
1

Support Vector Machine Classifier via
L0/1 Soft-Margin Loss

Huajun Wang, Yuanhai Shao, Shenglong Zhou, Ce Zhang and Naihua Xiu∗

Abstract—Support vector machine (SVM) has attracted great attentions for the last two decades due to its extensive applications, and
thus numerous optimization models have been proposed. To distinguish all of them, in this paper, we introduce a new model equipped
with an L0/1 soft-margin loss (dubbed as L0/1-SVM) which well captures the nature of the binary classification. Many of the existing
convex/non-convex soft-margin losses can be viewed as a surrogate of the L0/1 soft-margin loss. Despite the discrete nature of L0/1,
we manage to establish the existence of global minimizer of the new model as well as revealing the relationship among its minimizers
and KKT/P-stationary points. These theoretical properties allow us to take advantage of the alternating direction method of multipliers.
In addition, the L0/1-support vector operator is introduced as a filter to prevent outliers from being support vectors during the training
process. Hence, the method is expected to be relatively robust. Finally, numerical experiments demonstrate that our proposed method
generates better performance in terms of much shorter computational time with much fewer number of support vectors when against
with some other leading methods in areas of SVM. When the data size gets bigger, its advantage becomes more evident.

Index Terms—SVM, L0/1 soft-margin loss, L0/1-proximal operator, minimizers and KKT/P-stationary points, L0/1ADMM.

F

1 INTRODUCTION

SUPPORT vector machine (SVM) was first introduced by
Vapnik and Cortes [1] and then has been widely applied

into machine learning, statistic, pattern recognition and so
forth. The basic idea is to find a hyperplane in the input
space that separates the training data set. In the paper,
we consider a binary classification problem that can be
described as follows. Suppose we are given a training set
{(xi, yi)}mi=1, where xi ∈ Rn are the input vectors and
yi ∈ {−1, 1} are the output labels. The purpose of SVM is to
train a hyperplane 〈w,x〉+ b = w1x1 + · · ·+wnxn + b = 0
with w ∈ Rn and b ∈ R by given training set. For any
new input vector x′, we can predict the corresponding label
y′ as y′ = 1 for 〈w,x′〉 + b > 0 and y′ = −1 otherwise.
In order to find optimal hyperplane, there are two possible
cases: linearly separable and inseparable training data. If
the training data is able to be linearly separated in the input
space, then the unique optimal hyperplane can be obtained
by solving a convex quadratic programming (QP) problem:

min
w∈Rn,b∈R

1

2
‖w‖2

s.t. yi(〈w,xi〉+ b) ≥ 1, i ∈ Nm, (1)

where Nm := {1, 2, · · · ,m}. Here, the yi(〈w,xi〉 + b) pro-
vides the distance between the ith sample and the hyper-
plane. The above model is termed as hard-margin SVM be-

• H.J. Wang, C. Zhang and N.H. Xiu are with the Department
of Applied Mathematics, Beijing Jiaotong University, Beijing,
China. Email:huajunwang@bjtu.edu.cn, czhang@bjtu.edu.cn,
nhxiu@bjtu.edu.cn.

• Y.H. Shao is with the School of Management, Hainan University, Haikou,
China. Email: shaoyuanhai@hainanu.edu.cn.

• S.L. Zhou is with the School of Mathematical Sciences, University of
Southampton, Southampton, UK. Email: shenglong.zhou@soton.ac.uk.

• * Corresponding author

Manuscript received xx, xx; revised xx, xx.

cause it requires correct classifications of all samples. When
it comes to the training data that are linearly inseparable in
the input space, the popular approach is to allow violations
in the satisfaction of the constraints in problem (1) and
penalize such violations in the objective function, namely,

min
w∈Rn,b∈R

1

2
‖w‖2 + C

m∑
i=1

`(1− yi(〈w,xi〉+ b)), (2)

whereC > 0 is a penalty parameter and ` is one of some loss
functions that aim at penalizing some incorrectly classified
samples and leaving the other ones. Therefore, the above
model allows misclassified samples, and thus is known as
soft-margin SVM. Clearly, different soft-margin loss func-
tions yield different soft-margin SVM models. Generally
speaking, soft-margin loss functions can be summarized as
two categories based on the convexity of `.

1.1 Convex Soft-Margin Losses

Since there are large numbers of convex soft-margin loss
function that have been proposed to deal with the soft-
margin SVM problems, we only review some popular ones.

• Hinge loss function: `hinge(t) = max{0, t}(∀t ∈ R). It
is non-differentiable at t = 0 and unbounded. SVM
with hinge loss (`hinge-SVM) was first proposed by
Vapnik and Cortes [1], aiming at only penalizing the
samples with t ≥ 0.

• Pinball loss function: `τpinball(t) = max{t,−τt}, with
0 ≤ τ ≤ 1, which is still non-differentiable at
t = 0 and unbounded. SVM with this loss function
(`pinball-SVM) was proposed in [2], [3] to pay penalty
for all samples. There is a quadratic programming
solver embedded in Matlab to solve the SVM with
pinball loss function [3].

2

• Hybrid Huber loss function: `τHH(t) = max{0, t− τ} −
(max{0, τ/2 − t2/2τ} − t2/2) with τ > 0. It is
differentiable everywhere but still unbounded. This
function was first introduced in [4], while SVM with
such loss (`HH-SVM) was first proposed in [5] which
can be solved by proximal gradient method [6].

• Square loss function: `square(t) = t2, a differentiable
but unbounded function. SVM with square loss
(`square-SVM) can be found in [7], [8].

• Some other convex loss functions: the insensitive zone
pinball loss [3], the exponential loss function [9] and
log loss function [10].

Since those functions are convex, their corresponding SVM
models are not difficult to be dealt with. However, the
convexity often induces the unboundedness, which removes
robustness of those loss functions to outliers from the train-
ing data. In order to overcome such drawback, authors
in [11], [12] set an upper bound and enforce the loss to
stop increasing after a certain extent. Doing so, the original
convex loss functions become non-convex.

1.2 Non-Convex Soft-Margin Losses
Again since there are large numbers of non-convex soft-
margin losses that have been studied, which is beyond our
scope of review, we only present some of them.

• Ramp loss function: `µramp(t) = max{0, t}−max{0, t−
µ} with µ ≥ 0, which is non-differentiable at t = µ
and t = 0 but bounded between 0 and µ. It does
not penalize the case when t < 0, while pays linear
penalty when 0 ≤ t ≤ µ and a fixed penalty µ when
t > µ. This makes this function robust to outliers.
Authors in [13] investigated SVM with ramp loss
(`ramp-SVM).

• Truncated pinball loss function (truncate left side of
pinball loss function): `τ,κTpin(t) = max{0, (1 + τ)t} −
(max{0, τ(t+ κ)} − τκ), with 0 ≤ τ ≤ 1 and κ ≥ 0.
It is non-differentiable at t = −κ and t = 0 and
unbounded. The penalty is fixed at κ for t < −κ and
is linear otherwise. SVM with such loss (`Tpin-SVM)
can be referred in [14].

• Asymmetrical truncated pinball loss function (truncate
two side of pinball loss function): `τ,κ,µATpin(t) =
max{0, (1 + τ)t} − (max{0, τ(t + κ)} + max{0, t −
µ} − τκ} with 0 ≤ τ ≤ 1 and µ, κ ≥ 0. This function
is non-differentiable at t = µ,−κ, 0 but bounded
between 0 and max(κ, µ). The penalty is fixed at κ
for t < −κ and at µ for t > µ but is linear otherwise.
SVM with such loss (`ATpin-SVM) was from [15].

• Sigmoid loss function: `sigmoid(t) = 1/(1 + exp(−t)),
a differentiable and bounded (between 0 and 1)
function. It penalizes all samples. SVM with this loss
(sigmoid-SVM) can be seen in [16].

• Some other non-convex loss function: normalized sig-
moid cost loss function [17].

Compared with convex soft-margin loss, most of non-
convex loss functions are less sensitive to feature noises
or outliers due to their boundedness. Apparently, non-
convexity would lead to difficulties to computations in
terms of solving corresponding SVM models. In summary,

the basic principles to choose a soft-margin loss are three
aspects[18],[19]: (i) It is able to capture the discrete nature of
the binary classification. (ii) It is suggested to be bounded
to be robust to feature noises or outliers. (iii) It makes itself
based SVM model easy to be computed.

1.3 `0/1 Soft-Margin Loss
Taking above principles into consideration, we now intro-
duce the 0-1 (`0/1 for short) soft-margin loss defined as

`0/1(t) =

{
1, t > 0,

0, t ≤ 0.

The `0/1 soft-margin loss function is the most nature loss
function for binary classification[20],[21]. Its properties are
summarized as below.

(i) It is discontinuous at t = 0, which captures the dis-
crete nature of the binary classification (correctness
or incorrectness) [22].

(ii) It is lower semi-continuous and nonconvex by the
definition in [23]. Since it is either 0 or 1, sparsity
and robustness will be guaranteed. In fact, it does
not count the number of samples with t < 0, which
leads to sparsity, while returns 1 otherwise, which
ensures robustness to outliers.

(iii) It is differentiable everywhere but at t = 0. However,
it has subdifferential

∂`0/1(0) = R+ := {t ∈ R : t ≥ 0}

and zero gradients elsewhere, see Lemma 2.1, which
makes the computation tractable.

1.4 L0/1-SVM
For the sake of easing the reading, we present some nota-
tions here. Let ‖x‖ and ‖x‖0 be the Euclidean norm and the
zero norm of x that counts the number of non-zero elements
of x. Denote A := Diag(y)X> with X = [x1 x2 · · · xm] ∈
Rn×m and y = (y1, y2 · · · , ym)> ∈ Rm, where Diag(y) is a
diagonal matrix with diagonal elements being elements in
y. For a positive integer m and a vector u ∈ Rm, denote

Nm := {1, 2, · · · ,m},
1 := (1, 1, · · · , 1)> ∈ Rm,

Rm+ := {u ∈ Rm : ui ≥ 0, i ∈ Nm},
|u| := (|u1|, · · · , |um|)>,
u+ := (max{u1, 0}, · · · ,max{um, 0})>.

These notations indicate

L0/1(u) := ‖u+‖0 =
m∑
i=1

l0/1(ui), (3)

which returns the number of all positive elements in u. We
call (3) the L0/1 soft-margin loss. Now, replacing ` by `0/1
in (2) and using above notations allow us to rewrite model
(2) in a matrix form,

min
w∈Rn,b∈R

f(w; b) :=
1

2
‖w‖2 + C‖(1− (Aw + by))+‖0. (4)

We call this model L0/1-SVM. The objective function f is
lower semicontinuous, non-differentiable and non-convex.

3

It is difficult to be solved directly by most existing opti-
mization algorithms. Despite that the discrete nature of zero
norm makes above model NP-hard to be solved, the L0/1-
SVM model is an ideal SVM model because it guarantees
as few misclassified as possible for binary classification.
Therefore, we carry out this paper along with this model.

1.5 Contributions
In this paper, we start to study the theoretical properties
of the L0/1-SVM model and then design a new efficient and
robust algorithm to solve the model. The main contributions
of the paper can be summarized as follows.

(i) We prove the existence of a global minimizer of
L0/1-SVM, which has not been thoroughly studied
in prior works. Based on the explicit expressions of
subdifferential and proximal operator of theL0/1 loss
(3), we introduce two types of optimality conditions
of the problem: KKT and P-stationary points. We
then unravel the relationships among a global/local
minimizer and the above two points. This result is
essential to our algorithmic design later on.

(ii) We adopt the famous alternating direction method of
multipliers (ADMM) to solve the L0/1-SVM problem,
and thus the method is dubbed as L0/1ADMM. We
show that if the sequence generated by the proposed
method converges, then it must converge to a P-
stationary points. To the best of our knowledge, it
is the first time that a method being created aims at
solving (4) directly rather than its surrogate model
(2). The novelty of the method is using the L0/1-
support vector operator as a filter to prevent the
outliers from being support vectors during training
process.

(iii) We compare L0/1ADMM with other four existing lead-
ing methods on solving SVM problems with syn-
thetic and real data sets. Extensive numerical ex-
periments demonstrate that our proposed method
achieves better performance in terms of providing
higher prediction accuracy, using a small number
of support vectors and consuming shorter compu-
tational time.

This paper is organized as follows. In Section 2, we
will give the explicit expressions of three subdifferentials
of L0/1 soft-margin loss and derive its proximal operator.
Section 3 presents the main theoretical contributions. We
will show the existence of a global minimizer to prob-
lem (4) as well as investigating the relationships among a
global/local minimizer and the KKT/P-stationary points of
L0/1-SVM problem. In Section 4, we will introduce the L0/1-
support vector operator and design the algorithm based on
the optimality conditions established in previous section.
Numerical experiments including comparison with other
solvers and concluding remarks are given in the last two
sections.

2 SUBDIFFERENTIAL AND PROXIMAL OPERATOR

To well analyze the properties of the L0/1 soft-margin
loss, we need introduce the necessary background of the
subdifferential and the proximal operator of the ‖u+‖0.

2.1 L0/1 Subdifferential

From [24, Definition 8.3], for a proper and lower semicontin-
uous function f : Rm → R, the regular, limiting and horizon
subdiffential are defined respectively as

∂̂f(u) =

{
v ∈ Rm : liminf

z→u
z6=u

f(z)−f(u)−〈v,z−u〉
‖z−u‖ ≥ 0

}
,

∂f(u) = lim sup
z
f→u

∂̂f(z)

=

{
v ∈ Rm : ∃ zj

f→ u, vj ∈ ∂̂f(zj)
with vj → v

}
,

∂∞f(u) = lim sup
σ↓0, z f→u

σ∂̂f(z)

=

{
v ∈ Rm : ∃ zj

f→ u, vj ∈ ∂̂f(zj)
with σjvj → v

}
,

where σ ↓ 0 means σ > 0 and σ → 0, and z
f→ u means both

z → u and f(z) → f(u). If the function f is convex, then
the limiting subdifferential is also known to the subgradient.

Lemma 2.1. The regular, limiting and horizon subdifferen-
tials of ‖u+‖0 at u enjoy following property,

Ω(u) := ∂̂‖u+‖0 = ∂‖u+‖0 = ∂∞‖u+‖0 (5)

=

{
v ∈ Rm : vi

{
≥ 0, ui = 0,
= 0, ui 6= 0,

i ∈ Nm
}
.

We use a simple example to illustrate the three subdiffer-
entials of ‖u+‖0. Consider one dimensional case m = 1.
As shown in Figure 1, the red lines denote some elements
in ∂‖0+‖0 = ∂`0/1(0). In fact, all right slashes crossing the
origin comprise of the subdifferential ∂‖0+‖0.

Fig. 1: The `0/1 soft-margin loss function. The blue line
(including the blue original) is the function value and the
red lines are two of subdifferentials in ∂`0/1(0).

Our next result is about L0/1 proximal operator, which
will be very useful in designing the algorithm in Section 4.

2.2 L0/1 Proximal Operator

By [25, Definition 12.23], the proximal operator of f : R →
R, associated with a parameter α > 0, at point s ∈ R, is
defined by

Proxαf (s) = arg min
u∈R

αf(u) +
1

2
(u− s)2. (6)

The following lemma states that the proximal operator
admits a closed form solution when f = `0/1.

4

Lemma 2.2 (One-dimensional case). For an α > 0, the
proximal operator of `0/1(·) at s is given by

Proxα`0/1(s) :=


0, 0 ≤ s <

√
2α,

0 or s, s =
√

2α,

s, s >
√

2α or s < 0.

(7)

It is worth mentioning that the proximal operator may
not be unique if s =

√
2α in (7). However, to guarantee

the uniqueness, hereafter, we always choose the proximal
operator to be zero if it is not unique. Because of this, the
proximal operator of `0/1 is rewritten as

Proxα`0/1(s) =

{
0, 0 ≤ s ≤

√
2α,

s, otherwise.
(8)

The proximal operator of `0/1 is shown in Figure 2, where
the red line denotes the proximal operator.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-0.5

0

0.5

1

Fig. 2: Demonstration of Proxα`0/1(s).

Based on the one dimensional case, we could derive the
proximal operator of L0/1(·) = ‖(·)+‖0. The proof is similar
to that of Lemma 2.2 and thus is omitted.

Lemma 2.3 (Multi-dimensional case). For an α > 0, the
proximal operator of L0/1 at s ∈ Rm is given by

ProxαL0/1
(s) =

 Proxα`0/1(s1)
...

Proxα`0/1(sm)

 . (9)

To proceed further, we consider the following problem

min
u∈Rm

fC(u) := h(u) + C‖u+‖0, (10)

where h : u → R is a smooth convex function and gradient
Lipschitz continuous with a Lipschitz constant τh > 0 and
C > 0 is given. To see the global solution of above problem,
same as [26], we introduce an auxiliary problem,

min
u∈Rm

fγ(u, z) := C‖u+‖0 + h(z) (11)

+ 〈∇h(z),u− z〉+
1

2γ
‖u− z‖2,

for some γ > 0 and fixed z ∈ Rm, where ∇h is the gradient
of h. This problem allows us to acquire the result related to
the proximal operator of L0/1.

Lemma 2.4. For any given C > 0, we have following results.

(i) If u∗ is the global optimal solution to (11) for any
fixed γ > 0 and z ∈ Rm, then it holds

u∗ = proxγCL0/1
(z− γ∇h(z)).

(ii) If u∗ is a global optimal solution to (10), then it is
also a global optimal solution to (11) with z = u∗

and 0 < γ ≤ 1/τh, namely,

fC(u∗) = fγ(u∗,u∗) ≤ fγ(u,u∗), ∀u ∈ Rm.

This lemma suffices to show that a global optimal solution
u∗ to (10) must satisfy a fixed point equation, which is well
established by following theorem whose proof is easy and
is omitted here.
Theorem 2.1. If u∗ is a global optimal solution to (10), then

for any given 0 < γ ≤ 1/τh it satisfies

u∗ = proxγCL0/1
(u∗ − γ∇h(u∗)). (12)

3 OPTIMALITY CONDITIONS OF L0/1-SVM
This section provides the existence of optimal solutions of
L0/1-SVM and establishes two types of first-order optimal-
ity conditions: KKT points and P-stationary points.

3.1 Existence of L0/1-SVM Minimizer

Theorem 3.1. Assume b is finite-valued. Then the solution
set of (4) is bounded and its global minimizer exists.

We observe that (w; b) = (0; b) may be an optimal solution
(trivial solution) to (4), which possibly incorrectly predict
the corresponding label y′ for some new input vector x′

because 〈w,x′〉 + b = b. However, for any b ∈ R, it follows
from yi ∈ {1,−1} that

f(0; b) = C‖(1− by)+‖0 = C min{m+,m−},

where m+ and m− denote the number of the positive and
the negative labels in y. Based on above equation, this
means that any optimal solution (w; b) satisfying

f(w; b) < Cmin{m+,m−}

is a non-trivial optimal solution to (4).

3.2 First-Order Optimality Condition

In this subsection, we discuss the first-order optimality
conditions for the problem (4). To proceed this, we introduce
a variable u ∈ Rm to equivalently reformulate (4) as

min
w∈Rm,b∈R,u∈Rm

1

2
‖w‖2 + C‖u+‖0 (13)

s.t. u +Aw + by = 1.

The Lagrangian function of above problem is

L(w, b,u,λ) (14)

=
1

2
‖w‖2 + C‖u+‖0 + 〈λ,u +Aw + by − 1〉,

where λ ∈ Rm is the Lagrange multiplier, based on which
we introduce the well known Karush-Kuhn-Tucker (KKT)
point of problem (13).

5

Definition 3.1 (KKT point of (13)). For a given C > 0, we
say that (w∗; b∗;u∗) is a KKT point of problem (13) if
there is a multiplier vector λ∗ ∈ Rm such that

w∗ +A>λ∗ = 0,
〈y,λ∗〉 = 0,

u∗ +Aw∗ + b∗y = 1,
C∂‖u∗+‖0 + λ∗ 3 0.

(15)

The following result reveals the relationship between a local
minimizer and a KKT point of (13).

Theorem 3.2. For a given C > 0, then (w∗; b∗;u∗) is a local
minimizer of (13) if and only if it is a KKT point.

Now let us define some notation

B := [A y] ∈ Rm×(n+1), H :=

[
In×n 0
0 0

]
B+, (16)

where B+ is the generalized inverse of B. These notations
could equivalently rewrite (13) as

min
u∈Rm

1

2
‖H(u− 1)‖2 + C‖u+‖0, (17)

which is an unconstrained non-convex optimization prob-
lem. Based on (17), we will derive the proximal stationary
point of (13), and this point is useful as a stop criteria of our
algorithm proposed later.

Definition 3.2 (P-stationary point of (13)). For a given
C > 0, we say (w∗; b∗;u∗) is a proximal stationary (P-
stationary) point of problem (13) if there is a multiplier
vector λ∗ ∈ Rm and constant γ > 0 such that

w∗ +ATλ∗ = 0,
〈y,λ∗〉 = 0,

u∗ +Aw∗ + b∗y = 1,
proxγCL0/1

(u∗ − γλ∗) = u∗.

(18)

We now reveal the relationship between a global minimizer
and a P-stationary point of (13). Before which, let

γH := 1/λmax(H>H),

where λmax(H>H) denotes maximum eigenvalue of H>H.

Theorem 3.3. Assume B has a full column rank. For a given
C > 0, if (w∗; b∗;u∗) is a global minimizer of (13) then
it is a P-stationary point with 0 < γ ≤ γH .

Note that B having a full column rank means m ≥ n.
However, numerical experiments will demonstrate that our
proposed algorithm also works for the cases of m<n in
terms of finding a P-stationary point. To end this section, we
also unravel the relationship between a P-stationary point
and a KKT point of (13).

Theorem 3.4. For a given C > 0, if (w∗; b∗;u∗) is a P-
stationary point with 0 < γ ≤ γH of (13), then it is also
KKT point.

The above two theorems state that a global minimizer of
(13) is a P-stationary point which is also a KKT point. Most
importantly, we could use the P-stationary point as a termi-
nation rule in terms of guaranteeing the local optimality of a
point generated by the algorithm proposed in next section.

4 ALGORITHMIC DESIGN

In this section, we introduce the concept of L0/1-support
vector operator and describe how ADMM can be applied
into solving the L0/1-SVM problem (13).

4.1 L0/1-Support Vector Operator
In SVMs, the optimal hyperplane is actually only deter-
mined by a small portion of training samples. These samples
are called support vectors. It is well known that soft-margin
loss functions at non-support vectors have zero subdifferen-
tials [13], [14], [28], [29]. In other words, to select support
vectors, one could find samples at which the loss function
has nonzero subdifferentials. However, this approach is not
suitable for L0/1 soft-margin loss, since ∂`0/1(0) = R+

and ∂`0/1(t) = {0} elsewhere. This indicates samples with
ui = 1 − yi(〈w,xi〉 + b) 6= 0 always have zero subdifferen-
tials and samples with ui = 0 also have zero subdifferentials
due to 0 ∈ R+, which probably leads to empty set of support
vectors. To overcome such drawback, we introduce a novel
selection scheme, L0/1-support vectors operator, to choose
samples to be support vectors.
Definition 4.1 (L0/1-support vector operator). For a given

α > 0, the L0/1-support vector operator is defined by

Tα(z) :=
{
i ∈ Nm :

[
proxαL0/1

(z)
]
i

= 0
}
. (19)

Hereafter, we let zT (resp. AT) be the sub-vector (resp. sub-
matrix) contains elements of z (resp. rows of A) indexed on
T . Let T := Tα(z) and its complementarity set be T :=
Nm \ T . It follows from Definition 4.1 and (8) that[

(proxαL0/1
(z))T

(proxαL0/1
(z))T

]
=

[
0
zT

]
.

This leads to

u = proxαL0/1
(z) ⇐⇒

[
uT

uT − zT

]
= 0. (20)

The above equivalence will help us to design the algorithm
that we are ready to outline as below.

4.2 Framework of ADMM
The augmented Lagrangian function associated with the
model (13) can be written as

Lσ(w, b,u,λ) =
1

2
‖w‖2 + C‖u+‖0 + 〈λ,$〉+

σ

2
‖$‖2, (21)

where λ is Lagrangian multiplier, σ > 0 is a given parame-
ter and

$:= u +Aw + by − 1.

We take advantage of the ADMM to solve the aug-
mented Lagrangian function. Given the kth iteration
(wk, bk,uk,λk), its framework takes the following form

uk+1 = argmin
u∈Rm

Lσ(wk, bk,u,λk), (22)

wk+1 = argmin
w∈Rn

Lσ(w, bk,uk+1,λk) +
σ

2
‖w −wk‖2Dk ,

bk+1 = argmin
b∈R

Lσ(wk+1, b,uk+1,λk),

λk+1 = λk + ησ$k+1,

6

where η > 0 is referred as the dual step size and $k+1 :=
uk+1 +Awk+1 + bk+1y − 1. Here,

‖w −wk‖2Dk = 〈w −wk, Dk(w −wk)〉

is the so-called proximal term and Dk ∈ Rn×n is sym-
metric. Note that if Dk is positive semidefinite, then the
above framework is the standard semi-proximal ADMM
[30]. However, authors in papers [31]–[33] have also inves-
tigated ADMM with the indefinite proximal terms, namely
Dk is indefinite. The basic principle of choosing Dk is to
guarantee the convexity of w-subproblem of (22). Since
Lσ(w, bk,uk+1,λk) here is strongly convex with respect to
w, Dk is able to be chosen as a negative semidefinite matrix.
The flexibility of selecting Dk allows us to design a very
efficient algorithm when support vectors are used.

4.3 L0/1ADMM

We mainly describe how each subproblem of (22) can be
addressed efficiently as well as how the support vectors can
be applied into reducing the computational cost.
(i) Updating uk+1. By (19), we denote

zk := 1−Awk − bky − λk/σ, Tk := TC/σ(zk). (23)

Then the u-subproblem of (22) is reformulated as

uk+1 = argmin
u∈Rm

C‖u+‖0 +
σ

2
‖u− zk‖2.

= ProxC
σ L0/1

(zk),

which combining (20) results in

uk+1
Tk

= 0, uk+1

Tk
= zk

Tk
. (24)

(ii) Updating wk+1. We always choose

Dk = −A>
Tk
ATk , (25)

which enables us to derive the w-subproblem of (22) as

wk+1 = argmin
w∈Rn

1

2
‖w‖2 +

σ

2
‖Aw − vk‖2 +

σ

2
‖w −wk‖2−A>

Tk
ATk

= argmin
w∈Rn

1

2
‖w‖2 +

σ

2
‖Aw − vk‖2 −

σ

2
‖ATkw −ATkw

k‖2, (26)

where vk := −(uk+1 + bky − 1 + λk/σ). Moreover,

vk
Tk

= −(uk+1

Tk
+ bkyTk − 1 + λk

Tk
/σ)

= −(zk
Tk

+ bkyTk − 1 + λk
Tk
/σ)

= ATkw
k,

where the second and third equation are from (24) and (23).
Now we rewrite (26) as

wk+1 = argmin
w∈Rn

1

2
‖w‖2 +

σ

2
‖Aw − vk‖2 −

σ

2
‖ATkw − vk

Tk
‖2

= argmin
w∈Rn

1

2
‖w‖2 +

σ

2
‖ATkw − vkTk‖

2. (27)

To solve (27), we need find the solution to the equation

(I + σA>TkATk︸ ︷︷ ︸
=:Pk

)w = σA>Tkv
k
Tk
. (28)

Note that ATk ∈ R|Tk|×n, where |Tk| is the cardinality of Tk.
Then (28) can be addressed efficiently by following rules:

• If n ≤ |Tk|, one could just solve (28) through

wk+1 = σP−1
k A>Tkv

k
Tk
. (29)

• If n > |Tk|, the matrix inverse lemma enables us to
calculate the inverse as

P−1
k = I − σA>Tk(I + σATkA

>
Tk︸ ︷︷ ︸

=:Qk

)−1ATk . (30)

Then we update wk+1 as

wk+1 = σA>Tkv
k
Tk
− σA>TkQ

−1
k σATkA

>
Tk
vkTk

= σA>Tkv
k
Tk
− σA>TkQ

−1
k (Qk − I)vkTk

= σA>TkQ
−1
k vkTk . (31)

(iii) Updating bk+1. By letting rk := −(Awk+1−1+uk+1 +
λk/σ), it follows from b-subproblem in (22) that

bk+1 = argmin
b∈R

σ

2
‖uk+1 − 1 +Awk+1 + by‖2 + 〈λk, by〉

= argmin
b∈R

σ

2
‖by − rk‖2,

= 〈y, rk〉/‖y‖2 = 〈y, rk〉/m. (32)

(iv) Updating λk+1. According to (15) and Lemma 2.1, λ
and u have the relation −λ ∈ C∂‖u+‖0, namely λi = 0 if
ui 6= 0. Based on this, we update the Lagrangian multiplier
λk+1 in the following way:{

λk+1
Tk

= λkTk + ησ$k+1
Tk

,

λk+1

Tk
= 0. (33)

We now summarize the framework of the algorithm in
Algorithm 1. We call the method L0/1ADMM, an abbreviation
for L0/1-SVM solved by ADMM.

Algorithm 1 : L0/1ADMM for solving problem (4)

Initialize (w0, b0,u0,λ0). Choose parameters C , σ, K > 0
and set k = 0.
while The halting condition does not hold and k ≤ K do

Update Tk := TC/σ(zk) as in (23).
Update uk+1 by (24).
Update wk+1 by (29) if n ≤ |Tk| and by (31) otherwise.
Update bk+1 by (32).
Update λk+1 by (33).
Set k = k + 1.

end while
return the final solution (wk, bk) to (4) .

Remark 4.1. We have some comments on Algorithm 1
regarding to the computational complexity. Note that in
each step, updating wk+1 dominates the whole compu-
tation, which needs solve a linear equation system (28)
through (29) or (31). If n ≤ |Tk|, then the computa-
tional complexities of calculating A>TkATk and P−1

k are

7

O(n2|Tk|) and O(nκ) with κ ∈ (2, 3), respectively. If
n > |Tk|, then the computational complexities of calcu-
latingATkA

>
Tk

andQ−1
k areO(n|Tk|2) andO(|Tk|κ) with

κ ∈ (2, 3), respectively. Overall the whole complexity in
each step is O(min{n2, |Tk|2}max{n, |Tk|}). Therefore,
if there are few number of L0/1 support vectors, namely
|Tk| is very small, then the complexity is very low, which
allows us to do large scale computations.

The following theorem shows that if the sequence generated
by L0/1ADMM converges, then it must converge to a P-
stationary point of (13).
Theorem 4.1. Let (w∗, b∗,u∗,λ∗) be the limit point of the se-

quence {(wk, bk,uk,λk)} generated by L0/1ADMM. Then
(w∗; b∗;u∗) is a P-stationary point of problem (13) where
γ = 1/σ.

Remark 4.2. The convergence result in above theorem is best
result that we expect since (13) is non-convex and dis-
crete. Establishment of convergence property of ADMM
to address such kind of problem is a very challenging
topic for recent decades. There are a few publications
that aim at studying ADMM to solve non-convex op-
timization problems while the established convergence
results always rely on heavy assumptions.
Importantly, Theorem 4.1 allows us to take advantage of
the P-stationary point as a stopping criteria. In fact, we
will terminate the algorithm if the point (wk, bk,uk,λk)
closely satisfies the conditions in (18), namely,

max{θk1 , θk2 , θk3 , θk4} < tol,

where tol is the tolerance level and

θk1 :=
‖wk +A>Tkλ

k
Tk
‖

1 + ‖wk‖
, θk2 :=

|〈yTk ,λkTk〉|
1 + |Tk|

,

θk3 :=
‖uk − 1 +Awk + bky‖√

m
,

θk4 :=
‖uk − proxC/σL0/1

(uk − λk/σ)‖
1 + ‖uk‖

.

5 NUMERICAL EXPERIMENTS

In this part, we will conduct extensive numerical experi-
ments to show sparsity, robustness and effectiveness of our
algorithm L0/1ADMM by using MATLAB (2017a) on a laptop
of 32GB of memory and Inter Core i7 2.7Ghz CPU, against
four leading methods both on synthetic data and real data.

(a) Parameters setting. In our algorithm, the parameters
C and σ control the number of support vectors, see (23), so
choosing a good value of these two parameters is crucial.
The standard 10-fold cross validation is employed in train-
ing set to choose optimal parameters, where the parame-
ters C and σ are both selected from the candidate values
{a−7, a−6, · · · , a7} with a =

√
2. The parameters with

highest cross validation accuracy are picked out. In addition,
we set η = 1.618. For the initial points, w0 = 0.01×1, b0 = 0
and u0 = λ0 = 0. Finally, the maximum iteration number
is K = 104 and the tolerance level is set as tol= 10−5 on
synthetic data and tol= 10−3 on real data.

(b) Benchmark methods. Four leading methods are
introduced to make comparisons. All their parameters are

optimized to maximize the accuracy by 10-fold cross valida-
tion in each training set.

HSVM SVM with hinge soft-margin loss is implemented by
LibSVM [34], where the parameter C is selected from
the set {2−7, 2−6, · · · , 27} =: Ω.

SSVM SVM with square soft-margin loss [7] is implemented
by LibLSSVM [35], where the parameter C is picked
from the range Ω.

PSVM SVM with pinball soft-margin loss can be achieved
by using the traversal algorithm [36], where C
and τ are turned from the candidate values
{0.1, 0.5, 1, 5, 10}

⋃
Ω and {−1,−0.99, · · · , 0.99}, re-

spectively [36]. In order to improve computational
efficiency of the traversal algorithm, authors in [36]
suggested τ = 0 (i.e., HSVM) when the number of
training data is large.

RSVM SVM with ramp soft-margin loss can be achieved by
employing the CCCP [37], where the parameters C
and µ are selected from Ω and {0.1, 0.2, · · · , 1}.

(c) Evaluation criterions. For the evaluation of classification
performances, we report three evaluation criterions of five
methods, that is, accuracy (ACC), number of support vectors
(NSV) and CPU time (CPU). Let {xtest

j , ytest
j }mtj=1 be mt test

samples data. The testing accuracy is defined by

ACC := 1− 1

2mt

mt∑
j=1

∣∣∣sign(〈w,xtest
j 〉+ b)− ytest

j

∣∣∣,
where sign(a) = 1 if a > 0 and sign(a) = −1 otherwise,
(w, b) is obtained by each method. The accuracy measures
the ability of a model/method to correctly predict the class
labels of any new input vectors. The higher the value of ACC
is, the better the model/method is. The NSV and CPU are
two comprehensive measures for classification models. The
smaller their values are, the better the model is.

5.1 Comparisons with Synthetic Data
In this subsection, we first show that L0/1ADMM has the
ability of support vector selection. For visualization, we
consider a two-dimensional example where the features
come from Gaussian distributions used in [3], [36].
Example 5.1 (Synthetic data in R2 without outliers). In this

example, samples xi with positive labels yi = +1 are
drawn from N(µ1,Σ1) and samples xi with negative
labels yi = −1 are drawn from N(µ2,Σ2), where µ1 =
[0.5,−3]>,µ2 = [−0.5, 3]> and Σ1 = Σ2 = Diag(0.2, 3).
We generate m samples with two classes having equal
numbers, and then evenly split all samples into a train-
ing set and a testing set.

Data generated in this way has centralized features of each
class. For this experiment, the corresponding Bayes classifier
is x2 = 2.5x1. We display Bayes classifier and 100 training
data for each class in Figure 3 (a), where samples are able
to be linearly separated and no extra noises contaminate
the samples. We then add outliers on data generated in
Example 5.1 as follows.
Example 5.2 (Synthetic data in R2 with outliers). Firstly,

m samples with two classes having equal numbers are
generated as in Example 5.1. Then in each class, we

8

randomly flip r percentage of labels. For instance, in
m/2 samples with positive labels +1, we change mr/2
labels of them to −1. This means r percentage of m
samples are flipped their labels, namely rm outliers are
generated. Finally, we again evenly split those samples
into a training set and a testing set. In Figure 3 (b), one
training set with r=10% outliers are produced.

-2 -1 0 1 2 3

x
1

-10

-5

0

5

10

x 2

Positive
Negative
Bayes

-2 -1 0 1 2 3

x
1

-10

-5

0

5

10

x 2

Positive
Negative
Noise
Bayes

Fig. 3: Blue stars: sampling points in class −1. Red crosses:
sampling points in class +1. Red dashed lines: the Bayes
classifier. (a) A two dimensions training set with m = 200
samples. (b) Data in (a) but with r=10% outliers.

To solve these two examples, five methods are applied
to calculate the classification boundary x2 = w1x1 + b. Since
data are generated randomly, we repeat above process 10
times to avoid randomness and report average results of
ACC, NSV and CPU.

(d) Synthetic data without outliers. We first com-
pare five methods for solving Example 5.1, where m ∈
{4000, 8000, · · · , 20000}. Average results are reported in
Table 1. It can be clearly seen that all methods achieved
desirable ACC and L0/1ADMM got slightly better ones. When
it comes to NSV, the picture is significant different. L0/1ADMM
used a very small portion of samples as the support vectors,
while SSVM and PSVM used all samples. Therefore, the
phenomenon manifests that our constructed L0/1 support
vector operator is very effective to choose informative sam-
ples as the support vectors. As we mentioned in Remark 4.1,
a small portion of samples used will greatly speed up the
computation. This is testified by very short CPU time taken
by L0/1ADMM. Apparently, PSVM and RSVM consumed much
longer time, which indicates these two methods would suf-
fer from computational slowness in large scale date settings.

(e) Synthetic data with outliers. In the following experi-
ment, we test five methods for solving Example 5.2, with fix-
ing m = 10000, n = 2, r ∈ {0, 0.05, 0.1, 0.15, 0.2}. Average
results are presented in Table 2. Again, there is no big differ-
ence of ACC generated by five methods. When more outliers
were added, ACC became smaller. In addition, L0/1ADMM got
slightly better ACC, which means it is more robust to outliers
than other methods. As for NSV, SSVM and PSVM again took
all samples. Compared with solving Example 5.1, HSVM this
time used more support vectors and NSV increased when
more outliers added, which means it is sensitive to the
outliers. By contrast L0/1ADMM and RSVM seem to be more
robust to the outliers since NSVs did not vary greatly with r
altering. Interestingly, being different with HSVM, these two
methods needed fewer support vectors when more outliers
added. Finally, L0/1ADMM always ran the fastest, with only

TABLE 1: Comparisons of five methods for solving Ex. 5.1.

m/2 L0/1ADMM HSVM SSVM PSVM RSVM

2000 97.05 97.05 97.00 97.05 97.05
4000 97.35 97.25 97.30 97.30 97.33

ACC(%) 6000 97.33 97.28 97.33 97.24 97.33
8000 96.96 96.91 96.89 96.91 96.96
10000 97.20 97.18 97.16 97.19 97.20
2000 6 187 2000 2000 96
4000 10 301 4000 4000 141

NSV 6000 17 439 6000 6000 201
8000 20 571 8000 8000 223
10000 22 658 10000 10000 240
2000 0.003 0.014 0.221 9.642 3.969
4000 0.006 0.022 0.626 67.58 16.29

CPU 6000 0.009 0.036 1.200 209.9 31.44
(seconds) 8000 0.013 0.069 2.342 493.2 65.25

10000 0.019 0.094 3.951 775.3 124.7

taking less than 0.01 seconds, followed by HSVM and SSVM.
Same as solving such data without outliers, PSVM consumed
quite long CPU time. This implies that it may suffer from
severe computational slowness for data with large size.

TABLE 2: Comparisons of five methods for solving Ex. 5.2

r L0/1ADMM HSVM SSVM PSVM RSVM

0.00 97.16 97.08 97.10 97.16 97.16
0.05 92.65 92.46 92.50 92.60 92.65

ACC(%) 0.10 87.98 87.78 87.78 87.90 87.90
0.15 83.06 82.86 82.80 82.98 83.06
0.20 78.32 78.16 78.12 78.28 78.28
0.00 19 364 5000 5000 184
0.05 19 947 5000 5000 175

NSV 0.10 17 1385 5000 5000 170
0.15 14 1795 5000 5000 161
0.20 12 2160 5000 5000 137
0.00 0.008 0.027 0.801 93.11 22.53
0.05 0.007 0.075 0.823 101.3 20.99

CPU 0.10 0.006 0.123 0.853 105.4 19.43
(seconds) 0.15 0.006 0.172 0.885 108.3 18.96

0.20 0.005 0.236 0.898 110.6 18.41

5.2 Comparisons with Real Data
We now focus on applying five methods into solving 13 real
data sets. Table 3 presents the detailed information of them,
where the last five ones have the training and testing data.
Example 5.3 (Real data without outliers). We perform 10-

fold cross validation for the first six data sets, where
each data is randomly split into ten parts, one of which
is used for testing and the remaining nine parts is for
training. We thus record average results to evaluate the
performance. However, for the two large size samples:
SUSY and HIGGS, the last 500,000 samples are used for
testing, and the rest are for training. In our experiments,
all features in each data set are scaled to [−1, 1].

Example 5.4 (Real data with outliers). We still use these 13
real data sets in Example 5.3 but with adding outliers.

9

TABLE 3: Descriptions of 13 real data sets

Training data Testing data Features
Datesets m mt n

Colon-cancer (col) 62 0 2000
Australian (aus) 690 0 14
Two-norm (two) 7400 0 20
Mushrooms (mus) 8124 0 112
Adult (adu) 17887 0 13
Covtype.binaty (cov) 581012 0 54
SUSY (sus) 5000000 0 18
HIGGS (hig) 11000000 0 28
Lekemia (lek) 38 34 7129
Splice (spl) 1000 2175 60
W6a (w6a) 17188 32561 300
W8a (w8a) 49749 14951 300
ijcnn1 (ijc) 49990 91701 22

For each data set, we randomly pick r percentage of
training samples and then flip their labels. Same pro-
cedure is also applied into testing samples.

(f) Real data without outliers. Average results of five
methods are recorded in Table 4. Note that some large size
data sets make the other four methods run too much time,
(e.g. over than one hour), so we do not report theirs results
relating to those data sets. Clearly, L0/1ADMM outperformed
others in terms of biggest ACC, smallest NSV and shortest
CPU for the most of data sets. More detailed, L0/1ADMM
and RSVM got better ACC than the other three methods. For
instance, they predicted almost 90% samples correctly for
col testing data whilst HSVM and PSVM only got less than
80% correct predictions. In terms of using support vectors,
SSVM and PSVM again took all samples into consideration.
By contrast, L0/1ADMM made use of a few number of support
vectors, e.g. 113 v.s. 1247 by RSVM for adu data. As what
we expected, L0/1ADMM ran much faster than other methods
for large size data sets because of small number of support
vectors being used. For instance, 0.573 seconds v.s. 36.95
seconds by HSVM for ijc data. In addition, it only took
14.26 seconds to get the solution for hig data with more
than ten million samples. This demonstrated that L0/1ADMM
is capable of dealing with data in extremely large scales.

(g) Real data with outliers. Finally, we would like to see
the performance of each method on solving the real date
sets with outliers, namely Example 5.4. We choose different
ratios r from {0.01, 0.02, · · · , 0.1}. As reported in Table 4,
the other four methods suffered from the computational
slowness for data sets with large sizes, thus we only present
results of six data sets with small sizes: col, aus, two, mus,
lek and spl. In terms of the accuracy in Figure 4, ACC
obtained by all methods dropped down with r ascending,
namely, more outliers being added. Generally speaking,
L0/1ADMM got the highest ACC except for spl, followed by
RSVM. As for NSV in Figure 5, SSVM and PSVM always took
all samples. It can be seen that lines from L0/1ADMM and
RSVM did not go up when r rose, which means they were
quite robust to r, namely robust to the outliers. By contrast,
more support vectors were needed by HSVM due to the
rising of NSV when r got increased. For each data set and

each r, L0/1ADMM always used the fewest support vectors,
followed by RSVM and HSVM. When it comes to the CPU
time in Figure 6, since col and lek have very small sizes,
all methods got solutions quickly. While for other four data
sets with moderate sizes, L0/1ADMM ran fastest, and PSVM
and RSVM came the last, such as, less than 0.1 second by
L0/1ADMM v.s. more than 100 seconds by PSVM and RSVM.

6 CONCLUSION

In this paper, we proposed a new soft-margin SVM model
with the L0/1 soft-margin loss function. It well captures
the nature of the binary classification. The establishment
of its optimality conditions made this NP-hard problem
tractable. We then took advantage of the negative semidef-
inite proximal ADMM to solve this problem. The creation
of L0/1 support vectors greatly reduced the computational
complexity. Extensive numerical experiments demonstrated
that our proposed method enjoys high order of accuracy
and super fast computational speed. What is more, since it
only took very small number of support vectors into consid-
eration, the proposed method turns out to be very robust to
the outliers. The idea of using L0/1 soft-margin loss function
might be able to extend to deal with the different types of
SVM models, such as SVM [38]–[41], which severely suffers
from outliers. It is also interesting to see how similar method
and techniques can be designed to solve the kernel SVM
problems. We leave this topic as a future research.

APPENDIX A
PROOFS OF ALL THEOREMS

A.1 Proof of Lemma 2.1

Denote I(u) := {i ∈ Nm : ui = 0} and Ψ(u) := {z ∈ Rm :
zi ≤ 0, ∀ i ∈ I(u)}. We split the proof of the lemma into the
following two case:

Case 1: u = 0. For any z ∈ Rm, it holds that ‖z+‖0 −
‖u+‖0−〈v, z−u〉 = −〈v, z−u〉 ≥ 0 for any z ∈ Ψ(u) and
z sufficiently closed to u. From the definition of the regular,
limiting and horizon subdifferentials, we have

∂̂‖u+‖0 = ∂‖u+‖0 = ∂∞‖u+‖0 = Rm+ .

Case 2: u 6= 0. Since ‖u+‖0 is lower-semicontinuous at
u, there is a neighborhood U(u, δ) of u such that ‖u+‖0 ≤
‖z+‖0 for all z ∈ U(u, δ) with δ > 0. By the definition of the
regular subdifferential of ‖u+‖0, we only need to consider
some sequence zj ∈ U(u, δ) ∩ Ψ(u) such that zj → u and
‖(zj)+‖ = ‖u+‖0. For all such sequence {zj}, we have

‖(zj)+‖0 − ‖u+‖0 − 〈v, zj − u〉 = −〈v, zj − u〉 ≥ 0

if and only if v ∈ Ω(u). Hence, ∂̂‖u+‖0 = v ∈ Ω(u). From
the definition of the limiting subdifferential, letting f :=
‖(·)+‖0, we have

∂‖u+‖0 = lim sup
z
f−→u

∂̂‖z+‖0

= lim sup
z
f−→u

{v ∈ Rm : v ∈ Ω(z)} = Ω(u).

10

TABLE 4: Comparisons of five methods for solving Ex. 5.3, where L0/1 stands for L0/1ADMM.

ACC(%) NSV CPU(seconds)
Name L0/1 HSVM SSVM PSVM RSVM L0/1 HSVM SSVM PSVM RSVM L0/1 HSVM SSVM PSVM RSVM

col 90.23 64.52 85.48 77.69 89.68 34 46 54 54 38 0.021 0.009 0.001 0.010 0.003
aus 86.23 85.51 85.80 85.80 86.02 24 203 621 621 89 0.005 0.014 0.033 0.874 0.650
two 98.37 98.02 97.97 97.97 98.24 30 758 6600 6600 108 0.054 0.265 2.506 516.7 139.2
mus 100.0 100.0 100.0 100.0 100.0 135 550 7311 7311 506 0.074 0.997 3.419 769.5 153.4
adu 83.90 83.29 83.01 83.07 83.79 113 6379 16098 16098 1247 0.576 3.775 24.58 1633.4 1013.2
lek 82.35 58.82 79.41 58.82 76.47 26 31 38 38 29 0.072 0.057 0.004 0.010 0.008
spl 85.52 88.97 85.75 85.52 85.47 70 607 1000 1000 87 0.043 0.117 0.083 7.976 0.631
w6a 97.93 97.21 97.58 97.21 97.86 429 1128 17188 17188 946 0.226 1.532 170.9 5947.2 2747.4
w8a 98.54 98.27 - - - 867 2857 - - - 2.576 64.33 - - -
ijc 94.33 92.73 - - - 215 8508 - - - 0.573 36.95 - - -
cov 71.79 - - - - 137 - - - - 3.870 - - - -
sus 67.58 - - - - 730 - - - - 10.38 - - - -
hig 65.21 - - - - 1338 - - - - 14.26 - - - -

0 2 4 6 8 10
r (%)

0.6

0.8

1.0

Col

L
0/1

ADMM

HSVM
SSVM
PSVM
RSVM

0 2 4 6 8 10
r (%)

0.8

0.82

0.84

0.86

0.88
Aus

L
0/1

ADMM

HSVM
SSVM
PSVM
RSVM

0 2 4 6 8 10
r (%)

0.9

0.94

0.98

Two

L
0/1

ADMM

HSVM
SSVM
PSVM
RSVM

0 2 4 6 8 10
r (%)

0.9

0.95

1
Mus

L
0/1

ADMM

HSVM
SSVM
PSVM
RSVM

0 2 4 6 8 10
r (%)

0.5

0.6

0.7

0.8

0.9
Lek

L
0/1

ADMM

HSVM
SSVM
PSVM
RSVM

0 2 4 6 8 10
r (%)

0.75

0.8

0.85

0.9
Spl

L
0/1

ADMM

HSVM
SSVM
PSVM
RSVM

Fig. 4: ACC v.s. r of five methods for solving six data sets.

Similarly, the horizon subdifferential of ‖u+‖0 is given as
the following,

∂∞‖u+‖0 = lim sup
σ↓0, z f−→u

σ∂̂‖z+‖0

= lim sup
σ↓0, z f−→u

{σv ∈ Rm : v ∈ Ω(z)}

= lim sup
σ↓0, z f−→u

{σv ∈ Rm : σv ∈ Ω(z)}

= lim sup
z
f−→u

{v ∈ Rm : v ∈ Ω(z)} = Ω(u),

where the third equation is due to v ∈ Ω(z) being equiva-
lent to σv ∈ Ω(z) for any σ > 0. �

A.2 Proof of Lemma 2.2
It follows from (6) that

Proxα`0/1(s) = arg min
u∈R

α`0/1(u) + (u− s)2/2.

Let φ(u) := α`0/1(u) + (u− s)2/2. Since φ1(u) := α+ (u−
s)2/2 for u > 0 and φ2(u) := (u − s)2/2 for u < 0 are
strongly convex and twice continuously differentiable, the
unique minimal values of φ1(u) and φ2(u) are both attained
at u = s. Moreover, φ3(u) := (u − s)2/2 for u = 0, we
have φ3(0) = s2/2. The rest part is to compare the three
values φ1(s) with s > 0, φ2(s) with s < 0 and φ3(0): (i)
Since s >

√
2α ⇔ φ3(0) > φ1(s) and φ2(s) > φ1(s), we

can observe that the minimal value of the φ(u) is achieved
at u = s. (ii) Since 0 ≤ s <

√
2α ⇔ φ1(s) > φ3(0) and

11

0 2 4 6 8 10
r (%)

20

30

40

50

60
Col

L
0/1

ADMM

HSVM
SSVM
PSVM
RSVM

0 2 4 6 8 10
r (%)

0

200

400

600

800
Aus

L
0/1

ADMM

HSVM
SSVM
PSVM
RSVM

0 2 4 6 8 10
r (%)

101

102

103

104
Two

L
0/1

ADMM

HSVM
SSVM
PSVM
RSVM

0 2 4 6 8 10
r (%)

102

103

104
Mus

L
0/1

ADMM

HSVM
SSVM
PSVM
RSVM

0 2 4 6 8 10
r (%)

20

25

30

35

40
Lek

L
0/1

ADMM

HSVM
SSVM
PSVM
RSVM

0 2 4 6 8 10
r (%)

102

103
Spl

L
0/1

ADMM

HSVM
SSVM
PSVM
RSVM

Fig. 5: NSV v.s. r of five methods for solving six data sets.

φ2(s) > φ3(0), similarly, we have u = 0. (iii)Since s < 0⇔
φ1(s) > φ2(s) and φ3(0) > φ2(s), it is easy to see that u = s.
(iv) Since s =

√
2α⇔ φ2(s) > φ1(s) = φ3(0), then u = 0 or

s. Thus, we have (7), which completes the proof. �

A.3 Proof of Lemma 2.4

(i) It follows from (11) that

fγ(u, z) = C‖u+‖0 + h(z) + 〈∇h(z),u− z〉+
1

2γ
‖u− z‖2

= C‖u+‖0 + h(z)− 1

2γ
‖∇h(z)‖2

+
1

2γ
(‖u− z‖2 + 2γ〈∇h(z),u− z〉+ ‖∇h(z)‖2)

= C‖u+‖0 +
1

2γ
‖u− (z− γ∇h(z))‖2

+ (constant term independent of u).

Hence, the global solution of problem (11) for any fixed
γ,C > 0 and z ∈ Rm is equivalent to

u∗ = arg min
u∈Rm

C‖u+‖0 +
1

2γ
‖u− (z− γ∇h(z))‖2

= proxγCL0/1
(z− γ∇h(z)).

(ii) Since h is gradient Lipschitz continuous with a Lipschitz
constant τh > 0, then for any 0 < γ ≤ 1/τh, we have

h(u) ≤ h(u∗) + 〈∇h(u∗),u− u∗〉+
τh
2
‖u− u∗‖

from [27, Lemma 2.3]. This together with (11) yields that

fγ(u,u∗)

= C‖u+‖0 + h(u∗) + 〈∇h(u∗),u− u∗〉+
1

2γ
‖u− u∗‖2

≥ C‖u+‖0 + h(u∗) + 〈∇h(u∗),u− u∗〉+
τh
2
‖u− u∗‖2

≥ C‖u+‖0 + h(u) ≥ C‖u∗+‖0 + h(u∗) = fγ(u∗,u∗),

the last inequality is from the global optimality of u∗, which
completes the proof. �

A.4 Proof of Theorem 3.1

From (4), one can easily check that

min
w∈Rn,b∈R

f(w; b) ≤ f(1; b) < n2 + Cm < +∞.

Next we proof the level set S := {(w; b) ∈ Rn+1 : f(w; b) <
n2 + Cm} is non-empty and bounded. Clearly, S 6= ∅ due
to (1; b) ∈ S. Since b is finite-valued, we can obtain that
b is bounded. Moreover, Cm + n2 > f(w; b) ≥ ‖w‖2/2,
which indicates w is bounded. Hence, the level set S of f is
non-empty and bounded and a global minimizer exists. �

A.5 Proof of Theorem 3.2

(Necessity) Suppose that φ∗ := (w∗; b∗;u∗) ∈ Θ is a local
minimizer of problem (13), where Θ is the feasible set in

12

0 2 4 6 8 10
r (%)

0

0.01

0.02

0.03

0.04
Col

L
0/1

ADMM

HSVM
SSVM
PSVM
RSVM

0 2 4 6 8 10
r (%)

10-2

100

102
Aus

L
0/1

ADMM

HSVM
SSVM
PSVM
RSVM

0 2 4 6 8 10
r (%)

10-2

100

102

104 Two

L
0/1

ADMM

HSVM
SSVM
PSVM
RSVM

0 2 4 6 8 10
r (%)

10-2

100

102

104
Mus

L
0/1

ADMM

HSVM
SSVM
PSVM
RSVM

0 2 4 6 8 10
r (%)

0

0.02

0.04

0.06

0.08
Lek

L
0/1

ADMM

HSVM
SSVM
PSVM
RSVM

0 2 4 6 8 10
r (%)

10-2

10-1

100

101
Spl

L
0/1

ADMM

HSVM
SSVM
PSVM
RSVM

Fig. 6: CPU v.s. r of five methods for solving six data sets.

(13). Then we have the following chain of relations

0
(a)
∈ ∂(‖w∗‖2/2 + δΘ(φ∗) + C‖u∗+‖0)
(b)

⊆ ∂̂‖w∗‖2/2 + ∂̂δΘ(φ∗) + ∂̂C‖u∗+‖0
(c)
= ∂‖w∗‖2/2 + ∂δΘ(φ∗) + ∂C‖u∗+‖0
(d)
= (w∗; 0;0) +NΘ(φ∗) + C(0; 0; ∂‖u∗+‖0)
(e)
= (w∗; 0;0) + Im(A>; Diag(y); I) + C(0; 0; ∂‖u∗+‖0)

= (w∗ +A>λ∗;y>λ∗;C∂‖u∗+‖0 + λ∗),

where (a), (b), (d) and (e) hold from [17, Theorem 10.1],
[24, Corollary 10.9], [23, Example 2.32] and [23, Proposition
2.12] respectively, (c) is due to the convexity of ‖w∗‖2/2
and δΘ(φ∗) and Lemma 2.1. Here, δΘ(z) is the indicator
function, namely, δΘ(z) = 0 if z ∈ Θ and δΘ(z) = +∞
otherwise. NΘ(z) is the normal cone of the convex set Θ
at point z, which is defined as NΘ(z) = {v : 〈v, z −
x〉 ≥ 0,∀ x ∈ Θ}. Im(B) is the image of matrix B, i.e.,
Im(B) := {Bλ : λ ∈ Rm}. I is the identity matrix. Finally,
(w∗; b∗;u∗) ∈ Θ implies u∗ − 1 +Aw∗ + b∗y = 0.

(Sufficiency) Suppose φ∗ = (w∗; b∗;u∗) and λ∗ ∈ Rm
satisfy (15). For a given C > 0, (15) suffices to

0 ∈

 w∗ +A>λ∗

〈y,λ∗〉
C∂‖u∗+‖0 + λ∗

 . (34)

Denote I(u∗) := {i ∈ Nm : u∗i = 0} and consider a problem

min
w∈Rn,b∈R,u∈Rm

1

2
‖w‖2 (35)

s.t. u = 1− (Aw + by),

ui ≤ 0, i ∈ I(u∗),

which is convex and thus has a global optimal solution
(w; b;u). It satisfies that there exists (λ, µ) such that



w +A>λ = 0,
〈y,λ〉 = 0,

Aw + by + u− 1 = 0,
λi + µi = 0, i ∈ I(u∗),

λi = 0, i /∈ I(u∗),
µi ≥ 0, ui ≤ 0, µiui = 0, i ∈ I(u∗).

(36)

By the expression of ∂‖u∗+‖0 in (5), (34) and Aw∗ + b∗y +
u∗ − 1 = 0 means (φ∗,λ∗) satisfy (36), which indicates φ∗

is a global solution of problem (35). Therefore, we have

1

2
‖w∗‖2 ≤ 1

2
‖w‖2, ∀(w; b;u) ∈ Θ1, (37)

where Θ1 is the feasible set of (35).
The function C||u+||0 is lower semi-continuous at φ∗ ∈

Θ, then by [23, Proposition 4.3], there is a neighborhood
U(φ∗, δ1) of φ∗ with δ1 > 0 such that

||u+||0 > ||u∗+||0 −
1

2
,∀(w; b;u) ∈ Θ ∩ U(φ∗, δ1).

While ||u+||0 can only take values from {0, 1, · · · ,m}. It
allows us to conclude that

||u+||0 ≥ ||u∗+||0,∀(w; b;u) ∈ Θ ∩ U(φ∗, δ1). (38)

Clearly, Θ1 ⊆ Θ. If any (w; b;u) ∈ Θ1 ∩U(φ∗, δ1), then (37)
and (38) lead to

1

2
‖w∗‖2 + C‖u∗+‖0 ≤

1

2
‖w‖2 + C‖u+‖0. (39)

13

If any (w; b;u) ∈ ((Θ \ Θ1)) ∩ U(φ∗, δ1), then there exists
i0 ∈ I(u∗) with u∗i0 = 0 but ui0 > 0, which implies
‖(u∗i0)+‖0 = 0 but ‖(ui0)+‖0 = 1. By (38), we have

‖u+‖0 ≥ ‖u∗+‖0 + 1. (40)

Since ‖w‖2/2 is locally lipschitz continuous in Rn, there
exists a neighborhood U(φ∗, δ2) of φ∗ with δ2 > 0 such that

|‖w‖2 − ‖w∗‖2| ≤ 2C, ∀(w; b;u) ∈ U(φ∗, δ2). (41)

Taking δ = min{δ1, δ2} and combining (40) and (41), we
obtain for any (w; b;u) ∈ (Θ \Θ1) ∩ U(φ∗, δ),

1

2
‖w∗‖2 + C‖u∗+‖0 ≤ 1

2
‖w∗‖2 + C‖u+‖0 − C

≤ 1

2
‖w‖2 + C‖u+‖0. (42)

Overall, we prove the global optimality of φ∗ in a local
region Θ ∩ U(φ∗, δ). �

A.6 Proof of Theorem 3.3

Denote g(u) := ‖H(u − 1)‖2/2 in (17) with gradient
∇g(u) = H>H(u− 1). From Theorem 2.1, we have

u∗ = proxγCL0/1
(u∗ − γ∇g(u∗)), (43)

for any 0 < γ ≤ γH . Because B has a full column rank, B+

exists, namely, B+ = (B>B)−1B>. Now, let λ∗ = ∇g(u∗).
Then we have

−λ∗ = H>H(u∗ − 1) = H>EB+(u∗ − 1) = H>E

[
w∗

b∗

]
,

where E :=

[
In×n 0
0 0

]
, which suffices to

−B>λ∗ = B>H>E

[
w∗

b∗

]
= B>(B+)>E>E

[
w∗

b∗

]
=

[
w∗

0

]
.

By the definition of B := [A y], above equation yields{
w∗ +A>λ∗ = 0,

〈y,λ∗〉 = 0.

Finally, the above conditions, the feasibility of (w∗; b∗;u∗)
and (43) lead to (18). �

A.7 Proof of Theorem 3.4

According to (15) and (18), we only need to show that if
(u∗;λ∗) satisfies u∗ = proxγCL0/1

(u∗ − γλ∗) in (18) with
C > 0 and 0 < γ ≤ γH , then 0 ∈ C∂‖u∗+‖0 + λ∗ in (15). In
fact, it follows from (8) and (9) that for any i ∈ Nm,

u∗i =

{
0, 0 ≤ vi ≤

√
2γC,

vi, otherwise,

where v := u∗ − γλ∗. This means for any i with u∗i = 0,
−
√

2γC/γ ≤ λ∗i ≤ 0 and for any i with u∗i = vi = u∗i −γλ∗i ,
λ∗i = 0. Finally, the expression of ∂‖u∗+‖0 in Lemma 2.1
allows us to complete the proof immediately. �

A.8 Proof of Theorem 4.1

Since Tk ⊆ Nm has finite many elements, for sufficient large
k, there is a subset J ⊆ {1, 2, 3, · · · } such that

Tj ≡: T, ∀ j ∈ J. (44)

For notational simplicity, denote φk := (wk, bk,uk,λk)
and φ∗ := (w∗, b∗,u∗,λ∗). As {φk} → φ∗, it follows
{φj}j∈J → φ∗ and {φj+1}j∈J → φ∗. Taking the limit along
with J of (33), namely, k ∈ J, k →∞, we have{

λ∗T = λ∗T + ησ$∗T ,
λ∗
T

= 0, (45)

which derives$∗T = 0. Taking the limit along with J of (23)
and (24) respectively yields

z∗ = 1−Aw∗ − b∗y − λ∗/σ
= 1−Aw∗ − b∗y − u∗ + u∗ − λ∗/σ
= −$∗ + u∗ − λ∗/σ (46)

and thus

u∗T = 0, u∗
T

= z∗
T

(46)
= −$∗

T
+ u∗

T
− λ∗

T
/σ (47)

(45)
= −$∗

T
+ u∗

T
.

This proves $∗
T

= 0 and hence $∗ = 0. Again by (46), we
obtain z∗ = u∗ − λ∗/σ, which together with (47) and the
definition of proximal operator (9) indicates

u∗ = ProxC
σ L0/1

(z∗) = ProxC
σ L0/1

(u∗ − λ∗/σ). (48)

Now taking the limit along with J of (28) results in

(I + σA>TAT)w∗ = σA>T v
∗
T

= −σA>T (u∗T + b∗yT − 1 + λ∗T /σ)

= −σA>T ($∗T −ATw∗ + λ∗T /σ)

= −σA>T (−ATw∗ + λ∗T /σ),

where v∗ = −(u∗ + b∗y − 1 + λ∗/σ) and the last two
equations hold due to $∗ = u∗ + Aw∗ + b∗y − 1 = 0.
The last equation suffices to that

w∗ = −A>T λ∗T
(45)
= −A>λ∗.

Finally taking the limit along with J of (32) leads to

b∗ = 〈y, r∗〉/m = −〈y, Aw∗ − 1 + u∗ + λ∗/σ〉/m
= −〈y,$∗ − b∗y + λ∗/σ〉/m
= −〈y,−b∗y + λ∗/σ〉/m
= b∗ − 〈y,λ∗〉/(mσ),

which contributes to 〈y,λ∗〉 = 0. Overall, we have
w∗ +ATλ∗ = 0,

〈y,λ∗〉 = 0,
u∗ +Aw∗ + b∗y = 1,

proxC
σ L0/1

(u∗ − λ∗/σ) = u∗.

Namely, (w∗; b∗;u∗) is a P-stationary point of problem (13)
where γ = 1/σ. �

14

ACKNOWLEDGEMENTS

This work is supported by the National Natural Sci-
ence Foundation of China (11971052), the National Nat-
ural Science Foundation of China (61866010, 11871183),
and the Natural Science Foundation of Hainan Province
(118QN181).

REFERENCES

[1] C. Cortes and V. Vapnik, ”Support vector networks,” Machine
Learning, vol. 20, no. 3, pp. 273-297, 1995.

[2] V. Jumutc, X. Huang, and A. K. Suykens, ”Fixed-size pegasos
for hinge and pinball loss SVM,” International Joint Conference on
Neural Networks, 2013.

[3] X. Huang, L. Shi, and A. K. Suykens, ”Support vector machine
classifier with pinball loss,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 36, no. 5, pp. 984-997, 2014.

[4] S. Rosset and J. Zhu, ”Piecewise linear regularized solution paths,”
The Annals of Statistics, vol. 35, no. 3, pp. 1012-1030, 2007.

[5] L. Wang, J. Zhu, and H. Zou, ”Hybrid huberized support vector
machines for microarray classification,” Bioinformatics, vol. 24, no.
3, pp. 412-419, 2008.

[6] Y. Xu, I. Akrotirianakis, and A. Chakraborty, ”Proximal gradient
method for huberized support vector machine,” Pattern Analysis
and Applications, vol. 19, no. 4, pp. 989-1005, 2016.

[7] A. K. Suykens and J. Vandewalle, ”Least squares support vector
machine classifiers,” Neural Processing Letters, vol. 9, no. 3, pp. 293-
300, 1999.

[8] X. Yang, L. Tan, and L. F. He, ”A robust least squares support
vector machine for regression and classification with noise,” Neu-
rocomputing, vol. 140, pp. 41-52, 2014.

[9] Y. Freund and R. E. Schapire, ”A decision theoretic generalization
of on-line learning and an application to boosting,” Journal of
Computer and System Sciences, vol. 55, no. 1, pp. 119-139, 1997.

[10] J. Friedman, T. Hastie, and R. Tibshirani, ”Additive logistic regres-
sion: a statistical view of boosting,” Annals of statistics, vol. 28, no.
2, pp. 337-374, 2000.

[11] L. Mason, P. L. Bartlett, and J. Baxter, ”Improved generalization
through explicit optimization of margins,” Machine Learning, vol.
38, no. 3, pp. 243-255, 2000.

[12] F. Perez-Cruz, A. Navia-Vazquez, A. R. Figueiras-Vidal, and A.
Artes-Rodriguez, ”Empirical risk minimization for support vector
classifiers,” IEEE Transactions on Neural Networks, vol. 14, no. 2, pp.
296-303, 2003.

[13] X. Huang, L. Shi, and J. A. K. Suykens, ”Ramp loss linear pro-
gramming support vector machine,” Journal of Machine Learning
Research, vol. 15, no. 1, pp. 2185-2211, 2014.

[14] X. Shen, L. F. Niu, Z. Qi, and Y. J. Tian, ”Support vector machine
classifier with truncated pinball loss,” Pattern Recognition, vol. 68,
pp. 199-210, 2017.

[15] L. M. Yang and H. G. Dong, ”Support vector machine with
truncated pinball loss and its application in pattern recognition,”
Chemometrics and Intelligent Laboratory Systems, vol. 177, pp. 89-99,
2018.

[16] F. Perez-Cruz, A. Navia-Vazquez, P. L. Alarcon-Diana, and A.
Artes-Rodriguez, ”Support vector classifier with hyperbolic tan-
gent penalty function,” International Conference on Acoustics, Speech,
and Signal Processing, 2000.

[17] L. Mason, J. Baxter, P. Bartlett, and M. Frean, ”Boosting algorithms
as gradient descent,” International Conference on Neural Information
Processing Systems, 1999.

[18] P. L. Bartlett, M. I. Jordan, and J. D. McAuliffe, ”Large margin
classifiers: convex loss, low noise, and convergence rates,” Inter-
national Conference on Neural Information Processing Systems, 2004.

[19] P. L. Bartlett, M. I. Jordan, and J. D. McAuliffe, ”Convexity,
classification, and risk bounds,” Journal of the American Statistical
Association, vol. 101, no. 473, pp. 138-156, 2006.

[20] J. H. Friedman, ”On bias, variance, 0/1-loss, and the curse-of-
dimensionality,” Data Mining and Knowledge Discovery, vol. 1, no.
1, pp. 55-77, 1997.

[21] J. P. Brooks, ”Support vector machines with the ramp loss and the
hard margin loss,” Operations Research, vol. 59, no. 2, pp. 467-479,
2011.

[22] L. Li and H. T. Lin, ”Optimizing 0/1 loss for perceptrons by ran-
dom coordinate descent,” International Joint Conference on Neural
Networks, 2007.

[23] B. Mordukhovich and N. Nam, ”An easy path to convex analysis
and applications,” Morgan and Claypool Pubulishers, 2014.

[24] R. T. Rockafellar and R. J. B Wets, ”Variational analysis,”Springer
Science and Business Media, 1998.

[25] H. H. Bauschke and P. L. Combettes, ”Convex analysis and mono-
tone operator theory in hilbert space,”New York: Springer, 2011.

[26] Y. Q. Chen, N. H. Xiu, and D. T. Peng, ”Global solutions of
non-Lipschitz S2-Sp minimization over the positive semidefinite
cone,” Optimization Letters, vol. 8, no. 7, pp. 2053-2064, 2014.

[27] A. Beck and Y. C. Eldar, ”Sparsity constrained nonlinear opti-
mization: optimality conditions and algorithms,” SIAM Journal on
Optimization, vol. 23, no. 3, pp. 1480-1509, 2013.

[28] I. Steinwart and N. Christianini, ”Sparseness of support vector
machines,” Journal of Machine Learning Research, vol. 4, no. 6, pp.
1071-1105, 2004.

[29] S. Ertekin, L. Bottou, and C. L. Giles, ”Nonconvex online support
vector machines,” IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, vol. 32, no. 4, pp. 368-381, 2010.

[30] M. Fazel, T. K. Pong, D. F. Sun, and P. Tseng, ”Hankel matrix
rank minimization with applications to system identification and
realization,” SIAM Journal on Matrix Analysis and Applications, vol.
34, no. 3, pp. 946-977, 2013.

[31] M. Li, D. F. Sun and K. C. Toh, ”A majorized ADMM with in-
definite proximal terms for linearly constrained convex composite
optimization,” SIAM Journal on Optimization, vol. 26, no. 2, pp.
922-950, 2016.

[32] B. S. He, F. Ma, and X. M. Yuan, ”Optimal linearized alternating
direction method of multipliers for convex programming,” Avail-
able on http://www.optimization-online.org/DB FILE/2017/09/6228.
pdf , 2017.

[33] X. Chang, S. Liu, P. Zhao, and D. Song, ”A generalization of
linearized alternating direction method of multipliers for solving
two-block separable convex programming,” Journal of Computa-
tional and Applied Mathematics, vol. 357, no. 2, pp. 251-272, 2019.

[34] C. C. Chang and C. J. Lin, ”LIBSVM: a library for support vector
machines,” ACM Transactions on Intelligent Systems and Technology,
vol. 2, no. 3, pp. 27, 2011.

[35] K. Pelckmans, J. A. K. Suykens, T. V. Gestel, J. D. Brabanter, L.
Lukas, B. Hamers, B. D. Moor, and J. Vandewalle, ”SSVM lab:
a matlab/c toolbox for least squares support vector machines,”
Tutorial. KULeuven-ESAT. Leuven, Belgium, vol. 142, pp. 1-2, 2002.

[36] X. Huang, L. Shi, and J. A. K. Suykens, ”Solution path for pin-SVM
classifiers with positive and negative τ values,” IEEE Transactions
on Neural Networks and Learning Systems, vol. 28, no. 7, pp. 1584-
1593, 2016.

[37] Y. Wu and Y. Liu, ”Robust truncated hinge loss support vector
machines,” Journal of the American Statistical Association, vol. 102,
no. 479, pp. 974-983, 2006.

[38] R. Khemchandani and S. Chandra, ”Twin support vector machines
for pattern classification,” IEEE Transactions on pattern analysis and
machine intelligence, vol. 29, no. 5, pp. 905-910, 2007.

[39] Y. Xu, Z. Yang, and X. Pan, ”A novel twin support vector ma-
chine with pinball loss,” IEEE Transactions on Neural Networks and
Learning Systems, vol. 28, no. 2, pp. 359-370, 2017.

[40] B. Hong, W. Z. Zhang, W. Liu, J. P. Ye, D. Cai, X. f. He, and J. Wang,
”Scaling up sparse support vector machines by simultaneous fea-
ture and sample reduction,” Journal of Machine Learning Research,
vol. 20, no. 121, pp. 1-39, 2019.

[41] C. N. Li, Y. H. Shao, H. J. Wang, Y. T. Zhao, L. W. Huang, N. H. Xiu,
and N. Y. Deng, ”Single Versus Union: Non-parallel Support Vec-
tor Machine Frameworks,” arXiv preprint arXiv:1910.09734, 2019.

http://www.optimization-online.org/DB_FILE/2017/09/6228.pdf
http://www.optimization-online.org/DB_FILE/2017/09/6228.pdf

	Introduction
	Convex Soft-Margin Losses
	Non-Convex Soft-Margin Losses
	0/1 Soft-Margin Loss
	L0/1-SVM
	Contributions

	Subdifferential and Proximal Operator
	L0/1 Subdifferential
	L0/1 Proximal Operator

	 Optimality Conditions of L0/1-SVM
	Existence of L0/1-SVM Minimizer
	 First-Order Optimality Condition

	Algorithmic Design
	L0/1-Support Vector Operator
	Framework of ADMM
	L0/1ADMM

	 Numerical experiments
	Comparisons with Synthetic Data
	Comparisons with Real Data

	 conclusion
	Appendix A: Proofs of all theorems
	Proof of subdifferentials
	Proof of proximal
	Proof of global solution
	Proof of exist-1
	Proof of relation-local-KKT
	Proof of gol-p-sta
	Proof of P-KKT
	Proof of convergence

	References

