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Abstract

The Event-B formalism offers a stepwise development approach for managing

complexity in system design. However, the existing work that extends Event-B

models with discrete timing properties inadequately represents the communica-

tion and competition between concurrent tasks in concurrent systems. In this

paper, we present the semantics of the parameterized real-time trigger-response

properties of Event-B models based on timing invariants. We show a method

of syntactically encoding parameterized real-time trigger-response properties in

Event-B machines. To capture the concurrency between tasks, we distinguish

end-to-end timing properties and scheduler-based timing properties from the

perspective of different system design phases. We model end-to-end timing

properties as parameterized timing properties and scheduler-based timing prop-

erties as unparameterized timing properties. A nondeterministic queue-based

scheduling framework is proposed to replace end-to-end timing properties with

scheduler-based timing properties. Additional gluing invariants are provided for

this refinement. To demonstrate the usability of the framework, we formalize a

two-level hierarchical scheduling system with local resource sharing managed by

a time-division multiplexing global scheduler and two alternative local sched-

ulers refined by the nondeterministic queue-based scheduling policy. Models are

proved using the Rodin tool.
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1. Introduction

With the thriving growth of cyber-physical systems (CPS), much attention

has been focused on simplifying the design of systems while maintaining their

usability and dependability. Timing and concurrency are two critical features

of CPS. The physical world evolves with time, and timing properties should be5

specified and verified together with the system to guarantee that the CPS is

interacting with the physical world correctly [1]. Besides, with the advanced

processors of CPS, multiple real-time tasks execute concurrently to achieve the

goal of computation as a whole. A hard real-time system requires that all

time-critical tasks meet their specified deadlines [2]. Formal modeling is used10

to manage the precision of specifications that describe system properties, in-

cluding functional behavior, timing behavior, performance characteristics, and

internal structure [3]. However, real systems are difficult to specify and verify.

A stepwise modeling approach with abstraction and refinement can be adapted

to master the complexity of specifications and requirements [4]. Abstraction15

helps to reason about a system with high-level goals while refinements add im-

plementation details to the model and verify the consistency between different

refinement levels.

Event-B is a formal method for system-level modeling and theorem-based

analysis with refinements [5]. However, explicit notions of time and liveness20

are not supported in Event-B. Existing work that extends Event-B models with

timing properties uses a trigger-response pattern to model discrete time [6]. The

pattern sets timestamps for trigger and response events and uses a tick event to

prevent the global clock from proceeding to a point at which time constraints

between trigger and response events would be violated. This pattern, however,25

does not distinguish timing properties for different system design phases and

cannot show the communication and competition between concurrent tasks in

concurrent or distributed systems.

In this paper, we build on the results already presented in [7] that distinguish

end-to-end timing properties and scheduler-based timing properties from differ-30
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ent system design phases. End-to-end timing properties are defined as timing

properties from the system requirements, and they place discrete-time proper-

ties on individual tasks. However, in real-time systems, there are always several

tasks running concurrently. The concurrent execution of the whole system must

satisfy the timing properties of each task. To model the behavior of these con-35

current tasks, we defined scheduler-based timing properties as concrete timing

properties for the system design phase, which place discrete-time constraints

on the scheduler that schedules the concurrent tasks. The scheduler-based tim-

ing properties should meet the end-to-end timing properties of each task. We

propose a nondeterministic queue-based scheduling framework to model the be-40

havior of the schedulers. Tasks are placed in a nondeterministic position in the

queue, and once a task enters the queue, it cannot be postponed forever. Addi-

tional gluing invariants are provided to use the framework to replace end-to-end

timing properties with scheduler-based timing properties.

This paper improves upon previous work [7] in several ways: (a) a formal45

definition of parameterized timing properties is presented together with the pri-

mary and auxiliary invariants required to prove that an Event-B model satisfies

specific timing properties; (b) there is a refinement pattern for generating aux-

iliary invariants to replace parameterized timing properties to unparameterized

timing properties; and (c) a two-level hierarchical scheduling system that allows50

compositional scheduling policies is formalized. As shown in Figure 1, [7] re-

placed end-to-end timing properties with scheduler-based timing properties by

using a nondeterministic scheduling framework. Then, this framework is refined

to two alternative scheduling policies, namely, first-in-first-out (FIFO) and de-

ferrable priority-based (DPB) scheduler with an aging technique. This paper55

not only introduces time-division multiplexing (TDM) as the global scheduler

but also combines the two scheduling policies into one refinement to show that

the local schedulers are compatible with different scheduling policies.

The paper is organized as follows: Section 2 provides background definitions

of Event-B and real-time trigger-response properties. Section 3 introduces the60

requirements and refinement strategy for the hierarchical system. Mutual exclu-

3



abstract model

Nondeterministic 
Queue-Based 

Scheduling

FIFO DPB FIFO+DPB

refines

refines refines
refines

Task-based
Timing Property

Scheduler-based
Timing Property

Previous Refinement Strategy Current Refinement Strategy

Figure 1: Improvement in the Current Refinement Structure

sion is used to model the time-division multiplexing and local resource sharing.

Section 4 presents formalization and proofs for parameterized real-time trigger-

response properties. In Section 5 we define end-to-end timing properties and

scheduler-based timing properties based on parameterized and unparameterized65

timing properties. A two-level hierarchical scheduling system is formalized to

demonstrate the usage of nondeterministic queue-based scheduling framework

to replace timing properties. A general rule is shown in this section to replace

parameterized timing properties with unparameterized timing properties. Sec-

tion 6 summarizes some related work on modeling discrete-time in concurrent70

situations as well as refinement of timed systems. Section 7 summarizes the

paper results and outlines future work.

2. Background Definitions

2.1. Event-B

Event-B [5] is a formal modeling method based on set theory, which is usu-75

ally used for system-level modeling and analysis for discrete systems. Event-B,

an evolution of the B-Method developed by Abrial [8], is greatly inspired by
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the notion of action systems [9] and guarded commands [10]. A discrete model

is made of contexts and machines. A context describes the static part of the

model, which is specified with carrier sets s and constants c. Constants are80

defined with their properties and relationships by axioms and theorems [5]. A

machine describes the dynamic behavior of the discrete model, which is specified

with variables v and events. An event is described using guards and actions.

The guards define the enabling condition under which the event can occur and

the actions denote the way that the variables are modified by the event. The85

variables of a machine are defined by invariants I (s, c, v) and theorems. Ma-

chines may see one or more contexts [5].

In general, an event evt can be represented by the form:

evt , any p where Gevt(p, v) then Sevt(p, v , v
′) (1)

An event might have a number of parameters p that are local to the event. The

guard predicate Gevt(p, v) defines the conditions under which the event evt can

occur and the before-after action predicate Se(p, v , v ′) defines the way that evt

changes the state in the system. The initial event does not have any parameters

or guards, we write the event as:

init , then Sinit(v) (2)

Formal modeling is used to manage the precision of specifications, but real

systems are difficult to specify and verify without abstractions [3]. Abstraction

and refinement can help to master the complexity of requirements [4]. Ab-90

straction makes it easier to control the complexity of the high-level model.

Refinements add implementation details to the different levels of abstraction

and guarantee that each refined model is consistent with the model being re-

fined. Refinement of a system usually involves changing the variables of the

system [11]. In Event-B machines, gluing invariants are used to link the vari-95

ables in the refined model to the variables in the abstract model [12].

Given abstract event A with guards G(p, v) and before-after predicates

S (p, v , v ′) and concrete event C with guards H (p,w) and before-after predi-
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cates R(p,w ,w ′), Abrial defines rule (3) to verify that C is a refinement of A:

A v C [5] provided:

A v C , I (v)∧ J (v ,w)∧H (p,w)∧R(p,w ,w ′) ` G(p, v)∧∃v ′ ·(S (p, v , v ′)∧ J (v ′,w ′))

(3)

where v and w are variables of A and C , respectively. J (v ,w) are the gluing

invariants that relate the abstract and concrete variables. The rule expressed

in equation (3) can be split into several proof obligations to verify the cor-

rectness of a refinement step, namely, invariant preservation (INV), feasibility

(FIS), guard strengthening (GRD) and so on. These proof obligations guarantee

that the proved properties in the abstract model are preserved in the concrete

model. They can be generated and proved by the Rodin [12] platform. Here, we

present the formalism of invariant preserving and guard strengthening in proof

obligation (4) and proof obligation (5), respectively.

I (v)∧G(p, v)∧S (p, v , v ′) ` I (v ′) (4)

I (v)∧ J (v ,w)∧H (p,w) ` G(p, v) (5)

2.2. Semantics of Real-Time Trigger-Response Properties in Event-B

Event-B is a modeling language that supports modeling refinement but lacks

explicit support for expressing and verifying timing and liveness properties [13].

Given a machine M with event labels E that represent the names of the events in100

M , our previous work provides the syntax of real-time trigger-response proper-

ties as Definition 2.1 [14] based on a trigger-response pair (T ,R), where T ⊆ E

are trigger events, R ⊆ E are response events, and T ∩ R = ∅. We use

timing(T ,R,w , d) to define the timing properties between trigger events T

and response events R, where w is the delay constraint and d is the deadline105

constraint. Multiple timing properties can be added to the machine. Figure 2

depicts the behavioral definition of timing. A machine that is extended with

timing(T ,R,w , d) contains a special Tick event to update the global clock.
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The Tick events are constrained by the deadline specification so that it is dis-

abled when one of the responses is missing its deadline.110

Definition 2.1 (Real-Time Trigger-Response Property [14]). A machine M

with event labels E is extended with a real-time trigger-response property timing(T ,R,w , d)

that consists of

• trigger events T ⊆ E;

• response events R ⊆ E ∧T ∩ R = ∅;115

• a delay w ∈ N and a deadline d ∈ N.

[14] asserted that the behaviors of a machine with timing(T ,R,w , d) should

satisfy two properties: 1) the number of Tick events between trigger events T

and response events R is bounded by the delay time w and deadline time d , and

2) the response event eventually occurs after the trigger event, and the trigger120

event does not recur within the trigger-response pair to avoid the recurring delay

of response events. To formalize timing properties in discrete systems, Sarshogh

and Butler proposed an approach that categorizes timing constraints by using

a trigger-response pattern where trigger and response events are modeled as

events in Event-B [6]. Inspired by their work, we formalize the untimed Event-125

B machine M with timing property timing(T ,R,w , d) as Figure 2 by using

three new variables. τT and τR are used to refer to the time at which the

trigger or response events occurs, respectively. We also use the variable clk

to denote the global clock. Additional guards and before-after predicates are

added to the events to model real-time behaviors. The guard clk ≥ τT +w of the130

response event guarantees that the response is disabled when the global clock

has not passed the delay period. τT and τR are set to the current clk with the

before-after predicate in trigger and response events. A new Tick event is added

to the machine to increment the global clock. Guard GR(v)⇒ clk + 1− τT ≤ d

of the Tick event constrains the global clock not to tick when the response event135

is about to miss its deadline.
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event T

where

GT (v)

then

v:= ST (v , v ′)

τT := clk

end

event R

where

GR(v)

clk ≥ τT+w

then

v:= SR(v , v ′)

τR:= clk

end

event Tick

where

GR(v) ⇒clk+1−τT≤ d

then

clk:= clk+1

end

Figure 2: Formalization that Extends the Machine with timing property timing(T ,R,w , d)

3. Formalizing a Hierarchical Scheduling System

In this section, we describe our requirements on the hierarchical scheduling

system with local resource sharing managed by a time division multiplexing

global scheduler and two alternative local schedulers.140

3.1. Hierarchical Scheduling

With the emerging trend in real-time systems toward implementing func-

tionalities in different levels on a shared platform, hierarchical scheduling (HS)

systems are designed to use compatible schedulers to allocate CPU time so that

all real-time applications meet their deadlines [15]. In this paper, we use a two-145

level HS system to illustrate the replacement from end-to-end timing properties

to scheduler-based timing properties under the assumption of local resource

sharing and no global resource sharing. Figure 3 shows a two-level HS that

composes existing applications with different timing characteristics by using

time-division multiplexing (TDM) as the global scheduler. The global scheduler150

decides which application should proceed and for how long. Then, each appli-

cation uses its local scheduler to select which task to execute next. The TDM

scheduler partitions a period into several time slots and assigns each of them to

a single application. Take Figure 3 as an example. The TDM scheduler parti-

tions the period of 50s into five time slots with 10s for each application. Then155

each application uses its local scheduler to schedule the concurrent tasks that
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might have dependencies on each other. In this paper, we do not address the

cases of global resource sharing in HS systems. Therefore tasks of the same ap-

plication might have a shared code segment that accesses shared variables. We

use critical sections to present the code segment, which have to be executed as160

an atomic action. Tasks of different applications do not share critical sections.

Our main system requirements (SRs) are as follows:

SR-1 Tasks of different applications do not share critical sections.

SR-2 No more than one application can be in the same time slot at any time.

SR-3 No more than one task of the same application can be in its critical section165

at any time.

SR-4 Each application is assigned a time slot to run the tasks.

SR-5 If a task wishes to enter its critical section when the application is running,

it will enter the critical section within a certain deadline.

Operation System

A1 A2

A3 …

Application A1

Task11 Task12

Task13 …

Application A2

Task21 Task22

Task23 …

…

A1 A3 A2 A1 A2

TDM global scheduler

10s

50s

T21 T23

FIFO local scheduler

T22

run

ready

T13 T11

DPB local scheduler

T12

run

ready

Figure 3: Two-level Hierarchical System

3.2. Refinement Strategy170

In this section, we describe our refinement strategy to formalize the two-level

HS system.

9



M0 specifies the local resource sharing system.

M1 introduces end-to-end timing properties for individual tasks and allocates

applications with time slots.175

M2 formalizes the sequence order of tasks with a nondeterministic queue-based

scheduling framework

M3 replaces the end-to-end timing property into scheduler based timing prop-

erty with nondeterministic queue-based scheduling framework.

M4 refines the nondeterministic queue-based scheduling framework into two180

alternative local schedulers.

In the rest of the section, we explain these models and refinements in more

detail and present part of our formalization.

3.3. Formalizing TDM and Local Resource Sharing with Mutual Exclusion

In the most abstract level M0, a mutual exclusion model is proposed to185

address the dependencies within applications and tasks. The model guarantees

that no two applications can be in the same time slot simultaneously and that no

two tasks of the same application can be in the critical section simultaneously.

We begin by defining the initial context in Figure 4. In the context, we define the

carrier set APPS and TASKS of all applications and tasks in the HS system. We190

define apps as a total surjection from TASKS to APPS as a task cannot belong

to two different applications. Additionally, the set of tasks of each application

is finite, and its value is less than N .

In our initial model in Figure 5, we formalize the mutual exclusion model

by using app run and task run variables. The variable app run represents the195

set of applications that are currently running, whereas the variable task run

represents the set of tasks that are currently being executed. Variables app wait

and task wait denote the set of applications and tasks that are ready to run.

The invariants inv0 1-inv0 4 formalize the relationships between the ready or

waiting applications and tasks to the whole set. The invariants inv0 5-inv0 6200
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sets APPS TASKS

constants apps N

axioms

@axm0 1 apps∈ TASKS →→ APPS

@axm0 2 ∀a·a∈ APPS ⇒finite(apps∼[{a}])

@axm0 3 ∀a·a∈ APPS ⇒card(apps∼[{a}])≤ N

@axm0 4 N>0

end

Figure 4: Initial Context c0

guarantee that only one application and one task can be executed at any time.

inv0 7 guarantees that the tasks that are waiting or being executed belong to

the application that is being executing.

In the abstract model, we use three events, namely, ready , run and finish, to

model the behaviors of applications and tasks ready to run, execute and finish205

executing, respectively. As the mutual exclusion model is similar for applica-

tions and tasks, we take the events of applications as an example to illustrate

the model. Figure 5 gives the abstract mutual exclusion model for applica-

tions. Here, we use quantified variable a to represent an application. The

event APP READY (a) models the point at which application a is ready to210

run. Event APP RUN (a) models the point at which the application starts run-

ning, while event APP FINISH (a) models the point at which the application

finishes running. We use the same approach to model the behaviors of tasks of

an application. Since the ready and running tasks should belong to the appli-

cation that is being executed, we add an additional guard apps(t) ∈ app run215

to the TASK READY event to guarantee inv0 7. Take Figure 3 as an exam-

ple. Applications A1, A2 and A3 wish to run, and the TDM global scheduler

assigns each application a time slot to run. When application A2 is running,

it executes different tasks with the DPB scheduling policy. For example, tasks

T21, T23 and T22 wish to be executed with the TASK READY event. Then220

the TASK RUN (T21) event is executed since T21 is at the head of the queue.
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After T21 finishes, TASK RUN (T23) is executed.

Scheduling is used to allocate the processing time for concurrent tasks to

maximize real-time performance [1]. To guarantee that all the high-level timing

requirements of individual tasks are satisfied by the system, we begin by for-225

malizing high-level timing properties with the parameterized real-time trigger-

response properties defined in Section 4. Then, we use different scheduling

policies to replace the end-to-end timing properties with scheduler-based tim-

ing properties. Additional gluing invariants are provided based on the proposed

refinement rules.230

4. Parameterized Real-Time Trigger-Response Properties

In Event-B models, parameters of events can be used to treat the concur-

rency of the system [16]. An Event-B machine first executes the initialization,

followed by nondeterministically executing some enabled event. When modeling

a concurrent system, instead of having separate atomic events for each task of235

the concurrent system, parameterized events can be used to model the atomic

steps of each task. Additionally, in concurrent systems, parameterized trigger-

response timing properties can be used to specify the timing properties of each

task.

Given an Event-B machine M with event labels E , which contains a trigger-

response pair (T ,R), we extend our definition for the real-time trigger-response

properties to parameterized trigger-response properties as in Definition 4.1. In

this definition, we use X to denote the parameter value set. Assume that

event e has a parameter p, e.x is defined as the semantic label used to represent

occurrence of event e with parameter p instantiated with value x . The semantics

of a parameterized event e, with parameter p and operating on state variable v is

represented by guard predicate Ge(p, v) and before-after predicate Se(p, v , v ′).

The semantic labels T .x and R.x are used to denote the occurrence of trigger

events T or response events R with parameter p instantiated with value x ,

12



invariants

@inv0 1 app wait ⊆APPS

@inv0 2 app run ⊆APPS

@inv0 3 task wait ⊆TASKS

@inv0 4 task run ⊆TASKS

@inv0 5 finite(app run) ∧card(app run)≤ 1

@inv0 6 finite(task run) ∧card(task run)≤ 1

@inv0 7 ∀t·t∈ (task wait ∪task run)⇒tasks(t)∈ app run

event APP READY

any a

where

@grd1 a∈ APPS\app wait

@grd2 a∈ APPS\app run

then

@act1 app wait:= app wait∪{a}

end

event APP RUN

any a

where

@grd1 a∈ app wait

@grd2 app run=∅

then

@act1 app wait:= app wait\{a}

@act2 app run:= app run ∪{a}

end

event APP FINISH

any a

where

@grd1 a∈ app run

@grd2 task wait=∅ ∧task run=∅

then

@act1 app run:= app run\{a}

end

event TASK READY

any t

where

@grd1 t∈ TASKS\task wait

@grd2 t∈ TASKS\task run

@grd4 apps(t)∈ app run

then

@act1 task wait:= task wait∪{t}

end

event TASK RUN

any t

where

@grd1 t∈ task wait

@grd2 task run=∅

then

@act1 task wait:= task wait\{t}

@act2 task run:= task run ∪{t}

end

event TASK FINISH

any t

where

@grd1 t∈ task run

then

@act1 task run:= task run\{t}

end

Figure 5: Initial Model with TDM and Local Resource Sharing
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which are formally presented as 6a and 6b.

T .x , where GT (x , v) then ST (x , v , v ′) (6a)

R.x , where GR(x , v) then SR(x , v , v ′) (6b)

Definition 4.1 (Parameterized Trigger-Response Ordering Property). Given240

an Event-B machine M with events E and invariants I (v), a parameterized

trigger-response pair has the form (T ,R,X ) where T ⊆ E are trigger events with

a parameter p, R ⊆ E are response events with a parameter p, and T ∩R = ∅.

Given each t ∈ T and r ∈ R, M satisfies sequential ordering for (T ,R,X )

provided the following conditions hold.245

1. GR(p, v) ` ¬GT (p, v)

2. I (v)∧Sinit(p, v , v ′) ` ¬GR(p, v ′)

3. I (v)∧Gt(p, v)∧St(p, v , v ′) ` ¬Gt(p, v ′)∧GR(p, v ′)

4. ∀e ·e ∈ E \ (T ∪ R)∧ I (v)∧Ge(v)∧Se(v , v ′)∧GR(p, v) ` GR(p, v ′)

5. I (v)∧Gr (p, v)∧Sr (p, v , v ′) ` ¬Gr (p, v ′)250

In Definition 4.1, we use GT (p, v) to denote the disjunction of all Gt(p, v)

with t ∈ T and GR(p, v) to denote the disjunction of all Gr (p, v) with r ∈ R.

When extending Event-B models with timing properties, the five conditions of

Definition 4.1 are required to guarantee the sequential order of parameterized

trigger-response pairs. Condition 1 specifies that when a trigger event is enabled,255

the response events must be disabled. Condition 2 requires that the initial event

disables the response events. Condition 3 requires that once a trigger event

t .x occurs, it disables itself and enables some response event r .x . Condition 4

requires that each e ∈ E \(T ∪R) preserves the predicate GR(p, v). Condition 5

requires that each response event r disables itself.260

Similar to Definition 2.1, we define parameterized real-time trigger-response

properties in Definition 4.2. w and d are total functions from the parameter

value set X to the natural number set N, which define the delay and deadline

for each specific parameter instance.
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Definition 4.2 (Parameterized Real-Time Trigger-Response Property). A pa-

rameterized real-time trigger-response property has the form:

all x in X timing(T .x ,R.x ,w(x ), d(x ))

where delay w ∈ X → N and deadline d ∈ X → N.265

Similar to behaviors of a machine with unparameterized timing properties,

the behaviors of a model with parameterized real-time trigger-response property

all x in X timing(T .x ,R.x ,w(x ), d(x )) satisfies two properties: 1) the number

of Tick events between each trigger event T .x and its corresponding response

event R.x is bounded by the delay time w(x ) and deadline time d(x ); 2) no

two occurrences of T .x are allowed without an occurrence of R.x in between.

In Event-B models, we construct Inv 1 to capture the fact that each unique

trigger-response pair (T .x ,R.x ) is bounded by the deadline time d(x ). Inv 1

formalizes the safety property that when a response event occurs, the time

between trigger and response event should be bounded by d(x ).

∀x ·x ∈ X ∧ τT (x ) ≤ τR(x )⇒ τR(x )− τT (x ) ≤ d(x ) (Inv 1)

Figure 6 shows the formalization we use that extends the untimed ma-

chine with (T ,R,X ) to timed machine with parameterized timing properties

all x in X timing(T .x ,R.x ,w(x ), d(x )) for each trigger-response pair (t .x , r .x )

where t ∈ T and r ∈ R. The formalism is similar to the one used to extend

the machine with unparameterized timing properties. The timestamp variable270

τt ∈ X → N and τr ∈ X → N are set by the before-after predicate in the trigger

and response events respectively. Additional constraints relating to τt(x ) and

τr (x ) are imposed on the response event R and Tick event. Here GTick (v) in

equation (7) denotes the guard of Tick event. In the Gt(p, v) and Gr (p, v)

predicate, we substitute the parameter p with x .275

GTick (v) , ∀x ·x ∈ X ∧GR(x , v)⇒ clk + 1 ≤ τT (x ) + d(x ) (7)
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event t

any p

where

Gt (p, v)

then

v:= St (p, v , v ′)

τt (p):= clk

end

event r

any p

where

Gr (p, v)

clk ≥ τt (p)+w(p)

then

v:= Sr (p, v , v ′)

τr (p):= clk

end

event Tick

where

∀x·x∈ X ∧Gr (x , v) ⇒clk

+1≤ τt (x)+d(x)

then

clk:= clk+1

end

Figure 6: Formalization that Extends the Machine with parameterized timing properties

all x in X timing(T .x ,R.x ,w(x), d(x)) for each trigger-response pair (t .x , r .x) where t ∈ T

and r ∈ R

With the formalization shown in Figure 6, the response is constrained by the

guard clk ≥ τt(x ) + w(x ), which guarantees that response event R.x can occur

only after the delay time w(x ) has passed. No additional gluing invariants are

required for the delay constraint. Thus, in this paper we focus on deadlines and

not the delays. Inv 2 is an auxiliary invariant that can be used to prove Inv 1,

which defines the state where the trigger event occurred while the response event

has not occurred, and the time between the current time and the timestamp of

the trigger event should also be bounded by d(x ). We first construct Lemma 4.3

to prove that Inv 2 is preserved by all the events of the machine with timing

encoded.

∀x ·x ∈ X ⇒ (GR(x , v)⇒ clk − τT (x ) ≤ d(x )) (Inv 2)

Lemma 4.3. Given the formalization in Figure 6 that extends the machine with

all x in X timing(T .x ,R.x ,w(x ), d(x )), Inv 2 is preserved by all the events in

the extended machine.

Proof. Given Inv 2, the only events that change the variables of the invariant280

are trigger events t ∈ T and Tick event. Thus in the proof we mainly examine

these two events.
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For the trigger events, preservation of Inv 2 is represented as follows:

H0 : ∀x ·x ∈ X ⇒ (GR(x , v)⇒ clk − τT (x ) ≤ d(x ))

H1 : I (v)∧Gt(p, v)∧St(p, v , v
′)

G : ∀x ·x ∈ X ⇒ (GR(x , v ′)⇒ clk ′ − τ ′T (x ) ≤ d(x ))

285

Assume x ∈ X and GR(x , v ′), we have to prove clk ′ − τ ′T (x ) ≤ d(x ).

clk ′ − τ ′T (x ) ≤ d(x )

〈Case x=p〉

clk ′ − τ ′T (p) ≤ d(p)

≡ 〈St(p, v , v
′) : clk ′ = clk ; τ ′T = (τT C− {p 7→ clk})〉

clk − (τT C− {p 7→ clk})(p) ≤ d(p)

≡ 〈(τT C− {p 7→ clk})(p) = clk〉

clk − clk ≤ d(p)

≡ 〈0 ≤ d(p)〉

>

〈Case x 6= p〉

clk ′ − τ ′T (x ) ≤ d(x )

≡ 〈St(p, v , v ′) : clk ′ = clk ; τ ′T = (τT C− {p 7→ clk})〉

clk − τT (x ) ≤ d(x )

⇐ 〈H0〉

>

For the Tick event, the preservation of Inv 2 is represented by:290

H0 : ∀x ·x ∈ X ⇒ (GR(x , v)⇒ clk − τT (x ) ≤ d(x ))

H1 : ∀x ·x ∈ X ∧GR(x , v)⇒ clk + 1− τT (x ) ≤ d(x )

H2 : clk ′ = clk + 1

G : ∀x ·x ∈ X ⇒GR(x , v ′)⇒ clk ′ − τ ′T (x ) ≤ d(x )
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∀x ·x ∈ X ⇒GR(x , v ′)⇒ clk ′ − τ ′T (x ) ≤ d(x )

≡ 〈clk ′ = clk + 1; τ ′T (p) = τT (p)〉

∀x ·x ∈ X ⇒GR(x , v ′)⇒ clk + 1− τT (x ) ≤ d(x )

≡ 〈H1〉

>

295

In the formalization, clk is increased by the Tick event only. The difference

between τT (p) and τR(p) stands for the number of Tick events between T .x and

R.x . When τT (p) ≤ τR(p), the response event R.x must have occurred after

the trigger event. Therefore, when Inv 1 is preserved by the model, the behavior

of the model satisfies the properties of parameterized timing properties. Hence,300

we construct Theorem 4.4 to prove that Inv 1 is preserved by all the events in a

machine, which shows that the behavior of the model satisfies the parameterized

real-time trigger-response properties.

Theorem 4.4. Given the formalization in Figure 6 that extends machine M

with all x in X timing(T .x ,R.x ,w , d), invariant Inv 1 is preserved by all the305

events in the extended machine.

Proof. Given Inv 1, the only events that changes the τT variables and τR vari-

ables are t and r events where t ∈ T and r ∈ R. Thus in the proof we only

examine these two events.

310

For the trigger events, the preservation of Inv 1 is represented by:

H0 : ∀x ·x ∈ X ∧ τT (x ) ≤ τR(x )⇒ τR(x )− τT (x ) ≤ d(x )

H1 : I (v)∧Gt(p, v)∧St(p, v , v ′)

G : ∀x ·x ∈ X ∧ τ ′T (x ) ≤ τ ′R(x )⇒ τ ′R(x )− τ ′T (x ) ≤ d(x )
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∀x ·x ∈ X ∧ τ ′T (x ) ≤ τ ′R(x )⇒ τ ′R(x )− τ ′T (x ) ≤ d(x )

⇐ 〈x is not free in H0〉

τ ′T (x ) ≤ τ ′R(x )⇒ τ ′R(x )− τ ′T (x ) ≤ d(x )

〈Case x=p〉

τ ′T (p) ≤ τ ′R(p)⇒ τ ′R(p)− τ ′T (p) ≤ d(p)

≡ 〈St(p, v , v ′) : τ ′R = τR; τ ′T = (τT C− {p 7→ clk})〉

τ ′T (p) ≤ τ ′R(p)⇒ τR(p)− clk ≤ d(p)

≡ 〈0 ≤ d(p)∧ τR(p) ≤ clk〉

τ ′T (p) ≤ τ ′R(p)⇒> ≡ >

〈Case x 6= p〉

τ ′T (x ) ≤ τ ′R(x )⇒ τ ′R(x )− τ ′T (x ) ≤ d(x )

≡ 〈St(p, v , v ′) : τ ′R = τR; τ ′T = (τT C− {p 7→ clk})〉

τT (x ) ≤ τR(x )⇒ τR(x )− τT (x ) ≤ d(x )

⇐ 〈H0〉

>

315

For the response events, the preservation of Inv 1 is represented by:

H0 : ∀x ·x ∈ X ∧ τT (x ) ≤ τR(x )⇒ τR(x )− τT (x ) ≤ d(x )

H1 : I (v)∧GR(p, v)∧Sr (p, v , v ′)

G : ∀x ·x ∈ X ∧ τ ′T (x ) ≤ τ ′R(x )⇒ τ ′R(x )− τ ′T (x ) ≤ d(x )
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∀x ·x ∈ X ∧ τ ′T (x ) ≤ τ ′R(x )⇒ τ ′R(x )− τ ′T (x ) ≤ d(x )

⇐ 〈x is not free in H0〉

τ ′T (x ) ≤ τ ′R(x )⇒ τ ′R(x )− τ ′T (x ) ≤ d(x )

〈Case x = p〉

τ ′T (p) ≤ τ ′R(p)⇒ τ ′R(p)− τ ′T (p) ≤ d(p)

≡ 〈St(p, v , v ′) : τ ′T = τT ; τ ′R = (τR C− {p 7→ clk})〉

τT (p) ≤ τR(p)⇒ clk − τT (p) ≤ d(p)

⇐ 〈strengthen predicate〉

clk − τT (p) ≤ d(p)

⇐ 〈 Inv 2:GR(p, v)⇒ clk − τT (p) ≤ d(p)〉

GR(p, v)

⇐ 〈H1〉

>

〈Case x 6= p〉

τ ′T (x ) ≤ τ ′R(x )⇒ τ ′R(x )− τ ′T (x ) ≤ d(x )

≡ 〈St(p, v , v ′) : τ ′T = τT ; τ ′R = (τR C− {p 7→ clk})〉

τT (x ) ≤ τR(x )⇒ τR(x )− τT (x ) ≤ d(x )

⇐ 〈H0〉

>

320

5. Formalizing Hierarchical Scheduling with Timing Properties

5.1. End-to-end Timing Properties

In this paper, we define end-to-end timing properties as high-level timing

properties to specify the time constraints of individual tasks in the HS system.

Based on the abstract model that specifies no two tasks of the same applica-

tion can be in the critical section simultaneously, we introduce parameterized
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real-time trigger-response properties to the model as end-to-end timing proper-

ties (8a) and (8b) in the first refinement. Timing property (8a) ensures that each

application occupies the CPU resource for app ddl . For each a in the APPS

set, the time between the occurrence of APP READY .a and APP RUN .a is

bounded below by 0 and above by app ddl . Timing property (8b) guarantees

that if a task wishes to enter its critical section, it will enter the critical section

within the specified timing property task ddl . Figure 7 shows the refinement

with end-to-end timing property for each application. The timing property of

each task can be modeled with the same pattern. We use @axm1 3 to guar-

antee that all tasks of one application finish executing within the application

execution time. at(a) models the timestamp at which application a wishes to

occupy CPU time. ar(a) models the timestamp at which application a gets

the CPU to run tasks. tt(t) models the timestamp at which task t wishes to

enter the critical section. tr(t) models the timestamp task entering the critical

section. @inv1 6 and @inv1 8 capture the end-to-end timing property based

on parameterized real-time trigger-response property semantics. Since timed

machine of Figure 7 is constructed according to the approaches of Section 4,

from Theorem 4.4 we have that @inv1 6 to @inv1 9 are preserved.

all a in APPS timing(APP READY .a,APP RUN .a, 0, app ddl) (8a)

all t in TASKS timing(TASK READY .t ,TASK RUN .t , 0, task ddl) (8b)

5.2. Replacing End-To-End Timing Property with Scheduler-Based Timing Prop-325

erties

In concurrent computing, concurrent tasks are executed by interleaving the

execution steps of each task, which models tasks in the outside world that

happen concurrently. In real-time systems, scheduling is used to make sure that

all tasks meet their deadlines [1]. A scheduler is used to allocate the resource330

to a task for some time.
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constants app ddl task ddl

axioms

@axm1 1 app ddl>0

@axm1 2 task ddl>0

@axm1 3 N ∗ task ddl≤ app ddl

invariants

@inv1 6 ∀a·at(a)≤ ar(a)⇒ ar(a)−at(a)≤ app ddl

@inv1 7 ∀a·a∈ app wait⇒clk−at(a)≤ app ddl

@inv1 8 ∀t·tt(t)≤ tr(t)⇒ tr(t)−tt(t)≤ task ddl

@inv1 9 ∀t·t∈ task wait⇒clk−tt(t)≤ task ddl

event APP READY extends APP READY

then

@act2 at(a):= clk

end

event APP RUN extends APP RUN

then

@act3 ar(a):= clk

end

event TICK

where

@grd1 ∀a·a∈ app wait ⇒clk+1−at(a)

≤ app ddl

@grd2 ∀t·t∈ task wait ⇒clk+1−tt(t)

≤ task ddl

then

@act1 clk:= clk+1

end

Figure 7: First Refinement with End-to-end Timing Properties
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In the next refinement of the case study, we specify two scheduler-based

timing properties with unparameterized timing properties (9a) and (9b). Prop-

erty (9a) requires that when the system is idle, one of the requesting tasks will

enter the critical section within idletime. Specifically, there are two cases that335

trigger the scheduling of the enter event: 1) a task wishes to enter, and both

the queue and the critical section are empty, and 2) some task leaves the critical

section, and there is some other task waiting in the queue. Observe here that

events can act as timing triggers only under certain conditions; e.g., the wish

event is only a timing trigger when the queue and critical section are empty.340

To address such conditional triggers, we split the event into separate refine-

ments representing separate cases. We refine the TASK READY event into a

TASK READY EMPTY event, enabled when the first condition holds, and a

TASK READY NONEMPTY event, enabled when the second condition holds.

Similarly, we split the TASK FINISH event into a TASK FINISH NONEMPTY345

event, enabled when the second condition holds, and a TASK FINISH IDLE

event, enabled when the last task in the queue finish executing. The events

TASK READY EMPTY and TASK FINISH NONEMPTY are therefore used

as trigger events in (9a), whereas the response event TASK RUN is the event

modeling entering the critical section.350

(9b) requires that once a task enters the critical section, it will leave the

critical section within runtime. Therefore, the trigger event is the TASK RUN

event, whereas response events should correspond to leaving the critical section.

As the latter is now captured by two events, there are two response events

in (9b). Here, TASK FINISH NONEMPTY implies that when some tasks

finish executing, others are still waiting in the queue. TASK FINISH denotes

the situation in which the last task in the queue finishes executing.
timing(TASK READY EMPTY ,TASK RUN , 0, idletime)

timing(TASK FINISH NONEMPTY ,TASK RUN , 0, idletime)
(9a)
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
timing(TASK RUN ,TASK FINISH NONEMPTY , 0, runtime)

timing(TASK RUN ,TASK FINISH IDLE , 0, runtime)
(9b)

Parameterized timing properties describe time bounds over quantified trigger-

response pairs. This method lacks an adequate representation of the conflicts

of timing properties resulting from the competition between concurrent trigger-

response pairs. Global schedulers are used to schedule the tasks to execute.

We employ unparameterized timing properties timing(P ,Q , 0,wt) to represent355

the timing properties of global schedulers, which can be used to replace end-to-

end timing property all x in X timing(T .x ,R.x , 0, d(x )) with additional con-

straints. In this paper, we present a pattern for replacing an end-to-end timing

property with a collection of scheduler-based timing properties.

In the refinement, the timing properties at the abstract level could be re-360

placed by other timing properties at the concrete level. One end-to-end timing

property all x in X timing(T .x ,R.x , 0, d(x )) could be replaced by n scheduler-

based timing properties presented in (10). Take HS system as an example, the

abstract timing property (8b) is replaced by a set of concrete timing proper-

ties (9a) and (9b). We construct a pattern to replace the timing properties so365

that the refinement is preserved.



timing(P1,Q1, 0,wt1)

timing(P2,Q2, 0,wt2)

...

timing(Pn ,Qn , 0,wtn)

(10)

As presented in Figure 2 and Figure 6, the guard of Tick event is determined

by the timestamps of trigger events and the predicate GR. Thus we use the re-

lation between the timestamps of P and T and the relation between abstract

event set R and concrete event sets Q1,Q2, . . . ,Qn to construct the gluing in-370

variants that relate the end-to-end timing properties and scheduler-based timing

properties.
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When replacing the end-to-end timing properties with scheduler-based tim-

ing properties, the schedulers determine the waiting time of each task based

on its scheduling policy. Thus, for each scheduler-based timing property tim-

ing(Pi ,Qi , 0,wti), where i ∈ 1 . . .n, that replaces the end-to-end timing prop-

erty all x in X timing (T .x ,R.x , 0, d(x )), we use a function gi(x ) to denote the

maximum waiting time of each task x for other tasks to run under the specific

scheduling policy. This gi(x ) can be provided by modelers based on different

real-time scheduling specifications, which can be used to relate the timestamps

of P and T . We use τT and τR to represent the timestamps of events T and R,

and τP and τQ to represent the timestamps of events P and Q respectively. As

shown in the formalism presented in Figure 2 and Figure 6, the timestamps are

updated when the corresponding trigger and response events occur. We require

that gi(x ) of each x is updated by the trigger event P simultaneously with τP .

It is obvious that gi(x ) should satisfy the condition presented in Equation 11,

which requires that maximum waiting time of each task x should be less than

its deadline d(x ).

∀x ·x ∈ X ⇒ 0 ≤ gi(x ) ≤ d(x ) (11)

Figure 8 shows the time diagram of an example that replaces the parameter-

ized timing property all x in X timing(T .x ,R.x , 0, d(x )) with a single unpa-

rameterized timing property timing(P ,Q , 0,wt). Assume that tasks are being375

executed in the order p1 → p2 → p3 and that the worst-case execution time

is wt ∈ N. p3 has to wait for p1 and p2 to finish being executed before it is

executed. In the refined model, some unparameterised event can be used to

replace the parameterized events. For example, in the abstract model we use

T .x to denote the event that some task x wishes to run. In the refined model,380

we use event P to denote the event at which the scheduler allows some task to

run and Q to denote the event that stops executing a running task. When τP

is initially updated, the maximum waiting time for p2 is wt and the maximum

waiting time for p3 is 2 ∗ wt . Thus g(p2) = wt and g(p3) = 2 ∗ wt . After p1

finishes executing, τP is updated again by the scheduler. In this case p2 does385
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not need to wait and the maximum waiting time for p3 is wt . After p2 finishes

executing, g(p3) = 0.

τT(x) d(x)

Abstract Timeline

Concrete Timeline

g(p3)

τP

wt

g(p2)

Concrete Timeline

τP

g(p3) wt

τP

wt

Concrete Timeline

Figure 8: Time Diagram of Replacement of Parameterized Timing Properties to Unparame-

terized Timing Properties

Besides the relation between timestamps of trigger events, we also show the

relation between the guards of the response events. For each task x ∈ X , we

want to show the response events R.x could be represented by some response390

event Qi of the scheduler where i ∈ 1 . . .n. Based on the above assumptions,

we construct Theorem 5.1 to provide gluing invariants that relate the scheduler-

based timing properties and end-to-end timing properties. We mainly show

that the GRD proof obligation of Tick event is discharged by the additional

conditions provided in Theorem 5.1.395

Theorem 5.1. Given a machine M with end-to-end timing property all x in X

timing (T .x ,R.x , 0, d(x )) to be refined with a machine N with scheduler-based

timing property presented in (10). Given that a function gi(x ) that represents

the waiting time of each task x under the specific scheduling policy is provided

for each timing(Pi ,Qi , 0,wti) where i ∈ 1 . . .n. The scheduler-based timing400

properties replace the end-to-end timing property when:

1. ∀x ·x ∈ X ⇒ (τPi
+ gi(x ) + wti ≤ τT (x ) + d(x )) is a valid invariant for

each timing(Pi ,Qi , 0,wti) where i ∈ 1 . . .n;
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2. ∀p ·GR(p, v)⇒ HQ1(w)∨HQ2(w) . . .∨HQn (w), where GR is the guard of

the response event of the end-to-end timing property, and HQi
is the guard405

of the response event of a timing property timing(Pi ,Qi , 0,wti) that re-

places the abstract timing property.

Proof. In this proof we want to show that the GRD proof obligation for the

Tick event, formally presented as I (v)∧ J (v ,w)∧HTick (w) ` GTick (v).

410

H0 : GR(p, v)⇒HQ1(w)∨HQ2(w) . . .∨HQn (w)

H1 : (HQ1
(w)⇒ clk + 1 ≤ τP1

+ wt1)∧(∀x ·x ∈ X ⇒ (τP1
+ g1(x ) + wt1 ≤ τT (x ) + d(x )))

H2 : (HQ2
(w)⇒ clk + 1 ≤ τP2

+ wt2)∧(∀x ·x ∈ X ⇒ (τP2
+ g2(x ) + wt2 ≤ τT (x ) + d(x )))

...

Hn : (HQn (w)⇒ clk + 1 ≤ τPn + wtn)∧(∀x ·x ∈ X ⇒ (τPn + gn(x ) + wtn ≤ τT (x ) + d(x )))

G : ∀x ·x ∈ X ⇒ (GR(x , v)⇒ clk + 1 ≤ τT (x ) + d(x ))

Assume x ∈ X and GR(x , v). We have to show clk + 1 ≤ τT (x ) + d(x ))

clk + 1

≤ 〈H0 : ∃i ·HQi
with Hi〉

τPi
+ wti

≤ 〈gi(x ) ≥ 0〉

τPi
+ gi(x ) + wti

≤ 〈H0 : ∃i ·HQi with Hi and x ∈ X 〉

τT (x ) + d(x )

415

5.3. Nondeterministic Queue-Based Scheduling

In our HS system that replaces the end-to-end deadline constraint with

scheduler-based deadline constraints, we propose a nondeterministic queue-based

scheduling framework to address the scheduling order of the sequential execu-420

tion of a set of events. In this framework, a queue is used to manage the ready

tasks. Each task is formally assigned a position in the queue: queue ∈ wait �
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(0..N −1). When one task is ready, it is nondeterministically assigned a natural

number that is not in the range of the queue. Only the task in the front of the

queue (min(ran(queue))) can get the resource to run. The dequeue operation425

will decrease the indexes of all other tasks in the queue by the index of the front

task plus one (min(ran(queue)) + 1) to guarantee that once a task is added to

the queue, and it will eventually have the opportunity to run. In the second

refinement, we use this nondeterministic queue-based scheduling framework to

impose an order on the execution of the concurrent tasks. This refinement pre-430

vents a task from entering the critical section endlessly while also not allowing

other tasks to enter the critical section. The second refinement is shown in

Figure 9.

invariants

@inv2 1 queue∈ task wait � 0..N−1

event TASK READY extends

TASK READY

any i

where

@grd5 i∈ 0..N−1

@grd6 i/∈ ran(queue)

then

@act3 queue(t):= i

end

event TASK RUN extends TASK RUN

any j

where

@grd3 queue 6=∅

@grd4 j∈ ran(queue)

@grd5 j=min(ran(queue))

@grd6 t=queue∼(j)

then

@act4 queue:= (λ q·q∈ dom({t}C−queue

) | queue(q)−j−1)

end

Figure 9: Second Refinement with Nondeterministic Queue Based Scheduling

Figure 10 shows the time diagram of the refinement with the scheduling

framework. Assume that in the abstract machine, the trigger event of one435

task t occurs at timestamp tt(t), and the deadline is task ddl . Additional glu-

ing invariants are provided based on Theorem 5.1. In the refined machine,

the trigger event TASK READY EMPTY or TASK FINISH NONEMPTY
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Abstract Timeline

Concrete Timeline

idlet

idletimeruntime

t

!"i∈
 ra

n(queue))

queue

Occupied

empty

unknown

tt(t) task_ddl

runt
idler idlet

runr runt
idler idlet

runr runt
idler

Figure 10: Time Diagram of Timing Properties’ Refinement with the Scheduling Framework

starts at timestamp idlet , and its deadline is idletime. The trigger event

TASK RUN starts at timestamp runt , and its deadline is runtime. The task440

t has to wait for all the tasks ahead of it in the queue to enter and leave

the critical section. The total waiting time is proportional to its index in

the queue, which is queue(t) ∗ (idletime + runtime). If the critical section is

empty and the time that the last task leaves the critical section is idlet , then

g(t) = queue(t) ∗ (idletime + runtime). There might be tasks that have waited445

queue(t) ∗ (idletime + runtime). Then, task t should enter the critical section

within idlet +queue(t)∗ (idletime + runtime)+ idletime. Given that the critical

section is not empty, g(t) = queue(t) ∗ (idletime + runtime). Assume that the

time that the last task enters the critical section is runt ; then, task t should enter

the critical section within runt + queue(t) ∗ (idletime + runtime) + (idletime +450

runtime). Based on Theorem 5.1, the sum of the refined sequential deadline

should be less than the abstract deadline tt(t) + task ddl , which is shown in

@inv3 9 and inv3 10 in Figure 11. @inv3 9 and inv3 10 present these two con-

ditions as required gluing invariants. Assume that there are N tasks, of which

the worst case is N − 1 tasks in the waiting list; thus, max (queue(t)) = N − 1.455

@axm2 3 and @axm2 4 present the required condition. Figure 11 shows the

required axioms and invariants to replace the end-to-end deadlines to scheduler-

based deadlines. @inv3 5 and @inv3 7 present the invariant for scheduler-based
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deadlines (9b), and @inv3 6 and @inv3 8 present the invariants for scheduler-

based deadlines (9a).460

5.4. Two Implementations of Nondeterministic Queue-Based Scheduling

The nondeterministic queue-based scheduling framework is a general frame-

work that nondeterministically assigns indexes to tasks. By applying additional

rules to the assignment of these indexes, the queue-based scheduling framework

can be refined to some scheduling policies such as the FIFO and DPB schedul-465

ing policies. In the model, we define FIFO and DPB as two scheduling policies

of the SCHEDULING carrier set. The refinement shows that the two scheduling

policies are compatible under the HS system. Each application has either the

FIFO or DPB scheduling policy based on the scheduling constant. As shown in

Figure 12, we define the constant scheduling as a total function from APPS to470

Scheduling . Both refinements refine the nondeterministic queue base scheduling

framework by restricting the position of the ready task in the queue. Details

are provided in the following sections.

5.4.1. First In First Out

FIFO is one of the scheduling policies that guarantees that the resources475

are assigned to each task in the order that they require the resource. The

FIFO scheduling policy handles all tasks without priorities. The queue-based

scheduling framework assigns each task with a corresponding natural number

k ∈ N, and the FIFO scheduling policy limits this natural number to the current

size of the queue. Moreover, when the critical section is empty, the task that is480

in the front of the queue leaves the queue and enters the critical section. The

indexes of all the other tasks in the queue are reduced by one.

The refinement from the scheduler-based model is shown in Figure 12. As-

sume that the application that is running is scheduling tasks with the FIFO pol-

icy. Initially, the queue is empty, and qsize is zero. Whenever some task is added485

to the queue, it is assigned the number of the queue size, and the queue size

increases by one when the scheduling policy is FIFO . When the critical section
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constants idletime runtime

axioms

@axm2 1 idletime>0

@axm2 2 runtime>0

@axm2 3 ((N−1)∗(idletime+runtime))+idletime≤ task ddl

@axm2 4 N∗(idletime+runtime)≤ task ddl

invariants

@inv3 5 idler≥ idlet⇒ idler−idlet≤ idletime

@inv3 6 runr≥ runt⇒runr−runt≤ runtime

@inv3 7 queue 6=∅ ∧task run=∅ ⇒clk−idlet≤ idletime

@inv3 8 task run 6= ∅⇒clk−runt≤ runtime

@inv3 9 ∀t·task run=∅∧t∈ task wait⇒idlet+(queue(t)∗(idletime+runtime))+idletime≤

tt(t)+task ddl

@inv3 10 ∀t·task run6=∅∧t∈ task wait⇒runt+(queue(t)∗(idletime+runtime))+(idletime

+runtime)≤ tt(t)+task ddl

TASK READY EMPTY

extends

TASK READY

where

@grd7 task wait=∅∧

task run=∅

then

@act4 idlet:= clk

end

TASK READY NONEMPTY

extends

TASK READY

where

@grd7 task wait 6=∅

∨task run6=∅

end

TASK RUN extends

TASK RUN

then

@act5 runt:= clk

@act6 idler:= clk

end

TASK FINISH NONEMPTY

extends

TASK FINISH

where

@grd2 queue 6=∅

then

@act2 runr:= clk

@act3 idlet:= clk

end

TASK FINISH IDLE

extends

TASK FINISH

where

@grd2 queue=∅

then

@act2 runr:= clk

end

TICK refines TICK

where

@grd1 ∀a·a∈ app wait

⇒clk+1−at(a)≤

app ddl

@grd2 task run=∅ ∧

task wait6=∅ ⇒

clk+1−idlet≤

idletime

@grd3 task run6=∅⇒clk

+1−runt≤

runtime

then

@act1 clk:= clk+1

end

Figure 11: Replace Task-based Timing Properties with Scheduler-based Timing Properties
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is empty, the task in the front of queue queue(0) is removed from the queue, and

the indexes of all the other tasks in the queue are reduced by one. The queue size

also decreases by one. In the nondeterministic queue-based scheduling policy,490

the guard for TASK READY is i /∈ ran(queue). @inv4 1 and @inv4 2 are used

to to prove that i = qsize ⇒ i /∈ ran(queue). TASK READY NONEMPTY

uses the same refinement strategy as TASK READY EMPTY .

5.4.2. Deferrable Priority Based Scheduling with Aging Technique

Fixed priority scheduling policies assign tasks with fixed priorities. In the495

model, we use pindex ∈ TASKS → 0..N − 1 to denote the queue position of

tasks with different priorities. Tasks with higher priorities have lower indexes

in the queue. The scheduler will select the tasks with higher priorities to access

the system resources before those with lower priorities. However, there is a

disadvantage of these scheduling policies: tasks with lower priorities may be500

starved when the tasks with higher priorities keep coming and jumping the

queue. An aging technique is used to ensure that tasks with lower priorities

are eventually executed. The general way to implement an aging technique is

to increase the priorities of tasks with lower priorities while they are waiting in

the ready queue. However, with the increasing priorities of some tasks, aging505

will allow tasks with lower priorities to occupy the positions of other tasks. In

contrast, deferrable priority-based scheduling allows a task to be deferred with

a random position after its assigned position when some other tasks occupy the

position of that task.

To avoid the starving problem of tasks with lower priorities, we add a rule510

to priority-based scheduling: when some other task with lower priority occupies

the position of some high-priority tasks, which means that the lower prior-

ity one has waited some time in the queue, the high-priority one is deferred

by some higher random index. Specifically, the indexes of the tasks are de-

creasing by min(ran(queue)) + 1 when the task at the front queue, whose in-515

dex is min(ran(queue)), leaves the queue and enters the critical section. The

enqueue operation will assign the task its corresponding index in the queue.
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sets SCHDULING

constants FIFO DPB scheduling

axioms

@axm3 2 partition(SCHDULING,{FIFO},{DPB})

@axm3 3 scheduling∈ APPS →SCHDULING

invariants

@inv4 1 qsize∈ 0..N

@inv4 2 ∀i·i≥ qsize∧app run⊆ scheduling∼[{FIFO}]⇒i/∈ ran(queue)

TASK READY NONEMPTY FIFO

refines

TASK READY NONEMPTY

any t i

where

@grd1 t∈ TASKS\task wait

@grd2 t∈ TASKS\task run

@grd4 apps(t)∈ app run

@grd5 i=qsize

@grd6 qsize≤ N−1

@grd7 task wait6=∅ ∨task run6=∅

@grd8 app run⊆ scheduling∼[{FIFO

}]

then

@act1 task wait:= task wait∪{t}

@act2 tt(t):= clk

@act3 queue(t):= i

@act4 idlet:= clk

@act5 qsize:= qsize+1

end

TASK RUN FIFO refines TASK RUN

any t j

where

@grd1 t∈ task wait

@grd2 task run=∅

@grd3 queue 6=∅

@grd4 j∈ ran(queue) ∧j=0

@grd5 t=queue∼(j)

@grd6 app run⊆ scheduling∼[{FIFO

}]

then

@act1 task wait:= task wait\{t}

@act2 task run:= task run ∪{t}

@act3 tr(t):= clk

@act4 queue:= (λ q·q∈ dom({t}C−

queue)|queue(q)−j−1)

@act5 runt:= clk

@act6 idler:= clk

@act7 qsize:= qsize−1

end

Figure 12: First In First Out Scheduling Policy
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However, this operation would cause a conflict, as it will make some tasks

occupy the spaces of other tasks. For example, task a’s level is 3, and task

b’s level is 2. One task c is at the front of the queue. When c leaves the520

queue, the index of a is reduced to 2. When b wishes to enter the queue,

its position is taken by a. Here, we choose the next available space available

in the queue i = min(k | k ∈ ran(pindex )∧ k /∈ ran(queue)∧ k > pindex (t)).

When other tasks do not take the position, the task takes its assigned po-

sition pindex (t). The dequeue operation is the same as the basic queue-based525

scheduling framework. Figure 13 shows the refinement from the scheduler-based

model with a deferrable priority-based scheduling policy with aging technique.

constants pindex

@axm3 1 pindex∈ TASKS →0..N−1

TASK READY NONEMPTY DPB refines TASK READY NONEMPTY

any t i

where

@grd1 t∈ TASKS\task wait

@grd2 t∈ TASKS\task run

@grd4 apps(t)∈ app run

@grd5 {k|k∈ ran(pindex)∧k/∈ ran(queue)∧k≥ pindex(t)}6=∅

@grd6 i=min({k|k∈ ran(pindex)∧k/∈ ran(queue)∧k≥ pindex(t)})

@grd7 task wait6=∅ ∨task run6=∅

@grd8 app run⊆ scheduling∼[{DPB}]

then

@act1 task wait:= task wait∪{t}

@act2 tt(t):= clk

@act3 queue(t):= i

end

TASK RUN DPB extends TASK RUN

where

@grd7 app run⊆ scheduling∼[{DPB}]

end

Figure 13: Deferrable Priority Based Scheduling Policy with Aging Technique
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Table 1: Proof Statistics

Machine Generated PO Automatically Proved Automatically Proved %

m0 14 12 85.7

m1 34 34 100

m2 6 5 83.3

m3 49 43 87.8

m4 27 27 100

5.5. Proof Statistics

Table 1 shows the proof statistics of the model. In m3, six proof obliga-

tions, all of which are related to @inv3 9 and @inv3 10, cannot be discharged

automatically. As mentioned in Theorem 5.1, the modeler needs to provide the530

function g(x ) that denotes the maximum waiting time of each task x based on

different scheduling policies. Thus, the modeler needs to verify that these two

invariants are consistent with the whole model. Then, @inv3 9 and @inv3 10

can be used to discharge the GRD proof obligation of the Tick event. In m4,

we provide @inv4 2 to capture the property that given the FIFO scheduling535

policy, any i larger or equal to qsize is not in the range of queue. @inv4 2 helps

with the proof obligations to refine the nondeterministic queue-based scheduling

policy to the FIFO policy. Therefore, all proof obligations in m4 are discharged.

The model and the proofs supporting this study are openly available from the

University of Southampton repository at [17].540

6. Related Work

Timing issues are critical in cyber-physical systems. Timing analysis should

be carried out together with the development of the system to improve the real-

time performance as well as guarantee the safety of the whole system. Timed

automata [18] that are supported by the UPPAAL [19] model checker has been545

35



used in industrial modeling of real-time systems. It is challenging to model a

complex system with the timed automata formalism and UPPAAL as it does not

support the refinement of the model. Some approaches, such as counterexample-

guided abstraction refinement have been brought up to add abstraction and

refinement when modeling a complex system [20]. This approach uses a model550

checker to get the counterexamples from the abstract model and uses these

counterexamples as guides to refine the system. However, it is difficult to find

the missing part from the model just from counterexamples. Abadi and Lamport

started to specify and reason about real-time systems by representing time as

an ordinary variable in Temporal Logic of Actions (TLA) [21]. Their work put555

time bounds on individual actions by using timers to restrict the increase of

the global clock. Based on their work, Zhang et al. specified the time interval

between two actions with TLA [22]. The time specifications are expressed by

the TLA+ language [23], which is supported by the TLC model checker [24].

However, the TLC model checker does not support parameterized specification.560

Also, refinement of time specifications is not adapted to the verification support

of TLA+. Our work not only presents parameterized timing properties but

also provide refinement patterns to replace parameterized timing properties to

unparameterized timing properties.

Event-B supports modeling refinement but lacks explicit support for express-565

ing and verifying timing constraints [13]. Rehm proposed to add a timestamp set

that links events to different timestamps in Event-B models. When the global

clock has reached some timestamp, then the linked event would be triggered [25].

However, their approach cannot specify timing properties such as delay and

deadline on actions or between actions. Influenced by Abadi and Lamport work570

that put time bounds on individual actions, Butler and Falampin proposed an

approach to model and refine timing properties in classical B [8], which adds a

clock variable representing the current time and an operation which advances

the clock [26]. Additional constraints are added to the clock so that the global

clock can not advance to a point where deadlines would be violated. Based575

on this approach, work has been done to extend Event-B models with timing
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properties and refinement patterns [6, 13]. Sarshogh and Butler developed a

trigger-response pattern to extend Event-B models with discrete timing proper-

ties such as deadline, delay, and expiry [6]. Their approach sets timestamps for

trigger and response events and uses a Tick event to prevent the global clock580

from proceeding to a point where time constraints between trigger and response

events would be violated. Sulskus et al. presented the notion and Event-B se-

mantics for the interval timing properties by using an interrupt event between

trigger and response events [13]. However, Sarshogh and Sulskus’s work did not

specify the relations between trigger and response events formally. Our work585

provides the semantics and syntax with proofs.

There are several patterns developed by Sarshogh to refine deadlines, delay,

and expiry. For example, to refine an abstract deadline D to sequential sub-

deadlines D1..Dn , there should be invariants to ensure the order of sequential

sub-deadlines and the sum of the duration of sub-deadlines should be less than590

the abstract deadline duration [6]. Sarshogh’s approach only handles the system

with trigger and response pattern without specifying some possible interrupt

events from the environment. Sulskus et al. extended their work by construct-

ing a set of refinement transformations with Event-B code templates to verify

and validate interval timing properties [27]. Their work provides soundproof to595

refine abstract time intervals to alternative or sequent sub-time intervals. How-

ever, they lack refinement patterns to replace parameterized time intervals to

unparameterized time intervals.

The trigger-response pattern only models discrete-time constraints, while

the real-world events do not always happen at integer-value times. Continuous-600

time can be modeled approximated by choosing the granularity of the global

clock, which models the timed system with an approximate sense. Banach et

al. present the Hybrid Event-B extension, which accommodates continuous

behaviors in between discrete transitions [28]. Based on this extension, Butler

et al. outline an approach to modeling and reasoning about hybrid systems605

which uses continuous functions over real intervals to model the evolution of

continuous values over time [29].
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7. Conclusion and Future Work

Based on a trigger-response approach to modeling timing properties in

Event-B, we present the syntax of parameterized real-time trigger-response610

properties with Event-B formalization and proofs. Rules and proofs are pro-

vided to replace parameterized timing properties with unparameterized timing

properties. To distinguish timing properties from the perspective of different

system design phases, we define parameterized timing properties that place

discrete-time constraints on individual tasks as end-to-end timing properties,615

which describe high-level timing properties from the system requirement spec-

ification phase. These end-to-end timing properties cannot precisely describe

the concurrent behavior of tasks. In real-time systems, schedulers are used to

schedule concurrent tasks. To model the behavior of these concurrent tasks,

we define scheduler-based timing properties with unparameterized timing prop-620

erties as concrete timing properties for the system design phase, which places

discrete-time constraints on the scheduler that schedules the concurrent tasks.

To replace end-to-end timing properties with scheduler-based timing properties,

we introduce a nondeterministic queue-based scheduling policy with some addi-

tional gluing invariants. We formalize a two-level hierarchical scheduling system625

that refines the nondeterministic queue-based scheduling policies to two compat-

ible local scheduling policies to illustrate the pattern that replaces end-to-end

timing properties with scheduler-based timing properties.

This paper addresses the safety properties but not the liveness properties

and possible Zeno behavior, whereby an infinite number of events occur within630

a limited period of time [30]. In our setting, if there is an infinite number of

intermediate events occurring between the trigger and response pair, then the

response events are infeasible, and the Tick event cannot increment the global

clock. Fairness assumptions are required in the model to guarantee that when

the trigger event occurs, the response event will eventually occur. Additional635

refinement rules are required to guarantee that the refined model also avoids

Zeno behavior. In this paper, we only treat the safety properties of a system,
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which guarantee that the response event does not occur earlier than the delay

time or later than the deadline time. So we assume that the trigger-response

pair (T ,R) satisfies the liveness property which guarantees that a trigger event640

is followed eventually by a response event. [14] dealt with liveness properties by

imposing weak fairness as well as conditional convergence to prove the eventual

occurrence of the response event and the global tick event. [31] extended the

work by introducing refinement patterns of timing properties with weak fairness

assumptions. However, the work in [14, 31] did not deal with the parameterized645

trigger-response timing properties of this paper. Future work could also explore

the conditions for the liveness properties of the parameterized trigger-response

properties.

In the cases that the system does not require an explicit mention of time,

the notion of bounded fairness and finitary fairness allows one to express the650

eventual occurrence of a set of events. Some work has been done to model

fairness in Event-B [32, 33]. Bounded fairness modeling, as well as finitary

fairness modeling, can be researched further with some addition prove rules and

refinement frameworks.

To explicitly represent the timing properties in a cyber-physical system,655

there are three typical time constraints to consider: period, deadline, and worst-

case execution time. More work can be done to apply scheduling policies such

as rate-monotonic (RM) scheduling and the priority inheritance protocol based

on the queue-based scheduling framework to analyze the real-time performance

of CPS together with the mentioned time constraints in Event-B. Hoang et al.660

proposed to reuse simple models as patterns to construct larger models [34].

Therefore, our work of refining real-time properties with the scheduling frame-

work can also be used as a pattern to refine complicated real-time systems with

concurrent tasks.
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