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ABSTRACT 
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Doctor of Philosophy 

THE BIFURCATIONS AND DYNAMICS OF CERTAIN 
QUADRATIC MAPS OF THE PLANE 

by 

David Christopher Whitley 

Discrete models of density-dependent population growth provide simple 

examples of dynamical systems which exhibit complicated dynamics. Single 

age-class models lead to the study of maps of an interval into itself and 

we outline the main results which are known in this case. 

Here our main concern is with a two age-class model, due to Maynard Smith, 

which takes the form of a two-parameter family of maps of the plane with a 

quadratic non-linearity. After a description of the local bifurcations of 

general two-parameter families .in the plane we give a linear stability 

analysis for the fixed points in our model and analyse their bifurcations. 

This local theory is extended by finding numerically the boundaries of the 

regions in the parameter space where the map has a periodic orbit of low 

period created by resonant Hopf bifurcation. A series of computer-drawn 

phase portraits is presented for a one-parameter path through the parameter 

plane, showing .the creation of an attracting invariant circle by a Hopf 

bifurcation followed by a passage to a more complicated attractor. 

We examine a three-parameter family connecting our map to the quadratic 

diffeomorphism studied by Henon and conclude with a discussion of a more 

realistic model which, however, contains the same complexities associated 

with resonant Hopf bifurcation found in the simpler model. 
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INTRODUCTION 

Discrete models of density-dependent population growth have recently-

attracted attention as examples of simple dynamical systems which exhibit 

extremely complicated, and interesting, dynamics. The simplest models 

describe the growth of a population with nonoverlapping generations by a 

relationship df.-the form x = f(x^), where x^ denotes the size of the 

population at time n and f is some suitably chosen function. This leads 

naturally to the study of maps of an interval into itself, and a reasonably 

complete topological picture of the behaviour of such maps has been developed, 

and is outlined below. Our main interest however is with a model of a 

population with two age-classes, which takes account of the time delay 

involved as members of the first age-class mature into the second. For a 

time delay of x units we are led to a discrete system with a (t+1)-

dimensional phase space which extends the one-dimensional maps in two ways. 

Firstly, when t = 0 the model reduces to a single age-class model which 

is identical to those studied previously. Secondly, for x 0 the model 

involves two parameters, and for certain parameter values the behaviour of 

the system is completely determined by knowledge of the one-dimensional case. 

The model we shall study was originally proposed by Maynard Smith [29], 

who derives the following relationship for the growth of a species with egg 

and adult age-classes: 

x(n+l) = ax(n) +bx(n-x) - cx^(n-x) (O.l) 

Here x(n) denotes the size of the adult population at time n, x is the 

time taken for an egg to develop into an adult, a £ (0,1) is the 

probability that an adult at time n survives to time n+1, b > 0 is the 

number of eggs laid per adult per unit time which in optimal conditions 

(i.e. low x(n)) survive to become adults, and c > 0 represents a density-

— 1 — 
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dependent cor|traint on the fecundity of the adults. In fact c is simply 

a scaling factor which is removed by the change of scale x x/c so that 

x(n+l) = ax(n) + bx(n-T) - x^(n-T) (0.2) 

We introduce new variables x^(n) = x(n-T), Xgfn) = x(n-T+l),..., 

X _(n) = x(n) to obtain, in the usual way, a map of the phase space which 
T+1 

sends x.(n) to x.(n+l), 1 < i < x+l: 
1 1 — — 

F: F(x^,...,x^+^) = (x2,x2,...,ax^+^ + (0.3) 

2 

If T = 0 this gives a function F(x) = (a+b)x - x which is equivalent, 

by a linear change of coordinates, to either of the quadratic families 

f^(x) = vix(l-x), p 6 (O.^) 

f^(x) = w -x^ , y € (0.5) 

The first family (0.4) was considered by May [28] as a simple population 

model, but it has one slight disadvantage in that it has a 'non-generic' 

bifurcation at y = 1, due to the fact that the origin is a fixed point for 

all values of p. However a linear coordinate change transforms (O.b) for 

y € [1,4] into (0.5) for y ([-)q,2] and the second family has a 'generic' 

bifurcation at y = -h. The same non-genericity occurs for the map (0.3) 

and it simplifies matters if we make the coordinate change x^ * x^ - ̂  

to obtain 

?(%! x^+l) = (x2,...,ax^+i + b - x^^ (0.6) 

- ab . b^ b 
where b = + -jj— - —. 

We will study (0.6) in detail for the case of simplest non-zero time 

delay: t == 1. Renaming the coordinates x^ = x, x^ = y and omitting the 
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tilde on b ve have a two parameter family of maps of the plane: 

F: (O.T) 
2 

(x,y) H- (y,ay+b-x ) 

For a certain range of parameters this family is studied in Griffiths 

and Rand [ll], where attention is restricted to those biologically relevant 

orbits corresponding to positive populations. For the moment we ignore any 

such restrictions and study (0.7) as a discrete dynamical system in its own 

right. In Chapter Five we return to the ecological problem and discuss a 

more realistic model. 

The main insights into the behaviour of Maynard Smith's map (0.7) come 

from bifurcation theory. In Chapter Two we describe the local bifurcations 

of families of diffeomorphisms, starting with one-parameter familes in 1 

2 

and working through Hopf bifurcation for one-parameter families in 1 to 

the resonant Hopf bifurcations in two-parameter familes in the plane. 

This theory is applied to our model in Chapter Three and the local 

analysis of the bifurcation set is extended, in Chapter Four, with the help 

of some numerical work. We also present a series of computer-drawn phase 

portraits for Maynard Smith's map with a = and describe a global bifurca-

tion which destroys an attracting set. 

Another family of two-dimensional maps which has received a considerable 

amount of attention is the Henon map [16]: 

2 

G(x,y) = (y+l-bx ,ax) 

Now if a f 0 we can change coordinates so that 

G(x,y) = (y,ax+b-y^) (0.8) 



which is clearly similar in form to Maynard Smith's map (0.7). In Chapter 

Five we examine the three-parameter family 

S^(x,y) = tF(x,y) + (l-t)G(x,y) 0 i. t <_ 1 

which connects (0.7) and (0.8), and we see that the map H, in the middle 

of this family has (symmetry) properties very similar to those of a map 

considered by Guckenheimer, Oster and Ipatchki [l4]. 

To begin with, note that when a - 0 the behaviour of both the 

Maynard Smith map (0.7) and the Henon map (0.8) is determined by the one-

dimensional family (0.5). Chapter One is devoted to a description of the 

dynamics of such maps of the interval. 



CHAPTER ONE 

MAPS OF THE INTERVAL 

For a map f: I + I of an interval I C E and an initial point 

X £ I we are interested in the orbit of x, 0(x) = {f^(x)}*_Q, and its 

w-limit set, w(x) = n U f^(x). A point x 6 I and its orbit are 
NiP n.>N 

periodic, of period m, if f®(x) = x but f°'(x) ̂  x for 0 < n < m. Of 

particular relevance are periodic orbits which attract nearby points: a 

periodic orbit is locally stable or attracting if it has a neighbourhood 

of points which tend to the orbit under iteration. 

Recent interest in maps of the interval stems in part from the work of 

May [-28.], who examined several functions found in the biological literature, 

notably the quadratic family 

f(x) = rx(l-x) (l.l) 

and the discrete logistic relation 

f(x) = X exp[r(l-x)] (1.2) 

where the parameter r > 0 represents the growth rate of the population. 

May noted that as r is increased from zero both the families (l.l) and 

(1.2) have the same bifurcation sequence. For low values of r both maps 

have an attracting fixed point which becomes unstable as r increases, 

throwing off a stable orbit of period two. This in turn becomes unstable 

for higher values of r and gives birth to a stable orbit of period four. 

As r increases further this period doubling continues: attracting 

pgj-ĵ odic orbits of period 2 become unstable and create stable orbits 

of period For sufficiently large values of r (r > 3.828 in (l.l), 

r > 3.102 in (1.2)), May showed that these maps have orbits of period three 

and it follows from the 'Period Three Implies Chaos' of Li and York.e [25] 

-5-



that for these parameter values the maps have orbits of all periods. 

Of course ve do not pass immediately from the sequence of period 

doubling bifurcations to a point of period three and a "chaotic" regime; 

the transition is much more complicated. In fact Li and Yorke s result is 

a special case of the following: 

Theorem (Sarkovskii) 

Order the natural numbers M as follows: 

3A5A7A A2.3A2.5A2.7A A22.3A22.5A22.7A...A2^A A23A22A2A1 

If f: 1 is a continuous map which has an orbit of period n, then f 

has an orbit of period m for every m g 1 with nAm. 

An account of Sarkovskii's proof of this result is contained in 

Stefan [35]. It is clear from this theorem that periodic points play an 

important role in determining the structure of maps of the interval, but in 

general we wish to study points which display a weaker type of recurrence. 

We say a point x g I wanders under a map f if there is a neighbourhood 

U of X with the property that f^(U)^ U = 0 for each positive integer n. 

Otherwise x is a non-wandering point and the set of all such points 0(f) 

is called the non-wandering set of f. n(f) is a closed subset of I 

which contains all periodic points and uj—limit points, and is invariant 

under f : f ( n ( f))(CO ( f ) . 

Many of the basic questions about maps of the interval, including the 

structure of the non—wandering set, have been answered using the kneading 

theory of Milnor and Thurston [30]. We will describe these results within 

the class C of maps of the unit interval I = [0,l] with the following 

properties: 
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(1) f: I +I is and f(0) = f(l) = 0. 

(2) f has a single local maximtim c. f"(c) < 0 and f is strictly-

increasing on [0,c] and strictly decreasing on [c,l]. 

(3) The Schwarzian derivative 

sf'*) = - 1 

is negative on I \ {c}. 

Much of the theory that we outline below applies to larger classes of 

maps, in particular to functions which are simply continuous with a single 

local maximum, but the theory is most complete, and the results are simpler 

to state, withinthe class C. One of the main reasons for including the 

condition (3) on the Schwarzian derivative is that it restricts the number 

of stable periodic orbits a map may have: 

Theorem Singer {"3̂  1 

"5 

Let f: I I be a C map with a finite number of critical points 

and Sf(x) < 0 for each regular point x £ I. ^ p lies in a stable 

periodic orbit of f then there is a critical point of f or an endpoint 

of I whose w-limit set is the orbit of p. 

Thus the number of stable periodic orbits of a map with negative 

Schwarzian derivative is limited by the number of critical points of the map. 

For f 6 C if we further assume that either w(c) = {0} or f'(0)>l then 

f has at most one stable periodic orbit. 

Kneading theory encodes information about the orbit of a point in 

terms of infinite sequences of symbols and then exploits the natural order 

of the interval to investigate topological properties of a map. For a map 

f ^ C and a point x £ I let 
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( 0 if f"(x) = c 

+1 if f̂ (̂x) > c 

-1 if f^(z) < c 

The sequence eix) = (e (x)) _Q is called the itinerary of x. It has the 

property that e (f(x)) = G^+^(x), i.e. e_(f (x)) = oe_(x) where a is the 

shift map 

" '\'n=0' \ = 

However the mapping x e_(x) does not reflect the ordering of the interval, 

given the lexicographic ordering for sequences. Milnor and Thurston define 

the invariant coordinate e(x) to be the sequence (e„(x)) _ where ' ' ' — n n—u 
n 

6 (x) = n e.(x), or equivalently 
* i=0 ^ 

0 if f^( x) = c for some m with 0 < m < n 
e^(x) = 

+1 if f% is orientation preserving near x 

-1 if f% is orientation reversing near x. 

If the sequences are ordered lexicographically then the map x 6_(x) is 

monotone decreasing and the shift invariance for ^sequences is replaced 

by o(6_(x)) = 6^(x) e.(f(x)). 

Jonker [20] recovers Sarkovskii's theorem by considering the relation-

ship between periodic orbits and the periodicity of invariant coordinates. 

Besides the structure of the non-wandering set one of the main ques-1 

tions about maps of the interval is to decide when two such maps have the 

same topological properties. Two maps f, g of I are topologically 

equivalent or conjugate if there is a homeomorphism h: I + I so that 

hf = gh. An almost complete invariant of the topological equivalence class 

of a map f £ C is provided by the itinerary of the critical point c. 



which is called the kneading sequence of f. Certainly if h is a 

conjugacy between two maps f and g in C then it maps the orbit of the 

critical point of f to the orbit of the critical point of g, and it does 

so in an order-preserving way. Hence if two maps are topologically equival-

ent then they have the same kneading sequence. 

The converse is not always true. If f and g have the same 

kneading sequence and do not have stable periodic orbits then it turns 

out that f and g are conjugate. If they do have stable periodic orbits 

then aiy_) is periodic, of period n say, and there are three possibilities. 

y_ is said to be of critical type if = 0. If ^ 0 then x. is of 

positive or negative type as the number of -I's among is even 

or odd. The precise situation is described by the following result of 

Guckenheimer [13]. 

Theorem (Topological Classification) 

Let f and g ^ C have the same kneading sequence %. • Either 

both f and g have stable periodic orbits or neither does. If f and 

g do not have stable periodic orbits then they are conjugate. If f and 

g do have stable periodic orbits then oiy) is periodic, with period n 

say, and there are three possibilities. If y_ is of critical type then 

f is conjugate to g. If_ y_ is of positive type the stable periodic orbits 

of f and g have period n and f and g are conjugate.if these orbits 

are both stable from one side or both stable from both sides. If y_ is of 

negative type then the stable orbits of f and g have period n or 2n 

and f is conjugate to g if and only if these periods are the same. 

To illustrate Guckenheimer's theorem we reproduce the following 

figure from [l3]. Figure 1 shows the bifurcation locus for the initial 

period doubling sequence in a typical quadratic family f^ and indicates 
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wMch orbits have kneading sequences of the three types in the theorem. 

«. c c c 
8 D E 0 E 

Figure 1.1 

Bifurcation locus of a one-parameter family. 

& - X. positive type, one sided stable orbit 

B - positive type, two sided stable orbit 

c - X critical type 

D - X negative type, period ^ = period of stable orbit 

E - X negative type, period x = ^ (period of stable orbit) 

Intervals D are closed on the right, intervals B and E are open. 

To describe the non-wandering set of f 6 C we first need some 

terminology from symbolic dynamics. Let X = {l,...,n} with the discrete 

topology and let Z = X" be the set of infinite sequences 

a = (aQ,a ,...) of elements of X with the product topology. The 

(one-sided) shift a on Z is defined, as above, by o(a) = b where 

b. = a. . If A = (A ) is an nxn matrix whose entries are O's and 
i 1+1 ij 

1's, define the subset of by 

GZn ' A 
*i**i+l 

1, V i} 
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i.e. a sequence a is in if and only if each of its two-blocks 

a.a._ _ give a 1 when used as indices for the matrix A. Z. is a 
1 1+1 A 

closed a-invariant subset of Z and oIZ is called a subshift of finite 
n ' A 

type. If A is a permutation matrix then is a single periodic 

sequence, otherwise is homeomorphic to a Cantor set. o|Z^ is 

transitive if there is a sequence £ £ Z^ whose orbit under 

the shift is dense in Ẑ .̂ 

A closed invariant set A cr 0(f) for a function f: 1 1 is 

hyperbolic if there are numbers c > 0 and T > 1 so that for x € A either 

|(f^)'(x)| > CT^ or |(f^)'(x)| < c(^)^ for all k £ 1. 

Let Per(f) denote the set of periodic points of f. 

Theorem (Decomposition of 0(f)) 

If f £ C there is a decomposition of the non-wandering set n(f) 

into a finite or countably infinite number of closed, invariant subsets, 

n , j = 0,1,..., including a set if the number of sets is infinite. 

The decomposition has the following properties: 

(l) 

(2) If the decomposition is finite, 0(f) = then = 0, 

if i / j , 0 < _ i < p , and 0 0^ contains at most a finite 

number of points. 

(3) Oj is hyperbolic for 0 £ j < p. 

0 = Per u C , 0 < j < p, where Per is a finite subset of 
J J J J 

Per(f), C. is a Cantor set and f: C ^ C is conjugate to a 
J V J 

transitive subshift of finite type. 

(k) The set of points {x|w(x) € 0^} is open and dense in I if p 

is finite and residual if p = ». 
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(5) If f has a stable periodic orbit then p < <=» 

(6) If p < ® there are four possibilities for 0 : 

(a) ^ is a finite subset of Per(f) and contains at most one 

non-hyperbolic orbit. There is an integer N > 0 so that 0 

consists of one unstable orbit of each period N.2^ with 

0 < i < n for some n, and one stable orbit of period N.2°. 

(b) = Per o C where C is an invariant Cantor set and 
P P P P 

Fr(Perp) = C^. All periodic orbits are hyperbolic but is 

non-hyperbolic. Per^ consists of unstable periodic orbits, one 

of period N.2^ for each i > 1, for some N >0, 

(c) 0 = Per^U Cp where Per^ is hyperbolic and is a finite 

subset of Per(f). C is an invariant Cantor set which contains 

exactly one non-hyperbolic periodic orbit, f: + C is 

conjugate to a transitive subshift of finite type. 

(d) n consists of a finite set of unstable periodic points 

together with a finite union of intervals. f:n 0 is conjugate 

to a piecewise linear map. 

(7) If the decomposition has infinitely many sets then 0(f) = 0(x) 

for some x £ I and Ojf) is a non-hyperbolic Cantor set. 

The main parts of this theorem were proved by Jonker and Rand [20] 

for continuous maps of the interval with a single extremum. The simplifi-

cations within the class C follow from Guckenheimer [12] and van Strien 

[37J, who proves the hyperbolicity statements. Jonker and Rand place more 

emphasis on the connection with piecewise linear maps and include state-

ments concerning the topological entropy of the maps which we omit here. 

A further property of maps of the interval is that the iterates of 

nearby points may not remain close to one another. Guckenheimer uses 

the following definition of this phenomenon; f has sensitive 
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dependence on initial conditions>if there is a set X cz 1 of positive 

lebesgue measure and an e > 0 so that for each x £ X and any neighbour-

hood U of X there is a point y € U and an integer n > 0 with 

To decide whether or not a map f € C has sensitive dependence on 

initial conditions it is necessary to consider certain special points-

Denote by x the unique point x' ^ x with f(x') = f(x). A fixed 

point p of f^, n > 1, is central if Df^(p) > 1 and f^ is a homeo-

morphism on the interval (p,c). The central point p is restrictive 

if f ° ( c ) € (p,p'), i.e. f^ maps (p,p') into itself. 

Theorem (Guckenheimer [13]) 

Suppose f 6 C has nonstable periodic orbit. Then f has 

sensitive dependence on initial conditions if and only if there is an 

K > 0 so that n _> K implies f^ has no restrictive central point. 

If f £ C has a stable periodic orbit then f does not have 

sensitive dependence on initial conditions. 

The connection between sensitive dependence and the decomposition of 

n(f) is that those f with no stable periodic orbit and a decomposition 

of 0(f) into a finite number of sets have sensitive dependence on initial 

conditions, while if n(f) consists of infinitely many sets then f has 

neither a stable periodic orbit nor sensitive dependence on initial condi-

tions. Guckenheimer also shows how sensitive dependence is related to 

topological entropy and piecewise linear maps. 

There is one further aspect of the behaviour of maps of the interval 

which deserves mention and this differs from the properties described 

above in being quantitative rather than qualitative. Suppose that a 

differentiable map f: I I with a single critical point c has a point 
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p of period m. If g = then the local stability of the periodic 

orbit containing p is determined by the linear approximation to g at 

p. In a new coordinate y = x-p we have 

g(y) = yg'(p) + O(y^) 

and so g^(y) + 0 as n + «= provided |g'(p)| <1. If r = |g'(p)| < 1 

then g^(y) ar" and if r # 0 the convergence is geometric. Now if the 

orbit of p contains the critical point c then r = 0 and convergence 

is faster than geometric, and such an orbit is called superstable. In the 

initial period doubling sequence for a one-parameter family such as (1.1) 

or (1.2) there is a sequence of parameter values r^jr^jr^,-.- so that 

f^ has a superstable orbit of period 2̂  and Feigenbaum [lO] observed 
j • 

that the limit 

r .-r 
i m . 5 
Tr*™ ^n+2 ̂ n+1 

exists and is independent of the particular family f^. 6 depends only 

on the type of the critical value and for a quadratic family 6 = 4.6692... . 

Also, as the period of an attracting periodic orbit doubles with a change 

of parameter the behaviour of f^ repeats itself for on a smaller 

scale. In the limit as n -̂  «> this rescaling approaches multiplication 

by a ̂  where a = -2.5029-.. . 

Feigenbaum's observations have been rigourously justified by Collet, 

Eckmann and Lanford [j] for maps of the form f(|x|^*^), for e sufficiently 

2 

small, and by Campanino and Epstein [6] for C maps. 

As we mentioned in the introduction, all these results apply to 

Maynard Smith's map (O.j) or the Henon map (O.b) when the parameter a = 6. 

Much less is known about maps of the plane, for example if a 5̂  0 in (0.7) 

or ( 0 . 8 ) . An analogue of Li and Yorke's 'Period Three Implies Chaos' 
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result [25] is given by Marotto [2?]. Suppose F: is 

differentiable in B (z), the closed ball of radius r with centre 

z € 1^, and that F is not one-to-one on 1^. The point z(E is called 

an expanding fixed point of F in B (z) if F(z) = z and all the eigen-

values of the linearization dF(x) have modulus greater than one for each 

x€B^(z). If z is an expanding fixed point of F in B (z) for some 

r > 0, then z is called a snap-back repellor of F if there exists a 

point x^EB^lz) with x^ # z, f"*(x̂ ) = z and |DF^Xx^)| # 0 for some 

positive integer m. The main part of Marotto's result is the following 

Theorem 

If F has a snap-back repellor then there is a positive integer N 
III! I Iimm ii • in * iii i i ii wiiimii,mm. in 1 1 1 1 11 1 iiiim-mm-— 

so that for each integer n ^ F has a point of period n. 

Rather than search for snap-back repellors in Maynard Smith's family 

to show that (0.7) has "chaotic" behaviour for certain parameter ..values we 

will study (0 .7 ) through the local bifurcation theory described in the 

next chapter. 



Chapter Two 

Local Bifurcation Theory 

In this chapter we describe the local bifurcations of fixed points in 

two-parameter families of diffeomorphisms of the plane, and show how these 

fit together to give an overall picture of the parameter space for a general 

family of maps. 

Let Diff^(E^) denote the set of C^-diffeomorphisms of 1°. Two 

diffeomorphisms F, G 6 Diff^(l^) are conjugate if there is a homeomorphism 

h: E* + with h? = Gh. If F: if * if + if, (%,%) + F (x), is a 

k-parameter family of elements F € Diff^(l^) we say that is 

a regular point-for the family if there is a neighbourhood U of in 

so that for each y g U, F is conjugate to F . If y is not a 

^ ^o 
regular point then it is a bifurcation point and the set of all such 

points is called the bifurcation set of the family {F }. 
y 

A fixed point p 6 2°̂  of F 6 Diff^d ) is hyperbolic if dF(p) 

has no eigenvalues of unit modulus. If F has a hyperbolic fixed point 
o 

p it follows that y ̂  is a regular point, so to study the bifurcations 

of fixed points we must consider those maps F with a non-hyperbolic 
^0 

fixed point p . In such a case we wish to describe the different topologi-

cal types of phase portrait which occur for F^ with y near y^. Without 

loss of generality we may assume y^ = 0 and p^ = 0, and of course the 

results we give apply to periodic points by considering the relevant 

iterate of the map. 

For a family F^ of elements of Diff^(l^) with F^(0) = 0 let us 

consider the different ways in which 0 may be non-hyperbolic. The first 

possibility is that a single real eigenvalue of dP (O) lies on the unit 

circle, in which case it is clearly +1 or -1. We may then choose 

coordinates so that F (x,y) = (f (x,y),g (x,y)) with 77-(0,0) = ±1 
p p y o-A. 

—16— 
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according to whether the critical eigenvalue is +1 or -1, and 

ago 

7̂  1. This last condition means that the equation g^(x,y) = y 

can be solved by the Implicit Function Theorem for a unique (f function 

yCx,y) near x = 0, u = 0 with y(0,0) = 0 and g^(x,y(x,y)) = y(x,u). 

The fixed points of are then found by solving f^(x,y(x,y)) = x, 

where f^ is now a family of maps in a single variable, so the problem is 

reduced to a one-dimensional one. The bifurcations of one-parameter families 

of maps in a single real variable are well known and we review the results 

for this case in §2.1. 

If the fixed point should lose stability by a complex conjugate pair 

of eigenvalues passing out of the unit circle then in general an invariant 

circle bifurcates from the fixed point through a Hopf bifurcation. In §2.2 

we outline a proof, due to Lanford [23], of the Hopf Bifurcation Theorem 

for one-parameter familes of maps of the plane. The dynamics of the map on 

the bifurcated circle are rather delicate and, following Arnold [s], are 

best understood in the context of two-parameter families. In a one-parameter 

family we would not generally cross the unit circle at points where the eigen-

values of a? (O) are roots of unity; we only expect these 'resonances' 

to occur in two-parameter families. In the ;case of weak resonance, = 1, 

k ^ 5, the Hopf Bifurcation Theorem guarantees a bifurcating circle and in 

§2.3 we extend the analysis of looss [19] from the one-parameter to the 

two-parameter case to describe the behaviour of the map on the circle. 

In §2.U we discuss briefly the strong resonances = 1, 

k = 1,2,3 or 4, which involve some unsolved problems. These bifurcations 

are studied by Arnold [3] and Takens [38], who approximate the map by 

the time-one map of a vector field invariant under a rotation by 2ir/k 

and then investigate this vector field. looss [l9] gives results for 

one-parameter families of maps in the cases k = 3 and 4, and the 
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latter case is also considered by Wan [UO] and Lemaire-Body [2U], 

We conclude with an indication of how these bifurcations fit together 

in a family such as the Maynard Smith map (0.7) or the Henon map (0.8). 

Of course these results can also be applied to maps of 1^, or more 

generally to maps of a Banach space when a fixed point loses (or gains) 

stability by one or two eigenvalues crossing the unit circle. The results 

for maps of 1 are also of interest for the bifurcation of a limit cycle 

of a Vector field into an invariant torus and the resulting dynamics on 

the torus. In both instances we refer to looss [19] for further details. 

§2.1. Bifurcations in One Dimension 

For a Cp" map f: E + E recall that a fixed point p is asymptoti-

cally stable if lf^P)| 1 ajid unstable if |^^p)| >1. In a one-

parameter family F: E % E + E, (x,p) F Ix), with F(0,0) = 0 there are 

two types of bifurcation which can occur, corresponding to the eigenvalue 

X(0) = — (0,0) being +1 or -1, and the following propositions, due 
OX 

to Guckenheimer [12], describe the behaviour of the map in each case. We 

assume that F is cf' with respect to the parameter. 

Proposition 2.1 (Fold Bifurcation) 

2 
Let F: E X R E be a one-parameter family of C maps satisfying 

2 
(1) F(0,0) = 0 12) (0,0) = 1 (3) (0,0) > 0 

(k) (0,0) > 0 

Then there are intervals (y^,0) and (0,%^) and e > 0 so that 

(i) If y 6 (y^jO) then F^ has two fixed points in (-e,E). One 

is stable and the other unstable. 

(ii) If y 6 (0,%^) then F has no fixed points in (-e,e). 
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Proof Let g(x,y) = F(x,y) - x, then we have 

2 
g(0,0) =0, (0,0) = 0, (0,0) > 0 and (0,0) > 0. 

3K .%2 By 

The first and last of these properties together with the Implicit Function 

2 

Theorem give a unique C function y(x) for x near 0 with y(0) = 0 

and g(x,y(x)) = 0. Differentiating this equation we find 

(O) = 0 and ^ ^ (O) < 0 

so y(x) has a maximum at x = 0 and the existence statements follow. 

For the stability of the fixed points note that (3) implies that 

ax 
(x,y(x)) is monotone increasing at x = 0, so the bottom branch in 

Figure 2.1 consists of stable fixed points and the top branch of unstable 

ones. A X 

• A 

Figure 2.1. Fold Bifurcation 

s denotes a branch of stable fixed points, u a branch of 

unstable ones. 

Remark. Reversing one of the inequalities (3) or (U) reverses the roles 

of the intervals (y^,0) and (0,y ̂ ). 

Proposition 2.2. (.Flip Bifurcation) 

3 
Let F:lxl->-l be a one-parameter family of C maps satisfying 

11) F(o;o) = 0 (2) (0,0) = -1 
d X 
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Then there is a uniq.ue branch of fixed points x(y) for y near 0 

with x(0) = 0. If the eigenvalue X(y) = -^(x(y),y) satisfies 

(3) ^ lO) > 0 

and also 

(,) £ £ (0,0) < 0 

then there are intervals (y^,0) and (C^y^) and e > 0 so that 

(i) if y € (y^,0) then F has one unstable fixed point and 

one stable orbit of period two in (-e,e). 

(iij If y € (0,y^) then has a single fixed point in (-E,E) 

which is a stable fixed point of F . 

Proof The existence of the branch of fixed points follows immediately 

from the Implicit Function Theorem, and the assertions about the stability 

of the fixed point come from 13). To find the periodic points let 

h(x,y) = F^(x,y) - x, then 

2 3 
h(0,0) = 0, (0,0) = 0, (0,0) = 0 and (0,0) < 0 

4% 3% 

Now factor out the fixed point by defining g(x,y) by 

h(x,y) = (x-x(y))g(x,y), 

then we have 
2 

g(0,0) = 0, (0,0) = 0, (0,0) < 0 and (0,0) < 0. 
3x 

As in the preceding proof, there is a unique C function y(x) for 

X near 0 with y(0) = 0 and g(x,y(x)) = 0. Again, (O) = 0 and 

2 
A_iL ( o ) < 0 so y(x) has a maximum at x = 0 and the statements on the 

existence of the period two points follow. For the stability of the 
,2 2 

periodic points note that — — (0,0) = 0 and together with (U) this implies 
dx 
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that (x,y(x)) has a maximum at x = 0. 

J 

Figxire 2.2. Flip Bifurcation. 

u(x) represents a branch of period two points, x(y) a branch 

of fixed points. 

1. Changing the inequality (3) reverses the stability of the 

fixed point, while changing (U) reverses the stability of the period 

two points. Changing either (3) or (h) reverses the interval in 

which the period two points lie. 

2. In Proposition 2.2 note that 

(0,0) = -2 (0,0) - 3('^0,0))^ 
8x'̂  3x^ 9x 

and recall from Chapter One that the Schwarzian derivative of F at x is 

2 
SF(x) = I 

where F' denotes 

3 2 
. Thus, since ~ (0,0) = -1, ^ O (0,0) = 2SF(O) 

9x 3X 

and the sign of the Schwarzian. derivative of restricts the type 

of flip bifurcation which can occur for F^. In particular, for a 

family of maps with negative Schwarzian derivative a flip bifurcation 

necessarily involves a stable orbit of period two and the 'subcritical' 

bifurcation shown in figure 2.3 cannot occur. In this example an 
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unstable orbit of period two coalesces with a stable fixed point 

at y = 0 to leave an unstable fixed point. This remark is the 

basis for the paper of Allwright [l]. 

& n W Two 
Po\AH 

Ftace<di PojiiVs 

L 

Figure 2.3. Subcritical Flip. 

In many applications the class of maps to be considered is likely to be 

restricted in some way and different bifurcations from those described 

above may occur. Perhaps the most common restriction is that the origin 

should be fixed for all values of the parameter and in this case rather 

than the fold for X(Oj = 1 we have a transcritical bifurcation as 

described by the following proposition. 

Proposition 2.3. 

2 

Let F r l x l ^ l be a one-parameter family of C maps satisfying 

(1) F(0,w) = 0 

(2j H" (0,y) = X(y), X(0) = 1 and (O) > 0 

2 
(3) (0*0) > 0. 

3x 

Then F has a unique bifurcated branch of fixed points x(y) for y near 

0 with z(0) = 0 and x(y) ̂  0 if y / 0. The origin is stable if 

y < 0 and unstable if y > 0 while the fixed points on the bifurcated 

branch have the opposite stability. 
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Proof. The Taylor expansion of at x = 0 implies that 

3h. 
FC%,u) = + %hCx,u) where hCO,p) = 0 and. therefore C0,0) = 0. 

Differentiating F we have 

^ (x,y) = X(y) + X (x,y) + hCx,y) 
3x 

^-1- tx,p) = X Cx,y) + 2 1^ (x,p) 

and 

Therefore 

and 

2 

( 0 , 0 ) = -p —p ( 0 , 0 ) > 0 
** 3% 

2 

The non-zero fixed points of F occur at the zeros of 

g(x,y} = X(y)-1 + h(x,y). Here we find 

g(0,0) = 0 

and 

If (0,0) = f (0,0) > 0 

If (O'O) = ^ ° 

so by the Implicit Function Theorem we may solve g(z,y) = 0 for either 

X (y) or y(x), and these functions are mutual inverses. Thus the 

branch of bifurcating fixed points exists on both sides of y = 0 and 

crosses x = 0 transversely. For the stability, differentiating 

gCx(y),y) = 0 we have 
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and so 

- I f I f 

2 
- ^(0)/%^—^ (0,0) 

^ 3X 

3 ^ ( 0 , 0 ) 

dn 
( 0 ) 

Hence the non-zero fixed point has the opposite stability to the origin 

for ]i near 0. 

Figure 2.4. Transcritical Bifurcation. 

Notice that this is the bifurcation which occurs in the family 

f Iz) = yx(l-x) at y == 1. 

A second possibility is that the map should be restricted by a 

synnnetry such as F(—x,y) = —F(x,y), i.e. F is an odd function of x. 

In this case we necessarily have a trivial fixed point, F(0,y) = 0, but 
2 
3 F 

the previous proposition does not apply since we also have g- (0,0) = 0. 
ax 

Instead we have a Pitchfork bifurcation as described in the following 

result. 
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Proposition 2.4. 

o 
Let F:lxl-»-E be a one-parameter family of C maps satisfying 

(1) F(-X,y) = -F(x,y) 

(2) "I— (0,]j) = xCp), X(0) = 1 and (0) > 0 
o-X. ay 

(3) (0,0) < 0. 
9x 

Then there are intervals (y^,0) and (O.^g) and e > 0 so that 

Ci) if y 6 (y^jO) then has a single stable fixed point, at 

the origin, in (-e»e)-

(ii) If y € (0,yp) then F has three fixed points in (-e,e). The 
y 

origin is an unstable fixed point while the other two fixed points 

are stable. 

Proof. As in Proposition 2.3 put F(x,y} = x(y)x + xh(x,y), where 

h(0,y) = 0, (0,0) = 0; but now h is even, i.e. h(-x,y) = h(x,y) 

2 
This implies that (0,0) = 0 and therefore (0,0) = 2 ̂  (0,0) = 0. 

az 3%^ 3= 

The non-zero fixed points of F occur at the zeros of 

g(x,y) = X(ij)x + xh(x,y) 
and here 

g(0,0) = 0 (0 0) = 3^(0) > 0 and 46(0,0) = A&{o) = 0 
3y dy gx ax 

Therefore we may solve g(x,y) = 0 for a unique y(x) for x near 0 

with 

y ( 0 ) = 0 , ( 0 ) = - 2 6 ( g , 0 ) / 4 6 / ( o , 0 ) = 0 
o-A- gx dy 

and 

,2 .2_ , _3 
(o) - - (0,0)/ ̂  (0,0) = - T (0,0)/§^ (o) > 0 

ax^ 3%^ Bp 3 

Here y(x) has a minimum at x = 0 and the existence statements follow. 
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2 3 
% r 3 P 

For the stability note that 10,0) = 0 and. — T (0,0) < 0 imply 
3x 

g 
that — Flx,p(x)) has a maximum at x = 0. 

3x' 

Figure 2.5. Pitchfork Bifurcation. 

~yjL 

2.2. Hopf Bifurcation. 

2 2 

We now turn to maps of the plane, F^: 1 ->• 1 , depending on a single 

j-eal parameter p . As usual we say that a hyperbolic fixed point p of 

F is a sink, saddle or source according to whether dF (p) has both 

eigenvalues strictly inside the unit circle in the complex plane, two real 

eigenvalues with jx^| < 1 < IXgj, or both eigenvalues with modulus 

strictly greater than one. If a single real eigenvalue crosses through 

±1 as the parameter is changed then, as indicated in the introduction to 

this chapter, we can reduce the problem to a family of maps in E and 

apply the results of the previous section. The possibility of most inter-

est here however is that F^ has a fixed point at the origin and dF^(O) 

has a complex conjugate pair of eigenvalues on the unit circle. F must 

then have a fixed point for y near 0, which we may assume to lie at 

the origin, and if the eigenvalues pass out of the unit circle as % 

passes through 0 then the origin changes from a sink to a source. The 

following theorem shows that, under certain conditions, an invariant circle 

bifurcates from the origin. For simplicity of exposition we assume F 

is smooth (i.e. c") and depends smoothly on the parameter. 
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Theorem 2.5. (Hopf Bifurcation Theorem) 

2 

Let F be a one-parameter family of maps of 1 satisfying 

(a) F (O) = 0 for y near 0 

(h) dF (O) has two non-real eigenvalues x(y) ,X(y) f o r P near 

0 with IX(0)I = 1 

(c) 
dU(u).l > 0 

p=0 
dp 

and (d) X = x(0) is not an m-th root of unity for m = 1,2,3 or U. 

Then there is a smooth ̂ -dependent change of coordinates bringing F^ 

into the form 

F (X) = G (X) + 0(|X|5) X 6 if 
p p 

and there are smooth functions a, b and 6 so that in polar coordinates 

o 2 
Ĝ (r,(}>) = ( |xip)|r - a(y)r , (j)+ e(p) + b(p)r ). 

Moreoever, for all sufficiently small positive (negative) y , F has an 

attracting (repelling) invariant circle if a(0) > 0 (a(0) < O); and 

a(0) is given by the following formula 

In complex notation we can write 

F Iz) = XZ + % I + 0(|z|^l 
° &=2,3 p+g=& 

and then 

.(0) = Be + l(02l' - (2.1) 

The bifurcation is said to be supercritical if the circle exists for 

y > 0 and subcritical if it exists for y « 0. The two possibilities 
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are illustrated below, where the orbits of the map would be sequences 

of points lying on the curves shown 

40 

(a) Supercritical 

Figure 2.6. Hopf Bifurcation 

(b) Subcritical 

The theorem was originally proved independently by Backer [33] and 

by Ruelle and Takens [32]. Below we sketch a proof due to Lanford [23] 

who also includes the condition # 1. A modification to deal with 

this case may be found in looss [19] who gives more precise details of 

the differentiability conditions required and the regularity of the 

bifurcating circles. The formula for a(0) is computed by looss [19] 

and by Wan [39 J• 

Sketch of Proof 

Since the eigenvalues cross the unit circle with non-zero speed 

(condition (c)), we may reparameterize so that the eigenvalues of 

dF (0) are (l+p)e~^®^^^ and then we make a smooth ^-dependent 

coordinate change so that 
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/coseCy) -sine(p) 

dF^(O) = (1+n) ( 

\sine(ij) cos8(p)y 

In complex notation we then have a map of the form 

F^(z) = X(y)z + R(z,z,y) z £ IE 

where R contains the non-linear terms, and we use the following lemma 

to bring F into the appropriate canonical form. 

P.A. If f 1, n =1,2,3 or I. then there is a smooth 

u-dependent change of coordinates bringing into the form 

F^(z) = X(p)z + a(y)z^z + gCyjz^ + 0(|z|^; 

Furthermore, if f 1 we can make 3(y) - 0. 

Proof Write R(z,z,p) = I I + 0(|z|^) where the 
&=2,3,k p+q=2 

E are smooth for y near 0. The idea of the proof is to remove 
pq. 

as many of the non-linear terms in R as possible, starting with the 

quadratic terms and dealing successively with terms of higher order. For 

the quadratic terms, define 

w Z+Y(Z) (2.2) 

where y is a homogeneous function of degree 2 in z and z: 

Y(z) = I Y (w)z"z 
p+q=2 

Inverting (2.2) we have 

z = w Y(W) + 0(|w|^) (2.3) 
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£Lnd in the w coordinates the map becomes 

F(W) = F(Z) + Y(F(z)) 

where, by (2.3), 

F(z) = AW - Xyiv) + I + 0(|w| ) 

and 
p+q=2 

Y(F(Z)) = Y(XW) + 0(|W|3) 

Therefore 

= XV + (ggcT + (Eii-XYii+XXYii)vv + (Eo2-AY02**^Y02)*^'' 

"3 

Since x f 1 and X # 1 we can remove all the quadratic terms by-

choosing 

° ° dSbr-
In general, if we make a coordinate change of the form (2.2) with y 

homogeneous of degree £ in z and z, and if g^g^p) is the 

coefficient of w V in F( w), then 

A(w)*)Ypq 

Thus we can choose y to make vanish except in the cases when 

p̂-g.-i _ 2, p+q = a. 

Therefore if X^ 5̂  1 for n= 1,2,3,4 or 5 the only term which cannot 

be removed is that in ẑ z", while if X^ = 1 we cannot remove the term 

in z^. If we carry through all the coordinate changes then a long 

calculation shows that 
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a(0) = EiiEgo x(l_x) 

I F | 2 2 1 F | 2 
( 2 X - 1 ) _ i G n l i S p g l 

1 - X 
2 — 
X - X 

+ 5 
21' 

( 2 . 4 ) 

Having obtained a suitable normal form the the map the next step is to 

change to polar coordinates. Let z = re^^, F (zj = Re^*, then 

R = (l+u)r + â Cy)!"̂  + a^ly,$)r^ + O(r^) 

& = (j) + e(y) + b (y)r^ + b_(y,<|>)r̂  + O(r^) 

where 

(2.5: 

a^Cy) = Re[a(y)e 
ovy, 

b„(v) = I m [ ^ ] 

Let a(y) = -a^fy) and assume a(0) ^ 0. Then a(0) = -Re[a(0)x] may 

be found from (2.U) and has the value given in the statement of the 

theorem. F now takes the form 
o 

R = r(l - a(O)r^) + O(r^) 

$ = *+ e(o) + 0(r ) 

so when y = 0 the origin is asymptotically stable if a(0) > 0 and 

unstable if a(0) < 0. 

We illustrate the rest of the proof for the supercritical case 

a(0) > 0. For a(0) < 0 the proof proceeds in a similar manner. 

First suppose that X^ ̂  1, then by lemma 2.6 we can make the 

coefficients aĵ  and b^ vanish and the map is 

r R = (1+y)r - a(y)r^ + O(r^) 

2 ij. 
D = + 6(y) + b (y)r + 0(r ) 
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Ignoring the terms oCr^) in the r coordinate and 0(r ) in <), 

gives a truncated map which has an invariant circle of radius r^ ~/a(y) 

for small positive u- Since the full map is only a small perturbation of 

the truncated map ve.look for an invariant circle for the full map close 

to the circle of radius r^ which is invariant for the truncation. 

We make the following sequence of coordinate changes: 

(l) Rescale so the invariant circle for the truncated map has 

unit radius: 

(2) Translate the line r = 1 in the (r, -plane to the *-axis: 

r •H- r-1 

and (3) Rescale once more: 

r H- r 
4 

The effect of all this is to introduce a new coordinate 

X = — (JBLEI r - 1 ) (2.6) 

and in the (x,(j))—plane the map takes the form 

X = (l-2y)x + ŷ ^̂ X̂ (x,(j),y) 

o /p 
$ = <}) + 6^(p) + y '̂2̂ (x,4)jy) 

(2.7) 

where and are smooth in x,* and y for |x| 1, 4i€[0,2tt] 

and y small. 

For each small, positive y we look for an invariant manifold of 

the form M = {x = ul*)} where 
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(i) u(4i) is periodic in (j) with period 2n, 

(ii) V |wC*)| <1, 

and(iii) u((f>) is Lipschitz continuous with Lipschltz constant 1 

i.e. |u(^^) - uf^g)] <_ 

Let U denote the set of all functions u: 1 ->• 1 satisfying (i) - (iii). 

Then U is a complete metric space with metric 

d(iL ,u ) = sup |u (*)-u (*)| 
^ ^ *E[o,ar] ^ ^ 

The main steps in the proof are now to start with a manifold 

M = {% = u(^)} with u 6 U and to show that the new manifold F (M) 

obtained by acting on M by also has the form {x = ul*)} with 

u £ U. The non-linear mapping f: U + U constructed in this way is 

then shown to be a contraction for small y > 0. The Contracting Mapping 

Principle now guarantees a unique fixed point u* of f and 

{x = u*(.<}>)} is the required invariant circle. We also have that the 

circle is attracting, in the sense that if |x| 1 and (x ,(|) ) denotes 

F^(x,^) then 

lim (x - u*(4î j) = 0. 
n-xo 

In the case when = 1, defining x by (2.6) transforms (2.5) to 

X = (l-2w)x + wf($) + 

# = 4)+ + Ay + p f^(x,^,y) 

bgCO) a^(0,+) 2 
where A = —Tzry and f(*) = =-7% has period — in We now 

agio) 5 

look for a change of coordinates so the map takes the form (2.7). Let 
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X - x+gC^) with g((f> + ~ ) = g(^); then X = X + g($) satisfies 

X = (l-2y) Tx-gC ̂)] + }jf((j)) + g((J) + + Ay + 0(|y|^^^)) + 0(|p|^^ ) 

Thus we have 

X = (l-2u)x + 0(ki|3/2) 

provided 

A ^(41) + 2g(<j)) + f(*) = 0. 

So we choose a smooth g(*) of period ̂  which solves this linear 

differential equation and continue from (2.T) as before. 

Remarks 1. The region |x| <_ 1 corresponds to an annulus of width 

0(y) about the circle of radius r for the truncated map. It is 

not difficult to show that the basin of attraction of the invariant 

circle is larger than this annulus and in particular it contains 

all points inside the circle, except the fixed point. See loose 

[19] for the details. 

2. The proof sketched above uses the fact that F is k _> 5, 

and asserts that the invariant circle is Lipschitz continuous. By 

assuming more differentiability of F we can obtain a smoother 

circle. For details see looss [19] or Lanford [23]. 

3. The essential point in the proof is that when the full map is 

considered as a perturbation of its truncation then the perturbation 

•3/2 

must tend to zero faster than y as p + 0. i.e. in the p X̂ (x,<f>,y) 

term which appears in the x-coordinate, and in the similar term in (j) , 

the crucial fact is that the power of y which appears is larger than 

one. 
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Dynamlcs on the Invariant Circle 

Having obtained a (locally) attracting invariant circle the next task 

is to understand the behaviour of the map restricted to the circle. There 

are essentially only two possibilities for the non-wandering set n(F), and 

to distinguish between the two we need the concept of the rotation number 

p of F, an idea which dates back to Poincare. We describe briefly the 

definition and properties of p; a detailed account may be found in Nitecki 

[31]. 

1 1 

A homeomorphism F: S + S lifts to a map F: E + E via the 

projection exp: I S^. The limit p(F) = lim — e x i s t s , is 

independent of the choice of F and t, and is called the Rotation Number 

of F. p(Fj is a continuous function of F in the C°-topology and has 

the following basic properties: 

(a) If P(F) € Q, P(F) = p/q say, then F has a periodic orbit of 

period g_. 
(b) If p(F) € then F has no periodic orbit. 

If we assume that F is and its derivative dF has bounded variation 

then a result of Denjoy states that if p(F)6 1\Q then F is topologi-

cally conjugate to rotation by p(F). i.e. there is a homeomorphism 

h: with F = h"^R h, where R :8 + 8+p (mod 1). For further 
P P 

results on conjugating F with an irrational rotation see Herman [l8]. 

So assuming F is sufficiently smooth, the two possibilities are 

either 

(i) p(F) is irrational, in which case F is conjugate to an 

irrational rotation and n(F) = with the orbit of each point 

dense in the circle, 

or 
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(ii) p(F) is rational, and n(F) contains a periodic orbit. 

From the generic point of view the following theorem shows that it is this 

latter case which occurs. 

Theorem (Peixoto) 

An open, dense subset of Diff^(S^), r >_1, consists of diffeomorphisms 

with the following properties 

[i) The non-wandering set n(F) is finite, 

(ii) All periodic points of F are hyperbolic. 

Any diffeomorphism satisfying (i) and (11) is structurally stable. 

For the proof see Kitecki [3l]. 

Thus the structurally stable diffeomorphisms of the circle are those 

with rational rotation number and 0(F) consists of a finite number of 

periodic orbits, all of the same period, with sinks and sources alternating 

around the circle. However, in our application above we have a one-parameter 

family of diffeomorphisms F^ and Herman [17] has shown that in such a 

family with y € [a,b] say, then provided p(F^) 5̂  p(F^) the set of 

parameter values p with F conjugate to an irrational rotation has 

positive Lebesgue measure. So if we pick a value of y at random and 

examine the dynamics of F on the bifurcating circle then generically we 

expect to see periodic orbits on the circle, but from a measure theoretic 

point of view we may easily have chosen a y with F^ conjugate to an 

irrational rotation and see an orbit of F^ which is dense in the circle. 

Clearly this makes it very difficult indeed to predict which type of behav-

iour will occur—regardless of any problems we may have in identifying 

periodic orbits with very large periods. A clearer picture of what 

happens after the Hopf bifurcation emerges when we study the behaviour 

of two-parameter families in the next section. 
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§2.3. Weak Resonance 

To understand the dynamics of a family of maps after the Hopf bifurca-

tion requires a closer study of those cases where the eigenvalues cross the 

unit circle at roots of unity: X = g^mip/q^ with p/q. in lowest terms. 

These cases fall into two types. The pair (p,q) is said to be a strong 

resonance if q = 1,2,3 or otherwise it is a weak resonance. We deal 

here with the latter case; the strong resonances involve some unsolved 

problems and are discussed in the next section. 

2 2 

Now for a one-parameter family F :(E ,0j (l ,0) whose linearization 

at the origin d? (O) has a complex-conjugate pair of eigenvalues 

X(e) ,X(e) crossing the unit circle transversely when e = 0, an orbit of 

period q can bifurcate from 0 only if X(0) is a q-th root of unity. 

But Brunovsky [5] has shown that, generically, the eigenvalues of a one-

parameter family do not cross the unit circle at roots of unity. So from 

the generic point of view periodic points never bifurcate from a fixed point 
2 

of a one-parameter family of maps of 1 through Hopf bifurcation. How-

ever, this is rather misleading since, as we shall see below, in general 

an infinite number of periodic orbits are created and destroyed on the 

invariant circle soon after the Hopf bifurcation. 
-2 2 

Consider a smooth two-parameter family F, ,0) (l ,0) where 
V M 9 V / 

the eigenvalues of dF/ \(0) are X(y, v),A(y ,v) and x(0,0) is a q-th 
V y ,v / 

root of unity. Both Arnofd 13] and Takens [38] aj^roximate the map by 

where N is arbitrarily large and is the time-one map of a vector 

field invariant under rotations by 2n/q. For the case of weak resonance, 

q ̂  5, the bifurcation diagram for this vector field is shown in Figure 2.7, 

and since each corresponding phase portrait for the time-one map 
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is structurally stable these phase portraits will persist for the map 

/ \ • 

Figure 2.1. Weak Resonance. 

We will prove that this is the bifurcation diagram for - up to 

a change of parameters and with the obvious changes from a continuous flow 

to a discrete one - by adapting the analysis of looss [l9] from the one-

parameter to the two-parameter case. 

Theorem 2.7. (Weak Resonance) 

2 
Let F^ ^^ be a smooth, two-parameter family of maps of 1 such that 

2 
for all (y,v) in some neighbourhood U of 0 in E 

and 

(-1 

(b) dF/ x(0) has a pair of complex conjugate eigenvalues 
vy j\)) 

X(p,v) and X(vi,v) with |XCO,0)| = 1 and Arg X(0,0) = with-p/q 

in lowest terms and g > 5, 

(c) The map (n,v) Xly,v) is non-singular at y = v = 0. 
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Then there is a smooth, parameter-dependent change of coordinates bringing 

F/ \ into the form 
Ui ,v J ^ 

i + 0(1: I*) (2-8) 

or ' in polar coordinates, z = re^*, ^^(z) = Re^*, 

fR =|XCp,v)|r + 2 _ (%,v,*)r%-l+ Ofr^) 

(2.9) 

ap,! 2m+l q-1 

[5^] ^ 

$ = * + Arg X(y,v) + I v)r^ ^+0(r^ ) 
m=l ^ ' 

Here [•^^1 denotes the integer part of , the a's and h' % a's and g are 

smooth functions of y and v for (u,v) near (0,0), and a^_^ and 

both have the form 

A(y,v)cos(q(j)) + B(y,v) sin(q<j)) (2.10) 

For all sufficiently small (vi,v) with |X(ii,v)| > 1 (|x(y,v)| < 1) the 

map F, \ has an attracting (repelling) invariant circle if 
ly»v; 

a^fO.O)* 0 (a^fO.O) > O). 

Moreover, if g = g(0,0) 0 and bg = b2(0,0) f 0 then the map has 

two orbits of period q on the circle, one stable and the other unstable, 

for values of y,v lying within a narrow "tongue" in the parameter plane 

whose boundaries 

tg j g 12 

^ 2 
^3 

have a common tangent at n = v = 0. 

Proof The normal form (2.8) follows from the proof of lemma 2.6. 
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and in polar coordinates this gives (2.9), where 

â Clijv) = ReLagtw/v) e iArgA(p,v)j^ b^Cyjv) = Im [ 

(2.11) 

We now reparameterize, defining y,v by 

y =|X(p,v)|-l, V = Argx(y,v) -

The map (ii,v) «+ (y,v) is a diffeomorphism from a neighbourhood of the 

origin in the ((j,v)-plane to a neighbourhood of the origin in the (p,v)-

plane by (c). Omitting the tilde on the new parameters, the full map in 

polar coordinates becomes 

' R = (l+y)r + ^2m+l^ u, + a^_^(p,v, + Olr^J 

$ = * + V + Z b (w,v)r^^ + b (w,v,*)r9"2 + 
q_ <ai q-<d 

where the functions a_ , b„ , a ^ and b „ are of course different 
2m+l <dm q-1 <i~d 

to those in (2. 9), but their values at p = v = 0 remain unaltered. 

We now proceed as in the proof of Theorem 2.5, restricting attention 

to the supercritical case 8^(0,0) <0. Truncating the map at terms of 

order g-1 in the r coordinate and looking for a fixed point R = r 

leads to 

" * ^ = 0 

which has a unique positive solution r (p ) near y = v = 0 for 

y > 0 with 
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Retiirning to the full map, define a new coordinate x by 

4 

so the map becomes 

' X = (l-2ii)x + yf()i,v,<|)) + 

r = r (p,v)(l +y x). 

$ = (j)+ -SlE-+ v+ ^ b (]j,v)iJ + 
n=l 

where 
a (p,v,(j)) 

Q—1 

, 
a,(y,v; 

and b, = 

2b (y ,v) b (y,v,(}>) 
2 , X + 
a^ly ,v) 9,-2 

a (y,v) 2 

A tgfy.v) 

0—2 q~l 
y 2 +o(p 2 ) 

1 a_(y,v) 

Next we make a coordinate change similar to that for the case X = 1 in 

the proof of Theorem 2.5. Let x = glw,v,*) + y/x, where 0 < y < and 

g(y,v,4i) = 0(|y|^/2) has the form (2.9) and satisfies the differential equation 

2g(y,v,^) + — (v + Sb^(y,v)y^) ̂  (w,v»*) = f(y,v,(̂ ). 

Now 

(l-2y)x + 0(y^^^ 

, $ = (j) 

1̂ 2 ^ "Hy—1 

+ ̂ 32. + v + Eby'^+b(y,v,(f))y^ + 0(y^ ) 

where 

(2.12) 

b(y,v,(j)) = 

has the form (2.10). The proof of Theorem 2.5 now applies since 3/2 - y >1, 

(see remark 3 above), and the statements on the existence of the invariant 

circle follow immediately. 
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Now consider the map on the invariant circle given by the second 

equation in (2.1 ), which we write as 

For fixed ji and v, f/ x((|)) takes the form A + Bcosq* + Cslnq* and 
\ Vj V/ 

the equation f^^ = 0 has two solutions ^^,$2 with 

0_<(j)̂  < ̂ 2 = 1))̂  + -̂  < — provided 

q.—2 
2 

|v + Zh^v I < sup b(p,v,(J))y 

iji€[0»2ir3 

This defines the region of the parameter plane whose boundaries are 

given in the statement of the theorem. 

It now follows from the Implicit Function Theorem that the equation 

= * (mod 2ir) with 0 ^ 

has two solutions (j)̂ (ujv) and which depend smoothly on 

y,v within the cusped region and also 

4u(w,v) = + O(y^) i = 1,2 

The two families of periodic points are then 

n = 0,l,...,q—1; i = 1,2. 

5 

If the original family of maps were only C then the map 

restricted to the invariant circle is Lipshitz continuous and the 

existence of the periodic points follows from a suitable version of 

the Contraction Mapping Theorem, for example, see Dieudonne [9], p. 260. 
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For the stability of the periodic points note that 

F} ,,l4>.Cy,v)) = 1 + b'Cy,v,(t)p + 
ly ,v J 1 1 

and since b'(y,v5<j)°) — —b'Cy,v,^2) the two families of periodic points 

have opposite stabilities, and the proof is complete. 

Returning to the one-parameter family , we may embed it in a two-

parameter family by considering the real and imaginary parts of the eigen-

value x(e) as parameters. Now the eigenvalue X(e) corresponds to a path 

in the (ReX, ImX)-plane which in general, as noted by Arnofd, will inter-

sect an infinite number of these resonance tongues close to the unit circle, 

as shown in figure 2.8. Thus we can expect to see many periodic orbits, 

most with very large periods, on the'invariant circle soon after the Hopf 

bifurcation, but the result of Herman implies that the set of parameter 

values not belonging to any of these tongues has positive lebesgue measure. 

IIM'X 

Figure 2.8. (After Arnol'd) 

2.4 Strong Resonance 

The strong resonances, X = e q = 1, 2, 3 and U, which are 

excluded in the Hopf Bifurcation Theorem 2.5, exhibit rather different 

behaviour. For q = 1 and 2 the bifurcation diagrama for the associated 

vector fields are again given by Arnol'd [2], [3] and Takens [38]. 

However these diagrams include a codimension one global bifurcation 
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involving a saddle loop. That is, along a curve in the parameter plane 

the vector field has am equilibrium point, a saddle, and the vector field 

has a trajectory which is asymptotic to the saddle both as t -+• " and 

as t -®. The analogue of this situation for a diffeomorphism can be 

perturbed so that the stable and unstable manifolds of the saddle intersect 

transversely, giving homoclinic points and horseshoes (Smale 135]), but the 

details of how this structure arises in the families of interest here are 

not known. 

For g = 3 the bifurcation diagram for the vector field is shown in 

Figure 2.9. 

in. fcWe m&f fehe satjjfe 

connecVi<HV% break f-o jfy* 

o. homoclinic 

Figure 2.9. Strong Resonance; q. « 3. 

When viewed as the bifurcation diagram for the time-one map 

the saddle connections which occur can be broken by a mmmll perturbation 

as shown in the figure, though the saddle points persist as a period three 

orbit for the map. In fact for a one-parameter family passing through a 
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strong resonance with q = 3 Lemma 2.6 shows that the normal form is 

F^(z) = X(w)z + + o(|z|^), x(0) = 

and looss [l9] proves that if '̂1 ^ 9̂  0 and $(0) ̂  0 then 
dpi At~U r a 

period three orbit of saddles bifurcates from the origin on both sides 

of V = 0. 

The results for the case q = U are even less complete. For a 

one-parameter family the normal form is 

F^Cz) = ACp)z + aCylz^z + +OC|z|^l 

d U (u) I 
<iy 

'p=0 
and if we assume 

theorem holds. 

Theorem 2.8. Cl) Suppose that 

> 0 and let X, = 
dji 

the following 
P=CL 

> 
6(0) 

4 ^1 
Then no orbit of 

period four bifurcates from the origin. If Relia(O)) > 0 (< 0) 

then an attracting (repelling;.invariant circle bifurcates from the 

origin for y > 0 (< O). 

(2 J If Im 
a(0) 610) then two families of fixed points of F 

bifurcate from the origin. If |oC0)| > |B(0)| the two families 

bifurcate on the same side of y = 0 and at least one of the families 

is unstable, while if |a(o)| < |B(0)| the two families bifurcate on 

opposite sides of y = 0 and both are unstable. 

The statements concerning the periodic points are due to looss [19] 

and the existence of the invariant circle in (l) is proved by Wan [Uo]. 

In L2), conditions ensuring the bifurcation of a circle along with the 

periodic points are unknown. 

For a two-parameter family two possibilities for the bifurcation 

diagram are: (i) the same as in the case of weak resonance, but with 
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periodic orbits on the circle inside a sector in the parameter plane 

rather than a cusp, or Cii) the same as figure 2.9., hut with an orbit of 

period four rather than three. A further possibility is given by Arnol'd 

l3j. We will investigate the first possibility. 

Consider the family 

F, \Lz) = iCl+yle^^z + aGj,v)z^z + 6(ji,v]ẑ  + 0C|z|^l 
W jV 1 

obtained from the normal form by reparameterizing. In polar coordinates 

i(j) 
z = re , FCZ) = Re , 

o c 
R = (l+y)r + ReAr + OCr'̂ ) 

f = <j>+^+v + ImAr^ + OCr^) 

. / \ iv .„/ \ iv -^i^ 
where A = -ia(.y,v}e - i3Ly,vle e 

= -lfaC0,0) + 6C0,01e"^^*] + OC|u| + |v|l. 

Thus if we let aC0,0) = a+ib, gC0,0) = c+id, the map is 

R = Cl+u)r + + oCr^ + llwl + lvllr^l 

^ $ = (|) + ^ + V + 0(R^ + C|W| + |V|)R^) 

with fC<|>) = b + dcosk^-csink^ 

g((t)) = a + coosU^ + dsinU(j>. 

Restricting attention ta the supercritical case [b. < Ol we look, for 

a fixed point in the r-coordinate of the truncated map obtained by dropping 

the higher order terms. This time, however, the truncation still involves 

^ in the r-coordinate, so we try a solution of the form r = 
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where has period ^ in (j). This gives 

r ($) = (l+]j)r̂ ((f)) + yf 

and expanding r ($) we find 
o 

r ($) = r̂((}> + •g + V -g(*)r + 0( •)) 

p Br. 
= r̂ (<|>)+[v-yg(4))r̂ ((j)) ] (*) + 0(*) 

where terms of O(-) have already been discarded. Hence the solution of 

the truncated equation must satisfy the differential equation 

yf(4))r̂ ((!)) + yr̂ ((j)) - [ v-yg((j) )r̂ ((t)) ] (*) = 0. 12.lb) 

Let p = /yr , then 

yp((f)) + f(*)p^(*) - [v-g((j))p^(<j))] (*) = 0 

or equivalently, 

3 

I p = yp + f((J))p" 

2 
$ = v-g(*)p 

2 

if we assume that the map (j) ̂  v-g(*)p (<J)) is never zero. In complex 

notation z = pe^^, this becomes 

Z = EZ + O G Z ^ + (2.If) 

where e = y+iv, = b-ia, and o = d-ic. Now (2.15) is the vector field 

invariant under the action z w- iz given by Arnol'd and is also studied 

by Wan [UO]. In fact using Van's methods we can show that the vector 

field (2.15) has a periodic orbit when y > 0 provided 
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(ay+bv)^ > Cc^+d^)(y^+v^) (2.l6) 

The idea is that the vector field has no non-zero equilibria when (2.l6) is 

satisfied, and the function E = ReH where 

H = 

satisfies E > 0 on C \ {0 } and ^ < 0 on some set {Z|E(Z) >_ e} with 

e > 0. Then, since the origin is a source when y > 0, the vector field 

has an invariant annulus which contains no equilibria and by the Poincare-

Bendixson Theorem there is a closed orbit in this annulus. 

Given this solution of the truncated equation we change coordinates, 

putting 

r = /yr (<j>)(l + /yx) 
o 

and in the (x,^)-plane the map takes the form 

" X = (l+yP((J)))x + 0( |y|^^^ + |y|̂ '̂ |̂v| + |v|^ ) 

(2.17) 

$ = (f) + ̂  + V -yg(# )r̂ ((j)) + 0(|y| + ]y I |v I ) 

The coordinate changes given by Lemaire-Body [2k] then put the map into a 

form for which Lanford's proof of Theorem 2.5 works, and the map has an 

attracting invariant circle for small, positive y. However, the assumption 

that the map 

2 
(j) H- V -yg(*)r (*) 

is never zero excludes the sector 

2 

|v| < ysup g((j))r (<})) 

2 
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wMch., from the form of (2.17), is precisely where we expect the map 

on the circle to have periodic orbits. 

In the next chapter we apply Theorem 2.8 to the Maynard-Smith family 

so we need the coefficients a(0) and g(0) in the normal form in terms 

of the coefficients of the original map 

F(z) = z + I I 5 + 0(|z|^). 
A=43 p+q=& 

Now a(0) is given by (2.1), and carrying through the coordinate changes 

in Lemma 2.6 gives 

i px 
= (X_1) ^20^02 * ^03 

Thus when X = i we have 

a(0) = + |-(l-i) ^21 

(2.18) 

6(0) - 2(1-i)5^^5Q2 - (l+i) ̂ 20^02 ^03 

Note that these do not agree with the formulae given by Wan [Uo] which are 

apparently incorrect. 

Conclusion. 

A useful way to combine the above results for a family of maps F of the 

plane with a fixed point p is to consider F as a two-parameter family 

with the determinant, A , and trace, a, of the Jacobian of F at p as 

the parameters. In the(A,a)-plane the lines A-a+1 = 0 and A+ a +1 = 0 

correspond to dF(p) having one eigenvalue equal to +1 and -1 respectively, 

while if dF(p) has complex eigenvalues of modulus one then A = 1, |a| <2. 

The fixed point p is then stable if(A,o) lies within the triangular region 
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bounded by these three lines which is shown in figure 2.10. Along a one 

parameter path in the CA,a)-plane generically we expect a fold bifurcation 

along A-CT+1 = 0, with no fixed points for the map if A-a+1 < 0 and two 

fixed points if A-a+1 > 0, a flip bifurcation along A+a+1 = 0 with 

an orbit of period two existing either above or below this line, and a 

Hopf bifurcation: along A = 1, |a| <2. Passing along A = 1 from a = 2 to 

o = -2 we will encounter all the resonances described above. 

A + tr+IrO 

SADDLE 

A— c-f I - o 

^ tr 

Figure 2.10. 

The utility of this figure depends on the properties of the mapping 

from the parameter space to the (A,G)-plane, and clearly this can only be 

one-to-one if we have a two-parameter family. For the fixed points of 

Maynard-Smiths map, which we examine in the next chapter, this mapping is 

a homeomorphism of the parameter space onto its image in the (A,a)-plane, 

but in general it will be many-to-one, as it is for the fixed points of 

iterates of Maynard Smiths map. Note also that for a family of diffeomor-

phisms we are restricted to either the upper or lower half plane in 

figure 2.10. 



Chapter Three 

Maynard Smithy's Map: Analysis 

We now come to a detailed analysis of Maynard Smith's map 

2 
^(a ~ Cy,ay+b-x ) 

which was introduced in chapter one. If a. = 0 the dynamics of the family 

F = F/ , , are governed by the one-dimensional family 
b (a,bj 

h^(x) = b-x^ 

and the results of chapter one immediately yield results for F^. In §3.1 

we describe the initial bifurcation sequence for F^, showing how the 

periodic points of h^ are related to those of F^ and pointing out one 

major difference between the dynamics of h^ and F^: F^ does not have 

a unique attractor. For the full two-parameter family a local analysis of 

the fixed points and their bifurcations is given in §3.2. 

Throughout this chapter it will be useful to have in mind the simple 

geometrical action of the map. We can think of the map as the composition 

of two simpler ones, namely the quadratic 'fold' 

2 
f(x,y) = (b-x ,y) 

and the linear map 

g(x,y) = (y,ay+x) 

ThuK F = ggf folds the plane about the y-axis and then acts as a linear 

transformation which takes the fold line x = 0 to the line y = ax+b. 

One way to visualize this is to let z = ay+b-x2, then the graph of 

H: 1 is the parabolic tunnel T shown in figure 3.1. 
(x,y) z 
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Figure 3.1. 

A point P in the (x-y) plane is taken by F to the point on T 

vertically above P, and then projected onto the (yrz) plane. The (y-z) 

plane is now identified with the original (z-y) plane to give the image of 

p under the map. It is not easy to see how successive iterates of F 

behave from figure 3.1, but it does indicate the way in which the whole 

plane is mapped below the line y = ax+b in a 2:1 way. The inverse of F 

is defined only on the half-plane {(x,y)|y <_ ax+b}. Points in the region 

y < ax+b have two preimages under F, points on the line y = ax+b have a 

single preimage, while points in y > ax+b have no preimages. 

o*+b 

Figure 3.2. 

Note that the parameter a governs the 'slope' of T (the images of 

straight lines x = constant are straight lines with gradient a), while b 

is the height of the intersection of T with the z-axis in figure 3.1. 
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3.1 Dynamics of F, 

When a = 0 Maynard Smith's map reduces to 

Fb(x,y) = Cy.byfx)), hblx) = 

so the dynamics of F are determined by the dynamics of h^, which we 

recall from chapter one. If h < - ̂  then for each x, h(x) < x and 

h^(x) + -m as n CO. When b = - 3%; two fixed points, x = -3̂ /b-A;, 
± 

are created by a fold bifurcation and for b € [-h,2] h maps the 

interval I = [x ,-x^] into itself. The fixed point x_ is always unstable 

(when it exists), while x^ is stable when b € (-1/4,3/4]. At b = 3/4 

a stable orbit of period two is created by a flip at x^, the fixed point 

itself becoming unstable. The period two orbit remains stable until b = 5/4 

when it loses stability, creating a stable orbit of period four by a 

further flip, and this period doubling continues until b 1.401 

For F^ this means that if b € [-^,2] the square S = I x I is 

mapped into itself with the boundary 98 taken into 3S. F^ folds S 

about the line : x = 0 and takes It to the line y = b. Vertical 

2 

lines X = k are mapped homeomorphically onto horizontal lines y = b-k , 

while horizontal lines y — k are folded onto the vertical line segment 

X = k, y _< b. 

-X-

p 

OL 

X 

X-

Figure 3.3. 
~x. 

-X-
b 

5C-

At 

9 

Q 

X-
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There are two fixed points for F,, P = (x ,x ) and Q = (x ,x ), 
D -r "T — — 

if b >_ -A; . Q. is a source for all b > -1/h while P is a sink if 

b €• (-1/4,3/^]. There is also a period two orbit on the boundary of S. 

(x^,x_) (x_,x_|_) (x_̂ ,x_) 

which is a saddle if b € (-1/4,3/k]. At b = 3/L the derivative of 

at P is dP,(P) = ~^) and this has eigenvalues X =±i, so that a 
D —1 U 

resonant Hopf bifurcation occurs. This can be analysed as in chapter 2 

but we know that for b€(3/k,5/k] h^ has a stable orbit of period two: 

+ y y^ and this gives a stable orbit of period four for F^: 

(y+,y+) + (y+,y_) + + (y_,y+) + (y+,y+) 

F also has two orbits of period four which are saddles, one which 
b 

bifurcates from the fixed point P: 

<?+,=+) + (x+.y_) + (y_,*+) + (=+.y+9 + (?+'%+) 

and one on the boundary of S: 

(y+,x_) + (x_,y_) + (y_*x_) + (*_'?+) * 

which bifurcates from the period two orbit 

(x+,x_) (x_,x+) (x+,x_) 

as it changes from a saddle to a source. 

At b = 5/U the stable orbit of period four bifurcates with both 

eigenvalues of DF^(y+,y+) decreasing through -1. Again this is a 

resonant Hopf bifurcation, although not of one same type which produced 

the period four orbit, and again it is easy to see what happens by 
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%-

A > A 

z 

•1 Q 

P , 
1 'J 

Q 
4 ̂ 

V Q 

• 1 — ( X 
3- y+ 

Figure 3.4. Dynamics of F^, b 6(3/4,5/4] 

0 denotes a stable orbit of period 4, x and 0 saddles of period 4, 

. a source of period 2. P and Q are fixed points, both sources. 

considering the behaviour of h^. After this bifurcation there is a total of 5*0 

periodic points: 2 sinks of period 8, 3 saddles of period 8, 2 sources of 

period 4 and 2 sources. From the data available for h^, see for example 

Gumovski and Mira [l5], we know that this bifurcation repeats as b 

increases to b ̂  1.401... with', both eigenvalues of stable orbits of 

period 2̂ ^ passing through -1 and creating stable orbits of period 2̂ "̂ .̂ 

The following proposition states an easy connection between orbits of 

and F^. 

Proposition 3.1. 

(l) If h has a periodic orbit of even period 2k, then 

F has k orbits of period 4k. 
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(2) If h has a periodic orbit of odd period 2k+l, 

then F has one orbit of period 2k+l and k orbits of period Uk+2. 

Proof (l) Suppose that x and y lie in the periodic h-orbit. Then 

ĥ '̂ (̂x) = X, h^^^(y) = y if n is even 

F^(x,y) = (x,y) <=>( n-1 n+1 

[h ̂  (y) = X, h ^(x) = y if n is odd 

If n is even we must then have n = i+k as the least period of (x,y). 

If n is odd, we have 

n+1 n+1 n-1 

y = h ^ (x) = h ^ h ^ (y) = h^(y) 

2 

which is impossible since y has even period. Thus all the (2k) periodic 

points of F have period hk and there are k different orbits. 

(2) Suppose b^k+l^^^ _ ̂  and let y = . Then 

p2k+1^2^y) = (h^(y) ,ĥ '̂ (̂x)) = (h^^^(x) ,y) = (x,y) 

So there is at least one orbit of period 2k+l. If there are two distinct 

orbits of period 2k+l then we have 

F^^^^(x,y) = (x,y), y = , x = h^(y) 

and 

F^^*^(x,y) = (x,y), y = h^^^(x), x = h^(y) 

with F̂ Ĉxjy) ̂  (x,y) for any n. However, x,y,x and y all belong 

to the same h-orbit so for some n, F^(x,y) = (z,y), say. We will derive 

a contradiction by showing that z = x. 

If n is even, n = 2j, then F^^(x,y) = (h*̂  (x) ,h"̂  Cy)) and 

z h^(x), y = h^(y). Then x = h^(y) = h'̂ ^̂ (y) = h^(x) = z. 
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If m is odd, m = 2j+l, then z = (y), y = and 

z = h^C^) = = h')(y) = z. 

Thus there is a single F-orbit of period 2k+l and the remaining 

2k(2k+l) F-periodic points have period kk+2. 

Clearly F^ will have other periodic points besides those given by 

the proposition by considering the fized points P and Q. The important 

point here is that a single orbit of h^ gives several orbits of F^, 

and in particular a single stable orbit of h leads to several stable 

orbits of F^. Thus even though h^ is restricted, for each fixed b, to 

at most one stable periodic orbit by Singer's theorem [34], for many 

parameter values F^ has a large number of stable periodic orbits. 

The proof of Singer's theorem;shows that if x belongs to a stable 

periodic orbit of h^ of period n, then the semi—local stable manifold 

of X, sismix), i.e. the connected component of the stable manifold of x, 

containing x, must contain ,a critical point, c, of h'̂ . By the chain rule 

c is mapped to 0, the critical point of h, by some iterate h^ with 

k < n and so the oj-limit set of the critical point x = 0 is the periodic 

orbit containing x. Now suppose that P is a stable periodic point of 

F. Let I denote the fold line {(x,y)|x=0} and put 

~ { I ^ ^ ( x , y ) 6 • The proof of Singer's theorem shows that 

stem(p) contains a point q £ & for some n,m >_ 0. Now whereas a 

critical point of h must be a preimage of the critical point of h 

there is no reason why two points ^ € I I ̂  and q' € £ i 

should eventually map to the same orbit. For example, consider figure 3.5, 

This shows the fold line i together with its first, second and third 

preimages. There are nine points which lie at the intersections of these 

lines, seven of them, marked x, all map to the origin (0,0) = in t 

—1 

under some iterate. The remaining pair, while being mapped together by 

2 
F , do not necessarily have the same future orbit as the other seven. 
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Let L = U (&. A1.) and define an eqirLvalence relation on L 
i,j=0 J 

•by X ~ y <=^3n,m >.0 with f^(x) = f^(y). Then Singer's theorem implies 

that the number of stable periodic orbits of F is at most equal to the 

number of equivalence classes of L/~. 

It would be interesting to know whether this result extends to a wider 

class of maps which fold the plane, but for this we need an analogue of 

the Schwarzian derivative condition for maps in E. If such a class of 

maps could be found a technique for finding the stable periodic orbits would 

be to consider the points of intersection of the fold line and its preimages 

in turn, finding a point in each equivalence class as they appear and 

iterating this point (on a machine) to find its w-limit set. 

The questions of how far the results for extend to the full two-

parameter family when a 0 is unresolved. A similar problem occurs in 

the Senon map Gfz.y) = ( y . a x + b - y ^ ) , where for a = 0 the results on maps 

of the interval give a reasonably complete picture of the dynamics of G 

but when a 7̂  0 very little is known. Some results on extending the 

singular behaviour at a = 0 are given by van Strien [3>]. 

For the Maynard Smith family F(a. t) ^an mimic the kneading 

theory for maps of the interval, associating to the orbit of a point 
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p 6 E its itinerary (̂.p) = defined, by 

e^Cp) 

+1 if F^Cp) lies in the right half-plane 

0 if F^(p) lies on the fold line x = 0. 

-1 if F^(p) lies on the left half-plane 

However, it is difficult to see how to decide whether a particular sequence 

corresponds to an orbit of F. In the maps of the interval the key to 

finding these 'admissible' sequences is to use the invariant coordinate ^ 

to track the orientation preserving or reversing nature of an iterate 

of the map near a particular point. This can also be done for maps in 

2 

1 but on the interval the orientation is synonymous with the order and 

this leads to the monotonicity of invariant coordinates and a characteriza-

tion of the admissible sequences,while in the plane there is no satisfactory 

ordering. 

§3.2 Fixed Points and Bifurcations 

Returning to the full two-parameter family (3.1) we now give the 

local stability analysis for the fixed points and discuss their bifurcations. 

Provided (a-l)^+Ub>0, F^^ has two fixed points: P with 

coordinates x = y = ̂ ^(a-l-R), where R = /[ a-1) +k'h. The local nature 

of F near the fixed point x = (x,y) is determined by the number of 

eigenvalues of the linearization, dF^, of F at ^ which lie inside 

the unit circle in the complex plane. The eigenvalues X of d? are 

given by det(dF - XI) = 0, where I is the 2x2 identity matrix and 

®x=(-L i) 
Thus the eigenvalues satisfy 
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X ^ - a A + 2 x = 0 (3.1) 

and the following result may be applied to determine the stability of the 

fixed points. 

2 

LpwiTriR 3.2. The number of roots of the polynomial p(x) = a^X +a^X+a^, 

a.€ E, which lie inside the unit circle in the complex plane is equal to 

the number of sign changes in the sequence 

1. |â | - a^, (a^+aj^+a^Xa^-a^+aj). 

This is the simplest case of the Schur-Cohn criterion, which in.its 

general form gives conditions on the coefficients of a polynomial 

p(X) = a in order for the roots to have modulus less 

than one. For the case when the coefficients are complex see Harden [26]. 

When the coefficients are real a simplification due to Jury [22] gives the 

lemma. For a quadratic polynomial it is also easy to prove directly, 

being simply a restatement of the information contained in figure 2.10. 

We will now apply the lemma to (3.1). Consider first the fixed 

point P, where the relevant sequence is 

1, |2%|-1, (2x+a+l)(2x-a+l) (3.2) 

with X = ̂ sCa-l+R). Let a = |2x|-l and g = (2x+a+l)(2x-a+l). To 

determine the sign of a note that if a < 1 and b < 0 then x < 0 

and a = -(2x+l) = -(a+R). So when x < 0, a >0 if a+R<0, i.e. a < 0 

and Ub<2a-1, while a < 0 if a+R>0, i.e. kh>2&-l. If x > 0 then 

a > 1 or b > 0 and a = 2x-l = a-2+R. Therefore a > 0 if R>2-a, 

i.e. a > 2 or J+b+2a>3, and a <0 if R<2-a, i.e. a < 2 and lib+2a<3. 

Figure 3.6a shows the sign of a in the various regions of the parameter 

plane. 
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a 

Now g = R(R+2a) therefore since R > 0 , g > 0 if R > -2a, i.e. 

2 
> 0 or Ub > 3a + 2a-l, while g < 0 if R < -2a, i.e. a <0 and 

Ub < 3a + 2a-l. See figure 3..6(b) 

P 
/ 

Figure 3.6 (a) Sign of a (b) Sign of g 

Combining the information in figures 3.6 (a) and (b) with the lemma 

we have that P is a sink if a < 0 and g > 0, which is true in the 

central region of the parameter plane bounded by (a-l) + ij-b = 0, 

l+b = 3a +2a-l and Ub+2a = 3 , P is a source if a > 0 and g > 0, 

giving the region above these three curves, and P is a saddle if g < 0, 

which holds if a < 0, 4b 3a^+2a-l and. (a-l)^+4b > 0. This situation 

is illustrated in figure 3.7 

4.b » -1 \ 

SrtODl.6 
SINK 

4»b + (o.-'i) — O 

Figure 3 .7 . Stability of P. 
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We now apply the same type of analysis to the second fixed point Q. 

The relevant sequence is (3.2) with x = ̂ (a-l-R). Now x > 0 only if 

a > 1 and b > 0, in which case a = 2x-l = a-2-R. So when x > 0, a > 0 

if R < a-2, i.e. a > 2 and Ub+3a < 3, and a < 0 if a < 2 or 

Ub+2a >3. If X < 0 then a < 1 or b < 0 and a = -2x-l = R-a. Hence 

a > 0 if R > a, i.e. if a < 0 or Ub > 2a-l, while o< 0 if R < a,:, 

i.e. kh < 2a-l. See figure 3.8a. 

2 
g = R(R-2a) so B >0 if R > 2a, i.e. a < 0 or Ub > 3a +2a-l, and 

2 
e < 0 if R < 2a, i.e. iib < 3a +2a-l and a > 0. See figure 3.8b. 

iLbf2As3 

Figure 3.8. (a) Sign of a (b) Sign of g 

From the lemma we have that Q is a sink if a < 0 and g > 0, a 

source of a > 0 and g > 0, and a saddle if g < 0. It follows that Q is 

either a saddle or a source depending on whether (a,b) lies to right or 

2 
life of the curve Ub= 3a +2a-l, a >0, as shown in figure 3.9. 

4k 

+ ( a . - 0 — ^ 

Figure 3.9. Stability of Q. 
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Given a pair of parameter values (a,b) figures 3.7 and 3.9 indicate 

the^nature of the two fixed points, provided the parameters do not lie on 

the line 

H : 2a + Ub = 3, -2 <_ a <_ 2 

or on either of the parabolae 

P % (a-l)2 + Ub = 0 

or 

Pg : Ub = 3a^ + 2a-l 

The next task is therefore to describe the bifurcations which occur as the 

parameters cross these boundaries. 

Firstly, we have already seen that if (a-l) + Ub > 0 then F has 

two fixed points P and Q, If the parameters lie on P^ the fixed points 

coincide and if (a-l)^ + Ub < 0 then F has no fixed points. Thus if 

we follow a path in the parameter space which crosses P^ two fixed points 

are created and we may use the theory of the previous chapter and check 

that the conditions required for a fold bifurcation to occur are in fact 

satisfied. To do so we must first exclude two points where this approach 

does not work. At &•= 2, h = there is a single fixed point ih,h) 

which has both eigenvalues equal to one. This is one of the strong 

resonances mentioned in §2.5. At a = 0, b = F has a single fixed 

point (-%,-^) with.eigenvalues one and minus one. Here the Implicit 

Function Theorem may be used to show the existence of an invariant curve 

in the phase plane, depending on the parameters and with 

_^y We can show that a fold bifurcation occurs for 

FIC/ , \ if we cross P, transversely at (O,-^), but because the 
vQ- j D / -L 

second eigenvalue is minus one we cannot immediately establish the behaviour 
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of the map transverse to this curve. We will see below that an orbit of 

period two also appears at this point, but for the moment restrict 

attention to = P^\{ (O,-^) , ( 2 , - ^ 5 ) } . 

2 
Let I be a real interval and take a one-parameter path p:I 1 , 

p(y), with pCy^) ̂  with p transverse to P^ at Now 

identify y with p(y) and consider the one-parameter family F 5 Fp(p). 

The transversality condition is required in order that condition (U) of 

Proposition 2.1 will be satisfied, but clearly any transverse path will do 

and it is convenient to take one-parameter paths parallel to the b-axis. 

That is, we choose the one-parameter family to be ~ ^(a b) 

a is fixed, a. ^ 0, a ̂  2, and b is considered to be the sole, parameter. 

Proposition 3.3. For each fixed a, a ̂  0 or 2, the one-parameter family 

2 
F, has a fold bifurcation at b = b , where (a-l) + kh =0. 
b o o 

Proof: The bifurcation occurs at the fixed point x -= y - 5s(a-l) and 

to simplify the analysis we first translate this point to the origin. 

Define new coordintes X, Y by X = x - ̂ (a-l), Y = y - )g(a-l), then 

the map becomes 

2 
(X,Y) + (Y,aY-(a.l)X - X^ + b + ) 

Now make a further change of coordinates, reverting to the original 

notation, defining x, y by 

C 1) 0 

so that the map is (x,y) 4- (f^(x,y),g^(x,y)), where 
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(3.3) 

and 

gb(z,y) % i r ^ ^ 

To find the fixed points of the map we must solve 

f^(x,y) = X 

&b (x,y) = y 

(3.4) 

If a 2 then ^ 1 and by the Implicit Function Theorem there 
9y 

is a unique analytic function y(x,b) solving the second equation in (3.k) 

for (x,b) near (0,b^) with y(0,b^) = 0 and [l - |^] ̂  • 

Substituting for y(x,b) in (3.3) gives a family of maps in 1: 

f: 1 X 1 -v 1 

(x,b) + f(x,b) = f^(z) 

with f(0,b ) = 0. 

Differentiating (3.3) we find 

and 

H " jh) H * T & T ^ 
9x oX 

The formula given by the Implicit Function Theorem shows that (a,b^) 

= 0, so 

| f ( a , b j = l , ^ (o.bj = 
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and from (3.3) we also have 

(0,t, ) -
3b ' o' 2-a 

Ttius by Proposition 2.1 f has a fold bifurcation at b = b^, and by 

the remark following the proposition the bifurcated fixed points exist for 
2 St 3 f 

b > b . A consideration of the signs of —r- (0,b ), — (0,b ) and 
o 2^2 o ab o 

the modulus of the second eigenvalue of , which, when a # 1, governs 
o 

the behaviour of the map transverse to the curve y = y(x,b), shows that 

the stability of the bifurcated fixed points of F agrees with that 

given by the local stability analysis above. 
2 

The next boundary to consider is the parabola P^: ^b = 3a + 2a-l. 

Here a flip bifurcation occurs and again we analyse it by taking the one-

parameter family F^ with the value of a fixed, after excluding the strong 

resonances at a = 0, b = -h, where both eigenvalues are +1, and at 

a = -2, b = 7, where both eigenvalues are -1. 

Proposition 3.^. For each fixed a, a ̂  0 or -2, the one-parameter family 

o 
F, has a flip bifurcation at b = b where Ub = 3a +2a-l. A saddle-like 
b o o 

orbit of period two bifurcates from p a < 0 and from Q if a > 0. 

The period two orbit exists for b > b^. 

Proof: There are three cases to consider: a < -2, -2 < a < 0 and a > 0. 

We give the proof for the first case, the others are similar. Now for 

a < 0 the bifurcation occurs at P: x = y = ?g(a-l+R(b)), where R(b) 

=/(a-l)^+^b, and the eigenvalues X+(b) of dF^(P) are roots of 

X^-aX+2x = 0, i.e. 

X+(b) = ̂ (a±s(b)), s(b) = /(a-2) -UR(b). 

Next translate P to the origin, defining new coordinates X,Y by 



-68— 

X = X - 3s(a-l+R(b)) 5 Y = y-^(a-l+R(b)) 

so the map is 

CX,Y) + (Y,aY-(a-l+RCb))X - X^) 

and after a further coordinate change, defining x, y hy 

'X' 

.Y/ \x+(b) X_(t)/ \Y, 

the map becomes 

(x,y) + (fb(x,y %&%(%,?)) 

where 

and 

f^(x,y) = X+(h)x + (3.5) 

Gb(=»y) = 

The fixed points of F are given by 

'f^(x,y) = X 

(3.6) 

Sb (x,y) = y 

and when a < -2, s(b ) = -(a+2), therefore X^(b^) = -1 and X_(b^) = 1+a, 

Then since a ̂  0 we can solve the second equation in (3.6) for a unique 

analytic function y(x,b) for (x,b) near (0,b^) with y(0,b^) = 0 

and = [ 1 - •^] ̂  ̂  . Substituting y(x,b) in (3.5) gives a family 
3x ay ax 

of maps in 1 with f(0,b^) = 0 and ^ (O.b^) = -1. To ensure that 
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a flip bifurcation does occur for f^ it remains to check conditions (3) 

and (4) of Proposition 2.2. For (3), differentiating A+(b) gives easily 

' 1 
db a(a+2) 

and for (4), (3.4) shows 

2/ 2 X_̂ (b) 2 
f (x,b) = b(%) + (%+y(x,b)) + (x+(b)x + X_(b)y(x,b)) 

from which we find 

9^f^, . „„ „2_. ^ 2 
2<z,b) = (x,y) jLZ+ __± (1+ jZj jLZ+ 2 (x+%+x_y)/^_ 

ax ax" " ^ ax 

+ - r 'v + H • 
8x 

From the Implicit Function Theorem we have 

w (o.\) = 0. ^ (o,b ) . 
ax a (a+2) 

2 
ax 

therefore 

(o,b ) = -5=12--
ax^ ° a^(a+2) 

a^fZ , 
Thus for a < -2, g ^ ̂  db"* < 0 and by the remark 

ax 
following Proposition 2.2 f has a stable fixed point for b < b which 

D O 

bifurcates at b = b^ into an unstable fixed point and a stable orbit 

of period two. The second eigenvalue of dF, (P) is % (b ) = 1+a so 
b — o o 

for a < -2 the direction transverse to the curve y = y(x,b) is unstable 

has a fixed point which is a saddle for b < b , a source for 

b > b^, plus two saddles of period two when b > b . 
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In fact the period two points of F may be found explicitly. 

2 

They are solutions of F (x,y) = (x,y), that is 

(x,y) = (ay+b-x^, a(ay+b-x^)+b-y^) 
and so 

I X = ay + b - x^ 

(3.7) 
2 

y = ax + b - y 

Substituting for y from the first of these equations in the second gives 

the quartic 

x^+2x^+(l+a-2b)x^ + (a-a^-2b)x - b(a^+a-b) = 0 (3.8) 

2 

Since the fixed points P and Q are also solutions of ( 3 . 7 ) , x +(l-a)x-b 

is a factor of (3.8) and the remaining quadratic 

P 2 
X +(l+a)x + a+a +b = 0 

leads to tvo solutions 

X = ̂ [-(a+l)+Xb-3a^-2a+l], y = [-(a+1 )-%b-3a^-2a+l] (3.9) 

2 
provided ^b >_ 3a +2a-l. The period two points are then (x,y) and (y,x). 

2 

If the parameters lie on the parabola Pg: Ub - 3a +2a-l note that the 

period two points coincide with the fixed point P if a < 0 and with 

Q if a > 0. 

From Proposition 3.^ we know that the period two points are saddles 

if the parameters lie above and close to the parabola Pg. To examine 

their stability in the rest of the parameter plane we will find the 

remaining parts of the bifurcation set. If the period two orbit has an 
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eigenvalue equal to one then, as we saw in the conclusion to the previous 

chapter, we must have 

6-0+1 = 0 (3.10) 

2 
where A and o are the determinant onAtrace of dF (x,y). Here 

d?^(x,y) 2 ) 
\-2ax a -2y/ 

where x,y are given by (3.9) and so 

P 2 
A = U(a +a-b), a = a +2a+2 

which means that (3.10) corresponds to the parabola Pg where the periodic 

points are created. For an eigenvalue equal to minus one (3.10) is replaced 

by 

A+a+1 = 0 

2 

and this gives the parabola P^tkb = 5a +ba+3, while for complex eigenvalues 

of modulus one we require 

A = 1, |o| < 2 

which leads to Ub = Ua +4a-l, -2 < a < 0. However, this curve lies 

entirely below P where there are no period two points, so the map has 

no period two points with complex eigenvalues on the unit circle. It is 

then easy to see that the orbit of period two is a saddle between Pg 

and P^, and a source if the parameters lie above P^. Note that P^ 

cuts the b-axis at b = 3/h so this is consistent with what was found 

for the period two points of in §3.1. • 



Figure 3.10. Stability of Period Two Points. 

Returning to the fixed points of F the third, and most interesting, 

boundary to consider is the line H: 2a+Ub = 3, -2 <. a <_ 2, which we 

•will refer to as the Hopf line. If the parameters lie on this line with 

a 6 (-2,2) then dF(P) has complex eigenvalues of unit modulus and a 

Hopf bifurcation occurs as we cross H. The endpoints of the line, 

a = -2, b:= 7, and a = 2, b = -h, lie on the parabolae P^ and Pg 

respectively and are points of strong resonance, corresponding to both 

eigenvalues of dF(p) being +1 and both being -1. The Hopf line also 

contains two more strong resonances. At a = -1, b = 5/^_,dFCP) has 

eigenvalues which are cube roots of unity and at a = 0, b = S A the eigen-

values are ±i, fourth roots of unity. Excluding these points Theorem 2.5 

yields the following result. 

Proposition 3.5. For each fixed a €(-2,2), a f 0 or -1. the one-parameter 

family F^ has a supercritical Hopf bifurcation at b = b^, where 

2a+l+b = 3. 

Proof. We must check that the conditions of Theorem 2.5 hold. First 

translate P to the origin, then the map is 

(X,Y) + (Y,aY-(arl+R(b))XrX ) 
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and the derivative at the origin is 

f ° 
dJ^(0,0) =1 

\_(a-l+R(b)) a_ 

The eigenvalues of dF^(0,0) are 

X (b) = %Ca ± /(a-2)2_kRCb)) 

Thus, 

X (h ) = ^(a ± i/U-a^) 
± o 

and d?^ (0,0) has non-real eigenvalues of modulus one for a 6 (-2,2), 
o 

Now 

A_̂ (h)| = /R(h)+a-l 

and therefore 

db 
= _1_ 

b=b 2-a 
o 

which is positive for a < 2, so the eigenvalues pass out of the unit 

circle as we cross H in the direction of increasing h. Condition (d) 

of Theorem 2.5 is satisfied since a f ±2, -1 or 0, and it remains to 

check the sign of the coefficient a(0) of (2.1). 

In new coordinates (x,y) defined by 

a+T a-T 
2 2 ' 

we find 

(x,y) = (f X - I y - ^ ̂  ^ • ) 
o 

/ 2 2 2 
where T = A-a . Now for a map $ : 1 -^1 given by 
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$(x,y) = (ax-6y + I y &z + ay + I 
p+q=2 p+g=2 

if we change to complex notation, putting z = x+iy, A = a+ig» then 

$(z) = Xz + % 
p+g=2 

where 

Ego = %[(Y20-^02 + Yll) * i(Y20 " ̂ 02 ' 

Gil = ̂ ^(^20 + Y02) + 1(720 + Y02)] 

E02 = - Y02 - Yii) + KigO - Y02 + Yll)] 

Hence in complex notation, 

(z) = Xz + ~ (l+i)z^ - |<l-i)zz - ^(l-i)z^ (3.11) 
o 

with X = ̂ (a+iT). Using the formula (2.1) we find that for a £(-2,2) 

3-a 
a ( 0 ) 

2( 2'-a) 

which is strictly positive and the proposition is proved. 

As the parameters move along the Hopf line from a = 2 to a = -2 

the argument of the eigenvalues at P changes from 0 to n and so 

the family contains all the resonances discussed in chapter two. Provided 

the relevant coefficients in Theorem 2-7 do not vanish, each point on 

the Hopf line corresponding to eigenvalues which are g-th roots of unity, 

q ̂  5, is the endpoint of a cusped region which lies above H. For 

parameter values inside this cusp and sufficiently near H the map has 

an attracting invariant circle on which there are two orbits of period q., 

one an orbit of sinks, the other an orbit of saddles. 
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For the strong resonance at a = -1, "b = 5/k, where the eigenvalues 

are cube roots of unity, note that the coefficient of ^ in C3.ll), 

is non-zero, so the result of looss [193 mentioned in the previous chapter 

guarantees that a period three orbit of saddles will bifurcate from P 

on both sides of H as we follow any one-parameter path which crosses 

H transversely at a = -1, b = 5/^. 

At a = 0, b = 3/b, the strong resonance with eigenvaluesii, (3.11) 

becomes 

FCZ) = iz + %(l+i)ẑ ^ - 3§(l-i)zz - 5t;(l+i)̂  

and the normal form of Lemma 2.6 is 

f (z) = iz - ̂  ẑ ir - ̂  + 0( I z I ̂ ) 

where the coefficients are calculated from (2.l8). To apply Theorem 2.8, 

take a one-parameter straight line path a = e(b-3/b) through the point 

in question with the slope e to be determined. Considering this path 

to be parameterized by b, an easy calculation shows that, in the notation 

of 2.8, 

= • 

Note the two conditions in 2.8 are separated by the equality 

l l m ^ l = 1 ^ 1 
1 1 

which here leads to 

31e^~ke-k = 0. 
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There is a region in the parameter plane above H whose boundaries have 

as tangents the lines a = e(b-3/k), where e takes the two values 

satisfying the equation above. Outside this region Theorem 2.8 Cl) 

applies and there is an attracting invariant circle for the map, while 

inside this region (2) applies and there are two families of periodic 

points, of period four, which, since |a(0)| = 3/4 is larger than 

|g(0)| = 1/4, bifurcate from the origin if we enter this region. We 

suspect, but cannot prove, that these periodic points lie on an invariant 

circle. Note that the relevant values of E are 

e 2 0-42 and e 2. ~0-29 (3.12) 

In the next chapter we describe numerical results which, extend the 

boundaries of the cusped regions corresponding to weak resonances and 

the sector corresponding to eigenvalues ±i. We also find the region in 

the parameter plane where the map has an orbit of period three. For 

such an orbit 

(x,y) 4. (y,z) ̂  (z,x) (x,y) 

X, y and z satisfy 

t 2 
X = az+b-y 

2 

y = ax+b-z 

z = ay+b-x 

Eliminating y and z from these equations leads to a polynomial of 

degree eight in x. The fixed points of F satisfy a quadratic equation 

which is a factor of this polynomial, and cancelling this leaves a 

polynomial of degree six in x whose coefficients are polynomials in 

the parameters a and b. Attempts to solve this equation have not been 
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successful, but from the behaviour of b) know that the map 

does have two orbits of period three when b > 1.75. Also, since the 

equation is of degree six, there are at most two orbits of period three, 

and the numerical results below show that these exist above a curve in 

the parameter space, passing through a = 0, b = 1.75, the two orbits 

being created by a fold bifurcation along this curve. 



CHAPTER FOUR 

MAYNARD SMITE'S MAP: NUMEEICAl RESULTS 

In this chapter we extend the local analysis of Maynard Smith's map 

in chapter three by finding numerically the boundaries of the tongues 

associated vith resonant Hopf bifurcation at eigenvalues g^mip/q 

q, = 3,^,5 and 6. This gives some insight into the structure and complex-

ity of the bifurcation set and shows hov some of the periodic orbits 

created by resonant Hopf bifurcations are related to those which appear in 

the one-parameter family of §3.1. 

A series of computer-drawn phase portraits is presented in k,2, 

showing how the behaviour of the one-parameter family with a = h 

becomes increasingly complex as b increases, with a larger and larger 

attracting set emerging which abruptly disappears at a certain value of b. 

We describe the construction of an invariant set in the phase plane which 

contains all the recurrent behaviour for some parameter values, and we 

show how a global bifurcation can destroy this set, thereby causing an 

attractor to disappear as it does in the computer picture. 

4.1. The Bifurcation Set. 

To find the part of the bifurcation set corresponding to an orbit 

of period n with one eigenvalue equal to one we must solve 

' = 0 

, A-CT+1 = 0 

where the periodic orbit is 

-78-
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and A and 0 are the determinant and trace of dF^Cx^,x^). Here 

X ,x JA and a depend on the initial point Cx ,x ) and on the 
n n+1 ° 

parameters a and t. Solving the first pair of equations in (k.l) 

gives the fixed points of and substituting these in the third equation 

leads to an expression involving only the parameters which defines the 

relevant part of the bifurcation set. For n >_ 3 (b.l) is too difficult 

to solve by hand so instead approximate numerical solutions were found. 

Fixing the value of one of the parameters, say a, leads to a map 

G: 1^, G(x^,x^,b) = where the components g^ are defined 

by the left hand side of (U.l), and the problem is to find the zeros of 

this map. Given a sufficiently good approximation = (x^,x^,b) to a 

zero of G, Newton's method asserts that the sequence defined by 

= z, - [dGCz )]"lG(z ) 
l+X 1 ± ± 

will converge to that zero, and this sequence is easy to compute from the 

formula for Maynard Smith's map. The first two components of G(z^) are 

found from the relation 

and using the chain rule we find that the entries a^j(k) of 

satisfy 

OgjCk) =-2x^_^a^j(k-l) + aog^Ck-l) (j = 1,2) 

from which the determinant A and trace a, azid hence g^Cx^jX^jb), may 

be calculated. To obtain the entries in the Jacobian dG(z^), these 

relations are differentiated with respect to x^,x^ and b in turn 
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(thinking of as a function of and b) to give recurrence relations 

for the various partial derivatives. 

The sequence {2^} is then generated until an approximate solution 

is found with |G(Z^)| < e, where e is suitably small. Having found 

this approximate solution for a given value of a = a it can be used as an 

initial approximation to a zero of G with a = a^, provided |a -a | 

is sufficiently small. By successively changing the value of a, and 

computing an approximate zero of G for each one, a series of points on 

the bifurcation set of F can be found and if there are no large jumps 

in the values of the approximate zeros then we can assume that the 

bifurcation set is a continuous curve through these points. 

These computations were carried out for orbits of period three, four, 

five and six using an Algol program on the ICL2970 in the University of 

Southampton Computing Service, using a routine from the Numerical Algorithms 

Group library to compute an approximate inverse of the Jacobian dG(z^). 

For a given value of a the sequence {z^} was generated until a point was 

obtained with |G(Z^)| < 10 and the increment in values of a was in 

most instances 0.05, though in certain cases this was reduced to improve 

the rate of convergence. It was also found useful to reverse the roles 

of the parameters a and b in the above discussion for some parts of 

the bifurcation set. The third equation in (k.l) was replaced by A+0+I = 0 

and A == 1 respectively to find the parts of the bifurcation set correspond-

ing to one eigenvalue equal to minus one and complex eigenvalues of modulus 

one for orbits of period three, four and five. The results are described 

in the following series of figures". Some of the actual numbers involved 

are contained in the appendix, where the values of a and b which lie 

on the relevant part of the bifurcation set are listed, together with the 

second eigenvalue or the argument of the eigenvalues as appropriate. 
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The diagrams are labelled as follows. denotes the part of the 

bifurcation set pertaining to an orbit of period n, and * is either 

+, - or 0, according to whether the critical eigenvalue along this compon-

ent is +1, -1 or a complex conjugate pair. For periods five and six where 

there are several different periodic orbits we label the curves B*(i) 

for the ith periodic orbit. 

For period three we find that two orbits appear through a fold 

3 

bifurcation along a curve which has a single minimum at a 2 -0.70, 

b 2. 0.86, and one of the orbits is a sink in a narrow region above the 

lower part of this curve. The precise situation is shown in figure 4.1. 

Note that on the scale of this figure there are three curves on the right 

hand side which appear to coalesce, but an inspection of the numerical 

results show that they do not, and Figure U.la, a schematic version of 

Figure 4.1, shows the relative locations of the curves and the nature 

of the period three orbits in the various regions of the parameter 
3 3 

plane. The point B_̂  A B^ where the map has a single orbit of period 

three with both eigenvalues +1 is a 1.2, b 2 7.3 so the region where the 

map has a stable orbit of period three is a long and narrow strip. Also 

notice that a part of this region lies below the Hopf line where the fixed 

point P loses stability. Thus for an open set of parameter values the 

map has a stable fixed point and a stable orbit of period three. 

Sou. nee. 

Figure 4.1a. 

source 

5lAK 
SAoUte. 

Saddle. 
SOuftS. 

sink 
s«tdelle 

Saddle 
sount-t 

Sink 
Source. 
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+ -f o 

Hopf line 

I I 
-0.«5 -0.25 

1 I . 
145 "10* -1*5 

Figure 4.1. Period Three. 
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The strongly resonant Hopf bifurcation at a = 0, b = 3/^ leads to the 

It 

existence of two orbits of period four inside the sector bounded by B 

in figure U.2. The internal structure of this sector is relatively simple. 

There are two curves which intersect at a = 0, b = 5/^ and divide 

the sector into four. In the lower section the period four orbits are 

a sink and a saddle respectively, two sources in the central upper section, 

and a saddle and a source in the outer sections. The dashed lines in 

figure k.2 show the linear approximation to this sector given by the theory, 

i.e. they are the lines a = e(b-3/î ) with e taking the values in (3.12), 

These lines are tangent to the boundary of the sector at a = 0, b = 3/b, 

but provide a good approximation on the left hand side of the figure well 

away from this point. 

There are two points of weak resonance on the Hopf line corresponding 

to eigenvalues of dFCp) which are 5th roots of unity: a = O.618, b = O.kbl 

and a = -I.618, b = 1.559, and we label the components of the bifurcation set 

containing these points b5(I) and B^(l). B+(l) has a further cusp at a=-0.l62. 

b = 1.656 which does not lie on the Hopf line. There is also a third pair 

of orbits of period five created by a fold bifurcation along the curve 

C O 

B^(3) which has a similar shape to B_̂ . In figure 1̂ .3 the second cusp on 

B^(l) appears to lie on B^(3) but a closer inspection reveals that this is 

not the case. Of course the points where these curves cross do nbt 

represent orbits with both eigenvalues equal to one, rather there are two 
5 

separate fold bifurcations occuring for F at these parameter values— 

in different parts of the phase plane. 

The internal structure of the five-tongue bounded by B^(l) was 

also investigated and the results are shown in figures and it.Ua. The 

curve has one endpoint on B^(l) slightly above the second cusp 

and then follows B^Cl) down, gradually moving further away until it 

reaches a minimum above the cusp point on the Hopf line, and then rising 
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to meet B (l) at a ̂  O.6O, t ̂ 1.13. The curve B Cll, where a five 

C 

point cycle has an eigenvalue equal to -1, follows B^Cl) down the right 

hand side of the figure before meeting it at a ̂ 0.59, b ̂ 0.8l, then 

crossing the cusp to meet B^Cl) again at a 0.48, b ̂ 0.84 and following 

B^Cl) up to a = 0, b = I.62I+I+. To obtain a consistent picture of the nature 

of the two orbits of period five inside B^(l) we conjecture that there is a 

further branch of B^(l), starting at a = 0, b = 1.62^4 and extending up 

the left hand side of figure h.k, though this branch has not been found. 

With this proviso the stability of the two orbits is indicated in figure 

i|..Ua, where the conjectured branch is shown as a dashed line. 

Sou.ft£. sodcJie 
Source. 

Sink 
Soafce. 

sink 

Figure U.Ua. Period Five (l). 
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10.25 -0.12 0.01 015 0.29 0 42 055 0 6* 

Figure U,i+. Period Five (l). 
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For the six point cycles there is only one weak resonance on the Hopf 

line, at a = 1, h = l/k, and the left hand side of the cusp at this point 

3 

crosses the b-aocis at b = 7/k, intersecting and contains two further 

cusps, at a -OA], h 2. end a -1.95, t :: 3.1̂ 9. Now the point 

a = 0, h = l/k corresponds to the birth of the orbit of period three in 

the one-dimensional map h^ and an examination of the dynamics of f^o,7/k) 

reveals that eight different orbits of period six are created in Maynard-

Smith's map at these parameter values. In fact we have the situation shown 

in the following diagram. 

/•?S* 

0 * 

—1«3 

— 

1 { \ % « T S V 

^ r 

% 

1 

% ^ 
r J 

& ^ 

N «-

c 

c 

I 

— 5 > c 

® 1 

\ ^ 

' 

% 

3 ̂  ' 1 ^ h 

The map 

approximately 

-1.1 -1-3 <9.OS" o.fi I'IFS" 

h„M has a non-hyperbolic orbit of period three, which is 

1.75 ^ —1.30 -> 0.05 1-75 

and together with the fixed points P (0.91,0.91) and Q 2 (-1.91,-1.91) 

this gives the grid of 25 periodic points for F, connected as one orbit 

of period two, one of period three, three of period six and the two fixed 

points. As b increases through 7/̂ + the horizontal and vertical lines 

given by the coordinates of the three point cycle split into two and the 

period six orbits marked x and © also split into two, but the orbit 

0 gives four orbits of period six, so eight orbits of period six are 
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Figure b.5. Period Six. 
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born at a = 0, "b = 7/1+. The pair which are created on the boundary of the 

invariant square are associated vith a curve of the same shape as 

5 

and with a single minimum., and the orbits created by the bifurcation 

along this curve are always unstable. The curves where the other orbits 

are born are shown in figure k.5. The orbits which bifurcate from the one 

marked 0 are associated with B^(2) and B^CS), while the orbit marked 

X corresponds to B^(l). 

The internal structure of the tongue bounded by B^(l) contains one 

intriguing feature. There is a curve B^, see figure k.6, where the map 

has an orbit of period six with complex eigenvalues on the unit circle, 

which joins B^(l) and B^(2). B^ meets B^(l) at a 2. 0.46, b 2.1.24, 

has a minimum above the cusp on the Hopf line, then curves close to B^(l) 

again before moving away and crossing B^(2) on the right hand branch 

slightly above the cusp, finally joining B^(2) at a ̂  0.46, b ̂  1.24. 

We have no explanation for this phenomenon and it is difficult to see 

what the stabilities of the period six points are in figure 3.15, excepting 

that the numbers in the appendix show the nature of these points as they 

bifurcate, i.e. close to the boundaries B^(l) and B^(2). 

Figure 4.7 shows the boundaries of the 3,4,5 and 6-tongues in the 

parameter plane together with the parabolae P^, Pg and the Hopf line H 

which bound the various regions of stability for the fixed point P. Note 

that these are all the orbits of period 3,4, 5 and 6 associated with Hopf 

bifurcation at P and from studies of h^, see for example Gumovski and 

Mira [153, we know that no other orbits of period 3 or 5 appear as we 

move up the b-axis, although there is a further pair of orbits of period 4 

and several more of period 6. It is not known if any periodic points 

exist in regions of the parameter plane which do not intersect the b-axis. 

Inside each of these tongues the situation shown in Figure 4.7 is 

repeated. For each family of periodic points there is a (many-to-one) map 
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Figure h.6. Period Six. 
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Figure î .T. The Bifurcation Diagram. 
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from the subset of the parameter plane where they exist into the (A,a)-plane 

of figure 2.10, and the preimages of the resonance tongues in figure 2.10 

lie on the curves in the (a,b)-plane where an n-point cycle has complex 

eigenvalues on the unit circle. As the parameters cross these curves the 

n-point cycle undergoes a Hopf bifurcation: an invariant circle bifurcates 

from each of the n points in the orbit, the circles being invariant under 

and mapped cyclically around the orbit by F. The behaviour of the map 

on these circles is then subject to the same resonance considerations as 

apply to the original circle which bifurcates from the fixed point P, and 

the whole story is repeated, in an analogous way to the repeated period 

doubling bifurcations of maps of the interval, perhaps involving, in 

some sense, Feigenbaum's universal constants. 

Clearly the manner in which these tongues piece together in the 

parameter space is enormously complicated and the regions where there are 

stable periodic orbits tend to be very long and narrow strips in the 

(a,b)-plane. A one-parameter path through the parameter plane will pass 

through many sequences of bifurcation points whose limit points produce 

complicated 'strange' attracting sets of which virtually nothing is known. 

We now present a series of phase portraits for such a path. 

§4.2. Phase Portraits 

The following figures (a)-(O) are computer' drawn phase portraits for 

parameter values along the vertical line a = 1/2 in the (a,b)-plane. 

The portraits are actually for the map 

g(X,Y) = (Y,aY + bX(l-%)) (4.2) 

but this is equivalent to the Maynard Smith family 

2 
F(x,y) = (y,Ay + B-x ) 
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The fixed point P of (3.1) 
with coordinates x = y = (a+b-l)/b 
is a sink, vhen a = 1/2, for 
1/2 < b < 2, and at b = 3#95 the 
eigenvalues of dg(P) are complex 
so that orbits of points near P 
spiral into P as shown in (a) 

— I 1 r 1 1 1 — 
0.50 O.ea 0.75 0.«7 

S At b = 2 P undergoes a 
O V, , V supercritical Hopf bifurcation 

which creates the attracting 
invariant circle in figure (b). 

im ^ , X The + sign marks the position of 
the unstable fixed point. 
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O.SO O'BZ 0.75 0.87 

Cb) 6 * 1 

As b is increased the 
circle grows and crosses the 
fold line x = 1/2, though the 
map does not fold the circle 

o i ' onto itself. The influence of 

o 

u> 
fO 

the fold causes the circle to 
distort, producing kinks which 
gradually become more pronounced. 

o 1 1 r 
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„ ... until ve enter the five 
tongue Cat b 0.8 in Maynard 
Smith's map; see figure 

^ X4. related to resonance Hopf bifur-
cation at a = 0.618. The dynam-
ics on the invariant circle have 
now "locked-on" to a pair of five 
point cycles, one of sinks, shown 

ui ^ in (d), and one of saddles. 
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... to give an orbit of period 
60 at b = 2.hl2 Cg) and period 

X 120 at b = 2.1+73 (h). These 
vX two figures show only part of 

^ the phase space, containing a 
v fixed point * (still stable) and 

orbits of period 12 and 2k 
^ respectively for g^. 
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orbit of period ,l8 (period 90 
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X ing off an invariant circle. 
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In Cj)J b = 2.U75, we 
return to the full phase 
portrait for g. The long 
periodic orbit has been 
superceded by a more compli-
cated attracting set, each 
component of which has period 
15 under g, (see the enlarge-
ments in (k) and (m)) while 
the orbit of period five has 
now definitely undergone a 
Hopf bifurcation, producing 
the invariant circle in (k) 
and (&). 
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1 1 ( 1 1 1 1 
0 . 3 0 0.32. 0 . 3 S 0 . 8 7 

br 2.475" 

The set shown in (m) has 
many of the characteris-

tics of the 'twisted horseshoe' 
of Guckenheimer et al. [lb]. 
An examination of the action 
of the map shows that under 

a neighborhood of the set 
is stretched in the direction 
along the set, contracted 
tranverse to it and then folded 
back on itself. In fact several 
of the images of the set lie on 
the fold line x = 1/2 (see (j)) 
so the set is folded into 
itself more than once before 
being mapped back to its 
original position by g^5. 
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At larger values of b the 
15 components of the attractor 
join to form first five pieces 
(n), and then the single large 
set in (0). For slightly larger 
values of b the attractor 
vanishes, with apparently all 
orbits diverging. 
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via tke parameter dependent coordinate change 

X = bX - y = bY -

- ^ ab b^ b 
A = a, B = — + -|j— g-

when b # 0. The parameter b given in these figures should be transformed 

by CU.3) to give the b in Maynard Smith's map. The only other difference 

is that the fold line x = 0 in Maynard Smith's map is translated by 

(U.S) to the line X = 1/2 in (4.2). 

In each figure the point (0.5, 0.5), which lies at the intersection 

of the fold line in (3.1^) and its preimage, was iterated, but, except 

in the first two figures, the first fifty points of the orbit are not 

shown. In figures (e)-(j) a point near the orbit of period five in 

figure (d) was also also iterated. Now not all points in the phase plane 

are attracted to the sets shown in (a)-(O). To conclude this chapter 

we describe the construction of the boundary of the set of points which 

do approach these attractors, and this will also suggest a mechanism 

which would cause the attractor to disappear as it does in this sequence 

of phase portraits when b >_ 2.6. Very roughly, points within the 

circle with centre (0.5,0.5) and with the line joining this point to the 

origin as radius will be attracted to the sets in the figures. Points 

outside this region diverge, with the coordinates of their iterates 

becoming increasingly large and negative. 

Similar behaviour is observed in other one-parameter paths at 

a = 1/1+, and a = B/U. The overall picture as b increases is of a Hopf 

bifurcation, followed by a 'lock-on' to a periodic orbit as we enter a 

resonance tongue, the parameters perhaps passing through several of these 

tongues before the invariant circle becomes distorted and gives way either 
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directly to a nontrivial attractor, or to a sequence of period-doubling 

bifurcations leading to a complicated set. Initially these attractors 

have several, components, which merge as the parameter is increased and 

then finally disappear at some value of b. In the path at a = 3/k 

a large attractor formed in an annular region of the phase plane and 

then shrank, as b increased, eventually becoming a rather irregular 

circle which gave way to a seven point cycle. This cycle then began 

a period doubling sequence which was not completed before the attractor 

vanished. We now consider this abrupt disappearance of the attracting 

set. 

Firstly, consider the map in one variable h^(x) = b-x^. Recall 

that h^ maps the interval I = [x ,-x ] into itself for 

b € [-1/^,2], but suppose that b is slightly larger than 2; the graph 

of h^ for such a case is shown in figure 4.8. Clearly h^ maps an 

open subinterval J of I, with the critical point 0 ( J, outside the 

previously invariant interval I. The first image of J under h^ lies 

above -x_, then further images lie below x , with the left hand endpoint 

of h^(j) tending to -» as n 

ĥ (T) ^ 

Figure 4.8. 
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Thus the subinterval J and all its preimages eventually escape from 

the interval I. Now J has two preimages under h, J and J', each of which 
- 1 - 1 

has two preimages in turn, so the set of points which remain in I under 

all iterates of h, C = I\ U h.J), is constructed in the same way as 
n=0 

the standard Cantor set. Henry [4l] proves that C contains no open 

intervals and therefore is a Cantor set. 

For Maynard Smith's map with a = 0 the fold line x = 0 is mapped 

to the horizontal line y = b, and for b > 2 this line lies above the 

line y = -X which forms part of the boundary of the square S = Ixl. In 

this case an open rectangle R is mapped out of the square and then 

around the boundary of S until it lies below the line y = x . 

I 
1 
I FAQ 

/f i 
F'CR) I 

I = -x_ 

— 3=*-

I 

I 

Figure U.9. 

Now the lines y = x_ and x = x are interchanged by b) 

so after three applications of the map the image of R is switched back-

wards and forwards between the bottom of the square S and the left hand 

side of S. However the fixed point Q = Cx ,x_) is a source when a = 0 

and so successive images of R are expanded away from the square. Again 

the set of points remaining in the square is a Cantor set. 
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For the case when a ̂  0 we,must first construct an invariant set 

in place of the square S. This construction is given for several similar 

maps by Gumovski and Mira [15]» who find numerically the boundaries of 

these invariant sets. We outline an argument for their existence in the 

Maynard Smith family, relying on some unproved assumptions. 

Suppose that Q is a saddle and consider the local stable manifold 

Our first assumption is that this curve cuts the fold line 

X = 0 at R, say. The image of QR is QS where S = F(R) lies on the image 

of the fold line £. Now consider successive preimages of RS, as shown 

in figure U.IO. The first preimage is the curve R_^,R'^ where 

F(R ) = F(R') = R. This lies symmetrically about the fold line and 
—1 X 

the map first folds it onto itself, with R'^ mapping to R and then 

acts as an affine transformation taking R to S and R_^ to R. 

Figure U.IO. 

Now suppose that some preimage of B, R say, lies above on 

the right hand side of i, and so the invariant curve through Q now 

stretches from R . to R' , its reflection in £. The preimage of 
~3 -J 

the point T where the curve cuts lies on the fold line Z and 

the preimage of the curve segment TR is R ^R'^, completing the 

invariant curve. 
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TMs construction is hardly rigorous. For any particular values of 

the parameters we may attempt to confirm whether the construction works, 

but general conditions which ensure the construction holds are very 

difficult to give. For examples in which this argument does work, as well 

as for some with rather different behaviour, we refer to Gumovski and Mira 

[15]. 

For the bifurcation which causes the attractor to disappear in this 

case, suppose that the parameters are changed until the last link in the 

curve, R ,R' , lies partly below as in figure l+.ll. How points 
-J -J -L 

above have no preimages, but points below this line have two pre-

images and so the construction of the curve continues in this case. 

Figure U.ll. 

If U is the open set whose frontier consists of that part of the 

curve below & and a part of as shown in the figure, then U is 

mapped around the outside of the curve by successive iterates until it 

comes under the influence of the fixed point Q, and since the direction 

transverse to the curve P is always unstable further iterates are expanded 

away from the curve. Now U has a sequence of preimages inside the 

invariant curve which are mapped outside the previously invariant set. 
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Hie actual point of bifurcation occurs when the invariant curve has 

a point of tangency with and is clearly difficult to detect. There 

is also the question of the set of points which do not escape from the 

interior of the curve. Although the construction of this set is similar 

to that of the Cantor sets in the case a = 0, some of the narrow regions 

corresponding to stable periodic orbits found numerically above, stretch 

across the parameter plane at values of b larger than those where this 

global bifurcation occurs. Therefore there are still open sets in the 

phase plane which remain inside the invariant curve after the global 

bifurcation. 



Chapter Five 

Maps Related to Maynard Smith's 

The behaviour illustrated by the sequence of phase portraits in §U.2 

is certainly not unique to the Maynard Smith family. Several sets of 

similar pictures have appeared in the literature. Beddington, Free and 

Lawton [4] discuss simulations of a discrete predator-prey model which is 

also one of the many examples considered by Qumovski and Mira [15], some 

of which have particularly striking phase portraits. Guckenheimer, Oster 

and Ipatchki [lU] study a model of a population with two age-classes, 

arguing that for certain parameter values the model has a strange attractor 

based on a 'twisted horseshoe'. Curry and Yorke [8] investigate two 

families of maps of the plane. One is a non-invertible map whose phase 

portraits follow the pattern of those in §U.2, with a Hopf bifurcation 

creating an invariant circle which grows, distorts and then breaks up, 

leading to a complicated attractor which disappears at higher parameter 

values. The other is a family of homeomorphisms of the plane and for 

certain values of the parameter the phase portraits show an attractor 

with a structure similar to that in the map studied by Henon [l6]: 

(X,Y) + (Y+1 -aX^,$X) 

For a = 1.^, g = 0.3 Henon produced computer plots of an orbit of this map 

approaching an attractor which appears locally.to be the product of an 

interval with a Cantor set, although the possibility that it is simply 

a periodic orbit of a very large period cannot be discounted. 

Now if a and g in the Henon map are non-zero we can change 

coordinates, setting x = ̂  , y = aX, and rename the parameters & = b, 
p 

g= a, to obtain 
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p 2 
G: 1 

(x,y) (y,ax+b-y^) (5.1) 

In §5.1 we examine the three-parameter family 

H^(x,y) = (l-t)G(x,y) + tF(x,y) t € fO,l] 

which connects the Henon map G to Maynard Smith's map F, and we find 

that the map E, has symmetry properties related to those of Guckenheimer, % 

Oster and Ipatchki's map. 

To conclude, we return in §5.2 to the original biological problem and 

consider a more realistic version of Maynard Smith's model. However, even 

after correcting some of the biologically unjustified assumptions which led 

to Maynard Smith's map, we are still left with a model which contains the 

same basic complexities. 

§5.1. The Henon-Maynard Smith Family 

The family we shall consider is 

H^(x,y) = (y,aty +a(l-t)x+b-tx^-(l-t)y^) t € [0,lj C5.2) 

There are two fixed points, P and Q, with coordinates 

X = y = ̂ (a-l±/(a-l)^+4b) independent of the third parameter t, and we 

can analyse the local stability of these fixed points as in Chapter Three. 

In fact we will examine the way in which the bifurcation diagram in the 

(a,b)-plane for P varies as t changes from 0 to 1. First though, 

we compare the geometrical action of the map with that of the Maynard Smith 

family shown in figure 3.1. 

To visualize the action of the Henon map consider the graph T of 

2 

the function (x,y) z = ax+b-y . T is a parabolic tunnel which lies 

parallel to the x-axis and the map takes a point P in the Cx,y)-plane 
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to the point on T vertically above it, and then projects this point 

onto the (y,2)-plane (see figure 5.1). This is then identified with the 

original (x,y)-plane to recover the image of p under G. 

Figure 5.1. 

As in Maynard Smith's family the parameter a governs the slope of 

T and b the height of its intersection with the z-axis. It is clear 

from figure 5.1 that G is one-to-one, except when a = 0, in which case 

2 
the whole plane is mapped to the parabola y = b-x . The dynamics of the 

map on the parabola are then identical to those of the one-dimensional 

2 
map h^(x) = b-x described by the results of §1.1. 

If t g (0,l) then the second coordinate function in (5.2) 

(x,y) ̂  z, has a single critical point at x = , y = and 

the graph of the function is an elliptic dome D with a maximum at 

this point. See figure 5.2. As before the map takes a point in 

the (x,y)-plane to the point above it on D and then projects onto 

the (y,z)-plane. 
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Figure 5.2. 

Nov as t varies frcm 0 to 1 the critical point traverses the 

hyperbola kxy = a^ in the positive (negative) quadrant if a > 0 (a < O) 

Thus the Henon and Maynard Smith maps are the limiting cases as the 

critical point moves off to infinity along the direction of the x- or 

y-axes respectively, leaving behind the fold line in P, or its counterpart 

in G, the line along the top of T in figure 5.1. 

For each t [0,l], has two fixed points if the parameters 

a and b lie above the parabola P^: (a-l)̂ +l+b = 0. For the other two 

curves which, for a fixed value of t, bound the region of the (a,b)-plane 

where the fixed point P is stable note that the Jacobian of H 

dH,(x,y) 
\a(l-t)-2tx at-2(l-t)y/ 

has determinant A = 2tx-a(l-t) and trace a = at-2(l~t)y. Hence at P, 

where x = y = 35(a-l+/(a-l)̂ +i+b) the relevant boundaries are: 
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(i) A + 0 + 1 = 0 (corresponding to one eigenvalue of dH^ being -l) 

-3a^(2t-l)^ + 2a(2t-l)(2t-3) + kbC2t-l)2+4t-3 0 

a^(2t-l)(l-t) + 2a(t^+t-l) + l+bt̂ -2t-l 

provided a-2at+t-l _< 0 0) if t < % (t > ̂ ). Ko solution if t ^ 

(ii) A = 1 (complex eigenvalues of unit modulus when |o| < 2) 

0 

provided 1+a+t—2at 2. ̂  -

For fixed t (ii) defines a parabola H in the (a,b)-plane unless t - 0^1/3, 

or 1, when it is a straight line. For t f (i) defines a parabola^with 

a minimum. Figure 5-3 shows these boundaries in the (a,b)-plane for 

various values of t and the region where P is a sink is shaded. 

(a) t = 0. Henon map 

A = 1, |o|<2: a=-l,-l<b_<3 
2 

A+cT+l=0: 3 (a—1) =^b, a<l 

(b) t = % 

A = 1: Ub= (3a+i+) (a+6), a>-$/2 

A+CT+1—0; ̂ b= (3a—^) (a-2), a_<3/2 

(d) t = h 

A = 1: (a-l)^+Ub=9 

A+0+l=O: No solution 

(c) t = 1/3 

A = l,|crl£2: i+b=10a+15, 

A+a+l=0: ̂ b=(3a-5) (a-3) ,a_;£2 
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(e) t = 3/4 

A = 1: 5(a-2)(a+U)+36b=0, a<7/2 

A +0+1=0: Ub=3a(a+2), a<-% 

(f) t = 1. Maynard Smith's map 

A= 1, 2a+Ub=3, |a|^ 

A+a+l=0: J+b=C3a-l) Ca+l), a<0. 

Figure $.3. Stability of P. 

Clearly any family joining F and G must contain some degeneracy 

so that the Hopf line H can move from the left hand side of the parabola 

Pg in figure 5.3(a) to the right hand side in (f). In the family 

this degeneracy occurs at t = when the graph of the second coordinate 

function is a symmetric circular dome, and due to this symmetry the 

eigenvalues of dH^(P) at any point on the Hopf line are cube roots of 

unity. 

The same phenomenon occurs in the map 

f(x,y) = ((b^x+b^y)e"^^\Sx) 

studied by Guckenheimer, Oster and Ipatchki [ik], when b^ = b^. The 

map models a population with two age-classes, x and y, whose growth is 

governed by a density dependent relationship of the form 

't+l 
-S 0 / \y, 
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Here are per capita growth rates for the two age-classes and are 

taken to be 

au(x,y) = 

and S is the fraction of the first age-class which survives to the second. 

For = tg = b and S = 1 the map has a fixed point at x = y = 

and when b =e^/2 the associated eigenvalues are cube roots of unity. For 

the one-parameter section at a = 0.1 Guckenheimer, Oster and Ipatchki 

report that at a value of b slightly less than e /2 two orbits of 

period three, one stable and one unstable, are created by a fold bifurca-

tion. The unstable orbit coalesces with the fixed point at b = e /2 

which then loses stability, and this is the behaviour we expect from §2.k 

provided the relevant coefficients do not vanish. As b increases, 

the orbit of period three goes through a period doubling sequence which 

leads to a chaotic regime apparently based on a 'twisted horseshoe'. (We 

refer to [lU] for the details.) At higher values of b this regime 

collapses to a stable four point cycle which undergoes a period doubling 

sequence leading to a further chaotic regime. This behaviour repeats 

as b increases with a period doubling sequence based on an n-point cycle 

giving way to a chaotic regime which collapses onto an (n+l)-point cycle, 

and the range of parameter values giving stable periodic orbits becomes 

progressively narrower as the length of the orbits increases. 

This collapsing of a non-trivial attractor onto a stable periodic 

orbitwas observed in Maynard Smith's map when a = 0.75, b 2. 2.07, where 

a stable seven point cycle was created, and the behaviour described above 

suggests that the cusped regions associated with weakly resonant Hopf 

bifurcations in Maynard Smith's map have, in E, , become bands stretching 

across the (a,b)-plane above the Hopf line in figure 5.3(c). No attempt 
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has been made to verify this, in fact the computations required to show 

that the Hopf bifurcation in the family is supercritical have not 

been carried out. We do know though that no invariant circles bifurcate 

from P as the parameters cross the Hopf line in the Henon map. This is 

because the derivative 

dG(x,y) = 

2 

has determinant -a at any point (x,y)£ B . Hence G multiplies the 

area of any subset of the plane by a factor of a and since the area 

inside an invariant circle must remain constant the only possible parameter 

values for which G could have a closed invariant curve are a = ±1. 

It is easy to check that the conditions (a)-(d) of the Hopf bifurca-

tion Theorem 2.5 are satisfied by the Henon map for a suitable one-parameter 

path and since no circle bifurcates from the fixed point the stability 

criterion must be violated: a(0) = 0. In fact the results of looss [19] 

show that many more coefficients in the normal form for the map must 

vanish. For a one-parameter family Fy whose eigenvalues cross the unit 

circle at X,T with # 1 for n = 1,2,...,N, we can change coordinates 

by Lemma 2.6 so that 

F (z) = X(u)z + I a + OC|z|^) 
^ m=l ^ 

and in polar coordinates the map in the radial coordinate has the form 

R = A(p)r O(r^). 

looss proves that if any of the ctgm+l̂ ^̂  .̂re non-zero then invariant 

circles do bifurcate from the fixed point. Thus in the Henon map all 

these coefficients must vanish. 
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§5.2. A More Realistic Model. 

Returning to the original problem notice there are some biologically-

unsatisfactory aspects of Maynard Smith's map (0.7). One minor point is 

that there should be a fixed point corresponding to zero population for all 

relevant values of the parameters. This is not the case because of the 

coordinate changes made in the introduction. However, these changes were 

made intentionally so that the family contained a fold bifurcation rath_er 

than a transcritical one, making the analysis a little easier—we only have 

fixed points in a half-plane in the parameter space rather than the whole 

plane—and the model is easily changed, by a linear coordinate change, to 

one where the origin is always a fixed point without altering any of the 

complexities associated with the Hopf bifurcation. 

More important is the fact that many of the orbits of (1.7) contain 

points which correspond to negative populations, whick is clearly nonsense 

as far as the biology is concerned. This can be avoided, as in Griffiths 

and Rand [ll], by restricting attention only to those orbits which 

correspond to non-negative populations, but it is easy to see how to 

change the model to correct this deficiency. 

The basic idea behind Maynard Smith's model is very simple. The 

number of adults at time n+1 is supposed to be a proportion of those 

at time n plus the new adults which hatch from eggs laid at time n-t. 

If we assume that x adults will produce f(x) eggs which hatch into 

adults T time units later, where f(x) is some suitably chosen func-

tion , then the model is 

X = ax + f(x ), a € (0,l) 
n+1 n n—r 

Comparing this with (l.l) we see that in the original model f(x) 

took negative values for x > b/c, leading to the negative populations 
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referred to above. To correct this we simply choose a more plausible 

function f(x) and then investigate the model in the case % = 1 as 

before. 

We will assume that f(x) > 0 when x > 0 and that f(0) = 0. We 

will also think of a typical function f as having a single positive 

maximum and lim f(x) = 0 as shown in figure 5.k, but these properties 
X-Xo 

will not be strictly necessary for the whole of the analysis which 

follows. 

^ X 

Figure 5.^. 

The model for % = 1 gives the map 

fi%eA 

2 2 
$: E + E 

(x,y) ->• (y,ay+f(x)) 

whos^points lie on the diagonal x = y and satisfy f(x) = (l-a)x. 

The stability of a fixed point P = (p,p) of $ is governed by the 

eigenvalues X of 

' 0 1 

D$(P) = 
If'(p) 

which are roots of 
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X - ax — f" Cp) = 0 

It follows from Lemma 3.2 that the stability of p varies with a and 

f'(p) as indicated in Figure 5-5-

<a+l 

SADDLE 

SOURCE 

SOURCE 

Figure 5.5. Stability of p. 

5MVK 

I-* 

Since f(0) = 0 the origin is always a fixed point of $ and 

f(x) 

for X > 0 we may define B(x) = ^ so that the remaining fixed 

points are given by B(x) = 1-a. There are many possibilities for the 

shape of the graph of B(x) and hence for the number of fixed points 

of $ . For example we could choose f(x) = xexp(l-x) so that # 

has just one non-zero fixed point, (see Figure 5.6(a)), or take 

f(x) = x^exp(l-x) to obtain two non-zero fixed points (Figure 5.6(b)). 
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0^) 

I — » _ 

Figure $.6. (a) f(x) = xexpCl-x) 

(b) f(x) = x^exp(l-x) 

We will assume that $ has at least one non-zero fixed point P 

and that B'(p) < 0. In terms of B'(p) the eigenvalues of D$(P) 

are given by 

- aX - (pB'(p) + 1-a) = 0 

and P is either a sink or a source according to whether pB'(p) is 

greater than or less than a-2. 

pGfd* 

Sifv/K 

SOURCE 

pB^p) 

Figure 5.7. Stability of p. 
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Now suppose that a 6 (0,1) is fixed and we vary the function 

B(X) , and hence f(x), so that the gradient B'(p) becomes 

increasingly large and negative. If we do so in such a way that the 

value of pB'(p) crosses the line pB'Cp) = a-2 in figure 5, the 

fixed point P changes from a sink to a source and we expect a Hopf 

bifurcation to occur. More precisely we suppose that 

B: E X E + M 

(]j,x) 4- B (z) 

is a one-parameter family of functions B^, with B^(x) > 0 when x > 0, 

and that pB'(p) is a strictly decreasing function of y with pB^^(p) 

= a-2 for some value p = p*(a). We then have the following results 

for the family 

$(x,y) = (y,ay + xB^(x)) (5.3) 

Proposition 5.1. The one parameter family has a supercritical 

Hopf bifurcation at % = p* (a) for each ag (0,l) provided 

g (3-a) 0 
^ 

2(2-a) k 

PB;; (P) where a = B' Cp) + — — , g = —57 + ^ 
W* 21 ^ 

Proof.: We first check that conditions (a)-(d) of Theorem 2.5 are 

satisfied. Translating P to the origin the map becomes 

# Cx^)= (y,a(y+p) + (x+p)B (x+p)) 
y y 

and expanding B^(x+p) gives 
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2 3 
B (x+p) = B Cp) + xB' (p) + |^B " (p) + ̂  B'" Cp)+0(x^) 

y ]i p ^ • P J • )a 

so neglecting terms of order greater than three, and since B (p) = 1-a, 

2 3 
$ (x,y) = (y,ay+(l-a+pB' (p))x + a x + gx ) 
p y 

B"(p) irtp) ir'(p) 

21 
where a = B^(p) + p — , B ~ ""pT + p 

The eigenvalues of d$^(0) are 

A(y) = |- (a ± J^-ha.+k+k B̂ '(p) 

so changing parameters, putting v = B.-2- B%p) , we have 

x(v) = a+iX (l+v )-a^) 

and |x(v)l = /l+v- Since B'(p) is assumed to be a strictly decreasing 

function of y we have ^ | x ( v ) | > 0 . Thus conditions (a),(b) and (c) 

of Theorem 2.5 are satisfied. For (d), note that x(0) = |<a+iA-a^) so 

the parameter values leading to strong resonances are a = -2,-1,0, and 2, 

none of which lie in the open interval 0 < a < 1 of interest here. There-

fore $ has a Hopf bifurcation along the line pB'(p) = a-2 of Figure 
V 

U.5(b) which is supercritical if the coefficient a(0) defined by (2.1) 

is positive. To find a(0) note that (2.1) involves only terms of order 

less than four in the normal form for the map so we can work with 

2 3 
$ C%,y) = (y,ay-x+ax +gx ). 

Defining new coordinates X, Y by 

a+R a—R 
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= where R = A—a we have 

$^(X,Y) = - ̂  + g(X+Y)^ + ̂ X+Y)^, ̂  - ̂ X+Y)^- ̂ X+Y)^) 

writing $ in complex notation, 

' J.3 
the quadratic coefficients are given by the formulae in the proof of 

Proposition 3-5 and. the cubic coefficients are 

So " 5^'^30 * ̂ 21 " Tl2 " I'os' * '̂•'30 " ''21 ' ^12 * ̂ 03'' 

(21 " I'<3^30 + T21 + Y12 + - Y21 + Ti2 - 3^03" 

^12 " 8^(3^20 - y21 * ''12 " ^To;) + '̂̂ ''30 * ̂ 21 * ''12 '* ̂ ^03^^ 

«03 = i('T30 - ^21 - ^12 ^ ̂ 03' * ^<^0 " ^21 - ^12 - TOS"-

Therefore 

$(z) = j(a+iR)z - •^l+i)z^ + ̂ (l-i)zz + ̂ (l+i)z^ 

and using the formula (2.1) we find 

Thus the family (5.3) has a Hopf bifurcation at = %*(&) for each 

a € (0,1) and the bifurcation is supercritical if a(0) > 0. Also, since 

the argument of the eigenvalue X(w*(a)) is not constant for .a 6 (0,l) 
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ve can expect to find a resonance tongue based at each 'rational' point 

on the Hopf bifurcation line exactly as in Maynard Smith's family. 

As a specific example consider the family (5*3) vith the functions 

B^(x) = exp[b(l-x)] (5.^) 

parameterized by b > 0. Here $ has a single non-zero fixed point 

P = (p,p) with 

p = 1 — — &n(l—a) 

and P has complex eigenvalues of modulus one along the Hopf line 

t = Gel + An(l_a), a 6 (0,l) (5'5) 
8,"-l 

sketched below. 

< / ' 

SouR.c£ / 1 

SlNfVC 1 

1 
V 

Figure 5.8. Stability of P. 

For this example we have 

B^(p) = -b(l^a), B^(p) = b (l-a), B|J'(p) = -b (l-a) 

and so 
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.. _ b2(2_5a+5a2_a3) 

with b given by (5.5). This is easily checked to be strictly positive 

for a 6 (0,1) and we have proved the following result. 

Proposition 5.2. For each a 6 (0,1) the family 

$ (x,y) = (y,ay+xexpb(l-x)) 

Ka-S a supercritical Hopf bifurcation at the fixed point with coordinates 

X = y = 1 — ~ iln (1—a) when b = g"]" (1—a). 
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APPEWDIX 

Numerical Results 
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Three Cĵ ctes M»iHv Compk* £^n^iiiae& ^WwlmS Qwg> 

at b Af^wmemk a. b 

i . a o s T 7.3069 1 -O-lf l-OSdî  
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Etĉ envoJuie a 1 b Eig&Ay*kie 

0.0 O.TT 0.00 -0.1 roftv -0 41*̂  

0 1 1 .ooHt. -0. "Sf -0.1 1. it%36 -l .91-

O.Jt I.1939 -2. 46 —0.3 i."»S49 -3.gb 

0.3 « 6I43 -46? -0.4 2 139% - C M 

0.4 1.993* -?.%4 —O-S" a-494? -69? 

O.S" 1 «|.o2i -10. îT —06 2.9490 
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»«3 3.̂ aŝ o -4 2© 

g$ 3.fflkL -3 9© 

3 0*41 -2.S0 

90 2.S^S^ 1 

JS a.ao&s ©.^3 

?A f.92m. 0©4 

6?# 1 e 0.'he^ 

t a * 1 ? ©.# 
H * L It © 90 

fciso I.SS90 I'&O 

to 

o 4 

O-S 

o ? 

o k 

0.5-

o.if 

o 3 

0.2 

o.| 

©.o 

—O. I 

—o.a 

©."S 

-o.M. 

—(•.!» 

—O-IF 

-of 

-0.** 

-I.e 

— I -1 

—f-2 

•—1.5 

-l-lf 

—(j.JT 

—I-I» 

—1-^ 
—I 

6 A241 

ff. t%*o 

4Sf*? 
&.ea*i 

3 034& 

a 

2.3fcll 

2.©84? 

I.e6©6 

I 643^ 

! tfZS 

1 #»©f 

2.o4y» 

2.3S&1. 

2 tSM 

z . i m 

3 . 2 W 

B.8«f©l̂  

4-©990 

#3314 

4X^39? 
4?fo? 

4~935I> 

4.f9?g 

4 S663 
4. fc4.l4 

-14^1 

39 

-##.33 

—iS". 38 

*"#%" 6© 

- *© .©* 
?* 

-S 

3 

- 2 

—I 
—© 

o 

a 
—© 

—© 

-i 

-a 

-3 

-3 

-If 

—tf 
— 

—6 

—4» 

-4 

-4. 

&3 

t2 

19 

©A 

©I 

3f 

6 

6? 

3S" 

Ig" 

©1 

9f 

% 
53 

Ik 

L% 

M 

94k 

7f 

4© 

w I 

-I 

-f.M 

— (6492^ l-fc> o.^fS 

l.̂ otl 0.i>& 

-Kb? 1 ©.sre 

- L 6% L?**# O.S© 

-rll #Al#4 O.Wl 

"•i-T o-3i|. 

-|.t 1.21*9 -©.5%. 

-19 2 LI2| -K53 

-2.0 3.03a* 

-2-1 3 »%3 -».%3 

-2-2. 3.9Wb — f e . © ? • 

—23 4 kTiZ -K3S^ 

—2-lf- Sloili -11 1? 

sisszi "tif-.itis 



146LE II 
-129-

Sijc Pci/ih Cycles toiiM. one ^jenvalne SyW fa 

Second 
b 

Seconel 
a b e»"9e<wfcilue a. b 

IS" ?Z%3 #4t 1391 -0.31 

i.if it-U-HoX I as -0. iT 1 ?fti -6 % 

15 110 •"0.& : 2091 -11-95' 

1.1 4.<JW A1 —0$ 2.406^ -IS. 10 

II 4143* fS -o.e 2.94^3 -22 #4 

14) 3.6.216 % "0 9 33051 -25.9^ 

OR 2 4 6 % 40 -I-© 3 62.34 —2?. 66 

0.9 a.Soo^ as" "t'l S9l?t -3o-iffe 

0 in \.%nt ? # -I'll. 4 If SI -31 33 

o » e>.fSlt^ o.lfe '13 442l(> -3f.2o 

0 4 o.Sodl - o a i -Mfr 4 62(&) -30.02. 

1.0 o.zf |.£>0 -l.f 

- I'fc 

4 

fyZls3 -2k-lf 

-1 •? 4^969 492? 

o.<\ o.^fbSf -0.33 -l-S 4 % 2 k -#2 gy 

0.2 - 0 36 -19 4 # 3 3 -$10? 

0.^ 0 %3*r -0.04 -1.9^ 4 0789 -12? 
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