2.9, but with an orbit of
period four rather than three. A further possibility is given by Arnol'd
[3]. We will investigate the first possibility.

Consider the family

.-8

F )(z) = 1(1+)e ™z + alu,v)zoz + BGi,vIT + O([z[S)

\TIRY

obtained from the normal form by reparsmeterizing. In polar coordinates

z = rel¢, F(z) = Relé,

(1+u)r + ReAr3 + OLrs)

j2s}
[t}

o= ¢ + g-+ v + ImAr® + O(rh)

. iv ) iv =hi
~ia(p,v)e” - ig(u,v)e ‘e ¢

where A

- -1[0(0,0) + B(0,00e™ %7 + o([u|+|v]).

]

Thus if we let «(0,0) = a+ib, g(0,0) = c+id, the map is

R = (L+u)r + £(0)r° + 0(x” + (Jul+|v])r)
o =6+ 2+ v =glelr® + ol + (ul+lv])r®)
with £(¢) = b + dcoslh¢-csinke
g(¢) = a + ccoshé + dsinb¢.

Restricting attention ta the supercritical case (b < 0) we look for
a fixed point in the r-coordinate of the truncated map obtained by dropping
the higher order terms. This time, however, the truncation still inyolves

¢ in the r-coordinate, so we try a solution of the form r = /ﬁ}O(¢)
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where T, has period %- in ¢. This gives

r (8) = (ru)r (o) + ue(e)ro(s)

and expanding ro(Q) we find

r () = x (o + T+ v ~g(e)r” + 0(-))

ar
r (¢)+[v—ug(¢)r (¢)] —2 (¢) + 0(-)

where terms of O(+) have already been discarded. Hence the solution of

the truncated equation must satisfy the differential equation

Sr

uf(¢)r (¢) + WT (¢) - [v—ug(¢)r (¢)] S (¢) = oO. (2.1k)

Let p = /ﬂio, then
wo(8) + £(6)p(6) - [v-g(9)o"(4)] 22 2 (4) =

or equivalently,

o + £(p)p°

©
H

v—g(¢)p2

D
Il

if we assume that the map ¢ H'v—g(¢)p2(¢) is never zero. In complex

. i .
notation =z = pe ¢, this becames

z = gz + 0222§.+ 03;3 (2.1%)

where e = pt+iv, o, = b-ia, and o, = d-ic. Now (2.15) is the vector field
invariant under the action z & iz given by Arnol'd and is also studied
by Wan [4O]. In fact using Wan's methods we can show that the vector

field (2.15) has a periodic orbit whem u > O provided
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(au+bv)2 > (02+d2)(u2+v2) (2.16)

The idea is that the vector field has no non-zero equilibria when (2.16) is

satisfied, and the function E = ReH where

I

Z

£ = o2 72 9%
ol 73 2

satisfies E > O on C€\{0} and %%-< O on some set {z|E(z) > e} with
e > 0. Then, since the origin is a source when u > O, the vector field
has an invariant annulus which contains no equilibria and by the Poincaré-
Bendixson Theorem there is a closed orbit in this annulus.

Given this solution of the truncated equation we change coordinates,

putting

r = /'Jro(¢)(l + Ypx)
and in the (x,¢)-plane the map takes the form

(1+uF(e))x + o([u]¥2 + [u|M3o] + 917

b
i

(2.17)

AR —ug(¢)ri(¢) + 0(lvl3/2 +ulivD

L=
1t

The coordinate changes given by Lemaire-Body [24] then put the map into a
form for which Lanford's proof of Theorem 2.5 works, and the map has an
attracting invariant circle for small, positive p. However, the agsumption

that the map
2
b= v -ug(¢)ro(¢)

is never zero excludes the sector

|v| < wsup g(¢)r§(¢)
$€[0,T]
2
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which, from the form of (2.17), is precisely where we expect the map
on the circle to have periodic orbits.

In the next chapter we apply Theorem 2.8 to the Maynard-Smith family
so we need the coefficients a(0) and B(0) in the normal form in terms
of the coefficients of the original map

n
F(z) = z + ) T oe 2Pz% + o(]z)7).
2=23 p+q=g P4
Now o(0) is given by (2.1), and carrying through the coordinate changes

in Lemma 2.6 gives

_ 2 2 x
800) = Dy Foofu ¢ 03 2) -e0fo2 o3

Thus when XA = i we have

101 ,as 1. 2 . 2
a(0) = 31+31)Ey; 650 *+ 51-D) [ [T - () |eg, ™ + £y
(2.18)
= 1013 - (1+#1) T

Note that these do not agree with the formulae given by Wan [4O] which are

apparently incorrect.

Conclusion.

A useful way to combine the above results for a family of maps F of the
plane with a fixed point p is to consider F as a two-parameter family
with the determinant, A , and trace, o, of the Jacobian of F at p as
the parameters. In the(A,0)~plane the lines A-~o+l = 0 and A+ o +1 =0
correspond to dF(p) having one eigenvalue equal to +1 and ~l respectively,
while if dF(p) has complex eigenvalues of modulus one then A = 1, |o[ < 2.

The fixed point p is then stable if(A,0) lies within the triangular region
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bounded by these three lines which is shown in figure 2.10. Along a one
parameter path in the (A,0)-plane generically we expect a fold bifurcation
along A-o+l = 0, with no fixed points for the map if A-g+l < O and two
fixed points if A-o+l > O, a flip bifurcation along A+o+l = 0 with

an orbit of period two existing either above or below this line, and a
Hopf bifurcation along A = 1, ]o] <2. Passing along A =1 fromg =2 to

o = =2 we will encounter all the resonances described above.

4 A-o+l=0

Avo+izo ‘> W
\ SouR W Hopf /

D=1

SINk

SADDLE

Figure 2.10.

The utility of this figure depends on the properties of the mapping
from the parameter space to the (A,o0)-plane, and clearly this can only be
one-to-one if we have a two-parameter family. For the fixed points of
Maynard-Smiths map, which we examine in the next chapter, this mapping is
a heomeomorphism of the parameter space onto its image in the (A,o)-plane,
but in general it will be many-to-one, as it is for the fixed points of
iterates of Maynard Smiths map. DNote also that for a family of diffeomor-
phisms we are restricted to either the upper or lower half plane in

figure 2.10.



Chapter Three

Maynard Smith's Map: Analysis

We now come to a detailed analysis of Maynard Smith's map
F (x,y) = (v ay+b—x2)
(a,b) E) ]

which was introduced in chapter one. If a = 0 the dynamics of the family

F = F( are governed by the one-dimensional family

b a,b)

n (x) = —

and the results of chapter one immediately yield results for Fb' In 83.1
we describe the initial bifurcation sequence for Fb’ showing how the
periodic points of hb are related to those of Fb and pointing out one

major difference between the dynamics of hb and Fb: Fb does not have
a unique attractor. For the full two-parameter family a local analysis of
the fixed points and their bifurcations is given in §3.2.

Throughout this chapter it will be useful to have in mind the simple

geometrical action of the map. We can think of the map as the composition

of two simpler ones, namely the quadratic 'fold'

(b-x2 3Y)

f(x,y)

and the linear map

(v,ay+x)

g(x,y)

Thes F = ggf folds the plane about the y-axis and then acts as a linear
transformation which takes the fold line x = O to the line y = ax+b,

One way to visualize this is to let =z = ay+b-x2, then the graph of

H: B2 + R is the parabolic tunnel T shown in figure 3.1.

(X3Y) +> Z
-50-



Figure 3.1.

A point P in the (x-y) plane is taken by F to the point on T
vertically above P, and then projected onto the (ysz) plane. The (y-z)
plane is now identified with the original (x-y) plane to giwe the image of
P under the map. It is not easy to see how successive iterates of F
behave from figure 3.1, but it does indicate the way in which the whole
plane is mapped below the line y = ax+b in a 2:1 way. The inverse of F
is defined only on the half-plane {(x,y)[y < ax+b}. Points in the region
y < ax+b have tﬁo preimages under F, points on the line y = ax+b have a

singte preimage, while points in y > ax+b have no preimages.

/ fold line

J . Y 3-.:n-x+b
No preimages
S
/ L e /
—“— P > 2 [ /.
/ // 2 preifrages

Figure 3.2.
Note that the parameter a governs the 'slope' of T (the images of
straight lines x = constant are straight lines with gradient a), while D

is the height of the intersection of T with the z-axis in figure 3.1.
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3.1 Dynamics of Fb'

When a = O Maynard Smith's map reduces to

Fb(x,y) = (y,bb(X)), thX) = bx®

so the dynamics of T are determined by the dynamics of hb’ which we

b
recall from chapter one. If b < - 3% then for each x, h(x) < x and
ar
h(x) > -« as n > . When b = -3 two fixed points, x = -%/b+i,
+

are crested by a fold bifurcation and for b € [-%,2] h m;ps the

interval I = [x ,-x.] into itself. The fixed point x is always unstable
(vhen it exists), while x_ 1is stable when b € (-1/4,3/4]. At b = 3/k

a stable orbit of period two is created by a flip at X, the fixed point
itself becoming unstable. The period two orbit remains stable until b = 5/k4
when it loses stability, creating a stable orbit of period four by a

further flip, and this period doubling continues until b I 1.401....

Ix I is

For Fb this means that if b € [-%,2] the square S

mapped into itself with the boundary 35 taken into 238S. F% folds S

about the line 2: x = 0 and takes & to the line gl: y = b, Vertical
lines x = k are mapped homeomorphically onto horizontal lines y = b-kz,
while horizontal lines y = k are folded onto the vertical line segment

x=k, ¥y <b.

..-x._ _x.
. n
P

2y . L

K

—_—

A
x. |& % L&
x. o X,  ~x. x. ) Xy =X

Figure 3.3.
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There are two fixed points for Fb, P = (x+,x+) and Q = (x ,x ),

if b > -% . Q is a source for all b> -1/4 while P is a sink if

b € (-1/4,3/4]. There is also a period two orbit on the boundary of S.
(x,x_) » (x_,x) + (x,.,x_)

which is a saddle if b € (-1/4,3/h]. At b = 3/L the derivative of F_
0 —l)
-1 0

resonant Hopf bifurcation occurs. This can be analysed as in chapter 2

at P is de(P) = ( and this has eigenvalues A =+i, so that a

but we know that for b€ (3/4,5/4] h.b has a stable orbit of period two:

y,*y >V, and this gives a stable orbit of period four for Fb:

(y,ov,) » oy ) > ey ) » Goy,) + (v,.y,)

Fb also has two orbits of period four which are saddles, one which

bifurcates from the fixed point P:

(y,ox,) > (xy ) > (y_ox) >~ (xy 0> (v,.x,)

and one on the boundary of S:
(y,ox )+ (x_oy_) > (y_»x_ ) » (xoy,) > (yp.x )
which bifurcates from the period two orbit
(x,ox ) »(x ,x) > (x, .x_)

as it changes from a saddle to a source.

At b = 5/4 the stable orbit of period four bifurcates with both
eigenvalues of DFg(y+,y+) decreasing through -l. Again this is a
resonant Hopf bifurcation, although not of one same type which produced

the period four orbit, and again it is easy to see what happens by
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X~ 493 5! o

Figure 3.4. Dynamics of Fb,1>€(3/h,5/h]

® denotes a stable orbit of period L, x and O saddles of period b,

. a source of period 2. P and Q are fixed points, both sources.

considering the behaviour of h, . After this bifurcation there is a total of §0
periodic points: 2 sinks of period 8, 3 saddles of period 8, 2 sources of
period 4 and 2 sources. From the data available for hb’ see for example
Gumovski and Mira [15], we know that this bifurcation repeats as b

increases to b x 1.L401... with' both eigenvalues of stable orbits of

period 2t passing through -1 and creating stable orbits of period 2n+l.

The following proposition states an easy connection between orbits of
hb and Fb.

Proposition 3.1.

(1) If h has a periodic orbit of even period 2k, then

F_has k orbits of period Lk.




~57~

(2) If h has a periodic orbit of odd period 2k+1,

then F has one orbit of period 2k+1 and k orbits of period Lk+2.

Proof (1) Suppose that x and y lie in the periodic h-orbit. Then

hn/Q(X) = x, hn/2

Fn(x,y) = (x,y) <={ n-1 n+l
n ? (y)

(y) =y if n is even

x, h 2(x) =y if n is odd

]

If n is even we must then have n = Lk as the least period of (x,y).

If n is odd, we have

n+l n+l n-l

y=h“ (x)=nh 2 h 2 (y) = hn(y)

which is impossible since y has even period. Thus all the (2k)2 periodic

points of F have period Uk and there are k different orbits.

2k+l(x> hk+l(

(2) Suppose h =x and let y = x). Then

L (x,y) = 5 (y), 05 (1)) = 0 (x),y) = (x,7)

So there is at least one orbit of period 2k+l. If there are two distinct
orbits of period 2k+1 then we have

F2k+l( (x,¥),» vy = hk+l(x), x = hk(y)

i
1

Xx,¥)

and

2k+l ('_ -

—_— -  k#l,— — k-
x,y) = (x,¥), y=h (x), x="h(y)

L
i

F

with F(x,y) # (x,y) for any n. However, x,y,x and y all belong
to the same h-orbit so for some n, Fo(x,y) = (z,y), say. We will derive

a contradiction by showing that 2z = X.

(hj(x),hj(y)) and

2.
If n is even, n = 2j, then F9(x,y)

7 = hj(x), y = hj(y). Then x = hk(§) = hj+k(y) = hj(x) = z.
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L}

2341, then z = n¥(y), 7= 09" (x) ana
x =853 = 0™y 2wy = 4.

Thus there is a single F-orbit of period 2k+l and the remaining

If m is odd, m

2k(2k+1) F-periodic points have period Lk+2,

Clearly Fb will have other periodic points besides those given by
the proposition by considering the fixed points P and Q. The important
point here is that a single orbit of hb gives several orbits of F_,
and in particular a single stable orbit of h leads to several sgtable
orbits of Fb' Thus even though hb is restricted, for each fixed b, to

at most one stable periodic orbit by Singer's theorem [34], for many
parameter values Fb has a large number of stable periodic orbits.

The proof of Singer's theorem:shows that if x belongs to a stable
periodic orbit of h.b of period n, then the semi-local stable manifold
of x, stsm(x), i.e. the connected component of the stable manifold of x,
containing x, must contain a eritical point, ¢, of hn. By the chain rule
¢ is mapped to O, the critical point of h, by some iterate hk with
k < n and so the y-limit set of the critical point x = 0 is the periodic
orbit containing x. Now suppose that P is a stable periodic point of
F. Let ¢ denote the fold line {(x,y)|x=0} and put
2 = {(x,y)[fn(x,y)é 2} . The proof of Singer's theorem shows that
sfsm(p) contains a point q € L N & for some n,m > 0. Now whereas a
critical point of n" must be a preimage of the critical point of h
there is no reason why two points ¢ € z_nn z_m and q'é€ z_n,n z_m,
should eventually map to the same orbit. For example, consider figure 3.5.
This shows the fold line ¢ together with its first, second and third
preimages. There are nine points which lie at the intersections of these
lines, seven of them, marked x, all map to the origin (0,0) = ane_y

under some iterate. The remaining pair, while being mapped together by

F2, do not necessarily have the same future orbit as the other seven.
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¥ ¢ i fL\\\\

¥ * X Lo, Lo

ke}x’/

L
\x.z

Figure 3.5.
[+ ]
et L = \) (zin zj) and define an egquivalence . relation on L
i,j=0
i#]

by x~y <>3dn,m >0 with £2(x) = f(y). Then Singer's theorem implies
that the number of stable periodic orbits of F is at most equal to the
number of eéuivalence classes of L/~.

Tt would be interesting to know whether this result extends to a wider
class of maps which fold the plane, but for this we need an analogue of
the Schwarzian derivative condition for maps in R. If such a class of
maps could be found a technique for finding the stable periodic orbits would
be to consider the points of intersection of the fold line and its preimages
in turn, finding a point in each equivalence class as they appear and
iterating this point (on a machine) to find its w-limit set.

The questions of how far the results for Fb extend to the full two-
parameter family when a # 0 is unresolved. A similar problem occurs in
the Henon map G(x,y) = (y,ax+b—y2), where for a = O the results on maps
of the interval give a reasonably complete picture of the dynamics of G
but when a # O very little is known. Some results on extending the
singular behaviour at a = 0 are given by vanStrien [37.

For the Maynard Smith family F(a‘b) we can mimic the kneading
. .

theory for maps of the interval, associating to the orbit of a pdint
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p €R defined by

. N . — ®
its itinerary g(p) = {en(p)}n=o

+1 if F'(p) 1lies in the right half-plane
e () = 0 if F (p) 1lies on the fold line x = O.

-1 if F'(p) 1lies on the left half-plane

However, it is difficult to see how to decide whether a particular sequence
corresponds to an orbit of F. In the maps of the interval the key to
finding these 'admissible' sequences is to use the invariant coordinate §
to track the orientation preserving or reversing nature of an iterate

of the map near a particular point. This can alsc be done for maps in

B2 but on the interval the orientation is synonymous with the order and
this leads to the monotonicity of invariant coordinates and a characteriza-

tion of the admissible sequences,while in the plane there is no satisfactory

ordering.

§3.2 TFixed Points and Bifurcations

Returning to the full two-parameter family (3.1) we now give the
local stability analysis for the fixed points and discuss their bifurcations.

Provided (a—l)2+hb>0, F(a ) has two fixed points: P with

b
2
coordinates x = y = %(a-1-R), where R = V(a~l)2+hb. The local nature
of F near the fixed point x = (x,y) is determined by the number of
eigenvalues of the linearization, de’ of F at x which lie inside

the unit circle in the complex plane. The eigenvalues ) of de are

given by det(de - AI) = 0, where I is the 2x2 identity matrix and

dF_}_c_= -2X 8

Thus the eigenvalues satisfy
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2
A" - ay +2x=0 (3.1)

and the following result may be applied to determine the stability of the

fixed points.

Lemma 3.2. The number of roots of the polynomial p(A) = a2A2+alA+ao,

aie B, which lie inside the unit circle in the complex plane is equal to

the number of sign changes in the sequence

1, lagl - 2, (ao+al+a2)(ao—al+a2).

This is the simplest case of the Schur-Cohn criterion, which in'its
general form gives conditions on the coefficients of a polynomial
p(d) = ankn+an_lxn'l+:--+alx+ao in order for the roots to have modulus less
than one. TFor the case when the coefficients are complex see Marden [26].
When the coéfficients are real a simplification due to Jury [22] gives the
lemma. For a quadratic polynomial it is also easy to prove directly,
being simply a restatement of the information contained in figure 2.10.

We will now apply the lemma to (3.1). Considef Pirst the fixed

point P, where the relevant sequence is
1, |ex|-1, (2x+a+l)(2x-a+l) (3.2)

with x = %(a~1+R). Let o = |2x|-1 and g = (2x+a+l)(2x-a+l). To
determine the sign of o note that if a <1 and b < 0O then x <O
and o = -(2x+1) = -(a+R). So when x < 0, a >0 if a+R<0, i.e. a < O
and Lb<2a-1, while o < O if a+R>0, i.e. Ub>2a-1. If x > O then
a>1 or b>0 and o = 2x-1 = a~2+R. Therefore o > O if R>2-a,
i.e. a>2 or Lb+2a>3, and ¢ <O if R<2-a, i.e. & < 2 and Lb+2a<3.
Figure 3.6a shows the sign of o in the various regions of the parameter

plane.
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Now B = R(R+2a) therefore since R >0, 8 >0 if R > -2a, i.e.
a >0 or b > 3a2 + 2a-1, while g <0 if R <-2a, i.e. a <0 and

kb < 3&2 + 2a-1. See figure 3.6(b)

(a) AL (b) Ab

4

é «70
& 4b=30*4da-| P70
<o ' \

“—\55‘1 R= (o] P <0

A1)/ V//

Figure 3.6 (a) Sign of o« (b) Sign of B8

Combining the information in figures 3.6 (a) and (b) with the lemma
we have that P is a sink if g <O and g > 0, which is true in the
central region of the parameter plane bounded by (zaL—:L)2 + v = 0,
kb = 3a2+2a—l and Lb+2a = 3, P is a source if 4 > O and g > O,
giving the region above these three curves, and P is a saddle if g < O,
which holds if a < 0, bb 3e%+2a-1 and. (a-1)%+kb » 0. This situation

is illustrated in figure 3.7.

4+ (a-)'=0

Figure 3.7. Stability of P.
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We now apply the same type of analysis to the second fixed paint Q.
The relevant sequence is (3.2) with x = %(a-1-R). Now x > O only if
a>1 and b > 0, in which case g = 2x-1 = g~2-R. So when x > 0, o > O
if R <a=2, i.e. a >2 and ULb+3a < 3, and a <0 if a <2 or
hb+2a > 3. If x <0 then a <1 or b <0 and g = -2x-1 = R-a. Hence
o >0 if R>a, i.e. if a <0 or Ub > 2a-l, while o< O if R < a,.
i.e. Ub < 2a-1. See figure 3.8a.

8 = R(R-2a) so B8 >0 if R > 25, i.e. a< 0 or ub> 3a2+2a-l, and

B <0 if R< 2a, i.e. Lb < 3a2+2a—1 and a > 0. See figure 3.8b.

@ b T T VR
e
X>0 veo P F<0
> & >a.
4bt2a=3
/ <>0 //
R=0 ‘ =

Figure 3.8. (a) Sign of @« (b) Sign of B8

From the lemma we have that Q 1is a sink if o <O and B > 0, a
source of o > O and B > 0, and a saddle if 8 < 0. It follows that Q is
either a saddle or a source depending on whether (a,b) lies to right or

life of the curve L4b-= 3a2+2a—1, a >0, as shown in figure 3.9.

b 11.b=3q7'+1a.—-\

SOURCE SADOLE

ﬂf % 4b +-)'=0

Figure 3.9. Stability of Q.
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Given a pair of parameter values (a,b) figures 3.7 and 3.9 indicate
the .nature of the two fixed points, provided the parameters do not lie on
the line

H: 2a+Ub=3, -2<ac<?2
or on either of the parabolae

P (a—1)2 + kb =0

or

p, : Ub= 3a° + 2a-1

The next task is therefore to describe the bifurcations which occur as the
parameters cross these boundaries.

Firstly, we have already seen that if (a-1) + Ub > O then F has
two fixed points P and Q. If the parameters lie on Pl the fixed points
coincide and if (a—l)2 + L4b < 0O then F has no fixed points. Thus if
we follow a path in the parameter space which crosses Pl two fixed points
are created and we may use the theory of the previous chapter and check
that the conditions required for a fold bifurcation to occur are in fact
satisfied. To do so we must first exclude two points where this approach
does not work. At a-= 2, b = -% there is a single fixed point (%,%)
which has both eigenvalues equal to one. This is one of the strong
resonances mentioned in §2.5. At a =0, b= -% F has a single fixed
point (<%,-%) with.eigenvalues one and minus one. Here the Implicit
Function Theorem may be used to show the existence of an invariant curve
C(a,b) in the phase plane, depending on the parameters and with
(%,-%) € C(o,3) Ve can show that a fold bifurcation occurs for

F[C(a b) if we cross P, transversely at (0,-%), but because the
2

second eigenvalue is minus one we cannot immediately establish the behaviour
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of the map transverse to this curve. We will see below that an orbit of
period two also appears at this point, but for the moment restrict
attention to ﬁl = Pi\{(O,i%),(E,—%)}.

Let I be a real interval and take a one-parameter path p:I > Rg,
u > plp), with p(“o) € fa‘ and with p transverse to ?l at u_. Now
jdentify y with p(p) and consider the one-parameter family Fu = F (u).
The transversality condition is required in order that condition (k4) of
Proposition 2.1 will be satisfied, but clearly any transverse path will do
and it is convenient to take one~parameter paths parallel to the b-axis.

That is, we choose the one-parsmeter family to be F_ = F( where

b a,b)

a is fixed, a # 0, a # 2, and b 1is considered to be the sole parameter.

Proposition 3.3. For each fixed a, a # 0 or 2, the one-parameter family
2

F. has a fold bifurcation at b = bo, where (a-1)

Y + hbo = 0.

Proof: The bifurcation occurs at the fixed point x =y = %(a-1) and
to simplify the analysis we first translate this point to the origin.
Define new coordintes X, Y by X =x - %(a-1), Y =17y - %(a-1), then

the map becomes

2
(X,Y) > (Y,a¥-(a~1)X - X + b+ 9{%—)—— )

Now maske a further change of coordinates, reverting to the original

notation, defining x, y by

(G D0

so that the map is (x,y) » (fb(x,y),gb(x,y)), where
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and
We1)? (xty)?
8b(X:Y) = —HYE:§7_ + (a-1)y + ~§:§—~.

To find the fixed points of the map we must solve

|
¥

f (x,y) =
L (3.4)

i}

gb(X:.Y) y

If a# 2 then %ﬁ-# 1 and by the Implicit Function Theorem there
is a unique analytic function y(x,b) solving the second equation in (3.L)
th = N, ___@_g_—l_@_g_
for (x,b) near (0,b ) with y(0,b ) =0 and - [1 ay] vt

Substituting‘for y(x,b) in (3.3) gives a family of maps in R:

f: Rx R-> R

(x,b) » £(x,b) = fo(X)

with f(O,bO) = 0,

Differentiating (3.3) we find

é_f_:l_'.M (l.}.gl)
a~2 X

3% (a=2)

and
fi - 2 (x+y) _fl + 2 (1 + 21)2
ax2 (a=2) 8x2 (a-2) ox

The formula given by the Implicit Function Theorem shows that %i'(a’bo)

= 0, so
2

of _ 3 T _
3x (a’bo) =1, 8x2 (O’bo) T a-2
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and from (3.3) we also have

3f 1
3b (O’bo) T o-g

Thus by Proposition 2.1 f has a fold bifurcation at b = bo, and by

the remark following the proposition the bifurcated fixed points exist for

2

b > b . A consideration of the signs of §~§-(O,b ), = ab (O b, ) and
ox

the modulus of the second eigenvalue of Fb , which, when a # 1, governs
o)

the behaviour of the map transverse to the curve y = y(x,b), shows that
the stability of the bifurcated fixed points of F agrees with that
given by the local stability analysis above.

The next boundary to consider is the parabola P2: kv = 3a2 + 2a-1.
Here a flip bifurcation occurs and again we analyse it by taking the one-
parameter family Fb with the value of a fixed, after excluding the strong
resonances at a = 0, b = -%, where both eigenvalues are +1, and at

a = -2, b = T, where both eigenvalues are -1.

Proposition 3.4. For each fixed a, a # O or -2, the one-parameter family

Fb has a flip bifurcation at b = bO where hbo = 3a2+2a—l. A saddle-like

orbit of period two bifurcates from p if a < O and from Q if a > O.

The period two orbit exists for b > bo.

Proof: There are three cases to consider: a < -2, -2 <a <0 and a > 0.
We give the proof for the first case, the others are similar. Now for

a < O the bifurcation occurs at P: x = y = %(a-1+R(b)), where R(b)
=V(a-l)2+hb, and the eigenvalues a.(b) of de(P) are roots of

AZ-aA+2x =0, i.e.

As(b) = lats()), s(b) = /a-2)2-kr(b).

Next translate P to the origin, defining new coordinates X,Y by
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X = x - %(a~1+R(b)), Y = y-%(a~1+R(Db))
so the map is
(X,Y) » (Y,a¥-(a~-1+R(b))X - X2)

and after a further coordinate change, defining x, y by

(G ) ()

the map becomes

(x,y) » (£, (x,7)g, (x,y))

where
(x+y)°
£ (x,y) = 2, (0)x + ~T— (3.5)
and
(x.7) = (xcty)2
g (x,7) = a_(ply - _ST%T‘

The fixed points of Fb are given by

i
e

fb(x,y) =
(3.6)

t
e

g, (x,y) =

and when a < -2, s(bo) = ~(at+2), therefore A+(bo) = -1 and A~(bo) = l+a,
Then since a # O we can solve the second equation in (3.6) for a unique

analytic function y(x,b) for (x,b) near (O,bo) with y(O,bo) =0

-1
end §§'= [1- %iﬂ %%" Substituting y(x,b) in (3.5) gives a family

of maps in B with £(0,b_) =0 and -g-f; (0,b)) = -1. To ensure that
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a flip bifurcation does occur for fb it remains to check conditions (3)

and (4) of Proposition 2.2. For (3), differentiating i (b) gives easily

dx, (v ) 1
db a(a+2)

and for (4), (3.4) shows

2. () 1

2(,0) = 5 bx) + oy Gy (,0))% + =y G, (00 + 5 (b)y(x,5)

from which we find

3,2 22 3 6 2 2
+ + 2
8L (x,0) = —F (x,y) &L+ 5 (14 W) ¥, 2, x+y y)A_ &L
2 s 3 s X 2 s "MTAL - 2
ax 9x ax 3%
6 2
=, + XLy x,
.8 + - 3% 2
X
From the Implicit Function Theorem we have
2 2
Z o) =0, £ (o) = 5E—
5% a”(a+2)
therefore
3.2
_a.._g___ (O’bo) - ..__':.:.1.;.2._....
3% a” (a+2)
3.2 dy
Thus for a < -2, ﬁ—g-(o,bo) < 0 and Egi (bo) < 0 and by the remark
9x
following Proposition 2.2 fb has a stable fixed point for b < bo which

bifurcates at b = bo into an unstable fixed point and a stable orbit

of period two. The second eigenvalue of dF, (P) is A-(bo) = l+a so

o
for a < -2 the direction transverse to the curve y = y(x,b) 1is unstable
and Fb has a fixed point which is a saddle for b < bo, a source for

‘b > bo’ plus two saddles of period two when b > bo.
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In fact the period two points of F may be found explicitly.

They are solutions of Fg(x,y) = (x,y), that is
(x,y) = (ay+b—x2, a(ay+b-x2)+b—y2)

and so

ay + b -~ x2

]
H

(3.7)

ax + b - y2

e
i}

Substituting for y from the first of these equations in the second gives

the quartic
xh+2x3+(l+a—2b)x2 + (a~a3—2b)x - b(a2+a-b) =0 (3.8)

Since the fixed points P and Q are also solutions of (3.7), x2+(l~a)x—b

is a factor of (3.8) and the remaining quadratic
x2+(l+a)x + a+a2+b = 0

leads to two solutions
2 N 2
X = %[-(a+l)+/{b—3a -2a+l], y = @[—(a+l)-¢{b~3a -2a+1 ] (3.9)

provided kb 3_3a2+2a—l. The period two points are then (x,y) and (y,x).
If the parameters lie on the parabola PQ: hy = 332+2a—l note that the
period two points coincide with the fixed point P if a < 0O and with
Q if a > O.

From Proposition 3.4 we know that the period two points are saddles
if the parameters lie above and close to +the parabola P2. To examine
their stability in the rest of the parameter plane we will find the

remaining parts of the bifurcation set. If the period two orbit has an
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eigenvalue equal to one then, as we saw in the conclusion to the previous

chapter, we must have
A-o+1 = O (3.10)

where A and o are the determinant andtrace of ng(x,y). Here

5 -2X a
4aF (an) =( 5 >
-28X a =2y

where x,y are given by (3.9) and so
A= h(a2+a-b), g = a2+2a+2

which means that (3.10) corresponds to the parabola P2 where the periodic

points are created. For an eigenvalue equal to minus one (3.10) is replaced

by

Ato+l = 0

and this gives the parabola P3:hb = 5&2+ba+3, while for complex eigenvalues

of modulus one we require

A=1, lcl < 2

which leads to Ub = ha2+ha—l, -2 < a < 0. However, this curve lies
entirely below P2 where there are no period two points, so the map has
no period two points with complex eigenvalues on the unit circle. It is
then easy to see that the orbit of period two is a saddle between P2

and P., and a source if the parameters lie above P3. Note that P3

3’
cuts the b-axis at b = 3/4 so this is consistent with what was found

for the period two points of F(O ) in §3.1."
S



-T2~

AR

SOURCE

)5l

Figure 3.10. Stability of Period Two Points.
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Returning to the fixed points of F the third, and most interesting,
poundary to consider is the line H: 2athb = 3, -2 < a < 2, which we
will refer to as the Hopf line. If the parameters lie on this line with
a € (-2,2) then dF(P) has complex eigenvalues of unit modulus and a
Hopf bifurcation occurs as we Cross H. The endpoints of the line,
a=-2,b=7, and a=2, b= -%, lie on the parabolae P, and P,

respectively and are points of strong resonance, corresponding to both

eigenvalues of dF(p) being +1 and both being -1. The Hopf line 8lso

1]

contains two more strong resonances. At a = -1, b = 5/4,dF(P) has

0, b = 3/4 the eigen-

1]

eigenvalues which are cube roots of unity and at a
values are +i, fourth roots of unity. Excluding these points Theorem 2.5

yields the following result.

Proposition 3.5. For each fixed a € (-2,2), a # 0 or -1, the one~parameter

family Fy has a supercritical Hopf bifurcastion at b = bo’ where

2a+hbo = 3.

Proof. We must check that the conditions of Theorem 2.5 hold. First

translate P to the origin, then the map is

(X,Y) + (Y,a¥-(a~1+R(b) )x—xz)
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and the derivative at the origin is

an(0,0) =
-(a-1+R(b)) a

The eigenvalues of de(0,0) are

A (p) = 3(a « /(a-2)°-UR(b))

Thus,

2, (b)) = %(a £ i/h-a®)

and dF (0,0) has non-real eigenvalues of modulus one for a € (-2,2).
)
Now

| 2, (®)] = /R(b)+a-1

and therefore

aja (v)]
b

} .
p=p 28
O

which is positive for a < 2, so the eigenvalues pass out of the unit
circle as we cross H in the direction of increasing b. Condition (&)
of Theorem 2.5 is satisfied since a # #2, -1 or O, and it remains to
check the sign of the coefficient a(0) of (2.1).

In new coordinates (x,y) defined by

(X) 1 1 <x>
- b _
y a+T a-T -

2 2

we find

where T = h—az. Now for a map ¢ : R2 -+ R2 given by
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o(x,y) = (ax-By + 2 Y xpyq, Bx + ay + Z Y xpyq)
ptg=2 Pa ptq=2 pa

if we change to complex notation, putting 2z = x+iy, A = q+ig, then
o(z) =rz + ) & 2Pz
prg=2 P4

where

= 3 > s (> _~ —
En = ¥l lvo0mvon * ¥11) * 1G5 = vop ~ ¥y

;/ PR Sad ~
5Ly, * vp) + 10vp * ¥gp)]
= 3 - - s (S -
Eop = Bl lvpg = vgo = Y110 * 1Gp0 = Yoo * ¥yl

Hence in complex notation,

_ 12 L oayam Ly ay=R
Fb (z) = xz + o5 (1+1i)z° - E{l-l)zz - QT(l*l)Z (3.11)

o

with A = %(a+iT). Using the formula (2.1) we findthat for a €(-2,2)

3-
a(0) = 2(23&)

which is strictly positive and the proposition is proved.

As the parameters move along the Hopf line from & =2 to a= -2
the argument of the eigenvalues at P changes from O to & and so
the family contains all the resonances discussed in chapter two. Provided
the relevant coefficients in Theorem 2.7 do not vanish, each point on
the Hopf line corresponding to eigenvalues which are g-th roots of unity,
q > 5, is the endpoint of a cusped region which lies above H. For
parameter values inside this cusp and sufficiently near H +the map has
an attracting invariant circle on which there are two orbits of period q,

one an orbit of sinks, the other an orbit of saddles.
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For the strong resonance at a = -1, b = 5/4, where the eigenvalues

are cube roots of unity, note that the coefficient of z2 in (3.11),

-1
= —— (1+i)
2v/3 :

o2
is non-zero, so the result of Iooss [19} mentioned in the previous chapter
guarantees that a period three orbit of saddles will bifurcate from P
on both sides of H as we follow any one-parameter path which crosses
H transversely at a = -1, b = 5/k,

At a =0, b= 3/k, the strong resonance with eigenvalues®i, (3.11)

becomes

F(z) = iz + ;ﬁ(l+i)z2 - %(1-i)zz - lg(1+i)'z'2

and the normal form of Lemma 2.6 is

2 -3

£f(z) = iz - %%-z 7 - %’Z + O(lzls)

where the coefficients are calculated from (2.18). To apply Theorem 2.8,
take a one-parameter straight line path a = e(b=-3/4) through the point
in question with the slope € to be determined. Considering this path

to be parameterized by b, an easy calculation shows that, in the notation

of 2.8,

- E L . (e+2)
SR A

Note the two conditions in 2.8 are separated by the equality
‘Im a(O)‘ = I@(O)I
A A
1
which here leads to

3152—hs—h = 0.
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There is a region in the parameter plane above H whose boundaries have
as tangents the lines a = e(b-3/L), where e takes the two values
satisfying the equation above. Outside this region Theorem 2.8 (1)
applies and there is an attracting invariant circle for the map, while
inside this region (2) applies and there are two families of periodic
points, of period four, which, since |a(0)| = 3/4 1is larger than

[6(0)[ = 1/h4, bifurcate from the origin if we enter this region. We
suspect, but cannot prove, that these periodic points lie on an invariant

circle. Note that the relevant values of ¢ are
e ~ 0.42 and ¢ ~ -0.29 (3.12)

In the next chapter we describe numerical results which extend the
poundaries of the cusped regions corresponding to weak resonances and
the sector cﬁrresponding to eigenvalues *i. We also find the region in
the parameter plane where the map has an orbit of period three. For
such an orbit

(x,7) + (y.2) » (2,%x) » (x,7)

x, v and z satisfy

X = a.z+b—y2
y = ax+b--z2
z = ay+b—x2

Eliminating y and 2z from these equations leads to a polynomial of
degree eight in x. The fixed points of F satisfy a quadratic equation
which is a factor of this polynomial, and cancelling this leaves a
polynomial of degree six in x whose coefficients are polynomials in

the parameters a and b. Attempts to solve this equation have not been
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successful, but from the behaviour of F(O,b) we know that the map

does have two orbits of period three when b > 1.75. Also, since the
equation is of degree six, there are at most two orbits of period three,
and the numerical results below show that these exist above a curve in
the parameter space, passing through a =0, b = 1.75, the two orbits

being created by a fold bifurcation along this curve.



CHAPTER FOUR

MAYNARD SMITH'S MAP: NUMERICAL RESULTS

In this chapter we extend the local analysis of Maynard Smith's map
in chapter three by finding numerically the boundaries of the tongues
associated with resonant Hopf bifurcation at eigenvalues egﬂip/q for
q = 3,4,5 and 6. This gives some insight into the structure and complex-
ity of the bifurcation set and shows how some of the periodic orbits
created by resonant Hopf bifurcations are related to those which appear in
the one-parameter family Fb of §3.1.

A series of computer-drawn phase portraits is presented in k.2,
showing how the beha¥iour of the one-parameter family with a = %
becomes increasingly complex as b increases, with a larger and larger
attracting set emerging which abruptly disappears at a certain value of b.
We describe the construction of an invariant set in the phase plane which
céntains all the recurrent behaviour for some parameter values, and we

show how a global bifurcation can destroy this set, thereby causing an

attractor to disappear as it does in the computer picture.

4,1. The Bifurcation Set.

To find the part of the bifurcation set corresponding to an orbit

of period n with one eigenvalue equal to one we must solve

xn*XO‘:O
Xpp T % 7O (h.1)
A-o+l = 0O

where the periodic orbit is

(xo,xl) -+ (xl,xe) T oea (xn,xn+l) = (xo,xl)

-8
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and A and ¢ are the determinant and trace of an(xo,xl). Here

X 5% g A and ¢ depend on the initial point (xo,xl) and on the

parameters a and b. Solving the first pair of equations in (L.1)

gives the fixed points of ' and substituting these in the third equation

leads to an expression involving only the parameters which defines the

relevant part of the bifurcation set. For n > 3 (k.1) is too difficult

to solve by hand so instead approximate numerical solutions were found.
Fixing the value of one of the parameters, say a, leads to & map

G: B3 > B3, o(x ,x.,b) = (g..8,,8,), wvhere the components g, are defined

0’71 1°=2°=3 i
by the left hand side of (k,1), and the problem is to find the zeros of
this map. Given a sufficiently good approximation 2z, = (Xo’xl’b) to a

zero of G, Newton's method asserts that the sequence {Zi}:=l defined by

Zigy = Zi‘— [dG(zi)]-lG(zi)

will converge to that zero, and this sequence is easy to compute from the
formuls for Maynard SmitHs map. The first two components of G(zi) are

found from the relation

e T b’xi

and using the chain rule we find that the entries (k) of

o 4
dF%a,b)(xo,xl) satisfy

ag,(8) = ay, (k1)

iJ
agj(k) ="23£k-_laij (k—l) + aagj(k—l) (j = 192)
from which the determinant A and trace ¢, and hence g3(xo,x1,b), may

be calculated. To obtain the entries in the Jacobian dG(zi), these

relations are differentiated with respect to X 2%y and b in turn
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(thinking of X, as a function of xo,xl and b) to give recurrence relations
for the various partial derivatives.

The sequence {zi} is then generated until an approximate solution
z; 1s found with ]G(zi)l < e, where ¢ is suitably small. Having found

this approximate solution for a given value of a = al it can be used as an
initial approximation to a zero of ¢ with a = &, provided ]alnazl

is sufficiently small. By successively changing the value of &, and
computing an approximate zero of G for each one, a series of points on
the bifurcation set of F can be found and if there are no large jumps

in the values of the approximate zeros then we can assume that the
bifurcation set is a continuous curve through these points.

These computations were carried out for orbits of period three, four,
five and six using an Algol program on the ICL2970 in the University of
Southampton Computing Service, using a routine from the Numerical Algorithms
Group library to compute an approximate inverse of the Jacobian dG(zi).

For a given value of a the sequence {zi} was generated until a point was
obtained with |G(z,)| < lO-h, and the increment in values of a was in
most instances 0.05, though in ceftain cases this was reduced to improve
the rate of convergence. It was also found useful to reverse the roles

of the parameters a and b in the above discussion for some parts of

the bifurcation set. The third equation in (k.1) was replaced by A+g+l = O
and A = 1 respectively to find the parts of the bifurcation set correspond-
ing to one éigenvalue equal to minus one and complex eigenvalues of modulus
one for orbits of period three, four and five. The results are described
in the following series of figures. Some of the actual numbers involved
are contained in the appendix, where the values of a and b which lie

on the relevant part of the bifurcation set are listed, together with the

second eigenvalue or the argument of the eigenvalues as appropriate.
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The diagrams are labelled as follows. Bi denotes the part of the
bifurcation set pertaining to an orbit of period n, and & 1is either
+, - or O, according to whether the critical eigenvalue along this compon-
ent is +1, —i or a complex conjugate pair. For periods five and six where
there are several different periodic orbits we labgl the curves Bi(i)
for the ith periodic orbit.

For period three we find that two orbits appear through a fold
bifurcation along a curve Bi which has a single minimum at a ~ -0.70,
b :_0.86, and one of the orbits is a sink in a narrow region above the
lower part of this curve. The precise situation is shown in figure L.1.
Note‘that on the scale of this figure there are three curves on the right
hand side which appear to coalesce, but an inspection of the numerical
results show»that they do not, and Figure L.la, a schematic version of
Figure 4.1, shows the relative locations of the curves and the nature
of the period three orbits in the various regions of the parameter
plane. The point Bit\ Bi where the map has a single orbit of period
three with both eigenvalues +1 is a ~ 1.2, b ~ 7.3 so the region where the
map has a stable orbit of period three is a long and narrow strip. Also
notice that a part of this region lies below the Hopf line where the fixed
point P loses stability. Thus for an open set of parameter values the

map has a stable fixed point and a stable orbit of period three.

Saddle
3qck“€ ! souree
Souree
sink
saddie
sink saddle
soufce source saddle
soufeg

sink
Source

Figure L4.la.
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The strongly resonant Hopf bifurcation at a =0, b = 3/4 leads to the
existence of two orbits of period four inside the sector bounded by Bi
in figure 4.2. The internal structure of this sector is relatively simple.
There are two curves BE which intersect at & = 0, b = 5/4 and divide
the sector into four. In the lower section the period four orbits are
a sink and a saddle respectively, two sources in the central ﬁpper section,
and a saddle and a source in the outer sections. The dashed lines in
figure 4.2 show the linear approximation to this sector given by the theory,
i.e. they are the lines a = ¢(b-3/4) with ¢ taking the values in (3.12).
These lines are tangent to the boundary of the sector at a = 0, b = 3/L,
but provide a good approximation on the left hand side of the figure well
away from this point.

There are twb points of weak resonance on the Hopf line corresponding

to eigenvalues of dF(p) which are 5th roots of unity: a = 0.618, b = 0.Lhl

and & = -1.618, b = 1.559, and we label the components of the bifurcation set

containing these points Bz(l) and B(1). Bz(l) has a further cusp at a=-0.162,

b = 1.656 which does not lie on the Hopf line. There is also a third pair
of orbits of period five created by a fold bifurcation along the curve
32(3) which has a similar shape to BE. In figure 4.3 the second cusp on
Bz(l) appears to lie on BE(3) but a closer inspection reveals that this is
not the case. 0f course the points where these curves cross do not
represent orbits with both eigenvalues equal to one, father there are two
separate fold bifurcations occuring for FS at these parameter valuesg—-
in different parts of the phase plane.

The internal structure of the five-tongue bounded by Bz(l) was
also investigated and the results are shown in figures 4.4 and L.ha., The
curve Bz(l) has one endpoint on Bz(l) slightly above the second cusp

and then follows Bi(l) down, gradually moving further away until it

reaches a minimum above the cusp point on the Hopf line, and then rising
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to meet Bf(l) at a ~ 0.60, b ~ 1.13. The curve B_s_(l), where a five

point cycle has an eigenvalue equal to -1, follows Bi(l) down the right
hand side of the figure before meeting it at a . 0.59, b . 0.81, then
crossing the cusp to meet Bi(l) again at a _ 0.48, b . 0.8L and following
Bf(l) up to a = 0, b = 1.62LL, To obtain a consistent picture of the nature
of the two orbits of period five inside Bf(l) we conjecture that there is a
further branch of Bf(l), starting at a = 0, b = 1.624k and extending up
the left hand side of figure L.k, though this branch has not been found.
With this proviso the stability of the two orbits is indicated in figure

4.lha, where the conjectured branch is shown as a dashed line.

soufte saddle
Sourte

2 soufces

sink
saddle

Soufre

Figure U.Lka. Period Five (1).
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For the six point cycles there is only one weak resonance on the Hopf

line, at a =1, b = 1/4, and the left hand side of the cusp at this point

crosses the b-axis at b 7/4, intersecting Bf, and contains two further

4

cusps, at & ~ -0.43, b ~ 1.41 and a ~ -1.95, b = 3.49. Now the point
e =0, b= T/4 corresponds to the birth of the orbit of period three in
the one-dimensional m and an examination of the dynamics of F
e ap hb ioén o ynamics o (0,7/4)
reveals that eight different orbits of period six are created in Mgynard-

Smith's map at these parameter values. In fact we have the situation shown

in the following diagram.

£35

-9 43 o005 09 IF

The map hT/h has a non-hyperbolic orbit of period three, which is

approximately
1-75 4 ”l.30 -> O-OS -> 1075

and together with the fixed points P . (0.91,0.91) and Q - (-1.91,-1.91)
this gives the grid of 25 periodic points for F, connected as one orbit
of period two, one of period three, three of period six and the two fixed
points. As b increases through 7/4 the horizontal and vertical lines
given by the coordinates of the three point cycle split into two and the
period six orbits marked x and @ also split into two, but the orbit

0 gives four orbits of period six, so eight orbits of period six are
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born at a = 0, b = 7/L4. The pair which are created on the boundary of the
invariant square are associated with a curve of the same shape as BE
and BE(B) with a single minimum, and the orbits created by the bifurcation
along this curve are always unstable. The curves where the other orbits
are born are shown in figure 4.5. The orbits which bifurcate from the one
marked O are associated with Bf(e) and Bf(3), while the orbit marked
x corresponds to Bf(l).

The internal structure of the tongue bounded by Bf(l) contains one
intriguing feature. There is a curve Bg, see figure 4.6, where the map

has an orbit of period six with complex eigenvalues on the unit circle,

6
0

has a minimum above the cusp on the Hopf line, then curves close to Bf(l)

which joins Bf(l) and Bf(z). B meets Bf(l) at a ~ 0.46, b ~ 1.2k,
again before moving away and crossing BE(E) on the right hand branch
slightly above the cusp, finally joining Bf(e) at a ~ 0.46, b ~ 1.2k,
We have no explanation for this phenomenon and it is difficult to see
what the stabilities of the period six points are in figure 3.15, excepting
that the numbers‘in the appendix show the nature of these points as they
bifurcate, i.e. close to the boundaries Bf(l) and BE(Q).

Figure 4.7 shows the boundaries of the 3,4,5 and 6-tongues in the
1° P2 and the Hopf line H

which bound the various regions of stability for the fixed point P. Note

parameter plane together with the parabolae P

that these are all the orbits of period 3, 4, 5 and 6 associated with Hopf
bifurcation at P and from studies of hb’ see for example Gumovski and
Mira [15], we know that no other orbits of péribd 3 or 5 appear as we
move up the b-axis, although there is a further pair of orbits of period L
and several more of period 6. It is not known if any periodic points
exist in regions of the parameter plane which do not intersect the b-axis.
Inside each of these tongues the situation shown in Figure 4.7 is

repeated. For each family of periodic points there is a (many-to-one) map
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from the subset of the parameter plane where they exist into the (A,0)-plane
of figure 2.10, and the preimages of the resonance tongues in figure 2.10
lie on the curves Bg in the (a,b)-plane where an n-point cycle has complex
eigenvalues on the unit circle. As the parameters cross these curves the
n-point cycle undergoes a Hopf bifurcation: an invariant circle bifurcates
from each of the n points in the orbit, the circles being invariant under
Fn and mapped cyclically around the orbit by F. The behaviour of the map
on these circles is then subject to the same resonance considerations as
apply to the original circle which bifurcates from the fixed point P, and
the whole story is repeated, in an analogous way to the repeated period
doubling bifurcations of maps of the interval, perhaps involving, in

some sense, Feigenbaum's universal constants.

Clearly the manner in which these tongues piece together in the
parameter space is enormously complicated and the regions where there are
stable periodic orbits tend to be very long and narrow strips in the
(a,b)-plane. A one-parameter path through the parameter plane will pass
through many seéuences of bifurcation points whose limit points produce
complicated 'strange' attracting sets of which virtually nothing is known.

We now present a series of phase portraits for such a path.

84,2, Phase Portraits

The following figures (a)-(0) are computer drawn phase portraits for
parameter values along the vertical line a = 1/2 in the (a,b)-plane.

The portraits are actually for the map
g(X,Y) = (Y,aY + bX(1-X)) (4.2)
but this is equivalent to the Maynard Smith family

F(x,y) = (v,Ay + B-x°)
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The set shown in (m) has
many of the characteris-
tics of the 'twisted horseshoe!

of Guckenheimer et al. [1k].

An examination of the action

of the map shows that under

gl5 a neighborhood of the set
is stretched in the direction
along the set, contracted
tranverse to it and then folded
back on itself. In fact several
of the images of the set lie on
the fold line x = 1/2 (see (J))
so the set is folded into
itself more than once before
being mapped back to its
original position by gls.

At larger values of b the
15 components of the attractor
join to form first five pieces
(n), and then the single large
set in (0). For slightly larger
values of b the attractor
vanishes, with apparently all
orbits diverging.
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via the parameter dependent coordinate change

x=bX--12?-,y=bY-—:g-
; (4.3)
2
_& b b
A=a, B—2+—E—-—2

when b # 0. The parameter b given in these figures should be transformed
by (4.3) to give the b in Maynard Smith's map. The only other difference
is that the fold line x = O 1in Maynard Smith's map is translated by
(4.3) to the line X = 1/2 in (4.2).

In each figure the point (0.5, 0.5), which lies at the intersection
of the fold line in (3.1k4) and its preimage, was iterated, but, except
in the first two figures, the first fifty points of the orbit are not
shown. In figures (e)-(j) a point near the orbit of period five in
figure (d) was also also iterated. Now not all points in the phase plane
are attracted to the sets shown in (a)-(0). To conclude this chapter
we describe the construction of the boundary of the set of points which
do approach these attractors, and this will also suggest a mechanism
which would cause the attractor to disappear as it does in this sequence
of phase portraits when b 3.2.6g Very roughly, points within the
circle with centre (0.5,0.5) and with the line joining this point to the
origin as radius will be attracted to the sets in the figures. Points
outside this region diverge, with the coordinates of their iterates
becoming increasingly large and negative.

Similar behaviour is observed in other one~-parameter paths at
a = 1/L4, and a = 3/4. The overall picture as b increases is of a Hopf
bifurcation, followed by a 'lock-on' to a periodic orbit as we enter a
resonance tongue, the parameters perhaps passing through several of these

tongues before the invariant circle becomes distorted and gives way either
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For the case when a # O we must first construct an invariant set
in place of the square S. This construction is given for several similar
maps by Gumovski and Mira [15], who find numerically the boundaries of
these invariant sets. We outline an argument for their existence in the
Maynard Smith family, relying on some unproved assumptions.

Suppose that Q 1is a saddle and consider the local stable manifold
WiOC(Q). Our first assumption is that this curve cuts the fold line
x = 0 at R, say. The image of QR is QS where S = F(R) lies on the image 21
of the fold line 8. Now consider successive preimages of RS, as shown
in figure 4.10. The first preimage is the curve R~1’Ril where
F(R—l) = F(Ri) = R. This lies symmetrically about the fold line and
the map first folds it onto itself, with Rll mapping to R—l’ and then

acts as an affine transformation taking R to S and R~l to R.

2

Figure 4.10.

Now suppose that some preimage of R, R . say, lies above 2 on

3 1

the right hand side of £, and so the invariant curve through Q now

stretches from R . to R'., its reflection in &. The preimage of

J
the point T where the curve cuts zl lies on the fold line £ and
the preimage of the curve segment TR_(J~1) is R lej’ completing the

invariant curve.
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This construction is hardly rigorous. For any particular values of
the parameters we may attempt to confirm whether the construction works,
but general conditions which ensure the construction holds are very
difficult to give. For examples in which this argument does work, as well
as for some with rather different behaviour, we refer to Gumovski and Mira
[15].

For the bifurcation which causes the attractor to disappear in this
case, suppose that the parameters are changed until the last link in the
curve, R_,R' ., lies partly below &, as in figure L4.11. DNow points

SR

above have no preimages, but points below this line have two pre-

21

images and so the construction of the curve continues in this case.

Figure 4.11.

If U 1is the open set whose frontier consists of that part of the
curve below zl and a part of 21 as shown in the figure, then U is
mapped around the outside of the curve by successive iterates until it
comes under the influence of the fixed point Q, and since the direction
transverse to the curve P is always unstable further iterates are expanded

away from the curve. Now U has a sequence of preimages inside the

invariant curve which are mapped outside the previously invariant set.
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The actual point of bifurcation occurs when the invariant curve has

a point of tangency with 21 cand is clearly difficult to detect. There
is also the question of the set of points which do not escape from the

interior of the curve. Although the construction of this set is similar
to that of the Cantor sets in the case a = 0, some of the narrow regions
corresponding to stable periodic orbits found numerically above, stretch
across the parameter plane at values of b larger than those where this
global bifurcation occurs. Therefore there are still open sets in the

phase plane which remain inside the invariant curve after the global

bifurcation.



Chapter Five

Maps Related to Maynard Smith's

The behaviour illustrated by the sequence of phase portraits in g§h.2
is certainly not unique to the Maynard Smith family. Several sets of
similar pictures have appeared in the literature. Beddington, Free and
Lawton [L4] discuss simulations of a discrete predator-prey model which is
also one of the many examples considered by Gumovski and Mira [15], some
of which have particularly striking phase portraits. Guckenheimer, Oster
and Ipatchki [1L] study a model of a population with two age-classes,
arguing that for certain parameter values the model has a strange attractor
based on a 'twisted horseshoe'. Curry and Yorke [8] investigate two
families of maps of the plane. One is a non-invertible map whose phase
portraits follow the pattern of those in §h4.2, with a Hopf bifurcation
creating an invariant circle which grows, distorts and then breaks up,
leading to a complicated attractor which disappears at higher parameter
values. The other is a family of homeomorphisms of the plane and for
certain values of the parameter the phase portraits show an attractor

with a structure similar to that in the map studied by Henon [16]:
2 .
(X,Y) » (Y+1 -aX",BX)

For o = 1.4, g = 0.3 Henon produced computer plots of an orbit of this map
approaching an attractor which appears locally.to be the product of an
interval with a Cantor set, although the possibility that it is simply
a periodic orbit of a very large period cannot be discounted.

Now if o and R in the Henon map are non-zero we can change
coordinates, setting x = %%—, vy = aX, and rename the parameters o = b,

g= a, to obtain

-105-
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2 2

G: B> R

(x,y) > (y,ax+b-y") (5.1)
In §5.1 we examine the three-parameter family
Ht(x,y) = (1-t)G(x,y) + tF(x,y) t € [0,1]

which connects the Henon map G to Maynard Smith's map F, and we find
that the map H% has symmetry properties related to those of Guckenheimer,
Oster and Ipabtehki's map.

To conclude, we return in 8.2 to the original biological problem and
consider a more realistic version of Maynard Smith's model. However, even
after correcting some of the biologically unjustified assumptions which led
to Maynard Smith's map, we are still left with a model which contains the

same basic complexities.

§5.1. The Henon-Maynard Smith Family

The family we shall consider is
H (x,y) = (y,aty +a(l-t)x+b-tx?-(1-t)y°) t € [0,1] (5.2)

There are two fixed points, P and Q, with coordinates
X=y= %(a—liJ(a—l)2+hb) independent of the third parameter +t, and we
can analyse the local stability of these fixed points as in Chapter Three.
In fact we will examine the way in which the bifurcation diagram in the
(a,b)~plane for P varies as t changes from O to 1. First though,
we compare the geometrical action of the map with that of the Maynard Smith
family shown in figure 3.1.

To visualize the action of the Henon map consider the graph T of
the function (x,y) >z = ax+b—y2. T is a parabolic tunnel which lies

parallel to the x-axis and the map takes & point P  in the (x,y)-plane
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to the point on T vertically above it, and then projects this point
onto the (y,z)-plane (see figure 5.1). This is then identified with the

original (x,y)-plane to recover the image of p under G.

Figure 5.1.

As in Maynard Smith's family the parameter a governs the slope of
T and b the height of its intersection with the z-axis. It is clear
from figure 5.1 that G is one-to-one, except when a = 0, in which case
the whole plane is mapped to the parabola y = b—x2. The dynamics of the
map on the parabola are then identical to those of the one-~-dimensional
map hb(x) = b-x° described by the results of §1.1.

If t &€ (0,1) then the second coordinate function in (5.2)
(x,y) : z, has a single critical point at x = EL%%EL , ¥ = 5{%%¥7-and
the graph of the function is an elliptic dome D with a maximum at
this point. See figure 5.2. As before the map Ht takes a point in

the (x,y)-plane to the point above it on D and then projects onto

the (y,z)-plane.
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Figure 5.2.

Now as 1t wvaries from O to 1 +the critical point traverses the
hyperbola Lxy = 82 in the positive (negative) quadrant if a > 0 (a < 0).
Thus the Henon and Maynard Smith maps are the limiting cases as the
critical point moves off to infinity along the direction of the x- or
y-axes respectively, leaving behind the fold line in F, or its counterpart
in G, the line along the top of T in figure 5.1.

For each t € [0,1], H, has two fixed points if the parameters
a and b lie above the parabola P : (a-l)2+hb = 0. For the other two

curves which, for a fixed value of t, bound the region of the (a,b)-plane

where the fixed point P is stable note that the Jacobian of Ht

0 1
dHt(st) = ( >
a(l-t)-2tx at-2(1-t)y

has determinant A = 2tx-a(l-t) and trace g = at-2(1-t)y. Hence at P,

where x =y = %(a—l+¢?a—l)2+hb) the relevant boundaries are:
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(i) A+ 0+ 1 =0 (corresponding to one eigenvalue of dH, being -1)

382 (26-1)2 + 2a(2t-1)(2t-3) + kb (2t-1)2+4t-3 = 0
provided a-2at+t-1 <O (> 0) if t <% (t >%). No solution if % = 5.
(i1) A=1 (complex eigenvalues of unit modulus when |g| < 2)
02(24-1)(1-t) + 2a(tP+t-1) + bptZ-2t-1 = 0
provided 1l+a+t-2at > O.
For fixed t (i) defines a parabola H in the (a,b)-plane unless t = 0,1/3,
or 1, when it is a straight line. For t # %, (i} defines a parabola?hith

a minimum. TFigure 5.3 shows these boundaries in the (a,b)-plane for

various values of t and the region where P is a sink is shaded.

'Pl '\b
#
a < a
P
' R
(a) t = 0. Henon map (b) t =%
A=1,|c]<2: a==1,-1<b<3 A= 1: Ub=(3a+h)(a+6), a>-5/2
Aro+1=0: 3(a—l)2=hb, a<l Ao+l=0: Lb=(3a-L)(a-2), a<3/2
Ab A Ab

|

/l//':[) !Q. «

P A
(@) t=7% () £ =1/3
A=1: (a-1)%+hb=9 A=1,|c|<2: bb=10a+15, ~4<a<0

A+o+1=0: No solution Ao+1=0: 4b=(3a-5)(a-3),a<2
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Ab E. 4\L
(A
H
H
[~ % a

£ d

(e) t =3/u (f) t = 1. Maynard Smith's map

A = 1: 5(a-2)(a+h)+36b=0, a<7/2 8= 1,|o|<2: 2athb=3, |a|<2
A +0+1=0: Ub=3a(a+2), a<s A+o+1=0: Lb=(3a-1)(a+1), a<O.

Figure 5.3. Stability of P.

Clearly any family joining F and G must contain some degeneracy
so that the Hopf line H can move from the left hand side of the parabola
P, in figure 5.3(a) to the right hand side in (f). In the family Hy
this degeneracy occurs at ¢ = 3; when the graph of the second coordinate
function is a symmetric circular dome, and due to this symmetry the
eigenvalues of dHt(P) at any point on the Hopf line are cube roots of
unity.

The same phenomenon occurs in the map

f(x,y) = ((blx+b2y)e"a(xfy),8x)

studied by Guckenheimer, Oster and Ipatchki [1Lk], when b, =Db,. The
map models a population with two age~classes, x and y, whose growth is

governed by a density dependent relationship of the form

G G0

t+1 t
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Here mi(-) are per capita growth rates for the two age-classes and are

taken to be

_ —-a(x+y)
mi(x9Y) = bie

and S is the fraction of the first age-class which survives to the second.
2n(2b)

For bl = b2 =b and S =1 the map has a fixed point at x =y = 8
and when b =e3/2 the associated eigenvalues are cube roots of unity. For
the one-parameter section at a = 0.1 Guckenheimer, Oster and Ipatchki
report that at a value of b slightly less than e3/2 two orbits of
period three, one stable and one unstable, are created by a fold bifurca-
tion. The unstable orbit coalesces with the fixed point at b = e3/2
which then loses stability, and this is the behaviour we expect from §2.4
provided the relevant coefficients do not vanish. As b increases,
the orbit of period three goes through a period doubling sequence which
leads to a chaotic regime apparently based on a 'twisted horseshoe'. (We
refer to [14] for the details.) At higher values of b this regime
collapses to a stable four point cycle which undergoes a period doubling
sequence leading to a further chaotic regime. This behaviour repeats
as b increases with a period doubling sequence based on an n-point cycle
giving way to a chaotic regime which collapses onto an (n+l)-point cycle,
and the range of parameter values giving stable periodic orbits becomes
progressively narrower as the length of the orbits increases.

This collapsing of a non-trivial attractor onto a stable periodic
orbitwas observed in Maynard Smith's map when a = 0.75, b ~ 2.07, where
a stable seven point cycle was created, and the behaviour described above

suggests that the cusped regions associated with weakly resonant Hopf

bifurcations in Maynard Smith's map have, in H;, become bands stretching
2

across the (a,b)-plane above the Hopf line in figure 5.3(c). No attemptfgﬁﬁ
i

&
ki

Bk B 0 Yy

S
o

; e
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has been made to verify this, in fact the computations required to show
that the Hopf bifurcation in the family Ht is supercritical have not
been carried out. We do know though that no invariant circles bifurcate

from P as the parameters cross the Hopf line in the Henon map. This is

because the derivative

0 1
ac(x,y) =
a -2y
has determinant -a at any point (x,y)€ B°. Hence G multiplies the
area of any subset of the plane by a factor of a and since the area
inside an invariant circle must remain constant the only possible parameter
values for which G could have a closed invariant curve are a = #l.

It is easy to check that the conditions (a)-(d8) of the Hopf bifurca-
tion Theorem 2.5 are satisfied by the Henon map for a suitable one-parameter
path and since no circle bifurcates from the fixed point the stability
criterion must be violated: a(0) = 0. 1In fact the results of Iooss [19]
show that many more coefficients in the normal form for the map must
vanish. For a one-parameter family F, whose eigenvalues cross the unit
circle at A,K. with An #1 for n = 1,2,...,N, we can change coordinates
by Lemma 2.6 so that

LN~
F (z) =)z + 2;212) agmﬂ(u)zmﬂz"m + o(]z]™)

and in polar coordinates the map in the radial coordinate has the form

R = AQw)r +] oy, (F T+ o).

Iooss proves that if any of the (0) are non-zero then invariant

%om+1

circles do bifurcate from the fixed point. Thus in the Henon map all

these coefficients must vanish.
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§5.2. A More Realistic Mogdel.

Returning to the original problem notice there are some biologically
unsatisfactory aspects of Maynard Smith's map (0.7). One minor point is
that there should be a fixed point corresponding to zero population for all
relevant values of the parameters. This is not the case because of the
coordinate changes made in the introduction. However, these changes were
made intentionally so that the family contained a fold bifurcation rather
than & transcritical one, making the analysis a little easier--we only have
fixed points in a half-plane in the parameter space rather than the whole
plane--and the model is easily changed, by a linear coordinate change, to
one where the origin is always a fixed point without altering any of the
complexities associated with the Hopf bifurcation.

More important is the fact that many of the orbits of (1.7) contain
points which correspond to negative populations, which is clearly nonsense
as far as the biology is concerned. This can be avoided, as in Griffiths
and Rand [11], by restricting attention only to those orbits which
correspond to non-negative populations, but it is easy to see how to
change the model to correct this deficlency.

The basic idea behind Maynard Smith's model is very simple. The
number of adults at time n+l is supposed to be a proportion of those
at time n plus the new adults which hatch from eggs laid at time n-t.

If we assume that x adults will produce f(x) eggs which hatch into
adults T time units later, where f(x) is some suitably chosen func-

tion , then the model is

X 4q = 8% ¥ f(xn_T), a € (0,1)

Comparing this with (1.1) we see that in the original model f£(x)

took negative values for x > b/c, leading to the negative populations
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referred to above. To correct this we simply choose a more plausible
function f(x) and then investigate the model in the case ¢t = 1 as
before.

We will assume that f(x) > O when x > O and that £(0) = 0. We
will also think of a typical function f as having a single positive
maximum and 1lim f(x) = O as shown in figure 5.4, but these properties
will not be sizzctly necessary for the whole of the analysis which

follows.
Afbd

N 4
®

Figure 5.L.

The model for ¢ = 1 gives the map

d: Bg—)-B2

(x,y) » (y,ay+f(x))

f%mul
whosehpoints lie én the diagonal x =y and satisfy f£(x) = (1-al)x.

The stability of a fixed point P = (p,p) of ¢ 1is governed by the
eigenvalues ) of
0 1

Dp(P) =
f'(p) a

which are roots of
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2
A~ - ax—f'(p) =0

Tt follows from Lemma 3.2 that the stability of p varies with a and

f'(p) as indicated in Figure 5.5.

Fff»
N /
flp=as)
Souree —T1
!
SADDLE
o 1
e 7a
7
—.l v \
Ve
SouReE f (P=i-a

Figure 5.5. Stability of p.

Since f(0) = 0 the origin is always a fixed point of ¢ and
for x > O we may define B(x) = fﬁél. so that the remaining fixed
points are given by B(x) = l-a. There are many possibilities for the
shape of the graph of B(x) and hence for the number of fixed points
of & . For example we could choose f(x) = xexp(l-x) so that ¢

has just one non-zero fixed point, (see Figure 5.6(a)), or take

f(x) = xgexp(l—x) to obtain two non-zero fixed points (Figure 5.6(b)).
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I-“__-.-—-_—a-- — o ——

%\f

xexp(l-x)
x2exp(l-x)

Figure 5.6. (a) f(x)
() =(x)

We will assume that ¢ has at least one non-zero fixed point P
and that B'(p) < 0. In terms of B'(p) the eigenvalues of D¢(P)

are given by
2 |
A" - ax - (pB'(p) + 1-a) =0

and P is either a sink or a source according to whether pB'(p) is

greater than or less than a-2.

/
PB‘P)/\ : 1:/ _
° // 7o

PS,(P) =a-2

SINK ~

-2

SOuRte —17

- A wme G a— —

Figure 5.7. Stability of p.
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Now suppose that a € (0,1) is fixed and we vary the function
B(x) , and hence f(x), so that the gradient B'(p) becomes
increasingly large and negative. If we do so in such a way that the
value of pB'(p) crosses the line pB'(p) = a-2 1in figure 5, the
fixed point P changes from a sink to a source and we expect a Hop?f

bifurcation to occur. More precisely we suppose that
B: ExR~+R
(usx) > Bu(X)

is a one-parameter family of functions Bu’ with Bu(x) > 0 when x > 0,
and that pB'(p) is a strictly decreasing function of u with pBﬁ*(p) “
= a-2 for some value u = ug(a). We then have the following results

for the family

o(x,y) = (y.ay + xB“(x)) (5.3)

Proposition 5.1. The one parameter family @u has a supercritical

Hopf bifurcation at p = py (&) for each a€(0,1) provided

2
a (3-a) 38
Slo=a) L >0
an (p) B;*(P) PB;;(P)
= Rt Hy = et e
where g Bu* (p) + ” . B 5] + 3

Proof.. We first check that conditions (a)-(d) of Theorem 2.5 are

satisfied. Translating P to the origin the map becomes
@u(x,y)= (y,alyt+p) + (X+p)Bu‘(x+p))

and expanding Bu(x+p) gives
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2 3
= 1 X 1 X 1 L
Bp(x+p) = Bp(p) + xB! (p) + 3 Bu(p) 3T Bp'(p)+0(x )

so neglecting terms of order greater than three, and since B (p) = l-a,
u

@ﬂ(x,y) = (y,ay+(l—a+pB; (p))x + o X2+ BXB)

B"(p) B"(p) B"'(p)
were o =Bl(p) +p A 6= B +p Ly

The eigenvalues of d@u(O) are

1 2
) =35 (ax /g ~lLa+h+l B;(p)
so changing parameters, putting v = a-2- Bﬁ(p) , we have
1 . 2
Alv) = Fla+i/h(l+y)-a")

and |k(v)| = /1+y. Since B;(p) is assumed to be a strictly decreasing
function of y we have é%1k(v)|lv=0 >0. Thus conditions (a),(b) and (c)
of Theorem 2.5 are satisfied. For (d), note that a(0) = %(a+i/z:;§) SO
the parameter values leading to strong resonances are a = -2,~1,0, and 2,
none of which lie in the open interval O < a < 1 of interest here. There-
fore @v has a Hopf bifurcation along the line pB‘(p) = a~2 of Figure
4.5(b) which is supercritical if the coefficient a(0) defined by (2.1)

is positive. To find a(0) note that (2.1) involves only terms of order

less than four in the normal form for the map so we can work with
2,3
o (x,7) = (v,ay-x+ox +px ).

Defining new coordinates X, Y by

<:x> 1 1 <}C>
= a+R a~-R
v N7 2/ 0T
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2
where R = -8, we have

@O(X,Y) = (%x - gy + %{X+Y)2 + %{X+Y)3, gx + gy - g{x+y)2- §(X+Y)3)

writing L in complex notation,

] (Z) = )z + szq
© z=;,3 p§q=zgpq

the quadratic coefficients are given by the formulae in the proof of

Proposition 3.5 and the cubic coefficients are

£ 1 s _ = T _

30 = Bllvso * ¥o1 = v1o = Yo3) T ilyzg mvpy Y * Y3
Y - © ) e i3 - -

Epp = FL(3Yg0 * Yoy * ¥p * 3vps) * 103v55 = vy * ¥y~ 3vg3))

- L _ _al (A "
810 = FL(3v30 = Yoy * ¥p = 3¥gg) * i(2v50 + vy + vy, + 3vy5)]
= M(rag = Ty = Fp + Tgg) * g * Yoy - Tpp = g3)]
03 B8-'Y30 T Yo1 T Y12 7 Yo3 30 © Yo1 T Y12 T Yp3/4¢
Therefore

1. Oy 2 G oy = =D
o(z) = 3(a+1R)z - §§{1+1)z + R(1 i)zz + 2R(1i;)z

8 3 38.,2- 38 =  gi=3
2Rz—2RlZZ 2RZZ +2RZ

and using the formula (2.1) we find

2
a(0) = {3=2) 4 38

Thus the family (5.3) has a Hopf bifurcation at p = p,(a) for each
a € (0,1) and the bifurcation is supercritical if a(0) > 0. Also, since

the argument of the eigenvalue A(n,(a)) is not constant for =a € (0,1)
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we can expect to find a resonance tongue based at each ‘'rational' point
on the Hopf bifurcation line exactly as in Maynard Smith's family.
As a specific example consider the family (5.3) with the functions
Bb(x) = exp[b(1-x)] (5.4)
parameterized by b > O. Here ¢ has a single non-zero fixed point

P = (p,p) with

p=1l-~- %-zn(l-a)
and P has complex eigenvalues of modulus one along the Hopf line

b = {:5% + tn(1-a), a € (0,1) (5.5)

sketched below.

b

A l
)
SOURLE !
i
I
i
a I
SINWK :
|
]
0 1 7 O

Figure 5.8. Stability of P.
For this example we have

Bé(p) = ~b(1l-a), Bg(p) = b2(l—a), Bg'(p) = -b3(l-a)

and so
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2 2 3
_ b°(2-5at+5a"-a")
a(0) = 8(2-a)

with b given by (5.5). This is easily checked to be strictly positive

for a €& (0,1) and we have proved the following result.

Proposition 5.2. For each a € (0,1) the family

<I>b (x,y) = (y,ay+xexpb(l-x))

has a supercritical Hopf bifurcation at the fixed point with coordinates

1 a2
- - - - T2 — - .
bid v 1 5 ¢n(l-a) when b -y en(l-a)



~122~

APPENDIX

Numerical Results




—rng! el -123-
Three - Point Cycles _with_one Eigenvalue equal to one

Second Second
Q b cigeavaiie] b Eigenvabie
1.25 #6094  1L.AF -0.3 0.8535 -0.15
1.2 #2300 o.q9% -0.8 0.£700 -0.0F
. 6.6135  O-44 -0.9 0.9176 -0.00
.o 6.0000 o©.00 ~-1.0 }1.0000 0 .00
0.9 SIS -0.36 N .03 -~o0.02
0.8 4.8300 -0.6S -1.2 i.2300 -0.09
.3 4.353S ~0.8% -1.3 1.45?S ~-0.21
0.6 3.8300 -1.02 - 1-6800 ~0.38
0.5 3.4378 143 -1.5 1.9328 -063
o-4 3.0300 -1.18 -1.6 2230 -pAay
0.3 2.657C 1% -3 2.553S  -1.32
c.2 2.3200 NTY -4.® 2.9200 -}-39
0.} 2.0135  ~1.09 -1.9 2.31% -2.3%
©.0 1-#S00 -1.00 -2.0 3.7500 -3.00
~0-1 1.517%5 -o.9 -2.4 L-21FS =335
~0.2 1.3200 -0.7% -2.2 4.7200 -4.bi
-03 LIS -o0.b4 -2.3 $.257S  -S.5%®
-0k 1.0300  -0.50 -24 $8300 -b4b
~0.5 0931 -0.5% -5 6-4371S -1.98
-0.6 o .T800 -0.26

Tagc
Theee- Point Cycles with one Eisemlalue. equal_to Minus One
Second . Second

Q. b W (- b .
l.o 6.00\21 1.93 0.0 | .3S00 1.00
X | S| 1.60 ~-0.1 1.5179 5ot
o.% 4 .8302 1.33 -0 - 1323} 125
o.¥ 4.353€ 1.2 -0.3 1-1335 (N1
0.b 3.8%00 049% ~0. 112106 -3
0.5 3437 o.88 -0.§ 1.3500 2.2%
o4 3.0302 o©.83 -0b 1-6FS 281
0.3 2.65¥3 .93 -0.3 1.9333 3.3
0.2 2302  o0.85 -08 2.1569 3.9
X 2,011 ©0.qj -09 23219 426
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Jagie 2 (cont)
Sewond Second
a b Eiqenvalie | 4 b____ Eigenvalue
~-1.0 C2HIS Lebb -1.6S09  2b . 2.3%
-4 2.9910 4.99 -1.629% 2.5 2%
-1.2 2980 S1% | -1.6258 2k T
-1.3 33518  S.33 ~1.6050 22605  |.4&
-1h 3.4FHO S 3
-1.S 3.5238 sIs
-L62F Ay 439 WAL 2.933%  1.0S
~L6LF2 3.3 u.05 -1 3 2.5142 o0-24
-1.6b14 3.2 3.7 -).8 2.9600 ~0.51
-1.6690 3.1 3.49 -1.94 . 3.33%3F  -1.29
~L6H? 3.0 3.2% -2.0 3.2310 -2.4
-1.679 2.9 3.0% -2.) 4.313%0 -3.0%
-Lbbq 2.2 2.80 -2.2 453 -1
-1.6601 2% 2-69 ~2.25 snox  -4-b%F
1 :
Theee foink Cycles with Complex Eigenvalues of Modulus One
a b Argament a b Afument
I.205  ?7.3069 I -0.4 . |-0804 I
1.2 7.2300 to -0.5 1.0000 9
). 6.6176 43 ~ob 0.45h9 3
1.0 6.0003 sq -0.3 0.9433 k=
0.9 SnIgL 30 0.8 oqL3y  FF
0.2 4.8H13 3® -0.9 l.oi2 3®
°o.F 4.35%b Y -1.0 1.095% 9
0.6 2.983) e9 -4 [-2080 4]
0.5 2.u4k20 q2 -1 1.35833 ey
o.h 3.0%61 93 -3 1-5330 4.4
0.3 2.66582  qu -1.4 7483 a3
0.2 2.3304 a3 -1.S 2.0000 ol
o.-i 2.031% q2 -6 2.2883 n
0.0 1. F685 10 -1 2.613) 124
-o.1 1-S41s  ®% -1-8 2.9 14§
~0.2 1.3510 -2 -.9636 3.2225 139
-03 11933 23
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Inge b
Four Foint Cycles with one Eigenvalue equal tp one
Second ; SecoNns
Q. b Eigenvalue Q. | b Eigeavalug
0.0 0.3% ©.00 ~0.4 1.093% -0.by
O.1 i.oo2y =~-0.5% -0 1. 336 -1.9%
0.2 1.1939 -2.46 -0.3 1.3849 -3.50
0.3 1.6243 -L4.6% -0.4 2.1394 -5 1l
0.4 1.993%2 -~F.24 -0.§5 2.494% -6.3%
o.§ 2.4002. -10.15 ~0.b 2.8490 -R.4%F
0.6 2.9495  ~13. 4} -0.3 3.199% -10.1%
0.3} 2.33%% ~i1%.02 -0.8 d.Su46  -11.90
0.9 3.2609 -20.9% -0.9 3.9912  -13.59
0.9 4.2 ~-25.29 -1.0 4 .%069 -i15.21
1.0 5.02%3F -29.9F5
Jage 5
Four Foint Cycles with one Eigeavalue egual hv Minus One
“Second Second
a, b Eigeawalue | o b___ Eigeawalue
i.o S -30.1§" -1.0 L3N ~16.73
09 4.5205 2 ~25.463 ~0.9 4.0508 -15.13
0.8 3.9699 -2.46 -0.9 3.7 -13 .06
0.} 34612  -17 .64 -0.% 33857 -W.F
0.6 2.9953 -9 -0.b 3.0481 ~10.08
°.5 2.SH43  -.lo ~-0.5 2308 -8.3%
0.4 21.2006 -9.38 -0l 2380 -6.33
o3 1.2343 -b.0L ~0.3 2.0bd} -5. 16
0.2 1.6060 ~=4.03 -0.2 .35 -3.6%
0. 1.3949 -2.3% -0.] 1oueL3 -2.29
0.0 1.28500 ~1.00 ©.0 1.2500 ~1.00
-0.} 1. 1892 ©.26 o.4 1.0812 ©0.36
| -0.12 1,194k 0.5 0.12 1.066S __ ©.80
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Tape 6
Five Point Cycles coith_one Eigenmalie egaal fo_one (T)
Second Second
Q b Eigenvalue o. b Eigenvalue)
i.o 3.3833 -25.%1 | -0.1623 1.656> o.42
0.9 3386 -13.91 | —0155% 1% 0.6%
0.8 2.5013 -11-62 -0.161® 1.8 13
0.3 1.9556 -6.6% | -0.1923 2.0 2.22
o.b ©.993%0 -).9§ -0.1312 2.2 3.6l
0.593) 0.8 ~0.96 ~0.2F40 2% $.29
0.59% o.? -0.43 | -0318% 2.6 %.25
0.5990 o.b 0.0b | ~o.3%S0 2.8 q.49
0.6033 0.5§ 0.34 - 0.4J20 -0 2
o0.6i80 o.u44t0 .00 ~0.469% 3.2 15
-0.5080 3-4 I8
-0.5562 3.6 21
0.6028 °.§ 0.63 -0.6060 3.2 2§
0.S¥82 o.5§ o. D -0.655% 40 29
% 0.800% -o0.%k -0.708% 4.2 33
0.4 1.0333 ~1.50 -0.356S 44 33
0.3 1.2299 ~1.3§ -0.907% &b 42
0.2 1.2951  -1.72 | -0.9597 48 4F
o. 1.52.81 -1-4b -0-9123 S.0 s2
0.0 1.6244 ~-1.00
-o.1 1.6323 ~-o0.31
-0.4% 1-6661 o-1#
-0.1623 1.6563 o.4o
T,
Five fint Cycles with Complex Eigenvabies of Modulus One CF)
a b Apument | o b Arqument
-0.4891 1.332% i c.3 1.24:81 122
-015733 1.3§ 19 o4 1.0 2% 120
-0.18 1.6698 So oS ©.q121 e
-o.l 1.6FS! 68 0.5% e.9015 Tk 2
-0.0 1. 6281 Qo os? ocaAsyd 12b
o.} 1.4 106 0.59 {.0323 150
0.2 1.405h tie 0.593% 1.1296 '3
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Tngie8
Five Point cydes with one Eiqemialue equal_to Minus One (D
Second Second
Q. b £ a b E";_ﬁ‘*‘"‘&_
l.o 3.9953 ~-25.09 o4 " ©.8483% 0.99
.9 3.49% -11. 05 | o.4S ©.9290 0.59
.8 2.6223 —0.63 0. 40 1.0443 .26
o.? 1.8918 -S.%6 o.35 1. 2332 o.0%
0.-b 11548 - g 0.3 1.39%8S ©.18
0.5932 0.81 ©.98 o.l 1.S291 0.5\
0.0 . 6240 1.00
0.593 o0.8022 1.06
= 0.59 °.386b 126
0.5 C0.IFFS 1-59
o0.50 ©.8103 ;.28
0.482 0.8345% 1.0}
Tagied
Five FPoint Cycles with one Eiaen\bhe e,ml b One (TIX)
: Second Second
o b Eigenvake] & b Eigeavalse
1.0 €883 39.5% | -0.3 11255 -3.96
0.9 $.351 29.9% -0.% i.1190 ~ b 00
°.8 48463 22.89 -0.9 1. 02 -4.30
& .3 433885 1¥.010 | -10 1.192F  -L.43
o.b 3.9355 12.-40 -1 1.234b -4 .S
0.5 3,.5293 ?.63 -1 1.38%6 - -5
o.4 3.1558% S. bl -1.3 1.53% -4.3%
0.3 2.8149 3.29 -ty 1.3234 ~ly .04
0.2 2.50b4. 1. 4F -1.5 1.9523 -3.3%
o.4 2.-2300 o.0%F -ié 2.2304 ~-2.19
.0 1.985% ~).o00 -1-3 2.5633 -0.22
~0-1 1.3723 -1.8} -1.® 2.9368 2.04
-0.2 1.590) -2-42 -9 3.4599 o.19
-03 1.4383 -2.88 |-2.0 3.9952 -4.50
-o4 1.316 =324 | -2.} 4.5F55 -12.35
-0.§ 1.2240 -3%3.52 -2.2 5.1988 -23.39
-0.b 1.1b0S -3-F6
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Five Point Cycles with one Eigevalue egual fo one (I)

Second Second
o b Eigenvalue, a b Eigeavalue
i.o 6.0242 -24.51 -1.85 4.2938 ~-5.30
.9 S.A30  -21.39 -1.8% 4.191% -4 9%
0.8 48758 -12.33 -1.883 3.3250  ~-4.20
©.3 4.3587F -15.38 -1.86 2.55kb ~-3.90
o.b 3.8%) -~12.60 -y-85 3.019) ~-2.80
0.5 3.4402 -j0.0% -).80 2.5knS - 1.6k
o.4 3.0348 -3 H -1.78 2.200%8 .33
0.3 2.6393 -5.63 -1.30 1.9228 o.04
0.2 2.3612 -3.82 ~1.6749 1.8 o3}
o.} 2.086% -2.28 - 1.652% -7 o.by
0.0 1.8606 ~—i.00 -1.6286 1.6 0.90
-0.1 1.692% ~0.0t -1.6180 1.s590 }-00
~0.2 1.6528 ©.35 '
-3 1.8408 o0-13
~0.4 2.08%F -o0.1b -1.6492 1.63 0.35
-0.5 2.3832. ~o0.b% -1.6b 1.7081 0.6
-0.b 2.6809 -4.3F -1.bF 1.3y o0.5%
-0.3 2.9812 -2.1S -168 1.7378 .50
-0.8 32.21739 -3.02 -1-69 1814y o.u2
-0 3.5%,59 -~-3.9¢ -7 1.8502 o34
-5.0 3.840% -4.7b -).8 2.218q -o.52
-4 §.0980 -5.53 -1.9 2.612¢ -).53
-2 4.3329 -6.1b -2.0 3.0328 -2.7%
-1.3 4.539F ~b-b2 -2-4 3.4823 -4.23
-l h.HOF -6.89 -2 3.961b -b.OF
-+S 4-835b  -6.9% -2-3 L2 -B.35
-1l 4.2938 ~L3FF -4 S.oné -3
-1.¥ 4.8663 -b.bo -25 §5829  -)bb
-1-8 4.6616 -5.34
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Size_Point Cycles with one E{,en\ralue, Ei,ual fo one

Second Second,
a b Eigenvalue a b Eigenvalue
1§ 7.2923 14k =0.435¢® 1.289 - 0.3\
L 6.4902 129 . ~0.% L3I -6.76
1.3 Sr42 Mo -o.b 2.209) -12.95
1.2 4.9923 92 ~-0.3 2.6008 -18.10
il 4.293% 33 -0.8 2.9443 -22.44
1.0 3.6216 56 -0.9 3.305) -25.9%
oq 2.9632 4o -1.0 36234  -28.6b
0.8 2.3004 25 -t 3.91716 -3o.4b
0.3 1-3138 Tkl -4-2 41951 -3).33
0.9 0.3814 0.96 ~4.3 44206 ~3J-20
0.9 0.So31 -o0.22 -l 4.6  -30.02
1.0 0.25 .00 -4.5 47368 -1 H
-1k 48353  -26.%
-3 4.2969  -192%
0.9 o.u6s3  -0.23 -1-8 4.8026 -12.89
.8 o.63M\ -0.1b -1.9 4.4833 -S0%F
0.} 0.3635 ~0.09 -1.9% Loy -1.2%
0.b 0.83¥  -0.3§ -1-96 3.9 ~0.92
oS ©.9993 -1.32 -1.964S  3.3853 -1.22
o4 11569 -2.3\ -1.96 3s§79 -23i
0.3 1.333) ~-3.25 -1.54b 3.490S  -4.02
0.2 )-4993 -432
o-\ V.b40F -S.36
°-0 1.3500 -6.0 -1.95%46 3.490S  -4-29
-o.\ 1.8212 -63S -2.0 33500 ~F.00
-0.2 1- 8453 ~5.87 -2.4 430681 -10.2%
-0.3 1.803F  -44F% -2.2 49932 -13.2)\
=0l . 6338 -1.80 | -3 S.sobb -1S8b
- 0436 L4120 o.ol 2.4 6.1620 -18.00
-2-5 6.8550 —+9.2%
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a b SE%oenM!n_lp_f, a b | é?%g'un\_g lue
~1.5 S.8h 3.96 -0.9 4.8153 23
24 $.2893 0.8l -0 44913 29
-2.3 43982  -1.25 -©.3 Yy 29
-2 4.3385  -2.53 -0.6 3.39H 18
| 3.91b ~-3.29 -0.8 34496 a5
-20 3.522) -3.81 -0.l4 3.102S 2
-9 31834 -yas -0.3 2.3S%| 19
-1-% 2.%803 ~-2-98 -0.1 2.4 1y
3 2.5%0 -0.65 | ! 2080 93
-1.638 2364y  o.ub °o 13500 -l.eo

o | 1-7233 .38
0.2 1.6367 .64
-1.638 2.3644  ©0-3% ©.3 15126 s.6l
-1.¥ 2.6218 -1.82 .4 1.3543 303
-1-3 3035 -bay 0.5 1.14Sh -1.91
~{. 9 3.8322 -y ©.50) ). e -2.2
-2.0 §.4199 ~i¢
-1.9 6-49b) -sS
- 6.6630  -49 .50} 142 -2.9%
-3 6.67b4 -39 0.5 i.1430 -3.42
-6 6.SRy  -23 0491  (-2¥F -8
-1.§ 6.43712 e °.S t-4225 -3
—1 6237  -l-uo o6 2.0¥89 -3
-1.3 5.9991 S. 24 0.7 2.6393 ~62
-2 51338 13 ©.8 3.2089 -9
-1 S lHleb 20 ©.9 23.3034 -130
-1.0 5.132) 21 190 e 428 135 )
Tase I3
Six Point Cqcles with Complex Eigenvalues of Modulus One,
a b Arqument a b Avaument
0.80 O 78Iy 12 0.6 o .828) Fo
0.2\ 0.6206 F0 0.60 0.8877 ‘o
o0.8¢0 .65} F2 0.S§ .99 106
0.7S 0. 310% &9 ©.50 1-150) Fo
0.30 o.3702 X . b |.240% b
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TasLe 14
Six_PoINT CYeLES with one Eigenvalue egual fo One ()
a b % a b E.am
-2.5 T 4094 3% -1 6.1T66 ~260
-2.k 6.64-24- 221 -0 $.3478 ~220
-2.3 S. 9154 46 ~0 .9 S.4068 ~1%P4
-2 s 2241 ao ~-0.% S.0062 ~-150
-2 4.5835 5| -3 4-5984 12}
—20 2.4795 2 -o.b 4 15T ~-9q5
P 3.0430 e -0.5 37702 -32
~od 3. 354 -3
-0.3 2.9398 -3%
-1.951 3.69%0 2 ~0-2 2-5%02 -2
-2.0 40022 —2 o 2-1n19% -2
-2 47801 ~-5 0.0 - 3500 1.00
-2.2 ¢.1S512  -188 - 1837 -
-2.1 £.0293 -502 o2 21063 -2l
-2.0 £.224F -S4P e3> 2-3%51 33
-1.9 $.2383 555 ol 2HS1 k7
-1.8 S.I463 Skl o >om¥ -k
-3 FagF -S| °° 3855 -%
-1.6 3.363) -4F8 0.7 34811 -104
-1-S F.5022 436 o9 44900 -13%
-1y 32095  -391 o9 S039 -T2
-3 68851  -34% (-0 5.6300 .21y
-12 _$.5402  -303
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