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Abstract—Passive localization based on time of arrival (TOA)
measurements is investigated, where the transmitted signal is
reflected by a “passive” target and then received at several dis-
tributed receivers. After collecting all measurements at receivers,
we can determine the target location. The aim of this paper is
to provide a unified factor graph based framework for passive
localization in wireless sensor networks based on TOA measure-
ments. Relying on the linearization of range measurements, we
construct a Forney-style factor graph model and conceive the
corresponding Gaussian message passing algorithm to obtain the
target location. It is shown that the factor graph can be readily
modified for handling challenging scenarios, such as uncertain
receiver positions and link failures. Moreover, a distributed local-
ization method based on consensus-aided operation is proposed
for a large scale resource constrained network operating without
a fusion center. Furthermore, we derive the Cramér-Rao bound
(CRB) to evaluate the performance of the proposed algorithm.
Our simulation results verify the efficiency of the proposed
unified approach and of its distributed implementation.

Index Terms—Passive Localization, Time of Arrival, Wireless
Sensor Networks, Forney-style Factor Graph, Distributed Pro-
cessing, Consensus Operation, Cramér-Rao bound

I. INTRODUCTION

Over the last decades, the advances in low cost sensors
have enabled the development of compelling applications in
communications [1].The sensor nodes which can communicate
with each other through wireless links have been deployed for
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environmental monitoring, temperature detection, emergency
and rescue operations as well as for many other applications
of wireless sensor networks (WSN) [2], [3].

In general, the nodes are located based on so-called an-
chor nodes with known positions and their related inter-
node measurements using radio frequency signals. A variety
of measurement techniques have been considered for WSN-
aided localization, which can be broadly divided into angle
of arrival (AOA) [4], time of arrival (TOA) [5] and received
signal strength (RSS) [6] based techniques. The disadvantages
of AOA-based methods are that their specific required array
structures are unsuitable in some scenarios and that their AOA
measurements are sensitive to the multipath components. By
contrast, the RSS-based method are often more attractive,
since they are based on standard features of the sensors and
they do not impose substantial power consumption. However,
the performance of RSS-based methods also remains limited
by the fading of wireless channels. Finally, the TOA-based
methods measure the time required for the signal to travel from
the transmitter to a receiver. Using ultra-wideband (UWB)
signaling in TOA measurements is capable of providing high-
precision range measurement [7], [8]. In this contribution, we
mainly focus our attention on the TOA-based method.

The general family of localization problems can be further
classified as active and passive localization [9], as shown
in Fig. 1. In contrast to conventional active localization,
the nodes to be located in passive scenario do not have
the ability to obtain range measurements. To determine the
location of passive target, a transmitter sends a signal which
is reflected or relayed by the passive target, which is then
captured by the receivers. Most of the TOA based localization
techniques fall into the category of active localization [10].
For passive localization, a two-step estimation (TSE) method
was proposed in [11] based on TOA measurements. However,
Shen et al. [11] assume having synchronous transceivers
with accurately known positions, which may be unrealistic
in practical applications. In this work, we aim for addressing
the main challenges in TOA based passive localization, which
can be summarized as follows:

1. Inaccurate positions of transceivers: In WSN, the size
and cost limit of sensor nodes result in constrained resources,
such as energy, memory and communications bandwidth.
Equipping the transmitter and all receivers with a location
device such as global positioning system (GPS) may lead
to an excessive cost and energy consumption. The resultan-
t erroneous position information will severely degrade the
overall system performance. The problem of localization in
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Fig. 1. Active and passive localization case. In active case, the target (agent)
has the ability of locating itself based on the measurements from sensors with
known positions (anchor). In passive case, the measurements are obtained at
receivers by acquiring the signals from the transmitter and reflected by the
target.

the face of anchor position uncertainty has been extensively
investigated in active localization [12], [13]. To elaborate, the
target location can be accurately determined in the presence of
inaccurate anchor positions based on the method of moments
[12] and Bayesian filtering [13]. In our prior work [14], we
have studied the passive localization of targets in the face
of inaccurate receiver positions based on belief propagation.
However, the target was assumed to be static and the impact
of the transmitter’s uncertain position was not investigated in
detail.

2. Time synchronization: In TOA based measurement
methods, having accurate clock synchronization is a vital
requirement. Even a slight clock bias will lead to significant
performance loss.1 Generally, network synchronization can be
achieved by packet-based synchronization before localization
[15]. However, in harsh environments, the oscillator is affected
and the clock bias varies with time. Consequently, the network
has to be frequently re-synchronized, which imposes high
power consumption. Taking the close relationship between

1The impact of slight clock bias on communication links can be neglected
since the synchronization constraint for communication is at the order of micro
seconds.

synchronization and localization into account, sophisticated
schemes have been proposed for simultaneous synchronization
and active localization [16]–[18]. In passive localization, Zhou
et al. [19] exploited the time difference of arrival (TDOA)
to eliminate impact of imperfect clock.In [20], a maximum
likelihood method relying on Tinkhonov regularization was
proposed for quasi-synchronous networks, while an expecta-
tion maximization based method was devised in [21], which
treated the clock offsets of the receivers as hidden variables.
In these treatises, the clock information is time invariant and
the inherent clock skew is not considered.

3. Outliers in WSN: Localization in WSNs is based
on measurements collected from multiple sensors. The mea-
surements may be prone to unexpected changes in harsh
environmental conditions. Furthermore, if there exist malicious
sensor nodes in a WSN, flawed measurements will occur.
We term the flawed observations which differ significantly
from the normal readings as outliers. These outliers have to
be detected in order to maintain high localization accuracy.
A survey of outlier detection methods was provided in [22].
An efficient RSS measurements based approach was proposed
in [23] for indoor environments. Jian et al. [24] defined the
outlier detection problem of network localization and laid the
theoretical foundations of outlier identification.

On the other hand, in the existing passive localization
methods, a fusion center is required and the estimation process
is executed centrally. However, in energy-constrained WSNs,
the prohibitively high cost of transmitting information to a
distant fusion center is undesirable. Hence conceiving effective
distributed processing algorithms for WSNs is desirable. By
exchanging local information with single-hop neighbor sen-
sors, the distributed algorithm is able to estimate the unknown
variables almost as accurately as if the measurements of other
sensors were made explicitly available. To achieve this, the
range measurements can be directly shared within the WSN,
which regards each sensor as a fusion center. Based on the idea
of consensus proposed by Tsitsiklis [25], likelihood consensus
has been proposed by Meyer et al. in [26] for sensor self-
localization and distributed tracking. In likelihood consensus
(LC), the global likelihood function (GLF) is constructed as
the product of local likelihood functions (LLF). The GLF can
be obtained at each sensor by exchanging LLFs amongst each
other. As a result, all sensors reach consensus on the GLF.
To tackle the problem caused by nonlinear terms in LLF,
distributed particle filtering (DPF) was proposed by Hlinka
et al. in [27]. DPF is effective, but it suffers from high
communication overhead and complexity, which hinders its
implementation in WSNs.

In this contribution, we first represent the conventional
passive localization problem of [11] by a factor graph [28].2

Then the classic message passing algorithm is invoked for
determining the a posteriori distribution of target location
based on the factor graph. However, the integration to be
carried out in message updating is intractable, since the
Euclidean norm involved in range measurements is nonlinear.

2Localization based on the factor graph framework has already been
investigated in the literature, e.g., [10], [14], [16], [18], [27], but mostly in
the area of active localization.
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Particle filtering (PF) [29] based methods are capable of
solving this problem but the associated complexity is very
high. To address this problem, the nonlinear Euclidean term in
range measurements is linearized based on Taylor expansion.
Consequently, we arrive at a linear model, which can be
represented by a Forney-style factor graph and then Gaussian
message passing [30] can be employed. Then we extend the
factor graph framework to address the aforementioned three
main challenges faced in TOA based passive localization.
It is shown that the factor graph corresponding to different
problems can be readily modified by adding corresponding
factor nodes and edges. Additionally, considering a WSN
operating without a fusion center, a distributed implementation
of the proposed factor graph approach is proposed. Motivated
by the fact that the ‘belief’ of a variable is the product of
all incoming messages determining this variable, and that the
means as well as covariances of messages can be calculated
locally at each receiver, we can rely on the consensus method
to reach agreement concerning the mean and the covariance
matrix. Since only the vectors of mean values and covariance
matrices are exchanged among the network nodes, the cost is
much lower than that of DPF.

Briefly, the main contributions of this paper are summarized
as follows,

• The problem of jointly locating moving passive targets
in the face of imperfect transceivers is considered. A
Forney-style factor graph representation [28] is conceived
for low-complexity Gaussian message passing algorithm.

• The passive localization problem of a time-variant asyn-
chronous network is solved. By approximating the range
measurements related to the TOA information and target
location, a state space model is constructed and the GMP
algorithm [31] is implemented based on the correspond-
ing factor graph.

• Based on the factor graph framework, a GMP algorithm
is conceived for detecting link failures and simultane-
ously for passive localization. Furthermore, to tackle the
calculation of messages at a product node, a variational
message passing algorithm is developed.

• Distributed methods based on the consensus concept is
proposed for distributively determining the parameters at
each local receiver.

• The Cramér-Rao bound is derived to evaluate the perfor-
mance of the proposed algorithms.

The rest of this paper is organized as follows. In Section
II, the conventional passive localization model is introduced.
Then in Section III we develop our factor graph based
approach to address the challenges of passive localization.
Section IV presents our distributed processing algorithm based
on the consensus method. We then derive the Cramér-Rao
Lower Bound for passive localization in Section V. In Section
VI, our simulation results are provided and discussed. Finally,
our conclusions are offered in Section VII.

Notation: (·)T and (·)−1 denote the transpose and the
inverse operator, respectively; ‖·‖ denotes the Euclidean norm;
·̂ denotes the estimate of an unknown variable; E denotes the
expectation operator; δ(·) denotes the Dirac delta function;

N (x,mx, Vx) denotes a Gaussian distribution of variable x
with mean mx and variance Vx, N (x,mx,Vx) denotes a
Gaussian distribution of vector variable x with mean vector
mx and covariance matrix Vx; ∝ denotes the function on
the left hand is proportion to the right hand; the ∇x denotes
the differential operator with respect to x; 1M denotes an M -
dimensional row vector with all components being 1; diag{x}
denotes a diagonal matrix with the main diagonal entries being
the elements of x and the entries outside the main diagonal
are all zero; covx denotes the covariance matrix of x; A � B
denotes that A−B is positive semi-definite.

II. PRELIMINARIES

As shown in Fig. 1(b), we consider a WSN constitutes of
one target, one transmitter and M = |M| receivers, where
M is the set of all receivers.3 The target moves on the plane
while the transmitter and the receivers are static. Without loss
of generality, we denote the location of target at time instant
k by xk = [xk, yk]T, the location of transmitter by xt =
[xt, yt]

T, the location of the ith receiver by xi = [xi, yi]
T and

xr = [xT
1, ...x

T
M ]T as the collection of all receivers’ positions.

An impulse sent by the transmitter is reflected by the target
and then received by M receivers.4 For the ith receiver, the
observed signal propagation time tki from the transmitter to
the ith receiver via the target can be determined from TOA
measurements as 5

tki =
(
‖xk − xt‖+ ‖xk − xi‖

)
/c+ ωki , (1)

with c and ωki denoting the speed of light and the measurement
noise. Multiplying both sides of (1) by c, the range measure-
ment from the transmitter via the target to the ith receiver
follows

zki = dki + wki = ‖xk − xt‖+ ‖xk − xi‖+ wki . (2)

The range measurement noise wki is modeled as a zero mean
Gaussian variable with variance (σki )2. We assume that the
noise at different time instants is independent and identically
distributed, i.e., (σki )2 = σ2

i , ∀k. Thus the likelihood function
is given by

p(zki |xk) =
1√

2πσ2
i

exp

(
−
(
zki − ‖xk − xt‖ − ‖xk − xi‖

)2
2σ2

i

)
,

(3)

Furthermore, we denote the collection of all range measure-
ments at instant k as zk = [zk1 , ..., z

k
M ]T and z = [(z1), ..., zn],

and the collection of target locations as x = [x1, ...,xn]. Since

3The single target model can be extended to a multiple targets one, in
which the separation of targets is important. Several methods, e.g. blind source
separation and data association have been developed for this purpose, see [32],
[33] for details.

4The multipath effect and clutters will affect the localization performance.
We can employ background subtraction method, such as RIMAX algorithm
[34] to extract the TOA measurements to receivers.

5The TOA measurement will be affected by imperfect observation condi-
tions, such as measurement noise, variations of clock, baffle objects and sensor
failures. For clarity of exposition, herein we only consider the conventional
passive localization [11] with TOA measurement noise. Other environmental
impairments are modeled and discussed in the following sections, respectively.
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Fig. 2. Factor graph representation for the factorization (7). The node ’=’
denotes the equality constraint fδ

the noise samples at different time instants and receivers are
independent, we formulate the global likelihood function as,

p(z|x) =

n∏
k=1

M∏
i=1

p(zki |xk). (4)

Our goal is to locate the target location in real time based on
the collection of range measurements z, which is equivalent
to calculate the a posteriori distribution of x. Following the
Bayes’ theorem, we have p(x|z) ∝ p(x) p(z|x), where p(x)
is the joint a priori distribution of the target location, which
obeys the Markov chain,

p(x) = p(x0)

n∏
k=1

p(xk|xk−1), (5)

where p(xk|xk−1) denotes the state transition probability.
Assuming that p(x0) is the initial a priori information, we
have the state transition function as

xk = xk−1 + δt ŝ
k−1 + ∆s, (6)

where ŝk−1 = [ŝk−1x , ŝk−1y ] = (x̂k−1 − x̂k−2)/δt denotes the
estimated velocity at instant (k − 1), δt is the time slot dura-
tion and ∆s is transition noise distributed as N (∆s,0,Vs).
Consequently, we have the factorization of the a posteriori
distribution as

p(x|z) = p(x0)

n∏
k=1

p(xk|xk−1)

n∏
k=1

M∏
i=1

p(zki |xk). (7)

Generally, we want to obtain the target location at some
certain instant k under the MMSE criterion x̂k = Exk(xk|z),
which requires the marginal distribution of xk. To avoid the
exponential complexity of direct marginalization, we resort
to the factor graph approach, which is efficient in solving
marginalization problems.

III. PASSIVE LOCALIZATION WITH UNIFIED FACTOR
GRAPH FRAMEWORK

A. Factor Graph Representation

The classic factor graph is comprised of edges representing
variables and factor nodes representing functions. An edge
is connected to a factor node if and only if the variable
is involved in this function. By applying the sum product
algorithm (SPA) [35] to the factor graph, the approximate
marginal distributions (“belief”) of variables are obtained, i.e.
b(x) ' p(x|z). Using the shorthand fki for the likelihood
function (3) and fk|k−1 for the state transition function, the
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Fig. 3. Factor graph for TOA passive localization with inaccurate transceiver
positions.

factor graph representing the factorization in (7) is shown in
Fig.2. Since in (Forney-style) factor graphs, there is a unique
edge for every variable and that every edge can connect at
most two factors. Therefore the equality constraint node =
is introduced that allows more than two factors to connect to
the same variable.

The belief of target location at instant k is expressed as

b(xk) = µfk|k−1→xk(xk)

M∏
i=1

µfk
i →xk

i
(xk) , (8)

where µf→x denote the message from f to x. Then the
estimate of the target location is given by x̂k = Exk [b(xk)].

B. Position Uncertainties of Transceivers
The positions of transceivers are not always perfectly

known. In such situations, they should be inferred from the
joint a posteriori distribution p(x,xt,xr|z). Using a similar
factorization to that in (7), the factor graph is modified by
adding edges related to the transceivers’ positions, which is
shown in Fig. 3. Note that the factor graph is no longer loop
free, hence an iterative message passing scheme is utilized to
compute the belief. For example, upon denoting the iteration
index by l, the message µ(l)

fk
1→xk

1
(xk1) is calculated according

to the SPA rules as

µ
(l)

fk
1→xk

1
(xk1) =

∫∫
fk1 µ

(l)

ẋ1,k→fk
1

(ẋ1,k)µ
(l)

ẋt,k−1→fk
1

(ẋt,k−1)

dẋ1,kdẋt,k−1. (9)

The integration in (9) can not be carried out analytically due to
the nonlinear square root terms in the range measurement. Sev-
eral approximate methods have been proposed for solving this
problem, such as PF [29] and min-divergence approximation
[36]. Both methods suffer from high complexity, since a high
number of samples are used. In view of the iterative nature of
loopy message passing, at instant k and the lth iteration, we
perform the first order Taylor expansion on the Euclidean norm
based on previous estimated target and transceiver locations,

dki = ‖xk − xi‖+ ‖xk − xt‖ (10)

' Ak,(l−1)i xk +B
k,(l−1)
i xi + C

k,(l−1)
i xt +D

k,(l−1)
i ,
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Fig. 4. State space model based factor graph for TOA passive localization
with inaccurate transceivers.

where A
k,(l−1)
i , B

k,(l−1)
i , C

k,(l−1)
i and Dk,(l−1)

i are given as

A
k,(l−1)
i =

(x̂k,(l−1) − x̂
(l−1)
i )T

‖x̂k,(l−1) − x̂
(l−1)
i ‖

+
(x̂k,(l−1) − x̂

(l−1)
t )T

‖x̂k,(l−1) − x̂
(l−1)
t ‖

,

(11)

B
k,(l−1)
i =

(x̂
(l−1)
i − x̂k,(l−1))T

‖x̂k,(l−1) − x̂
(l−1)
i ‖

, (12)

C
k,(l−1)
i =

(x̂
(l−1)
t − x̂k,(l−1))T

‖x̂k,(l−1) − x̂
(l−1)
t ‖

, (13)

D
k,(l−1)
i = ‖x̂k,(l−1) − x̂

(l−1)
i ‖+ ‖x̂k,(l−1) − x̂

(l−1)
t ‖ (14)

−A
k,(l−1)
i x̂k,(l−1) −B

k,(l−1)
i x̂

(l−1)
i −C

k,(l−1)
i x̂

(l−1)
t .

With the aid of (6) and (10), the passive localization problem
can be transformed into a linear state-space model. According
to [28], it is straightforward to convert the factor graph into
the scheme in Fig. 4. The new factor node + represents
the addition constraint y = x1 + x2 or δ(y − x1 − x2),
while A denotes the multiplication operation. Based on this
factor graph and the Gaussian message passing (GMP) of [28],
the marginal distribution of every variable can be efficiently
obtained in Gaussian form. The message update rules for
three basic node types, namely for the adder node, constant
multiplier node and equality node are summarized in [28] and
not given in this paper due to space limitation. To simplify the
notation, we use −→· to denote the messages that are passed
along the arrow direction, while ←−· indicates that the message
passing direction is the opposite of the arrow direction.

Note that all messages and beliefs in this graph are of
Gaussian form. They can be parameterized by the correspond-
ing mean vectors and covariance matrices, e.g. −→µ xi,k−1

=

N (xi,k−1,
−→mxi,k−1

,
−→
Vxi,k−1

). Furthermore, we use weight
matrix W = V−1 for convenience.
•Calculation of beliefs at instant k:

We first focus our attention on calculating b(xk), which is

the same as the message −→µ xk = N (xk,−→mxk ,
−→
Vxk) with

−→
Vxk =

(−→
Wẋk

M
+
←−
Wxk

M

)−1
=
(−→
Wẋk

M−1
+
←−
Wxk

M−1
+
←−
Wxk

M

)−1
=

(
−→
Wẋk

1
+

M∑
i=1

←−
Wxk

i

)−1
, (15)

−→mxk =
−→
Vxk

(
−→
Wẋk

−→mẋk +

M∑
i=1

←−
Wxk

i

←−mxk
i

)
, (16)

while←−mxk
i

and
←−
Vxk

i
are calculated based on the observations,

which follow

←−mxk
i

=
(
Ak
i

)† (
zki −Dk

i −Bk
i
−→mẋi,k

−Ck
i
−→mxk

t,i

)
, (17)

←−
Wxk

i
= Ak,T

i

(
Bk
i

−→
V ẋi,k

Bk,T
i + Ck

i

−→
Vxk

t,i
Ck,T
i + σ2

i

)−1
Aki ,

(18)

where
(
Ak
i

)†
=
(
Ak,T
i Ak

i

)−1
Ak,T
i is the Moore-Penrose

pseudo-inverse of vector Ak
i . −→mẋk

1
and
−→
V ẋk

1
are obtained

according to the prediction step. Under the assumption that
the message −→µ xk−1 is available in Gaussian form along with
−→mxk−1 and

−→
Vxk−1 , −→mẋk and

−→
V ẋk are expressed as

−→mẋk
1

= −→mxk−1 + δt ŝ
k−1, (19)

−→
V ẋk

1
=
−→
Vxk−1 + Vs. (20)

In (17) and (18), −→mẋi,k
,
−→
V ẋi,k

, −→mxk
t,i

,
−→
Vxk

t,i
are the vector

of mean values and the covariance matrices of −→µ ẋi,k
, −→µ xk

t,i
,

yielding

−→mẋi,k
= −→mxi,k−1

, (21)
−→
V ẋi,k

=
−→
Vxi,k−1

, (22)

−→mxk
t,i

=←−mẋk
t,i

+−→mẋk
t,i−1

= −→mxk−1
t

+

M−1∑
c=1,c 6=i

←−mxk
t,c

(23)

−→
Vxk

t,i
=
←−
V ẋk

t,i
+
−→
V ẋk

t,i−1
=
−→
Vxk−1

t
+

M−1∑
c=1,c6=i

←−
Vxk

t,c
. (24)

Similarly, when calculating the belief of transmitter location,
←−mxk

t,i
and
←−
Vxk

t,i
have the form of

←−mxk
t,i

=
(
Ck
i

)† (
zki −Dk

i −Bk
i
−→mẋi,k

−Ak
i
−→mxk

i

)
, (25)

←−
Wxk

t,i
= Ck,T

i

(
Bk
i

−→
V ẋi,k

Bk,T
i + Ak

i

−→
Vxk

i
Ak,T
i + σ2

i

)−1
Ck
i .

(26)

Consequently, the mean and covariance matrix of the message
−→µ xk

t
(b(xkt )) can be written as

−→
Vxk

t
=

(
−→
Wxk−1

t
+

M−1∑
i=1

←−
Wxk

t,i

)−1
, (27)

−→mxk
t

=
−→
Vxk

t

(
−→
Wxk−1

t

−→mxk
t

+

M−1∑
i=1

←−
Wxk

t,i

←−mxk
t,i

)
. (28)
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The belief of receiver i’s position b(xi,k) is calculated in the
same way as

−→
Vxi,k

=
(−→

V−1ẋi,k−1
+
←−
Wẋi,k

)−1
(29)

=

(
−→
V−1xi,k−1

+Bk,T
i

(
Ck
i

−→
V ẋk

t,i
Ck,T
i +Ak

i

−→
Vxk

i
Ak,T
i +σ2

i

)−1
Bk
i

)−1
−→mxi,k

=
−→
Vxi,k

(−→
Wẋi,k

−→mẋi,k
+
←−
Wẋi,k

←−mẋi,k

)
, (30)

=
−→
Vxi,k

(−→
V−1xi,k−1

−→mxi,k−1
+Bk,T

i

(
σ2
i +Ak

i

−→
Vxk

i
Ak,T
i

+ Ck
i

−→
V ẋk

t,i
Ck,T
i

)−1 (
zki −Dk

i −Ck
i
−→mxk

t,i
−Ak

i
−→mxk

i

))
.

Based on iterative message passing, the beliefs of transceiv-
er and target locations at instant k are determined. Then the
location estimate can be obtained by the MMSE estimator.

C. Asynchronous Receivers

In this subsection, we consider the TOA passive target
localization in a fully asynchronous network. For ease of
exposition, the positions of transceivers are assumed to be
accurately known. Since there exist clock skew and offset, the
signal propagation time (1) observed at receiver i becomes

tki = γki

(
‖xk − xt‖+ ‖xk − xi‖

c
+ ωki

)
+ θki , (31)

where γki and θki denote the clock skew and offset of receiver i
at instant k. For convenience, we use the definition αi = 1/γi
and βki = θki /γi. In this work, it is assumed that the clock
skew is static αki = αk−1i = 1/γi, while βki varies according
to a Markov evolution model [37], [38]6

βki = βk−1i + ∆β , (32)

where we have ∆β ∼ N (0, Vβ). The related range measure-
ment is given by,

αiz
k
i = ‖xk − xt‖+ ‖xk − xi‖+ cβki + nki . (33)

We also utilize the Taylor expansion to linearize the nonlinear
terms around the previous estimate of target location. Accord-
ingly, (33) is rewritten as

αiz
k
i = A

k,(l−1)
i x +B

k,(l−1)
i + cβki + nki , (34)

with

A
k,(l−1)
i =

(x̂k,(l−1) − xi)
T

‖x̂k,(l−1) − xi‖
+

(x̂k,(l−1) − xt)
T

‖x̂k,(l−1) − xt‖
, (35)

Bk,(l−1) =‖x̂k,(l−1) − xi‖+ ‖x̂k,(l−1) − xt‖ −A
k,(l−1)
i x̂k,(l−1).

(36)

Based on the linear state-space model (6), (32) and (34),
the factor graph for our asynchronous network is depicted in
Fig. 5. Since we have formulated the calculations of messages

6In reality, the clock skew is time-variant. However the variation is generally
small and can be ignored.

k k + 1time k − 1
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=

=

c

c

A1 AM

++

=. . .=

∆s ∆s

δtŝ
k−1

δtŝ
k

nk1
nkM

BMB1

+ +

+ +

+ +

=

=

zk1 zkM

αk−11 αk1

αkMαk−1M

dk1 dkM

xk−1 ẋk1 xk

βk−11
β̇k1β̄k1 βk1

βk−1M
β̇kMβ̄kM

βkM

∆β

∆β

∆β

∆β

α̇k1 α̇kM

66
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Fig. 5. Factor graph for TOA passive localization in time-varying asyn-
chronous networks.

explicitly in the previous subsection, here only the beliefs of
variables are derived, i.e.

−→
Vxk =

−→Wẋk
1

+

M∑
i=1

Ak,T
i Ak

i

c2
−→
V β̇i,k

+ (zki )2
−→
V α̇k

i
+ σ2

i

−1, (37)

−→mxk =
−→
Vxk (38)

·

−→Wẋk
−→mẋk +

M∑
i=1

Ak,T
i

(−→mα̇k
i
zki −Bki − c

−→mβ̇i,k

)
c2
−→
V β̇i,k

+ (zki )2
−→
V α̇k

i
+ σ2

i

 ,

−→
V αk

i
=

 1
−→
V αk−1

+
(zki )2

Ak
i

−→
Vxk

i
Ak,T
i + c2

−→
V β̇i,k

+ σ2
i

−1, (39)

−→mαk
i

=
−→
V αk

−→mαk−1

−→
V αk−1

+
zki ·

(
Ak
i
−→mxk

i
+ c−→mβ̇i,k

+Bki

)
Ak
i

−→
Vxk

i
Ak,T
i + c2

−→
V β̇i,k

+ σ2
i

 ,

(40)

−→
V βk

i
=

 1
−→
V βk−1

i
+ Vβ

+
c2

Ak
i

−→
Vxk

i
Ak,T
i + (zki )2

−→
V α̇k

i
+ σ2

i

−1,
(41)

−→mβk
i

=
−→
Vβk

i
(42)

·

 −→mβk−1
i−→

V βk−1
i

+ Vβ
+

c ·
(−→mα̇k

i
zki −Bki −Ak

i
−→mxk

i

)
Ak
i

−→
Vxk

i
Ak,T
i + (zki )2

−→
V α̇k

i
+ σ2

i

.
The estimates of variables can be determined with the aid of
beliefs. Note that αi, βki are transformed from the true clock
skew and offset, thus the estimates of clock skew and offset
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become:

γ̂i =
1

α̂i
, (43)

θ̂ki =
β̂ki
α̂i
. (44)

D. Outliers

The main sources of outliers occurring in WSNs include
sensor errors and malicious attacks. The malicious attacks
form part of network security while sensor errors are typically
caused by faulty sensors. Finally, outliers may also be caused
by deleterious phenomena that affect the observations, but
generally, outliers caused by errors occur more frequently
than those by events. Thus in this paper we only consider
the outliers caused by sensor detection failure in passive
localization.

At instant k, the ith receiver makes an observation zki . If the
sensor fails to detect the TOA signal, only the measurement
noise is observed. By contrast, if the receiver is working as
intended, the range measurement is observed, following

zki =

{
‖xk − xt‖+ ‖xk − xi‖+ nki Functioning,

nki Outliers, (45)

where ñki obeys a half-normal distribution formulated as√
2
σ2
i π

exp(−(ñki )2/2σ2
i ), ñki > 0. For brevity, in the algo-

rithm design, we assume nki = ñki > 0.
Denote the occurrence probability of outliers by po, then

the likelihood function is rewritten as

p(zki |x) ∝ (1− po) · exp

(
−
(
zki − dki

)2
2σ2

i

)

+ po · exp

(
− (zki )2

σ2
i

)
. (46)

By introducing a binary state ψki = {0, 1}, the observation
zki can be rewritten as

zki = ψki (‖xk − xt‖+ ‖xk − xi‖) + nki , (47)

where ψki = 1 indicates that the ith receiver is functioning,
while ψki = 0 indicates malfunctioning. The a priori distribu-
tion of ψki obeys the Bernoulli distribution of

p(ψki ) = p
1−ψk

i
o (1− po)ψ

k
i . (48)

As before, we linearize the range measurement based on
Taylor expansion as

zki = ψki

(
A
k,(l−1)
i x +B

k,(l−1)
i

)
+ nki , (49)

with A
k,(l−1)
i and Bk,(l−1)i previously defined in (35) and (36).

Based on (6) and (49), we have the linear state space model
and construct the corresponding factor graph, as depicted in
Fig. 6. Here we use a multiplier node × to denote the mul-
tiplication of two unknown variables. In order to apply GMP,
we employ expectation propagation (EP) [39] to approximate
the discrete variable ψki by a Gaussian variable. With the
assumption that←−mψk

i
and
←−
V ψk

i
are available from the previous

k k + 1time k − 1

==

A1 AM

++Bi BM

×× + +

zk1 zkM

∆s ∆s

δtŝ
k−1 δtŝ

k

n1

nM

. . .

. . . ψkMψk1

rk1 rkM

+ +xk−1 ẋk1 xk
66

66

6 6
- -

- -�
?

? ?

? ?

- -- -- . . . -
? ?

6 6

Fig. 6. Factor graph for joint TOA passive localization and outliers detection.

iteration, we have the mean and variance of the belief b(ψki )
as

mψk
i

= (1− po)
1√

2π
←−
V ψk

i

exp

(
−

(1−←−mψk
i
)2

2
←−
V ψk

i

)
, (50)

Vψk
i

= mψk
i
−m2

ψk
i
. (51)

Then −→mψk
i

and
−→
V ψk

i
are given as

−→
V ψk

i
=

Vψk
i

←−
V ψk

i

Vψk
i
−
←−
V ψk

i

, (52)

−→mψk
i

=
mψk

i
Vψk

i
−←−mψk

i

←−
V ψk

i

Vψk
i
−
←−
V ψk

i

. (53)

However, for the multiplier node z = xy, even if the
messages −→µ x and ←−µ z are Gaussian, we are not able to
determine message −→µ y of a Gaussian form. To this end, we
employ the variational message passing (VMP) [40] instead
of the SPA at the multiplier node, as derived in Appendix. A.
Using VMP, the Gaussian messages for the multiplier node
are given by

←−
V ψk

i
=

σ2
i

Vrki +m2
rki

, (54)

←−mψk
i

=
zkimrki

Vrki +m2
rki

, (55)

with

Vrki =
←−
V rki

+
−→
V rki

, (56)

mrki
= V −1

rki
(
←−
W rki

←−mrki
+
−→
W rki

−→mrki
). (57)

Vrki and mrki
are updated in a similar way. Then the belief of

the target location is obtained as

−→
Vxk =

(
−→
Wẋk

1
+

M∑
i=1

←−
Wxk

i

)−1

=

(
−→
Wẋk

1
+

M∑
i=1

Ak,T
i Ak

i←−
V rki

)−1
, (58)

−→mxk =
−→
Vxk

(
−→
Wẋk

−→mẋk +

M∑
i=1

Ak,T
i
←−mrki←−

V rki

)
. (59)
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Finally, having ←−mψk
i

and
←−
V ψk

i
, we can estimate the state

of ψki based on the log-likelihood ratio (LLR) of

LLR(ψki ) =
1− 2←−mψk

i←−
V ψk

i

+ ln
1− po
po

. (60)

For LLR(ψki ) < 0, we say that the measurement zki represents
an outlier and vice versa.

It can be seen that for all three scenarios, the messages on
factor graph are characterized by their means and variances.
Therefore the complexity of the proposed algorithm only
increases linearly with the number of receivers, i.e., it is on
the order of O(M). By contrast, the PF-based method utilizes
R particles and their associated weights to represent the
messages, hence resulting in a complexity of O(MR), which
shows the superiority of the proposed algorithm. Moreover, an
extension of the factor graph framework to a more complex
passive localization problem which combines above three
problems or even more becomes straightforward. Gaussian
messages can also be derived using simple manipulations at
a low complexity. However, this is beyond the scope of this
paper.

IV. DISTRIBUTED PROCESSING

Distributed detection and estimation have attracted sub-
stantial research attention since only local processing and
local communications with the immediate neighboring nodes
are needed. This is attractive for resource-constrained WSNs.
In this section, we propose a low complexity yet efficient
distributed algorithm for passive localization.

The most prominent method in distributed localization is
the likelihood consensus of [41], which aims for obtaining
the global likelihood function at each receiver in a distributed
fashion as LC{p(zk1 |xk), ..., p(zkM |xk)} = p(zk|xk). After
evaluating the likelihood consensus for a few iterations, all
receivers acquire knowledge from the other receivers in the
network. Then the target location can be estimated individually
by all the receivers.

Due to the nonlinear square root term in (2), the likelihood
consensus is usually evaluated using distributed particle filter-
ing (DPF). The main drawback of DPF is its high complexity
and high communication. overhead imposed by the exchange
of a large number of packets between the neighboring receivers
Moreover, since we introduce variables related to the clock
offset and to other transceiver-induced uncertainties, the par-
ticles should be sampled based on an extended space, which
further increases both the communication overhead and the
complexity.

Observe from (15) and (16) that the mean and weight
matrix of the target location are constituted by the summation
of several local parameters obtained by each local receiver.
Therefore we aims for reaching consensus concerning the
mean and covariance matrix of the variable’s belief instead
of the global likelihood function. Since only the means and
covariance matrices have to be exchanged amongst the neigh-

TABLE I
CONSENSUS PROCESS FOR DISTRIBUTED PASSIVE LOCALIZATION.

Notation:
p: the consensus iteration index,
Si: the set of receivers the ith receiver can communicate with,
Si = |Si|: the number of receiver i’s neighbors,
ξ = maxi 1/Si: the consensus update rate,
W

(p)
i , Wim

(p)
i : the local weight matrix and local transformed

mean vector at receiver i in the pth consensus iteration.
At instant k
For all i
Initialization at p = 0:

W
(0)
i =

←−
Wxk

i
(61)

Wim
(0)
i =

←−
Wi,xk

←−mi,xk (62)

for p = 1 : Nc

W
(p)
i = (1− ξSi)W(p−1)

i + ξ
∑
j∈Si

W
(p−1)
i (63)

Wim
(p)
i = (1− ξSi)Wim

(p−1)
i + ξ

∑
j∈Si

Wjm
(p−1)
j (64)

end

After Nc consensus iterations, the summations of local weight
matrices and transformed means are approximated by

M∑
i=1

←−
Wxk

i
= M ·W(Nc)

i (65)

M∑
i=1

←−
Wxk

i

←−mxk
i

= M ·Wim
(Nc)
i (66)

Substituting (65) and (66) into (15) and (16), the belief of
target location at instant k is determined at each local receiver.

boring receivers,7 we have a so-called parametric consensus
process. Accordingly, the communication overhead and com-
putational complexity can be significantly reduced.

Let us assume that both the belief of target location at
instant (k − 1) and the state transition function are known
for all receivers. Then, based on the local observation zki
at instant k, the local parameters ←−mi,xk (local mean) and
weight matrix

←−
Wi,xk (local weight) with respect to the target

location are determined at the ith receiver. By applying the
consensus process of [25] among the receivers, −→mxk and−→
Vxk are obtained at each receiver. The consensus process is
summarized in Table I.8 Other unknown variables can also be
obtained distributively in the same way.

7The word “neighboring” means two receivers can exchange information
with each other. It was shown in [25] that the consensus based distributed
algorithm is guaranteed to converge, provided that all receivers have at least
one neighbor.

8Here we use the standard consensus method in which the update rate ξ
stays same for all links. There are some other consensus methods utilizing
Metropolis weight and gossip algorithm, e.g., [41], [42] and references therein.
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V. CRAMÉR-RAO LOWER BOUND

The Cramér-Rao bound (CRB) establishes the lower bound
of the variance of an estimator [43]. By following the CRB
theorem , the parameters τ to be estimated obey

cov(τ̂ ) � F−1, (67)

where F denotes the Fisher information matrix (FIM),9 for-
mulating as [43]

F = −E
[
∇τ

{
∇τ

(
ln p(τ |zk)

)}]
(68)

= −E
[
∇τ

{
∇τ

(
ln p(zk|τ )

)}]︸ ︷︷ ︸
Fo

−E [∇τ {∇τ (ln p(τ ))}]︸ ︷︷ ︸
Fp

,

with Fo and Fp being the Fisher “information” gleaned
from observations at instant k and from the previous state.
Considering the vector τ = [τ1, ..., τN ]T of N parameters to
be estimated, Fp is an N ×N diagonal matrix

Fp = diag{1/σ2
τ1 , ..., 1/σ

2
τN }, (69)

in which the variance στn is related to the variance of the
previous time slot and the state transition noise. F1 is also
an N × N matrix, which will be computed in detail in the
following.

A. Inaccurate Transceivers

In a passive localization system relying on M inac-
curate receivers, an inaccurate transmitter and a target,
the vector of unknown variables is denoted as τ =
[x, y, xt, yt, x1, y1, ..., xM , yM ]T . Then Fo can be expressed
as

Fo = JΦ−1JT , (70)

where Φ is diagonal with the ith entry being σ2
i , and J is a

(4 + 2M) ×M Jacobian matrix with the element of the ith
row and the jth column satisfying

Jij =
∂(‖x− xt‖+ ‖x− xj‖)

∂τi
, (71)

For example:

J11 =
x− xt√

(x− xt)2 + (y − yt)2
+

x− x1√
(x− x1)2 + (y − y1)2

,

J21 =
y − yt√

(x− xt)2 + (y − yt)2
+

y − y1√
(x− x1)2 + (y − y1)2

.

Based on Fo and Fp, the FIM F can be expressed after some
straightforward manipulations as

F =

 Fxx Fxxt
Fxxi

Fxtx Fxtxt Fxtxi

Fxix Fxixt Fxixi

 , (72)

where the main diagonal block element is the “information”
for the target, transmitter and receiver, respectively. The off-
diagonal block elements are referred to as the “cross informa-
tion” [44]. According to (67), obtaining the CRB requires the

9In this section, the CRB at time instant k is analyzed for example, since
the localization system is time-variant. For simplicity, The superscript k is
omitted.

inversion of matrix F, which leads to a prohibitive complexity.
Moreover, the condition number of the matrix F will usually
be higher when F is high-dimensional, which may lead to
inaccurate numerical computing result. Hence, we employ the
equivalent FIM (EFIM) for reducing the dimension of F, while
retaining all information of interest [45]. For example, if we
mainly focus on the CRB of target location, based on notations

Ftr = [Fxxt
Fxxi

] and Fr =

[
Fxtxt Fxtxi

Fxixt
Fxixi

]
, the EFIM

of target location F(x) is given by,

F(x) = Fxx − FtrF
−1
r FTtr. (73)

Then the CRB of target location is calculated as cov(x̂) �
F(x)−1. Similarly, the CRB of the transceiver locations can
also be obtained by the corresponding EFIM.

B. Clock Skew and Offset
In asynchronous passive localization networks, the param-

eters turn out to be the target location and clock parameters
τ = [x, y, α1, ..., αM , β1, ..., βM ]T . F1 also satisfies F1 =
JΦ−1JT , with

J =


J11 · · · J1M
J21 · · · J2M

diag{zk1 , ..., zkM}
diag{c · 1M}


(2M+2)×M

. (74)

Similar to the previous subsection, the FIM F of passive
localization in asynchronous networks is expressed as a block
matrix. The EFIM can be invoked for reducing the dimension
and for determining the CRB of both the target location and
the clock parameters. Note that the clock parameters do not
represent the true clock skew and offset. By invoking the
Jacobian transformation of [46], if the CRB of [αi, βi]

T is
given by cov[αi, βi]

T � F−1(αi, βi), the CRB of the clock
parameters of receiver i can be expressed as

cov
[
γi
θi

]
� ΨTF−1(αi, βi)Ψ, (75)

with Ψ =
(
∂[1/αi,βi/αi]
∂[αi,βi]T

)
=

[
− 1
α2

i
− βi

α2
i

0 1
αi

]
.

C. Outliers
We aim now for deriving the CRB of target location

x = [x, y]T in the presence of faulty sensors. Since the prob-
ability po of outlier occurrence varies, the CRB is different
for different values of po. Since the measurement noise is
indepedent, we have

F1 = E
[
∂2 ln

∏
i p(zi|x)

∂x2

]
=

M∑
i=1

E
[
∂2 ln p(zi|x)

∂x2

]
. (76)

Upon considering the calculation of ∂2 ln p(zi|x)
∂x2 , with (46) and

the shorthand notation of f(zi) = − (zi−di)2
σ2
i

, f(ni) = − z2i
σ2
i

and const = − ln
√

2πσ2
i , we have

ln p(zi|x) = const + ln
(

(1− po)ef(zi) + poe
f(ni)

)
,

= const + ln
(
ef(zi)+ln(1−po) + ef(ni)+ln po

)
. (77)
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Note that F1 of (76) cannot be expressed analytically, thus
numerical methods have to be used to calculate F1. In order
to derive an analytical FIM, we invoke the Jacobian logarithm
to simplify (77). It is widely exploited that for real numbers
a1 and a2

ln(ea1 + ea2) = max{a1, a2}+ ln(1 + e−|a1−a2|). (78)

Generally, for large |a1−a2|, we have ln(1 + e−|a1−a2|) ≈ 0.
Consequently, (77) is approximated by

ln p(zi|x) ≈ const + max {f(zi) + ln(1− po), f(ni) + ln po} .

=

 ln 1−po√
2πσ2

i

− (zi−di)2
σ2
i

, di(2zi − di) ≥ ε,

ln po√
2πσ2

i

− (zi)
2

σ2
i
, di(2zi − di) < ε,

(79)

where the threshold is ε = σ2
i ln po

1−po .
For the case of di(2zi − di) ≥ ε, the second-order partial

derivative is computed as

∂2 ln p(zi|x)

∂x2
=

1

σ2
i

[
J2
11 J11J21

J21J11 J2
21

]
, (80)

with J11, J21 defined previously. For the other case, the
partial derivative gives a zero matrix 0. This indicates no
“information” is provided by faulty sensors for locating the
target. Then the total FIM F can then be calculated, and the
CRB is given by cov(x̂) � F−1.

VI. SIMULATION RESULTS AND DISCUSSIONS

Let us consider a 200 × 200m2 plane with one moving
target, one transmitter and 6 receivers. The speeds of the target
along the x and y-axes are randomly drawn from the range
(0, 3]m/s. The positions of transceivers are assumed to be
fixed, i.e. xt = [0, 0]T, x1 = [80, 10]T, x2 = [10, 80]T,
x3 = [130, 20]T, x4 = [20, 130]T, x5 = [180, 30]T, x6 =
[30, 180]T. A receiver is in the neighboring set Si of receiver i,
if and only if the two receivers are within the communication
radius of R = 70m. For brevity, the measurement noise is
set to σ2

i = 2m2,∀i ∈ M, unless otherwise specified. We
consider 20 time slots and the number of message passing
iterations during a single time slot is L = 10.

Fig. 7 illustrates the cumulative distribution function (CDF)
of target location error for the proposed algorithm and that
of the state-of-the-art benchmark algorithms. The initialized
uncertainties of the transceiver positions during the first time
slot are set identically as

−→
V xi,0

=
−→
V x0

t
= 25m2, ∀i ∈M.At

time slot k, the initial guesses of the transceivers and the
target’ locations for Taylor expansion are sampled from their
prior distributions at the kth time instant. The state transition
noise ∆s has the covariance matrix Vs = diag{1m2, 1m2}.
Observe from Fig. 7 that the TSE method [11] which ne-
glects the uncertainties of the transceivers suffers from certain
performance loss. Since the extended Kalman filtering (EKF)
method regards the uncertainties as noise, the performance also
degrades. As for the extension of the MOM-WLS estimator
of [12], since the variance of the target position is not taken
into consideration, the performance is adversely affected. The
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Fig. 7. Performance comparison to the state-of-the-art benchmark algorithms
with uncertain transceiver positions
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Fig. 8. Performance comparison of the proposed algorithm and the TSE
method for different clock parameters

proposed factor graph based method outperforms the afore-
mentioned algorithms and has a similar performance to the PF
based method of [14], but significantly reduces the complexity.

The CDFs of target location of the proposed algorithm and
of the TSE method in an asynchronous network are depicted
in Fig. 8. It is assumed that the clock skew is drawn from
a normal distribution p(α) ∼ N (1, V 0

α ), while the clock
offsets are drawn from a uniform distribution, or equiva-
lently, from a Gaussian distribution having large variance of
p(βi) ∼ N (0, σ2

βi
), ∀i. The variance of state transition noise

is Vβ = 10(ns)2. To evaluate the impact of clock parameters,
three cases having varying a priori parameters are considered,
i.e. (1) V 0

α = 10−4, σβi
= 1µs; (2) V 0

α = 10−8, σβi
= 1µs;

(3) V 0
α = 10−4, σβi

= 5µs. By comparing (1) and (3), we see
that the performance gap between the proposed algorithm and
the TSE method becomes much higher as the ignorance of
clock information becomes severer. However, by comparing
(1) and (2), it is noted that their performance is nearly the
same, which means that α has only a modest impact on the
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Fig. 10. CDF of target location of the proposed algorithm with the occupance
probability po = 0.2

localization result since its a priori distribution is accurate.
In Fig. 9, the root mean squared error (RMSE) of clock

offsets versus the number of iterations is plotted. The perfor-
mance of PF based method and of a regularized least square
(RLS) based method are also shown as benchmarks. It is noted
that all three algorithms converge after a few iterations. Due
to the linearization of the range measurement, the proposed
algorithm and the EKF method converge slower than the high-
complexity PF based method. Moreover, after reaching conver-
gence, the performance of the proposed algorithm approaches
that of the PF based method and outperforms the EKF method.

Next, we will consider the robustness of the proposed
algorithm in the presence of sensor detection failures. Observe
in Fig. 10 that the CDF of target location in conjunction with
the occupancy probability po = 0.2 is plotted. When the faulty
measurements observed at sensors are used without detection,
the localization performance is seriously affected. The PF
based method operating without Gaussian approximation has
the best performance, albeit at the cost of a high complexity.
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Fig. 11. MSE of the proposed algorithm and the derived CRB versus the
occupance probability po
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We can further observe that using EP to approximate the dis-
crete variable by a Gaussian variable has a better performance
than matching the moments of its a priori distribution directly.
This is because EP can exploit the information obtained from
the measurements, or in other words, the extrinsic information.

Then in Fig. 11 the mean squared error (MSE) of target
location is depicted for po ∈ [0.1, 0.9]. The approximated CRB
derived from the FIM (80) and the true CRB obtained using
numerical methods are shown as benchmarks. It is observed
that the approximated CRB is close to the true one. In the
region of small po, the proposed scheme is shown to be robust
to link failures. When po becomes larger, both the MSE of the
proposed algorithm and the CRB degrade due to the reduced
number of functioning sensors. In this situation, the Fisher
information solely depends on Fb gleaned from the previous
state.

To evaluate the proposed distributed processing method, we
consider the scenario of Fig. 7. The receivers cooperate with
their neighbors to reach consensus concerning the parameters
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corresponding to the target location. The CDFs of target
location with different number of consensus processes are
plotted in Fig. 12. We can see that the increase of Nc helps
improve the performance. However, the performance gain
becomes marginal beyond a certain Nc. Bearing in mind that
the communication overhead and energy cost are related to
Nc, we can choose an appropriate value of Nc to reduce the
cost.

The MSEs of the target locations of all three circumstances
versus the measurement noise are illustrated in Fig. 13, where
the parameters are set as in Fig. 7, 8, 10. The MSEs of
the distributed processing method with Nc = 20 and the
corresponding CRBs are also plotted. It can be seen that
the proposed algorithm performs very close to the CRBs,
which verifies the effeciency of the proposed centralized and
distributed methods.

VII. CONCLUSIONS

In this contribution, we provided a unified treatment of three
major challenging issues, namely of the inaccurate positions
of transceivers, of asynchronous network and of outliers in
TOA based passive localization relying on a factor graph
based framework and employed GMP techniques for solving
them efficiently. We linearized the range measurement to
obtain a linear state-space model for the proposed passive
localization problems to reduce the complexity of PF based
method. Considering that the fusion centers are unavailable
in the energy constrained WSNs, we proposed distributed
methods based on the consensus concept to determine the
parameters distributively at each local receiver. Moreover,
the Cramér-Rao bound was derived for characterizing the
localization performance. Our simulation results showed that
the performance of the proposed algorithm is close to that of
the high-complexity PF based method and can approach the
Cramér-Rao bound.

APPENDIX A
DERIVATION OF VARIATIONAL MESSAGE PASSING IN

GAUSSIAN FORM

We first consider the calculation of message µδ→x based
on SPA rules under multiplication constraint δ(z − xy) and
Gaussian assumption of µy→δ(y) ∝ N (y,my, Vy),

µδ→x(x) =

∫
δ(z − xy)µy→δ(y)dy (81)

∝ exp

(
−

( zx −my)2

2Vy

)
= exp

(
−
m2
y(x− z

my
)2

2x2Vy

)
.

Note that the Equation (81) cannot be written in a form of
Gaussian distribution, since the variable x appears both in
the numerator and in the denominator. Correspondingly, the
message µδ→y(y) suffers from the same problem. In order to
implement the low complexity Gaussian message passing, we
resort the VMP concept of [40].

The message in VMP is obtained via expectation of the log
likelihood function with respect to other variables, i.e.

µf→x(x) = exp[Ey(ln f(x,y)b(y))], (82)

where b(y)) is the belief of y. Considering the multiplier node
in Fig. 6, the observation model is zki = φki r

k
i +ni. Hence the

message from × to φki is calculated as,

µ×→φk
i
(φki ) ∝C · exp

(
−
∫

(zki − φki rki )2

2σ2
i

exp

(
−

(rki −mrki
)2

2Vrki

))

∝ exp

(
−(φki )2

Vrki +m2
rki

σ2
+ 2φki

zkimrki

σ2

)
∝N (φki ,

←−mφk
i
,
←−
V φk

i
), (83)

with←−mφk
i

and
←−
V φk

i
shown in (54) and (55). Finally,←−mrki

,
←−
V rki

are determined in a similar way, which are also in Gaussian
form.
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