
Analysis of climate variability and droughts in East 

Africa using high-resolution climate data products

Abstract

Analysis of climate variability and change as a basis for adaptation and mitigation strategies 

requires long-term observations. However, the limited availability of ground station data constrains 

studies focusing on detecting variability and changes in climate and drought monitoring, 

particularly in developing countries of East Africa. Here, we use high-resolution precipitation 

(1981‐–2016) and maximum and minimum temperature (T-max and T-min) (1979‐–2012) datasets 

from international databases like the Climate Hazard Group (CHG), representing the most accurate 

data sources for the region. We assessed seasonal, annual, and decadal variability in rainfall, T-max 

and T-min and drought conditions using the StandardisedStandardized Precipitation Index (SPI). 

The impact of changes in Sea Surface Temperature on rainfall variability and droughts is assessed 

using the Nino3.4 and Indian Ocean Dipole (IOD) indices. The results show maximum variability 

in rainfall during October‐–December (OND, short rainy season) followed by March‐–May (MAM, 

long rainy season). Rainfall variability during OND showed a significant correlation with IOD in 

Ethiopia (69%), Kenya (80%), and Tanzania (63%). In Ethiopia, the period June‐–September 
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(JJAS) showed a significant negative correlation (‐−56%) with the Nino3.4. Based on the 12-month 

SPI, the eastern and western parts of the region are getting drier and wetter, respectively with an 

average of mild, moderate, and severe droughts of more than 37%, 6%, and 2% of the study period, 

respectively. The observed severe droughts (e.g., 1999/2000) and extreme floods (e.g., 1997/1998) 

were found to be linked to respective negative and positive anomalies of the Nino3.4. In general, 

climate data products with high spatial resolution and accuracy help detect changes and variability 

in climate at local scale where adaptation is required.

Keywords: East Africa; cClimate variability; hHigh-resolution climate datasets; dDroughts; Nino3.4

1.1 Introduction

Countries in East Africa are particularly prone to climate variability (e.g., inter-annual variability in rainfall) 

and extreme climate events such as droughts and floods (WWF, 2006; Niang et al., 2014). The region is facing 

an increasing trend in maximum and minimum temperature and temperature extremes (e.g., increase in high 

and low percentiles of the temperature distribution) and high variability in seasonal rainfall and daily rainfall 

extremes (e.g., monthly maximum 1-day and 5-day precipitation) (Cattani et al., 2018; Gebrechorkos et al., 

2018a). Due to the high variability in seasonal rainfall and occurrence of extreme events, the region is 

becoming one of the most food-insecure regions in the world looking for humanitarian assistance (ActionAid, 

2016; Sidahmed, 2018). Moreover, as a result of high variability in rainfall, poor management of 

environmental resource, and absence of improved technologies, agricultural production is very low in Sub-

Saharan Africa (IFPRI, 2009). Agriculture is the dominant sector in Africa and more than 80% of the 

population in East Africa depends on it, which also provides a significant contribution (up to 40%) to the 

economy of the region (FAO, 2014). In addition to agriculture, sectors such as water and energy and 

environmental resources (e.g., land) are increasingly affected by the changes and variability in climate (Niang 

et al., 2014). Agriculture in East Africa is largely rain-fed and it is based on the long (March‐–May) and short 

(October‐–December) rainy seasons, which makes the agriculture sector highly vulnerable to inter-annual 

rainfall variability. The change and shift in rainfall during March‐–May and October‐–December rainy 

seasons, which are the main cropping periods in the region, led to devastating droughts affecting the socio-

economic welfare and environment (Haile et al., 2019). In East Africa, droughts are becoming a recurring 

event, every three years science 2005, and it has been difficult to manage the impacts due to limited 

forecasting skills and other anthropogenic and natural factors (Haile et al., 2019).

In addition to seasonal rainfall variability, one of the main challenges that make the region highly vulnerable to 

droughts and climate variability lies in the fact that the major portion of the agricultural land is owned by 

smallholder farmers. The land owned by the smallholder farmers provides about 90% of the total agricultural 

production (Salami et al., 2010) and they have less knowledge and capacity to adapt to any change in weather 

and climate, adding to the vulnerability of the agricultural sector (Kotir, 2011). Climate projections, in line to 

the observed change, show an increase in maximum and minimum temperature (Gebrechorkos et al., 2019a) 

and frequency of extreme events (e.g., droughts, floods, and heavy rainstorms) in East Africa (IPCC, 2007; 

Niang et al., 2014), which will pose a negative impact on the environment and the region’'s economy, health 



and wellbeing. According to IPCC (2007), by the end of 2100, the region's economy is projected to decline by 

2%‐–7% as the result of the impact of climate change and variability on agriculture. Compared to the change 

in temperature, the change and variability in rainfall induce a significant impact on agriculture. In general, 

considering the vulnerability of the region to climate change and variability and the projected change in 

climate (increase in temperature and variability in precipitation), development of adaptation measures to 

reduce the possible impacts is urgently needed. In this region, there is already a growing interest in 

understanding the climate condition e.g., identifying the possible drivers of seasonal variability in rainfall at 

different spatial scales (watershed to regional scale) based on different datasets such as remote sensing-based 

rainfall products and climate model output (Wolff et al., 2011; Endris et al., 2013; Endris et al., 2015; Fer et 

al., 2017; Mpelasoka et al., 2018).

While most of the studies in this region focus on identifying the drivers, the number of studies dealing with the 

spatial and temporal variability providing high-resolution maps to identify hot spot areas which should be 

prioritized in adaptation plans are limited (e.g., Daron, 2014; Rowell et al., 2015; Seregina et al., 2014; Tierney 

et al., 2013). In addition, most of the earlier studies are confined to watersheds scale based on limited 

information from field-based meteorological stations and relay on regional averages based on coarse resolution 

of climate data such as output from Global Climate Models (GCMs). However, due to the limited, in terms of 

spatial and temporal coverage, availability of ground station data large parts of the region, particularly the 

remote parts are less studied. Moreover, application of coarse resolution of climate datasets from GCMs or 

RCMs (Regional Climate Models) can only provide average information on a global or regional scale, 

respectively. Therefore, for a better understanding of climate variability and for developing climate change 

adaptation measures at a local scale, climate information with high spatial resolution and temporal coverage 

are required.

Globally, in order to overcome the data challenges, a number of climate data products based on remote sensing 

(e.g., satellite-based rainfall products) such as Climate Hazards Group InfraRed Precipitation (CHIRP) and 

CHIRP with Station data (CHIRPS) (Funk et al., 2015) are developed for climate and hydrological studies. In 

addition, for Africa, a number of high-resolution satellite-based rainfall products such as the African Rainfall 

Climatology (Novella et al., 2013), Tropical Applications of Meteorology using Satellite and ground-based 

observations (TAMSAT) African Rainfall Climatology And Time series (TARCAT) (Maidment et al., 2017; 

Maidment et al., 2014; Tarnavsky et al., 2014), and Enhancing National Climate Services (ENACTS) (Dinku 

et al., 2014) are available at different spatial and temporal resolutions. The products differ in their development 

process (e.g., methodology, input data), temporal and spatial resolution, and spatial and temporal coverages. 

Therefore, before direct application of the products, assessing their accuracy by comparison with observed 

data is a prerequisite to identify the most accurate product and to produce valuable results. Hence, in our 

previous study (Gebrechorkos et al., 2018b), we evaluated different products based on climate models 

(RCMs), reanalysis, and satellite-based rainfall estimations such as CHIRPS and the African Rainfall 

Climatology. Finally, two products (for rainfall and maximum and minimum temperature) with high resolution 

(spatial and temporal) and coverage (spatial and temporal) were selected after a detailed evaluation over 21 

regions of East Africa. In this study, therefore, using the selected datasets we assessed the variability in rainfall 

and maximum and minimum temperature (T-max and T-min) on decadal, seasonal, and annual time scales. In 

addition, the impact of large-scale climate variables such as the El Nĩno Southern Oscillation (ENSO) indices 



(e.g., Nĩno3.4) on rainfall variability and droughts are assessed. The results help identify areas with high 

variability in rainfall and an increase in droughts and develop adaptation measures at a local scale. In addition, 

the results will allow assessing the application of remote sensing and reanalysis based climate data products in 

climate and hydrological studies by comparing the results with historical observations (e.g., drought and flood 

events).

2.2 Study area and data

2.1.2.1 Study area

The study is conducted in East Africa, also called the Greater Horn of Africa, particularly in Ethiopia, Kenya, 

and Tanzania (Fig. 1). The region is characterized by diverse topography and climate (e.g., rainfall varies 

within tens of kilometres) (WWF, 2006). The region is heavily dependent on rainfall and agriculture is the 

main sector. The commonality in the region is the occurrence of droughts and floods which is affecting 

millions of people (Nicholson, 2016). In this region, when extreme events (flood and droughts) occur within 

the same year, they make a devastating impact on the population (Nicholson, 2017). Most countries in East 

Africa experience rainy seasons during March‐–May (MAM) and October‐–December (OND). The MAM and 

OND rains are also called the long and short rains, respectively. MAM and OND contribute about 70% and 

20%, respectively, of the total annual rainfall in East Africa (WWF, 2006). Moreover, the northern parts of 

Ethiopia receive a significant amount of rainfall during June‐–September (JJAS, boreal summer) (Camberlin 

and Philippon, 2002; Daron, 2014).

alt-text: Fig. 1

Fig. 1

Location and digital elevation map (DEM) of East Africa.



2.2.2.2 Data

In this study, high-resolution gridded data for precipitation and T-max and T-min are used. The products are 

selected based on our earlier study (Gebrechorkos et al., 2018b) evaluating and assessing the quality and 

accuracy of multiple climate data products available on a regional (Africa) and global scale. Due to the limited 

availability of ground station data, our previous study was mainly designed to assess and identify the most 

accurate climate data products by comparison with the available ground station data on multiple time scales 

(daily, 10-days, and monthly) and using different approaches (e.g., station to grid-cell and station average to 

area average). Multiple methods such as statistical (e.g., correlation, errors, and biases) and widely used 

graphical (e.g., Taylor-diagram) methods were used to identify the most accurate products. During the 

evaluation, for rainfall, other characteristics such as number and amount of dry and wet days were used. The 

evaluation, the most comprehensive to date, was conducted over 21 regions of East Africa. Finally, based on 

the different methods and approaches used, two products, i.e. CHIRPS for rainfall and the Observational 

Reanalysis Hybrid (OR) for T-max and T-min, were selected to be used in climate and hydrological studies in 

areas where station data is limited.

CHIRPS version 2 is a new quasi-global (ranging from 50°S to 50°N) precipitation dataset developed mainly 

for monitoring of extremes and to assess the hydrological impact of changes in precipitation (Funk et al., 2015

). The product is available at a high spatial resolution (up to 0.05°) and on multiple time scales (e.g., daily to 

monthly) from 1981 to present. CHIRPS is based on long-term precipitation estimations obtained from 

infrared Cold Cloud Duration (CCD). The CCD based rainfall estimates used in CHIRPS is first calibrated 

using the Tropical Rainfall Measuring Mission Multi-satellite Precipitation Analysis (Huffman et al., 2007). 

Ground data from filed based meteorological stations (e.g., Global Telecommunication System gauges) are 

incorporated in CHIRPS in two phases. According to Funk et al. (2015), the best available daily and monthly 

station data are blended with pentadal and monthly CCD based rainfall estimates to develop a preliminary 

product with two-day latency (i.e., phase one) and final product with three-week latency (i.e., phase two), 

respectively. Due to the inclusion of multiple ground observations in the development process, the products 

fall between rainfall products that are heavily interpolated gauges and sparse gauges blended with satellite-

based rainfall products (Funk et al., 2015). The data is freely available from the Climate Hazards Group (http://

chg.geog.ucsb.edu/data/chirps/).

OR (Sheffield et al., 2006) is a widely used global meteorological forcings developed to drive hydrological 

and land-surface models. The observation-based product is developed by a spatial downscaling of the National 

Centers for Environmental Prediction–National Center for Atmospheric Research (NCEP-NCAR) reanalysis 

data (Kalnay et al., 1996) using a bilinear interpolation up to a resolution of 0.1° (Chaney et al., 2014; 

Sheffield et al., 2006). OR is corrected for biases and, errors and temporal inhomogeneities are removed using 

quality-controlled field-based ground observations. The OR data is available at different temporal resolution 

(3-hourly to monthly) from Princeton University (http://hydrology.princeton.edu/data.php) from 1948‐ to

 2012. In addition, Sea Surface Temperature (SST) anomalies for the Nĩno3.4 and Indian Ocean Dipole Mode 

Index (IOD) are obtained from the Global Climate Observing System (GCOS). The Nĩno3.4 is the most 

commonly used index to define the ENSO events (El Niño and La Niña events) (Trenberth et al., 2019). 

Nĩno3.4 is the average SST observed over the region 5°S to 5°N and 120°W to 170°W and indicates the warm 

http://chg.geog.ucsb.edu/data/chirps/
http://hydrology.princeton.edu/data.php


and cold phases of the abnormal temperature of the region. Similarly, IOD measures the temperature difference 

between the western pole (Arabian Sea) and eastern pole (eastern Indian Ocean south of Indonesia). The 

variation in SST contributes to the variability in rainfall (Paul and Rashid, 2017) and its impact on rainfall 

variability is significant in East Africa, India, and Indonesia (Lim and Hendon, 2017). The SST anomalies for 

the Nĩno3.4 and IOD is computed from the Hadley Centre Global Sea Ice and Sea Surface Temperature 

(HadISST1.1) dataset (Rayner et al., 2003) and it is available from the NOAA earth system research laboratory 

working group on surface pressure (https://www.esrl.noaa.gov/psd/gcos_wgsp/).

3.3 Methodology

The Climate data Operator (CDO) (Schulzweida et al., 2009) is used to merge and aggregate multiple NetCDF 

files and compute monthly and annual average (temperature) and sums (precipitation). CDO combines 

multiple command line operators to analyze and manipulate different climate datasets in different formats such 

as NetCDF and GRIB.

The monthly total rainfall and monthly average T-max and T-min were computed using CDO for the periods 

January‐–February (JF), March‐–May (MAM), June‐–September (JJAS), and October‐–December (OND) for 

seasonal variability analysis. In addition, the monthly data is used for annual and decadal variability analysis in 

rainfall, T-max, and T-min. Seasonal, annual, and decadal variabilities are assessed by computing the 

anomalies as a departure from their long-term mean for both rainfall, T-max, and T-min. For seasonal and 

annual variability analysis, the long-term mean is computed from 1981‐ to 2016 and 1981‐–2012 for 

precipitation and T-max and T-min, respectively. For decadal analysis, the period from 1981‐ to 2010 is used 

for both rainfall and T-max and T-min. Anomalies accurately display climate variability compared to absolute 

values and allow comparison between locations (Camuffo et al., 2013; NOAA, 2017). To assess the spatial 

variability in each grid cell, the standard deviation is used, which helps identify the most and less variable 

areas of the region.

In addition, the standardized precipitation index (SPI) (McKee et al., 1993) is used to indicate meteorological 

droughts, precipitation deficit, and wetter climate during the study period. According to Labudová et al. (2017)

, SPI, compared to other drought indices, is globally used and suitable, due to its simplicity and data 

requirement, for application in agriculture and water management.

SPI is computed by fitting the observed monthly rainfall (from datasets longer than 30 years) to a probability 

distribution which is finally converted into an index. The index represents the number of deviations by which 

observed rainfall anomalies deviates from the long-term mean (Keyantash et al., 2018). The SPI can be used 

for a range of time periods, for example, the three and six months SPI indicates seasonal to medium-term 

patterns of precipitation and can be used to reflect the condition of soil moisture and agricultural droughts. In 

addition, longer periods such as 12‐–24 months indicate the long-term patterns in precipitation and can be used 

for conditions of groundwater, reservoirs, and streamflows. Compared to the Palmer drought index (Palmer, 

1965), another widely used drought index, the six-month SPI is more sensitive at a given time scale and the 

12-month SPI provides similar outputs. Droughts are indicated by SPI values of less than ‐−1.0: extreme (< ‐

−2), severe (‐−1.5 to ‐−1.99), moderate (‐−1.0 to ‐−1.49), and mild (0 to ‐−0.99) droughts. In addition, wet 

events (e.g., floods) are indicated by SPI values of greater than 1.0 (WMO, 2012). Further, the trend package 

https://www.esrl.noaa.gov/psd/gcos_wgsp/


of the R Project for Statistical Computing (Pohlert, 2016) is used to detect change points in the annual time 

series of rainfall, T-max, and T-min and to compute the presence of a downward or upward trend (P <0 .05) in 

the SPI values.

4.4 Results

4.1.4.1 Decadal variability in rainfall and temperature

For decadal analysis, the anomalies for each grid cell are computed as a departure from the mean of the period 

1981‐–2010 (decadal mean) of rainfall, T-max, and T-min and the results are classified as the 1980s, 1990s, 

and 2000s (Fig. 2). The results show that in the 1980s large parts of Ethiopia, particularly western, northern 

and northeastern parts were drier than during the 1990s and 2000s, and the 2000s were drier than 1990s. On 

the other hand, the central part of Ethiopia (Arsi Zone) is much wetter (anomalies up to +200  mm) in the 

1980s compared to the 1990s and 2000s. In general, large parts of Ethiopia were drier in the 1980s (except 

Arsi Zone) and 2000s compared to the 1990s.

alt-text: Fig. 2

Fig. 2



In Kenya, the western parts were drier (anomalies up to ‐−130 mm) in the 1980s and 1990s compared to the 

decadal mean and the 2000s (anomalies up to 180 mm). However, the eastern and southeastern parts of Kenya 

are drier (anomalies up to ‐−110  mm) in the 2000s compared to the decadal mean and also the 1980s and 

1990s. Unlike to Ethiopia and Kenya, large parts of Tanzania were wetter in the 1980s (anomalies up to 

+200 mm) than the 1990s and 2000s. The western and northwestern parts Tanzania were drier in the 1990s 

compared to the 2000s, but the northern and northeastern parts are drier in the 2000s. On average, the rainfall 

in this region (averaged over Ethiopia, Kenya, and Tanzania) is decreased by 9.2 mm, 20 mm, and 7.4 mm in 

the 2000s compared to the decadal mean, 1980s, and 1990s, respectively.

In addition to the decrease in rainfall in the 2000s compared to the 1990s, the region was much warmer during 

the 2000s than during the 1980s and 1990s ( Fig. 2 ). T-max, particularly in Ethiopia and Kenya, showed an 

increase up to 0.9 °C in the 2000s. On the contrary, T-max in the 1980s was cooler (anomalies up to ‐−1.7 °C) 

than 1990s and 2000s in large parts of Ethiopia, Kenya, and Tanzania. Only in the southwestern parts of 

Decadal variation of rainfall (mm, top), T-max (°C, middle) and T-min (°C, bottom) for East Africa, particularly Ethiopia, Kenya, 

and Tanzania calculated as the deviation from the decadal mean (1981‐–2000) based on CHIRPS and OR for rainfall and T-max 

and T-min, respectively.



Tanzania (around Rukwa and Katavi), T-max was warmer during the 1990s compared to the 2000s and 1980s. 

In general, T-max showed an increasing tendency from the 1980s to 1990s and 2000s in large parts of the 

region with a maximum change in Ethiopia (anomalies up to +0.9  °C) and minimum change in Tanzania 

(anomalies up to +0.1 °C).

Similar to the change in T-max, T-min in the 1980s was cooler (anomalies up to ‐−1.2 °C) than in the 1990s 

and 2000s in large parts of the region (Fig. 2). In Kenya and Tanzania, T-min showed an increasing tendency 

from the 1980s to 2000s. However, in the western part of Ethiopia (around Benishangul Gumuz), T-min in the 

2000s was cooler (anomalies up to ‐−0.6  °C) than 1980s and 1990s. On the other hand, T-min was much 

warmer (anomalies up to +0.5 °C) in the northern part of Ethiopia in the 1990s compared to the 1980s and 

2000s. Therefore, in Ethiopia, unlike the change in Kenya and Tanzania, T-min did not show an increasing or 

decreasing tendency but variability between the decades.

4.2.4.2 Seasonal variability in rainfall

In order to assess the seasonal variability in rainfall, the standard deviation is computed for each grid-cell (Fig. 

3). The result shows strong seasonal variability (standard deviation up to 250 mm) in rainfall during the long 

(MAM) and short (OND) rainy seasons. During MAM, the variability is higher in Tanzania, particularly in the 

southern and southeastern parts, and lower in Ethiopia (e.g., northern and eastern parts). Similarly, during 

OND variability is higher in Tanzania and the central part of Kenya compared to Ethiopia, which shows less 

variability in large part of the region. In Ethiopia, the highest variability (standard deviation up to 230 mm) is 

observed in the northern part during JJAS compared to MAM and OND. During JF, which is the driest season 

in Ethiopia and Kenya, high variability is observed in Tanzania. In general, high variability is observed in 

Tanzania followed by Kenya during MAM and OND whereas the variability is higher in Ethiopia during JJAS.

alt-text: Fig. 3

Fig. 3.Fig. 3

The standard deviation of seasonal rainfall (mm) in East Africa (Ethiopia, Kenya, and Tanzania) computed for each grid-cell 

(based on CHIRPS).



On a country scale, spatially averaged over Ethiopia, Kenya, and Tanzania, the result shows a strong seasonal 

and annual variability in rainfall in Ethiopia, Kenya, and Tanzania during the period of 1981‐–2016 (Fig. 4a). 

In Tanzania, the observed seasonal rainfall during MAM and OND are 366.6 mm and 292.6 mm, respectively 

and this is higher than in Kenya and Ethiopia. Compared to MAM, JJAS is the most important rainy season for 

rain-fed agriculture in the northern and highlands of Ethiopia with average seasonal rainfall of 570.46 mm. In 

this region, OND is the most variable season (anomalies up to +330  mm and ‐−149  mm), particularly in 

Kenya and Tanzania, followed by MAM (anomalies up to +150 mm and ‐−100 mm). In addition to the high 

variability, the relative change (Fig. 4b) is higher (up to 150% and   ‐−  65%) during OND than in other 

seasons. The rainfall variability in OND shows a significantly higher correlation with IOD in Ethiopia 

(r = 0.69), Kenya (r = 0.80), and Tanzania (r = 0.63) (Table 1). However, during MAM the Nĩno3.4 appeared 

to have the highest impact compared to IOD in Ethiopia and Kenya with a non-significant correlation of 0.31 

and 0.26, respectively (Table 1). During MAM, similar to the change in OND, the relative change is higher (up 

to 57% and  ‐− 42%) in Kenya and Ethiopia and lower in Tanzania (up to 23% and  ‐− 18%).

alt-text: Fig. 4
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In Ethiopia, similar to the observed variability during OND, rainfall variability during JJAS (anomalies up to 

± 120  mm) is significantly negatively correlated (r  =   ‐−0.56) with Nĩno3.4. Even though JF is the driest 

season in Ethiopia and Kenya, Tanzania receives moderate rainfall during JF. Compared to Ethiopia and 

Kenya, rainfall variability during JF is higher (anomalies up to +110 mm and   ‐−  70  mm) in Tanzania and 

significantly correlates with IOD (r = 0.37). To the contrary, the relative change during JF is lower (up to 40% 

and  ‐− 29%) in Tanzania and higher (up to 162% and  ‐− 59%) in Ethiopia and Kenya. Overall, compared to 

the dry seasons, short and long rainy seasons showed higher variability in rainfall.

4.3.4.3 Annual variability in rainfall and temperature and droughts

On the annual time scale, similar to seasonal, rainfall variability is higher in Tanzania and Kenya compared to 

Ethiopia ( Fig. 5 ). In Ethiopia, variability is higher (standard deviation up to 230 mm) in the central-western 

and northern parts and lower in the eastern part. Except for the northwestern part, large parts of Kenya show 

high variability up to a deviation of 430 mm. Furthermore, large parts of Tanzania, except the central parts of 

the country (Iringa and Dodoma), show high variability up to a deviation of 345 mm. T-max and T-min, on the 

other hand, show a similar pattern of variability: higher in western and lower in the eastern part of the region ( 

Fig. 5 ). The variability in T-max and T-min is higher (standard deviation up to 1.2 °C) in the northern part of 

Seasonal rainfall anomalies (mm, a) and relative change (%, b) in Ethiopia, Kenya, and Tanzania during the period of 1981‐–2016 

(based on CHIRPS). MAM and OND are the long and short rainy seasons, respectively. Dark filled red and cadet-blue bars are 

anomalies below and above the long-term mean (1981‐–2016). (For interpretation of the references to colour in this figure legend, 

the reader is referred to the web version of this article.)

alt-text: Table 1

Table 1

Correlation (r) between seasonal rainfall and the Nĩno3.4 and IOD indices. MAM and OND are the long and short rainy seasons, 

respectively. A statistically significant correlation (P  <0 .05) is indicated in bold.

Region Variables JF MAM JJAS OND

Ethiopia

Nĩno3.4 0.44 0.31 ‐− 0.56 0.26

IOD 0.20 0.07 ‐−0.01 0.69

Kenya

Nĩno3.4 0.28 0.26 0.36 0.38

IOD 0.33 ‐−0.10 0.21 0.80

Tanzania

Nĩno3.4 0.25 0.10 0.30 0.32

IOD 0.37 ‐−0.14 0.28 0.63

i The presentation of Tables and the formatting of text in the online proof do not match the final output, though 

the data is the same. To preview the actual presentation, view the Proof.



Ethiopia and southwestern parts of Tanzania compared to the other part of the region, particularly the eastern 

part, which shows less variability (standard deviation up to 0.4 °C).

Taking the country average, rainfall variability on annual time scale is higher in Kenya (anomalies up to ‐−120 

and  +  230  mm) and Tanzania (up to ±250  mm) and lower in Ethiopia ( Figs. 6 and 5 ). Annual rainfall 

variability in this region is lower during 2007‐–2016 compared to 1981‐–2006, particularly in Kenya and 

Tanzania. Similar to annual rainfall variability, variability in annual T-max and T-min is higher in Kenya and 

Tanzania and lower in Ethiopia ( Fig. 6 ). The T-max annual average observed before 1995 is cooler (anomalies 

up to ‐−0.7 °C) than the long-term mean (1979‐–2012), particularly in Ethiopia and Kenya. On the other hand, 

the period after 1995 is warmer (anomalies up to +0.70 °C) than the long-term mean in Ethiopia, Kenya, and 

Tanzania. In Ethiopia and Kenya, significant change points in T-max are detected in 1998 and 1999, 

respectively. Observed annual average values of T-min, on the other hand, were cooler (anomalies up to ‐

−0.5 °C) and warmer (anomalies up to +0.8 °C) than the long-term mean, particularly in Kenya and Tanzania, 

before and after 2000, respectively. In Kenya and Tanzania, significant change points in T-min are detected in 

1994 and 2002, respectively, while only a non-significant change point is found in Ethiopia in 1990.

alt-text: Fig. 5

Fig. 5

The standard deviation of annual rainfall (mm, based on CHIRPS) and T-max and T-min (°C, based on OR) in East Africa 

(Ethiopia, Kenya, and Tanzania) computed for each grid-cell.

alt-text: Fig. 6
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In addition to the observed high variability in seasonal and annual rainfall, the standardized precipitation index 

(SPI) showed considerable swings (wet and dry events) in Ethiopia, Kenya, and Tanzania ( Fig. 7 ). The 12-

month SPI shows the most prominent drought years in Ethiopia, Kenya, and Tanzania. The observed severe 

droughts (e.g., 1984/1985, 1999/2000) and extreme floods (e.g., 1997/1998, 2007) in this region are linked to 

the respective negative and positive anomalies of the Niño3.4 ( Fig. 7 ). For example, during MAM large parts 

of the region were much drier in 2015 compared to 1998 ( Fig. 8). During MAM, large parts of Kenya (except 

the western part) and Tanzania were much wetter (SPI-3 up to 2.4) in 1998 than in 2015. In 2015, large parts 

of Ethiopia (except some parts of western and southeastern) and Tanzania were drier (SPI-3 up to ‐−2.9) than 

1998. Taking the country average,  Fig. 7  clearly shows that the year 1998 is wetter than 2015and this event is 

linked with the positive anomalies of the Niño3.4.

Annual rainfall (mm, left) and T-max and T-min (°C, right) anomalies in Ethiopia, Kenya, and Tanzania. Dark filled red and cadet-

blue bars are anomalies below and above the long-term mean. Rainfall and T-max and T-min are based on CHIRPS (1981‐–2016) 

and OR (1979‐–2012), respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the 

web version of this article.)
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Fig. 7



On average (spatially averaged over the countries), the 12-month SPI indicates mild, moderate, severe, and 

extreme droughts of about 37%, 6%, 4%, and 3% of the study period (1981‐–2016), respectively, in Ethiopia. 

In addition, mild, moderate, severe, and extreme droughts of 40%, 11%, 4%, and 1%, respectively, of the study 

period are observed in Kenya. In Tanzania, the 12-month SPI showed mild, moderate, severe, and extreme 

droughts of 42%, 6%, 2%, and 3% of the study period, respectively. Moreover, the three (six) month SPI 

showed that more than 33% (31%), 11% (7.7%), 3.6% (3.3%), and 1.5% (1.7%) of the study period were 

experienced mild, moderate, severe, and extreme droughts, respectively, in Ethiopia, Kenya, and Tanzania. In 

Drought index computed using the 12  months StandardisedStandardized Precipitation Index (SPI) for Ethiopia, Kenya, and 

Tanzania and monthly SST anomalies (°C) of the Niño3.4 during 1981‐–2016 based on CHIRPS.

alt-text: Fig. 8

Fig. 8

The 3-month SPI (SPI-3) for Ethiopia, Kenya, and Tanzania averaged over the long rainy season (MAM) for years 1998 (left) and

 2015 (right).



general, the regional average of the 12  months SPI showed a significant increasing trend in Ethiopia and 

Kenya and a non-significant decreasing trend in Tanzania.

The long-term trend in the 3-, 6-, and 12-month SPI reveals that a large part of the region is facing an 

increasing trend in droughts (Fig. 9). In Fig. 9, the values of the trend in 3-, 6-, and 12-months SPI are given 

by multiplying with the length of time series (1981‐–2016) to improve the readability and quality of the maps. 

The trend analysis shows that large parts of Tanzania and eastern parts of Ethiopia and Kenya are getting drier 

and the change is statistically significant in large parts of the region. On the other hand, the western parts of 

Ethiopia and Kenya and northwestern parts of Tanzania are getting wetter and it is statistically significant.

5.5 Discussion and conclusion

In data-sparse regions such as Africa, satellite-based climate data products with high spatial and temporal 

resolution and accuracy are widely used in hydro-climate studies (e.g.  Camberlin et al., 2007 ;  Rojas et al., 

2011 ;  Vrieling et al., 2016 ;  Agutu et al., 2017 ;  Cattani et al., 2018 ). However, some products, although bias-

corrected at a regional and global scale, face large bias and disagreement when compared with ground stations 

( Kimani et al., 2018 ). Studies in East Africa ( Cattani et al., 2018 ;  Maidment et al., 2015 ;  Nicholson, 2017 ) 

alt-text: Fig. 9

Fig. 9

Long-term trends (upper map) in the 3 (SPI-3, left), 6 (SPI-6, middle), and 12 (SPI-12, right) months SPI for Ethiopia, Kenya, and 

Tanzania based on CHIRPS. The trend is given by multiplying the trend rate by the length of the study period (1981‐–2016). The 

lower map shows the significance (sig) of the trend at P <0  .05 and values 1, 0, and   ‐− 1 show a significant increasing trend 

(blue), non-significant change (light), and significant decreasing trend (red), respectively. (For interpretation of the references to 

colour in this figure legend, the reader is referred to the web version of this article.)



concluded that application of different climate data products leads to a different conclusion on trends and 

variabilities in climate, particularly seasonal rainfall variability. Hence, before direct application of the 

currently available satellite and reanalysis based climate data products in climate and hydrological studies, it is 

crucial to check their accuracy such as by comparing with ground station data to identify the most accurate 

products for the region of interest. Therefore, in this study, we applied products with high accuracy (e.g., high 

correlation and lower biases and errors) and spatial and temporal resolution identified after a comprehensive 

data evaluation for East Africa (Gebrechorkos et al., 2018b). On a regional scale, some of the general results 

are already available, but this study provides a more detailed analysis (local to region scale) in terms of spatial 

resolution and temporal coverage allowing for development of location-based adaptation measures to manage 

impacts of seasonal variability in rainfall and extreme events (e.g., droughts).

Based on the products used in this study, a strong variability in seasonal, annual, and decadal rainfall and an 

increasing trend in droughts is observed in large parts of East Africa. In this study, we provide a more detailed 

analysis, compared to studies based on coarse resolution (Haile et al., 2019), to help accurately identify areas 

facing high variability in rainfall and an increasing tendency in temperature and droughts. According to 

Menghestab (2005), the variability of large scale climate variables (e.g., ENSO) is responsible for the 

occurrence of droughts in East Africa by modulating the rainfall patterns. In this region, concerning seasonal 

variability in rainfall, clearly OND (short-rainy season) followed by MAM (long rainy season) is the most 

variable seasons in East Africa. Compared to Ethiopia and Tanzania, rainfall variability during OND and 

MAM is higher in Kenya (anomalies up to +220 mm and ‐−160 mm). According to Nicholson (2017) and 

WWF (2006), rainfall during MAM is more reliable and most of the inter-annual variability, while receiving 

less rainfall, comes during OND with a coefficient of variability of 74%. Rainfall variability during JJAS in 

Kenya and Tanzania and JF in Ethiopia and Kenya was found to be less variable compared to MAM and OND. 

Similar to our finding, other studies (Abram et al., 2008; Herrero et al., 2010; Liebmann et al., 2014; Seregina 

et al., 2014; WMO, 2015) based on different datasets and covering different areas of the region, showed a 

strong connection between rainfall variability during OND and IOD. Several studies (Funk et al., 2008; Lyon 

and DeWitt, 2012; Niang et al., 2014; Williams and Funk, 2011) concluded that rainfall variability during 

MAM is linked to large-scale climate variables such as ENSO and IOD. The most important rainy season 

(JJAS) in the highlands and northern parts of Ethiopia, which is less studied in this region (Nicholson, 2017), 

showed a significant negative correlation (‐−56%) with ENSO and this agrees with the finding of Degefu et al. 

(2017). The impact of ENSO and IOD is not only limited to seasonal rainfall variability but showed a 

significant impact on decadal climate variability (Daron, 2014; Lyon and DeWitt, 2012; Williams and Funk, 

2011). Hence, unlike to T-max and T-min that shows an increasing tendency from the 1980s to 2000s, rainfall 

shows higher decadal variability. For example, large parts of Ethiopia were drier in the 1980s and 2000s, but 

wetter in the 1990s. Moreover, the western parts of Kenya were wetter in the 1980s and 2000s compared to the 

1990s. In this region, the long-term trend analysis in rainfall and temperature also show a non-significant 

change in seasonal and annual rainfall and increasing trend in T-max and T-min in large parts of East Africa (

Gebrechorkos et al., 2019b). In addition to the positive change in T-max and T-min, significant change points 

are detected in T-max (Ethiopia and Kenya) and T-min (Kenya and Tanzania), which, taken together, are clear 

signals of warming in the region. The increase in T-max and T-min is apparent from 1997‐ to 2000 which 

showed positive anomalies up to 0.8 °C. The observed increase in T-max and T-min from the 1980s to 2000s at 



decadal and annual time scales is in line with global warming and other studies covering different parts of the 

region (Camberlin, 2017; CDKN, 2014; Daron, 2014; IPCC, 2013; WMO, 2013). The overall result clearly 

shows that the occurrence of droughts in this region is associated with the observed variability in rainfall and 

the large-scale climate variables particularly the Nino3.4 and IOD indices. As a result, drought events are 

becoming one of the major issues in the regions strongly affecting the economy and environment as a whole.

Applications of satellite-based rainfall products with high resolution and accuracy, therefore, allow detecting 

extreme events such as droughts and floods at a local scale. As shown in Fig. 7, using CHIRPS, the most 

severe drought years (e.g., 1984/1985 and 1999/2000) were accurately detected. The drought in 1984/1985, for 

example, is one of the most serious and devastating events in this region, which lead to the death (starvation) 

of millions (greater than 10 million) of people and countless animals (Kebbede and Jacob, 1988; Haile et al., 

2019). In addition, the 1984/1985 drought event led parts of the region, particularly Ethiopia, to be completely 

dependent on external food aids to feed more than 5.8 million of people (Haile et al., 2019). In addition to 

droughts, years with extreme rainfall events (e.g., 1997/1998) were detected by using CHIRPS. According to 

Cattani et al. (2018) and EM-DAT (2019), the floods in 1997/1998 and droughts in 2006 and 2016 led to the 

death of 2906 people and about 24 million of people faced critical food security issues, respectively. In 

general, the accuracy of CHIRPS in detecting the extreme events (drought and floods) indicates the 

applicability of the product in hydrological modelling to detect and forecast droughts and floods in areas with 

limited ground station data (e.g., spatial and temporal coverage, quality, and accessibility). Overall, the 

finding, high variability in rainfall (seasonal-decadal) and an increase in T-max and T-min, clearly supports the 

need to develop adaptation measures at a local scale and raise awareness on sectors such as agriculture and 

water resource to mitigate the impacts.
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