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Multi-layer event-based Vehicle-to-Grid (V2G)
scheduling with short term predictive capability
within a modular aggregator control structure

Hannes Krueger, and Andrew Cruden

Abstract—In this work a novel method of event-based V2G
scheduling is devised that is suitable for dynamic real time
aggregator control in large scale V2G applications within cen-
trally controlled EV car parks. The method is applicable in
deterministic systems where a V2G network provides or receives
electricity in reoccurring and predictable patterns (events). The
scheduling strategy shown is based on a robust modular high-level
aggregator control structure and a proposed communications
and data management system. The scheduling consists of three
algorithm layers, differentiating between predictive scheduling
for in-event periods, smart charging for out-of-event periods
and reactive scheduling for ongoing adjustments in real-time to
account for uncertainty. The scheduling process is described in
terms of its underlying rules for prioritising EVs to be either
charged or discharged. It’s behaviour is then analysed using a
simulated car park of up to one thousand connected EVs for an
example application in which a V2G network is used to support
nearby electrified rail infrastructure, providing power for train
acceleration and accepting power from regenerative braking. The
departure or arrival of a train of known type and speed pattern
can be regarded as a reoccurring event and its effect on the
V2G network is therefore predictable due to train schedules and
tracking.

Index Terms—Vehicle-to-Grid, aggregator control, predictive
scheduling

I. INTRODUCTION

The desire to reduce our dependency on fossil fuels and
resulting environmental impacts in individual transportation
has led to significant increases in the number of electric
vehicles (EVs) in recent years. According to the International
Energy Agency, the global EV fleet grew by 2 million,
exceeding 5.1 million in 2018 alone [1]. The global automotive
industry is investing heavily in EV technology to increase
market penetration. This includes industry heavy-weights such
as Ford [2], Toyota [2], Volkswagen [2][3], Nissan [2] and
Porsche [4].

While generally regarded as a positive development, this
electrification creates major challenges for power grids world
wide. Shifting individual transportation away from fossil fuel
combustion increases the electricity demand for EV battery
charging and creates power demand peaks if charging is not
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managed effectively. In order to mitigate these challenges
much work has been done in the field of EV smart charging
[5][6][7].

The concept of V2G goes further in an attempt to turn EVs
into a valuable resource for power grids rather than just a
burdensome load. It describes the use of EV battery packs as
aggregated distributed grid-based energy storage. This requires
bi-directional power flow between parked EVs and the power
grid [8][9]. The power flow is generally managed by a so-
called aggregator, which arbitrates between the needs of EVs
and the Grid (ensuring a net flow of energy to the EV battery
pack to recharge it for driving purposes). A V2G network
needs to serve both the grid and the connected EVs sufficiently
to a) fulfil the designated grid service provided, and b) to
battle potential range anxiety from EV owners and encourage
participation in V2G schemes [10].

To manage the power flow between an EV and the power
grid, the aggregator requires information about the current
state of the EV’s battery pack. At a minimum, the information
required is the State-of-Charge (SOC) as well as the overall
capacity and possible rate of charge/discharge. For this data
to be transmitted, the EV must be equipped with suitable
hardware and software that allows for access from the aggre-
gator. As outlined in previous work [11], the author’s assume
that each EV and EV charger on the network is equipped
with communication hardware able to transmit and receive
information via Ethernet or Wi-Fi connection using the REST
API [12][13]. However, no generally accepted standard for
such hardware and software is currently adopted in the electric
vehicle industry.

V2G has been proposed for various applications; each
different in scale and requirements towards overall system
responsiveness (i.e. how quickly a V2G network adapts to
changes in power demand or EV population). In [14] V2G
is being proposed for load shifting with scheduling taking
place for a whole day ahead using hourly time intervals.
Similarly, [15] proposes a decentralised V2G dispatch strategy,
where schedules are determined at the beginning of every
30 minute time interval. [16] proposes the usage of V2G
for aggregator profit maximisation during peak load shaving
while lowering the cost of EV charging to the customer. The
model used includes factors such as battery degradation and
battery replacement costs and uses 30 minute time intervals
for scheduling. The maximisation of aggregator profits is
also the aim of [17], which is using a 5 minute resolution.
[18] aims at minimising charging costs of EVs using time



IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. XX, XXX 2015 2

Fig. 1. (a) V2G for support of local electric rail systems, system overview and power flows: EV population acts as buffer between the grid connection and the
fluctuating rail system power demands to ensure steady power flow from the grid; (b) Rail system power demand over one hour (3 trains arriving/departing
sequentially, varying dwell time): traction power drawn for train acceleration - positive/red, power supplied from regenerative braking - negative/blue.

intervals of 1 hour for a large scale V2G network of up to
400 distributed EVs. Also aimed at minimising the charging
costs of individual EVs is the work presented in [19] where a
resolution of 10 minutes was identified as the best compromise
between precision and computational cost. In [20] EV users
are offered a variety of contracts when connecting to a V2G
network stating how much energy will be charged, how much
will be made available for V2G as well as the charging costs
and compensation for V2G participation. Such an approach
gives a lot of control to the EV user but adds significant
complexity and constraints to the scheduling process.

In the examples above system responsiveness is not a major
consideration as changes in power demand are gradual and
a delay of a few seconds in making scheduling decisions
would not significantly effect the system performance. In [21]
a V2G network is used to provide frequency regulation in
a power grid with integrated renewable electricity generation
while minimising costs. An EV population of 1,000 EVs was
simulated, but execution times for decision making processes
have not been reported. Similarly in [22] a V2G network also
provides frequency regulation but the focus lies on fairness
criteria in the treatment of different EVs (fair distribution of
power within the EV population). Again, execution times have
not been reported. The response times required for frequency
regulation can vary widely between ”milliseconds” up to 20
minutes [23], whereas primary frequency response requires
energy storage systems to deliver rated power within 10
seconds [24].

The V2G concept has the potential to provide system
response times within a few seconds or even on a sub-second
time-scale, but certain challenges of vehicle management,
communication and decision making have to be addressed.
These challenges include:

• the scale of EV population on the network
• the changing energy storage potential (connected capac-

ity, power available, SOC of EV battery packs)
• predictability of EV availability and power grid demands

• the necessity to charge EVs over time (constraining
scheduling process)

• aggregator-to-EV communication delays (exacerbated by
the need for encryption to address security and privacy
concerns [25])

• complexity of underlying scheduling rules

The authors believe that the challenges of efficient schedul-
ing in large scale, centrally controlled V2G networks (whole
network working towards a common goal) with regards to
system responsiveness are not yet sufficiently addressed in
literature. Therefore a novel approach to V2G scheduling is
being proposed that is aimed at increasing system respon-
siveness by utilising both, predictive scheduling (charge and
discharge decisions taken ahead of predictable changes in
power demand) and reactive scheduling (decisions taken in
reaction to changes in power demand).

Uncertainty is a major challenge of a purely predictive
scheduling approach whereas a purely reactive scheduling
approach leads to a lag in system response. When combined,
rather than using complex stochastic programming (mod-
elling/optimisation involving uncertainties and probabilities),
the predictive scheduling element can ignore uncertainties and
assume perfect knowledge on the connected EV population
and the changes in power demand over the period being
scheduled. The reactive scheduling element can then account
for uncertainties and refine the schedule over time (the better
the initial predictive scheduling, the less interference is needed
from the reactive scheduling element).

The author’s novel approach to combine predictive and reac-
tive scheduling requires careful consideration within the high
level aggregator control strategy to ensure system integrity
and inter-compatibility. As multiple algorithms would share
responsibility over the scheduling process sequencing and
communication between the algorithms need to be carefully
designed to avoid issues linked to race errors (where the
behaviour of an algorithm may change depending on the order
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Fig. 2. Modular aggregator control structure with tasks of data collection, V2G scheduling and schedule implementation split into separate modules accessing
a mutual database [11].

in which sub-routines are executed [26]).
For example, an EV charger might receive two instructions

in the wrong order because a communication delay elsewhere
on the network delayed the execution of one of the scheduling
algorithms. Hence, the outlined V2G scheduling approach is
embedded within a modular aggregator control structure which
allows for real-time aggregator control with dynamic response
to changes in power demand or connected EV population.

As an example on how multi-layer event-based V2G
scheduling could be used, a scenario is presented in which
a V2G network supports nearby electric rail traffic. Traction
power demands of accelerating electric trains or excess power
from decelerating trains utilising brake energy recovery are
causing rapidly changing load patterns on the local power
grid. A V2G network could support rail infrastructure locally
by acting as a power buffer between rail system and power
grid (directly represented by the local substation) as shown in
Figure 1. This V2G application is being explored as part of
the authors’ involvement in the ”TransEnergy - Road to Rail
Energy Exchange (R2REE)” research project [27]. Various
types of energy storage either on-board or along track lines
have been proposed to accept power from regenerative braking
for later use during acceleration [28]. Another approach is
dwell time optimisation in which the departures and arrivals
of trains on a network are synchronised so that accelerating
trains accept power from decelerating ones [29] (significantly
constraining train schedules).

In this V2G application, as electric trains accelerate (causing
a spike in power demand for traction) the connected EV
population (or parts thereof) would be discharged, feeding into
the rail system and reducing the load on the local substation.
As arriving trains decelerate using regenerative braking, the
resulting spike in power from the rail system would be fed into
the V2G network. Both these operations reduce fluctuations
in the power demand experienced by the substation (similar
in effect to the concept of dwell time optimisation [29] but
without the constraints to train schedules). In periods without

rail traffic, the EV population can draw power from the shared
grid connection for battery charging, thereby maintaining a
steady power flow from the grid. Using a V2G network for
electric rail support could offer a number of advantages:

• lowering grid connection upgrade requirements for new
rail electrification projects (support from the V2G net-
work could lower peaks in power demand from train
acceleration experienced by the grid)

• lowering grid connection upgrade requirements for new
EV charging infrastructure (assuming an EV car park can
share the connection with the electrified rail infrastruc-
ture)

• enabling regenerative braking for electric trains where it
has not been available before (leading to energy savings
and potentially cost savings due to reduced wear on the
mechanical brake systems[28])

II. MODULAR AGGREGATOR CONTROL STRUCTURE

The nature of V2G networks differs from most other energy
storage technologies as the storage capacity as well as the
power the system can provide vary significantly with the
number and state of the connected EVs. Depending on the
application, these parameters can be very difficult to predict
as individual EVs may connect or disconnect from the network
at any time. This is particularly true if V2G is implemented
in a public setting rather than in a limited, strongly controlled
environment (i.e. managing a commercial vehicle fleet with
known driving schedules). An ideal aggregator control strategy
is expected to be:

• Dynamic: The system can quickly adapt to changes in
both the EV population and the power grid in real time.

• Scalable: The system can manage a wide range in
numbers of connected EVs.

• Robust: A faulty communication route (i.e. to a single
EV with malfunctioning hardware) does not “break” the
whole system.
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Fig. 3. Flow diagram of the data collection module responsible for regularly
updating EV data in SQL database.

• Computationally efficient: The execution and sequenc-
ing of tasks is optimised to ensure low computational
costs.

• Compatible: All parts of the V2G network comply with
common hardware and software standards to ensure inter-
compatibility.

In order to achieve the above, the authors are using the
modular aggregator control structure described in [11] to simu-
late aggregator-to-EV communications and control algorithms
overseeing a large-scale car parked based V2G network. The
approach separates V2G aggregator control processes into data
collection, scheduling and schedule implementation modules
(see Figure 2) where each task can be shared between multiple
modules (significant for the multi-layer scheduling approach
outlined later in Section III). Any communication between
modules is indirect through the use of a mutually accessible
Structured Query Language (SQL) database.

The system is designed to enable dynamic real-time ag-
gregator control and as such individual modules operate
continuously without ever reaching a set end-state. Further
the high level control structure does not force any fixed
resolution or time steps on individual modules. This aides
system responsiveness as modules are not forced to wait for
each other, but could lead to computational inefficiencies and
redundancy (for example, EV data might be updated more
often than actually needed).

A. Data collection; input for scheduling modules

The scheduling routines make use of EV data from the
mutual database to determine how each individual EV should
be charged or discharged. This information is sourced and
entered into the database beforehand through data collection
modules which are executed independently following the rou-
tine in Figure 3. The necessary aggregator-to-EV communi-
cation uses either Ethernet or Wi-Fi connections along with
the REST API [12][13] in a master-slave configuration. The

Fig. 4. Flow diagram of the schedule implementation module responsible for
executing orders as specified in the schedule.

master (aggregator) requests EV data while the slave (EV)
only responds to requests and never initiates communication.
Here it is assumed that all connected EVs possess REST
API compatible communication hardware and that EV battery
packs are continuously monitored by the on-board battery
management system.

Requests for EV data can take the form of a ”full call”
where the aggregator demands all relevant EV data (i.e. ID,
battery pack capacity, maximum charging rate, etc.) or a ”short
call” where only the (continuously changing) battery pack
state of charge is expected. While this data might be older for
some EVs than for others (EVs are contacted sequentially), for
scheduling it is assumed that any information in the database is
accurate and up-to-date at the point of scheduling. The dataset
for each EV on the V2G network is assumed to have the
following format:

• EV ID: A unique integer value (using internal auto-
increment database function) used to identify connected
EVs.

• IP address: Unique internet protocol (IP) address of
the charging hardware corresponding to each EV. It is
assumed that each EV has its own network connected
charger (either on-board or external).

• Capacity: EV battery pack capacity (in kWh) as an
unsigned float value.

• SOC: EV battery pack State of Charge (in %) as an
unsigned float value.

• Charging rate: Current charging rate of this EV (in
kW) as a signed float value. A negative value represents
discharging of the EV battery pack.

• Maximum charging rate: Assumed current maximum
charging rate for this EV (in kW) as an unsigned float
value. The value depends on the EV’s battery pack (and
may change with SOC) and the charging hardware. The
lower limit shall apply.

• Maximum discharging rate: Assumed current maxi-
mum discharging rate for this EV (in kW) as an unsigned
float value. Again, the value depends on the EV’s battery
pack and charging hardware. The lower limit applies.

• Event status: Binary value to signal if this EV is
currently assigned to provide grid services for an event
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Fig. 5. Modular aggregator control structure using multiple independent scheduling modules.

(as described in section III). A value of 1 means the
EV is assigned to an event (limiting its usage for other
scheduling operations). A value of 0 means the EV is
not currently used for grid services and can be assigned
freely during scheduling.

• Charge Weighting (CW)*: An unsigned float value
quantifying the EV’s suitability to receive power (the
higher the value, the higher the chance of this EV to be
allocated to charging) - see equation 1. Value is zero when
SOC is 100 % and thus an EV cannot be charged further.
Derived from other parameters and calculated within the
database.

• Discharge Weighting (DCW)*: An unsigned float value
quantifying the EV’s suitability to deliver power (the
higher the value, the higher the chance of this EV to be
allocated to discharging) - see equation 2. Value is zero
when SOC is zero and thus an EV cannot be discharged
further. Derived from other parameters and calculated
within the database.

The underlying functions used to evaluate the dimensionless
CW and DCW scores are highly dependent on the specific
application. Generally, in situations when power has to be fed
into the car park, EVs are particularly useful to the aggregator
if their battery pack SOC is low, their battery pack capacity
is high and their current maximum charging rate is high.
Similarly, when power has to be supplied by the car park,
EVs are particularly useful if their battery pack SOC is high,
their battery pack capacity is high and their current maximum
discharging rate is high. Hence, for the scope of this paper we
can define:

CW = (1−SOC)∗ Capacity

Base Capacity
∗Max Charging Rate

Base Power Rating
(1)

DCW = SOC ∗ Capacity

Base Capacity
∗MaxDischarging Rate

Base Power Rating
(2)

Base Capacity and Base Power Rating are chosen to be 1
kWh and 1 kW respectively. Depending on the application for
V2G, these equations may be altered to include factors that are
currently unaccounted for (i.e. information on future journeys,
battery state of health, user preferences, etc.) or to increase
the relative importance of specific parameters (i.e. increasing
the weight of the maximum charging/discharging rates in
high power applications). Using this approach of determining
an EV’s suitability to supply or receive power prior to the
scheduling process aids overall system responsiveness as it
reduces complexity during the scheduling process.

B. Schedule implementation; output from scheduling modules

Before discussing the scheduling process, the format of the
anticipated output is to be determined. The schedule as defined
in this paper is a list of charging instructions, or ”orders”, that
are fed into the SQL database for subsequent handling by the
schedule implementation module as shown in Figure 4. Again,
aggregator-to-EV communication uses either Ethernet or Wi-Fi
connections and the REST API in a master-slave configuration.
Each order represents the instruction to change the charging
rate of a specific EV to a given value at a given time. The
SQL table ”schedule” contains all orders in the format outlined
below.

• Order ID: A unique integer value (using internal auto-
increment database function) used to identify orders in
cases where the schedule has to be revised.

• Execution time: Time at which this order is to be
implemented in the datetime format. It is assumed that all
devices on the network are synced following the universal
coordinated time (UTC) time standard.

• IP address: Unique IP address of the charging hardware
to receive the order in binary format. It is assumed that
each EV has its own network connected charger.

• Charging rate: Anticipated charging rate (in kW) as
a signed float value. A negative value represents an
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instruction to discharge the EV battery pack at the given
rate.

• Order status: Data string used for schedule implemen-
tation/revision. If empty, this order is not yet due for
execution and could be revised/cancelled if necessary.
If ”queued”, the (or one of multiple) implementation
module(s) picked up and is about to execute this order
(to avoid contradictory instructions and race errors [26]
this order cannot be altered). If ”cancelled”, this order
was revised by subsequent scheduling and will not be
executed.

III. EVENT-BASED V2G SCHEDULING

Fig. 6. Combined effects to two stacked ”counter-events” on the rail station
power demand

In general, V2G scheduling algorithms have to consider
two sides: the power grid and the EV population being
managed. The requirements of both sides need to be satisfied
to perform a given grid service and simultaneously ensure
EVs are sufficiently charged for mobility purposes. Further,
both sides are generally subject to uncertainties, although some
re-occurring patterns in power demand and supply might be
distinguishable.

This work aims to exploit such patterns on the power
demand side to enable dynamic fast-response V2G scheduling
which is particularly important in applications where power
demands change rapidly and a large number of connected EVs
have to be managed. This is achieved by combining multiple
scheduling algorithm layers within the modular aggregator
control structure (shown in Figure 5) combining both predic-
tive and reactive scheduling to mitigate the disadvantages of
each approach (discussed later in this section).

The example application used in this work is the support of
nearby electrified rail infrastructure where the V2G network
provides power to electric trains leaving a train station and ac-
cepts power from arriving trains utilising regenerative braking.
In this application, the timing and magnitude of the rail power
demands is predictable due to timetabled train operation and
ongoing train tracking. The departure or arrival of a train with

known type and speed pattern can be regarded as a reoccurring
event.

Delays and changes to train schedules are still a source of
uncertainty but the tracking of trains ensures predictive capa-
bility in the short term. Here, it is assumed that the position
of trains on the rail network is continuously monitored. While
this is not always the case yet, positional tracking is commonly
used as part of Positive Train Control (PTC) systems [30]
and might utilise GPS (Global Positioning System) [31][32]
or alternative systems such as the Galileo satellite navigation
system [31].

Within this work an event is defined as either the arrival
or the departure of an electric train at a train station, where
train type and speed pattern are known. It is assumed that two
similar events, for example two identical trains accelerating at
the same rate will result in similar power demands over time,
even if the two events are hours apart. It is further assumed,
that each event has a known beginning and end time (i.e. the
time at which a train moves out of the V2G network’s range
and into the next track section supplied by another substation).
Examples of assumed power demand curves for trains arriving
at or leaving a train station are shown in Figure 6.

Fig. 7. Visualisation of in-event (blue) and out-of-event (green) periods for a
sequence of events (left to right: single train accelerating, single train braking,
train accelerating while another is braking).

As will be shown later, scheduling for events takes place
sequentially so the power demands of two (or more) over-
lapping events (happening simultaneously) may stack or, par-
tially, cancel each other out (as exploited where dwell-time
optimisation is employed [29]). For further discussion, two
events are defined as ”co-active” when either, both require
power flow from the EV car park (i.e. both departing trains)
or both require power flow into the car park (i.e. both arriving
trains). In contrast, two events are defined as ”counter-active”
when one event has a positive power demand and the other
one a negative power demand (i.e. one train departing, one
train arriving). It follows that scheduling differentiates be-
tween in-event periods (during which an event is ongoing)
and out-of-event periods where no events are happening and
different scheduling rules may apply, see Figure 7. Further,
any predictive scheduling is based on current conditions of
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Fig. 8. Three layer scheduling, top-level control routine

the connected EV population. Hence, a degree of uncertainty
remains and predictive scheduling will not yield perfect results
(EVs may unexpectedly disconnect or faulty communication
prevents timely schedule implementation).

This is mitigated by combining predictive scheduling with
a reactive element used to adjust for inaccuracies and the
eventual mismatch in power demand and supply in real-time.
As a result, V2G scheduling is separated into three layers,
operating at times as shown in Figure 7 and prioritised as
such:

• High priority: In-event predictive scheduling (first layer,
rough scheduling)

• Medium priority: Ongoing reactive scheduling (second
layer, finer adjustments)

• Low priority: Off-event smart charging scheduling (third
layer, rough scheduling for bulk of EVs)

The overarching control over how and when these layers are
engaged follows the routine shown in Figure 8. For simplifi-
cation all the following discussion assumes that all connected
EVs are forced to participate in the V2G operation and that
EVs are already assessed in terms of their suitability to receive
or provide electricity (As quantified by CW and DCW). From
the latter assumption it follows that no further analysis of
or comparison between EVs is necessary during scheduling
- the order in which EVs are assigned to charging/discharging
is directly linked to the respective CW and DCW scores.
As a further simplification, unlike in most other scheduling
strategies, economic factors such as electricity prices are not
considered in the scheduling process. However, charging costs
and compensation for participation in this V2G application
would be an interesting topic in itself and should be discussed
in future work in this field.

A. Scheduling for in-event periods, first layer

The first scheduling layer is responsible for managing the
V2G network’s response to events occurring in the near future
(i.e. in a few seconds). It creates the schedule for the whole
duration of an anticipated event before its occurrence. This
layer can be initialised once the starting time of the next event
is known. Within this work it is assumed that due to railway
signalling systems and GPS tracking train departure/arrival
times are known at least 10 seconds beforehand, which is
when this algorithm is initialised. In practice, this time may
vary between different rail systems and does not have to be
constant as long as enough time is available for the execution
of this scheduling layer (see Section IV).

A train departure event begins as the train starts accel-
erating, causing a spike in power demand. The peak value
can vary widely depending mainly on the train’s weight and
acceleration, but is usually on the scale of a few megawatts
(peaks of about 3.6 MW for both traction power drawn and
brake energy provided in [29], about 2 MW and 1.2 MW
respectively in [33]). As the power demand increases quickly,
system responsiveness is paramount. However, due to the
scale of power required, a large number of EVs is needed to
match the demand and each aggregator-to-EV communication
attempt takes time (around 15 milliseconds [11]) and has
to happen sequentially. Thus the number of communication
attempts is to be kept low. In order to do this, the first layer
of scheduling only assigns EVs to start charging/discharging
at their respective maximum charging/discharging rates, rather
than slowly and continuously ramping up charging/discharging
rates for all suitable EVs. At this stage, it is assumed that any
EV can switch from its previous charging/discharging rate to
its current maximum instantaneously at the time determined in
the schedule. Any delay is being mitigated later as the reactive
scheduling adjusts power demands in real-time.

A flow diagram of the algorithm used in this layer is shown
in Figure 9. As a first step the expected power demand profile
for the next event is being loaded into memory. Next all rele-
vant EV data is being obtained from the network-wide mutual
SQL database (IP address, maximum charge/discharge rate,
current charge/discharge rate, CW/DCW). For train departure
events, only EVs suitable for discharge (DCW above a given
threshold value) are considered and EV data is sorted by DCW
from high to low so that the most suitable EVs are being
assigned first. Similarly, for train arrival events EV data is
sorted by CW from high to low - only EVs with a CW of
zero (signalling full battery) are ignored.

Next the algorithm iterates through each time step in the
power demand curve. The temporal resolution is a major
factor determining computational complexity of this layer as
it determines how often the main loop shown in Figure 9 is
executed. In this work one second time step are used. Shorter
time steps could be used for more refined scheduling at the
expense of increased computational cost. The second major
driver of computational complexity is the number of EVs
loaded into memory. This impacts the execution time of each
iteration of the main loop (as each step in the red block in
Figure 9 requires the manipulation of a larger dataset).
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Fig. 9. Predictive scheduling layer flow diagram

Assuming only one event is happening at the time of
execution, the algorithm will sequentially assign EVs to
charge/discharge at maximum rate to match the change in
power demand between each time step. Further, assigned EVs
are marked as ”busy” in the mutual data base (set ”Event
Status” to 1) to prevent conflicting instructions being given
by another scheduling algorithm. As the event comes to an
end and power demands decrease, these EVs are set to return
to their previous charge/discharge rates. As a result, for each
EV being used in an event two new charging instructions are
added to the schedule table.

In more complicated cases where multiple events overlap,
this scheduling layer also has to consider previous schedule
entries. Each event is being scheduled without consideration of
future events. Consequently, schedule entries from a previous
event that is still ongoing may contradict and interfere with
the event currently being scheduled. The predictive scheduling
layer is designed to correct previous schedule entries if appli-
cable before assigning new EVs. This avoids situations where
a subset of the EV population is being discharged to support
a departing train while another subset is simultaneously being
charged to accept power from an arriving train.

Thus any available actions to close the gap between power
demand and power flow from the EV car park are prioritised
in the following order:

1) Take any EVs offline (return to pre-event charging rate)
that were assigned in this event. This is the top priority
to ensure that every EV assignment is reversed as the
event comes to an end.

2) Cancel any outstanding charge/discharge orders sched-
uled for this time step to serve counter-event. This revi-
sion of a previous schedule prevents conflicting charging
instructions from being executed in the future. Only
possible for order not yet queued by the implementation
module(s).

3) Take any EVs offline that are already charg-
ing/discharging at this time step to serve counter-event.
This schedule revision moves forward the execution time
of an already planned order to end an EV assignment.

4) Move orders from any previous co-active event for-
ward/backward. This revision leads to an already
planned EV assignment to be executed earlier or can-
celled later. Only the extra time period of the EV’s
assignment is counted towards the current event.

5) Assign an EV that is not currently serving any event to
charge/discharge at maximum rate. Only when no useful
revisions of previous scheduling decisions are available
are additional EVs being assigned.

6) If there is still a power gap, the current population
of EVs cannot fully serve the event as not enough
suitable EVs are available. Previous assignments are still
valid and the scheduling algorithm will still try to meet
demands as far as possible for subsequent time steps.

B. Reactive scheduling for schedule refinement, second layer

The second scheduling layer is a reactive one continuously
implementing minor corrections in real-time to ensure the
power flow into/out of the EV car park matches the ap-
plication’s power demand (within a given tolerance, here a
value of 5 kW is being used as tolerance). The corresponding
algorithm routine is shown in Figure 10. Corrections may
be necessary due to uncertainty at the time of the predictive
schedule creation (EV data may be outdated, an EV might
have unexpectedly disconnected in the mean time, the power
demand may differ from the initial predictions, etc.).

In contrast to the first layer, the second one does not follow
fixed time steps, but instead loops continuously (the temporal
resolution does not determine execution times but depends on
them). Further, this layer is capable of assigning charging
rates other than an EVs respective maximum charging or
discharging rate at the time of scheduling (if a lower rate for a
single EV is enough to close the gap between power demand
and supply). This gives it the ability for finer adjustments to
the power flow into and out of the EV population. Revisions
to the existing charging schedule or new charging instructions
are fed into the database to be executed by the implementation
module.

As was the case in the first layer, the size of the EV pop-
ulation impacts computational complexity through the size of
the dataset being manipulated. However, any schedule revision
only takes place if the mismatch between car park power flow
and application power demand exceeds the stated tolerance
(see Figure 10). It follows that computational complexity of
this second layer is dependent on the accuracy of the preceding
predictive scheduling. If the predicted power demand in the
previous layer matches the actual power demand (and no active
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Fig. 10. Reactive scheduling layer flow diagram

EVs have suddenly disconnected since) the reactive layer will
not interfere (hence, no need for further communication with
database to load EV data or manipulate the existing schedule).

C. Scheduling for non-event periods (smart charging), third
layer

The third scheduling layer applies a different set of rules
outside of events. Depending on the V2G application these
rules may differ. Considering the electric rail support, this
layer is used as a smart charging scheduler. This is necessary
as the rules of the other scheduling layers inevitably lead to a
situation where, on average, more power is drawn from the EV
population during events than is supplied to the EVs (arriving
trains are expected to supply significantly less energy from
regenerative braking than they require for acceleration - around
a third of the traction energy according to [34]). However,
the aggregator is responsible for ensuring EVs are sufficiently
charged for mobility purposes and must (at least over time)
receive a net charge.

A flow diagram describing the smart charging algorithm
routine is shown in Figure 11. This layer requires two ad-
ditional parameters (both of which may change throughout
the day): a minimum charging rate per EV and an optimal
total power flow from the grid (the power drawn by the EV
car park plus train station through a shared grid connection).
Both values are obtained from the database and have to be
chosen based on car park size and V2G application. Ideally,
the minimum charging rate on its own is sufficient to ensure
EVs are being charged over time.

Fig. 11. Smart charging scheduling layer flow diagram

The algorithm is designed to make full use of the power
available to the EV car park. Individual EVs are assigned
the minimum charging rate plus a share of the remaining
power available that is proportional to each EVs CW value
(up to the maximum charging rate of each EV). The higher
the CW, the more power is being allocated. The computational
cost of this algorithm depends mainly on the size of the
connected EV population. As decisions are based on the pre-
assigned CW scores of EVs no in-depth analysis of EVs is
required. As this layer operates in non-event periods where
system wide power flows only change gradually and system
responsiveness is less significant, computational cost are not
a major concern. Therefore alternative, more complex smart
charging algorithms may be employed instead (taking into
account additional factors such as EV battery degradation,
anticipated EV journeys or fairness criteria).

IV. INTERACTION BETWEEN PREDICTIVE AND REACTIVE
SCHEDULING LAYERS

In order to analyse the behaviour of the scheduling algo-
rithms presented, the same combination of events (a train
departure followed by a train arrival 30 seconds later) are
scheduled and simulated using A) only predictive scheduling
and B) only reactive scheduling. Finally, the same event
combination (altered with a braking manoeuvre unknown to
the predictive layer) is being scheduled for using C) combined
predictive and reactive scheduling.

The scheduling algorithms have been tested using two desk-
top PCs connected to the same computer network via Ethernet
connection. The computer network is not a dedicated one so
traffic outside of the authors’ control can have a minor impact
on the results reported. All aggregator control algorithms (data
collection, scheduling, schedule implementation) were handled
on a machine equipped with an Intel Core i5-2400 CPU
(4x3.1 GHz) and 4 gigabyte DDR3 Random Access Memory
(RAM). The memory usage was carefully monitored to ensure
algorithm execution is not ”bottlenecked” and slowed down by
a lack of memory (typically around 70 % of memory was in
use during operation).

The EV population was simulated on another machine
equipped with an Intel Core i5-4590 CPU (4x3.3 GHz) and
16 gigabyte DDR3 RAM. Available memory is the major
restriction for the number of EVs that can be simulated
(typically around 90 to 95 % of the available RAM is reserved
while simulating 1,000 EVs).
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Each simulated EV has a unique IP address and network
port combination so that aggregator-to-EV communication via
the REST API realistically mirrors the communication delays
that could be expected on a network with a real EV population.
It was found that data collection (requesting information from
an EV, receiving information and storing it in the database) as
well as schedule implementation (retrieving charging instruc-
tions from the database, submitting instructions to EV charger
and receiving confirmation) each take about 15 milliseconds
per EV using an Ethernet connection.

A. Predictive scheduling only

Fig. 12. Simulated V2G network response to two counter-active events (one
train departing at 0 seconds, one train arriving at 30 seconds) using predictive
scheduling only

Initially, only the predictive scheduling layer is being tested
(i.e. the reactive layer is not enabled). The predictive layer is
set up to begin scheduling 10 seconds before an event begins
and to create the schedule for the whole duration of an event in
1 second time steps. The execution times for this layer (time
passed between the program initialisation and the schedule
for a single event being fully passed onto the database) vary
significantly with the number of EVs on the network (see Table
I).

The relationship between execution time and number of EVs
on the network is non-linear as for each time step the algorithm

Number of EVs Min. time (s) Average time (s) Max. time (s)

50 0.007 0.034 0.496
100 0.011 0.353 0.765
200 0.147 0.527 0.844
500 0.328 0.649 1.141
1000 0.469 0.837 1.820

TABLE I
EXECUTION TIMES FOR PREDICTIVE SCHEDULING ALGORITHM FOR
VARYING NUMBER OF CONNECTED EVS (OVER 1,000 SCHEDULING

CYCLES)

stops when a solution is reached or no more EVs are available.
This means that for a low number of EVs, the scheduling
process may be fast, but the power demand may not have been
met. Similarly, for a large number of EVs, solutions might be
reached with less EVs than available and the execution times
only increase as more EV data had been loaded into memory
from the database.

It should be noted that even the longest execution time
reported in Table I with 1.82 seconds is well below the 10
seconds made available to the algorithm before the beginning
of the event. Thus the predictive scheduling could take place
closer to the beginning of an event (which might lead to less
uncertainty at the point of scheduling) or the time available
could be used for more complex scheduling (smaller time
steps, more complex scheduling rules, smaller increments in
charging rates assigned per EV, etc.).

Figure 12 shows the V2G network response to the two
counter-active events for a connected EV population of 500
simulated EVs. The rail traffic power demand over time
represents an input to the scheduling process. The network
response is represented by the sum of all individual EV
power flows over time. This sum changes whenever a new
charging/discharging instruction is being sent to an EV by
the schedule implementation modules (i.e. when the V2G
aggregator is taking action in response to a change in power
demand).

For the purely predictive scheduling approach, the simu-
lations show that the power supplied by the EV population
matches the rail power demand very well and without signif-
icant delay. Delays are being avoided here as the schedule
has been entered into the database and made available to
the schedule implementation algorithm well in advance (10
seconds minus execution time). Minor mismatch in power
supply and demand exist due to the predictive layer’s limitation
of assigning EVs at maximum charging or discharging rate.

However, it must be noted that the predictive scheduling
only followed the predicted power demand curves defined for
departing or arriving trains. Any noise or deviation from these
predictions on the power system have not been part of the
simulation, thus the initial prediction was in fact a perfect one
within this simulation (deviation in power demand from the
initial prediction will be addressed when combining predictive
and reactive scheduling in subsection C).
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Fig. 13. Simulated V2G network response to two counter-active events (one
train departing at 0 seconds, one train arriving at 30 seconds) using reactive
scheduling only

B. Reactive scheduling only

Similar to the test in subsection A, the reactive scheduling
layer has been tested by scheduling for the same event
combination while the predictive layer has been disabled. The
results are shown in Figure 13 (an identical simulated EV
population of 500 EVs has been used). The figure shows that
the V2G network response is following the power demand of
the rail traffic, but that the response is continuously lagging
behind by between 1 and 2.5 seconds. This lag is only in parts
due to the actual schedule creation and primarily caused by
communication delays within the network.

The execution times of the reactive scheduling layer were
found to vary between about 47 and 187 milliseconds with
an average execution time of 73 milliseconds (measured
over 10,000 scheduling cycles, in-event periods only with
500 connected EVs). On average, 48 milliseconds of this
time (between 31 and 140 milliseconds) was required just to
determine the difference in power flow from the EV population
and the power demand from the rail application (see Section
III, Figure 10).

This information is sourced from the SQL database and
delays are therefore due to database communication, database-
internal computation and sequencing of SQL queries (as other

algorithms simultaneously access the same database - see
Section II, Figure 5).

In each cycle the algorithm made between 1 and 21 changes
to the schedule – on average 12.88 schedule changes per
cycle. These new schedule entries in the database have to be
processed by the implementation module and communicated to
the EV chargers (see Section II B.). At around 15 milliseconds
per EV, implementing 13 schedule entries is expected to take
about 195 milliseconds.

The last source of delay in system response is the time taken
to detect the effects of any changes in power flow within the
EV population. The power flow data relied upon for scheduling
originates from the data collection module (see Section II A.)
which updates EV data sequentially. For a population of 500
EVs it was found that, on average, 3.04 seconds pass before
all EVs have been checked. This delay is highly situational
depending on when an EV is being contacted. Thus, any
schedule change made may not be accounted for in subsequent
scheduling cycles for a few seconds.

C. Combined scheduling with predictive and reactive schedul-
ing layer

In the next test both the reactive and predictive scheduling
layers are enabled. Again, the algorithms are determining the
V2G network’s response to a departing train followed by an
arriving train 30 seconds later. To show the ability of this
combined scheduling approach to adjust to uncertainty, the
rail traffic power demand has been altered to differ from the
predicted power demand curves.

As shown in Figure 14, the simulation now features a drop
in the power provided from brake energy recovery of the
arriving train from 1 minute and 17 seconds onwards. This
could present a situation in which a train engages its mechan-
ical brakes for an emergency stop, drastically reducing brake
energy recovery. As this drop was unknown to the predictive
scheduling layer, the initial schedule for charging/discharging
the population of 500 EVs has been identical to that in
subsection A (thus created at the same computational cost).
This initial schedule has then been adjusted by the reactive
layer once a mismatch above the 5 kW tolerance between
power supply and demand has been detected.

Figure 14 shows that the V2G network’s response closely
matches the power demand without any significant delay until
the unpredictable braking manoeuvre, followed by a relatively
consistent delay in network response of about 1 second as the
reactive scheduling layer makes ongoing adjustments. Thus,
the system responsiveness has been improved as long as the
initial prediction closely matches the actual power demand.
Yet, the ability to account for uncertainty has been maintained
by the reactive scheduling layer.

V. CONCLUSION

In this work a novel V2G scheduling strategy was presented
that exploits repetitive power demand patterns and the re-
sulting reduced uncertainty from reoccurring events to enable
predictive scheduling capability. In this context, an event was
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Fig. 14. Simulated V2G network response to two counter-active events (one
train departing at 0 seconds, one train arriving at 30 seconds with sudden
unpredicted braking) using both predictive and reactive scheduling

defined as a time limited, predictable pattern of power demand
over time with known start and end time.

The scheduling strategy is proposed for large scale, cen-
trally controlled V2G networks and consists of three dis-
tinct scheduling layers. The predictive scheduling takes place
shortly before an event commences with each event being
scheduled independently. As perfect knowledge is being as-
sumed (over the event duration) as this layer is executed,
a second reactive scheduling layer is utilised to refine the
schedule in real-time. A third layer is used to apply a separate
set of scheduling rules in periods where no events take place.

This strategy was presented around an example application
in which a V2G network is used to support the power demands
of nearby electric rail traffic. In this context events were
defined as the departure or arrival of electric trains at a station
resulting in a sudden surge in power demand under train
acceleration or excess power under train deceleration enabled
by regenerative braking.

The algorithms presented were developed around a modular
aggregator control strategy that uses indirect communication
via a mutual network-wide SQL database. To reduce compu-
tational cost of the scheduling process the suitability of EVs
to serve each type of events was pre-determined within the

database (CW and DCW).
The assessment criteria for EV suitability greatly depend

on the specific application of V2G and constraints on the EV
population. Scheduling during events (first layer) was resolved
in one second time steps - a sub-second resolution could be
employed however at greater computational cost. Reactive
scheduling (second layer) and smart charging (third layer)
were not bound by fixed time steps.

It was shown that the multi-layer scheduling approach can
lead to a quasi instantaneous system responsiveness as long as
power demands can be accurately predicted. Lags in system
response are still present if uncertainty leads to a mismatch
between expected and actual power demands, but the length
of such lags depends on the magnitude of the mismatch
(determining how many schedule adjustments need to be made
by the reactive scheduling layer).
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and G. Hernández-Chan, “Developing social networks mashups: An
overview of rest-based apis,” Procedia Technology, vol. 3, p. 205–213,
12 2012.

[13] R. Battle and E. Benson, “Bridging the semantic web and web 2.0 with
representational state transfer (rest),” Web Semantics: Science, Services
and Agents on the World Wide Web, vol. 6, pp. 61–69, 02 2008.



IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. XX, XXX 2015 13

[14] R. Shi, Y. Yang, L. Shi, and K. Y. Lee, “Bi-level day ahead optimization
of v2g dispatch strategy based on the dynamic discharging electricity
price,” IFAC-PapersOnLine, vol. 51, no. 28, pp. 462 – 467, 2018. 10th
IFAC Symposium on Control of Power and Energy Systems CPES 2018.

[15] L. Wang, S. Sharkh, A. Chipperfield, and A. Cruden, “Dispatch of
vehicle-to-grid battery storage using an analytic hierarchy process,”
IEEE Transactions on Vehicular Technology, vol. 66, pp. 2952–2965,
April 2017.

[16] E. Sortomme and M. A. El-Sharkawi, “Optimal scheduling of vehicle-to-
grid energy and ancillary services,” IEEE Transactions on Smart Grid,
vol. 3, pp. 351–359, March 2012.

[17] S. Faddel, A. Aldeek, A. T. Al-Awami, E. Sortomme, and Z. Al-Hamouz,
“Ancillary services bidding for uncertain bidirectional v2g using fuzzy
linear programming,” Energy, vol. 160, pp. 986 – 995, 2018.

[18] Y. He, B. Venkatesh, and L. Guan, “Optimal scheduling for charging
and discharging of electric vehicles,” IEEE Transactions on Smart Grid,
vol. 3, pp. 1095–1105, Sep. 2012.

[19] H. Turker and S. Bacha, “Optimal minimization of plug-in electric ve-
hicle charging cost with vehicle-to-home and vehicle-to-grid concepts,”
IEEE Transactions on Vehicular Technology, vol. 67, pp. 10281–10292,
Nov 2018.

[20] A. Ghosh and V. Aggarwal, “Menu-based pricing for charging of electric
vehicles with vehicle-to-grid service,” IEEE Transactions on Vehicular
Technology, vol. 67, pp. 10268–10280, Nov 2018.

[21] S. Gao, K. T. Chau, C. Liu, D. Wu, and C. C. Chan, “Integrated energy
management of plug-in electric vehicles in power grid with renewables,”
IEEE Transactions on Vehicular Technology, vol. 63, pp. 3019–3027,
Sep. 2014.

[22] J. J. Escudero-Garzas, A. Garcia-Armada, and G. Seco-Granados, “Fair
design of plug-in electric vehicles aggregator for v2g regulation,” IEEE
Transactions on Vehicular Technology, vol. 61, pp. 3406–3419, Oct
2012.

[23] Energy Storage Association, “Frequency regulation - executive
summary,” Energy Storage Association, Online Resources,
2019. url: http://energystorage.org/energy-storage/technology-
applications/frequency-regulation, accessed on 04.03.2019.

[24] D. Greenwood, K. Lim, C. Patsios, P. Lyons, Y. Lim, and P. Taylor,
“Frequency response services designed for energy storage,” Applied
Energy, vol. 203, pp. 115 – 127, 2017.

[25] A. Abdallah and X. S. Shen, “Lightweight authentication and privacy-
preserving scheme for v2g connections,” IEEE Transactions on Vehicu-
lar Technology, vol. 66, pp. 2615–2629, March 2017.

[26] C. Q. Adamsen, A. Møller, R. Karim, M. Sridharan, F. Tip, and K. Sen,
“Repairing event race errors by controlling nondeterminism,” Proceed-
ings of the 39th International Conference on Software Engineering,
pp. 289–299, 2017.

[27] D. Stone, “Details of grant, transenergy - road to rail
energy exchange (r2ree),” Engineering and Physical Sciences
Research Council (EPSRC) Online Resources, 2015. url:
http://gow.epsrc.ac.uk/NGBOViewGrant.aspx?GrantRef=EP/N022289/1,
accessed on 27.02.2018.

[28] M. Ceraolo, G. Lutzemberger, E. Meli, L. Pugi, A. Rindi, and G. Pancari,
“Energy storage systems to exploit regenerative braking in dc railway
systems: Different approaches to improve efficiency of modern high-
speed trains,” Journal of Energy Storage, vol. 16, pp. 269 – 279, 2018.

[29] F. Lin, S. Liu, Z. Yang, Y. Zhao, Z. Yang, and H. Sun, “Multi-train
energy saving for maximum usage of regenerative energy by dwell time
optimization in urban rail transit using genetic algorithm,” Energies,
vol. 9, p. 208, 03 2016.

[30] Z. Zhang, X. Liu, and K. Holt, “Positive train control (ptc) for railway
safety in the united states: Policy developments and critical issues,”
Utilities Policy, vol. 51, pp. 33 – 40, 2018.

[31] V. Behrends, M. Haunschild, and N. Galonske, “Smart telematics
enabling efficient rail transport – development of the viwas research
and development project,” Transportation Research Procedia, vol. 14,
pp. 4430 – 4439, 2016. Transport Research Arena TRA2016.

[32] R. I. Rajkumar, P. E. Sankaranarayanan, and G. Sundari, “Gps and
ethernet based real time train tracking system,” in 2013 International
Conference on Advanced Electronic Systems (ICAES), pp. 282–286, Sep.
2013.

[33] S. Fazel, S. Firouzian, and B. Khalkhali Shandiz, “Energy-efficient
emplacement of reversible dc traction power substations in urban rail-
transport through regenerative energy recovery,” International Journal
of Railway Research, vol. 1, no. 2, 2014.
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