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It is well-known that, under classical assumptions, the arbitrage-free value of European options
contracts in complete continuous Markovian models is given by the solution to a Cauchy problem
on R?. Recent research has shown that similar results hold in a path-dependent context, whereby
values solve an analogous Cauchy problem on the non-separable path space D? of cadlag paths,
in an almost sure sense, that is — on an implicit subset with model probability one. This presents
difficulties for numerical solution, as practitioners must work with real data time series and at
most countably many operations. This thesis resolves this in a wide class of continuous path-
dependent market models, by showing that in this context derivatives’ valuation is equivalent to
solving a Cauchy problem for any path in an explicit subset of a new Banach space M;(Rd ) of

Monte Carlo paths, that is naturally adapted to practitioner intuition and numerical methods.

First, we develop a new framework for the pathwise analysis of market risk models. Based on a
new notion of pathwise variance that generalises existing notions of quadratic variation, we con-
struct the new Banach space M?@(Rd) and show how its geometry captures practitioner intuition
about risk models’ volatility. The paths of a wide class of risk models can then be constructed
explicitly as a family of integral expressions parameterised by noise paths. Second, we show
how the Dupire (2009) differential operators for path functionals fit within the general theory of
differentiation, and have a rich calculus. We characterise vertical differentials as the generators
of strongly continuous groups on certain spaces of path functionals, and show how this allows for
chain and product rules, and analogues of Taylor’s Theorem and smooth approximation. Simi-
larly, the horizontal differential is characterised as the generator of a strongly continuous semi-
group on spaces of functional processes. We prove a Fundamental Theorem of Calculus type
result for this operator, and show how this framework can be applied to derivatives’ risk sensi-
tivities. Third, we develop a theory of pathwise no arbitrage valuation on general Monte Carlo
paths. We prove a new I16 formula for functional processes generalising that of Follmer (1981)
and Cont and Fournié (2010) to continuous paths with possibly discontinuous pathwise vari-
ance, and models which are not necessarily semimartingales. We then derive a corresponding

valuation equation and robustness property for hedging error.
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Nomenclature

X a generic Banach space

c(X) the Banach space of convergent sequences in X

cs(X) the Banach space of convergent series in X

£P(X) the Banach space of p-summable sequences in X

S(X) the vector space of X-valued simple paths

W(X) the Banach space of X-valued continuous paths

D(X) the Banach space of X-valued cadlag paths

FCX) the Banach space of X-valued caglad paths

G(X) the Banach space of X-valued regulated paths

Gy(X) the Banach space of X-valued null limit paths

BV (R?Y) the Banach space of R“-valued paths of bounded variation
Xy X_ right-/left-limit paths of a path x

A x,A_x,Ax right-/left-/total jump paths of a path x

alul, plul, ylu] singular/right-/left-bump paths at u

by a generic partition of [0, T']

EP(x), Erp (%), Slp(x) Euler projection of x on p; right- and left-continuous versions
P a generic clock

varg ,(x) pathwise p-variance of R¢-valued path x along clock %

[x, Y] pathwise co-variance matrix of R?-valued paths x, y along %
M”@(Rd ) the Banach space of R?-valued p-Monte Carlo paths along %
MP(R4) the Banach space of R?-valued p-Monte Carlo paths

7(x) trader’s clock evaluated on path x

Lip(X), Lip,(X) the Banach spaces of Lipschitz/bounded Lipschitz functionals on X

C,(X), %,(X) the Banach spaces of continuous/uniformly continuous, bounded functionals on X
Bi[t] the ith bump operator at ¢

6;1 the ith vertical differential at t operator on path functionals

H(u) the horizontal translation by u operator

D the horizontal differential operator for functional processes

7, the stopping operator at ¢ on paths

T, the non-anticipative, predictable projections on functional processes

x®y the concatenation of paths x and y at ¢
t
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Chapter 1

Introduction

“He believed in an infinite series of times, in a growing, dizzying net of divergent,
convergent and parallel times which approached one another, forked, broke off, or

ignored each other through the centuries, and embraced every possibility.”
- Jorge Luis Borges, The Garden of Forking Paths
“The past has gotta stop! The future’s gotta rock!”
- Leftfield feat. Afrika Bambaataa, Afrika shox

A derivative security is a contract committing its counterparties to make and receive specified
payments contingent on the future outcomes of other variables, such as stock or commodity
prices, interest rates, and so on. A large part of the financial sector is devoted to the buying,
selling, design, and management of such contracts — as of end June 2018, the Bank for Inter-
national Settlements estimates the gross market value of outstanding ‘over-the-counter’ (OTC)
derivatives to be $ 11 trillion, on a notional value of $595 trillion (Bank for International Settle-
ments (2018)). The dependence on a priori unknown future variables, and the consequent need

to robustly model their potential values, makes derivatives contracts complicated.

The fundamental principle of derivatives valuation is the exclusion of arbitrage — that is, risk-
less profit opportunities. Under suitable technical assumptions this is equivalent to finding a
probability measure on the relevant future market states under which the profit and loss of any

implementable trading strategy is expected to be zero.

If we restrict attention to contracts depending only on values at expiry, and the market is assumed
to evolve as a Markov diffusion — that is, with dynamics depending only on its instantaneous

values, independent of its history — then stochastic calculus shows that there is a deep connection
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between the no arbitrage value under classical market assumptions and the solution of a Cauchy

problem for a corresponding partial differential equation (PDE).

The more general path-dependent setting has until recently relied exclusively on purely prob-
abilistic methods. The most important is known as Monte Carlo simulation, which generates
piecewise constant scenario paths that uniformly approximate risk model paths under the risk-
neutral measure, and whose variance converges in probability to the corresponding quadratic
variation. The Strong Law of Large Numbers then says the corresponding average of the deriva-

tive payoff over these scenarios converges to the model’s option price.

Recent work by Dupire (2009), Cont and Fournié (2010) and others, has derived path-dependent
or functional partial differential equations (FPDEs) for valuing derivatives in general models,
that directly parallel the classical Markov case. Solutions can be given using methods such as
forward-backward stochastic differential equations (Cont et al. (2016), El Karoui et al.). An
issue with both from the practitioner point of view is that they remain inherently probabilistic,
and strictly speaking only apply to an implicit subset of the given path space of probability one.
The underlying problem is that the space of paths used in these approaches includes paths with
infinite variance as a dense subset — it is ‘too big’.

This thesis formulates a new framework for derivatives valuation on an explicit concrete, prac-
tically relevant space of paths. We introduce new Banach spaces, M?@(Rd ), of Monte Carlo
paths for the pathwise analysis of market risk models, whose structure is defined in such a way
as to reflect numerical approximation in both the uniform and quadratic variation sense. No
arbitrage valuation of derivatives in sufficiently regular continuous market models can then be

characterised as a Cauchy problem on M;(Rd), rather than on R?.

The rest of this introductory chapter is structured as follows. In Section 1.1 we will expand on
the above comments to further motivate the problem under consideration, and detail the standing
assumptions we will be making. In Section 1.2 we will state the aims of this research and the
contributions it makes to the existing literature. Finally, in Section 1.3 we give an overview of

the chapters to come.

1.1 Motivation: arbitrage and path-dependence

To give the reader the flavour of the problem, and introduce some necessary nomenclature, it is

perhaps best to begin with a simple example of a derivative contract.

A (European-style) vanilla put option on an underlying stock with spot price S(t) at time f¢,
entitles one counterparty (the option’s buyer or holder, who is said to be long the option) to sell
the stock to the other (its seller or writer, who is short) at a time in the future (its maturity) at a
price (its strike) fixed at inception. If, at the maturity time T, the stock’s price S(T') is less than

the strike k, the holder can receive k — S(T') by buying it on the market for S(7") and exercising
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the option to sell it to the writer, who must pay k. If not, the option expires, and neither party

must do anything.

If we think of the evolution of the spot price over the course of the contract as a path or function

S :[0,T] - R, then the option payoff functional is
©(S) = (k — S(T)* (1.1)

The option in effect functions as a kind of insurance for the holder against the stock’s price
dropping below the strike, provided by the writer, who therefore requires compensation — a price
— to enter the contract. In this case the payoff functional depends only on the spot price at

maturity, and so can be thought of as a function on R, but this need not be the case.

For instance, an up-and-out put is a type of barrier option, that behaves like a put option at
maturity provided the spot price has remained below a particular level over the course of the

contract:

QLY ()= DPS) Lvex - xebigy)(S) (1.2)

) (k=S@)*" if Sw) < Bforallu € [0,T] (13)
I 0 otherwise '
where B is the barrier level, and 1,cy . v<p;,, ) 18 the indicator function of the set of paths in
: [0.7]

some specified class X whose values all lie below B.

In general, derivatives essentially just involve more complicated versions of this idea — an agree-
ment to exchange different cashflows in various outcomes, possibly depending on the history
of the underlying. There are many other path-dependent derivatives, such as American options,
which can be exercised at any point prior to maturity, Asian options, which depend on spot price
averages, and variance swaps which depend on realised variance. In principle, any path func-

tional could serve as the payoff for a derivative contract.

Where derivatives fundamentally differ from other financial contracts — fire insurance, say — is
that there is a market for trading in the underlying, and so the contract’s cash flows can be hedged
by an appropriate dynamic trading strategy. This means that rather than the actuarial approach
of a premium calculated to offset the statistical average liability incurred, the contract’s price is

determined by the idea of arbitrage.

Suppose there was a hedging strategy whose value equalled the payoff of the contract in any
‘reasonable’ scenario, that is, that replicated the derivative. A trader that offered the contract at
a different price to the cost of the replicating portfolio would leave themselves open to arbitrage,
and quickly go out of business — another trader could secure riskless cash from them, by shorting
the more expensive position and going long the cheaper, pocketing the difference and leaving
a zero net position. The basic principle of a derivatives trader is to ensure that instruments are

valued so as to exclude this possibility, known in the literature as no-arbitrage pricing.
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The set of results known as the Fundamental Theorem of Asset Pricing essentially say that this
financial property of a market model is captured in a probabilistic property of admitting a risk
neutral probability measure, with the same null sets as the statistical measure, under which (dis-
counted) asset prices behave as martingales, equal to a conditional expectation of their future
values. It has been proved in many variants and contexts, from single period finite state models,
through discrete time to continuous time semimartingale models (Delbaen and Schachermayer
(2006)). Once this measure has been identified, the no arbitrage value of a payoftf is simply its

(discounted) expectation under this measure.

A popular way of calculating this expectation is known as Monte Carlo simulation, in which
the expectation is approximated by a sample average of random variables with distribution con-
verging to the model’s, using the strong law of large numbers. A typical (continuous) model
is an It6 process modelling the distribution of the risk factors under the risk-neutral measure.

Practitioners generally think of these in the infinitesimal form
dS(t) =rt, w)St)dt + o(t,w)S(t)dW (1.4)

where the variable .S and the coefficients r, ¢ are random processes, and the factors .S(¢) are to
ensure positivity, as in an asset price process. The amount of variability of the model is encoded
in the quadratic variation,

d[S] = (o(t,w)S(1))*dt (1.5)

which is arrived at via the ‘multiplication table’

dt)? =0 (1.6)
dtdW =0 (1.7)
(dW)? = dt (1.8)

These random variables will typically be approximated using piecewise constant paths with spec-

ified increments, of the form
S(t) = SW;_y) =rt;,_)SE_ot; + o(t)S ;1) Z(1;) (1.9)

with Z appropriately chosen (pseudo)random variables, that converge uniformly in time, and in

variance, as the partitions {#;} get increasingly finer.

In the case of complete Markovian models, another approach originally due to Merton (1973)
relates the no arbitrage valuation to the solution of a Cauchy problem on R . For the Black-
Scholes model

dS@®) =rS®)dt+oSt)dW (1.10)
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where r, o are constants, this takes the form

oV 1 5,0V oV
-+ — —=V)= 1.11
at+20s 52 +r(sas V) 0 ( )
V(T,s) = @(s) (1.12)
(t,s) €0, TIXR, (1.13)

A similar result holds in the more general setting of a contract on d risky assets, each following

Markovian models with spatial and time dependent parameters:

d d
i l ij i %V "i ~ _
- ZUZ::IU (1. 9)s's! 2= + (. s)(i;s 7 ~V)=0 (1.14)
V(T,s) = @(s) (1.15)
(1,5) € [0, T1 X RY (1.16)

This PDE approach is particularly popular because it uses sensitivities to variables to construct
explicit hedging portfolios, via delta hedging, in which a stock position is given by the first-order
differential with respect to the spot price (Taleb (1997)). Perhaps most importantly, the Black-
Scholes hedging portfolio satisfies a robustness property. If a trader hedges with the Black-
Scholes model, but the stock in fact follows equation 1.4, then the (discounted) profit and loss

from the strategy is

T
P&L = % /0 %52@)(62 —o2)dt (1.17)
where o, is the realised quadratic variation from the process 1.4. In other words, the trader’s
book evolves according to the error in estimation of the realised volatility by a Black-Scholes
implied volatility, and relatively easily calculable differentials of Black-Scholes values. The effi-
ciacy of this result means it has been called the ‘Fundamental Theorem of Derivatives Trading’,
(Ellersgaard et al. (2017)). It shows that “the option trader’s job is really about balancing re-
alised against implied (or pricing) volatility”, according to Andreasen (2003). Indeed, “it is
hard to imagine that the derivatives industry could exist at all without some result of this kind”,
according to Davis (2010).

But many derivatives are path-dependent, and realistic stock price dynamics are, too (Voit (2001)).
Recently, there has been a surge of interest in analogous results that hold in a pathwise sense, that
is, on each path in some suitable state space of a model. In deep work, Dupire (2009), Cont and
Fournié (2010), Cont et al. (2016) and others have developed a functional It6 calculus, including
notions of vertical and horizontal differentiation operators for path functionals. In particular,

Dupire (2009) derives a Black-Scholes type Cauchy problem for a general derivative,

A f(t,s)+ %O‘ZASS ft.s)—r(f —sOAf)(t,s)=0 (1.18)

f(T,sp) =D(Sr) (1.19)
Pls = S(w)] = 1 (1.20)
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where A is the vertical and A, is the horizontal differential. Note however, the almost sure nature
of this claim — it holds only for paths in some (implicit) subset of probability one under the model.
The underlying space used in this analysis is D¢, the space of right-continuous paths with left
limits, under the uniform norm. Unfortunately, from the point of view of a practitioner this is
a somewhat unwieldy object. It is non-separable, that is, does not contain a countable dense
subset, and so we cannot hope to arbitrarily approximate all such paths with one fixed numerical
scheme. Further, it contains many paths without a meaningful quadratic variation, and so is
not taylored to studying ‘volatility’. It is, in a sense, ‘too big’. As a result, the aforementioned
Cauchy problem type results only hold almost surely with respect to some measure [P, which

implicitly defines a set of model states rather than explicitly.

Which if any state space would work better? To a practitioner, ultimately all calculations are
done in some, high, but finite, dimensional model. What matters is that the outputs from this
model converge in the senses that matter, ideally in a way that allows for robustness to model risk
as in 1.17. As discussed above, this means uniformly and in variance, and the approximations

for doing so are the Monte Carlo paths.
This suggests a simple idea:

derivatives valuation is the solution of a Cauchy problem on the space of Monte

Carlo paths

This thesis is dedicated to exploring this approach to the valuation problem. The first obstacle
is that no such Banach space of Monte Carlo paths has explicitly been studied in the literature to
date. The main contribution of this thesis lies in defining and taking seriously such a space as a
legitimate mathematical object in its own right, and derivatives valuation as an analytic problem
on this space. It is the first work to explicitly introduce these spaces, and to formulate the problem

purely in this setting.

1.1.1 A note on assumptions

A short note is in order on the technical asssumptions of this work. Throughout we will consider
idealized financial markets obeying the following classical assumptions:
B Infinite divisibility — any asset can be traded in quantities of any real number
B Frictionless trading — there are no transaction costs, taxes, or restrictions on ‘short’ selling
B Riskless funding — the trader has access to a default-free money market account paying a

continuously compounded rate of interest with no credit restrictions

These are modelling assumptions, and are of course not strictly true in the real world. The

first is entirely uncontroversial, and essential for any reasonable analysis. For the second, there
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is a large and growing literature on financial markets with transaction costs (see Kabanov and
Safarian (2009) and the references therein), which is an important subculture in mathematical
finance. However, since the problem under consideration is unsolved even in the absence of

trading restrictions, it is reasonable for the scope of this thesis to neglect them.

The third assumption has been much challenged in the literature in recent years, from papers
such as Piterbarg (2010), Burgard and Kjaer (2011) and others. After much controversy (see
Carver (2012)) it is now essentially accepted that derivatives valuation must incorporate the
various funding costs of trading desks (see Bielecki and Rutkowski (2014) for a survey). Nev-
ertheless, the mathematics of doing so is highly non-trivial, and the classical case remains the
first-order benchmark approximation. Since the problem under discussion is unsolved in those

circumstances, it is acceptable for the scope of this thesis to neglect funding costs.

1.2 Research aims and contributions

The objectives of this thesis are:

1. To develop a framework for the pathwise analysis of market risk models that is taylored to

practitioners’ intuition and numerical methods

2. To develop a calculus of derivatives’ risk sensitivities, in the context of the functional

analytic theory of differentiation and operator semigroups

3. To formulate derivatives valuation in continuous models as the solution of a Cauchy prob-

lem on an explicit set of paths

The main contributions of this thesis are:

1. Inregards to Objective 1, we construct a new notion of pathwise variance and new Banach
spaces of Monte Carlo paths for the pathwise analysis of market risk models, and formulate

them as pathwise integrals on this space parameterised by noise paths (Chapter 3)

2. In regards to Objective 2, we develop a novel functional analytic approach to the calculus
of derivatives’ risk sensitivities, based on a characterisation of vertical and horizontal
differentials as generators of (semi)groups of operators on appropriate Banach spaces of
path functionals, and prove useful analogues of Taylor’s Theorem, the chain and product

rules, and smooth approximation (Chapter 4)

3. In regards to Objective 3, we prove a new functional It6 formula for functionals of paths
with possibly discontinuous pathwise variance and use it to prove a Cauchy problem for
no arbitrage derivatives valuation on an explicit set of model paths, and a corresponding

hedging robustness property (Chapter 5)
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In more detail, each Objective is tackled in a corresponding Chapter, each of which is based on

an original idea of the author.

Chapter 3 describes new Banach spaces of Monte Carlo paths that are natural state spaces for the
solutions of risk models, with topologies governed by a pathwise Itd isometry (Theorem 3.23).
This then allows for a novel approach to analysing the structure of path spaces using a natural

group action (Theorems 3.9, 3.20).

Chapter 4 is based on the observation that the Dupire differentials are the generators of strongly
continuous (semi)groups, consistently embedding them into existing abstract theories of differ-
entiation. This then allows for a powerful calculus including new product and chain rules (Propo-
sitions 4.10 and 4.11), a new analogue of Taylor’s Theorem (Theorem 4.12), and new density

theorems for functionals which are ‘smooth’ in this new sense (Lemma 4.13, Theorem 4.14).

Chapter 5 uses the framework of Chapters 3 and 4 to prove a new It6 formula for Monte Carlo
paths with possibly discontinuous pathwise variance (Theorem 5.3). Using a Merton (1973)
style argument we then derive the valuation formula and a robustness property for Black-Scholes

hedging in the presence of singular volatility shifts.

1.3 Overview

The rest of this thesis is organised as follows. In Chapter 2 we will review the relevant literature.
First, in Section 2.1 we review the two main approaches to no arbitrage pricing, via Monte Carlo
simulation and the PDE approach in the Markovian context. In Section 2.2 we look at the more
recent path-dependent theory, largely based on the functional It6 calculus. In Section 2.3 we
summarise how this literature leads naturally to the idea of derivatives valuation as solving a

Cauchy problem on Monte Carlo paths.

The next three chapters detail the principal contributions. In Chapter 3 we develop a methodology
for the pathwise analysis of market risk models. In Section 3.1 we discuss the space of regulated
paths as the ‘natural’ space for the study of quantities that can be uniformly approximated by
financial time series, and introduce a novel approach to studying its structure using a natural
symmetry group action. In Section 3.2 we introduce a notion of pathwise variance and use it to
define a Banach space of Monte Carlo paths, and show how its structure reflects practitioner’s
intuition about volatility. In Section 3.3 we use integration along a sequence of partitions to show
this space helps is connected with the larger path spaces, the probabilists’ Skorokhod topology,
and the theory of Riemann integration, and construct explicit sets of paths of full probability for

an It process market model.

In Chapter 4 we introduce a new functional analytic approach to the greeks, based on differential
operators on path-dependent functionals. In Section 4.1 we introduce some important spaces of

functionals of Monte Carlo paths, and give financial examples. In Section 4.2, we introduce the
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family of bumping operators, a family of strongly continuous groups of operators on path func-
tionals parameterised by time, and prove results on their calculus and approximation by vertically
smooth functionals. In Section 4.3 the space of non-anticipative functionals is introduced as a
quotient space of functional processes, in contrast to the approach of Cont and Fournié (2010) as
functionals on a quotient space of paths. It is shown that in this context, the bumping generators
coincide with the Dupire vertical differential, and this observation is applied to the specific cases
of derivatives’ delta and gamma. Finally, in Section 4.4 we introduce the horizontal translation
semigroup on nonanticipative functionals, and show that its infinitesimal generator coincides
with the horizontal differential of Dupire (2009).

In Chapter 5 we develop a purely pathwise derivatives trading methodology on Monte Carlo
paths. In Section 5.1 we introduce trading strategies and their P&L as functional processes,
using trader’s clocks as pathwise substitutes for stopping times. In Section 5.2 we use the results
of Chapter 4 to derive a more general functional Itd formula, that allows for a singular volatility
change without a jump in the underlying. Finally, in Section 5.3 we prove a valuation equation

for continuous model paths and a corresponding hedging robustness property.

Finally, in Chapter 6 I conclude by discussing the prospects for further research.






Chapter 2

Literature Review

In this Chapter we review the literature on derivatives valuation relevant to our problem. In
Section 2.1 I give an overview of general no arbitrage valuation by so-called risk-neutral expec-
tations, via Monte Carlo simulation and the PDE approach in Markovian models. In Section
2.2 we review pathwise valuation methodologies, the functional It6 calculus and path-dependent
PDEs. Finally, in 2.3, we summarise how these three strands point to a gap in the literature for a

pathwise methodology that is more amenable to practitioner intuition and numerical methods.

2.1 No arbitrage valuation and Cauchy problems on R

No arbitrage valuation can be a complicated subject, but the main ideas can be illustrated in
a simple one-period, finite state model (Bjork (2009), Cox et al. (1979)). Suppose a market
opens at ¢t = 0, and at + = 1 the world will be revealed to be in one of d states from a set
Q = {wy,...,w,} with corresponding objective (also known as physical, statistical, or real-
world) probabilities P;, := P(w,), k=1, ...,d.

There are a + 1 assets which can be traded in the market, whose future values can be modelled as
random variables, i.e. functions of the state w. A riskless money market account B grows with
interest rate r in every state of the world, i.e. Eo =1, El = (1 4 r)lg(w). There are also a risky

assets with respective prices S‘é att = 0, and which at r = 1 pay functions

S Q- (0,00) (2.1)

. . Si(w)
fori = 1,...,a. In any given state, the return on the stocks ‘Tfo may be greater or lower than
. 0
1 + r, but we require the average return

ELS!]

0

>1+r (2.2)

11
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fori = 1,...,a, since otherwise the risky asset is of no worth to a risk averse investor. For

convenience we normalize the assets by accounting for them in terms of the money market, and

write these values without the tildes: .S, := %S‘,; B, :=1g,fort=0,1.
t

A portfolio of A’ units of the ith asset costs
a
c[A]= ) A'S] (2.3)
i=1
and at # = 1, has discounted payoft given by the function

pa(@) 1= ) A(S|(@) - Sp) 2.4

m
i=1

An arbitrage in this model is such a portfolio with the property that

c[A] <O
wal@) 20, k=1,....d 2.5)
Y (@g+) > 0, some k* (2.6)

In economic terms, this constitutes a money pump: arbitrarily large profits can be extracted at
zero risk. It is a basic modelling assumption that competitive markets exclude such possibilities;
certainly a practicing trader must attempt to do so. In mathematical terms, this is a statement
of linear algebra, which by Farkas’s Lemma (Lang (2005)) is equivalent to the existence of a

non-empty convex set Q of vectors Q € R” such that

d
c[A]= ) Quua(@y) 2.7)
k=1

for any portfolio position. Geometrically, if there is no arbitrage then there exists a separating
hyperplane H between the spot price vector .S, and the set K of portfolio payoffs. The normal
to H in the direction .S, — K fufills 2.7, which is clearly seen to be a convex condition.

Since the money market allows us to replicate the constant payoff function 1 at (discounted)
cost B(0) = 1, we see that

d d
1= QB =) Q 2.8)
k=1 k=1

for any Q € Q, and hence the functions Q : Q — R, are probability measures, known as risk-
neutral measures. Since the cost of ‘replicating’ a risky asset is simply its current spot price, we
have

ECLS, — Spl =0 (2.9)

where E denotes expectation under the measure Q. That is, the (discounted) asset price pro-

cesses are martingales under the risk-neutral measures — “the mathematical expectation of the
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speculator is zero”, as Bachelier (1900) put it in his thesis which founded the subject. Note that
the only role played by the objective statistical measure P was to say which states ‘counted’. If
we had included another state @’ with probability P(w’) = 0 the same result would have been ob-
tained; the risk neutral measures are equivalent to the statistical measure, in the sense of having

the same null sets.

Suppose a trader then writes a derivative with (discounted) payoff ¢ : Q — R. What price
should she charge her counterparty? She forms a hedging portfolio A at cost c[A] with payoff
y,. Setting the hedging error Err(w,) = w(w,) — ¢(w,) to be zero in each state w,, gives d
equations in the a unknowns A’. If a > d, then the equation is overspecified, and without loss
of generality we may express a — d redundant assets as linear combinations of the others and
rewrite any portfolio in terms of these assets, without affecting the payoffs. If @ = d, then we may
solve for a unique d-dimensional vector A(*p that renders the error zero; any payoff can thus be
replicated, and the market is said to be complete. The set Q = {Q} is therefore a singleton, with
Q. being the cost of the replicating strategy for the Arrow security 1, (Arrow (1964), Becherer
and Davis (2010)).

The case a < d is more complicated. In general the hedging error equation will not have a
solution, and so some payoffs will not be replicable; the market is said to be incomplete. In
general, there will be an interval of arbitrage-free prices for a derivative, and traders must choose
between them based on their preferences. Methods include minimal cost superhedging, expected
utility optimization, and the minimization of some risk measure of the hedging error (Karatzas
et al. (1991), Davis (1997), Stoikov (2006))

These results are the simplest versions of the results known as the Fundamental Theorems of
Asset Pricing. Roughly, the first says that a market is free of arbitrage if and only if there exists
an equivalent martingale measure, and the second that if the market is complete this measure is
unique (Delbaen and Schachermayer (2006), Harrison and Pliska (1981)). The above argument
can be generalised to discrete time steps and a continuum of outcomes without much difficulty.

The complications only really come in once we attempt to move to a continuous time model.

A standard model of continuous time finance, as for instance set out in Oksendal (1992), starts
with a filtered probability space (Q, F, ), where Q is an abstract set, F' = (F,),gjo,r) 18 @ filtration
of sigma-algebras modelling the flow of information over time, and [P the (real-world) probability
measure on this space under which W (¢) is a Brownian motion on R¢. A market is then given

as an F,-adapted Itd process of the form

dS°(1) = r(t, w)S°(r)dt (2.10)
d
dS'(t) = 't w)dt + Y. 6"/ (t. )d W (1) (2.11)
=1
fori = 1,...,m, with S°(0) = 1, .S'(0) = s’, and W a d-dimensional Brownian motion. Pos-

itivity for asset prices can be ensured by setting the coefficients to be proportional to S'(¢) and
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relabelling, i.e.: y'(t,w) — p'(t,w)S' (1), 6'(t,w) — o'(t,w)S'(t). More generally, we can take
the market to be a semimartingale, that is a process of the form S(t) = A(¢) + M (¢), where A is

an adapted process of finite variation and M a (local) martingale.

Key to the use of these models in practice is the concept of quadratic variation. Two R-valued
stochastic process X, Y have quadratic co-variation process [ X, Y] if for each € > O there exists

6 > 0 such that if a partition p has mesh sup |p,,; — Pi| < 6, then

m(p)
P Z (X(@, Prs1) = X (@, 90)) (Y(@, Pipt) = Y(@,p))) = [X, Y@, 1) 2 e] <& (2.12)
k=0
The idea is that the discrete-time covariance computed with respect partitions converges in proba-
bility to the quadratic co-variation, in the limit as the partitions become ‘infinitely finely grained’
(Revuz and Yor (2004), Jacod and Shiryaev (2002)).

For a general R-valued process we write [X]/ := [X*, X/] for the co-variation matrix. In
stochastic calculus there is a simple rule for calculating [.S] for continuous semimartingales, and
especially Ito processes .S. Namely, the quadratic variation equals that of the (local) martingale

part, and in the case of an It0 process, it is determined by the ‘multiplication table’

dn*=0 (2.13)
dtdW' =0 (2.14)
dW'dW/ =1, ;di (2.15)

where [ is the d X d identity matrix. For a market given by a general It6 process .S as above this

gives

d
d[S, S1(t) = Z o (t, w)o!!(t, w)dt (2.16)

ij=1

The key step in continuous time derivatives valuation is in itroducing a market price of risk. If
there is no arbitrage in the model 3.72, then by a similar, if slightly more technical, argument as

in the simplest case there exists a process 6 such that, in the notation of 2.10
c0=u—rsS, (2.17)

see Theorem 12.2.8 of Oksendal (1992). If this so-called market price of risk process is such
that M () := exp(— /Ot 0(s)dW (s) — % fot |0(s)|%ds) is a P-martingale (this holds, in particular,
if it satisfies a mild integrability condition known as the Novikov condition, see Oksendal (1992)
page 162), then Girsanov’s Theorem ensures the existence of an equivalent probability measure

Q for which the process W (?) := W (1)+ fot 0du is a Q-Brownian motion. Hence the modelling
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equations can be rewritten
dS°(t) = r(t, w)S°(1)dt (2.18)

dS'(t) = r(t,w)S' (t)dt + Z " (t, ) dW (1) + 6/ dr)
j=1
d .
= r(t,w)S'(H)dt + 2 ol (t, w)d W (1) (2.19)

j=1
Discounting, and recognising the remainder as a stochastic integral and martingale, shows it is
a risk-neutral measure. Note that in an incomplete market, d < m, the market price of risk will

not be unique; in fact, it turns out that the market is complete, and the market price is unique if

and only if ¢ has a left-inverse, i.e. m = d (Karatzas et al. (1991)).

The problem then becomes: how can one calculate this risk-neutral expectation? A popular
method is Monte Carlo simulation (Glasserman (2004)). In this set-up, the model 2.18 is ap-

proximated using piecewise constant paths with specified increments, of the form
S@t;) — St;_)) =rt;_)SE;_))ot; + o(t;, ) Z(t;, ®;) (2.20)

with Z appropriately chosen (pseudo)random variables to approximate the (risk-neutral) Brown-
ian motion, that converge uniformly in time, and in variance, as the partitions {¢,;} get increasingly

finer. The strong law of large numbers then shows that the sample average

LS os@) 221)
h k=1

converges to the expectation, and hence no arbitrage price. The use of Monte Carlo methods
in option pricing is extensive (see for example, Broadie and Glasserman (1996), Boyle (1977),
Longstaff and Schwartz (2001)).

In the case of a complete Markovian model, a fundamental relationship between expectations and
PDEs means things are considerably simplifed. The classic argument is due to Merton (1973).
Consider a market with a riskless cash account paying a continuously compounding rate r of

interest, and a single risky stock with spot price obeying the stochastic differential equation (SDE)

S@) = S(O)+/ ,uS(u)du+/ oSw)dW (u) (2.22)
0 0

where the yield u > r, and volatility o > 0 are constants, and W is a Brownian motion on R.

Suppose a trader takes a short position in a European option paying the function @(S(T')) at
maturity 7. She decides to value the option position using a (deterministic, suitably smooth)
function V (¢, s) of time and spot only, so that she would pay V' (¢, S(¢)) in cash at time ¢ in ex-
change for being relieved of the position. She then hedges by taking a position in the stock, given

by another such (deterministic, suitably smooth) function A(z, s), financed by borrowing from the
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cash account. Writing the value for the portfolio on this basis as I1(¢, s) := sA(t,s) — V (¢, s), the
profit and loss over the interval [¢,7 + 6] is

P&L =1I(t + 6, S(t + 6)) — I1(¢, S(¥))

t+6
= / A, SW)dSw)— V(@ +6,St+0) -V, S) (2.23)
t

where the first summand is the cumulative change in the hedge position, and the second the
change in the (short) option position according to her valuation. Using equation 2.22 to expand

dS and It6’s lemma to expand V' then gives

t+6
P&L = / uS W) (Adu, S(w) — %(u, S(u))) du
t
t+6
+ / oSw) (A, S(u))—aa—I:(u,S(u)))dW(u)

t+6 2
- / aa—lt/(u, Sw) + %GZS(M)Z%(L{, S)) du
t

(2.24)

Choosing the function A(z,s) := [Z)—IS/(I, s) renders the first two summands zero; the remaining
summand is absolutely continuous, and so represents an infinitesimally riskless position, that
grows proportionately to dt rather than d.S. Alternatively, liquidating her holdings and putting

the value I1(u, S'(u)) in the cash account is a similarly infinitesimally riskless position yielding

1+6
r / (A, S@)Sw) =V (u, Sw)))du (2.25)

Choosing V such that their difference is anything other than zero would result in the position
being vulnerable to arbitrage: a strategy of buying the cheaper of the two and shorting the dearer
in sufficient scale yields profits proportional to the time elapsed. Since this must be true for any
6 > 0, and the spot price path has positive probability of visiting any region of R, the function
V' must satisfy the following Cauchy problem for the Black-Scholes PDE:

14
ad Y =0
ot +2 0s2 +rsas d

V(T,s) = q@(s) (2.26)

for s € R,. If this problem is solvable, the solution must be the arbitrage-free price for the
model 2.22. The only free parameter of the equation is the stock’s volatility o; it is independent
of the stock’s yield u, while the interest rate r is of course exogenously observable in the market.
PDE methods are widely used in a vast literature on derivatives pricing (Wilmott et al. (1998),
Gatheral (2006))

However, the truly remarkable property of the Black-Scholes methodology as developed by Mer-
ton is its robustness to model risk (Davis (2010), Ellersgaard et al. (2017)). Suppose that a trader
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hedges using the Black-Scholes model with parameter o, but rather than the SDE 2.22 the stock
instead follows the general 1t6 process model of 2.10. The hedging P&L can be expanded again
using Itd’s formula as before, but because of equation 2.26 we may conclude that

T
_L [TV o o o

where o, is the realised quadratic variation from the process 2.10. For many options, in particular
vanilla calls and puts, the second differential term is positive, and hence the trader makes a profit

provided her implied volatility o overestimates the realised.

The use of constant parameters in the above discussion was primarily for convenience; in fact the
entire above analysis goes through if o(s) is a uniformly invertible R?*¢-valued, and r = r(s),
u = u(s) are R?-valued, functions of time and spot (a Markov model) to yield the Cauchy
problem

d d
av 1 ij ji i 0’V 4 -
E+§ij:10' (I,S)G (t,S)SS m+;r(z,s)sﬁ—r(t,s)V—0

V(T,s) = ¢(s) (2.28)

for s € Ri, as long as the resulting SDE 2.22 has a well-defined solution that allows for the
application of Itd’s Lemma.

A modern treatment of the Black-Scholes PDE as the generator of a semigroup is given in
Gonzalez-Gaxiola and Santiago (2012). While the Black-Scholes model allows for closed-form
type solutions, a general Markov model will not. However operator semigroup methods are the
next best thing, see Garman (1985), Barucci et al. (1999), Altomare and Attalienti (2002a), Al-
tomare and Attalienti (2002b), Zhou and Wang (2009), Linetsky (2004), Linetsky (2007). More
recently, authors have found applications of semigroups in concrete derivatives problems. For
instance, Linetsky (2002) looks at their role in pricing exotics, and a perturbation approach was
used for the particular case of a so-called Constant Elasticity of Variance model by Colombo
et al. (2003). Other applications include volatility derivatives Albanese et al. (2009), barrier
options Kato and Yamada (2014), and life insurance reserves Fahrenwaldt (2015).

2.2 Pathwise derivatives valuation

The literature on pathwise derivatives valuation really starts with the remarkable paper of Bick
and Willinger (1994), which deserves to be more widely known. In it they showed that many of
the advantages of the Black-Scholes PDE approach remained in the non-probabilistic setting of
functions of particular paths, for which a particular notion of pathwise quadratic variation, due
to Follmer (1981), exists.
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To understand Follmer’s quadratic variation, suppose 7,, is a sequence of partitions of [0, T'] with
mesh converging to zero. A path x : [0,T] — R is said to have finite quadratic variation in the

Follmer sense if the atomic measures

& i= ) (X)) — x(1))%6, (2.29)

1,€T,

converge weakly to a Radon measure on [0, T'] with distribution function [x], whose atomic part

coincides with the square of the jumps of x. That is, if

S &, (du) — S (@) [x](du) (2.30)

[0,T] [0,T]

for all continuous f : [0,T] —» R, and

[x1() = [x1.0) + Y (Ax(w)* (2.31)

uel0,t]

where [x]. is continuous. By explicitly considering the convergence terms in the expression,

Follmer (1981) proved the formula, analogous to the classical Itd formula,

t t
F(x()) = F(x(0)) + /0 F’(x(s—))dX(S)+% /0 F"(x(s—))

+ Z (F(x(s) = F(x(s=)) = F'(x(s=)Ax(s) - %F”(X(S—))(AX(S))2 (2.32)

s<t
holds for such paths if F is a C? function.

Bick and Willinger (1994) applied this to paths with constant quadratic variation in this sense
given by o, and showed that for a call option, the Black-Scholes formula and corresponding
hedging strategy replicated the option along this path, provided the stock did not finish at the
strike. Remarkably, as noted by Mishura and Schied (2016), the point is that the key assumption
of the Black-Scholes model that makes it work as it does is not the assumption of a lognormal

distribution for the asset, but the constant quadratic variation.

The next major breakthrough was the seminal paper of Dupire (2009), which developed the first
truly path-dependent It6 calculus. Motivated by the idea of derivatives prices as functions taking
paths as arguments, but needing to account for the flow of information, he considered as a domain

a union

A= U D, (2.33)

1€[0,T]
where D, is the space of cadlag paths on the interval [0, ]. He then defined a functional as a

function on this union, with a particular topology, and used these as the basic building blocks for

valuation functionals.
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He then introduced what he called space and time differential operators for these functionals, by

intuitively perturbing the graphs. If x, € D,, then its vertical perturbation x7 is

XE(u) t= { w i<t (2.34)
x(t)+¢e ifu=t

The vertical differential is then
SO = f(xp)
lim—m8M—
e—0 £

(2.35)

when this exists. The horizontal perturbation x, , € D, is

W x(u) fu<t (2.36)
X u) .= .
Lh x(t) ift<u<t+h

The horizontal differential is similarly then

f(xt,h) - f(X,)
m—

hlo h @37

when this exists. Note that the time differential is one-sided, based on right-translations. He
went on to prove a functional Ito formula for functionals evaluated on the paths of a continuous

semimartingale X, of the form

T T T
f(xp) = f(xg) +/0 AL f(xpdX(1) +/0 A f(x)dt + %/0 A, f(xp)d(x,) (2.38)

where A, A

tively, and (.) is the (ordinary, probabilist’s) quadratic variation. He then used this to derive a

> A; denote the first- and second space derivative and the time derivative respec-
Feynman-Kac formula for functionals and a martingale representation formula for writing con-
ditional expectations as stochastic integrals that extended the Clark-Ocone formula of Malliavin

calculus. Finally, he used Merton’s argument to derive a functional valuation equation

AV(t,s)+ %GZASSV(I, s) = r(V = sOA V)1, s,) =0 (2.39)
V(T)=® (2.40)
Pls = S(w)] = 1 (2.41)

on the paths s of a continuous semimartingale. This is of a similar form as the Black-Scholes
equation 2.26, except everything is path-dependent, and Dupire applied it to the case of a (path-
dependent) Asian option. Note however, the almost sure nature of this claim — it holds only for

paths in some (implicit) subset of paths of probability one under the model.

Various technical aspects of Dupire’s formalism were considered somewhat unwieldy, for in-
stance the use of a union in 2.33. In a sequence of papers and the book Cont et al. (2016), Cont
and co-authors have done the most work on formalising and expanding Dupire’s ideas, as well

as incorporating Follmer’s quadratic variation. Cont and Fournié (2010) and Cont and Fournié
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(2013), brought in a formalism based on what they called non-anticipative functionals, functions
f(x,]) = f(t, x) defined on equivalence classes of paths that agree up to some ¢, rather than a
union of path spaces. Consequently their vertical and horizontal differentials have a slightly

different character, for instance, the vertical differential is then

ft.x+elyr)— ft.x)

lim (2.42)
=0 £
while the horizontal differential is
t+ h,x,)— f(t,
limf ( x;) — f(t,x) (2.43)

hl0 h

They derived extended Itd formulas for paths with Follmer’s quadratic variation, while incorpo-
rating jumps and functions of quadratic variation. In the book Cont et al. (2016), they extend
this to positive principles for the solutions of functional Kolmogorov equations like the valuation
equation 2.39, as well as a theory of path-dependent stochastic control. Further applications have
been to the the solution via the Euler scheme Cont and Lu (2016), and the calculation of greeks

by integration by parts type formulae Jazaerli and Saporito (2013).

2.3 Summary

We saw in Section 2.1 that the absence of arbitrage in a market model is about how self-financing
trading strategies can be used to construct a probability measure on its state space. The state
space can only be approximated, uniformly and in variance, by Monte Carlo simulation. How-
ever, in a Markovian model, Merton’s classic argument shows that if a no arbitrage value exists
as a C2 function of time and spot, then it must satisfy a particular PDE. The Markov property
means that the state space can be simplifed to a product [0, 7] X R, and so can be solved by a
semigroup of operators acting on functions on R, with a convenient product formula. We saw in
Section 2.2 that functional Ito calculus furnishes analogous results for the general case of a path-
dependent model almost surely satisfying an FPDE, on a state space of the cdadlag paths, using
Follmer’s quadratic variation a notion of pathwise variance that requires the weak convergence

of discrete time variance computations to a measure of a particular Lebesgue decomposition.

There is a qualitative difference between the simple one-period, finite state model and the contin-
uous time counterpart: in the former we can legitimately list the state space as a set of scenarios.
The complexity of the construction of the continuous time model means we lose some concrete-
ness in the possible outcomes, and must speak of statements holding ‘almost surely’. To which

set of paths does this refer?

From a practitioner’s point of view it means paths which can be approximated using discrete time,
numerical methods: limits, uniformly and in variance, of Monte Carlo simulations. However,

the pathwise methodology takes D¢ as the setting, for which many of the paths do not have finite
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volatility, in the sense of Follmer’s quadratic variation necessary for the use of his Itd6 formula.

It is ‘too big’.

There has been some discussion of this in the literature. Schied and Voloshchenko (2015) notes
that the set of paths which do have quadratic variation in this sense is in particular not closed under
linear combinations, i.e. is not a vector space, which means analysis is difficult and in particular
intuitive use of the quadratic variation as an inner product will not work. Davis et al. (2018)
uses partitions that depend on the path to construct ‘badly behaved’ quadratic variation. Chiu
and Cont (2018) suggest a connection with the Skorokhod topology. This begs the questions:
is D¢ the ‘right space’ to work with? Is Follmer’s quadratic variation the ‘right’ definition of

volatility?

It is the position of this thesis is that the answer to these questions are no. A simpler, more general
definition of variance that in contrast to Follmer’s quadratic variation doesn’t put constraints on
the Lebsgue decomposition of the limit measure, yields a vector space for its domain and a

genuine inner product type structure. This is covered in Chapter 3.

Both the definitions of the vertical differential, due to Dupire (2009) and Cont and Fournié (2010)
respectively, are somewhat odd from the perspective of the analyst. Differential operators are usu-
ally defined on (dense subsets of) functions on a vector space, as the generator of a (semi)group
of some topological or analytical type. In more plain terms, as the infinitesimal action of some
kind of translation. The abstract theory of differentiation from this perspective is well developed
and powerful, Engel and Nagel (1999). By contrast, vertical and horizontal differentials are de-
fined on functionals of unions or equivalence classes of paths, stopped at any of a continuum
of points in time. Further, they each require the satisfaction of a continuum of limit conditions
of difference quotients. As well as being unwieldy and difficult to check in principle, this rules
out the possibility of generating any kind of semigroup, and hence the well-developed theory
mentioned above. This begs the questions: is this the right way to define vertical/horizontal

differentiation? Is this the right way to treat the flow of information?

It is the position of this thesis that the answers to these questions are also no. Rather than defining
a vertical differential on functionals of equivalence classes of paths using a continuum of limiting
difference quotients, the easier approach is to define it at each separate time on functionals of
paths, parameterised families of which can then be quotiented to account for the flow of infor-
mation. This way, it can be seen to be the generator of a strongly continuous group on various
(Banach) spaces. This seemingly pedantic point is actually very efficacious as it yields calcu-
lus results much more easily. Similarly, the horizontal differential is the generator of a strongly

continuous semigroup. This is covered in Chapter 4.

The core idea of no arbitrage pricing is contained in that simplest model at the beginning of
Section 2.1: states should be priced consistently with the spot market; implicit in that is that
we can articulate which states ‘matter’ as a set of concrete scenarios. The results of Chapters 3

and 4 enable us to distinguish which paths matter and which do not, and furnish them with an



22 Chapter 2 Literature Review

inner product structure that reflects intuition about (co-)variaton, and hence to construct trading

strategies and the notion of arbitrage. This is covered in Chapter 5.



Chapter 3

Monte Carlo Spaces and Pathwise
Analysis of Market Models

In this Chapter we address Objective 1 of the thesis Aims from Section 1.2, by introducing
Banach spaces of Monte Carlo paths, and using them to develop a framework for the pathwise

analysis of market risk models.

A fundamental requirement for the management of market risk is the modelling of the evolution
of risk factors. Practitioners inform their decision making using concrete sets of future scenarios,
and working backwards to the present. As such they tend to think of models as determining
plausible market dynamics, using a reasonable function of underlying random ‘noise’. This is
epitomised by Monte Carlo simulation methods, which use a fixed discretisation of a time interval

to project piecewise constant trajectories.

However, there is of course no natural finest timescale for discretisation, and so some limiting
type notion is required. The main mathematical objects used for this are It6 processes, random
variable-valued functions of time that with probability one obey equations based on stochastic
integrals. An extremely useful property of such integrals, known as the [t0 isometry, gives an

explicit form for their variance which greatly enables their manipulation.

However, the underlying probability spaces for such models are typically ‘too big’, in the sense
that the probability measure is concentrated on a set that is ‘exceptional’ in some sense. Being
random variables, and therefore only defined up to sets of probability zero, strictly speaking 1t6
processes on these spaces do not give concrete scenarios, but only equivalence classes containing
many unsuitable, irrelevant trajectories. For instance, the probability space of the benchmark
Black-Scholes model is usually taken to be the space of continuous functions on an interval.
Smooth functions are of course dense in this space, but with probability one any model path fails

to be differentiable at all times.

This Chapter develops a pathwise methodology for analysing risk models, which deterministi-

cally project concrete trajectories from candidate ‘noise’ paths, in line with practitioner intuition.

23
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The solutions live in newly defined Banach spaces whose norms are directly related to piecewise
constant approximation, both uniformly and in variance, which we accordingly call Monte Carlo
spaces. These are purely functional analytic, non-probabilistic, objects whose structure is closely
tailored to the operations of financial modelling. The upshot is a reduction of models’ probability
spaces and a realignment of their topologies, so that models can be thought of as unambiguously
determining concrete scenarios for pathwise risk management, as functions of random noise.
This will allow us to develop pathwise sensitivity analysis, replication, and valuation methods

for derivatives in Chapters 4 and 5.

The rest of this Chapter is organised as follows. In Section 3.1, motivated by the need to consider
uniform limits of discrete time series in finance, we introduce our basic modelling framework of
paths, and show how the space of such limits is governed by dense subsets of the interval which
we call clocks. The space permits a natural group action which permutes the underlying clocks,
and whose orbits are copies of famililar sequence spaces. In Section 3.2 we introduce Monte
Carlo spaces as natural subspaces, and show that their structure embeds practitioners’ intuition
about (co)-volatility. Finally, In Section 3.3 we introduce an integral with respect to a clock, and
show how it can be used to furnish sets of paths with full probability in a generic Ito process

model.

3.1 From time series to regulated paths

The basic objects of finance theory are time series: sets of data parameterised by time, such as
stock prices, interest rates, trading strategies and so on. The modelling problem in finance is
essentially how to plausibly extend a given time series from the present to a future date T. We
represent this mathematically using paths, by which we mean a function x : [0,T] — X for
some Banach space X (see, for instance, Megginson (1998), Folland (2013), Aliprantis et al.
(1999)).

For a simple example, if we choose X = R¢, the path t — x(¢) = Z?zl x'(t)e’ could represent the
evolution over time of d spot market prices, or other risk factors, where el i=1,...,d denotes
the canonical basis in R¢. Alternatively, if X is some space of path functionals — e.g. functions
of the R?-valued paths defined above — then we will call an X-valued path t — ¢(t) a functional
process, which might for instance represent a rule to hold @(#)(x) units of a stock at time t when

the market follows the path x, ie a trading strategy.

The use of continuous time is an idealising assumption. Any financial time series in the real
world assigns numbers to time infervals, and so defines a piecewise constant path; for instance,
the price of a stock on an exchange is updated each time it is traded. To formalise this, recall
that a partition p of [0,T] is a finite set {p, : 0 = py < p; < ... < p, = T}, for some
m = m(p); the set of all such partitions is written P. A path which is constant on each of the
open intervals I, := (p,_;,pr), k =1,...,m(p), of a partition p is said to be a p-step path, and
we will write the space of such p-step paths as SP(X). However, there is a priori no limit for
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how fine a partition one should use — so-called ‘high frequency traders’ are in a perpetual arms

race on exactly this issue. Taking the union over all possible partitions, the space of step paths

S = JsP0 (3.1)

peP
houses all possible financial time series, and so is in some sense the fundamental vector space
we work with. We will spend the rest of this thesis studying its closures in various senses, and

the corresponding operators and functionals.

We will need several norms for paths, but probably the most important is the supremum or uni-

form norm

l1x|le 1= sup [[x(®D]lx (3.2)
1€[0,T]

and it is easy to see that the bounded paths B(X) := {x : [0,T] - X ! [|x]||, < oo} is
a Banach space containing S(X). However, it is ‘too big’ — for instance, it is easy to see the
indicator function of the rationals 15 € B(R) is not the uniform limit of step paths. So we will

require a little more regularity. The left-limit x_ of a path x is defined for r € (0, 7] as
x_(t) :=x(t—=) =1lim x(t — &) 3.3)
el0

when this limit exists in X, and x_(0) := x(0). Similarly, the right-limit path x_ is defined for
te€[0,T)as
x (1) i=x(t+) = lig)l x(t+e¢) (3.4)
&

when this limit exists in X, and x(T") := x(T"). We can think of these as operators defined on
subspaces of B(X), and note that each of them operators is an idempotent: (x,), = x,, (x_)_ =

x_. The following subspaces defined via these operators are of fundamentally importance.
Definition 3.1. (Regulated, cadlag, caglad, null limit paths)
A path x : [0,T] — Xis said to be regulated if both the left x_ and right limit x__ paths exist;
the space of such paths will be denoted G(X) := dom(.), N dom(.)_. We define the subspaces:
B the cadlag or RCLL path space D(X) := {x € G(X) : x = x} of right-continuous paths
with left limits

B the caglad or LCRL path space F(X) := {x € G(X) : x = x_} of left-continuous paths
with right limits

B the continuous path space W(X) 1= {x € G(X) : x =x, =x_},
B the left null-, right null-, and null limit path spaces, G,_(X) := {x € G(X) : x_ = 0},

Go, (X) := {x € G(X) : x, =0}, Gy(X) := Gy_(X) N Gy, (X)

see Figure 3.1.
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PATHS AND DISCONTINUITIES

f(t+) L

f(t-)

ft+) L

f(t-)

f(ts)
f(t-)

f(ts+)
flt,+) L
f(ts-)

f(t,-)
f(t;+)

Figure 3.1: Generic (a) cadlag, (b) ciglad, and (c) regulated paths.
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These spaces are known to varying degrees in the analysis literature, though only the cadlag and
caglad spaces are well known in finance. The terminology comes from French; e.g. ‘cadlag’
stands for the acronym continu a droite, limite a gauche, and similarly for caglad. The choice
of W for the continuous paths is to stand for ‘Wiener’, as it is of course the canonical state
space for the Wiener process. Regulated paths were championed by the Bournbaki movement
as an alternative setting for integration to the Riemann theory (Berberian (1979)), but are now
mainly considered only in specialist analysis texts. The ‘left/right null limit’ spaces are even more
obscure, and the terminology is the author’s. When X = R4, we write simply G¢ := G(R?),
D? :=D(RY), F? := F(RY), W? := W(RY).

Obviously G(X) is quite a general class of functions, including polynomials, smooth functions,
continuous functions, piecewise continuous functions, etc. As an example of a function which is
not regulated, again take 1g, the indicator of the set of rationals. The cadlag and caglad paths
are naturally isomorphic via time reversal: if x is cadlag, then X(¢) := x(T — t) is caglad, and
vice versa. The choice of whether to use cadlag and caglad paths to model a phenomenon is
about how to incorporate a jump. It is natural to model a risk factor as immediately including
the jump value, and a trading strategy as a function of these risk factors that adjusts immediately
after. The spaces D? and F(D?) will house these two objects, and accordingly be most important

to us.

The jump at t of a regulated path x is
Ax(t) :=x, (1) —x_(1) e X (3.5)

It can be decomposed as the sum of the jumps from the right A x(t) := x(t) — x(¢) and from
the left, A_x(t) := x(t) — x_(t), note that A_x(0) = A, x(T) = 0. If x is cadlag, A, x = 0
so Ax(t) = A_x(t); similarly if x is caglad, A_x = 0 so Ax(f) = A, x(?); and of course if x is

continuous, A_x = A, x = Ax = 0.

Since for any regulated path x () —A_ x(¢) = x(¢) = x_(#)+A_x(r), we have the decompositions

r=xy—Ax (3.6)
XxX=x_+4+A_x 3.7
‘= %(x+ +x )+ %(A_x — A,x) (3.8)

The set of e-jump times of x € G(X) is
Je(x) = A1 [|[AxO]] + [[A_x(D]| = €} (3.9)

and we write J(x) := |J J.(x) for the set of jump times.
e>0

The proof of the following classical result is instructive, so we include it here for ease of reference.

Proposition 3.2. For any x € G(X) and € > 0, J (x) is finite, and so J (x) is countable.
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Proof. Given x € G(X), the existence of left and right limits means that for each t € [0, 7] and
€ > 0 there exists 6(t, ) > 0 such that if u, v € B(t, 6(¢, €)), the open ball centred at ¢ of radius
o(t, €), then

t-—w(t-v)>0 = ||x@)—x)|| <e (3.10)

where the product condition concisely ensures we only consider when u, v approach ¢ from the
same side. In particular, if 7/ € B(t,5(t,€)) \ t, then for sufficiently small #, ¢’ + # are on the
same side of 7 as ¢, and so ||Ax(¢)|| = ||x(#'+) — x(#'-)|| < €. Since [0, T'] is compact, finitely
many such balls, say M, cover it and so ||x||,, < Me. If we call the finite set consisting of the
centres of these balls C(¢), then J,(x) C C(e). ]

In particular Proposition 3.2 shows that regulated paths are bounded and almost everywhere
continuous, and so are Bochner integrable (or Lebesgue integrable, in the R¢-valued case). The
condition 3.10 suggests that the regulated property can be interpreted as a form of continuity; this
is indeed the case, as shown in the recent paper of Cichon et al. (2018). Although this is in some
sense a deep result, the construction of the relevant topological space is somewhat technical,
and of limited use in finance. However, the following partial result is fairly straightforward,
and describes a fundamental decomposition. It is essentially a new interpretation of Corollary
1 of Berberian (1978), in terms of a standard Banach space of functions, which we now briefly
recall. For a locally compact Hausdorff space Y, Cy(Y, X) denotes the space of continuous X-
valued functions vanishing at infinity, that is, continuous f : Y — X with the property that
for each € > 0 there exists a compact set K C Y such that if y € K¢ then || f(»)||x < €. For
notational convenience we set I, to be [0, T'] endowed with the (locally compact, Hausdorff)

discrete topology.

Corollary 3.3. If x € G(X), then A_x, A, x € Gy(X). Further, the null limit paths Gy(X) =
Co(T 4, X), and we have the vector space decompositions G(X) = D(X) @ Cy(T 4, X) 2 F(X) &
Co(T4,X).

Proof. Since the right- and left-limit operators are idempotents, it is immediate from the def-
inition that (A_x), = (A_x)_ = 0, and similarly for the right-jumps. Since compactness in
I, coincides with having finitely many elements, C.(7;, X) is simply the paths with finite sup-
port, and their closure is exactly the null limit paths. The rest follows from the decomposition
formulae 3.6, and the obvious fact that G,(X) N D(X) = G,(X) N F(X) = {0}. [

For u € [0, T, define three families of simple scalar paths a[u] € G!, plu]l € D', y[u] € F! by

1 ift=u
alu](®) := { 3.11)

0 otherwise

1 ifu<t<T
Plul®) 1= 1y, (@) = { (3.12)

0 otherwise
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and

1 ifu<t<T
ylul@® =14, = { (3.13)

0 otherwise

These are the prototypes of discontinuous ‘shock’ paths: the a[u] are isolated shocks; the flu]
are right-continuous, reflecting an instantaneously incorporated jump; while the y[u] are left-
continuous, reflecting a jump incorporated infitesimally afterward. We will use these elementary
paths to build up more general paths using appropriate projection operators, a bit like a basis.
Note that a[u] = flu] — y[u], and B[0] = 1 7, is the unit path, while y[T] = 0. If u < v, we can
write the indicators of half-open intervals as 1[u,v) = Blu] — p[v], l(u’U] = y[u] — y[v], and of an
open interval as 1, ,, = y[u]— p[v]. Finally, note thatif  # ¢/, [|a[t] —a[¢']|| = [|f[1] - p[F']]] =
[ly[t] = y[']]] = 1; in particular this shows that each of G!, D! and F! is non-separable — none

has a countable dense subset.
A general p-step path x € SP(X) may be written

m(p)
X =X+ Z Xop_1YPr_1] + X0, BLPs] (3.14)
k=1

for some x, € X, k = 0,1,...,2m(p) + 1. The corresponding map i : SP(X) — XZmP+!
given by i(x), := x, gives an isomorphism SP(X) = X2+ and i(x)g = x(0), i(x)g_; =
A x(pr_1), i(x)y = A_x(py), for k = 1,...,m(p). If we write the space of right-continuous
p-step paths ST(X) = SP(X) N D(X), then i(x),,_; = 0, SP(X) = X™®+! and {p[r]} spans
S,(X) := U, SP(X). Similarly, if x € SF(X) 1= SP(X) N F(X), the left-continuous p-step
paths, then i(x)y;_; = 0, and so S}(X) = X"®*! and {[1]} spans S;(X) := |J,, S} (X).

We now introduce some new operators, which will be very helpful to the analysis of path spaces.
Given a partition p and x € G(X), let R,(x) be the closure of x(Z,). An operator ¥ :
G(X) — SP(X) such that EP(x)(1) = A, (x) € Ry(x) if t € (pr_y, Pp), for k = 1,..., m(p),
and EP(x)(p,) = x(py), for k = 0, 1,..., m(p), will be called an Euler projection on G(X) (the
name is after the common numerical scheme for piecewise constant approximation of SDE so-

lutions). We may write it as

m(p) m(p)
E¥(x) = Y x(palpd + D 4 () (rpei] - Blpy]) (3.15)
k=0 k=1

Taking the right-limit we get an operator Erp : DCX) = S,(X). Itis natural to choose A;(x) =
x(p,+) = x(p,), in which case we get

m(p)
EP(x) 1= x(0) + Y (x(pp) = X(Pr1)) BIPy] (3.16)

k=1
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We will mean this choice of A whenever we refer to ‘the Euler projection on D(X)’. It is useful

to define the differences along p of a path x to be the sequence §Px € ¢y, (X), with components

8hx 1= x(pp) — x(Pr_y) (3.17)
fork =1,...,m(p), and 5,fx = 0 for kK = 0 and k > m(p). In that case we have

m(p)
EX(x) 1= x(0) + ) 67xplp;] (3.18)
k=1

Similarly, taking the left-limit and choosing A, (x) = x(P;,1—) = x(Ps41), We get Slp P FX) —»

Si(X)
m(p)—1
E) = x0)+ Y, (x(Prr) = X)) 7P (3.19)

k=0

and we will always mean this by ‘the Euler projection on F(X)’.

The following classical theorem is fundamental, as it says that the regulated/cadlag/ciglad paths
are the uniform closures of step/left-continuous step/right-continuous step paths respectively,
and so house the limiting objects approximated by real-world time series. We include a proof

based on Dieudonné (1993), but emphasising the role of the Euler projections.

Theorem 3.4. If X is a Banach space (resp. algebra) then G(X), D(X) and F(X) are Banach
spaces (resp. algebras) in which the step paths S(X), S,(X) and S;(X) respectively are dense.

Proof. If X is a Banach algebra it is easy to check that the path spaces are algebras under the
pointwise product x.y(¢f) := x(¢).y(¢), and that this is continuous with respect to the uniform
norm; we need only prove they coincide with the uniform closures of the relevant step paths

when X is merely a Banach space.

Suppose x € S(X). Then for each ¢ > 0 there exists a partition p and x, € SP(X) such

£

that |[x — x.||, < 3 Since S(X) C G(X), for any t € [0,T] there exists 6 > 0 such that
[1x.(u) — x . (V)]| < % whenever 0 < (r — u)(t — v) < 6. Hence for such u, v, ||x(u) — x(v)|]| <
[1x(u) = x W)]|| + |1x, @) — x (]| + ||x(v) = x.(V)|| < &, s0S(X) C G(X). A similar argument

shows S, (X) € D(X)and S;(X) C F(X).

Now suppose x € G(X) and € > 0. Consider the partition p* = p(x) := {0,T} U C(N) where
% < g and C(N) := {c¢,} is the set whose points are the centres of the balls constructed in
the proof of proposition 3.2; the closure Rp; (x) of the image of (p, p . ) under x has diameter
less than €. The result then follows using the Euler projection on this partition: on G(X), set
x, = EP<(x) for some 4,(x) € sz(x); then ||x — x,.|| < e. On D(X) and F(X) use instead

X, = é’f “(x),and x, := Slp ¢(x) respectively. ]
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Theorem 3.4 constructs approximations of general regulated paths as limits of step paths defined
on sequences of partitions. The remainder of this section is dedicated to understanding how
the choice of this sequence of partitions is reflected in the structure of G(X). We start with
the following definition of some concepts which are convenient for parameterising numerical

approximations.
Definition 3.5. (Timescales, refining sequences of partitions, and clocks)

We will call a countable dense subset of [0, T'] a timescale. A sequence & := (p") of partitions
will be said to be dense if its union P, = UP = {pz tk=0,1,...,m(p");n € N}isa
timescale, or equivalently if the mesh |p"| := max, |p; — pz_ll — 0. Such a dense sequence
of partitions will be said to be refining if it is in addition (strictly) increasing, i.e. p" ¢ p"*l. A

clock with timescale I is a refining sequence of partitions with union J .

‘Mesh’ and ‘refining’ are common terms in the literature; the terminology of ‘timescales’ and
‘clocks’ is due to the author. The prototypical example of a clock is given by the dyadic rationals
: N . e .2

Q@ = (q"), with qz = k=0,1,...,2" and timescale @, := {t € [0,T] : T € N}.

For a given clock 2, we set the P-step paths S”(X) := U,S?(X), and the right- and left-
continuous versions S7(X) 1= S”(X) N D(X), S7(X) := SP(X) n F(X). We write their
closures in the uniform norm as G5 (X) := S7(X), D& (X) := S7(X), Fx(X) := Sl‘@(X), and
call them the P-regulated, P-cadlag, P-caglad paths, respectively. Note that by construction

these spaces are separable whenever X is, and that because of the unit distance between distinct
Bl vlt], Ga(X) = {x € GX) : Jx) € P}, Dap(X) = {x € D(X) : J(x) € P},
Fu(X) = {x € F(X) : J(x) € Z}. In particular, W(X) = D5 (X) N F5x(X).

We now characterise these spaces, and hence G(X), in terms of classical sequence spaces, which
we briefly recall here for ease of reference (see Megginson (1998), Diestel (1984), Leonard
(1976) for more). The space of sequences in X is written XN. The partial sum operator s :
XN = XN defined as

n
sG), 1= )X, (3.20)
k=1
is a linear isomorphism, with inverse s~!(x); = x, s7'(x), = x,, — x,_;, n > 1.
Definition 3.6. (Sequence spaces)
B The space of eventually zero sequences in X,
co0X) 1= {x = (x,) € XN : there exists N s.t. x, =0ifn> N} (3.21)

is invariant under s, and in some sense the ‘minimal’ space containing X" for each n

B The space of sequences converging to zero in X,

X)) i={x=(x, € xN x, = 0asn — oo} (3.22)
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and of convergent sequences in X,
cX) i={x=(x,) € XN there exists x* € X s.t. X, > x*asn > oo} (3.23)

are Banach spaces under the norm |[|x||,, := sup, ||x,||. We have ¢,(X) = cqo(X), and
c(X) = cp(X) P X

B The space of convergent series in X,
es(X) 1= {x=(x,) € XV : s(x) € ¢(X)} (3.24)

is a Banach space under the norm ||x||,, := ||s(*)|| = sup, || 2221 x; ||, and is iso-

metrically isomorphic to ¢(X) by construction

Bl For 1 < p < o0, the space of p-summable sequences in X,

n
£2(X) 1= {x = (x,) € XN : Y |Ix;|IP € c(R)) (3.25)
k=1
1
is a Banach space under the norm [|x|| ) := (lim ZZ=1 [1x,117)7, in which ¢y (X) is
n—0o0

dense

B The space of bounded sequences in X,
£°(X) = {x=(x,) € XV : ||x]|, < o0} (3.26)

is a Banach space under |[.||,

Clearly £'(X) C es(X), £1(X) € £2(X) C £*(X), and it is well known that ¢(X)* & ¢,(X)* =
21 (X"); if 1 < p,g < oo then £P(X)* = £9(X*) where i +5 = 1; and £'(X)* = £°(X*)
(Leonard (1976)).

The following lemma is a new result identifying copies of a sequence space within path spaces,

indexed by clocks.
Lemma 3.7. For any clock & we have the isometric isomorphisms Gg(X) = D5 (X) = Fp(X) =
c(X).
Proof. We concentrate initially on the claim for 9-cadlag paths. For any such path x and € > 0,
there exists n € N and a finite sequence x;, k =0, 1, ..., m(p"), such that the p"-step path

m(p")

xe 1= ) xipIp] (3.27)
k=0

satisfies ||x — x, ||, < €.
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There are two natural orders on & : the order inherited from [0, T'] and the lexicographic order
whereby p < pzl, ifn<norifn=n"and k < k’. We may list 2 in this latter order as a
sequence, which we write v := (r,). We may then form the sequence y(x) € XN, with entry
YX) =y = x;’, where r;, = p;’. Clearly the correspondence x < y is linear and bijective onto

its image, and by the above argument we have

x0)= Y ye=lim Yyl (3.28)
Bt P

for each ¢. Define the norms [[.||, on X" by

1= 11 ) villx (3.29)
1, <t
and
= 3.30
Y117 = max [1y1l, (3.30)

which exists as for each y, t — ||y||, is continuous. This makes the isomorphism isometric, and

by construction the image is ¢s(X) = ¢(X). The proof for F5(X) and Gg(X) are similar. [

So far we have worked tended to work with a fixed clock; but the proof of proposition 3.4 con-
structs for a given path x a clock p®(x), which in particular satisfies J (x) C p®(x), and ap-
proximations along it. We will formalise this construction with a convenient concept due to the
author, which we call a trader’s clock; the idea is to add to a fixed clock the first times the risk
factors move a sufficiently large amount, as a trader monitoring her portfolio at an increasingly

fine grid of times might.
Definition 3.8. (Trader’s clock)

A trader’s clock is a sequence of maps 7" : G(X) — P such that there exists a resolution

sequence r, > O such thatr, - 0 asn — oo, and
7,(x) = inf{t € [z]_ (x), py1 | |x(8) = x(z_,(x)| > r,, > O} (3.31)

where p;’ = inf p" N [TZ_I(X), T], and & := (p") is a fixed clock, independent of x.

In the probabilistic setting this is recognisable as a particular case of a stopping time; it is for-
malised in the deterministic setting for the first time here. While its particular values may depend
on the path, a trading clock is completely specified by its (countable) path-independent data: a
‘background’ clock, usually the dyadic rationals @ for convenience, and a resolution r € ¢y(R), ..
The definition is recursive: the successor of a given time in z” is either the next time the path is
further than r,, from its value at that time, or the next member of p” — whichever comes first. In
particular, for each x € G(X), 7"(x) is at least as fine as p”, and so 7 (x) := U,7"(x) is dense.

Moreover, Jrn (x) C 7"(x) so in particular, SUD;[0.7]\¢" |Ax(t)] - 0asn — oo.
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Theorem 3.4 can now be restated as: a path is regulated if and only if it is the uniform limit of a
sequence Euler projections £ )(.) along a trading clock t"(.). Note that since the trading clock
depends on the path, the operators £7'¢) are in general non-linear, mapping a regulated path x
to a sequence 7 X (x) € G, (X).

If we think of the interval [0, T'] as an ordered topological space, then the appropriate notion of an
order-preserving automorphism of it is a continuous, strictly increasing bijection 4 : [0,T] —
[0, T], and we write A := Aut[0, T'] for the group consisting of such functions (Lang (2005)).
Intuitively, these correspond to reparameterisations of the time variable. If 5 C [0,T7] is a
timescale, then for any 4 € A, A(9) is also a timescale; we can think of A as a subgroup of the
permutation group of the set of timescales, specifically those which preserve the order of [0, T'].
The idea behind the main result of this section, due to the author, is that this permuting action is
‘well behaved’ and ‘fills up’ G(X).

Theorem 3.9. (Structure Theorem for G(X))

There exists a faithful action a . A — Aut(G(X)) of A on G(X), given on the simple paths by

composition
a;(alul)(®) := a[u](A(r)) (3.32)
a;(Plul)(®) := plul(A()) (3.33)
a;(y[ul)@®) = y[ul(A®) (3.34)

and extended to G(X) by linearity and continuity. The corresponding set of orbits is parame-
terised by the clocks P, and
GX) = GH(X) = ¢(X) (3.35)

Proof. 1t is easy to check 3.32 gives a well-defined action of A on S(X) and hence G(X). If
some A* € A was such that x = xoA* for all x, then in particular it would fix all continuous
paths, and so A(t) =t and a; = I; hence the action is faithful. For a given A € A, the effecton a
sequence x,, € S(X) of the action is to permute its underlying clock’s timescale 7 — A~1(T).
By Theorem 3.4, a; is an automorphism of G(X), and in particular defines a family of isometric
isomorphisms G4 (X) = Gg (X). Define the equivalence relation ~, on G(X) by x ~, y <

there exists 4 € A such that y = a,(x), and the orbits O(x) = {y € G(X) : x ~, y} for
x € G(X). By Theorem 3.4 there is some & such that x € G5 (X), so there is a sequence " €
coo(X) such that 3, £ € e(X), and x = lim(i?")~!(£"). Since a,((i7)71(&") = i @y em),
a regulated path y is in O(x) if and only if y = lim(i’ “)"1(&). So O(x) is the set of those
paths which are uniform limits of the step paths based on the same sequence &”, under different
choices of clocks. Hence G(X)/A = cs(X) = c(X). ]

Theorem 3.9 is important for numerical purposes because it effectively decomposes the regu-
lated paths into a (separable) sequence space of value increments, and a (separable) group gov-

erning when they occur. In fact it is behind a familiar tool from the theory of stochastic process,
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namely the Skorokhod metric, which is exactly the distance along the graph of this group action.
Although G(X) is not complete under this metric (for example, the image of a path under the
sequence A,(u) = (%)" yields a non-convergent Cauchy sequence), it can be shown that there
is an equivalent metric for which it is (see Billingsley (1968), pp 111 — 115). Since any 4 is
specified by its values on the dyadic rationals, in the resulting topology G(X) is separable.

3.2 Pathwise variance and Monte Carlo spaces

In the context of risk models, we are interested primarily in the case X = R?, where d is the
number of independent sources of risk, so we now mainly work in that setting. The spaces in
Section 3.1 are of paths which are uniform limits of step paths; they give no explicit constraint
for how much member paths can vary over time. In this Section we introduce Banach spaces of

Monte Carlo paths which provide a natural setting to do so.
For a fixed partition p, any x € SP(RY) may be written

m(p)
x= ) xpp] (3.36)
k=0

where x? € cyo(R?) is the vector of co-ordinates of x. Consider the operator mapping x to

var,, ,(x) € SP(R), where
m(p)
var, ,(x) 1= )" [xF[PpIp,] (3.37)
k=0

Note that this is an increasing path with values in R. We will call this operator the is the

p—variation along p, and in the case p = 2 the pathwise variance along p.

Of particular interest is the case p = 2, d = 1; in that case we may define the pathwise p-co-

variance along p as
m(p)

[x. ¥l 1= ) xP.yb By (3.38)
k=0

and note that it satisfies a polarization identity: [x, yl, = i(varp,z(x + y) + vary 5 (x — y)). We
may extend this definition to the general R¢ case via the matrix [x, y] p With i, j component given
by

[x, 01y =[x, 0], (3.39)

For a given clock & = (p”"), any x € Srg’ (R?) is in S?"(RY) for sufficiently high n; we may then

define a corresponding operator via

varg ,(x)(1) = lim vary, ,(x)() (3.40)
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where the limit is taken pointwise in #, again defines an increasing path, and always exists for
step paths since the sequence is eventually constant. Taking the pth root of the final value gives

us a norm

==

x5, := (varg ,(x)(T)) (3.41)

on Sr‘@ (R9). Ttis then natural to consider its completion, and similarly for the caglad and regulated
step paths. Since we wish to retain the uniform convergence as well, this motivates the following

fundamental definition.

Definition 3.10. The right (resp. left, resp. regulated) (P, p)—Monte Carlo path space M;(Rd ),
(resp. M;(Rd),, M;(Rd) ) is the completion of S?(Rd) (resp. S[‘@(Rd), S?(R?)) in the norm

reg

1115, 2= max(||.le, 115, (3.42)

The continuous (P, p)—Monte Carlo path space is M;(Rd)c 1= M;(Rd), N W(RY).

These are obviously separable Banach spaces by construction, and since ||.||, < [|.||; for P <p,
we have the inclusion M;(Rd ); C M”@(Rd );- To avoid tedious repetition we will mainly work
with cadlag Monte Carlo path spaces from now on; obviously due to the canonical isomorphism
parallel results hold also for caglad. We will only really be interested in the cases p = 1,2.
It is obvious that the convergence of the 2-norm in this case implies its convergence for each

component, and therefore the convergence of the co-variance matrix [x, x]¥.

Perhaps surprisingly, given their ubiquity in numerical approximations of stochastic processes,
these spaces are considered for the first time here as legitimate functional analytic objects in their
own right. The novelty of this definition, as opposed to for instance the analysts’ notion of finite
p-variation paths, is that firstly we are explicitly fixing the variation to be calculated along the
clock &, and secondly we also require the uniform convergence of the step path approximations.
Although these may seem to be seriously restrictive, it turns out not to be, at least for continuous

models.

Since the Euler projections are J?-step path approximations of given cadlag/caglad paths, we

have the following characterisation of the (&, p)—Monte Carlo space.
Proposition 3.11. A path x is in M;(Rd ), if and only if x € D,(RY) and
m(p")
. p" p
lim ]; 167 x| (3.43)

exists.

Proof. Any x € M;(Rd ), is the uniform limit of &-step paths, which we may take to be the
corresponding Euler projections. The expression 3.43 is simply the p-norm of the nth Euler

projection, and so its convergence is the other condition for membership. O
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The main reason we are interested in Monte Carlo path spaces is its relationship to the quadratic

variation of stochastic processes, as shown in the following definition and Theorem.

Definition 3.12. (Probabilist’s quadratic variation) A stochastic process X has quadratic varia-
tion process [ X] if for each € > 0 there exists 6 > 0 such that if a partition q has mesh less than

0, then
m(q)

Pl Y 1X(@, 4511) = X(@, 001 = [X](@, 1) 2 €] <& (3.44)
k=0

Theorem 3.13. Let P be a probability measure on D¢ such that the process X (o, t) is a square
integrable continuous semimartingale. Then for any fixed clock P with summable mesh Y. |p"| <

o,

P[MZ2,(RY),] =1 (3.45)

and
varg (X (w,.)) = [X](®, .) (3.46)

P-almost surely.

Proof. Since X has almost surely continuous paths on the compact interval [0, T'], they are uni-
formly continuous; hence the Euler projections £¥'(X) := X(w,0) + Z;"ipln) 6;:"X (w, )PPl
almost surely converge uniformly. Fix 7. By definition, [X(w)|p, 1= | Zpk < |1 X (@, pp4y) —
X(w, pk)lz, so for any € > 0 we may choose sufficiently large n so that P[| X (w),| 2~ [ X, D] >

€] < e. Passing to a subsequence if necessary and taking the limit completes the proof. O

It should be emphasised that the clock & must be fixed independently of the paths; as shown by
Davis et al. (2018), by allowing it to vary we may construct a version of the quadratic variation

that is almost surely maximally badly behaved, in a paerticular sense.

The point of Theorem 3.13 is that we may use M;(Rd) as a state space for continuous market risk
models. But why should we use these as state spaces, rather than W¢ or D“? First, Monte Carlo
spaces exclude the many paths in these classical state spaces that violate an essential property
of the models, namely having finite quadratic variation. Second, that the topological structure
of Monte Carlo spaces by construction reflects this. This is illustrated by the following result, a

pathwise version of a result from stochastic processes, with essentially the same proof.

Lemma 3.14. For any clock & = (p"), if x € M}@(Rd)c then

X[l =0 (3.47)

Proof. For any n and path x we have E;"i%n) |5Zx|2 < m/flxléle vary 1(x). If x € M;(Rd)

then the second term converges to ||x||g ;, while if x is continuous, it is uniformly continuous

reg’

on [0, T'], and hence the first term converges to zero. OJ

This gives us the ammunition to ensure that the pathwise co-variation really is an inner product.
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Theorem 3.15. For any clock &,

2 (pd
Mg (R )’/Z (3.48)
is a Hilbert space, with inner product

where Z = {x € M;(Rd)r D lxllg =0}

Proof. Since the semi-norm x — |[|x||g, is continuous on M;(Rd );» Z is a closed subspace
and we may consider the quotient Banach space @ = Mzgn(le ), + Z, consisting of cosets x + Z

and endowed with the norm
llx+ Zllg = Infllx = zllye, o), (3.50)

It remains to show this norm is Hilbertian. To that end, note that for any z € Z, ||x — z|[», <
[1xlgnp + 112112 = x|l By Lemma 3.14, My, (R?). C Z. Any step path s € S7(R?)
can be uniformly approximated by a sequence in M(I@(Rd) . for instance, a linear interpoliation
works. Hence M}@(Rd)c is dense in D, (R¥), and for any x € M?@(Rd)r there exists z, € z € Z
such that ||x—z,||, — 0. Hence ||x+Z]|4 = ||x|[5,. Since this latter is the limit of a sequence
of Hilbertian seminorms, by considering the polarization identity on each and taking the limit,

we see it is Hilbertian. O

Of particular interest is the set of paths which have finite pathwise variance along a trading clock:
V4= {x €D’ 1 |[x]lya < ) (3.51)

These form an effective state space for jump processes, under a Skorokhod style topology. How-

ever, we will focus on continuous models in this thesis.

3.3 Integration along a clock and pathwise versions of market mod-

els

We now begin the process of exploring the structure of these spaces. First, it turns out that
finite absolute variation Monte Carlo paths, i.e. M}@(Rd ), serve as the natural dual objects to the
uniform limit paths, D¢ , [F;,, Gdgb. The pairing is of course via integration, though unlike in the
Riemann-Stieltjes theory we will allow our ‘integrals’ to depend on the sequence of partitions,

and explicitly construct them as paths.

Definition 3.16. (Pathwise integral along a clock)
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The integral along a partition p of a path f € F¢ with respect to x € D? is the R-valued step
path given by

t m(p)
/O fdPx i= Y (F(P). 8P x)pa AL, I0) (3.52)
k=0

We say f is integrable along & = (p") in M;(Rd)reg if

t t
/ fd7x :=1lim [ fd"x (3.53)
0 0

n—>0o0

exists in M;(Rd Dreg:

Note that by construction, f € F' is Riemann-Stieltjes integrable with respect to x if and only
if it is integrable with respect to x along any clock &, and this integral is independent of the
choice of &, i.e. is invariant under the action of A. So this integral represents a generalisation

of the ordinary Riemann-Stijetles theory. Furthermore, if f is integrable in M;(Rd)reg, then by

construction
. m(p") .,
varg ,( / fa7x)®) = 1im D |(fPD. 6} X)pa AP0
0 n—oo =0
m(P”) d . . n . n .
=lim > Y S0 08, x'6) X LRI (3.54)
k=0 i,j=1
for each 1.

This notion of integral gives us the following duality results.

Lemma 3.17. For a fixed clock & = (p"), and any F € [an(Rd)*, there exists a unique f €
M, (R),,, such that

reg

T
F(Q)=61(0)f(0)+/0 qd” f (3.55)

forall g € F),, and ||F|| = varg ,(f).

Proof. We prove the case d = 1 for simplicity of notation; the general case is similar.
Let F € [F;", gz = 1[0’%], and f/? = F(gZ). Define the step paths

m(p")
L) 2= fla@) + Y fgh®) - gi_ (1) (3.56)
k=1
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clearly || f,,||o < ||F||. Moreover, by the continuity and linearity of F,
m(p")
var,  (f) = 1ol + D 1= fi)
k=1
m(p")
= F((sgnf)gg + ) sen(fy — fi_ el — &)
k=1
< 1Flg (3.57)
50 £ € M,(RY), g and || £]] < 2[| F|. If

s 1= s(0)gp + ) sP(g) — gF_)) (3.58)

is a p" step path, then by continuity and linearity,

F(s) = sO)F(gn) + Y s(PD(F(g}) = F(g}_)))
t
= s(0)F(gy) + / sd? f (3.59)
0
and |F(s)| < ||s[|varg ;(f). Since n was arbitrary, and such step paths are dense in FL, by
continuity of F we are done. O

Corollary 3.18. We have Fu(RY)* = Dg(RY)* = Gg(R?)* = M1, (RY)

reg*

Proof. Since any regulated g € G,(RY) can be written as a sum g = g_ + A_g, we need only
to extend a linear functional F € F,(R?)* to Gy(R¥). The necessary pairing is given by

T
F(g) =g0)f(0) + / g d”f+ Z A_gwA_f(w) (3.60)

0 u€l0.T]
where f € M f@(Rd Jreg 18 the path obtained from Lemma 3.17. O

The Monte Carlo spaces are of course by construction built out of skeletons with respect to a
fixed clock 9. We may now relate the above new concepts and results to the classical concept

of total variation and bounded variation paths, which are independent of a clock.
Definition 3.19. (Total variation)

The total variation of a path x is the path

V(x)(t) := sup Varp’l(x) 3.61)
peP

where the supremum is over all partitions p of [0, T'].
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If V(x)(T) < oo, then x is said to have bounded q-variation; the space of bounded variation

paths is written BV (X), and endowed with the variation norm:
[1x[1gy = [[xO)[| + V(x)(T) (3.62)

It is a classical fact that BV (X) is a Banach space under the variation norm, in which the space
of step paths is dense. Another important fact is that a real-valued path has bounded variation if
and only if it is the difference of two increasing functions. In particular, since for x € M;(Rd Vreg

the p-variation varg, »(0) is bounded and increasing, it has bounded variation.
The following Theorem is new in its specific form (see below for a more detailed discussion).

Theorem 3.20. The dual spaces G(R?)* =~ D(R?)* =~ F(R?)* =~ BV(RY). Furthermore,
BV (RY) is invariant under the action of A given in Theorem 3.9, and any x € BV (RY) has

the decomposition

x=C(x)+ Z A_x(w)plu] + A x(wylu] (3.63)
u€l0,T]

with C(x) € W(R?), where the sum has countably many non-zero terms and converges abso-

lutely.

Proof. By Theorem 3.9 the spaces G(R9), D(R?), F(R) are the unions of the respective clock-
specific spaces G@(Rd), ng;(IRd), F@(Rd). It is clear from the definition that

BV (RY) = (Y ML(RY),, (3.64)
P

where the intersection is over all clocks, and the norm ||x|| gy is equivalent to supg ||.|lyy ga) -
P reg
The first and second statements then follow from Lemma 3.18. The formula 3.63 is then simply

due to the absolute convergence of the jump part. O

This result is of independent interest in functional analysis, and in this form strictly speaking new.
Kaltenborn (1934) was the first to consider that problem, and found G' = BV'! @ ¢'; later Webb
(1973) proved the result for F!, while Tvrdy (1996) proved a corresponding result for regular
(also known as equiregulated) paths, satsifying x = %(x + + x_). In the more general case
of X being a Banach algebra, Berberian (1978) used the Gelf’and Naimark theorem to prove
G(X) is isomorphic to the continuous functions on a (very badly behaved) topological space,
and consequently characterised G(X)* as a space of Radon measures by the Riesz representation
Theorem. However, none has prior to this characterised the dual as solely the bounded variation
paths. In effect, our proof simply shows that Kaltenborg could have brought his additional #'
summand term into the definition of the BV function corresponding to a general continuous

linear functional, by defining the pairing as we have.
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The point about this characterisation of the dual of the caglad paths is that it allows us to relate
the pathwise variance to Follmer’s quadratic variation. Recall that a path x : [0,7T] — R is said

to have finite quadratic variation in the Follmer sense if the atomic measures

& i= ) (X)) — x(1))%6, (3.65)

1,€T,

converge weakly to a Radon measure on [0, T'] with distribution function [x], whose atomic part

coincides with the square of the jumps of x. That is, if

f@) &, (du) — S (@) [x](du) (3.66)

[0,T] [0,T]
for all continuous f : [0,T] — R (strictly speaking this is the weak star topology that the space

of Radon measures has due to its dual pairing with the continuous paths), and

[xI(0) = [x]0) + Y, (Ax(@)? (3.67)

u€l0,]

where [x], is continuous. Comparing 3.65 to 3.37, we see that the pathwise variance along a
partition is the distribution function of Follmer’s atomic measure. The point of the next result
is that, rather than the weak-star convergence as a measure based on the dual pairing with con-
tinuous functions, the pathwise variance is the weak-star convergence of the bounded variation

distribution function based on the dual pairing with F?.

Corollary 3.21. A cadlag path x € Dy is in M?@(Rd)r if and only if the pathwise co-variance

matrix satisfies

T . T P
/Of(u)[x,X];’n(du)*/o F@lx, x1,(du) (3.68)

forany f € [F;D

Proof. This is immediate once we recognise that the weak-star topology on M ;(Rd ), is simply

pointwise convergence at the points of the clock:

T .. Py Py ..
/ l[O,t](u)[x’ x];]n(du) = [-x7 x];jn(t) - [-x7 x];jn(o) = [x9 x]gn(t) (369)
0

so pointwise convergence coincides with integration against the paths 1y, 7 € &. Since the

latter are dense in [F;, we are done. 0
The role of a market risk model can be illustrated by the following schematic:
market data + ‘“‘noise” ——  future market scenarios
MODEL

The model’s job is to take some data on the historical evolution of the market and some suitably

random ‘noise’, to project a plausible future evolution of the market. We will now introduce a
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quite general class of continuous market risk models, and then construct for any such model a

set of paths of full probability. First we make the following fundamental definition.

Definition 3.22. The set of homogenous noise paths in R¢ is
Q, :={w e MLRY), : [0 0]@) =1} (3.70)

Theorem 3.23. (Pathwise It6 isometry)

For f € [ and any homogenous noise path o, /0. fd%w e Mzg,([R{d)c, and
S SR 2
warg ([ 7a%0)= [ 17widu 31
0 0

Proof. This is immediate from the definition of homogenous noise paths, the Lebesgue integra-
bility of the regulated path | f(u)|?, and equation 3.54. O

We will now consider a class of market models known as It6 processes.

Definition 3.24. (Itd process)

An [t6 process is a stochastic process X : QX [0,T] — R? on a stochastic basis (Q, F, P) such
that

X = X(O)+/ u(s,w)ds +/ v(s,w)dW (s) (3.72)
0 0

where W is a P-Brownian motion, u, v are stochastic processes adapted to F, and

[P’[/ |u(s,a))|ds+/ |U(s,a))|2ds] =1 (3.73)
0 0

Strictly speaking, we can weaken the assumptions to allow u, v to be adapted to a (larger) filtra-
tion, as long as W remains a martingale under the enlargement (see Oksendal (1992)) but this

assumption will be sufficient for our purposes.

Theorem 3.25. Let X be an It6 process model, and the function X : [0, T]1xQ, — R? be given
by

t '
X, w) 1= X(0,») +/ u(s,w)ds +/ U(s,a))d‘@w(s) 3.74)
0 0

Then Plw : 3t, X)) # X(@#)] =0

Proof. Since W is a Brownian motion, P[] = 1; on this set the expression 3.72 reduces to
3.74. ]






Chapter 4

Calculus of Monte Carlo Path
Functionals and the ‘Greeks’

In this Chapter we address Objective 2 of the thesis Aims from Section 1.2, by embedding the
Dupire (2009) and Cont and Fournié (2010) treatment of derivatives’ risk sensitivities into the

standard functional analytic context for differentiation, of semigroup theory.

In practice, derivatives’ greeks are often calculated via ‘bumping’ procedures (Glasserman (2004)).
For instance, suppose a derivative on a stock is valued by a functional V' of time ¢ and the path
S, of the spot price up to ¢. The sensitivity of the value to an instantaneous change in spot — the

delta — will often be approximated by the difference quotient

V t,S + -V t,S
AV@S) = @S +e) — V@ S) 4.1)
&

where S, denotes the path of the spot price up until ¢, and ¢, is a ‘small perturbation’ at 7, in some

sense.

The difference quotient is suggestive of a differential operation, and in the case of a Markov
model the value functional reduces to an ordinary function of time and spot price at that time,

and the limit lin(l)A .V reduces to an ordinary partial differential, %.
E—>

The path-dependent case was first considered by Dupire (2009). As we saw in Chapter 2, he
defined non-anticipative functionals as parameterised families of functions on a union of paths
defined on increasing time intervals — i.e. with F(z,.) defined on paths defined on [0, ] — and
developed his functional 1t6 calculus based on vertical and horizontal differentials as limits of
similar expressions to 4.1 at each time. Cont and his co-authors then reformulated them as func-
tions of equivalence classes of paths under the stopping operation, enabling the development
of a weak theory of vertical differentiation and Functional Kolmogorov Equations (Cont et al.
(2016)).

45
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However, both approaches present considerable technical difficulties, and in particular neither is
well-suited to the semigroup formalism of ordinary PDEs. For one, semigroups are families of
operators on a single space that houses the boundary conditions. But the ‘boundary conditions’
of our problem — payoff functionals — are not non-anticipative functionals, and so are not in the
natural domain spaces of operators built out of vertical differentials, as we would expect our
semigroups to be. For another, non-anticipative functionals are defined on a complicated metric
space of equivalence classes of paths, and a priori little is known about manipulating operators

on such a space.

In this Chapter we will reformulate vertical and horizontal differentiation of non-anticipative
functionals in such a way as lends itself to the functional analytic methods of semigroup theory.
In 4.1 introduce some classes of functionals on Monte Carlo spaces, and give some key examples
from finance. In Section 4.2 we will consider a natural idea of differentiation for functionals
as the generator of a strongly continuous group of isometries, and show how it leads to several
analogues of ordinary differential calculus results including a Taylor Theorem and a density result
for functionals which are smooth in this sense. In Section 4.3 we show how when this differential
an appropriate application of this differential to functional processes recovers the Dupire/Cont
vertical differential, and derivatives risk sensitivities such as delta and gamma. Finally, in Section
4.4 we show that the Dupire horizontal differential is also the generator of a strongly continuous
semigroup, and a representation for it as a limit of right time differentials on a sequence of finite

dimensional subspaces.

4.1 Path functionals

The basic idea of functional analysis is duality — to capture the properties of a space through
corresponding spaces of functionals, that is maps with range in the (complex) scalars. In this
section we introduce some of the most important spaces of functionals on the path spaces defined

in Chapter 3 above.

In this section Z denotes a generic Banach space. The space of continuous, bounded functionals
on Z will be denoted C,(Z), and of uniformly continuous, bounded functionals %,(Z); it is well
known that each is a Banach space when endowed with the supremum norm ||.|| ., and that these
encode the (norm) topological properties of Z. The vector spaces of continuious and uniformly
continuous functionals on Z will similarly be written C(Z), % (Z), though in general these do

not have a sensible norm structure.

A functional that satisfies
|D(x) — D(y)| < I]|x =yl 4.2)

for some / > 0 is said to be Lipschitz continuous or just simply Lipschitz, and the vector space of
such functionals is written Lip(Z). The smallest such / is known as its Lipschitz constant, which
we will write /(®). This is a semi-norm on Lip(Z) for which /(®) = 0 < @ = ¢, and so
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®||Lip = |P(0)] + [(P) defines a norm on Lip(Z), under which it is in fact a Banach space.
The space of bounded Lipschitz functionals will be written Lip,(Z), and is a Banach algebra
under the norm ||®| |Lipb 1= ||®||, + /(®) and the obvious pointwise multiplication ®.¥(x) :=
D(x)¥(x) (see Weaver (1999) for more on Lipschitz spaces). Clearly, Lip,(Z) C Lip(Z) and
Lip,(Z) c %,(Z) C Cy(2).

In general it is natural to think of time series as right-continuous step paths, as we think of
information being incorporated as times passes. Therefore the evolution of risk factors will be
modelled by cadlag paths x € D?. In order to carry out a satisfactory pathwise analysis of the
corresponding derivatives contracts written on these paths we will need to understand this space.
First, it has a familiar measurability structure. For ¢ € [0, T'], the evaluation maps 6‘; : D4 5 RY
defined by

el(x) = x'(1) 4.3)

are Lipschitz continuous, i = 1,...,d. These govern the relevant notion of measurability on
D4 intuitively, we are interested in information that can be constructed from observations of the
risk factors. We set %, to be the sigma algebra generated by the set of evaluation functionals
{e{ |0 <u<ti=1,...,d}, and note that these sigma algebras form a filtration: #, C &, if
t <u.

We would like to construct a sufficiently rich class of functionals on D?. The right-continuous
Euler projections Erp : D4 > Sf([R{d ) map paths to step paths, which are essentially finite dimen-
sional objects, determined by the m(p)-dimensional vector of their jumps at the partition points.
Using these, we can construct a large class of functionals, in particular furnishing embedded
copies of C,(R") in C,(D9) for all n.

Definition 4.1. (Euler functionals)

Given a partition p, we define the Euler operator ¥ mapping R”®-dimensional functions to

functionals on D¢ by
SPP)(x) 1= @(EPX)P), AEP)P), .., AEPX) P ongy))) (4.4)
for x € D?. Conversely, for a functional ® : D¢ — R we define the Euler functional
o =doed 4.5)

Proposition 4.2.

For any partition p, the Euler operator S preserves continuity and uniformly continuity, and
gives isometric injections C,(R4*m®+D) o C (DY), U, (RI>"®+D) o 9/, (D). Further,
given a trading clock t, if ® is continuous we have <I):1 — @ pathwise, and if ® € %,(D?), in

norm.
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Proof. We define SP[@](x) 1= @(EF(x)(Pg). AEF(X)(P)), ..., AEF(X)(Py))); clearly it is an
algebra homomorphism. Since the Euler projection is surjective onto the right continuous jp-
step paths, which in turn is naturally isomorphic to R¥X"®+D the isometry property is similarly

easy: ||SP[p]|l = sup  |p(x)| = ||@||. The second claim follows from the fact that the
xeRdX(m(p)+1)

Euler projections converge to the identity in the strong operator topology, and continuity/uniform

continuity. O

Some concrete examples of payoff functionals, representing unit notional positions in derivatives
contracts, are in order. For simplicity of exposition we take d = 1, and think of the single risk

factor x as the log-price of a stock with spot price S(f) = e¥?.

Example 4.1. (Payoff functionals)

B 7The ‘vanilla’ European call and put option payoffs at strike k with maturity T,

DT (S) = (ST) - k)* (4.6)
OL1(S) = (k= S)* 4.7)

are Lipschitz continuous (see Figure 4.1) with l((Dg“T”) = l(@f:”T’) =1

VANILLA OPTION PAYOFFS

@) (b)

k S(T) k S(T)

Figure 4.1: ‘Vanilla’ option payoffs: (a) call, (b) put.

B Given ¢ : R — R, the European payoff

D?(S) 1= @(S(T)) (4.8)

is continuous/resp. uniformly continuous/resp. Lipschitz/resp. measurable if and only if

@ is continuous/resp. uniformly continuous/resp. Lipschitz continuous/resp. measurable
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B T7he digital or binary option payoff
DVE(S) 1= 1,(5) 4.9)

where E € Fr, is Fr measurable, but not continuous. Usually we will only be interested
in the case E = {x | x(t;) € la;, b;]}, for somet; € [0,T],a; < b; €R, i =1,...,n(see

Figure 4.2).

i*Yi

DIGITAL OPTION PAYOFF

a b sd)

Figure 4.2: ‘Digital’ option payoft.
B 7he up-and-out put option payoff with barrier B > 0
(S) = (k= S(T))* 1 5. (S) (4.10)

is Fr measurable, but not continuous

B A single leg maturity T variance swap payoff struck at k is:

D 5(S) 1= v*(S) — Kk 4.11)
where . .
2 . 1 S(, ) 1 2
v(8S) 1= - lo = - x(t;) — x(t;,_y) 4.12)
ni;( gS(t,_l) n; i v)
is the realised variance functional, over the dates t;,, i = 0,1, ...,n,t, =T, is continuous,

and uniformly continuous away from zero

B An Asian option payoff is a functional depending on the (left limit of) the (continuously
sampled, geometric) average log-price, given for t € [0,T] by

t
A(D)(x) :=exp(% /0 x(u)du) 4.13)
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For instance, the average strike call option payoff is
DL(S) = (S(T) - AT-)* (4.14)

Note that, since x is cadlagit is bounded and Lebesgue almost everywhere continuous, and

so the integral converges.

The payoffs of portfolios of derivatives can be represented as linear combinations; this is the basic
idea behind structuring, building payoffs with specific characteristics for clients. For instance, a
simple example is given by a call spread ®C5P(S) = @Ei“T(S) - ®§;11T(S ) where k| < k, (see
figure...). Condors are another class of option strategies, with the Lipschitz continuous payoff

Con _ 1o can Call Call Call
q)klo,kz,e,T(S) =S ((Dkla—é,T(S) - (I)kla,T(S) - (Dk;,T(S) - (Dk2a+5,T(S)) (4.15)

for ki, k, € R, € > 0 (see Figure 4.3).

CONDOR OPTION STRATEGY

Figure 4.3: ‘Condor’ option strategy payoff.

These will be particularly useful for our purposes, as they can be thought of as basic building
blocks for structuring, as shown in the following lemma. The idea is that by sending 6 — 0 we
may uniformly approximate any digital payoff, and hence any measurable functional under the

LP-norm (see Figure 4.4).
Lemma 4.3. (Density of Lipschitz functionals in LP)

Lip,(D?) is dense in LP(P), 1 < p < oo, for any probability measure P on the measurable space
(DY, Fp).
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APPROXIMATION OF DIGITAL BY CONDORS

il

k,+6 S(T)

Figure 4.4: Uniform approximation of digital option payoff by condor strategies as
o — 0.

Proof. The sigma-algebra F is generated by the family of sets of the form
B(,,....t5a1,b,...a,,b,) = {x|x@) €la;.bli=1,..,n} (4.16)

and so linear combinations of the corresponding indicator functions are dense in L”. These are

given by
1p(0) = [ ] 1, 1G@) (4.17)
i=1

For each ¢ > 0, the bounded Lipschitz functional @g‘;’"& ,(x) converges monotonically to 1, ,(x(?)).

By the Lebesgue monotone convergence theorem, we have

Lo — oY 117 =Ell g5 — OC" 171 -0 (4.18)

a,b,et a,b,et
as € — 0. By the algebra property of Lip,, any product as in equation 4.17 can be similarly
approximated by a suitable product of such Lipschitz approximating payoffs. 0
Since ||.|lo < 1] |M§(Rd), we have Lip,(D9) C Lipb(Mzgn(Rd)), so the previous result is true of
Lip,(MZ,(R%)) also.
Corollary 4.4. (Density of bounded Lipschitz Euler functionals in L?)

If P is a probability measure on (D%, F3) and X € LP(P), then for each € > 0 and any trading
clock =, there exists a bounded Lipschitz functional ® € Lip,(D?) and N € N such that || X —
(I)in |, <eforn>N.If X = X(w,T) is the final value of a continuous semimartingale then
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for each € > 0 and any refining sequence of partitions P there exists ® € Lipb(M;(Rd)) and
N € N, such that ||X—<I)£n||p <eforn>N.

Proof. This follows from Lemma 4.3, and Propositions 3.13, 4.2. O

4.2 Bumping groups and vertical differentiation

The real line has a group action on itself by translation, t — t + u, which naturally lifts to a
corresponding family of operators #r(.) on functions, defined by #r(u) f(¢¥) = f (¢t + u). This fur-
nishes a representation of the additive group R as isometries on the space %, (R) that is strongly
continuous, in the sense that tr(u,) f — f in these spaces if u, — 0 in R. The differentiation

operator % is then the infinitesimal action of this group, in the sense that

L @ &) — 1r(0) f(x)
1m

£ e—0 £

%M _ (4.19)

a0 =l

when this is well-defined. The classical Taylor series then allows us to recover the translation

group as an ‘exponential function’ of differentiation,

(e o]
d

fx+w=1r@)f(x) = Z:‘) Z—];(j—x)kf (x) =2 e"ax f (), (4.20)

for sufficiently regular functions.

This then naturally generalises to R?, via the notion of partial derivatives dix[ that generate trans-
lations in the direction of each of the Cartesian co-ordinates, out of which any general translation
can be ‘built’. In this Section we will see how this is paralleled in the path functional setting,
by the notions of bumping groups that build translations out of vertical perturbations, and the

corresponding vertical differentiation operators analogous to partial differentiation.

Again we will write Z for a generic Banach space, and B(Z) for the space of bounded linear
operators on Z. Recall that the topology of pointwise convergence on B(Z), A, - A <
A,z — Az forall z € Z, is known as the strong operator topology (SOT). The following
definition is fundamental to the general theory of differentiation, and the rest of this thesis.

Definition 4.5. (Semigroups, groups of operators and orbit functions)

A semigroup of operators on a Banach space Z isamap G : R, — B(Z) satisfying

G(0) 1 (4.21)
Gu+v) = GuwG)forallu,v e R, 4.22)
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The orbit function of a semigroup G at z € Z is the map {; : R, — Z defined by { () =
G(u)z. A group of operatorson Z isamap G : R — B(Z), such that G(u) is invertible for each

u, satisfying

GO = I 4.23)
Gu+v) = GwG)forallu,v eR 4.24)
Gw™ = G(-u) (4.25)

The orbit function of a group G at z € Z is defined similarly {7 : R - Z by {{(u) = G(u)z.

A semigroup G of operators is said to be strongly continuous if it is right-continuous at zero in
the SOT:
[|Gw)z — z|]| > 0asu | O (4.26)

for each z € Z. Similarly, a group is strongly continuous if it is continuous at zero: ||G(u)z —
z|| = 0asu — 0. Note that if G is a strongly continuous group of operators, then foru € R,

Gt (u) := G(u) and G~ (u) := G(—u) are strongly continuous semigroups.

Much as Euclidean space has the canonical basis ', there is a natural set with which we can build
generic paths in G“: the vertical bumps f[t](u) = e'ly, 1(w), ¥'[t](w) := €'l 7(w). It turns
out that translation by the f'[¢] underlies the idea of risk sensitivities, so we will focus on this.
The corresponding bumping operator evaluates a functional on the ‘bumped’ path x + €[] (see
figure 4.5).

Definition 4.6. (Vertical bumping operators)

For t € [0, T'], the bump operators for coordinate i at time ¢ are defined for functionals ® on G¢
by
B w)® (x) := ®(x + up'[1]) 4.27)

Clearly, foreacht € [0,T],i =1, ..., d, the bump operator u — Bf (u) defines a group:

B (0)D(x) = D(x) (4.28)
Bl(u+ v)®(x) = Bi()®(x + up'[t]) = B!(v) Bi(w)P(x), (4.29)
B)(—u)Bl(w)®(x) = ®(x) (4.30)

Note also that for ¢ # ¢’ the operators commute: B;', ") B! (w)®(x) 1= O(x + uf'[t] + ' p'[1']) =
Bi(u)B:,(u’)‘D(x).

The question then becomes: for what class of functionals is this group strongly continuous? To
answer this, note that ||uf'[t]||,, = |u|. Meanwhile, 5£(uﬁi[t]) = 0 unless k = k(¢), in which
case SIf(I)(uﬂi[t]) = u, s0 |[up'[]|| gy = |ul, and [|up'[1]]|.» = u*. This immediately gives us
the following examples.
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‘BUMPED’ PATH

Figure 4.5: The action of a vertical bump function on a path.

Exampled4.2. Fort € [0,T), i =1,...,d, the bumping operator B;' defines a strongly continuous

group on

B cach of%b(Gd), %b([Dd), %b(BVd) and %b(Mzg,(le)), since by uniform continuity | |B£(u)<l>—
®||, = sup, |D(x + up'[1]) — P(x)| = 0 as |u| - 0.

B cach of Lip(G?), Lip(D?), Lip(BV %), since for such functionals |®(x + up'[t]) — ®(x)| <
1(D)|ul, so l(Bf(u)d) — ®) < |u|l(®), and hence ||Bf(u)CD = @[y, = |®up'[t]) — D) +
lu|l(®) < 2|ull(D) — 0as |u| — 0.

B cach of Lip,(BV?), Lip,(G%), Lip,(D?), by combining the above two examples.

We will call a space of path functionals on which B; is a strongly continuous group for each

i=1,...,d,a B, — space, and denote a generic such space Y in the sequel.

It will often be useful to consider the functions ¢ ;D’x : R — R?, given by evaluating the orbit
functions of the vertical bumping groups on a given path: C;D’x(u) = (C;(u)(x)) = (<I>(x +
up’ [t])), which we will call the vertical orbit function at ®, x and t. Note that the orbit functions

inherit the continuity/uniform continuity/Lipschitz contintuity of the corresponding functional.
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The analogue of differentiation for a semigroup of operators is given by the generator.

Definition 4.7. The generator A of a strongly continuous semigroup G(.) of operators on a Ba-

nach space Z is the operator

4.31
lim—— (4.31)

with domain dom(A) :={z € Z | Az exists in Z}.

Note that this definition is specific to the space Z, so strictly speaking we must distinguish be-
tween the generators of the same (semi)group defined on different spaces. If G is a strongly
continuous group of operators, then the generators A*, A~ of G, G~ are like right- and left-
differentials. Generators are so-called because of the following fundamental theorem (see Engel
and Nagel (1999), Chapter 11, Lemma 1.3 and Theorem 1.4), analogous to the fundamental the-
orem of calculus. We will need to make use of the theory of Banach space-valued or Bochner
integration (Pisier (2016)).

Theorem 4.8. The generator A of a strongly continuous semigroup G on a Banach space Z is
a closed and densely defined linear operator on Z which determines G uniquely. In particular,
foreacht >0, z € Z, the integral operator fot G(s)zds € dom(A) and we have

Gyz—z= A/ G(s)zds = / AG(s)zds =/ G(s)Azds (4.32)
0 0 0

Equation 4.32 can be thought of as an analogue of the Fundamental Theorem of Calculus in the
semigroup setting. We will not reproduce the whole proof here, but note that the first equation

follows from the fact that

t t t t
l(G(g) / G(s)zds — / G(s)zds) = l( / G(s +€)zds — / G(s)zds) (4.33)
£ 0 0 € Jo 0

1 t+e 1 t
= —/ G(s)zds——/ G(s)zds (4.34)
E Je € Jo

1/t+s 1/8
= - G(s)zds — - G(s)zds (4.35)
€ Jt €Jo
- GHz-1z (4.36)

as required. In particular AG(u)z = G(u)Az for each u > 0; iterating this relation we see

that G'(u) maps dom(A") to itself — that is, dom(A") is invariant — which we can think of as G

‘preserving smoothness’.

In our setting, the fundamental differential operators for risk sensitivities are the generators of
the vertical bumping groups B! on a B-space Y — a directional differential in the direction of

vertical bumps.
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Definition 4.9. (Vertical differentiation)

The generator 0; of the vertical bumping group Bf at t on a B-space Y, defined as

. Bi(e)®(x) — @ _ ,
0, ®(x) := lim (O P _ | PG e 6) 20 _ g2 (o) 4.37)

£ -0

is called the ith vertical differential at t, defined on the domain
Y i={@eVY|d dx) eYiori=1,..,d}=n_ V" (4.38)

The vertical gradient at t puts these components together and maps functionals into the product
space Y. It will be written V,; := (9’ ), where i = 1, ..., d, and has domain Y/ = ﬂf_l\/tl’i.
: -

This naturally generalises to higher orders k > 2 of differentiability, via Yt" ={deY|V,0(x) e

Y1}, A functional @ is said to be vertically smooth at t if ® € Vtm’i = (Y, and ver-
keN
tically smooth if it is vertically smooth at every t € [0,T]. These are Banach spaces un-

der the obvious graph norms. We denote the vector space of vertically smooth functionals by
d oo (mMd
[0 T](D ) mtE[O,T] Yt (D )

Because the bumping operators form strongly continuous groups, we may avail ourselves of the
well-developed theory of operator semigroups, and find that vertical differentials behave in many
ways analogous to ordinary differentials on R?. Many of the following results are consequences
of this theory; however, this theory is not well-known to many working in the finance literature,
nor is our example known in the semigroup literature. Rather than a string of obscure-looking
references to that literature, we will endeavour to provide direct proofs for the most important

results we need.

It is easy to see that orbit functions inherit the degree of differentiability of the functionals. If
® & /. then?, € C'(R.R!)and {77 (w) = lim BUOBIW-BIW g(x) = Bilr)®, ' (0) =

'V, ®(x +up[t]). This seemingly triv1al observatlon turns out to render calculus rules of vertical

differentiation in our setting much easier to prove than in the Cont et al setting, where we lack
a counterpart because the set of equivalence classes of stopped paths is not a vector space. A

Leibniz product rule and a chain rule follow easily.

Proposition 4.10. (Leibniz product rule for vertical differentials)

Suppose ®,¥ € C/, and set E(x) = ®(x)¥(x). Then E € C/, and 9’ B(x) = D(x).0" P(x) +
¥(x).0" D(x).

Proof. Fix a component for vertical differentiation, and for ease of notation embed this in a one

dimensional model to avoid a proliferation of co-ordinate indices. Since ®,¥ € Ctl, their orbit
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functions ¢®,¢¥ € C'(R), and so we have

B[{]()[®.9] — ©.%
E

= é(B[t](e)(I).(B[t](e)‘P — W) + V.(B[t](e)® — D)) (4.39)
¥ () - Y0 £2(e) — £2,0)

=@l )+ E50) ) (440
= £2(0).VEY (0) + £ (0).V¢E (0) (4.41)
= ¥(x).V,(x) + O(x).V,¥(x) (4.42)
O
Proposition 4.11. Suppose F,G € C!, G(x) £ 0. Then H := FoG € C!, and
9, H(x) = 9, F(G(x))d, G(x) (4.43)

Proof. Again, we treat a one dimensional case for ease of notation. Since F,G € C!, their orbit
functions ¢, ¢¢ € C'(R), and so we have for |¢| > 0,

F(x+eplt]) := ¢l ) = ¢l +eLf 0 +ef(e) (4.44)
=F(x)+ eV, F(x)+ef(e) (4.45)
G(x +£plt]) 1= LC(e) = £9(0) + ££9,(0) + eg(e) (4.46)
= G(x) + eV,G(x) + £g(¢) 4.47)

where f, g are functions on R such that @ — 0 as e — 0, and similarly for g. Without loss of

generality, we may assume f(0) = g(0) = 0.

So
B[tl(e)H(x) — H(x) = F(G(x+¢£p[t])) — F(G(x)) (4.48)
= o EV,GX) +8€) = ¢,y O (4.49)
= Z*’JCI;(X)J(O) + Cg(;)’t(O)e(V,G(x) + g(€))
+ &(V,G00 + 8O f(€(V,G(0) +8EN) = {fy (O (4.50)
and hence

B[t](e)H (x) — H(x)
13

= V.IF(GX)V,G(x) + g(e) + (V,G(x) + g(€)) f (e(V,G(x) + g(¢)),

and all but the first term tends to zero as € — 0. O

In particular, the chain rule means we may freely change variables between spot prices .S and
log-spot prices x, transforming the vertical differential via 0! ®(S) := S'(1)d’ ¥(x), where
Y(x) = ®(S(x)), much as in the finite dimensional context.
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Another very useful result is the following analogue of Taylor’s theorem with remainder. This

will be pivotal in our later proof of the path-dependent version of /t6’s lemma.
Theorem 4.12. (Vertical Taylor theorem)

If(I)eCt”andu>0,

n—1

uk 1 ‘ n— n
B[1l(w)®(x) = I;) HVfCD(x) sl /0 (u— v)"' Blfl(v)V'®(x)dv (4.51)
Proof. Since
L Bir))@ = lim Bl (22— = Birlw)V,® (4.52)
u £—> 13

we have (%)k(B[t](u)CI)) = B[f](u)V¥®. We may now repeatedly integrate equation 4.32 by

parts:

Bw)®(x) = ®(x) + / B[11(s)®(x)ds (4.53)
0
= ®(x) + [(u — ) B[t)(s)VP(X)| _, + / (u — 5)B[1](w) V> D(x)d s (4.54)
’ 0
= O(x) + uV,P(x) + [%(u — sy’ Bltlw)V>®(x)]| _, , + / %(u — 5)* B[1lw)V*®(x)d s
’ 0
(4.55)

and so on. The nth iteration gives equation 4.51. O

Let us have some examples.
Example 4.3. (Vertical differentiation of path functionals)
B The coordinate functionals €[t'] have V,e[t'](x) = 1, r(®) = pI'1(0), er[t’] = 0 for
k> 1.

B Forarefining sequence of partitions ", a t"-cylindrical functional @} (x) = qo(x(rg), s x(Th (T,,)))
is vertically differentiable at t if and only if @ is a differentiable function of the components

x(rZ) with ’L'Z > t, in which case
m(z")

V,®i(x) = 2 0, p(x(z") Plt1(z;(x)) (4.56)
k=0

B Suppose d = 1, S is the price of a stock, and S(T) # k. Then ®C! ®P qre vertically
differentiable at S for eacht € [0,T], and

V@ (S) = 14 00)(S(T)) (4.57)
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and th)P”’(S) = —1[07k)(S(T)). At paths with S(T) = k, we have, VI+<I)C“”(S) =1
V- 0C9(S) = 0, and similarly for .

B The digital option payoff functional, <I>Dig for E :={S|S{) €la;,b;]i=1,...,n} has
V,02%(8) = 0 for all t at S such that S(t;) & {a;, b;}.

B 7The up-and-out put option payoff with barrier B > 0, ®Y9°(S) = (k — S(T)*1, 5. p,(S)
has V,(IDZOP(S) = —1j(S(T)) for S such that S(u) # B for all u. It has one-sided verti-
cal differentials on paths that ‘touch’ the barrier. For instance, suppose a path S* < B ex-
cept at time u* where S*(u*) = B. Then V; ®YOP(5*) = V- @Pu(S*), but VOYOP(S*) =
0.

B Consider a variance swap single leg payoff functional <I>ZS (S) as in Example 4.1, and sup-

. oo i~ D \2 S(t)+e \2
poset € [ty,ts,). The orbit function is Q’XIS(g) =1 Z;=11 (log Sit(t:)l)) +%(log SEtl.*),;) +

n

% D 1 (l og Si(t );f ) + k2, so differentiating and setting € = 0, we have

(4.58)

2 1 oSt 2 - 1 1 S(t;)
- og - ( - ) log
nSte_) ©Ste_y) St St_) S(t_y)

1
= Z S(t . 1)(X(l,* X(t,* 1)) - - IZ S(I )(X(ti*+1) — x(ti*)) (459)

V@7 5(S) =

n
i=i*+1

lt*

B The average log-price to maturity functional A(T)(x) = exp(% fOT x(uw)du) has orbit func-
tion Cﬁt(T)(s) = exp(% /OT(x(u) + el rpdu) = exp(@)A(T)(x), S0

v AM) = L

A(T)(x) (4.60)

. . . . . . . o0 k
We will say that @ € C is vertically entire at t, if the vertical Taylor series Zk=0 %Vf(b(x)
converges for each u > 0. Much as in the finite dimensional case, it turns out such smooth objects
are dense in C,. The following lemma is based on a result of Gelfand for the general abstract
case (Gel’fand (1939)).

Lemma 4.13. For any ® € Cb(IDd), € > 0andt € [0,T], there exists an entire functional

d, € Ct°°(|Dd) such that ||® — @, || < e.

Proof. The idea is to create a ‘smoothed’ version of @, by averaging the effect of a Gaussian

perturbation, and using integration by parts. Define the operators G7 : C, — C, by

[So]
G7(@)(x) := E[®(x + oY p[1])] = / B[t](c5)D(x)g(s)ds 4.61)
| 2
where Y is a standard normally distributed random variable, g(s) := Ze_T the corresponding

probability density function, and ¢ > 0. By the group property and strong continuity of B[¢], for
each € > 0 there exists 6 > 0 such that if |u| < 6, || B[t](u)® — ®|| < £. Hence
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[1G7 (@) — @[] = || / (BIrl(e5)P(x) — D(x))a(s)ds|| < & +2[|D]I(1 — N(g)) (4.62)

where N'(s) := P[Y < s]is the standard normal cumulative probability distribution function.
So G7(®) > ®inCyas o — 0.

We now show G7(®) is vertically entire at 7. We have

é(Bm(e) — )G @)(x) = é / (BIfl(os + &) — Blfl(c5)®(x)a(s)ds (4.63)
B a(=5) — g(2) 4
= / B[t](s)d)(x)f; (4.64)

Hence, by the dominated convergence theorem and the smoothness of the Gaussian, G7(®) € C;°

and

[o0]

s.ds

VEGT (@)(x) = / B[r](@cb(»:)(%)’h(;); (4.65)

—0o0
It is well known (see, for instance, Huang and Yan (2000), Appendix A) that (%)kg(i) =
(;—;)kHek(i)g(g), where He, is the kth Hermite polynomial, and that these form an orthonor-

mal basis of L2(dg). So ||VEG?(®@)|| < o*||®|||E[He,(cY)]| < 6¥||®@]|, and the Taylor series

converges. 0

Theorem 4.14. C["(;’T](Dd) is dense in cZlb([[l)d).
Proof. We use a similar trick to Lemma 4.13, but replace the single Gaussian perturbation with

one based on a Brownian motion. For ® € C,,(D?), let
W (D)(x) 1= E[D(x + o W)] (4.66)

where W is a standard Brownian motion, and again ¢ > 0. For fixed x € D? the integrand
®w — ®(x + oW (w)) is a continuous, bounded functional on W¢. By the definition of the

Wiener measure, for any refining sequence of partitions z”,

m(z")

WI(@)(x) 1= EID(x + o€ W] = [[ 0 (@)0x) » W @)(x) 4.67)
k=1 *

as n — oo. Since Brownian paths are continuous, the Euler projections converge uniformly, so
by the uniform continuity of @, ||[W°(®) — W7 (®)|| — 0 as ¢ — 0, for any fixed n € N. By
repeated application of equation 4.62, for any such n and € > 0 we may pick § > O such that
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13

(@) = @l < (") (-

+2.||®]|(1 —N(g))) (4.68)

Hence ||[W° (D) — ®|| — 0 as ¢ — 0 as required.

We must now show the vertical smoothness of W?(®). Pick t € [0, T'], and a refining sequence
of partitions 7" with ¢ € 7" for each n. The action of the bumping group effectively shifts the
mean of the Gaussian distribution of the subsequent increments. Using the formula for changing

the mean of the Gaussian density, the orbit function of W;(CID)(x) attis

@,(€) := Bltl)WI (@) = E[®(x +o£X W) [ | o SAW D+ (P (= ) (4.69)

TZZ[
We then have
()

—-AW
VWP (@) = ¢, (0) = Z E[D(x + Uf,f(W))T

n
7 >t

W) — W(T
1= Bl + o8 0 ) (L))

4.70)

The term in the product in 4.69 almost surely converges to the random variable
Ee) 1= s WD W3- @71
and note that £(e) > 0 P-a.s., E[E(e)] = 1, and E(¢e) is the Radon-Nikodym derivative of a
probability measure. Using the boundedness of ®, the dominated convergence theorem then

implies that 4.69 converges, say to y(g) := E[D®(x + 6 W)E(g)], and that this is therefore equal

to the orbit function { r;g@)(e). This is differentiable at zero and

V@) =y (0) = El@x+ oWy, @.72)

Noting that M is invariant under the transformation W — W + uf[t], we have
VEWe (@) = B[ + ow) (L L=V Tk (4.73)
as required. O

Theorem 4.14 is a key result, and should be interpreted as the analogue of the density of smooth
functions in the main spaces for analysis of PDEs in finite dimensions. The vector space Cf(;” . (D%)
will form a core for general vertical differential operators in the same way C*(R?) does for op-
erators on RY — that is, a dense subset where it is ‘well behaved’. Note that the assumption of
uniform continuity is necessary, but that this includes many payoff functionals, such as vanilla

options. This implies the following important corollary.
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Corollary 4.15. C["(;’T]([Dd) is dense in LP(P) for any probability measure P on (D?, F).

Proof. This follows immediately from Theorems 4.3 and 4.14 . O

4.3 Functional processes, risk sensitivities and ‘delta’

The price of a derivative contract at any fixed time should be determined by the paths of the
relevant risk factors, that is, should be a path functional. So we are naturally led to consider

paths with values in spaces of path functionals. That is, functional processes, maps
F:[0,T]-> Z 4.74)

where Z is some Banach space of path functionals z : D¢ — R.

We may consider left, right limits and jump functional process z(t+), z(t—), Az(t) of functional
processes, in the usual way, remembering that they are with respect to the norm of Z. We
then define the corresponding Banach spaces G(Z), F(Z),D(Z) as discussed previously. For
instance, if Z = Cb(IDd), the norm on G(Cb(lDd)) is

IFllgc,oey = sup [IF®llc, = sup sup [F()(x)] (4.75)
t€l0,T] t€[0,T] xeD
Generally we will write F (¢, x) when evaluating functional processes, rather than the somewhat

clunky F(¢)(x), when there is no confusion.

An important point for coherent modelling is that the price at time # must rely only on information
available up to ¢. That is, the evolution of prices should be given by non-anticipative functionals,
whose values on a given path at a given time do not depend on the ‘future’ of that path. As
noted above, the existing approaches to defining this notion — as functions on a vector bundle,
or a metric space of equivalence classes of paths — are not amenable to the methods of operator

semigroups, so we develop a slightly different one here.

Definition 4.16. (Stopping operators)

The stopping operator att € [0,T], x, : [D‘% - IDdT, is defined by

2x(W) 1= XUAT) = { ;CE;‘)) Zi E) ;)] (4.76)

We will also use the notation x, := &,x at times, for brevity.

Note that 7, is a projection, 7l't2 = m,. We may also define the predictable projection,

T_x 1= { Xw)  ueldn 4.77)
x(t—) uelt,T]
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Figure 4.6: The action of the stopping operator on a path.
which clearly also satisfies ”12— = z,_, and we will similarly sometimes write x,_ := x,_x. For
any € > 0, we have
0 uel0,t—¢)
T X—rm_.x =4 x(u)—x(t—€e) u€Elt—e,t) 4.78)

x(t—=)—x(t—¢e) u€eltT]

The right-continuity of x ensures the middle expression can be made arbitrarily small as € — 0,
while the existence of a left limit ensures the same of x(t—) — x(f — €), so x,_, — x,_ in DA.

Obviously, x, = x,_ + Ax(¢)f[t], and in particular continuous paths are predictable.

Proposition 4.17. If F € D(%,(D?)) then for each x € D9, the patht — F(t,x,) € D'
Similarly if F € F(%,(D?)), thent — F(t,x,) € F'.

Proof. First, since for each x € D4

|F(t+e,x)— F@t,x)| < ||Ft +e)— F@)|| 4.79)
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the path + — F(¢, x) is cadlag. Similarly,
|[F(t+e x,)— Ft,x)| < |F(tte x, )—Fitxtex)| +|Fttex)—F(x)| (4.80)

The second term is bounded by || F(t + €) — F(¢)|| — 0 as € | 0. For the first, since F(t,.) €
U,(D?), for each n > 0 there exists 5 > 0 such that || F(t + &, x) — F(t + €,y)|| < n whenever
[|Ix — y|| < 6. Since x € D4, for sufficiently small &, [1x,+e — x,|| < 6 and the first claim is

proved. The proof for the second claim is similar. O

If x, y € D, then we may form their concatenation at t path
x®,yi=x,+ (y—x(0)pl] (4.81)

Given two sets of paths A, B C D9 we define the concatenation product A®B :={a®,b|ac
A,b € B,t € [0,T]} c D?. If A = {a} consists of a single path we will abuse this notation
slightly and write a @ B. Note that if A, B are both closed in D9 then so is A @ B, and that
77 (x;) = {x®, y | y € D4} = x @ D’ which we can also think of as {x, + z(. — )p[1] | z €
DY._.. z(0) = 0}.

The parameterised family of stopping operators on paths then lifts to a projection on functionals,
which by slight abuse of notation we will denote by the same letter: 7,®(x) := ®(x,) = ﬂfd)(x).

The stopping operator on functionals is a contraction for the supremum norm:

|7 @[l = sup |P(x,)| < sup |D(x)| = || D] (4.82)
xeD x€D

and so is continuous on Cy.

For a functional process F, define

B the predictable part z_F of F by n_F(t,x) := liF(}F(t, Xi_,)
2
B the non-anticipative part nF of F by nF (¢,x) := n,F(t)(x) = F(t,x,), and

B the anticipative part aF of F by aF(t,x) := (I — ﬂ')F (t,x)=F@,x)— F(,x,)

Obviously these are all linear mappings. A functional process F is said to be predictable if
F = z_F, and non-anticipative if F = zF, and anticipative ift F # 0 and a F # 0, with
zero of course here being the identically zero functional process. Clearly predictable functional
processes are non-anticipative; each has anticipative part equal to the zero functional process,
but the former is independent of the instantaneous path value, and the latter only of the strictly

prior past.

Example 4.4. Let x € D!, and F(t,x) := fot x(s)ds, and note that since J (x) is countable the

integral exists. Since F(t,x) — F(t —e,x) = ft_

. X(s)ds = 0as e — 0, F is predictable.
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If Z = C,, then a is a continuous linear projection on D(C,). Consequently we may form the

quotient space under the relation F ~ G < F — G € A.

Definition 4.18. (Regulated, cadlag, caglad, non-anticipative C,-functionals)

The space of Regulated non-anticipative Cy-functionals is the quotient space G .(Cp) := G(C)) / A
of G(C,) by the closed subspace A := Im « of anticipative cadlag functionals. The quotient
norm is given by

IFIl, = sup ||z, F(Ollc, = sup sup |F(, x,)] (4.83)
te[0,T] t€[0,T] xeD

Similarly, the spaces of cadlag and caglad non-anticipative Cy-functionals are the corresponding
quotient spaces, D_(C,) := ID(Cb)/A and F_(Cp) := F(Cb)/A, with the same norm.

The first thing to note about this definition of non-anticipative functionals is that they are equiv-
alence classes of functional processes that at a given time ¢ give the same value to paths that are
stopped at ¢, rather than continuous functions defined on a metric space of equivalence classes
of paths stopped at t as in Cont et al. (2016). This may seem a pedantic point — we will discuss
it in more detail below — but will actually be key to adapting semigroup methods to the path-
dependent setting. It will sometimes be useful to refer to them by their unique value on the pairs,
[FI(t,x) = F(t,x,), for F € [F]. If we need to make the equivalence class structure explicit
we will write [F], F + A, or z F interchangeably, with the presumption that F € Y ([F]is a

functional process of the relevant class.

We may now give some examples.

Example 4.5. (Non-anticipative functionals)

W Let ® € C,. Then the stopped functional process Fg(t,x) := ®(x,) € nC(T; Cp)

B Let p" be a refining sequence of partitions, and the functions @, € C'(R"®") for each
t € [0,T]. The cylindrical functional process F(t,x) = ¢@,(x(p")), is non-anticipative if
and only if

0, (x(p") = 0 if 1 < ] (4.84)

B Let0 <r e D(T;C,,) be apositive non-anticipative functional, representing the short rate
1
on a cash account, as a function of d risk factors x. Then the value SO(t, x) := elo ris)ds

at time t of a dollar invested at t = 0, is predictable.

B Let P(x,) be a family of probability measures on DY, indexed by stopped paths x,, such
that I]:"(xt)[ﬂt_l(x)] = 1, and suppose ® € () Ll([P’(xt)). Then

VP[@](t, x) = EP™)[ d(x @, X)] (4.85)

is a non-anticipative functional, where X (t,®) is a stochastic process under P(x,). As
we shall see, arbitrage-free valuation functionals are of this form, typically with P(x,) the

regular conditional expectation of a local martingale measure.
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Let d = 1 and consider a market in a single stock with spot price path S € Dy. The
Black-Scholes value at time t of a derivative contract with payoff ®@, given the price path
to date S,, is given by

VES[®](1,S)) : = E[e"T"D(S @, S(1)X)] (4.86)
provided this expectation exists, where X is the path of the stochastic process
X, w) :=M@u—t, Wu—t,0)l,rw 4.87)

with M (s, x) := exp ((r - %az)s + ax), E, is the expectation under a probability measure
P, on [DdT_ ; under which W is Brownian motion, and r and o the interest rate and volatility
parameters respectively. Clearly, this is non-anticipative; the dependence on the path is
entirely down to the current value S(t) = s, and it may be considered as an ordinary func-
tion: VES[®](t,S,) = VES[®](t, S@)Pl1]) = E[eTD(sXp)] =: vB5(t.s). Fora
simple European option as in 4.8 with payoff @, € L?(P,), this gives the one-dimensional

integral

e -r(T—-1 1
vBS(t,5) = / e T Dp(S(1)e?) g 2or@=n, —oVT —1)dz (4.88)
[} o ( - /—T p 2 )

where g(x) := i exp(—’;—z) is the density of a standard normal random variable. Clearly,
VES[® ] € C(0,T;C,).

Note that in these last two ‘probabilistic’ examples the non-anticipative functionals are ‘versions’

of conditional expectations, in the sense that they almost surely coincide with the conditional

expectation of some stochastic process, but remain defined pathwise, not merely almost surely.

It is important to understand the interaction between stopping and bumping operators. We have

B[ |(w)r,®(x) = B[1'|w)®(x,) (4.89)
= ®(x, +upl']), (4.90)
while
ﬂtB[t’](u)fl)(x) = 71,P(x + up[t']) “4.91)
= O (x, + uplt'1(0PI']) (4.92)
:{ D(x,) t €[0,7) (4.93)
O(x, +uplt’]) 1€, T]
whence

[B[1'], 7, ]@(x) = (P(x, + uplf']) — D(x,)) 19,0 (4.94)
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where the commutator [X,Y] = XY — Y X. Intuitively: stopping commutes with simultaneous

or earlier bumping, but not with later.

If a non-anticipative functional F = n F has F(t) € C tl for each ¢, then we may define a vector-

valued non-anticipative functional V F, with ith component given by

(VF) (t,x) = m,0, F()(x) = 9, F(t,x,) (4.95)

Risk sensitivities are then defined via the application of this differential operator. If a non-
anticipative functional V (¢, S) represents the value of a derivative at time ¢ on the d-dimensional
spot price path S, then VV'(z,.S) represents its delta — the sensitivity of the value with respect
to instantaneous shocks in the spot price. The matrix analogous to the Hessian, with i, j entry

given by the non-anticipative functional
L8 =0 0/ V(S) (4.96)

is known as the (cross-) gamma — the sensitivity of the delta with respect to instantaneous shocks
in the spot price. If we consider a model in which the prevailing interest rate r is a risk factor
we may add it in as an additional variable and define the rho as p := V1V (¢, S, r). Similarly
for other variables — for a model in which volatilities of the k assets are to be risk factors, we
set d = 2k, label the first k variables as spot prices .S and the next k to be their path-dependent
volatilities o. Then v(t, .S) := V¥V (1, S,0),i = 1, ..., k, is known as the vega — the sensitivity

of the delta with respect to instantaneous shocks in the volatility.

Example 4.6. (Vertical differentiation of non-anticipative functionals)

B A predictable functional process F has B,(e)F = F foralle > 0 andt € [0,T], and so
V,F(t,x)=0.

B By equations 4.56 and 4.84, a non-anticipative cylindrical functional process F(t,x) =

@,(x(p") with ¢, € C'(R™®) for each t € [0,T], has F € () C!, and
te[0,T]

V,F(t,x,) = 0 p,(x(p")) 4.97)

where t € [P, P, )

B Consider the Black-Scholes valuation functional, 4.86. A standard trick to find a weak
representation of its delta is to absorb the ‘bump’ into the Brownian motion in the ex-

pectation, and then use Girsanov’s theorem to transform the probability measure. Since
(S + eftD().Xp = S). X5, where

Xi(u,0) = Mu—t,Wu-tw)+ é log(eN 1, () (4.98)

= M(u—1, W&u—t,0)) 1, 7() (4.99)
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and We(u —t,w) = W —t,w) + é log(e), we have
Bltl(e)VES[@](t, S,) = EP1 [e T 0(S @, S()X)] (4.100)

where P¥ is the probability measure on Dy_, equivalent to P, under which W€ is a Brow-
nian motion. By Girsanov’s theorem, %(u, o) =exp(Wu —t, o)+ % log(e) —(u—1) +
ﬁ(log(e})z). Therefore,

EP —E™ 7o
T[e DS B, S(H)X)] (4.101)

A[®], S) 1= V,VE @)1, S) = lim

_d P, —r(T—t) dP;
—dglgzoE [e (S @, S(I)X)dpt] (4.102)

= EPi[e T 0D(S @, S()X)VA[D]] (4.103)

where WA[®] € L*(P) is the random variable whose existence follows from the Riesz
representation theorem if the limit 4.102 exists, and is known as the Malliavin weight for

delta (see Fournié et al. (2001)). In the case of the simple European option we have

" or(r- —rT =1 1
A[®,](1,S,) = / T (S (Me?). ———— g (F = + S0 VT —1)dz
oo oT =080 " s\T—; 2
(4.104)
=E" [T DS @, S()X)¥3] (4.105)

W (T ,w)

. A e
where the random variable Yy (w) := o T-DS1)’

independent of .

The requirements on ® to ensure these expressions converge are probabilistic; it is not

clear if they have a pathwise meaning.

B Similarly, the weak representation for the Black-Scholes gamma
35[0 1(1, ) = E* [e T D(S @, SO)X)¥' [@]] (4.106)

with Malliavin weight YT [®] exists when the corresponding limit exists in L*(P,), by the

Riesz representation theorem, as in the above argument for delta. For a simple European
option, a straightforward calculation yields ‘Pl;[tl)](a)) = %

T
How does our set-up for vertical differentiation relate to the existing approaches of Dupire, Cont
et al? For convenience we will consider the Cont framework, where they define non-anticipative
functionals as functions defined on a metric space A of stopped paths: equivalence classes of

paths [x], := #71(x) = {y € D | #,y = #,x}, with metric

d([x1;, 1) = llx, = yoll + 1t = 1| (4.107)
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(see Figure 4.7). Another way to think about this is as a D? vector bundle over [0,T] (see Lee
(2003)). The natural projection maps [x], to ¢, and in fact there is a global co-ordinate system

which we may write as (¢, x,), with x, in the quotient space D¢ / ;.

AN EQUIVALENCE CLASS OF STOPPED PATHS
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Figure 4.7: Heuristic representation of an equivalence class of paths under the stopping
relation.

An important point is that the definition is not as a vector space in itself, merely a metric space.
This is partly because adding stopped paths does not seem natural — a naive attempt runs into
an ‘apples and oranges’ problem, since paths stopped at different times are not the same class of
object, and so it is not obvious how to add them sensibly. It is possible to define a vector space
structure via [x], + A[y]y := [x + Ay]; .., but this is somewhat cumbersome because of the need
to take the minimum of the two times, and neither Dupire nor Cont and his co-authors use it. It
is more straightforward to simply consider, as we do, a natural vector space of paths like D? or

M?@(Rd), and account for the flow of information in the functionals by quotienting at that level.

Similarly, when defining their vertical differential, Cont and co-authors consider a difference
quotient based on evaluating a non-anticipative functional (in their sense) on an equivalence
class of paths stopped at ¢ and the same equivalence class ‘bumped’ at ¢, in which all the paths
are translated by f'[¢] (see figure 4.8). In their formalism, vertical differentials (which we will
write as V to distinguish from ours) are defined on these non-anticipative functionals by

F([x +epl1],) - F((x])

VF([x],) = lim (4.108)
e—0 &

Note that the timing of the bump p[¢] depends on when the path has been stopped,; the perturba-
tion ‘knows’ when the path being considered has been stopped. This makes it like a continuum
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A BUMPED EQUIVALENCE CLASS OF STOPPED PATHS

Figure 4.8: Heuristic representation of the action of a vertical bump on an equivalence
class of paths under the stopping relation.

of infinitesimal actions of the bumping groups B[¢] on a complicated class of appropriate subsets
of A, rather than a single one, and so the theory of semigroups is not applicable. Essentially, in
trying to do everything at once the existing approaches make it more complicated, and less like
ordinary differentiation, than it needs to be. In our setting, because we consider each of the con-
tinuum of actions separately on a single vector space, with the stopping operator also considered

separately, we can express each as the generator of a semigroup.

For given arguments the definitions correspond. For each ¢, x € D?, the non-anticipative func-
tional (in our sense) V,F(z, x) coincides with the numerical value of VF ([x],), and the commu-
tation of the projection with the bumping groups mean the differentials coincide. The advantage
of our approach is that, unlike the F, which live in the poorly understood space C(A), our F live
in ‘Zlb(IDd ), which is in many ways similar to the analogous spaces for finite dimensions %b([R{d ).
In particular, since the domain of the functionals is a vector space, we can make use of semigroup

analysis, as we saw in Section 4.2.

In some sense the difference in the two formalisms is ‘cosmetic’. However, proving results is
considerably easier in our set-up: by quotienting at the level of maps, rather than arguments,
we are able to call on semigroup theory, and use the deep parallells to ordinary differentiation,

unlike the Dupire-Cont formalism.
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4.4 The horizontal translation semigroup and ‘theta’

In the Markovian case, a derivative’s value is a function of time and spot, and the partial differ-
ential with respect to time gives the decay in value due to the passage of time, all else held equal,
known as theta. In the path-dependent case, Dupire showed how the horizontal differential plays
the role of a time differential, in which the market’s risk factors are ‘frozen’ at their current value
for an infinitesimal time period. As emphasised by Cont and Fournie, this is not the same as a
partial differential with respect to time in the existing formalism (neither theirs nor Dupire’s).
However, we shall see that under the new formalism of section 4.3, the horizontal differential is

the generator of an appropriate semigroup.

There is a natural translation semigroup on D(C;), which we can think of as a (forward) time
translation that shifts a functional process ahead, and write as tr(u) F(t,x) := F((t +u) AT, x).
The idea of the horizontal translation is to correct this for the flow of information, using the

stopping operator.

Definition 4.19. For u € R, we define the horizontal translation operator H (u) on D(T'; C,)
by
HWF (t,x) := F(t +u,x,) (4.109)

if u € [0,T — t], and zero otherwise.

So horizontal translation is simply the evaluation of the shifted process + — F(t + u,.) on the
stopped path x,. From the financial point of view, we can think of this as, for instance, the value
of a derivative at ¢t + u using the market data at ¢, as if it were ‘frozen’, in Cont and Fournie’s
terms. By construction, H (1) F is non-anticipative for any functional process F, so in particular
D,(C,) is invariant under its action, and we may use the same notation for the restriction to
non-anticipative functionals. A key point is that it inherits the (nilpotent) semigroup structure of

translation.
Theorem 4.20. (Horizontal translation semigroup)

The horizontal translation H (u) operators form a strongly continuous semigroup of contractions
on D (Cy).

Proof. Obviously we have H(0) = I, and Hu+0v)F(t,x) = F(t+u+v)AT,x,) = HO)F((t+
u)AT,x,) = Hu)H (v)F(t, x). Strong continuity follows from the strong continuity of #7(.) and
the continuity of the non-anticipative projection. The contraction property is obvious from the
definition of the norm on D_(T'; C)).

We must check H (u) is well-defined on D _(T'; C}), ie independent of the choice of representative
from [F]. Suppose F,G € [F], so that for each t € [0,T], =, F(t,.) = n,G(t,.). Since n, =
7, ,,, we have foreach x € D, G(t + u, x,) = m,7,, Gt + u,x) = mym, (@ +u,x) = 7, F(t +
u,x) = F(t + u, x,) as required. O
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We have the corresponding infinitesimal generator

HW)F(t,x)— F(t,x)
m

DF(t,x) ;=1 (4.110)
ul0 u
of the horizontal translation semigroup on its natural domain
DY(C,) := {F € D(C,) | DF exists} 4.111)

Note that DF € D_(C,) — the generator has non-anticipative range. It is a one-sided differential
operator, the infinitesimal action of translation in time from the ‘right’, i.e. the future, along
the path stopped at the present. Accordingly, it makes sense to define it on cadlag functional
processes, which are by definition continuous from the right. Note that this is more general than
the Dupire/Cont formalism, since we allow the functional to ‘jump’, rather than be continuous

with respect to the Cont metric 4.107.

Example 4.7. (Black-Scholes theta)

Consider again the Black-Scholes valuation functional, 4.86, and set its theta, eBS[®](t, S,) =
DV ES[®](1, S,). We have

VES[®@)1, S)) = l([E”J’w [eTD(S, @,,, S, +wX)] - E'[e”"T0(S, @, S,()X)])

H(u) -1
u u
4.112)
— i([E[P’H-u [e—r(T—t—u)q)(St ®t+u SHX)] - [EP, [e—r(T—t)q)(St @1 S(I)X)])
(4.113)

~ JuBS(r.5) (4.114)
as expected.

Following the logic of Theorem 4.8, we may now introduce the corresponding notion of the

horizontal integral.

Definition 4.21. The horizontal integral of a functional process F is defined for each v > 0 as

v U/\(T—I)
( / duHW)F) (1,x) = / duF(t + u,x,) (4.115)
0 0

Note that =, fOU duHu)F = /OU duH (u)F, so for each v > 0 horizontal integration by con-
struction defines an operator with range in the non-anticipative functional processes. The mean-
ing of this should be clear — at any given instant we integrate future values of the functional
along the stopped path, or in financial terms, ‘keeping the market fixed’. Naturally we will
want to integrate all such future values, up to the horizon T'; so as a shorthand we will write
FF@x) = [T duHWF (t,x) = [, " duF(t +u, x,).
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The following is an analogue of the fundamental theorem of calculus.
Proposition 4.22. (Horizontal fundamental theorem of calculus)

The horizontal integral is the right-inverse of —D:
—D][F(t,xt) = F(,x,) (4.116)
forall F € D(T; Cp).

Proof. If F € D(C,), thent — ||F(?)|] is cadlag on [0, T], hence bounded, and so in particular
F(., x) is integrable on [0, T'] for each path x. For fixed ¢, x, we have

H(uL)l—I][F(t,x)z%(][F(t+u,xt)—][F(t,x))=—%/ dvF(t+v,x) (4.117)
0

which converges to —F(¢, x,) by the Lebesgue differentiation theorem. 0






Chapter 5

No Arbitrage Valuation on Monte
Carlo Model Paths

In this Chapter we address Objective 3 of the thesis Aims, by developing a methodology for
pathwise no arbitrage valuation on Monte Carlo paths in a wide class of path-dependent models,

namely Ito processes.

The value of a portfolio in which a European derivative is hedged using the Black-Scholes delta,
while the ‘real” stock follows the It process 2.10, has (discounted) hedging P&L given by
P&L = 1 / ' az—VSZ(t)(az — o2)dt (5.1)
2 Jo 0s? r
where o, is the realised quadratic variation. In other words, the trader’s book evolves according
to the error in estimation of the realised volatility by a Black-Scholes implied volatility, and rela-
tively easily calculable differentials of Black-Scholes values. The efficiacy of this result means it
has been called the ‘Fundamental Theorem of Derivatives Trading’, (Ellersgaard et al. (2017)). It
shows that “the option trader’s job is really about balancing realised against implied (or pricing)
volatility”, according to Andreasen (2003). Indeed, “it is hard to imagine that the derivatives

industry could exist at all without some result of this kind”, according to Davis (2010).

But what if the stock does not follow an It6 process? The constraints placed on time series to
ensure the convergence of the pathwise variance are more general than this — real world stock
prices may not follow a semimartingale, or even a cadlag path. Can we say anything about the

robustness of trading strategies in this case?

This Chapter is structured as follows. In Section 5.1 we show how a self-financing condition can
be naturally incorporated into a purely pathwise framework. In Section 5.2 we derive a new [10
formula for functionals of Monte Carlo paths. Finally, in Section 5.3 we use this result to derive
a valuation equation for functionals of Itd processes, and a corresponding hedging robustness

formula for a Black-Scholes style hedging strategy.
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5.1 Self-financing trading strategies along a partition

Fix a time horizon T, and consider a market of d risky assets with positive spot prices given
by the paths S :[0,T] - R 4+ i =1,...,d, and a strictly positive numéraire asset, which for

simplicity we may think of as a default-free cash account, and whose spot price follows the path

SO : [0,T] = (0, c0). The corresponding discounted spot values are then S’ = S‘S—; >0,i =
1,...,d, and we set S°(¢) = 1. Our fundamental modelling assumption is that the log discounted

prices x(t) = log S(¢) are cadlag, so that .S € ID:’L. Recall from Chapter 4 the predictable part of

Sw) u<t
S _(u) = 5.2
) { S(t-) uelt,T] (5-2)

S prior to ¢ is

Letp = {p |0 =Py < p; < ... < Pyy-1 = 1} be a partition. It will be useful to set
p() = maxp N [0,7) = py to be the last partition point strictly before 7 with corresponding
index k(1), p(f) = max p n_[O, 1] = Py to be the last partition point up to and including ¢ with
corresponding index k(f), and p(t) = minp N (¢, T] = Pz the first partition point strictly after
t, with corresponding index k().

Given amap ¢ : p — C,(D?)?, we may define a d-dimensional predictable functional process
by setting $(0) = 0, and H(¢) = ﬂp(,)_(p(p(t)) for t € (0, T], or more explicitly,

H1,.5) 1= e(p(), Sy or (1) (5.3)

where as usual we write the evaluation of functional processes F(z,.S) rather than F(¢)(.S). We
will call such an $ a simple risky position or just a simple position. It represents a ‘buy-and-
hold’ portfolio, with ¢'(p,, Sp,—) the number of shares in stock i held immediately after p,, up
until and inclusive of p;.;. A negative holding is to be interpreted as a ‘short sale’, and we
assume there are no restrictions on such transactions. Note that $ is bounded, with sup norm
[191] = max sup ||, S;_)|| < oo.

rep Ssen?

From the definition of p(¢), we see that for sufficiently small € > 0 we have H(t — €) = H(¢), and

Ht+e,S5)= 5. 5) rEP 54
PP Sy ) 1= Py
= p(p(1), Sp(z)—) (5.5

So $ € 7_F(C,(D9)) and the right limit $H(t+) = lig)lsj(t + ¢€) is also a well-defined predictable
€
functional process. For fixed S, the path t — $(z,.S) € R is piecewise constant and caglad,

and the path t — $(¢+, .5) is piecewise constant and cadlag.

A trader may hold such a position by financing it via the cash account. The ‘mark-to-market’, or

liquidation value, of the risky position is the non-anticipative functional process given by taking
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the dot product with the instantaneous spot price:

Lg(1,5) 1= 91 SO = p(p(1), Sy(-)-S1) (5.6)

forz > 0, and L (0) = 0. The cost of each change in the position is calculated as the difference in
liquidation value, £ g(t+, $)—Lg(t,.5) = (@(P(®), Spiy-)—1o1) (Op(p(®), SE(,)_)) .S(¢). Income
from selling excess holdings is deposited, and the funds to make up any shortfall are borrowed, we
assume without a credit limit. The cumulative funding cost non-anticipative functional process

representing the net outflow from the cash account is then

Fst.S) 1= Y LW, H—Lgw, )= Y (Hu+,S) - Hu,S)).Sw) (5.7)

uel0,t] u€l0,1]

= 000 S)SO) + Y (#Wrs1. Sy, ) = PWi S0)-S P D)D) (5.8)
k=0

where each sum has only finitely many non-zero terms, and we recall f[s] = 1 7).

A trader with initial cash account balance v at ¢t = 0, who then holds a simple risky position £
together with a cash account balance v— g is said to be following a self-financing simple trading
strategy, or just a simple trading strategy, as we will always the self-financing condition unless
otherwise stated. The value of such a strategy is then simply the sum V = Vg , = Lg + 0 — Fg
of the liquidation value of the risky position and the net cash balance. The corresponding gains

functional process is defined as

k(1)

Gg(1,.S) 1= (P(®), Sypy-)-(S®) — SP®)) + Z @Pr-1>Sy,_, ISP = SPi_1) (5.9
- k=1
k(® k@)

= PP, Sy )-SO + D, #Wirs Sy, ISPri) = D, @0y Sy, IS Prs1) = @ (Po. Sp)S(O)
- - (5.10)
=Ly, S)— T, S) (5.11)
after relabelling indices appropriately, so that Vg , = v + Gg.

It is natural to consider the vertical differentiability of the gains functional process of a simple
trading strategy. Since (S + €f'[t]),_ = S,_, we have H(1, .S + €f'[t]) = H(t,.S), and in fact
H(t+, S +ef'[t]) = H(, ). So

(B(e) = DL, S) = ¢’ (p(0), Spin-) = e9'(1,9) (5.12)

while

(Bj(e) = DF(1,5) = e(H'(t+,5) - H'(t, 5)) (5.13)

and hence
oL Vg (t. $) = H'1+.S) = ¢/ (p(1). Syp-). (5.14)
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for all v, and similarly $(¢,.S) = V,_Vs)(t—, S,_). Because of the predictability of $, we have
6;6;{]7 = 0, so that in fact Vg (t) € C*(D?). Alternatively, if V' is a functional process such that
Vi e Ctl, we may set @(t) = V,V(f) so that H(z,.5) = nE(t)_VE(t)V(E(t)) = VE(,)V(E(I), SE(’>‘)
is a simple trading strategy. For this reason, we will interchangeably refer to simple trading
strategies and simple delta strategies. They are the basic building blocks for approximating more

general functional processes representing the value of derivatives contracts.

5.2 A functional It6 formula for continuous Monte Carlo paths

The key tool for deriving the hedge portfolio of a European contract in the classical Merton
set-up is It6’s lemma. Here, we prove a new version for Monte Carlo paths, using our pathwise
variance rather than the quadratic variation. The proof is very much like Follmer’s, Dupire’s and
Cont and Fournie, with the only change being the mode of convergence of the variance and less

stringent requirements on its Lebesgue decomposition.

The first result of this section is based on the simple idea, originally due to Dupire but also used
in the proof of the functional Itd formula of Cont and Fournie, that when evaluated on piecewise
constant paths based on a fixed partition, we can break the increment of the value functional
process into ‘vertical’ and ‘horizontal’ components. In our set-up this appears as the action of
our bumping and horizontal translation (semi)groups. We break it out as its own result here for
two reasons: first, because it serves as a ‘road map’ for the proof of the Functional Itd formula
5.3, and second because any strategy or simulation in the real world must of course be based on

such a finite partition. For this reason we believe it merits its own statement.
Lemma 5.1. (The staircase lemma)

Let V. € DY) be a horizontally differentiable, cadlag functional process with values in a
Banach space Y that is a B,-space for each t in a partition p, and V) e Ytz. LetV = zV
be its non-anticipative part, and = Vp(,)V(E(t), Sp)-) the corresponding self-financing delta
trading strategy. Then if S € Sf, ) )

m(p) m(p)
Go(T,S) = XV, V(B Sy )88 = 3V (Pps ) = Vg, S)
k=1 k=0

m(z")

= ), DV (P S)Pryr — Py
k=0

m(z")

1 ij ji
=5 2 o V(. SISK;
k=0
+r, (5.15)

where r, < en[S]P(T) and e, - 0asn — oo.
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Proof. We construct the sums by going down a ‘staircase’ of increments, using the vertical and
horizontal translation operators. Since Spent =Sy, T+ 5ES plpi41], by the non-anticipativity of

V we have

VPri1:S) =V S) = VPry15Sp,,,) = VPrs1 Sy,)
+VPrg1-Sp) = Vs Sy,)
= (By,,,(6S) = )V (Pis15Sp,)
+ (H(Ep) = 1)V (P S) (5.16)

Using the vertical Taylor theorem 4.51 to expand the first increment and the Horizontal Funda-

mental Theorem of Calculus the second gives

Lopgi o o
V(Prs1:5) = V(9. $) =V, V(Py. Sy, )] S + 55,25 0, 9, V (b $)6YS + 1!

+ DV (py, )0, p (5.17)
with r} the remainder term from the vertical Taylor theorem. Using Theorem 4.51 we see that

7] < C18}S| sup |V% V by, S +uplp ) — V5 Vb, S)| (5.18)
uel0,¢] ! !
where C bounds both of the uniformly continuous functionals |2V (z,.S)| and |V§ Vi, .S)|.
Summing over k, setting r, 1= Y, ry, and recognising the term in the first-order vertical dif-

ferential as Qb(T, S), gives formula 5.1. O]

Note the use of the vertical Taylor theorem is exactly analogous to the use of the ordinary real-
variable version in Itd’s original proof. Lemma 5.1 gives the gains process at maturity of a delta

strategy along a partition as a sum of four terms, each given a line in the statement of the result.

The rest of the section is concerned with taking a continuum limit of this expression; the idea
is to approximate a class of spot price paths by the piecewise constant Euler projection path
EY'(S), with jumps at the times of a clock, that will ensure the convergence of each term under
an appropriate limiting process. The first is a sum of jumps in the value process, while the second
is a ‘theta’ term, involving the horizontal differential DV'. The third is a ‘gamma’ term involving
the ‘Hessian” matrix V;’k V of second order vertical differentials and the variance computed along
the partition, while the fourth is a remainder term related to this. It turns out that the convergence

of is a slightly delicate issue, so we approach it in stages.

We begin with the easiest ‘theta’ term, which we approach in the full generality of a jumpy path
with Euler projection along a trading clock. Note that we do not make any requirements on the

convergence of the p-variance here.
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Lemma 5.2. Let V be as in Lemma 5.1 and 7 a trading clock. Then for any S € [ED:’L

m(z")

T
lim Z 9V(TZ,€;(S))5an=/ DV (u—, S)du (5.19)
=0 0

n—0o0

Proof. By the strong convergence of A7 to the identity, and since 2V (z, .) is uniformly continu-

ous, for fixed .S we have that the (bounded) function u —» & V(TZ(S), AL(S ))1[72( S ( sy =
Pkt

DV (u—, .S) at any continuity point of .S. Since J(.S) is countable it has Lebesgue measure zero,

so we may conclude by the dominated convergence theorem. O
We may now consider our main result, the full Itd6 formula.

Theorem 5.3. (Functional It6 formula for continuous Monte Carlo paths)

Suppose S € M;(Rd)c has pathwise variance [S]15 W) 1= Q) + J([S1e)w) along P, with
Q continuous. Suppose V- = xV € DY) is a non-anticipative functional process with values
in a Banach space Y which is a B,-space for eacht € P, such that V (t) € Ytz foreacht € £
Then fOT v, V@u-, S).d? S(u) exists and

V(T,$)=V©0,.S)+ ) AV@u.S) (5.20)
uel0,7]

T

+ / V.V (@u-,S,).d” Su) (521
OT 1 /7 o .

+ / DV (u=, S)du + 5 / Tr (0, 9L V O(S),,(du)) (5.22)
0 0 u u

+% > Tra;uaiuVJ([S];)(u) (5.23)
uel0,T]

where the sums have countably many non-zero terms and converges absolutely.

Proof. We consider the expression 5.15 calculated on the Euler projections £¥"(S) along the
clock & = (p").

m(z™)

By Lemma 5.2, the ‘theta’ term Zk:O DV (py, EP(S))(Pry1 — Pi) converges as required. Since
[S]» € BVY, by Lemma 4.17 the path t — foV(t, .) € F?. So by 3.18 and the fact that the
weak-star topology on BV ? as the dual of F¢ coincides with pointwise convergence, the ‘gamma’

term % Z':i%”) Tr a;’;,:V(pZ, EP(S)[EP (S)]j ’,, converges as required. The value jump term

D AV, S) (5.24)

uel0,1]
converges, since V' is cadlag. By the Taylor Theorem 4.51, and the continuity of .S, the error term
lrel < €Z|5ZS|2 where C > ¢, > 0, and so i ri, = O using Lemma 5.3.7 of Cont et al. (2016).

The remaining term is the delta term, which must converge by virtue of all the others. O
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5.3 No arbitrage valuation and robust hedging on MZQ,(IR" )

It turns out that the argument of Merton (1973), and the robustness of the Black-Scholes hedg-
ing strategy Davis (2010), is very powerful, and goes through almost unchanged in the path-
dependent setting. First, we need to recall the notion of arbitrage, and a classical result on its

absence in It6 process models.

Taking inspiration from the simplest definition of absence of arbitrage, that of the single period

finite state model, we define

Definition 5.4. (No pathwise arbitrage) A self-financing strategy with value V is said to be an
arbitrage opportunity for the model paths X if

1. V(T,x)>0forall x € X

2. There exists x* € X, T, < T such that V' (0, x*) < 0 and V (Tj, x*) > 0

It is said to be admissible if there exists ¢ > 0 such that V' (¢,x) > —c for all x € X. A model

with paths X has no pathwise arbitrage if there is no such admissible arbitrage strategy.

The following is Theorem 12.1.8 a) of Oksendal (1992) (with the minor alteration that we have

defined coefficients of the model in multiples of current spot price).

Theorem 5.5. Suppose a market S follows the It6 process model 3.72, and there exists a process
0 such that
c0=u—r (5.25)

and

T
[E[exp(% / 0°(s)ds)] < oo (5.26)
0

Then the market almost surely permits no arbitrage.

If S follows 3.72, then we let & be the set of paths as in 3.74. Since P[Z'¢] = 0 this implies

there is no arbitrage on the paths.
Theorem 5.6. (Valuation equation and robustness formula)

Let & be the paths of an It6 process model 3.72 satisfying the Novikov condition. Suppose a
European derivative has payoff ® € %b(Md@), and V solves the path-dependent Cauchy problem

d

d
DV, S) + % Y o'ol Sy Sy afv,ang(” DEDY rS'(0d V(t,$) = rV =0
i,j=1 i=1

Vv(T,S)=o(S) (5.27)
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forall S € X. Then V is the no arbitrage value of the derivative in the model 3.72, and
if a rebalanced delta strategy based on the model is followed but the true stock price path is
S’ e M?@(Rd)c, then the discounted profit and loss at maturity is

d T
P&L = Z AV(u,S)+% Z / S'HOS/(OTV (¢, S (e 6/ dt — [S"17 (d1)) (5.28)
0

uel0,] ij=1

Further, AV (u, S) # 0 if and only if A[S] # 0.

Proof. We follow the Merton argument. A trader takes a short position in the derivative and
marks it using the non-anticipative functional V' (¢, S,) offset by a stock position using the non-

anticipative functional A(t, .S;). Using the It6 formula 5.23, we expand the profit and loss

t+6
P&L = / u(, S)Sw)(Aw, S,) - s Vu,S,)) du
I t+6
+ / o(u, S,)Sw)(Aw,S,) = a5 Vu,S,))dW (u)
t t+6 1 N
- / DV, S,)+ Eaz(u, S)SW?*0L V(u,S,) du
l u
(5.29)

As in the Markovian case choosing A(7,.5;) = VgV (1,.5)) yields a portfolio with predictable
growth, which must by the absence of arbitrage equate to the return on the riskless portfolio
V(S — Vg V(1,.S,), which is exactly 5.27.

Suppose the trader hedges with the model delta V g V), rebalanced at every jump time j of the

pathwise variance, then the self-financing portfolio obeys
dV =Vg VydS +V — VSIVM)dSO (5.30)

while
AV = Vg ViydS' + DVydu+ %(S'(t))ZFVM(t, SHS"1(du) (5.31)

and hence, by 5.27, the hedging error Z = V' — V), satisfies

dZ = Z AZ@wu,S)+ (r(V -V s V) = DV )dt - %(S’(t))ZFVM(t, SHS"1(d1)

ue[0,T]
=rZdt + %(S’(t))ZFVM(t, S (62dt — [S"1(d1)) (5.32)
as required. Discounting yields 5.28. O

Note here that the pathwise variance is completely general, free of any modelling assumption
such as being the path of a semimartingale. Essentially the only assumption is that when the stock

price variance is calculated along a clock the variance converges. As such this is the formula that
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best encapsulates model risk robustness, by putting as few constraints on the real data as can be

while keeping the second order term.






Chapter 6

Conclusion and Future Work

In this thesis I have shown how the geometry of the numerical scheme known as Monte Carlo
simulation can naturally be embedded in a separable Banach space, in which piecewise constant
paths are dense. Popular risk models known as Itd processes can then be viewed as random
samples from concrete sets of paths in this space parameterised by a suite of homogenous noise
paths. The spaces have rich classes of functionals, which admit natural strongly continuous
(semi)groups of vertical and horizontal translation, whose generators are differential operators
that lie behind risk sensitivities. Derivatives valuation can then be understood as the solution
of a Cauchy problem on this space involving these operators. Unlike existing approaches, the

solutions are for every path in a given subset, rather than merely P-almost surely.

Several natural generalisations to this work immediately suggest themselves for future research

in mathematical finance.

B Path-dependent semigroups — in the Cont and Fournié (2010) framework, the classical so-
lution of the path-dependent PDE 2.39 has been shown to be given by a forward backward
stochastic differential equation. It is the author’s conjecture that these can be reinterpreted
as semigroups on Monte Carlo functional spaces, as in the case of ordinary PDEs, and the

solution written as a product formula

. —(z] -1 A, (]
V(t) = n]l)r?o H e (=D AL( k+l)7erAch) (61)

n
tﬁrk

which can best be interpreted as the limit of a sequence of semigroup solutions of ordinary
Cauchy problems, and parallels the idea of mixed Monte Carlo methods. This was one of
the original motivations for this research, but unfortunately time and technical constraints

prevented its proof in time for inclusion in this thesis.

B Jump models — only liquid markets can be reasonably modelled by continuous spot prices;
in general, illiquidity means spot prices are subject to periodic ‘shocks’, which are mod-

elled by SDEs with ‘jumps’. The proof of the Itd formula 5.3 can be extended to the jump
85
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case by following the proof of the corresponding result of Cont and Fournié (2010); by
analogy with the Markovian case, one would expect the path-dependent case to involve

adding a non-local jump measure term to the generator of the semigroup

B Funding costs — as mentioned in the introduction, it is now well-known that the classical
funding assumptions made in this thesis are inadequate in general, and that true derivatives
valuation should incorporate the costs of funding. Again, by analogy with the Markovian
case, one would expect the path-dependent case to involve a semilinear valuation equation.

This requires any semigroup solution to be comprised of nonlinear operators

B American options — only European-style contracts were considered in this thesis. Amer-
ican options involve the possibility of early exercise, which considerably complicates
the analysis. Again, by analogy with the Markovian case, one would expect the path-
dependent case to involve a fully nonlinear valuation equation, again solved by semigroups

of nonlinear operators

In addition, because Monte Carlo methods are widely used, the use of functional calculus on
Monte Carlo spaces as in this thesis potentially has applications in many probabilistic fields that
use path-dependent stochastic processes, such as evolutionary biology or plasma physics. From
the pure mathematical point of view, the treatment of Monte Carlo spaces here has only scratched
the surface, and there would appear a great deal of potential for further research in their functional

analysis.
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