
UNIVERSITY OF SOUTHAMPTON

FACULTY OF ENGINEERING AND PHYSICAL SCIENCES

SCHOOL OF ELECTRONICS AND COMPUTER SCIENCE

Using RDF Graph Provenance to

E�ciently Propagate SPARQL Updates

by

Iman Naja

Thesis for the degree of Doctor of Philosophy

December 2019

http://www.soton.ac.uk
http://www.fpse.soton.ac.uk
http://www.ecs.soton.ac.uk
mailto:i.naja@ecs.soton.ac.uk

UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING AND PHYSICAL SCIENCES

School of Electronics and Computer Science

Doctor of Philosophy

USING RDF GRAPH PROVENANCE TO EFFICIENTLY PROPAGATE SPARQL

UPDATES

by Iman Naja

http://www.soton.ac.uk
http://www.fpse.soton.ac.uk
http://www.ecs.soton.ac.uk
mailto:i.naja@ecs.soton.ac.uk

iv

On the Semantic Web, information is published as machine-readable graphs expressed

as RDF triples. Information consumers may combine and repackage that information as

derived graphs which are based on the originally published source graphs. In addition,

the formal semantics of RDF and OWL permit inference, by which reasoners generate

entailed graphs: derived graphs containing newly inferred information. The dynamic

nature of information presents a challenge when dealing with derived or inferred infor-

mation; if a source graph changes, any graphs that are derived from it must be updated

in order to preserve their integrity. However, such recomputation of derived graphs can

be expensive. This is analogous to the view update problem in databases, where changes

in source data a�ect materialised views. Common approaches to this problem use the

Delete and Re-Derive (DRed) algorithm to perform incremental view materialisation.

To minimise the resources needed to propagate source graph updates to derived and

entailed graphs, we propose to use the provenance of those graphs to guide their re-

computation. The provenance of a graph is the documentation of the history of that

graph. Provenance is a key requirement in a range of Web applications, and to that end

the W3C has endorsed the PROV data model and ontology for the representation of

provenance on the Web as RDF graphs. However, provenance may be applied at di�er-

ent granularities, which has signi�cant cost implications; a naïve application of DRed to

the graph rederivation problem which individually tracked the provenance of the triples

which comprise each graph would generate a provenance graph much larger than the

original source graphs.

In this thesis, we present RGPROV, a light-weight extension to the PROV ontology

for representing RDF graph creation and updates. RGPROV allows us to understand

the dependencies that a derived graph has on its source graphs without the need to

document the provenance of individual triples, and facilitates the propagation of graph

updates to derived graphs. Additionally, we present a modi�cation to the DRed algorithm

that enables the e�cient propagation of updates to entailed graphs. By making use of

RGPROV, we enable partial updates to be made to the entailed graphs without the

need for triple-level provenance, which reduces the need for complete recomputation but

results in an identical entailed graph, while using fewer resources. In order to evaluate

our approach, we developed a provenance-aware extension to and reimplementation of

the EvoGen benchmark for evolving RDF graphs, itself based on the commonly-used

LUBM benchmark for RDF storage and SPARQL query engines.

Contents

Declaration of Authorship xiii

Acknowledgements xv

1 Introduction 1

1.1 Research Focus . 2
1.2 Thesis Contributions . 4
1.3 Thesis Structure . 5

2 Background and Related Work 7

2.1 The Semantic Web . 7
2.1.1 The Case for the Semantic Web . 8
2.1.2 The Semantic Web Architecture 8

2.1.2.1 URIs and IRIs . 9
2.1.2.2 RDF . 9
2.1.2.3 Ontologies . 9
2.1.2.4 SPARQL Protocol and RDF Query Language 10
2.1.2.5 Proof and Trust . 12

2.1.3 Graph Operations . 12
2.1.3.1 Set Theoretic Operations 12

2.1.3.1.1 Union . 12
2.1.3.1.2 Merging . 13
2.1.3.1.3 Intersection . 13
2.1.3.1.4 Di�erence . 14

2.1.3.2 Entailment . 14
2.1.3.2.1 RDF Entailment 14
2.1.3.2.2 RDFS Entailment 14
2.1.3.2.3 Datatype Entailment (D-entailment) 15
2.1.3.2.4 OWL 2 Entailment 15
2.1.3.2.5 RIF Core Entailment 16

2.2 Reason Maintenance and Materialisation 17
2.2.1 Reason Maintenance . 17
2.2.2 Local Belief Revision . 19
2.2.3 Distributed Belief Revision . 20
2.2.4 Incremental Maintenance of View Materialisations 21
2.2.5 Reason Maintenance on the Semantic Web 22

2.3 Provenance . 23

v

vi CONTENTS

2.3.1 What Provenance Is . 23
2.3.2 Provenance Bene�ts and Usages . 24
2.3.3 The Di�erent Perspectives on Provenance 25
2.3.4 Provenance Vocabularies . 26
2.3.5 The PROV Data Model . 27

2.4 Provenance and Partial Recomputation . 28
2.5 Provenance and the Semantic Web . 29

2.5.1 The Need for Provenance on the Semantic Web 30
2.5.2 Proofs and Explanations for the Semantic Web 31
2.5.3 Provenance of SPARQL Updates 32

2.6 Semantic Web Benchmarks . 33
2.6.1 Static Benchmarks . 34
2.6.2 Dynamic Benchmarks . 36

2.7 Summary . 38

3 RGPROV: A Vocabulary for RDF Graph Provenance 39

3.1 Scenario . 40
3.2 Summary of Notations . 42
3.3 Running Example . 42
3.4 Graph Retrieval . 45

3.4.1 Single Graph Retrieval . 45
3.4.2 Graph Retrieval in Running Example 46

3.5 Graph Operations in Running Example 46
3.5.1 Initial Graph Creation . 48
3.5.2 Graph Updates . 49

3.6 The RGPROV Vocabulary . 50
3.6.1 Vocabulary Extensions . 50

3.6.1.1 Vocabulary for Graph Retrieval 51
3.6.1.2 Vocabulary for Graph Operations 51

3.6.2 Vocabulary Usage in Running Example 54
3.7 Summary . 56

4 Application of RGPROV 59

4.1 Vocabulary for Initial Graph Creation . 59
4.1.1 Graph Retrieval . 60
4.1.2 Graph Operations . 61

4.1.2.1 Set Theoretic Operations 62
4.1.2.2 Entailment . 62

4.2 Graph Updates . 63
4.2.1 Update Retrieval . 64
4.2.2 Update Propagation . 65
4.2.3 Propagation of Updates According to Set Theoretic Operations . . 65

4.2.3.1 Union . 66
4.2.3.2 Intersection . 67
4.2.3.3 Di�erence Case 1 . 68
4.2.3.4 Di�erence Case 2 . 68

4.2.4 Re-Entailment . 69

CONTENTS vii

4.2.4.1 Re-EntailmentAfter Insert 69
4.2.4.2 Re-EntailmentAfter Delete 70

4.3 Vocabulary for Update Propagation . 73
4.3.1 Update Retrieval . 73
4.3.2 E�ects of Updates . 74

4.3.2.1 Insert . 75
4.3.2.2 Delete . 75

4.3.3 Re-Entailment . 77
4.4 Summary . 78

5 Design and Implementation 81

5.1 System Design . 81
5.2 Implemented Components . 82

5.2.1 Operator . 82
5.2.2 Provenance Handler . 88
5.2.3 Update Producer . 90
5.2.4 Cache . 90

5.3 Third Party Components . 91
5.3.1 Reasoner . 91
5.3.2 SPARQL Server and Graph Store 91

5.4 Summary . 92

6 Evaluation Framework 93

6.1 The Evaluation Framework's Goals . 94
6.2 Framework Design and Implementation 95

6.2.1 Data Generator . 95
6.2.2 Change Producer . 100

6.2.2.1 Notations and Parameters 100
6.2.2.2 Weight Assignment and Shift Management 101

6.2.3 Version Manager . 102
6.2.4 Provenance . 103

6.3 Summary . 103

7 Evaluation and Discussion 105

7.1 Evaluation Criteria and Dimensions . 105
7.1.1 Evaluation Criteria . 105
7.1.2 Evaluation Dimensions . 106

7.2 Experimental Data . 108
7.3 Results and Discussion . 109

7.3.1 Evaluation Criteria 1: Communication 109
7.3.2 Evaluation Criteria 2: Storage . 110
7.3.3 Evaluation Criteria 3: Execution 110

7.3.3.1 Evaluation Criteria 3a: Set theoretic operations 110
7.3.3.2 Evaluation Criteria 3b: Re-derivation 111

7.3.4 Additional Observations . 111
7.3.4.1 Datasets' Shortcomings 111
7.3.4.2 Provenance Cost . 116

viii CONTENTS

7.3.4.3 Implementation-Speci�c Issues 117
7.4 Summary . 118

8 Conclusions and Future Work 119

8.1 Conclusions . 119
8.2 Future Work . 120

8.2.1 Graph Operations . 121
8.2.1.1 Beyond Set Theoretic . 121
8.2.1.2 Di�erent Entailment Regimes 121

8.2.2 Time-Sensitivity and Streaming . 122
8.2.3 Benchmarking the Evaluation Framework 122
8.2.4 Storage of Old Graphs and Provenance Elision 123

Appendix A RGPROV Ontology 125

Appendix B Application of RGPROV - Extended 131

B.1 Vocabulary for Initial Graph Creation . 131
B.1.1 Graph Retrieval . 131
B.1.2 Graph Operations . 133

B.1.2.1 Set Theoretic Operations 133
B.1.2.2 Entailment . 136

B.2 Vocabulary for Update Propagation . 138
B.2.1 Update Retrieval . 138
B.2.2 E�ects of Updates on Set Theoretic Operations 139

B.2.2.1 Union . 139
B.2.2.2 Intersection . 141
B.2.2.3 Di�erence Case 1 . 144
B.2.2.4 Di�erence Case 2 . 145

B.2.3 Re-Entailment . 145

Appendix C Extending the Evaluation Framework 149

C.1 Suggested Modi�cations . 149
C.2 Suggested Categories of Queries . 151

C.2.1 Querying Evolving Datasets . 151
C.2.2 Querying Provenance Graphs . 152

Appendix D Chain of Events 153

D.1 Union . 153
D.2 Intersection . 163
D.3 Di�erence Case 1 . 163
D.4 Di�erence Case 2 . 163

References 189

List of Figures

2.1 The Semantic Web Layer Cake (Bratt, 2007) 8
2.2 Two triples from two graphs (Hayes and Patel-Schneider, 2014). 13
2.3 Union and Merging Result (Hayes and Patel-Schneider, 2014). 13
2.4 Concatenation-Union Result (Hayes and Patel-Schneider, 2014). 13
2.5 Example Showcasing the Di�erent E�ects of RDF and RDFS Entailments

(Hawke et al., 2013). 16
2.6 The two components of a problem solver 18
2.7 PROV Core Structures (Moreau et al., 2013) 27
2.8 Provenance in the Semantic Web Layer Cake (Moreau et al., 2014) 31

3.1 Production of Charlie's Graph from the Graphs Published by the Two
Universities. 41

3.2 Interactions Between Systems in Scenario. 41
3.3 Production of Gent(C) from GA and GB. 44
3.4 Detailed Production of Gent(C) and its Provenance Graph from GA, GB,

and their Provenance Graphs. 44
3.5 Retrieval of a Graph and Its Provenance Graph. 46
3.6 Retrieval of a Graphs GA and GB and their Provenance Graphs. 47
3.7 Retrieval of a Graphs GA and GB and their Provenance Graphs. 47
3.8 Production of Gent(C) from Union and Intersection. 49
3.9 Production of Gent(C) from Di�erence. 49
3.10 RGPROV Components for Graph Retrieval. 51
3.11 RGPROV Components for Set Theoretic Graph Operations. 52
3.12 Some RGPROV Components of Entailment Regimes. 53
3.13 RGPROV Components of Update Operations. 54
3.14 Demonstration of RGPROV Components for Graph Retrieval. 55
3.15 Demonstration of RGPROV Components for Union. 55
3.16 Demonstration of RGPROV Components for Entailment. 56
3.17 Provenance of Graph GC . 57

4.1 Relationships Between Source Graphs and Their Copies. 61
4.2 First Iteration of Pent(C). 61
4.3 Second Iteration of Pent(C). 63
4.4 Final Iteration of Pent(C). 64
4.5 Venn Diagram of Relationships Between G1 and G2. 65
4.6 Venn Diagram of Relationships Between G1 and G′2, where G

′
2 = G2 ∪Gup. 65

4.7 Venn Diagram of Relationships Between G1 and G′2, where G
′
2 = G2 \Gup. 66

4.8 Relationships Between Update and Provenance Graphs and Their Copies. 74

ix

x LIST OF FIGURES

4.9 First Iteration of Pent(C′). 74
4.10 Second Iteration of Pent(C′) - Case Insert After Union. 76
4.11 Second Iteration of Pent(C′) - Cases Insert After Intersection and Di�erence

2 and Delete After Di�erence 1. 76
4.12 Second Iteration of Pent(C′) - Case Delete After Union. 77
4.13 Second Iteration of Pent(C′) - Cases Delete After Intersection and Di�er-

ence 2 and Insert After Di�erence 1. 78
4.14 Final Iteration of Pent(C′) Using all the Update Graph. 79
4.15 Final Iteration of Pent(C′) Using a Subgraph of the Update Graph. 79

5.1 System Architecture, with the Shaded Parts Indicating the Implemented
Components. 82

5.2 Copy of Figure 3.3 - Production of Gent(C) from GA and GB. 83
5.3 Copy of Figure 3.4 - Detailed Production of Gent(C) and its Provenance

graph Pent(C) from GA, GB, and their Provenance Graphs. 83
5.4 Production of Gent(C′) (All the Update Graph is Used). 85
5.5 Production of Gent(C′) (A Subgraph of the Update Graph is Used). 85

6.1 The Relationships Among our Evaluation Framework, the Benchmarks,
and PROV-TEMPLATE. 95

6.2 Architecture of Evolution Framework, with the Shaded Parts Indicating
the Implemented Components. 96

7.1 Comparison of Triples Sent to Reasoner - Insert After Union. 112
7.2 Comparison of Triples Sent to Reasoner - Delete After Union. 112
7.3 Comparison of Triples Sent to Reasoner - Insert After Intersection. 113
7.4 Comparison of Triples Sent to Reasoner - Delete After Intersection. 113
7.5 Comparison of Triples Sent to Reasoner - Case Insert After Di�erence 1. . 114
7.6 Comparison of Triples Sent to Reasoner - Case Delete After Di�erence 1. . 114
7.7 Comparison of Triples Sent to Reasoner - Case Insert After Di�erence 2. . 115
7.8 Comparison of Triples Sent to Reasoner - Case Delete After Di�erence 2. . 115

B.1 First Iteration of Pent(C). 133
B.2 Second Iteration of Pent(C). 137
B.3 Final Iteration of Pent(C). 138
B.4 First Iteration of Pent(C′). 139
B.5 Provenance of Insert Propagation on Graph from Union. 142
B.6 Provenance of Delete Propagation on Graph from Union. 142
B.7 Provenance of Insert Propagation on Graph from Intersection and Di�er-

ence Case 2 and of Delete Propagation on Graph from Di�erence Case
1. 144

B.8 Provenance of Delete Propagation on Graph from Intersection and Dif-
ference Case 2 and of Insert Propagation on Graph from Di�erence Case
1. 145

B.9 Final Iteration of Pent(C′) Using all the Update Graph. 147
B.10 Final Iteration of Pent(C′) Using a Subgraph of the Update Graph. 147

List of Tables

2.1 RDFS Entailment Patterns (Hayes and Patel-Schneider, 2014) 15
2.2 Summary of Semantic Web Benchmarks 34

3.1 Summary of Notations . 42

4.1 Re�ecting the Update on G3 based on ST◦ performed on G1 and G2. . . . 72

6.1 LUBM's and EvoGen's Default Restrictions for Data Generation 97
6.2 EvoGen's Assignment of Change Probability 102

7.1 Size of Small Graphs Initially and After Insert. 109
7.2 Size of Medium Graphs Initially and After Insert. 109
7.3 Size of Large Graphs Initially and After Insert. 109
7.4 Comparison of Number of Fetched Triples. 110

D.1 Chain of Updates After Insert . 154
D.2 Chain of Updates After Delete . 154
D.3 Chain of Updates 1 for Graph Union. 155
D.4 Chain of Updates 2 for Graph Union. 156
D.5 Chain of Updates 3 for Graph Union. 157
D.6 Chain of Updates 4 for Graph Union. 158
D.7 Chain of Updates 5 for Graph Union. 159
D.8 Chain of Updates 6 for Graph Union. 160
D.9 Chain of Updates 7 for Graph Union. 161
D.10 Chain of Updates 8 for Graph Union. 162
D.11 Chain of Updates 1 for Graph Intersection. 164
D.12 Chain of Updates 2 for Graph Intersection. 165
D.13 Chain of Updates 3 for Graph Intersection. 166
D.14 Chain of Updates 4 for Graph Intersection. 167
D.15 Chain of Updates 5 for Graph Intersection. 168
D.16 Chain of Updates 6 for Graph Intersection. 169
D.17 Chain of Updates 7 for Graph Intersection. 170
D.18 Chain of Updates 8 for Graph Intersection. 171
D.19 Chain of Updates 1 for Graph Di�erence 1. 172
D.20 Chain of Updates 2 for Graph Di�erence 1. 173
D.21 Chain of Updates 3 for Graph Di�erence 1. 174
D.22 Chain of Updates 4 for Graph Di�erence 1. 175
D.23 Chain of Updates 5 for Graph Di�erence 1. 176
D.24 Chain of Updates 6 for Graph Di�erence 1. 177

xi

xii LIST OF TABLES

D.25 Chain of Updates 7 for Graph Di�erence 1. 178
D.26 Chain of Updates 8 for Graph Di�erence 1. 179
D.27 Chain of Updates 1 for Graph Di�erence 2. 180
D.28 Chain of Updates 2 for Graph Di�erence 2. 181
D.29 Chain of Updates 3 for Graph Di�erence 2. 182
D.30 Chain of Updates 4 for Graph Di�erence 2. 183
D.31 Chain of Updates 5 for Graph Di�erence 2. 184
D.32 Chain of Updates 6 for Graph Di�erence 2. 185
D.33 Chain of Updates 7 for Graph Di�erence 2. 186
D.34 Chain of Updates 8 for Graph Di�erence 2. 187

Declaration of Authorship

I, Iman Naja , declare that the thesis entitled Using RDF Graph Provenance to E�ciently

Propagate SPARQL Updates and the work presented in the thesis are both my own, and

have been generated by me as the result of my own original research. I con�rm that:

• this work was done wholly or mainly while in candidature for a research degree at

this University;

• where any part of this thesis has previously been submitted for a degree or any

other quali�cation at this University or any other institution, this has been clearly

stated;

• where I have consulted the published work of others, this is always clearly at-

tributed;

• where I have quoted from the work of others, the source is always given. With the

exception of such quotations, this thesis is entirely my own work;

• I have acknowledged all main sources of help;

• where the thesis is based on work done by myself jointly with others, I have made

clear exactly what was done by others and what I have contributed myself;

• parts of this work have been published as:

Naja I., Gibbins N. (2018) Using Provenance to E�ciently Propagate SPARQL

Updates on RDF Source Graphs. In: Belhajjame K., Gehani A., Alper P. (eds)

Provenance and Annotation of Data and Processes. IPAW 2018. Lecture Notes in

Computer Science, vol 11017. Springer, Cham.

Signed:...

Date:..

xiii

mailto:i.naja@ecs.soton.ac.uk

Acknowledgements

This dissertation would never have seen the light of day were it not for the compassion,

endless patience, and unyielding support of my supervisor Dr. Nicholas Gibbins. My

PhD journey was not typical, but the constant that I was able to rely on was that he

believed in me and for that he has my eternal gratitude.

I am grateful to the School of Electronics and Computer Science at the University of

Southampton for fully funding three years of my PhD studies.

I am very grateful for the support of my family. I would not be where I am today had my

parents not instilled in me the importance of education and the drive to always improve

myself. I will also forever be beholden to them for providing me the �nancial support

that enabled me to �nish my PhD studies.

My heartfelt thanks go to Peter Cockersell who has not only supported me and stood

by me since 2012, but also encouraged me and coached me how to learn about myself

and how to deal with adversities. I also want to express my deep gratitude to Alexandre

Boudi Kanjo for standing by me and praising any and all of my achievements with the

greatest of enthusiasm regardless of their signi�cance or magnitude. Likewise, I want to

thank Yasmin El-Helwe for just being there, for listening, and for being the sister whom

I need to brighten my life with positivity and love.

I have received an abundance of encouragement and support from people at the Uni-

versity of Southampton. I am grateful to Dr. Adriane Chapman for her helpful feed-

back during and after my updgrade, especially on my conference presentation. I would

also like to especially thank Eric Cooke, Harry Rose, Mudasser Alam, Maria Priestley,

Oleksandr Pryymak, Belfrit Batlajery, So�a Kitormili, Jarutas Pattanapanchai, Betty

Purwandari, and Adriana Wilde. Further thanks go to everyone who was part of WAIS's

Room4Writing group for the weekly gatherings, especially Dr. Sue White for founding

the group. Lastly, I am also grateful to the sta� of the Southampton University Student

Union Advice and Information Centre (SUAIC) for all the valuable advise they gave me.

Additionally, I would like to thank Milan Markovic for helping me prepare for the viva.

Finally, throughout my PhD I used a number of open-source software and systems which,

in addition to being freely available, have made my life a little easier. I would be remiss

not to acknowledge the developers of Dropbox, Miktex, TeXnicCenter, SumatraPDF,

Eclipse, Protégé, f.lux, draw.io, and Notepad++.

xv

�The ones who love us never really leave us...� 1

In loving memory of my dear grandfather

M.A. A.J. El-Helweh

(11 Feb 1922 - 19 Apr 2015)

1J.K. Rowling, Harry Potter and the Prisoner of Azkaban

xvii

Chapter 1

Introduction

The Semantic Web, an extension to the World Wide Web, promotes the publishing,

understanding, discovery, and integration of data (Berners-Lee et al., 2001), with recent

years seeing a boost in the publication, inter-linkage, and consumption of large amounts

of public datasets owing to government initiatives1,2, the open access movement3, and

the open-access mandates4. It is an environment where masses of data are distributed

and where data produced by some are consumed by others who in turn may produce even

more data. Information on the Semantic Web is represented in machine-understandable

formats, namely RDF and OWL, which provide well-de�ned meanings and support rules

for reasoning on it, i.e. deriving new knowledge from it (Manola et al., 2014; Pascal

et al., 2012). This notion of rich inference, is one of the central driving factors for the

development of the Semantic Web.

However, this is not without challenge, as knowledge is neither static or complete and

the change and evolution of data are inevitable, whether this manifests as new scienti�c

discoveries, new political scenes, or simply in everyday life situations. This change needs

to be incorporated and re�ected in systems that make use of published data. Whilst

reasoning anew on the updated data may be needed, it may be expensive, and sometimes

impractical to re-obtain portions of the data that were used and to re-reason with it.

Another challenge arises in the fact that the Semantic Web is an open environment where

`anyone can say anything about anything'5. While this serves as a contribution to the

signi�cant growth of the availability and consumption of publicly available data over the

recent years, it in turn leads to the need to provide a means to trust the data to be

consumed, and trust in data is intrinsically linked to knowing its provenance.

1https://www.data.gov
2http://data.gov.uk
3https://doaj.org
4http://roarmap.eprints.org
5https://www.w3.org/TR/rdf-concepts/

1

https://www.data.gov
 http://data.gov.uk
https://doaj.org
http://roarmap.eprints.org
https://www.w3.org/TR/rdf-concepts/

2 Chapter 1 Introduction

Provenance describes the history of a datum or thing, physical or immaterial, and which

activities, entities, and people were involved in how it came to be (Groth and Moreau,

2013). It has proven to be useful in a variety of domains, from e-science to databases

to work�ow systems, as developers, researchers, and users have been concerned for some

time now in establishing trust in, promoting understanding of, providing accountability

for, and facilitating reproducibility of outputs of intelligent systems. Moreover, there

has been recent community-driven work on achieving an open provenance vision to track

provenance beyond the scope of closed database and work�ow systems. This has resulted

in the PROV data model which has been endorsed as a W3C recommendation (Lebo

et al., 2013).

Whilst its e�ectiveness in addressing the need to promote trust, explanations, under-

standing, and replication has made its incorporation into systems more widespread and

has led to the more prevalent emergence of provenance-aware systems, provenance can

also be employed for an additional bene�t. It is increasingly being used in e�cient re-

computation when data change, as demonstrated in the Panda system (Ikeda et al., 2013)

and the ReComp framework (Missier et al., 2016), and especially on the Semantic Web

as shown in (Flouris et al., 2009) and (Avgoustaki et al., 2016).

1.1 Research Focus

On the Semantic Web, simple information is expressed using the graph-based data model

RDF, with more complex information expressed in RDF-S and OWL. The building blocks

of these graphs are triples of the form subject-predicate-object. Reasoning on these

graphs results in the inferrence of new triples. A graph which is created as a result of

reasoning on another graph is an entailed graph. Graphs may be individually created or

they may be formed by combining information from other graphs. In accordance with

the PROV terminology, a graph which is created using other graphs is a derived graph.

All entailed graphs are derived graphs. Further, reasoning may be performed on such

graphs which had relied on other source graphs for their creation. Entailed graphs need

to be updated when those source graphs change.

Consider, as an illustration, the following case. An organisation, for example, the Uni-

versity of Southampton, publishes through its open data service6, RDF graphs describing

its internal structure. Interested parties consume these graphs by downloading and using

them, perhaps along with other relevant RDF graphs from other organisations. When

the University of Southampton goes through internal organisational re-structuring7, its

6https://data.southampton.ac.uk/organisation.html?codes
7The University of Southampton has undergone re-organisation four times in the last decade. The

School of Electronics and Computer Science is currently part of the Faculty of Engineering and Physical
Sciences, but has in the past decade been part of the Faculty of Physical Sciences and Engineering, the
Faculty of Physical and Applied Sciences, and the Faculty of Engineering, Science, and Mathematics.

https://data.southampton.ac.uk/organisation.html?codes

Chapter 1 Introduction 3

published RDF graphs change. It may also be that an error is found and corrected in

those graphs. Consumers of those graph who want their data to stay up to date need to

re�ect those updates.

To keep a derived graph up-to-date along with a changed source graph using a naïve

approach, a system would need to recreate it from scratch. Alternatively, it may rely

on an incremental maintenance algorithm as well as initially materialising the queries.

Then, when changes need to be re�ected, they are marked in the graph and the reasoner

automatically makes the required modi�cations and then re-derives - much like RDFox

(Motik et al., 2015). This, however, does not make use of provenance nor does it exploit

its advantages. Additionally, systems which implement their own reasoners are few and

far between. Otherwise, a provenance-aware system may make use of provenance to

re�ect changes. Most, however, record provenance on the triple level, such as in (Green

et al., 2007a; Flouris et al., 2009; Avgoustaki et al., 2016), which we argue is not always

feasible or scalable, especially if a system were to use the W3C recommendation PROV.

If PROV were used, recording each triple's provenance would result in a graph having

the size of its provenance graph substantially larger than it. Even in the case where

each triple's provenance consists of only triple prov:wasDerivedFrom sourceTriple,

a graph's provenance graph would be a little larger than it. This is compounded when

even slightly more provenance information is recorded, for example, documenting only

who produced a triple using which process, would result in the graph's provenance graph

being at minimum triple its size.

Hence, the undertaken work is directed towards addressing the following two research

questions:

Research Question 1: How can the recording of provenance of a derived RDF graph

(on the Semantic Web) enable its re-derivation when one of its source graphs

changes?

Research Question 2: How can this provenance facilitate scalable partial re-derivation

by generating less overhead in update communication and re-entailment?

From our research question, we can identify the following additional subsidiary research

questions that elaborate on and support it:

• SRQ1: How can we capture more speci�c provenance of RDF graphs to facilitate

its querying when the need arises to refer to this provenance and review the history

of its making to pinpoint how it was created?

• SRQ2: What set of steps should be taken to partially update and re-reason on an

RDF graph without having to create our own reasoner?

4 Chapter 1 Introduction

1.2 Thesis Contributions

Given the outlined thesis question, we provide the following contributions:

1. A vocabulary for Semantic Web graph provenance: While the PROV data model

provides a means to capture and express the provenance of entities and how they

change, it is generic. Hence, a more specialised vocabulary better served to express

the speci�c provenance of graphs, relating their creation and detailing their changes.

Accordingly, we extend PROV and present RGPROV, a vocabulary for RDF graph

creation and update. RGPROV allows us to document the dependencies a derived

graph, created by applying a set theoretic operation on two source graphs, has on

said source graphs. It also facilitates the identi�cation of which parts of insert or

delete updates applied to those source graphs need to be applied to said derived

graph.

2. An RDF graph partial re-derivation algorithm which implements the Delete and

Rederive (DRed) algorithm (Gupta et al., 1993): The DRed algorithm deletes the

asserted data and all the data that were derived from it, then re-inserts the subset

of the derived data that can be re-inferred using other still present base data. We

base our algorithm on it and tailor it to RDF graphs.

3. A model for e�cient update propagation which uses RGPROV descriptions to

inform the graph re-derivation algorithm above, with a prototype implementation

as demonstrator.

4. A provenance-aware evaluation framework: In order to evaluate the model in point

3, we require arbitrary scaling of data, an ontology of moderate size and complexity,

and graphs of di�erent sizes ranging from small to very large. These are addressed

by the Leigh University Benchmark (LUBM) (Guo et al., 2005). Additionally, we

also require dynamic graphs, i.e. we require original graphs and updates applied

on them in the forms of insertions and deletions. This is partially addressed by

the evolving benchmark EvoGen (Meimaris and Papastefanatos, 2016), which is

an extension of LUBM. Finally, we require graphs which contain e�ective instance

links as generated by UOBM (Ma et al., 2006) to address this shortcoming in

LUBM. As such, we designed an evaluation framework which extends EvoGen

by re-implementing its described approach by including both insertions into and

deletions from graphs, produces graphs with e�ective instance links, and is also

provenance-aware.

The �rst three points were presented in the following peer-reviewed publication:

Naja I., Gibbins N. (2018) Using Provenance to E�ciently Propagate SPARQL Updates

on RDF Source Graphs. In: Belhajjame K., Gehani A., Alper P. (eds) Provenance and

Chapter 1 Introduction 5

Annotation of Data and Processes. IPAW 2018. Lecture Notes in Computer Science, vol

11017. Springer, Cham.

1.3 Thesis Structure

The remainder of this thesis is organised as follows:

In Chapter 2, Background and Related Work, we provide the background literature

relevant to our work. We start by introducing the Semantic Web. We then introduce

provenance and list its bene�ts and usages, and follow that by presenting some previ-

ous work that has incorporated provenance in non-Semantic Web applications. Next,

we make the case for the need for provenance on the Semantic Web and present some

previous work that has incorporated provenance in Semantic Web applications. Finally,

we survey the most prominent Semantic Web benchmarks, focusing on those which in-

corporate change.

In Chapter 3, RGPROV: A Vocabulary for RDF Graph Provenance, we examine

the necessary steps for tracking the provenance of graphs on the Semantic Web and

facilitating the propagation of their modi�cation. We explore a running example where

a graph is created using data from two other graphs and outline the implications of

the change of one of those source graphs. Then, we present a specialisation of the

PROV ontology, RGPROV, which models the classes and properties involved in a graph's

creation and update.

In Chapter 4, Application of RGPROV, we showcase how the RGPROV vocabulary

can be used by applying it to the running example presented in Chapter 3. We also delve

into how an update on a source graph is propagated to a graph that uses it.

In Chapter 5, Design and Implementation, we present the system we have imple-

mented that makes use of the RGPROV vocabulary. We do so by outlining the design

of the system and describing the di�erent components that make it up and expand on

each of them.

In Chapter 6, Evaluation Framework, we describe the provenance-aware evaluation

framework we have developed, which extends EvoGen and UOBM and produces evolving

RDF graphs which increase and decrease in size.

In Chapter 7, Evaluation and Discussion, we present the datasets that were generated

using the evaluation framework described in 6 to test our approach. Then we describe

our evaluation criteria. Finally we present our experimental results showing that partial

re-derivation based on select parts of the update performed on a source graph produces

an identical entailed graph using less resources.

6 Chapter 1 Introduction

Finally, in Chapter 8, Conclusions and Future Work, we summarise this thesis and

present our conclusions. Additionally, we present future extensions applicable to our

work.

Chapter 2

Background and Related Work

In this chapter we present the background literature relevant to our work. We start

by introducing the Semantic Web and making the case for it. We then present reason

maintenance and materialisation. Next, we introduce provenance, list its bene�ts and

usages, and brie�y describe some provenance vocabularies as well as the PROV model.

We then make the case for the need for provenance on the Semantic Web and present

some previous works that have incorporated it in Semantic Web applications. After-

wards, we present two types of provenance applications on the Semantic Web, the �rst

addressing the capture of provenance of SPARQL queries and the second addressing the

use of provenance during recomputation. Finally, we survey a few of the Semantic Web

benchmarks.

2.1 The Semantic Web

The World Wide Web, where information is merely displayed by machines and only

understandable by humans, has been being extended and evolved over the past decade

to ful�l the vision of the Semantic Web in (Berners-Lee et al., 2001) where the pub-

lished content has well-de�ned and formal meaning. Consequently, this content can

be processed, understood, and manipulated by software agents despite originating from

miscellaneous, decentralised, and heterogeneous resources. It follows that the Semantic

Web is described as �a Web of actionable information�, where symbols are semantically

interpreted so their meanings are understood, terms are logically connected to establish

interoperability, and information is then derived (Shadbolt et al., 2006). This in turn

leads to better knowledge sharing and interaction and cooperation between computer

programs, in addition to enhanced cooperation between machines and people.

Simpli�ed, the goal of the Semantic Web has been to provide a language for expressing

and sharing data with well-de�ned meanings and for rules for reasoning about them, thus

7

8 Chapter 2 Background and Related Work

Figure 2.1: The Semantic Web Layer Cake (Bratt, 2007)

enabling their bene�cial reuse, so that people and computers can work in cooperation

(Berners-Lee et al., 2001).

2.1.1 The Case for the Semantic Web

The added value for the Semantic Web is that the documents are expressed in RDF and

OWL and as such are machine-understandable. Hence, ontologies improve the function-

ality of the Web by presenting solutions1 to some of its problems, such as terminology

problems, Web search accuracy, and solving complicated questions whose answers span

multiple Web pages (Berners-Lee et al., 2001). Additionally, and as previously men-

tioned, the goal of the Semantic Web has been to provide a language for expressing and

sharing data with well-de�ned meanings and for expressing rules for reasoning about

them, thus enabling their bene�cial reuse, so that people and computers can work in

cooperation. Thus, the Semantic Web is considered �a linked information space in which

data is being enriched and added�, and moreover, ontologies and data on the Semantic

Web made available by organisations and people are to be discovered by other users and

to be substantially reused (Shadbolt et al., 2006).

2.1.2 The Semantic Web Architecture

The Semantic Web is a made up of a collection of formats and languages which are

standardised by the World Wide Web Consortium2 (W3C). The architecture of the

Semantic Web is illustrated through the Semantic Web Layer Cake, shown in Figure

2.1.
1A list of use cases and case studies, although severely outdated, can be found on https://www.w3.

org/2001/sw/sweo/public/UseCases/slides/Slides.pdf
2https://www.w3.org

https://www.w3.org/2001/sw/sweo/public/UseCases/slides/Slides.pdf
https://www.w3.org/2001/sw/sweo/public/UseCases/slides/Slides.pdf
https://www.w3.org

Chapter 2 Background and Related Work 9

2.1.2.1 URIs and IRIs

On the Semantic Web, things, be they concepts or concrete objects, are identi�ed with

URIs and IRIs. URIs and IRIs are links that are machine processable, have global scope,

and are unambiguous and unique for each resource (Shadbolt et al., 2006; Bratt, 2007).

Whereas URIs are limited to ASCII, IRIs extend URIs by allowing the usage of the

Universal Character Set.

2.1.2.2 RDF

On the Semantic Web, RDF is the lingua franca for formally expressing meaning and

representing machine-processable documents (Berners-Lee et al., 2003, 2001). RDF is a

graph-based data model that describes things and how they relate to other things. It

does so by encoding meaning in sets of triples of the form subject-predicate-object.

Each member of the triple is identi�ed by an IRI (Manola et al., 2014; Hayes and

Patel-Schneider, 2014). For example, the triple ComputingMachineryAndIntelligence

hasAuthor Turing provides the information that the resource ComputingMachineryAnd-

Intelligence has for an author the resource Turing. Hence, RDF triples represent

information about resources in graph structures. Additionally, RDF allows triples from

multiple sources to be combined into one graph. RDF may be serialised, or written, in

di�erent syntaxes, such as Turtle, JSON-LD, RDFa, RDF/XML, and Notation-3 (N3).

Furthermore, anyone can de�ne new concepts or properties by de�ning IRIs on the Web

for them, and consequently, anyone can link to, refer to, or retrieve representations of

them. Therefore, it is mandatory that each concept or property on the Semantic Web

has a unique IRI as the IRIs ensure that concepts are not mere words in some document

but that they are also tied to a unique de�nition on the Web, one which everyone can

�nd.

An additional bene�t of RDF is that it allows systems to perform reasoning, i.e. to

make logical inferences. Inference is the deriving of new data from old ones. When some

triples follow logically from another set of triples, we say that the latter entail the former

(Manola et al., 2014). For example, the triple ComputingMachineryAndIntelligence

hasAuthor Turing entails the triple hasAuthor rdf:type rdf:Property. The RDF

entailment regime is summarised in Section 2.1.3.2.

2.1.2.3 Ontologies

Often, the need arises for data from di�erent sources to be combined or compared, and

in many instances di�erent terms must be recognised as having the same meaning or

referring to the same concept or property (Berners-Lee et al., 2001). More importantly,

greater expressiveness of objects and relation descriptions than that provided by RDF

10 Chapter 2 Background and Related Work

is required (Shadbolt et al., 2006). On the Semantic Web, this is accomplished using

ontologies. An ontology is �an explicit speci�cation of a conceptualization� (Gruber,

1993). In the context of the Semantic Web, an ontology is a document composed of for-

mal, descriptive, and precise statements about concepts within a speci�c domain and the

relations that exist among them (Pascal et al., 2012). Overall, ontologies have the follow-

ing usages and capabilities: consistency checking, providing completion, interoperability

support, validation support and veri�cation testing, encoding test suites, supporting

con�guration, supporting customised, structured, and comparative search, and �nally,

exploiting generalisation/specialisation information (McGuinness, 2014).

RDF Schema (RDF-S) extends RDF to support the de�nition of class and property

hierarchies as well as de�ning domain and range restrictions (Manola et al., 2014).

For example, it allows declaring the resource Article as a sub-class of the resource

Publication using the triple Article rdfs:subClassOf Publication. RDF-S has been

widely adopted by the research community as �a minimal ontology representation lan-

guage� (Shadbolt et al., 2006).

More complex ontologies are expressed using the Web Ontology Language - OWL 2‡

(OWL Working Group, 2012). OWL 2 was designed to express formal meanings and to

support the development of ontologies and their sharing on the Web. It provides three

syntactic sub-languages, referred to as pro�les, to address the di�erent needs of applica-

tions by presenting trade-o�s between reasoning e�ciency and expressive powers (Motik

et al., 2012a). Since ontologies may be distributed across systems with terms within

them referring to other ontologies, OWL 2 is primarily exchanged using the RDF/XML

syntax; hence, its ontologies are exchanged as RDF documents.

Ontology tools, such as reasoners, can verify the logical consistency of ontologies and au-

tomatically compute consequences. For example, given the two triples ComputingMachi-

neryAndIntelligence rdf:type Article and Article rdfs:subClassOf Publication,

a reasoner would infer the triple ComputingMachineryAndIntelligence rdf:type Publ-

ication. Therefore, reasoners are used to �query ontologies for implicit knowledge� so

as to make it explicit (Pascal et al., 2012). Di�erent entailment regimes are presented in

some detail in Section 2.1.3.2.

2.1.2.4 SPARQL Protocol and RDF Query Language

RDF content is stored in repositories called RDF stores and is queried and modi�ed by

systems and users using the RDF Query Language SPARQL. RDF graphs are stored

in Graph Stores and also operated on using SPARQL. Examples of RDF stores include

‡OWL 2 extends and reviews OWL 1 thus making it the the newest version of OWL (OWL Working
Group, 2012). It is also backward compatible with OWL 1.

Chapter 2 Background and Related Work 11

Virtuoso4, Ontotext GraphDB5, MarkLogic6, Neo4J7 Cyclon, and Apache Jena Fuseki8

TDB. The syntax of SPARQL follows the select-where-from SQL pattern. SPARQL 1.1

allows users and systems to formulate simple and complex queries using aggregation,

�lters, value expressions, negation, and nested queries.

SPARQL Query Language The SPARQL 1.1 Query Language has the following four

query forms (Harris and Seaborne, 2013). (1) SELECT returns the matching

values in a table format. (2) CONSTRUCT returns the matching values in an

RDF format. (3) ASK returns a boolean that indicates if a result was found.

Lastly, (4) DESCRIBE: returns an RDF graph which describes the results that

were found, i.e. it returns the results and any other resources related to those

results.

SPARQL Update Language The SPARQL 1.1 Update is an update language for

RDF graphs (Gearon et al., 2013). It is used for both graph update operations

and graph management operations.

Graph update operations do not create or delete graphs; they alter existing ones.

There are �ve fundamental operations as follows.

1. Insert data, this results in one or more triples being added to a graph.

2. Delete data, this results in one or more triples being removed from a graph.

3. Delete/Insert, this is equivalent to a sequence of the above two operations.

4. Load, this results in inserting into a graph all the triples that are present in

another graph. It may be treated it as being equivalent to applying an Insert

operation for each triple in the other graph.

5. Clear, this results in removing all the triples that are present in a graph.

As it does not require the subsequent removal of an empty graph (although

some implementations may do so), it may be treated as being equivalent to

applying a Delete operation on every triple in the graph.

Graph management operations work on graphs on a whole. There are �ve fun-

damental operations as follows. (1) CREATE creates a new graph. (2) DROP

removes an existing graph along with all its content. (3) COPY deletes all content

from a graph and inserts into it content from another graph. (4) MOVE deletes

all content from a graph, inserts into it content from another graph, and drops the

original graph. Lastly, (5) ADD copies all data from one graph and inserts them

into another.
4http://vos.openlinksw.com/owiki/wiki/VOS/
5https://ontotext.com/products/graphdb/
6https://www.marklogic.com/
7https://neo4j.com/
8https://jena.apache.org/documentation/fuseki2/index.html

http://vos.openlinksw.com/owiki/wiki/VOS/
https://ontotext.com/products/graphdb/
https://www.marklogic.com/
https://neo4j.com/
https://jena.apache.org/documentation/fuseki2/index.html

12 Chapter 2 Background and Related Work

2.1.2.5 Proof and Trust

In order for users to have con�dence in the data that they intend to reuse, trust must be

established, and as the content changes, users need to know how, where, when, and by

whom the data originated. To verify who created or edited the data, digital signatures

are employed. To show how data were produced, proofs are generated in chains of

inference steps, with pointers including source and supporting materials. However, in

order to address all the above concerns combined, users must know the provenance of

the content. Speci�cally, Berners-Lee et al. (2006) state that provenance information

is crucial in order to determine the integrity and value of a resource. We introduce

provenance in Section 2.3.1, cover its usages and bene�ts in Section 2.3.2, and discuss

the need for it on the Semantic Web in Section 2.5.1.

2.1.3 Graph Operations

We split the types of graph operations that result in the creation of a derived graph in

three. The �rst is set theoretic, the second is entailment, and the third is related to

SPARQL. We have already described the SPARQL operations in the previous section,

therefore we describe set theoretic and entailment operations next.

Note that there may exist a special type of component in an rdf triple, the blank node.

Blank nodes are used to indicate missing or insu�cient information. A blank node, or

bNode, is a node which is neither an IRI or a literal and which does not have an identi�er.

In an RDF triple, it may only be a subject or an object. When serialised, a bNode is

given a locally scoped identi�er, or blank node identi�er, which is not portable outside

the systems it is de�ned in (Klyne et al., 2014).

2.1.3.1 Set Theoretic Operations

The set theoretic operations that can be performed on any two graph are: Union, Merg-

ing, Intersection, and Di�erence. Note that Hayes and Patel-Schneider (2014) only de-

scribe the �rst two operations, Union and Merging. The presence of blank nodes adds

another layer of complexity when comparing graphs and triples. Without recourse to

OWL reasoning using functional properties, inverse functional properties, or keys, blank

nodes cannot be veri�ed to be equal, and thus graphs cannot be proven to be isomorphic.

2.1.3.1.1 Union The union of two graphs is the set theoretic union of their sets of

triples.

If blank nodes are present then their identi�ers need to be studied. If any two blank nodes

share an identi�er, then this identi�er needs to be changed, so as not to result in their

Chapter 2 Background and Related Work 13

Figure 2.2: Two triples from two graphs (Hayes and Patel-Schneider, 2014).

Figure 2.3: Union and Merging Result (Hayes and Patel-Schneider, 2014).

Figure 2.4: Concatenation-Union Result (Hayes and Patel-Schneider, 2014).

being inadvertently fused into a single node. For example, if one graph contains the triple

ex:a ex:p _:x and another graph contains the triple ex:b ex:q _:x, as shown in Figure

2.2, then their union would di�erentiate the shared blank node and the resulting graph

would contain the triples ex:a ex:p _:x1 and ex:b ex:q _:x2, as shown in Figure 2.3.

It would not be the graph containing the triples ex:a ex:p _:x and ex:b ex:q _:x,

as shown in Figure 2.3, as that is considered concatenation (this is also the result of

merging, discussed next).

2.1.3.1.2 Merging This operation is related to the union operation. The result of

a merging, a graph called the merge, forces the divide of any shared blank nodes. In the

case where two subgraphs of the same graph are merged, the size of the merge may be

greater than that of the original graph. Hayes and Patel-Schneider (2014) showcase an

example where two identical graphs with three nodes (Figure 2.4), are merged resulting

in a merge containing four nodes (Figure 2.3).

2.1.3.1.3 Intersection The intersection of two graphs is the set theoretic intersec-

tion of their sets of triples.

Because blank nodes cannot be veri�ed to be equal, the triples they are in are discarded.

14 Chapter 2 Background and Related Work

2.1.3.1.4 Di�erence The di�erence of two graphs is the set theoretic di�erence of

their sets of triples.

Because blank nodes cannot be veri�ed to be equal, the triples they are in are included.

2.1.3.2 Entailment

An entailment regime speci�es - under given semantic conditions - which triples logically

follow from the triples present in a graph. Hawke et al. (2013) present di�erent types of

entailment regimes. We summarize them next.

2.1.3.2.1 RDF Entailment This entailment regime produces some types of inferred

triples (Hayes and Patel-Schneider, 2014), we present two of its rules. The �rst detects

that a IRI has an rdf:type rdf:Property. For example, if a triple

ComputingMachineryAndIntelligence hasAuthor Turing is present in a graph, then

the triple hasAuthor rdf:type rdf:Property is inferred. The second allocates blank

nodes to string literals. For example, if a triple Turing givenName "Alan Mathison

Turing"∧∧xsd:string is present in a graph, then the two triples and Turing givenName

_:b and _:b rdf:type xsd:string are inferred.

2.1.3.2.2 RDFS Entailment RDFS Entailment extends RDF to support the de�-

nition of class and property hierarchies as well as de�ning domain and range restrictions

(Hayes and Patel-Schneider, 2014). We demonstrate four of its rules but list all of them

in Table 2.1. The �rst detects the type of a subject IRI. For example, if the two triples

numPages rdfs:domain Document and ComputingMachineryAndIntelligence numPages

43 are present in a graph, then the triple ComputingMachineryAndIntelligence rdf:type

Document is inferred. The second detects the type of an object IRI. For example, if the

two triples citedBy rdfs:range Document and ComputingMachineryAndIntelligence

citedBy ArtificalIntelligenceModernApproach are present in a graph, then the triple

ArtificalIntelligenceModernApproach rdf:type Document is inferred. The third de-

tects subclass transitivity. For example, if the two triples Proceedings rdfs:subClassOf

Article and Article rdfs:subClassOf Publication are present in a graph, then the

triple Proceedings rdfs:subClassOf Publication is inferred. Detection of subprop-

erty transitivity takes places in a similar manner. The fourth detects the super-class

of a class. For example, if the two triples Article rdfs:subClassOf Publication and

ComputingMachineryAndIntelligence rdf:type Article are present in a graph, then

the triple ComputingMachineryAndIntelligence rdf:type Publication is inferred. De-

tection of subproperties of a property takes places in a similar manner.

Chapter 2 Background and Related Work 15

If a graph contains: then it entails:

rdfs1 any IRI aaa in D aaa rdf:type rdfs:Datatype .

rdfs2 aaa rdfs:domain xxx .

yyy aaa zzz . zzz rdf:type xxx .

rdfs3 aaa rdfs:range xxx .

yyy aaa zzz . zzz rdf:type xxx .

rdfs4a xxx aaa yyy . xxx rdf:type rdfs:Resource .

rdfs4b xxx aaa yyy. yyy rdf:type rdfs:Resource .

rdfs5 xxx rdfs:subPropertyOf yyy .

yyy rdfs:subPropertyOf zzz . xxx rdfs:subPropertyOf zzz .

rdfs6 xxx rdf:type rdf:Property . xxx rdfs:subPropertyOf xxx .

rdfs7 aaa rdfs:subPropertyOf bbb .

xxx aaa yyy . xxx bbb yyy .

rdfs8 xxx rdf:type rdfs:Class . xxx rdfs:subClassOf rdfs:Resource .

rdfs9 xxx rdfs:subClassOf yyy .

zzz rdf:type xxx . zzz rdf:type yyy .

rdfs10 xxx rdf:type rdfs:Class . xxx rdfs:subClassOf xxx .

rdfs11 xxx rdfs:subClassOf yyy .

yyy rdfs:subClassOf zzz . xxx rdfs:subClassOf zzz .

rdfs12 xxx rdf:type rdfs:ContainerMembershipProperty . xxx rdfs:subPropertyOf rdfs:member .

rdfs13 xxx rdf:type rdfs:Datatype . xxx rdfs:subClassOf rdfs:Literal .

Table 2.1: RDFS Entailment Patterns (Hayes and Patel-Schneider, 2014)

Hawke et al. (2013) present an example showcasing some di�erences between the e�ects

of RDF and RDFS entailments, presented in Figure 2.59.

2.1.3.2.3 Datatype Entailment (D-entailment) This entailment regime pro-

vides additional support for datatypes (Hayes and Patel-Schneider, 2014). It is consid-

ered to be �RDFS with datatype support�. We present two of its rules. The �rst rule is

similar to the �rst RDF entailment rule. It allocates blank nodes to object nodes that

are assigned datatypes. For example, if the two triples hasPublicationYear rdf:type

rdfs:Datatype and ComputingMachineryAndIntelligence hasPublicationYear

"1950"∧∧xsd:gYear are present in graph, then the two triples ComputingMachineryAnd-
Intelligence hasPublicationYear _:b and _:b rdf:type xsd:gYear are inferred. The

second rule deals with value equality. For example, if the triple ComputingMachineryAnd-

Intelligence numPages "43.0"∧∧xsd:decimal, then the triple ComputingMachinery-

AndIntelligence numPages "43"∧∧xsd:decimal is inferred.

2.1.3.2.4 OWL 2 Entailment Two formal semantics for OWL 2 entailment regimes

have been recommended (Hawke et al., 2013), the OWL2 RDF-Based Semantics entail-

ment regime and the OWL 2 Direct Semantics entailment regime (Schneider et al., 2012;

Motik et al., 2012b). Despite there being semantic di�erences between both regimes, as

9The �gure has been corrected to re�ect the reported errata.

http://www.w3.org/2013/sparql-errata#sparql11-entailment

16 Chapter 2 Background and Related Work

Figure 2.5: Example Showcasing the Di�erent E�ects of RDF and RDFS En-
tailments (Hawke et al., 2013).

the former is a semantic extension of RDF, RDFS, and D-Entailment and the latter is

related to description logic semantics, the semantics of both are directly speci�ed by the

structure and constructs of OWL 2 (Motik et al., 2012c). Moreover, the correspondence

theorem states that OWL 2 RDF-Based Semantics can entail all that OWL 2 Direct

Semantics can and that any OWL 2 Direct Semantics query can be re-written into a

semantically equivalent query that allows the OWL 2 Direct entailment to also be an

OWL 2 RDF-Based entailment.

Thus, similar to the RDFS entailment regime, they can both answer queries relating

to domains, ranges, subclasses, subproperties, and whether an IRI is a property or a

resource. Further to the RDFS entailment regime, they can address additional queries

based on the OWL 2 vocabulary. Classes and properties can be found to be equivalent

or disjoint, while individuals can be found to be the same or di�erent. Both entailment

regimes can also address queries related to class intersection, union, complement, and

enumeration. Inferences about property restrictions include values and cardinality. Also,

additional entailment queries can be addressed based on properties that are functional,

inverse functional, re�exive, symmetric, and transitive. Finally, the entailment regimes

can detect data ranges based on whether the ranges consists of intersections, unions,

complements, one of, or type restrictions.

2.1.3.2.5 RIF Core Entailment RIF Core Entailment deals with two inputs, the

RDF graph and the RIF document. The entailment regime checks what is entailed

based on the referenced ruleset. There are two di�erent types of rules: declarative rules

and production rules. Declarative rules consider facts about the world and infer new

Chapter 2 Background and Related Work 17

knowledge about it. Production rules consider the facts and check which conditions

apply so that certain actions are performed and changes are most likely made.

Reasoning in RIF declarative language dialects are thought of as a combination of in-

stantiation, Modus Ponens, and evaluating conjunctions and disjunctions (Morgenstern

et al., 2013). Instantiation applies a property that is known about a class to its mem-

bers. Modus Ponens concludes that the consequent of a rule is true if its antecedent is

true. Evaluating a conjunction yields true if each of the conjuncts is true; evaluating a

disjunction yields true if one of disjuncts is true.

Reasoning in RIF production language dialects is about checking which rule in the set

of if-then-else rules will be �red and hence which action will occur. This happens in �ve

steps. First, if a rule's condition is satis�ed then the rule is �red. Second, if several rules

are candidates for �ring, then they are considered to be in a con�ict set. Third, of the

rules in the con�ict set, one rule is chosen based on the con�ict strategy, for example,

choosing the rule with the highest priority. Fourth, When a rule is �red, its action is

carried out and a change takes place. Finally, the four steps are repeated until no changes

occur, thus reaching a �xpoint.

2.2 Reason Maintenance and Materialisation

In this section, we set aside the discussion about provenance to brie�y present how sys-

tems have otherwise tracked the production of their data and how the modi�cation of

their source data a�ects the data arrived at from them. Therefore, we �rst introduce

reason maintenance and show how it is used in local and distributed systems. We then

introduce incremental view maintenance with an emphasis on the Delete and Rederive

(DRed) algorithm. Finally we brie�y cover reason maintenance on the Semantic Web.

The common limitation we encounter in these systems is that they do no rely on prove-

nance.

2.2.1 Reason Maintenance

Expert systems and knowledge-based intelligent agents use inference procedures and

domain knowledge to arrive to conclusions or goals. Their problem solving revolves

around storing information and inferring new facts. Thus, their stored information may

either be base information or inferred information. A standard system architecture of a

problem solver comprising of an Inference Engine and a Reason Maintenance System10

(RMS - or Truth Maintenance System, TMS) is shown in Figure 2.6. Inferences arrived

10We use the term Reason Maintenance System interchangeably with the term Truth Maintenance
System; though the former is preferable as it has been described by Doyle (1983) as a less deceptive
name.

18 Chapter 2 Background and Related Work

Figure 2.6: The two components of a problem solver

to by the inference engine are communicated to the RMS along with their justi�cations.

A justi�cation of a fact in an RMS comprises the reasons it, the RMS, believes this fact,

i.e. the other facts, assumptions, or conclusions on which the validity of this certain fact

depends, or the fact's dependencies.

Inevitably, new information will render some inferred facts incorrect or bring about some

contradictions, necessitating their retraction; this is referred to as belief revision (Russell

and Norvig, 2010). Reason Maintenance Systems are designed to handle complications

arising from such situations; they have been originally called Truth Maintenance Systems

because of their ability to restore consistency. Consistency is limited to keeping the

system free from contradictions and free from beliefs that have no justi�cations. Martins

(1990) identi�ed the following issues that TMSes deal with: (1) Non-monotonicity11

studies how belief in one proposition relies on the disbelief on other propositions; (2)

Disbelief propagation studies how a consequence of something that has been disbelieved

would in turn be disbelieved; and (3) Revision of beliefs centers around selecting the

`culprit' when a contradiction has been detected.

A TMS does not delete facts, instead it keeps track of which information is still believed

and which is no longer believed. As an example of what an TMS does, assume that a

knowledge base contained a sentence P that was proven to be incorrect and must be

retracted. If P had been used to infer further sentences, say Q and R, then those would

also have been needed to be retracted, but only if no sentences other than P had also

inferred them. For example, if the knowledge base, KB, contained the sentences S and

S ⇒ Q, then Q would not have been needed to be retracted.

In addition to tracing sources of contradictions or wrong conclusions, problem solvers

must also explain and justify their actions like humans do. Explanations are used to

clarify reasoning, justify recommendations, and answer possible questions. They also

make such systems more intelligible, help in debugging them, produce outcomes for

unanticipated situations, and clarify any assumptions made by the systems. There are

two types of explanations that are usually provided, `why' and `how'. `Why' explanations

typically answer the question `why was a fact requested?'. `How' explanations answer

11Monotonicity, as the property of logical systems, states that as sentences are added to the knowledge-
base the number of entailed can only increase; it is also expressed as: if KB � α then KB ∧ β � α.

Chapter 2 Background and Related Work 19

the question `how was a certain conclusion or recommendation reached?'. Thus, reason

maintenance systems should generate such explanations. Accordingly, this support for

inferred facts, can be considered part of its incomplete provenance.

2.2.2 Local Belief Revision

Truth maintenance systems perform local belief revisions based on two12 main ap-

proaches: justi�cation-based and assumption-based. A justi�cation-based TMS records

dependencies among beliefs by listing, for each belief, all the beliefs that have immedi-

ately originated it. An assumption-based TMS records dependencies by listing, for each

belief, all the assumptions that determine its derivation. We quickly review those.

Doyle's Justi�cation-based Truth Maintenance System Doyle (1979) presented

the justi�cation-based truth maintenance system, or JTMS, to address how changes

in beliefs should be handled. Every proposition, or statement, P is annotated with

the set of sentences that have inferred it, i.e. its justi�cation, and each P , may be

in one and only one of two states:

1. P is a member of the set of current beliefs because it has a minimum of one

valid, i.e. currently acceptable, justi�cation. It is said to be IN.

2. P is not a member of the set of current beliefs because it has no valid jus-

ti�cations, i.e. either has none or it has unacceptable ones. It is said to be

OUT. Thus the JTMS does not delete sentences; this becomes useful when a

justi�cation is later restored, the sentence is simply marked back as IN.

Note that there is a di�erence between not believing in P and believing in ¬P .
Labellings have to be consistent, i.e. all the justi�cations are satis�ed, and well-

founded, i.e. justi�cations are non-circular.

An assumption is a belief that is current and which has a valid reason that depends

on another belief that is not current. Assumptions are allowed to have justi�cations

as well. This allows for assumptions to result in reasoned un-grounded beliefs, e.g.

believing in an assumption P as a result of a disbelief in ¬P .

Retracting assumptions also takes place in a reasoned manner, i.e. no assump-

tion is retracted without a reason for its retraction. In case this reason becomes

invalid later, the retraction ceases to be valid and the assumption is reinstated

in the list of beliefs. Reasoned retraction of assumptions is achieved by using a

dependency-directed backtracking procedure. This procedure revises the current

set of assumptions that may be inconsistent so as to solve inconsistencies and keep

12Bry and Kotowski (2008) survey three more non-monotonic approaches: Logic-based, Hybrid, and
Incremental.

20 Chapter 2 Background and Related Work

the database contradiction-free. It does not operate on the content or the form

of beliefs, rather it �ags the set of con�icting beliefs and traces backwards to the

reasons supporting them. It then retracts one of the assumptions it has reached

thus restoring consistency.

de Kleer's Assumption-based Truth Maintenance System While a conventional

justi�cation-based TMS requires consistency in the set of currently believed data,

the demand for consistency presents a challenge for simple qualitative tasks. In

addition to being ine�cient, JTMSs cannot consider several contradictory assump-

tions at a time. de Kleer (1986) presented the assumption-based truth maintenance

system, or ATMS, that expedites the switch between the hypothetical states. Thus,

while a JTMS marks sentences as either IN or OUT and keeps tracks of their jus-

ti�cations, an ATMS additionally tracks sets of assumptions for each sentence.

If all assumptions in a set hold, then the sentence also holds. This waives the

requirement for the knowledge-base's consistency.

2.2.3 Distributed Belief Revision

Based on Doyle (1979)'s JTMS, Bridgeland and Huhns (1990) presented a distributed

Truth Maintenance (DTMS) algorithm that is used to restore inconsistency when jus-

ti�cations for a datum are added or removed. They considered a group of interacting

agents, each having their own partially-independent belief system. Each agent's knowl-

edge base contains two types of data, shared data - beliefs which has been shared in the

past, and private data - beliefs that have never been shared. When a datum is labeled

as IN, it is also labeled as either INTERNAL or EXTERNAL. An INTERNAL datum

has a valid justi�cation and is believed to be true. An EXTERNAL datum does not

have a valid justi�cation; it is believed to be true because another agent has shared it.

The presented algorithm, label-wrt, is called when a justi�cation is added or removed

so as to identify said justi�cation's consequences, handle the re-labelling, and share the

new labels. Although no empirical results were presented, the authors have pointed out

the following shortcomings with their algorithm: �rst, agents with less information may

overrule others with more information, that is, if an agent believes in certain datum, it

will force another agent to continue to believe in it, even if the other agent has additional

information to support the contrary. Also, signi�cant computation overhead arise when

the shared data are large, when the data are shared among many agents, or when beliefs

frequently change.

Dragoni and Puliti (1994) presented a framework for assumption-based distributed belief

revision, with two focuses. First, instead of dealing with just the information, the system

deals with the couples <information, informant>, as they asserted that the information's

credibility and the source's reliability a�ect each other. Moreover, their system does not

force the di�erent agents to reach mutual agreements about the validity of beliefs, thus

Chapter 2 Background and Related Work 21

adhering to what is termed a `Liberal Belief Revision Policy'. This allows agents to

uphold their own beliefs based on how they view evidence. Thus local consistency has

a higher importance over global consistency, so as to avoid scenarios where some agents

may mislead others by presenting compromised information whether deliberately or not.

Global consistency, however, may be still be reached via voting as described in their later

work in (Dragoni and Giorgini, 2003).

2.2.4 Incremental Maintenance of View Materialisations

Often times, a system may precompute and store all the consequences of its inference

rules. This is referred to as view materialisation. Materialisation results in queries, per-

formed directly on the stored facts, being faster (Gupta et al., 1993; Motik et al., 2015).

This is especially useful when derived facts are inferred from data that are distributed

over more than one system. However, when the data change due to insertions and

deletions, recomputing the materialisation from scratch is unacceptable because materi-

alisations are inherently expensive. The solution is thus is to compute only the changes

to the materialisation responding to the changes in the data. Algorithms which do so

are called incremental view maintenance algorithms.

Insertions are straightforward and do not raise the same problems as deletions, and thus

approaches to enhance incremental maintenance algorithms have focused on deletions.

Consider, for example, a knowledge base with the following rules:

Document(x)← Publication(x) (2.1a)

Publication(x)← JournalArticle(x) (2.1b)

Publication(x)← ConferenceProceedings(x) (2.1c)

ConferenceProceedings(x)← ConferenceArticle(x) (2.1d)

The knowledge base also contains the following asserted fact:

ConferenceArticle(ComputingMachineryAndIntelligence) (2.2a)

Publication(ComputingMachineryAndIntelligence) (2.2b)

Therefore, after reasoning the knowledge base would contain the derived facts:

ConferenceProceedings(ComputingMachineryAndIntelligence) (2.3a)

Document(ComputingMachineryAndIntelligence) (2.3b)

However, since `Computing Machinery and Intelligence' is a journal article and not a

conference article, the knowledge base needs to be corrected to re�ect that. Simply

22 Chapter 2 Background and Related Work

deleting the asserted fact (2.2a) is not enough because the derived fact (2.3a) needs to

be deleted as well.

Gupta et al. (1993) presented the seminal Delete and Rederive (DRed) algorithm that

starts by deleting all the data that had been derived from the original data that have been

deleted. This includes any data that may also have alternative derivations independent

of the deleted original data. In the above example, DRed would delete both derived facts

(2.3a) and (2.3b).

DRed then re-inserts the subset of the derived data which has other original data that

led to their derivation. In the above example, DRed would re-insert the derived fact

(2.3b), as it may be arrived to using the asserted fact (2.2b).

Finally, any facts that need to be asserted are added to the knowledge. `Computing

Machinery and Intelligence' can now be correctly asserted as a journal article.

Note that the decision whether to materialise the derivations or to forgo materialisa-

tion and recompute each time is an optimisation problem which depends on storage

constraints and the costs of updates and queries.

2.2.5 Reason Maintenance on the Semantic Web

On the Semantic Web, reason maintenance deals with handling changes a�ecting data

which had previously been inferred.

Broekstra and Kampman (2003) addressed the problem of dealing with `non-monotonous

updates' [sic] in an RDF knowledge base, whereby some statements are deleted after in-

ference has taken place. Their truth maintenance algorithm, which is part of Sesame's

(Broekstra et al., 2002) architecture, only deals with `disbelief propagation'. It is only

invoked when explicit - non-derived- believed facts are retracted. It is based on Doyle

(1979)'s JTMS, where dependencies between entailment rules are tracked, so every state-

ment has a list of justi�cations, i.e. all the other statements on which it depends. State-

ments that are candidates for removal are marked as suspended and the algorithm loops

over suspended statements and where the statement is explicit it is removed, and where

the statement is a justi�cation for a derived one, then that justi�cation is removed.

A statement whose justi�cation has been removed is added to the list of suspended

statements and re-examined. If upon re-examination no justi�cations are found then the

suspended statement is removed. When a new statement is added, basic backward chain-

ing is performed whereby the inferencer checks whether each statement is a conclusion

of an entailment and if that is the case, it identi�es which statements form the premise

of the entailment. The algorithm's performance is evaluated against a brute-force algo-

rithm which does not store any justi�cations, instead, when a statement is retracted, it

is deleted and all inferred statements are discarded and the reasoner is re-invoked. Four

Chapter 2 Background and Related Work 23

data sets are used for evaluation and although the algorithm's storage and speed perfor-

mance are signi�cantly better on two datasets, which were medium-sized, it performed

worse than the brute-force one on the other two.

Motik et al. (2015) had originally observed in (Volz et al., 2003, 2005) that reason mainte-

nance systems posses an inherent disadvantage in their main feature of never permanently

removing beliefs and justi�cations but merely disabling them. This leads to the collec-

tion of beliefs and justi�cations to progressively grow with their continuous in�ux thus

increasing the cost of updates. Additionally, Motik et al. (2015) observed that Gupta

et al. (1993)'s DRed algorithm over-deletes derived data causing ine�ciency. They pre-

sented their Backward/Forward (B/F) algorithm which improves on DRed by checking

whether triples marked for deletion have alternative derivations and if that is the case,

then the algorithm do not delete them. Their algorithm outperforms DRed on all their

test datasets.

The aforementioned systems track changes on the triple level or require the implemen-

tation of a special reasoner so to perform the materialisation and the re-derivation.

Additionally, none of these system make use of provenance, which we have previously

mentioned its bene�ts. In the next section we discuss systems that exploit provenance

to perform recomputations.

2.3 Provenance

In this section, we introduce the concept of provenance. We follow that by enumerating

its usages and the bene�ts it brings about. We also present the di�erent perspectives on

provenance and how its intended use a�ects its collections.

2.3.1 What Provenance Is

The Oxford English Dictionary13 de�nes the provenance14 of an item to be its derivation

from its particular source to its particular state. Conceptually, the provenance of a piece

of data - be it a triple, graph, or dataset - is its history which consists of any data

items involved in its inception, i.e. its source and origins, as well as the processes that

led to its derivation, i.e. any processing steps involved in how it came to be (Woodru�

and Stonebraker, 1997; Buneman et al., 2000a,b; Hartig, 2009). Concretely, the piece of

data's provenance refers to the documented records of its derivation and modi�cation.

13http://www.oed.com/view/Entry/153408
14Bose and Frew (2005) present the following terms that have been used synonymously with prove-

nance: audit trail, data archaeology, data genealogy, derivation history, data set dependence, �liation,
lineage, and pedigree.

http://www.oed.com/view/Entry/153408

24 Chapter 2 Background and Related Work

The source of a piece of data might be a human, a scienti�c instrument, a database,

or a document, and so the origin of that piece of data includes the base data which

contributed to its creation, how it was recorded, and - if applicable - the parameters of

the recording instrument (Buneman et al., 2000b). The processing steps of the piece

of data, or the history-of-how-a-data-item-was-produced side of provenance, include the

algorithms applied to produce that piece of data and their respective parameters.

Provenance has become a key requirement in a range of applications. It is a special form

of metadata (Buneman et al., 2000b; Berners-Lee et al., 2006); descriptive annotations

intended for machine consumption (Goble, 2002). The goal of provenance is to answer

the sevenW questions: W ho,W hat,W here,W hy,W hen,W hich, and (W)how (Goble,

2002). Individually, every one of these contributes a particular type of provenance infor-

mation that can be used on its own; jointly they provide a complete picture.

2.3.2 Provenance Bene�ts and Usages

Provenance has been thoroughly surveyed in the literature, including by Bose and Frew

(2005), Simmhan et al. (2005), Glavic and Alonso (2009), Moreau (2010), and Pérez

et al. (2018), and its application to numerous domains has proven to bring about much

bene�t. We list some of these bene�ts and usages below:

Attribution, copyright, and credit: Provenance is used to pinpoint creators of data items

(Bose and Frew, 2005; Simmhan et al., 2005; Glavic and Alonso, 2009; Moreau,

2010).

Data quality communication: Provenance showing the sources and transformations of

data items is used to communicate data quality, to infer their reliability, and prove

their accuracy, currency or timeliness, redundancy, and suitability (Buneman et al.,

2001; Bose and Frew, 2005; Simmhan et al., 2005).

Explanation and interpretation enhancement: Provenance is used to enhance interpre-

tation of information �in primary, secondary, and personal repositories� (Goble,

2002). Thus, by allowing the examining of the sources of the data items and by

gaining insight on how they evolved, provenance facilitates deeper understanding

of and promotes learning about the data and how they were generated (Haynes

et al., 2009; Ikeda et al., 2013). Only when consumers of information services can

understand the information and thus are able to make decisions of when to trust it,

is the web's promise of distributed and interoperable information systems realised

(McGuinness and Da Silva, 2003b).

Anomaly investigation and debugging: Provenance can be used to verify the correct-

ness of processed and derived data and to trace and investigate outdated or erro-

neous processes or source data that may have resulted in any anomalies or errors

Chapter 2 Background and Related Work 25

(Woodru� and Stonebraker, 1997; Ikeda et al., 2013). It can furthermore identify

the formers' impact on the latter. It also protects users from erroneous results

arising from mistaken assumptions or misinformation about the setup of systems

as well as prevent misuse and misinterpretation of environmental data (Bose and

Frew, 2005).

Data understanding by non expert users: Provenance is used to allow the understanding

of data by non expert users (Bose and Frew, 2005), and hence, facilitates their

acceptance of the former (Haynes et al., 2009).

Historical data resources usage and replication recipes: Provenance is used to enable

future users to use historical data resources (Bose and Frew, 2005). Additionally,

provenance may be used as a replication recipe when data derivations need to be

repeated (Simmhan et al., 2005).

Transparency of systems: Provenance allows for the transparency of systems, thus

making them auditable and allowing compliance checks to be performed (Moreau,

2010). Particularly, when provenance is treated as an audit trail, it is used to locate

errors in data generation (Simmhan et al., 2005). Hence, it allows developing and

increasing trust in the behavior and results of the system (Haynes et al., 2009).

Finally, provenance can be used to execute compliance checks (Moreau, 2010).

Recomputation: Provenance is increasingly being used in e�cient recomputation when

data change. Recently, Missier et al. (2019) reported on the �rst workshop on in-

cremental recomputation which took place in July 2018. We discuss recomputation

in more detail in Sections 2.4 and 2.5.3.

2.3.3 The Di�erent Perspectives on Provenance

There have been di�erent approaches to capturing and handling provenance depending

on its intended use. Simmhan et al. (2005) distinguished two di�erent perspectives on

provenance - with Gil et al. (2013) further introducing a third one - and as a result what

provenance would re�ect:

• Work�ow-oriented or process-centred provenance: this focuses on tracking the steps

and actions that result in the production or modi�cation of the data whose prove-

nance information is under consideration. It is usually coarse-grained (Buneman

et al., 2008; Ikeda et al., 2013), i.e. each module or component involved is viewed

as a `black-box' and its output depends on all its inputs (Moreau, 2010). Note that

Ikeda et al. (2013) label provenance generated at a work�ow transformation level

as logical provenance.

• Data-oriented or object-centred provenance: this focuses on tracking the other

pieces of data that result in the production or modi�cation of the data whose

26 Chapter 2 Background and Related Work

provenance information is under consideration. It is usually �ne-grained (Buneman

et al., 2008; Ikeda et al., 2013), i.e. it includes detailed descriptions of how the data

came to be. Note that Ikeda et al. (2013) label provenance generated at a data-

oriented level as physical provenance.

• Agent-centred provenance: this focuses on tracking the organisations or people

that took part in the production or modi�cation of the data whose provenance

information is under consideration.

2.3.4 Provenance Vocabularies

Provenance data models and ontologies have been widely developed during the past

decade. The Dublin Core15 vocabulary is used to describe resources and provide their

basic provenance such as authors' names, contributors' names, and creation and change

dates. The Provenir Ontology16 is an upper-level provenance onology for modeling and

managing provenance in eScience (Sahoo et al., 2008). Provenance is represented using

three base classes: data, agent, and process, as well as properties which link the three

classes to represent the transformation and derivation of data, the participation of pro-

cesses in the production of data, and the responsibility of agents for the processes. The

Provenance Vocabulary's aim is to provide a means for publishing - and consuming -

provenance about Linked Data (Hartig and Zhao, 2010). It supports the expression of

provenance in RDF and thus allows the providers of the data to publish those data's

provenance as Linked Data. The vocabulary is de�ned as an owl ontology, with gen-

eral terms including three classes: Actor, Execution, and Artifact, each having further

sub-classes. Like Provenir, properties link the three classes to represent the creation and

usage of data, the execution of processes, and the responsibility of actors for executions.

Other notable vocabularies include PREMIS17, the Web Of Trust Schema (WOT) 18,

the SWAN Ontology19, the Semantic Web Publishing Vocabulary20, and the Changeset

Vocabulary21

The Open Provenance Model22 (Moreau et al., 2009) describes the provenance of �things�,

physical or immaterial, in a historic manner. Provenance is represented by a causality

Directed Acyclic Graph (DAG) annotated with extra information. The graph is con-

structed using three di�erent types of nodes linked with �ve di�erent types of edges

representing dependencies between them. The source of an edge is an e�ect node and

the destination is a cause node. The three OPM nodes are Artifact, Process, and Agent,

15http://dublincore.org/
16http://wiki.knoesis.org/index.php/Provenir_Ontology
17http://www.loc.gov/standards/premis/
18http://xmlns.com/wot/0.1/
19https://www.w3.org/TR/hcls-swan/
20http://wifo5-03.informatik.uni-mannheim.de/bizer/WIQA/swp/SWP-UserManual.pdf
21http://vocab.org/changeset/schema.html
22Outcome of the Provenance Challenge Series initiated in May 2006.

http://dublincore.org/
http://wiki.knoesis.org/index.php/Provenir_Ontology
http://www.loc.gov/standards/premis/
http://xmlns.com/wot/0.1/
https://www.w3.org/TR/hcls-swan/
http://wifo5-03.informatik.uni-mannheim.de/bizer/WIQA/swp/SWP-UserManual.pdf
http://vocab.org/changeset/schema.html
http://twiki.ipaw.info/bin/view/Challenge/

Chapter 2 Background and Related Work 27

Figure 2.7: PROV Core Structures (Moreau et al., 2013)

while the edges represent the generation, usage, and derivation of artifacts and the trig-

gering and control of processes. OPM laid the foundations for PROV, which we describe

next.

2.3.5 The PROV Data Model

The PROV speci�cation was produced by the World Wide Web Consortium (W3C) to

accommodate the three di�erent perspectives on provenance described in Section 2.3.3 by

de�ning provenance as the description of �the use and production of entities by activities,

which may be in�uenced in various ways by agents� (Groth and Moreau, 2013; Gil et al.,

2013). The PROV family of documents contains recommendations and speci�cations

on how to capture and express provenance, as its goal is to support the publication and

interchange of provenance on the Web jointly with the data it describes using the popular

formats XML and RDF.

Among the PROV family of documents, the conceptual data model PROV-DM is the

basis. PROV-DM is domain-agnostic but can be extended to allow the inclusion of

domain-speci�c information. The core structure of PROV contains three types and

seven relationships as shown in Figure 2.7.

The entity is the thing who provenance is being described. The activity is what had

taken place over a time period and had produced - generated - or had utilised - used -

one or more entity. Activities would have communicated with each other if one activity

used an entity that had been generated by another, whereas entities would have derived

other entities if the the generation of one entities was in�uenced by other entities. The

agent is what was responsible for an activity that has taken place, for the existence of

an entity, or for another agent's activity.� An agent is associated who an activity if it

28 Chapter 2 Background and Related Work

was responsible for it; i.e. it had a role in it, and an entity its attributed to an agent if it

had been ascribed to it. An agent was delegated by another agent if the �rst had acted

on behalf of the latter.

A few concepts that are worth expanding on are as follows. (1) Derivation is not restricted

to the generation of a new entity but also includes the transformation or updating of an

entity resulting in a separate newer one. (2) Revision, a subtype of derivation, where

the new entity includes considerable content that is the same as the original entity. (3)

Quotation, another subtype of derivation, where an entity is a repetition of another

derived from it by a copy action.

The extended structure of PROV provides support for more advanced expressions of

provenance. In addition to allowing subtypes, it includes alternates, bundles, and col-

lections. Alternates are expressed in two relationships. The �rst is where an entity is

a specialisation of another, whereby while the �rst has all the elements of the latter,

it also contains additional speci�c ones. The second is alternate, whereby two entities

are representations of the same thing. Bundles allow the expression of provenance of

provenance. Finally, collections allow the expression of provenance of a group of entities,

with the membership relationship representing the inclusion of an entity in a collection.

2.4 Provenance and Partial Recomputation

There are several scenarios which give rise to the need to recompute derived data. Source

data may be found to be incorrect or outdated and processes may be discovered to be

buggy (Ikeda and Widom, 2010). Additionally, underlying data, algorithms, or depen-

dencies may evolve over time (Missier et al., 2016). In these cases, and while it is

imperative to carry out recomputations, full and complete debugging or recomputation

may prove to be expensive. The following pieces of work rely on provenance to determine

which data would be a�ected by change and would need to be recomputed.

The Panda System

Ikeda et al. (2011) presented a prototype system based on their plans in (Ikeda and

Widom, 2010) for a comprehensive system that uses provenance for explanations, veri�-

cations, and recomputation. Their main goal was to eschew complete recomputations by

pinpointing which input elements would have been conducive for generating given output

elements, so that a data-oriented work�ow would be rerun solely on the a�ected data

that would need to be refreshed. While their Panda system pinpoints which program

fragments require re-execution to refresh output data as well as tracking modi�cations

to input data, it does not employ any of the provenance vocabularies, speci�cally the

Chapter 2 Background and Related Work 29

PROV data model. We summarize their model that incorporates transformations and

provenance next.

Each transformation, T , takes an input set, I, and produces an output set O, which

is a set of couples of the form 〈o, p〉. So, each output o is annotated by a provenance

predicate p. Formally, T (I) = O = {〈o1, p1〉 , ..., 〈on, pn〉}. When the input data change,

a single-transformation refresh procedure is invoked. First, a backward tracing query on

the new input is performed using p as its guide in order to �nd the desired subset of the

new input. Second, a forward propagation procedure applies T on that subset to produce

the new value of 〈o′, p′〉. They presented an algorithm, work�ow refresh, which recur-

sively extends single-transformation refresh to refresh the output elements of composition

of transactions. The provenance predicates were not su�cient to support many-many

transformations, so forward �lters were introduced. A transformation instance thus be-

comes T (I1, I2, ..., Im) = O where O = {
〈
o1, (p

1
1, ..., p

1
m), f1

〉
, ...,

〈
on, (p

1
n, ...p

m
n), fn

〉
}.

Despite incurring 30% time overhead and a 56% space overhead to capture provenance,

they were able to refresh between 52% and 70% of output data elements before the time

cost exceeded that of re-running the work�ow.

The ReComp Framework

Missier et al. (2016) noted that the detailed provenance of derived knowledge assets can

be analysed to support reasoning when recomputations are required due to the occurrence

of some change. They catalogue a change by its e�ect either on the input data or the

algorithms' dependencies. They presented the case for the use of provenance to inform

the decisions about which precise knowledge asset would need to be recomputed. They

presented an initial model where they introduced the ReComp framework whereby data

are versioned and prospective functions would detect and quantify changes between any

two versions of the data. They aim to enable their model to select processes that require

recomputation, to decide between complete or partial recomputation, and - in the case of

partial recomputation - to select the starting point, referred to as a starting component.

2.5 Provenance and the Semantic Web

We have so far provided an overview of both provenance and the Semantic Web. In this

section, we highlight the bene�ts gained from using provenance on the Semantic Web.

We then present an overview of the works preceding ours that have applied provenance

to Semantic Web applications.

30 Chapter 2 Background and Related Work

2.5.1 The Need for Provenance on the Semantic Web

In open mediums like the World Wide Web, where the reuse of data provides additional

value, there is heavy reliance on interconnected information stored in distributed envi-

ronments, which may at times be questionable, con�icting, or inconsistent. In general,

people have learned not to trust the data on the Web blindly and have become capable

at examining and assessing data sources (Buneman et al., 2000a). In cases where those

sources are unidenti�ed or information about the sources is unattainable, information

consumers may become sceptic and require more indications that the sources are reli-

able and credible publishers of information before choosing to believe the information

(da Silva et al., 2003). Moreover, and in the current open medium of the Web, most of

the data have been copied from other places and were transformed, edited, corrected, and

annotated in the process (Buneman et al., 2000a,b). Correcting and annotating these

data provide an added value since, in turn, they become sources for other information

repositories. Additionally, it is necessary for certain people to have assurance about the

timeliness and accuracy of the data they are working with (Buneman et al., 2000a).

The true potential of the Semantic Web would be attained when programs collect infor-

mation from varied sources, process it, and exchange it with other programs (Berners-Lee

et al., 2001). But, just like people should not trust everything published on the Web,

software agents and people should not believe all assertions published on the Seman-

tic Web. Indeed, Berners-Lee et al. (2001) pressed that �agents should be skeptical of

assertions that they read on the Semantic Web until they have checked the sources of

information�. Furthermore, di�erent people can make di�erent statements about a par-

ticular resource and these di�erent statements can be kept separate but can also be

combined. Thus, there are additional things to be considered by humans or agents who

must make informed choices about which data to use from applications and these deci-

sions will depend not only on the source but also on the �the suitability and quality of the

reasoning/retrieval engine, and the context of the situation� (McGuinness and da Silva,

2004).

It has been argued that knowing the provenance of a piece of data is as important as

knowing its actual value (Buneman et al., 2000b; Berners-Lee et al., 2003), with Berners-

Lee et al. (2001) advocating early on for the need of proof generation and exchange.

Therefore, it has always been evident that provenance is vital to examine the piece of

data's reliability, detect any redundancies, determine its currency and suitability for

usage, and allow users to determine whether or not to trust the actual value (Buneman

et al., 2000b; Moreau, 2010). Likewise, it has been maintained that users trust RDF

graphs depending on the content of the graphs, available information about them, and

the tasks the users need to perform (Carroll et al., 2005). Finally, Moreau et al. (2014)

have incorporated provenance in the Semantic Web Layer Cake as shown in Figure 2.8.

Chapter 2 Background and Related Work 31

Figure 2.8: Provenance in the Semantic Web Layer Cake (Moreau et al., 2014)

2.5.2 Proofs and Explanations for the Semantic Web

In their unpublished paper describing Cwm23, Berners-Lee et al. (2003) made the argu-

ment for Semantic Web agents' responsibility for being aware of provenance and liable

for its management. Information is Cwm is expressed in N3, and each triple is stored

with a provenance record describing the reason for adding it to the triple store. Prove-

nance records are produced by the reasoner and are used in proof processing. Proofs are

generated whenever the knowledge base is modi�ed. This could be due to adding new

triples from input sources or to new triples being inferred by the reasoner. Proofs also

point to source and supporting materials. Cwm also allows users to sign documents.

The Inference Web and the Proof Markup Language were introduced in (da Silva et al.,

2003; McGuinness and Da Silva, 2003a; McGuinness and da Silva, 2004) and further de-

veloped in (McGuinness et al., 2007; da Silva et al., 2008) to provide an infrastructure for

knowledge provenance. In addition to information about data sources and descriptions

of processes contributing to the information produced, knowledge provenance contains

proof-like information about how knowledge was arrived to. Thus, the Inference Web and

the Proof Markup Language constitute an infrastructure that allows systems to produce

portable explanations. The main purpose of the proof language PML, later expanded

to PML 2, is to enable various systems to generate, represent, and share proof steps.

It also supports the production of other provenance metadata for the purpose of trust

and justi�cation, including authorships, credibility of sources, and reasoners' assump-

tions. The Inference Web's purpose is to allow the display and modi�cation of these

proofs. Fox and Huang (2003) expand on the notion of knowledge provenance and de-

scribe it as consisting of four levels. On the �rst level, Static KP focuses on provenance

of static and certain information. On the second level, dynamic KP considers how the

23Available for download on https://www.w3.org/2000/10/swap/doc/cwm.html

https://www.w3.org/2000/10/swap/doc/cwm.html

32 Chapter 2 Background and Related Work

validity of information may change over time. On the third level level, Uncertain KP

considers information whose validity is inherently uncertain. Finally, on the fourth level,

Judgment-based KP) focuses on social processes necessary to support provenance.

The aforementioned systems enable their reasoners to generate proofs for explanations.

E�ectively, they provide the provenance of the inferences made. This provide an indica-

tive, albeit not a comprehensive, review of how results were generated.

2.5.3 Provenance of SPARQL Updates

While there are works which discussed provenance of SPARQL queries on the Semantic

Web, for example by Dividino et al. (2009); Damásio et al. (2012); Wylot et al. (2014);

Geerts et al. (2016) with Theoharis et al. (2011) providing a survey on provenance of

queries; we focus on the work on provenance of SPARQL updates.

Almost all of the work on provenance of SPARQL queries and updates built on the

seminal work presented in Buneman et al. (2001) and Green et al. (2007b), with both

formalising the provenance of data in closed database systems. Buneman et al. (2001)

de�ned the data provenance of a tuple as the speci�cation of its origins and of the

processes which resulted in its arrival in the database. They distinguished between

the where-provenance of a tuple, being the locations in the database where its data

came from, and the why-provenance of a tuple which appears in a query, being all

the source data which contributed to the former's appearance. They also presented a

deterministic model and a query language which they used to represent the provenance

of views and queries. Green et al. (2007b) argued that why-provenance and where-

provenance were not su�cient and introduced how-provenance, which addresses how the

source data contribute to a tuple's appearance in the results. They presented a tuple-

based abstract provenance model which they used in their annotation-based approach.

Each source tuples is annotated with a unique provenance token, represented by the

tuple's id; the provenance of an output tuple consists of the provenance expression which

describes how source tuples are combined to produce it.

Moving on from closed database systems to collaborative data sharing systems, Green

et al. (2007a) extended their aforementioned work - as a basis for their ORCHESTRA

Collaborative Data Sharing System (Ives et al., 2008), where they focused on update

exchange, schema mapping, trust evaluation, and extending Gupta et al. (1993)'s DRed

algorithm. Their incremental update exchange algorithm allows the update of both data

instances and the provenance associated with each tuple. When a deletion occurs, the

algorithm utilises provenance information to �ag which tuples are no longer derivable

and should be subsequently deleted. Similarly, Flouris et al. (2009) extended Buneman

et al. (2008)'s work on the implicit provenance of database queries and updates. They

tracked the provenance of all triples - explicit or implicit (inferred), using colours - where

Chapter 2 Background and Related Work 33

a colour attached to a triple represents the ID of its source triple, or the combination

of their IDs if it has more than one source triple. Thus, triples are modi�ed to become

quadruples of the form subject-predicate-object-colour. However, their work considered

inferred quadruples independent of their sources. Before a quadruple is deleted, all the

quadruples that can be inferred from it are inserted �rst. Then, all the quadruples

that would infer the quadruple in question are deleted along with the quadruple itself.

Further, Avgoustaki et al. (2016) extended both Buneman et al. (2008)'s and Green et al.

(2007b)'s work by also using quadruples. Their quadruples' fourth elements are named

graphs and quadruples' provenance is maintained in separate tuples with an id element

linking to it. They, however, did not consider deletions; their algorithm described how

to insert quadruples and record their provenance.

The aforementioned works track provenance on the triple level, which we argue is not

always feasible nor is it particularly scalable, especially if they were to use PROV.

Given a graph, even if the provenance of each of its triples consists of only one triple

prov:wasDerivedFrom sourceTriple entry, a graph's provenance graph would be a lit-

tle larger than it. Adding more provenance information, if restricted to the activity and

agent that produced a triple would result in a graph having its provenance graph at

minimum triple its size. This is one of the di�erences between those works and ours, as

we rely on provenance on the graph level; the other being that the graphs we consider

are produced using the entirety of two other graphs.

Finally, Halpin and Cheney (2014) presents work similar to ours that tracks dynamic

provenance of collections using an extension of PROV, the Update Provenance Vocabu-

lary (UPD), which allows them to capture SPARQL updates performed on raw data in

a dataset. UPD provides new components that assist in tracking versions of graphs, as

well as one subtype of prov:Activity - upd:update - that is to be used with a subtype of

prov-type - upd:type - to document update activities. However, their work only consid-

ered updates, ignoring other operations - which this report studies - that may a�ect a

graph or its provenance, such as fetching and entailment.

2.6 Semantic Web Benchmarks

On the Semantic Web, large applications may have to handle large quantities of data.

In order to evaluate such applications' e�ciency, scalability, or reasoning capabilities,

benchmarks have been created over the past couple of decades. RDF benchmarking has

been an established practice for some time now, with the W3C maintaining a list24 of

those benchmarks for the past decade.

24The RDF Store Benchmarking list maintained by the W3C is available on https://www.w3.org/

wiki/RdfStoreBenchmarking.

https://www.w3.org/wiki/RdfStoreBenchmarking
https://www.w3.org/wiki/RdfStoreBenchmarking

34 Chapter 2 Background and Related Work

Mono- Bench- Domain No of No of Max No of

tonicity mark Classes Properties Triples Queries

Static LUBM University 43 32 6.8× 106 14
UOBM University 69 43 2.2× 106 16
SP2Bench Bibliography 8 22 2.5× 107 17
BSBM E-Commerce 8 51 108 12
WatDiv E-Commerce 16 13 107 12500
DLUBM University 43 32 - -
gMark Independent user-de�ned - 108

Evolving EvoGen University 53 51 - -
EGG Independent user-de�ned - -

Streaming DBPSB Independent 685∗ 2795∗ 1.5× 108 25
SRBench Independent 685∗ 2795∗ 1.7× 109 17

Table 2.2: Summary of Semantic Web Benchmarks

Existing works focus on di�erent factors and performance metrics when presenting their

benchmarks, for example, some focus on reasoning capabilities and scalability, while

others focus on e�ciency of querying and storage. Additionally, almost all benchmarks

arti�cially generate synthetic data; the exceptions being those that use the DBpedia25

dataset. The former argue that their requirements are not met by real data sources,

while the latter argue that synthetically-generated data are not representative of the real

world and so their datasets are real world data taken from actual sources.

In this section, we present a short partial survey of existing benchmarks. We start with

ones which produce static data then move on to those that produce or make use of

dynamic data. The surveyed benchmarks are summarised in Table 2.2.

2.6.1 Static Benchmarks

Guo et al. (2005) presented the Lehigh University benchmark - LUBM - based on an

OWL Lite ontology of moderate size and complexity for the university domain with 43

classes and 32 properties. They developed a data generator which generates synthetic

data based on the university ontology, with random arbitrarily scaled instances of classes

and properties as well as some restrictions, such as ratios of the number of instances of

some classes relative to the number of instances to other classes. LUBM also comes with

14 SPARQL test queries, with the following factors to be taken into consideration when

running the queries: input size, selectivity, complexity, assumed hierarchy information,

and assumed logical inference. Additionally, Guo et al. quantitatively analysed four

knowledge base systems using �ve performance metrics: load time, repository size, query

response time, query soundness, query completeness, and combined metrics. Five sets of

test data were used with increasing sizes, with the largest being 6,800,000 triples.

25https://wiki.dbpedia.org
∗These are the current numbers of classes and properties of DBpedia.

https://wiki.dbpedia.org

Chapter 2 Background and Related Work 35

Arguing that LUBM generated graphs are isolated and instances from di�erent graphs

do not link to each other, thus weakening LUBM's ability to adequately measure the

scalability of systems and the inferencing capabilities of reasoners, Ma et al. (2006)

extended LUBM and presented the University Ontology Benchmark - UOBM. UOBM is

based on two ontologies, an OWL Lite ontology containing 51 classes and an OWL DL

ontology containing 69 classes, with both containing 43 properties. It also comes with

13 queries for OWL Lite tests and an additional 3 OWL DL tests. Additionally, Ma et

al. evaluated three ontology systems using four performance metrics load time, query

response time, query completeness and query soundness. Six sets of test data were used

with increasing sizes, with the largest containing 2,200,000 statements.

While LUBM and UOBM focus on reasoning and scalability, some succeeding bench-

marks turned their attention to evaluating the e�ciency of RDF stores' storage, such as

Bizer and Schultz (2009)'s Berlin SPARQL Benchmark - BSBM, and the performance of

SPARQL engines, such as Schmidt et al. (2009)'s SP2Bench.

Schmidt et al. (2009) argued that LUBM and UOBM are inadequate for comprehen-

sively testing SPARQL implementations and the challenges that SPARQL engines face.

They presented SP2Bench which generates synthetic data based on DBLP, but which

mirror DBLP's (DBL) real-world characteristics and realistic distributions. SP2Bench

also comes with 17 queries. Additionally Schmidt et al. evaluated �ve systems using the

following performance metrics: load time, success rate, per-query performance global

performance, and memory consumption. Six sets of test data were used with increasing

sizes, the larged containing 25,000,000 triples.

Bizer and Schultz's BSBM does not rely on heavyweight reasoning but aims to help

developers of applications to compare RDF stores with SPARQL endpoints accepting

concurrent queries. So, it simulates realistic workloads by measuring the performance

of a system receiving multiple concurrent executions of SPARQL queries against large

amounts of RDF data. The data generator generates synthetic data based on an e-

commerce use case. BSBM also comes with 12 queries. Additionally, Bizer and Schultz

evaluated four RDF stores with two SPARQL-to-SQL rewriters using three performance

metrics: load time, query mixes per hour, and queries per second. Four sets of test data

were used with increasing sizes, the largest containing 100,000,000 triples.

Aluç et al. (2014) analysed LUBM, SP2Bench, BSBM, and DBPSB and found that none

were properly �suitable for testing systems for diverse queries and varied workloads�. So,

they presented the Waterloo SPARQL Diversity Test Suite - WatDiv, which focuses on

stress testing as well as detecting issues with RDF data management systems' physical

designs. They developed a data generator which generates synthetic data based on

WatDiv's schema and a query template generator which generates query templates also

based on the WatDiv schema and user parameters. The schema contains 16 classes and

13 properties, but they also make use of other schemas such as dc, foaf, gr, and sorg.

36 Chapter 2 Background and Related Work

Additionally Aluç et al. evaluated �ve RDF data management systems using two sets

of test data, one containing 10,000,000 triples and the other 100,000,000 triples. 12500

queries were generated from 125 query templates.

Motivated by the rapid growth and adoption of Linked Data, as well as the Linked Data

Benchmark Council's (LDBC) (Angles et al., 2014) goals to �establish benchmarks, and

benchmarking practices for evaluating graph data management systems�, Keppmann

et al. (2017) presented the Distributed LUBM - DLUBM, a benchmark for creating

and deploying distributed and interlinked datasets based on LUBM. Their Linked Data

generator generates synthetic data based on LUBM's schema and scaling but has the

added functionalities of being interlinked across di�erent graphs. The generated data

was used to measure the performance of a Linked Data query engine using the same

queries of LUBM. Their evaluation focused on the number of derived triples and di�erent

numbers of hosts.

Also motivated by the LDBC's goals, Bagan et al. (2017) presented gMark which focuses

on the evaluation of systems based on query workloads instead of individual queries.

gMark generates both graphs and query workloads which are both domain and language

independent. Queries are classi�ed into three categories. Four sets of test data were

used to measure query execution times of four systems with increasing sizes, the largest

containing 100,000,000 triples.

2.6.2 Dynamic Benchmarks

Despite being included as one of the requirements for future comprehensive benchmarks

by Weithöner et al. (2006), modi�cations to data were not included in benchmarks26

until nearly a decade later.

To enable the benchmarking of versioning RDF systems, Meimaris and Papastefanatos

(2016) presented EvoGen - initially introduced in (Meimaris, 2016) and based on their

work in (Meimaris et al., 2014) - an extension of LUBM which generates synthetic

datasets that change at both instance and schema levels. They developed a data gen-

erator which generates successive versions of data based on a university ontology which

extends that of LUBM with 10 new classes and 19 new properties. The change in size of

a dataset D from time ti to time ti+n is set by the user, termed shift, and calculated as

h(D)|ti+n

ti = |Di+n|−|Di|
|Di| . While the authors claimed in (Meimaris et al., 2014; Meimaris

and Papastefanatos, 2016) that their model adds and deletes triples according to a con-

�gurable schema evolution parameter by allowing the user to set a negative shift, they

subsequently con�rmed that this had not been the case and that their implemented27 Ver-

sion Management and Change Creation components only generate versions with triples

26Ma et al. (2006) did mention in their discussion section intentions to add update tests in UOBM
and an incomplete update use case is proposed on Bizer and Schultz (2009)'s BSBM's website.

27https://github.com/mmeimaris/EvoGen

http://wifo5-03.informatik.uni-mannheim.de/bizer/berlinsparqlbenchmark/spec/UpdateUseCase/index.html
https://github.com/mmeimaris/EvoGen

Chapter 2 Background and Related Work 37

added to them and do not generate versions with triples removed from them (Meimaris,

2018). Speci�cally, the new versions generated by their implementation are formatted in

two ways. The �rst produces RDF graphs containing only the newly-created triples for

that version and the second produces a log �le containing the inserted triples represented

as entities using the Change Ontology described in (Meimaris et al., 2014). Moreover,

and despite asserting the possibility of the production of either all fully materialised ver-

sions or the initial version along with the series of changes, according to the user's choice,

in reality their implementation only does the later. The produced datasets consist of the

initial version of each department within a university along with subsequent insertions.

Additionally, because the ontology is hard-coded like LUBM and UOBM, the new classes

and properties in the extended ontology are also hard-coded, with the new classes being

subclasses of LUBM's classes. Finally, as previously mentioned, EvoGen takes as input

a degree of change, i.e. the shift, then calculates the di�erence between the size of one

version of the dataset and the next by spreading the shift over the number of required

versions. For each version, this shift is combined with hard-coded numbers to calculate

the probability of change of an instance type, referred to as weight. There is no clear

explanation or rationale for why those speci�c numbers were chosen.

Also looking into producing evolving RDF graphs, Alami et al. (2017) presented a pro-

totype of their work in progress on their Evolving Graph Generator - EGG. As it is in its

early stages, the framework is not yet a benchmark. EGG is built to be used along with

the previously mentioned gMark (Bagan et al., 2017), and so is also domain-independent

and schema-driven. After an initial static version of a graph is produced by gMark, EGG

uses evolving con�gurations set by the user to change property values to simulate change

over time, for example, price of a hotel room. So, EGG does not create new instances or

delete old ones.

In addition to static and evolving benchmarks, there are a couple of streaming bench-

marks which are also the only benchmarks with deal with real data from the real world.

Morsey et al. (2011) presented the DBpedia SPARQL Benchmark - DBPSB - aimed at

evaluating the performance and scalability of triple stores. DBPSB generates data based

on the DBpedia dataset mimicking the latter's property of containing large numbers of

classes and properties. It also comes with 25 SPARQL query templates derived from the

most common queries posed to DBpedia's SPARQL endpoint. Three portions, ranging

from 10% to 50% to 100%, of the dataset were used to test four triple stores, with the

largest containing 153,737,776 triples.

Finally, Zhang et al. (2012) presented SRBench to evaluate three streaming engines. It

makes use of the real-world datasets DBpedia, LinkedSensorData28, and GeoNames29.

Three streaming engines were evaluated using 17 queries with the largest dataset used

containing 1,730,284,735 triples.

28http://wiki.knoesis.org/index.php/LinkedSensorData
29http://www.geonames.org/ontology/

http://wiki.knoesis.org/index.php/LinkedSensorData
http://www.geonames.org/ontology/

38 Chapter 2 Background and Related Work

2.7 Summary

In this chapter, we �rst described the Semantic Web, reason maintenance, and prove-

nance. We detailed the bene�ts of provenance and described some previous work which

incorporated provenance on the Semantic Web.

In the next chapter, we introduce RGPROV, a specialisation of PROV which supports

the tracking of the provenance of RDF graphs on the Semantic Web and facilitates the

propagation of their modi�cation.

Chapter 3

RGPROV: A Vocabulary for RDF

Graph Provenance

The Semantic Web promotes the sharing and reuse of information (Berners-Lee et al.,

2001). Information on the Semantic Web is presented using RDF and OWL and queried

and updated using SPARQL. An RDF graph is reasoned on resulting in the inference of

new triples. A graph which is created as a result of reasoning on another graph is an

entailed graph. Graphs may be manually created or they may be formed by combining

information from other graphs, i.e. source graphs. A graph which is created using other

graphs is a derived graph. Along those lines, a entailed graph is also regarded as a

derived graph.

Provenance describes how a thing or a piece of data was produced to promote, among

others, replication, explanation, and understanding. PROV-O is a lightweight ontology

that is a W3C recommendation to represent provenance information (Lebo et al., 2013).

In order to track the provenance of derived RDF graphs on the Semantic Web and

facilitate the propagation of their modi�cation, we propose a specialisation of the PROV-

O ontology that models the classes and properties involved in such a graph's creation

and update. The proposed vocabulary, RGPROV, allows the speci�c capture of the

provenance of a graph that is both derived from other - source - graphs and has undergone

entailment. This vocabulary also allows us to re�ect changes made to its source graph

without wide scale re-derivation, i.e. recreation and then re-reasoning, and to capture

the provenance of the update precisely.

We begin this chapter with a scenario whose aim is to provide a concrete example in

which a consumer of published data is a�ected by changes to that data and needs to

keep their cached data up-to-date. Following the scenario, in Section 3.2, we present a

summary of the notations used in this chapter and throughout the rest of the report. In

Section 3.3, we present a hypothetical running example that will be used for explanation

39

40 Chapter 3 RGPROV: A Vocabulary for RDF Graph Provenance

and demonstration throughout this chapter and the rest of the report. In Section 3.4, we

demonstrate how, when a graph is fetched from an outside system to another system that

uses it, its retrieved provenance graph has to be updated to re�ect the act of retrieval.

In Section 3.5, we showcase how a graph is created in our running by from di�erent

set theoretic operations following by RDFS entailment. In Section 3.6, we present the

proposed vocabulary RGPROV. Finally, in Section 3.7, we summarise this chapter.

3.1 Scenario

Charlie, a researcher at Poppleton University, is interested in knowing what books in

her research �eld are available at the University of Maximegalon Library and at the

University of Northern New Jersey Library. Both libraries publish their datasets online

in the form of RDF graphs, and so Charlie can easily retrieve both lists of books. Being a

conscientious researcher who is aware of the value of the provenance of her data, Charlie

also retrieves the provenance of both graphs alongside them. After retrieving the two

RDF graphs, and assuming that both of them rely on the same bibliography ontology

to describe publications, Charlie can combine them to �nd all the books that could be

found in either library. Also, she may compare the graphs to �nd out which books can

be found in both libraries. Moreover, she may be interested in �nding out which books

can be found in one library but not the other. After the graphs have been combined,

compared, or contrasted, Charlie also reasons on the results to infer implicit information

from the asserted data and saves those results locally for quick access. She might also

publish those graphs for anyone with shared interests for them to access and copy. This

allows another researcher at Spring�eld University, Drew, to retrieve any of Charlie's

graphs and use them. We show the production of Charlie's graph in Figure 3.1 and the

interactions between the systems in Figure 3.2.

Later on, the University of Maximegalon Library adds new books to its collection and

changes its published graph to re�ect this addition. It could also happen that some books

go on loan to another library at a di�erent university and can no longer be found at the

University of Maximegalon Library. Any of these updates to the library's graph results

in Charlie's graphs becoming stale. Because she wants them to stay up-to-date and

error-free, Charlie's graphs now need to incorporate these changes. Thus, Charlie has no

choice but to resort to recreating them from scratch by re-retrieving the University of

Northern New jersey Library's graph, retrieving the University of Maximegalon Library's

new graph, re-comparing or re-contrasting, and �nally re-reasoning. Once she has done

so, Drew can also retrieve the updated graph if he so wishes.

Chapter 3 RGPROV: A Vocabulary for RDF Graph Provenance 41

Figure 3.1: Production of Charlie's Graph from the Graphs Published by the
Two Universities.

Figure 3.2: Interactions Between Systems in Scenario.

42 Chapter 3 RGPROV: A Vocabulary for RDF Graph Provenance

Notation Usage

GA The graph A
PA The provenance graph of GA

Gcopy(A) A copy of graph A
Pcopy(A) The provenance graph of Gcopy(A)

Pcopy(A) is made up of PA plus additional information describing the
copying of GA which produced Gcopy(A)

ST◦ The set theoretic operation consisting of applying the operator ◦
(where ◦ is one of: ∪, ∩, \)

GA◦B The graph resulting from applying ST◦ to graphs GA and GB

PA◦B is made up of PA ∪ PB plus additional information describing
the set theoretic operation which produced GA◦B

Ginf(A) The graph containing the triples inferred by the triples in GA

Gent(A) The graph entailed by GA, such that:
Gent(A) ≡ GA ∪Ginf(A), and GA ∩Ginf(A) = φ

Pent(A) The provenance graph of Gent(A)

Pent(A) is made up of PA plus additional information describing the
entailment operation performed on GA

UpA The update operation consisting of inserting into or deleting from
graph A triples

Gup
A The graph containing the triples to be added to or deleted from GA

P up
A The provenance graph of Gup

A

GA′ An updated version of graph GA:
GA′ ≡ GA ∪Gup

A , or GA′ ≡ GA \Gup
A

Gup
copy(A) A copy of graph Gup

A

P up
copy(A) The provenance graph of Gup

copy(A)

P up
copy(A) is made up of P up

A plus additional information describing the

copying of Gup
A which produced Gup

copy(A)

Gup
sub(copy(A)) A subset graph of Gup

copy(A)

Table 3.1: Summary of Notations

3.2 Summary of Notations

To provide a convenient single point of reference for the notations used in this chapter

and throughout the rest of the report, we list them in Table 3.1.

3.3 Running Example

We assume there are four systems A, B, C, and D, corresponding to the University of

Northern New Jersey, the University of Maximegalon, Poppleton University, and Spring-

�eld University respectively. Each system has ownership of some RDF graphs and main-

tains their provenance graphs. These provenance graphs are of no direct importance to

Chapter 3 RGPROV: A Vocabulary for RDF Graph Provenance 43

us, because despite the many bene�ts of provenance, such as trust, attribution, trans-

parency, etc., we do not make use of the actual metadata they contain. We focus on one

graph, Gent(C), produced by system C as follows.

System C, as per Charlie's setup, had �rst retrieved a copy of graph GA from system

A and a copy of graph GB from system B and stored them internally as Gcopy(A) and

Gcopy(B) respectively. It had also retrieved their provenance graphs PA and PB and

updated their copies internally to document how GA and GB had been retrieved. It

had stored those updated provenance graphs internally as Pcopy(A) and Pcopy(B). At this

stage, C had started to document the provenance of Gent(C). It does so by creating a new

provenance graph Pent(C) by copying the contents of Pcopy(A) and Pcopy(B) into it. Note

that original contents of the provenance graphs Pcopy(A) and Pcopy(B) is irrelevant to C

because C's only concern was to document the act of the retrieval of the source graphs.

Therefore, because it was only concerned with operations on the graph level, C was not

concerned with the provenance of each triple in graphs GA or GB. Accordingly, even

though graphs Pcopy(A) and Pcopy(B) had been included as parts of graph Gent(C)'s own

provenance graph Pent(C), they could then have been discarded or kept for bookkeeping

purposes only.

C had then applied ST◦, one of three possible graph set theoretic operations on them,

union, intersection, or di�erence, on graphs Gcopy(A) and Gcopy(B). This resulted in

the graph GA◦B, referred to as GC . While there are other possible graph operations

that could have been performed on either or both Gcopy(A) and Gcopy(B), such as join,

construct, and the use of optional values and �lter constraints, we restrict the graph

operations to the more common binary set theoretic graph operations being union, in-

tersection, or di�erence. Like at any stage, provenance would have been recorded at

the graph level and the speci�c set operation which produced GC was indicated in the

provenance graph Pent(C) of graph Gent(C).

Finally, C ran graph GC through a reasoner, producing with graph Gent(C). The prove-

nance graph Pent(C) was updated to indicate that GC entailed Gent(C). Moreover, we

assume that system D has used a copy of graph GC to produce its graphs GD and

Gent(D). The production of Gent(C) is shown in Figure 3.3 and in more detail in Figure

3.4; note the change is arrow direction to comply with PROV. Note that the grey-shaded

entities are the copies of the provenance graphs of the source graphs.

Now, assume that system B performs a SPARQL update operation, namely UpB, on

graph GB by either inserting into it or deleting from it the triples in the graph Gup
B . This

results in graph GB becoming the new graph GB′ . We also assume that B additionally

creates a new provenance graph P up
B containing the metadata describing Gup

B . The new

provenance graph PB′ , is GB′ 's new provenance graph. PB′ contains P
up
B as well as

whatever information contained in PB that is deemed to still be relevant.

44 Chapter 3 RGPROV: A Vocabulary for RDF Graph Provenance

Figure 3.3: Production of Gent(C) from GA and GB.

Figure 3.4: Detailed Production of Gent(C) and its Provenance Graph from GA,
GB, and their Provenance Graphs.

Chapter 3 RGPROV: A Vocabulary for RDF Graph Provenance 45

C should know about this update and subsequently needs to updateGent(C), or whichever

parts of it should be a�ected, thus resulting in the more accurate and up-to-date Gent(C′).

The standard approach to this problem is to �rst retrieve a copy of GB′ , namely Gcopy(B′),

as well as another copy of GA - if Gcopy(A) had not been kept in storage. Then, to reapply

the graph operation ST◦ on Gcopy(A) and Gcopy(B′) to produce Gcopy(A) ◦ copy(B′), i.e. GC′ ,

before �nally re-entailing to produce Gent(C′). This becomes impractical in large systems,

especially on the Semantic Web for two reasons. The �rst is that it is computationally

expensive to re-entail the graph from scratch every time there is an update, especially

if the graphs are large in size. The second reason is that it requires additional storage,

communication overhead, or both since C needs either to store Gcopy(A), Gcopy(B), and

eventuallyGcopy(B′), or re-fetch each of them whenever a change occurs. Thus, we identify

the need for a more e�cient way to re�ect updates and to produce Gent(C′).

We propose an approach that considers the set theoretic operation that originally created

the graph of interest along with the type of update which has been applied to the source

graph to see whether part or all of the source graphs need to be re-retrieved as well as

which parts of the graph of interest need to be updated and re-entailed.

3.4 Graph Retrieval

Source graphs and their provenance graphs are retrieved from systems that publish them.

According to the W3C's best practices recommendation for data on the Web, metadata

- the provenance in this case - may be embedded in the published data or provided in a

separate resource using standard serialisation formats (Lóscio et al., 2017). Since we are

building on the PROV-O ontology, a machine-readable format for presenting provenance,

we have opted for the latter approach of separating a graph from its provenance into two

di�erent resources. A graph links to its provenance using the link relation describedby,

as per the W3C Linked Data platform recommendation (Speicher et al., 2015).

We �rst demonstrate the act of a single graph retrieval and then expand it to our running

example.

3.4.1 Single Graph Retrieval

When a graph G is retrieved from another system, it is fetched along with its provenance

graph PG. G and PG are two separate entities that may be retrieved in two separate

fetch processes or together in a single fetch process. For the sake of brevity, we assume

they are retrieved in one fetch process. This fetch process handles the dereferencing

of the value of the graph's Linked Data relation describedby to its provenance graph

and copying the latter. The copied provenance graph is then updated with additional

46 Chapter 3 RGPROV: A Vocabulary for RDF Graph Provenance

Figure 3.5: Retrieval of a Graph and Its Provenance Graph.

statements added to it to describe which process copied G and when and from where G

was copied; thus producing the provenance graph Pcopy(G).

In accordance with PROV, the copy Gcopy is considered an entity separate from G.

Although PG can be looked as provenance of provenance, i.e. PG can be looked at as

provenance of Pcopy(G), we will only be considering PG in the context of it being the

provenance of graph G.

The retrieval of a single graph and its provenance is shown in Figure 3.5. The grey-shaded

entity is the copy of PG from which Pcopy(G) is produced.

3.4.2 Graph Retrieval in Running Example

There will be two fetch operations performed by C to fetch GA and its provenance graph

PA from A and GB and its provenance graph PB from B. These operations will be

followed by two other operations which will be responsible for producing Pcopy(A) and

Pcopy(B) by adding the extra information described above. This is shown in Figure 3.6.

Note that the grey-shaded entity is the copy of PG.

Note that we are only interested in keeping track of the provenance of the source graph;

we are not interested in the detailed bookkeeping of the provenance of the provenance

graph. Therefore, from this point onwards, we will consider retrieving and updating

the provenance of a source graph as part of fetching it. This summarised production of

Pcopy(A) and Pcopy(B) is shown in Figure 3.7.

3.5 Graph Operations in Running Example

We split the types of graph operations in system C into three as follows.

Chapter 3 RGPROV: A Vocabulary for RDF Graph Provenance 47

Figure 3.6: Retrieval of a Graphs GA and GB and their Provenance Graphs.

Figure 3.7: Retrieval of a Graphs GA and GB and their Provenance Graphs.

The �rst includes the operations that produce graph GC from Gcopy(A) and Gcopy(A),

namely the set theoretic operations previously introduced in Section 2.1.3.1. While there

are other possible graph operations that could have been performed on either or both

Gcopy(A) and Gcopy(B), such as join, construct, and the use of optional values and �lter

constraints, those are out of scope of this report. Thus, we restrict the graph operations

to the more common binary set theoretic graph operations being union, intersection, or

di�erence.

The second includes the operations that produce Gent(C) from GC , namely entailment,

previously discussed in Section 2.1.3.2. However, we bring attention to the three di�erent

scenarios that may occur when requesting a graph from another system. A system may

make available the source graph, the graph entailed from the source graph or both. In the

case of the system making available its source graph, its handling by the system which

has retrieved it should be straightforward as any entailment will be done by the system

operating on the graph. However, in the case where an entailed graph is returned, this

may cause inconsistencies if the entailment regime used to produce it was di�erent from

the entailment regimes used by the other systems retrieving and operating on it. For

48 Chapter 3 RGPROV: A Vocabulary for RDF Graph Provenance

the sake of simplicity, we allow all concerned systems to use their preferred entailment

regimes internally but assume that the graphs they publish contain only base triples, i.e.

those that are asserted and not inferred. In our running example, when C runs graph

GC through a reasoner, we assume the use of RDFS entailment.

The third includes the operations that are applied to GC to update it, namely SPARQL

update queries, previously discussed in Section 2.1.2.4.

Moreover, recall that when serialised, a blank node is given a locally scoped identi�er,

or blank node identi�er, which is not portable outside the systems it is de�ned in (Klyne

et al., 2014). Thus, without recourse to OWL reasoning using functional properties,

inverse functional properties, or keys, blank nodes cannot be veri�ed to be equal. There-

fore, we only make use of ground graphs. Ground graphs are those that do not contain

any blank nodes (Hayes and Patel-Schneider, 2014).

3.5.1 Initial Graph Creation

The �rst two graph operations are presented below:

Union: GC = Gcopy(A)∪ copy(B).

Note that the size of GC will be larger than or equal to that of Gcopy(A) and Gcopy(B)

combined, i.e. |GC | ≤
∣∣Gcopy(A)

∣∣ +
∣∣Gcopy(B)

∣∣
Merging: since merging is identical to union in case of the absence of blank nodes, and

since we are ignoring blank nodes, then the merge operation will be treated as a

union operation and henceforth not considered a separate operation from it.

Intersection: GC = Gcopy(A)∩ copy(B).

Note that the size ofGC will be smaller than or equal to that ofGcopy(A) orGcopy(B),

i.e. |GC | ≤ min(
∣∣Gcopy(A)

∣∣ , ∣∣Gcopy(B)

∣∣).
Di�erence: 1. GC = Gcopy(A) \ copy(B).

Note that the size of GC will be smaller than or equal to that of Gcopy(A), i.e.

|GC | ≤
∣∣Gcopy(A)

∣∣.
2. GC = Gcopy(B) \ copy(A).

Note that the size of GC will be smaller than or equal to that of Gcopy(B),

i.e. |GGC
| ≤

∣∣Gcopy(B)

∣∣.
Entailment: Gent(C) = GC ∪ Ginf(C), where Ginf(C) contains the inferred triples and

GC ∩Ginf(C) = φ.

The production of graph Gent(C) from the above operations is displayed in Figures 3.8

and 3.9. Note that, for the sake of better clarity, the production of the provenance graph

Pent(C) is left out of the �gure.

Chapter 3 RGPROV: A Vocabulary for RDF Graph Provenance 49

Figure 3.8: Production of Gent(C) from Union and Intersection.

Figure 3.9: Production of Gent(C) from Di�erence.

3.5.2 Graph Updates

Recall that graph update operations are those that alter existing graphs. There are �ve

fundamental operations as follows.

1. Insert data, this results in one or more triples being added to a graph.

2. Delete data, this results in one or more triples being removed from a graph.

3. Delete/Insert, this is equivalent to a sequence of the above two operations.

4. Load, this results in inserting into a graph all the triples that are present in another

graph. It may be treated it as being equivalent to applying an Insert operation for

each triple in the other graph.

5. Clear, this results in removing all the triples that are present in a graph. As

it does not require the subsequent removal of an empty graph (although some

50 Chapter 3 RGPROV: A Vocabulary for RDF Graph Provenance

implementations may do so), it may be treated as being equivalent to applying a

Delete operation on every triple in the graph.

Thus, we will be focusing only on Insert and Delete as the rest are special cases of the

two. We discuss the e�ects that applying these two update operations on a source graph

have on a graph that was created using the sources graph in the next chapter.

3.6 The RGPROV Vocabulary

As previously stated, PROV is domain-agnostic, however, it is equipped with extensibility

points to provide more expressive capabilities by including domain-speci�c information.

While we chose to extend PROV for such purposes using subtyping, other approaches

are viable. Nevertheless, we chose to create subtypes because there is a clear distinction

between the subclasses of our graph operations domain, as well as not to have to use the

PROV classes excessively and to enable us to construct shorter and clearer queries.

Thus, in this section, we present the vocabulary RGPROV that we propose to represent

the provenance of RDF graphs. For it to be as light-weight as possible, its granularity is

at the graph level and not at the triple level. Thus, it captures the minimal provenance

needed to pinpoint how a derived graph was created from its source graphs and allows

for its replication.

RGPROV extends PROV-O and has the namespace pre�x rgprov. Where convenient,

we use the classes and properties of RDF, RDFS, and PROV in the W3C recommen-

dations. The vocabulary can also be used for graphs encoding OWL but since we are

presently utilising RDFS entailment, we are only using it for RDF graphs. We validated

RGPROV using HermiT 1.3.8, a reasoner tool provided in Protégé. No inconsistencies

or insatiabilities were found.

3.6.1 Vocabulary Extensions

In accordance with PROV, we recognize that RDF, OWL, and provenance graphs are

entities. In order to di�erentiate them from other types of entities, we introduce the class

rgprov:Graph as a subclass of prov:Entity that has as its members only those entities

that are graphs. The actions that retrieve rgprov:Graph, produce them, or operate on

them are activities. The initiators of those actions are agents. We extend these concepts

along with any necessary properties as follows.

Chapter 3 RGPROV: A Vocabulary for RDF Graph Provenance 51

Figure 3.10: RGPROV Components for Graph Retrieval.

3.6.1.1 Vocabulary for Graph Retrieval

PROV provides the properties prov:hadPrimarySource and prov:wasQuotedFrom to ex-

press the repetition of an entity or part of it. As we are dealing with copying graphs

as-is from their sources, we require stricter terms. We introduce the following:

• rgprov:Fetch, a subclass of prov:Activity that indicates that a fetch operation has

taken place.

• rgprov:wasExactCopy, a subproperty of prov:wasQuotedFrom that indicates that a

graph was an exact replica of another. Its domain is a rgprov:Graph and its range

is also rgprov:Graph.

• rgprov:copied, a subproperty of prov:Used that expresses the action of fetching a

copy of a graph. Its domain is a rgprov:Fetch and its range is a rgprov:Graph.

• rgprov:wasCopyResult, a subproperty of prov:wasGeneratedBy that indicates that

a graph was the result of a copy (fetch) action. Its domain is a rgprov:Graph and

its range is a rgprov:Fetch.

The above terms are shown in Figure 3.10.

We see no need to create additional vocabulary for provenance production and updating.

3.6.1.2 Vocabulary for Graph Operations

We introduce the class rgprov:GraphOperation, a subclass of prov:Activity, that encom-

passes operations performed on a graph.

Vocabulary for Set theoretic Operations Because, as will be discussed in detail in

Section 4.2.3, there is a need to keep track of which graph operation produced a graph,

we introduce the following:

52 Chapter 3 RGPROV: A Vocabulary for RDF Graph Provenance

Figure 3.11: RGPROV Components for Set Theoretic Graph Operations.

• rgprov:Union, a subclass of rgprov:GraphOperation that indicates that a union

operation has taken place.

• rgprov:Intersection, a subclass of rgprov:GraphOperation that indicates that an

intersection operation has taken place.

• rgprov:Di�erence, a subclass of rgprov:GraphOperation that indicates that a dif-

ference operation has taken place.

• rgprov:hadMinuend, a subproperty of prov:used that indicates that a graph was

the �rst component of a graph di�erence action. Its domain is a rgprov:Di�erence

and its range is an rgprov:Graph.

• rgprov:hadSubtrahend, a subproperty of prov:used that indicates that a graph was

the second component of a graph di�erence action. Its domain is a rgprov:Di�erence

and its range is an rgprov:Graph.

The usage of the above terms is shown in Figure 3.11.

Vocabulary for Entailment Regimes Since di�erent systems may implement dif-

ferent entailment regimes - or use di�erent vendor extensions for reasoners, we introduce

the following:

• rgprov:Entailment, a subclass of rgprov:GraphOperation that represents an entail-

ment.

Chapter 3 RGPROV: A Vocabulary for RDF Graph Provenance 53

Figure 3.12: Some RGPROV Components of Entailment Regimes.

• rgprov:RDFEntailment, rgprov:RDFSEntailment, rgprov:DEntailment,

rgprov:OWLRDFEntailment, rgprov:OWLDirectEntailment, and

rgprov:RIFEntailment; these are subclasses of rgprov:Entailment, each indicating

the type of entailment regime used.

• rgprov:Reasoner, a subclass of prov:SoftwareAgent that represent a reasoner.

• rgprov:RDFReasoner, rgprov:RDFSReasoner, rgprov:DReasoner,

rgprov:OWLRDFReasoner, rgprov:OWLDirectReasoner, and rgprov:RIFReasoner;

these are subclasses of rgprov:Reasoner, each indicating the type of reasoner used.

• rgprov:wasEntailedFrom, a subproperty of prov:wasDerivedFrom that represents

that a graph was entailed from another. Its domain and range are rgprov:Graph.

A selection of the above terms is shown in Figure 3.12.

Vocabulary for Updates PROV provides the terms prov:Revision and prov:wasRevisionOf

to describe that an entity has changed or has been updated. Since we di�erentiate the

types of update operations that can be performed on a graph, we introduce the following:

• rgprov:InsertOperation a subclass of rgprov:GraphOperation that represents an

insert operation.

• rgprov:DeleteOperation, a subclass of rgprov:GraphOperation that represents a

delete operation.

• rgprov:UpdateGraph, a subclass of rgprov:Graph that represents the graphs whose

triples are to be inserted or deleted. Although one might argue that an rg-

prov:UpdateGraph is merely a regular graph, and hence representing it using rg-

prov:Graph should be su�cient; we argue that a graph that is stored in and being

54 Chapter 3 RGPROV: A Vocabulary for RDF Graph Provenance

Figure 3.13: RGPROV Components of Update Operations.

used by a system should be di�erentiated from a graph whose entire purpose is

representing triples to be inserted or deleted in the former type of graph.

• rgprov:inserted, a subproperty of prov:used that indicates that the triples of a

graph were used by an insert operation performed on another graph. Its domain is

rgprov:InsertOperation and its range is rgprov:UpdateGraph.

• rgprov:deleted, a subproperty of prov:used that indicates that the triples of one

graph were used by a delete operation performed on another graph another. Its

domain is rgprov:DeleteOperation and its range is rgprov:UpdateGraph.

The above terms are shown in Figure 3.13.

3.6.2 Vocabulary Usage in Running Example

We now return to the running example presented in Section 3.3 to demonstrate the usage

of RGPROV. We present a concise description and postpone showing the production of

provenance as we shall be applying the vocabulary in more detail in the next chapter.

First, system C retrieves copies of graphs GA and GB and their provenance graphs

PA and PB by making two fetch requests to A and B respectively. This results in it

receiving Gcopy(A), Gcopy(B), and their provenance graphs. It then produces the updated

provenance graphs Pcopy(A) and Pcopy(B) to re�ect where the graphs came from. This is

shown in Figure 3.14.

Next, C applies ST◦ on Gcopy(A) and Gcopy(B) to produce graph GC = Gcopy(A)◦copy(B).

For the sake of brevity and clarity, we will only demonstrate the union operation. This

is shown in Figure 3.15.

Finally, C runs GC through a reasoner to produce the entailed graph Gent(C). This is

shown in Figure 3.16.

Chapter 3 RGPROV: A Vocabulary for RDF Graph Provenance 55

Figure 3.14: Demonstration of RGPROV Components for Graph Retrieval.

Figure 3.15: Demonstration of RGPROV Components for Union.

56 Chapter 3 RGPROV: A Vocabulary for RDF Graph Provenance

Figure 3.16: Demonstration of RGPROV Components for Entailment.

The full steps of the creation of Gent(C) is shown in Figure 3.17.

3.7 Summary

RDF graphs generated by a system can be imported by other systems and used to

produce other graphs. Those source graphs are very likely be changed and updated.

In order to track the provenance of derived graphs on the Semantic Web and facilitate

the propagation of their modi�cation, we presented a specialisation of the PROV-O

ontology that models the classes and properties involved in a graph's creation and update.

The presented vocabulary captures the provenance of the creation of graphs using other

graphs wholly and allows the re�ection of changes to those source graphs.

In the next chapter, we �rst show how RGPROV can be used to capture the provenance

of graph retrieval. We then discuss the e�ects that updates on a source graph have

on a derived graph produced using it. Finally, we show how RGPROV can be used to

propagate those updates as well as to capture the provenance of graph update.

Chapter 3 RGPROV: A Vocabulary for RDF Graph Provenance 57

F
ig
ur
e
3.
17
:
P
ro
ve
na
nc
e
of

G
ra
ph

G
C

Chapter 4

Application of RGPROV

In the previous chapter, we presented a specialisation of the PROV ontology, RGPROV,

that extends the provenance ontology to capture the provenance of RDF graph creation

and retrieval and that also aims to facilitate the propagation of update operations on

entailed graphs. It is a light-weight vocabulary and its granularity is at the graph level

and not at the triple level. Thus, it captures the minimal provenance needed to pinpoint

how a derived graph was created from its source graphs to allow for its replication.

In this chapter, we apply RGPROV to the running example presented in the previous

chapter by showing what information documenting provenance are created through each

step of the process of creating an RDF graph using two other source graphs. We also

show the e�ect of update operations on graphs created using the set theoretic operations

presented in the previous chapter and what information representing provenance are

created when an update is propagated.

This chapter consists of four parts. In Section 4.1, we show how RGPROV can be used

to capture the provenance of graph creation. First, we show the provenance created

when the source graphs are retrieved. Second, we show the provenance created when a

set theoretic operation is applied. Third, we show the provenance created when a graph

is entailed from another. In Section 4.2, we shift our focus to discuss how an update on

a source graph is propagated to a graph derived from it by discussing update retrieval

and how each update operation a�ect each set theoretic operation. Then in Section 4.3,

we show how RGPROV can be used to capture the provenance of propagated updates.

Finally, in Section 4.4, we summarise this chapter.

4.1 Vocabulary for Initial Graph Creation

In this section, we return to the running example presented in the previous chapter

and we describe the usage of the proposed vocabulary RGPROV during the process of

59

60 Chapter 4 Application of RGPROV

creating the initial graph Gent(C).

4.1.1 Graph Retrieval

Retrieving the source graphs GA and its provenance graph PA from A and GB and its

provenance graph PB from B is straightforward. Two fetch requests are made, each to A

and B, resulting in two replies containing the graphs Gcopy(A), Gcopy(B), and their prove-

nance graphs. We have chosen to use RESTful Web services to illustrate the provenance

triples that represent graph retrieval. Thus we introduce four new terms, which are not

part of RGPROV but are local to our system, to be used throughout, as follows:

• :RESTClient, a subclass of prov:SoftwareAgent, that represents the class of all

REST clients.

• :JAXRSJersey, a subclass of :RESTClient, that represents the class of all imple-

mentations of the Jersey1 speci�cations.

• :jersey2.25, an instance of :JAXRSJersey, that is set up on our system.

• :retrievedFrom, a property that indicates that a process accessed a URI.

After the retrieval is successful, C creates three provenance graphs: Pcopy(A), Pcopy(B),

and Pent(C). Both Pcopy(A) are Pcopy(B) are initially created as copies of PA and PB and

then more provenance information is added to them to document the process of copying

graphs GA and GB. This information includes the following.

• Which instance of rgprov:Fetch made the fetch call, namely :FETCH-A-YYYYMMDD

and :FETCH-B-YYYYMMDD.

• That :FETCH-A-YYYYMMDD and :FETCH-B-YYYYMMDD were ran by :jer-

sey2.25.

• The URIs accessed by :FETCH-A-YYYYMMDD and :FETCH-B-YYYYMMDD

to copy the graphs.

• That :FETCH-A-YYYYMMDD and :FETCH-B-YYYYMMDD copied GA and

GB.

• That Gcopy(A) and Gcopy(B) were results of copying performed by :FETCH-A-

YYYYMMDD and :FETCH-B-YYYYMMDD, and that they were exact copies

of GA and GB.

• The start and end times of :FETCH-A-YYYYMMDD and :FETCH-B-YYYYMMDD.
1This is a speci�c implementation of RESTful Web Services in Java chosen for the example only

because the author is familiar with it. It is available on https://jersey.github.io/.

https://jersey.github.io/

Chapter 4 Application of RGPROV 61

Figure 4.1: Relationships Between Source Graphs and Their Copies.

Figure 4.2: First Iteration of Pent(C).

The provenance graph Pent(C) is created by copying Pcopy(A) and Pcopy(B) into it and

adding that Pent(C) itself was derived from both of them. The relationships between the

graphs is shown in Figure 4.1. Note that the grey-shaded entities are the copies of the

provenance graphs of the source graphs. This �rst iteration of Pent(C) is shown in Figure

4.2, with the triple lists detailed in Appendix B.

4.1.2 Graph Operations

As detailed in the previous chapter, the production of Gent(C) happens in two steps. The

�rst is by applying a set theoretic operation ST◦ to the graphs Gcopy(A) and Gcopy(B),

62 Chapter 4 Application of RGPROV

resulting in the graph GC . The second is performing an entailment operation on GC to

�nally produce Gent(C).

Since we will be using the Jena reasoner for both types of operations, we introduce the

following terms, which are not part of RGPROV but are local to our system, to be used

throughout:

• :Jena, a subclass of rgprov:RDFSReasoner that represents the class of Jena frame-

work.

• :jena3.1.1, an instance of :Jena that is setup on our system.

4.1.2.1 Set Theoretic Operations

The production of GC can be the result of any one of union, intersection, or di�erence.

After graph GC is produced, the following provenance information is added to Pent(C):

• Which instance of rgprov:Union, rgprov:Intersection, or rgprov:Di�erence was in-

voked. For brevity, we will use the term :go-A-B-YYYYMMDD when referring to

any of the former.

• That :go-A-B-YYYYMMDD was associated with :jena3.1.1.

• That :go-A-B-YYYYMMDD used both Gcopy(A) and Gcopy(B) in the case of union

or intersection. In case of di�erence, the �rst component is indicated as a minuend

and the second as a subtrahend.

• That :go-A-B-YYYYMMDD generated the graph GC .

• The start and end times of :go-A-B-YYYYMMDD.

• That Gcopy(A) and Gcopy(B) were contributors in the creation of GC .

The second iteration of Pent(C) is shown in Figure 4.3 with the union operation used as

an example of set theoretic operations. The full triple list is detailed in Appendix B.

4.1.2.2 Entailment

In the �nal stage of producing Gent(C) from GC , C invokes the Jena methods for RDFS

entailment. After Gent(C) is created, C adds the following information to Pent(C):

• Which instance of rgprov:RDFSEntailment was invoked, namely :ge-C-YYYYMMDD.

• That :ge-C-YYYYMMDD wasAssociatedWith :jena3.1.1.

Chapter 4 Application of RGPROV 63

Figure 4.3: Second Iteration of Pent(C).

• That :ge-C-YYYYMMDD used GC .

• That :ge-C-YYYYMMDD produced the graph Gent(C).

• That GC entailed Gent(C).

• That Gcopy(A) and Gcopy(B) both contributed to the creation of Gent(C).

• The start and end times of :ge-C-YYYYMMDD.

The above list constitutes the �nal additions to Pent(C) and is shown in Figure 4.4. The

full triple list is detailed in Appendix B.

4.2 Graph Updates

Recall that after the update graph and its provenance graph are retrieved, C queries the

provenance graph Pent(C) to retrieve which set theoretic graph operation was used to

produce GC . C combines this operation with the type of update that had been applied

to the source graph in order to deduce whether all or part of the update graph needs to

inserted into or deleted from GC to produce GC′ . Finally, C produces Gent(C′) from GC′

via entailment.

64 Chapter 4 Application of RGPROV

Figure 4.4: Final Iteration of Pent(C).

Thus, in this section, we explain how an update on a source graph is communicated to

a system that uses it and how such a system should propagate the update on its graph

that was created using that source graph. Those steps are summarised in Table 4.1.

4.2.1 Update Retrieval

Updates may reach system C in two ways. First, the system that does the update, B

in this case, informs C that an update is present. We recognise that this would force

B to keep a log of all the GET requests it gets from all the various systems that have

queried it. To address this, B may keep a log of systems that choose to be informed of

updates - similar to a list of subscribers to email updates, as some systems may not wish

to receive any update noti�cations. This results in less communication overhead for B

as it would need to inform less systems of the update. The second way is for C to check

whether a graph it uses has been updated, this may also happen in di�erent ways. First,

C would periodically check if B has made any updates, similar to subscribing to an RSS

feed. Second, this would occur if a need arises to re-process the data it has in its system.

For example, when a graph operation needs to be rerun and the source graphs have not

been stored locally because of size constraints, then C can check if B has updated its

GB. Finally, if some data are time-sensitive, that is if they are relevant for some period

of time and then expire. Thus, when some data are �agged as expired, then C would

need to request a fresh copy of the source graph.

Chapter 4 Application of RGPROV 65

Figure 4.5: Venn Diagram of Relationships Between G1 and G2.

Figure 4.6: Venn Diagram of Relationships Between G1 and G′2, where G
′
2 =

G2 ∪Gup.

4.2.2 Update Propagation

We study the e�ects of the update operations listed in Section 2.1.2.4 on the graph

resulting from the set theoretic graph operations listed in Section 2.1.3.1. We assume

we have two graphs, G1 and G2. The graph resulting from the graph operation on these

two graph is G3. The update operation performed on G2 is Upop using the update graph

Gup and resulting in G2 becoming the updated graph G′2. A summary of this is shown

in Table 4.1.

4.2.3 Propagation of Updates According to Set Theoretic Operations

We show the relationships between graphs G1 and G2 in Figure 4.5. The union G1 ∪G2

corresponds to the whole graph. The intersection G1 ∩ G2 is depicted in purple. The

di�erence G1 \ G2 is depicted in the blue part of G1, i.e. excluding the purple portion

which corresponds to the intersection. The di�erence G2 \G1 is depicted in the red part

of G2, i.e. excluding the purple portion which corresponds to the intersection.

We show the relationships between graphs G1 and G′2 in Figure 4.6, where G
′
2 was arrived

to after performing an insert operation on G2. The union G1 ∪ G′2 corresponds to the

whole graph. The intersection G1 ∩G′2 is depicted in purple. The di�erence G1 \G′2 is

depicted in the blue part of G1, i.e. excluding the purple portion which corresponds to

the intersection. The di�erence G2 \G′2 is depicted in the red part of G′2, i.e. excluding

the purple portion which corresponds to the intersection.

66 Chapter 4 Application of RGPROV

Figure 4.7: Venn Diagram of Relationships Between G1 and G′2, where G
′
2 =

G2 \Gup.

We show the relationships between graphs G1 and G′2 in Figure 4.7, where G
′
2 was arrived

to after performing a delete operation on G2. The portion of G2 which was deleted is

shown in the arc between the black border and graph G′2. The union G1∪G′2 corresponds
to the whole graph, minus the white portion inside the black arc. The intersectionG1∩G′2
is depicted in purple. The di�erence G1 \G′2 is depicted in the blue part of G1 excluding

the purple portion which corresponds to the intersection. The di�erence G′2 \ G1 is

depicted in the red part of G′2 excluding the purple portion which corresponds to the

intersection.

4.2.3.1 Union

Insert Algebraically,

G′3 = G1 ∪G′2 = G1 ∪ (G2 ∪Gup) = (G1 ∪G2) ∪Gup = G3 ∪Gup.

Thus, adding triples to graph G2 results in adding those triples to G3 if they are not

already in it. This is equivalent to adding to G3 the triples in G′2 \ G3. This can be

treated as adding the triples in [∆(G′2, G2) \ G3] ≡ [Gup \ G3]. Since inserting already

existing triples has no e�ect, this may be reduced to just inserting the triples in Gup.

Graphically, we see in Figure 4.6 that inserting triples to graph G2 results in adding

those triples to G3 if they are not already in it. Thus, the union after insert corresponds

to the whole graph, i.e. all the triples in both G1 and G′2.

The only old entity needed to be stored for this update is G3. The only new entities

needed for this update are the triples to be added, found in either the update graph Gup

or in the di�erence ∆ between G2 and G′2.

Delete Algebraically,

G′3 = G1∪G′2 = G1∪(G2\Gup) = (G2\Gup)∪G1 = (G2∪G1)\(Gup\G1) = G3\(Gup\G1).

Chapter 4 Application of RGPROV 67

Thus, deleting triples from graph G2 results in deleting triples from G3 if they are

not shared with G1. This is equivalent to deleting from G3 the triples that are in

[(G2 \G′2) \G1] ≡ [∆(G2, G
′
2) \G1] ≡ [Gup \G1].

Graphically, we see in Figure 4.7 that the union after delete corresponds to the whole

graph, i.e. all the triples in both G1 and G′2, minus the white portion inside the black

arc, i.e. those that were deleted from G2 and did not intersect those that are in G1.

Unfortunately, this requires that in addition to the needed old entity G3, the old entity

G1 is also needed. The new entities needed are the triples to be deleted, found in either

the update graph Gup or in the di�erence ∆ between G2 and G′2.

4.2.3.2 Intersection

Insert Algebraically,

G′3 = G1 ∩G′2 = G1 ∩ (G2 ∪Gup) = (G1 ∩G2) ∪ (G1 ∩Gup) = G3 ∪ (G1 ∩Gup).

Thus, adding triples to graph G2 results in adding those triples to G3 if they are shared

with G1. This is equivalent to adding the triples in [(G1∩∆(G′2, G2))\G3], i.e, the triples

in [(G1∩G′2)\G3] ≡ [(G1∩G′2)\(G1∩G2)] ≡ [G′2∩G1] ≡ [∆(G′2, G2)∩G1] ≡ [Gup∩G1].

Graphically, we see in Figure 4.6 that the intersection after insert adds only the inserted

triples that are shared with G1 into the purple portion.

The old entities needed for this update are G3 and G1 to check if the triples are shared.

The new entities needed are the triples to be inserted, found in either the update graph

Gup or in the di�erence ∆ between G2 and G′2.

Delete Algebraically,

G′3 = G1 ∩G′2 = G1 ∩ (G2 \Gup) = (G2 \Gup) ∩G1 = (G2 ∩G1) \Gup = G3 \Gup.

Thus, deleting triples from graph G2 results in deleting those triples in G3 if they are

already in it. This is equivalent to deleting the triples in G3 ∩ ∆(G2, G
′
2), i.e. [(G1 ∩

G2) ∩ (G2 \ G′2)] ≡ [(G1 ∩ G2) ∩ ∆(G2, G
′
2)] ≡ [G3 ∩ Gup]. Since deleting non-existent

triples has no e�ect, this may be reduced to just deleting the triples in Gup.

Graphically, we see in Figure 4.7 that the intersection after delete removes from the

purple portion all the triples that are not shared with G1.

68 Chapter 4 Application of RGPROV

The only old entity needed to be stored for this update is G3. The only new entities

needed for this update are the triples to be deleted, found in either the update graph

Gup or in the di�erence ∆ between G2 and G′2.

4.2.3.3 Di�erence Case 1

This case studies G1 \G2.

Insert Algebraically,

G′3 = G1 \G′2 = G1 \ (G2 ∪Gup) = (G1 \G2) ∩ (G1 \Gup) = G3 ∩ (G1 \Gup).

Thus, inserting triples to graph G2 results in deleting those triples from G3 which are

now being shared with G1, this may be reduced to just deleting the triples in Gup.

Graphically, we see in Figure 4.6 that the di�erence after insert reduces the blue portion

of G1 by adding those inserted triples to the intersection.

The only old entity needed to be stored for this update is G3. The only new entities

needed for this update are the triples to be deleted, found in either the update graph

Gup or in the di�erence ∆ between G2 and G′2.

Delete Algebraically,

G′3 = G1\G′2 = G1\(G2\Gup) = (G1∩Gup)∪(G1\G2) = (G1∩Gup)∪G3 = G3∪(G1∩Gup).

Thus, deleting triples from G2 results in inserting those triples in G3 if they are shared

with G1. This is equivalent to inserting the triples in G1 ∩∆(G′2, G2) ≡ G1 ∩Gup.

Graphically, we see in Figure 4.7 that the di�erence after delete increases the blue portion

of G1 by including those triples that used to be shared with G2.

Unfortunately, this requires that in addition to the needed old entity G3, the old entity

G1 is also needed. The only new entities needed for this update are the triples to be

deleted, found in either the update graph Gup or in the di�erence ∆ between G2 and G′2.

4.2.3.4 Di�erence Case 2

This case studies G2 \G1.

Chapter 4 Application of RGPROV 69

Insert Algebraically,

G′3 = G′2 \G1 = (G2 ∪Gup) \G1.

Thus, inserting triples to graph G2 results in inserting into G3 the triples that are not

shared with G1. This is equivalent to inserting the triples in Gup \G1.

Graphically, we see in Figure 4.6 that the di�erence after insert increases the red portion

of G′2 by including those triples that are not shared with G1.

The old entities needed for this update are G3 and G1 to check if the triples are shared.

The new entities needed are the triples to be inserted, found in either the update graph

Gup or in the di�erence ∆ between G2 and G′2.

Delete Algebraically,

G′3 = G′2\G1 = (G2\Gup)\G1 = G2\(G1∪Gup) = (G2\G1)∩(G2\Gup) = G3∩(G2\Gup).

Thus, deleting triples from G2 results in deleting those triples from G3 if they are already

in it. This is equivalent to deleting the triples in Gup.

Graphically, we see in Figure 4.7 that the di�erence after delete reduces the red portion

of G′2 to the triples remaining in G′2 and are not shared with G1.

The only old entity needed to be stored for this update is G3. The new entities needed

are the triples to be deleted, found in either the update graph Gup or in the di�erence

∆ between G′2 and G2.

4.2.4 Re-Entailment

Re-entailment after update can be done in two ways. The �rst is to run the newly-

produced graph through a reasoner; this is something that we aimed to avoid so as to

reduce reasoning overhead caused by re-processing the whole graph. The second way is

to use Gupta et al. (1993)'s and Motik et al. (2015)'s2 approaches of only re-entailing

the a�ected triples. To the best of our knowledge, this approach has not been applied to

reasoning on the Semantic Web before, and thus constitutes a novel contribution. The

approach is split in two based on whether triples are being inserted or deleted.

4.2.4.1 Re-EntailmentAfter Insert

If the update operation is an insert, then the triples are added to the graph G3, before

a SPARQL Describe operation is performed. This results in a new graph that contains
2Recall that unlike Motik et al. (2015), we do not implement our own reasoner.

70 Chapter 4 Application of RGPROV

the newly inserted triples as well as all the triples that relate to them, i.e. all the triples

which have as a subject any of the IRIs of the described triple's subject, predicate, or

object. This is the graph that is used for re-entailment. After running it through the

reasoner, the new triples that have been produced are also inserted into the graph, thus

resulting in the graph G′3.

4.2.4.2 Re-EntailmentAfter Delete

If the update operation is a delete, then it is not su�cient to only delete the triples in

the update operation, as the triples that have been inferred by only those triples also

need to be deleted.

Consider as an example a graph containing the following triples:

Publication rdfs:subClassOf Document (4.1a)

JournalArticle rdfs:subClassOf Publication (4.1b)

ConferenceProceedings rdfs:subClassOf Publication (4.1c)

ConferenceArticle rdfs:subClassOf ConferenceProceedings (4.1d)

The graph also contains the below triples:

ComputingMachineryAndIntelligence rdf:type ConferenceArticle (4.2a)

ComputingMachineryAndIntelligence rdf:type Publication (4.2b)

Therefore, after reasoning the graph contains the following derived triples:

ComputingMachineryAndIntelligence rdf:type ConferenceProceedings (4.3a)

ComputingMachineryAndIntelligence rdf:type Document (4.3b)

However, since `Computing Machinery and Intelligence' is not a conference article, the

graph needs to be corrected to re�ect that. Simply deleting triple (4.2a) is not enough

because the derived triple (4.3a) needs to be deleted as well.

First Step We perform a SPARQL Describe operation before applying the delete op-

eration, with the triples to be deleted as its parameter. This returns a new graph that

contains the triples to be deleted as well as all the other triples that relate to them.

In our example, the returned described graph contains the triples (4.1d), (4.2a), (4.2b),

(4.3a), and (4.3b).

Chapter 4 Application of RGPROV 71

Second Step We then loop over this graph. For every triple t to be deleted, we check

the other triples for those that share the same subject and delete each of those triples,

tinf , that have been inferred by t. The triples are found by examining their predicates. If

a triple t has a predicate rdf:type, then the triples tinf to be deleted are those that have

the same subject as t, a predicate rdf:type, and an object that is an rdfs:subClassOf the

object of t. If, on the other hand, the triple t has a predicate that is an rdfs:subPropertyOf

another predicate, then the triples tinf to be deleted are those that have the same subject

as t, the predicate that is an rdfs:subPropertyOf t's predicate, and t's predicate.

In our example, we loop over the returned triples and mark the triples (4.3a) and (4.3b)

for deletion.

Third Step It is then that the delete operation is applied to G3, removing the two

sets of triples, the base triples - found in Gup - to be deleted and the inferred ones.

In our example, the delete operation is now performed resulting in the removal of the

triples (4.2a), (4.3a), and (4.3b)

Fourth Step Afterwards, we perform a second describe operation on the now-updated

graph giving it as a parameter the subjects and predicates present in base triples that

have been deleted. This results in a new graph that is used for re-entailment.

In our example, we request the describe of the IRIs of ComputingMachineryAndIntelli-

gence, ConferenceArticle, ConferenceProceedings, and Document. The resulting

graph will contain the triple (4.2b), which will need to be sent to the reasoner for entail-

ment.

Fourth Step After running it through the reasoner, the new triples that have been

produced by the reasoner are inserted; thus resulting in the graph G′3.

In our example, this leads to triple (4.3b) to be re-inserted because of the presence of

triple (4.2).

An additional step may take place before this last one, that of inserting new triples. If

this happens, then the describe of the inserted triples is combined with the graph from

the fourth step and both are sent to the reasoner. The newly inferred triples are then

inserted in this fourth and �nal step.

A summary of the data that would be needed for fetching and applying the updates is

presented in Table 4.1

72
C
h
a
p
ter

4
A
p
p
lica

tio
n
o
f
R
G
P
R
O
V

Graph Oper-

ation

Update

(Upop)

What to do Old

Needed

What to Fetch

G3 =

Gent(G1∪G2)

Insert (1) Insert into G3 the triples in Gup. (2) Re-entail the graph resulting

from the describe of the triples.

G3 Gup ≡ ∆(G′2, G2).

Delete (1) Delete from G3 the triples in Gup \ G1 and those inferred by them.

(2) Re-entail the graph resulting from the describe of the subjects and

predicates.

G1 and

G3

Gup ≡ ∆(G2, G
′
2). And

G1 if not cached.

G3 =

Gent(G1∩G2)

Insert (1) Insert into G3 the triples in Gup∩G1. (2) Re-entail the graph resulting

from the describe of the triples.

G1 and

G3

Gup ≡ ∆(G′2, G2). And

G1 if not cached.

Delete (1) Delete from G3 the triples in Gup and those inferred by them. (2) Re-

entail the graph resulting from the describe of the subjects and predicates.

G3 Gup ≡ ∆(G′2, G2)

G3 =

Gent(G1\G2)

Insert (1) Delete from G3 the triples in Gup and those inferred by them. (2) Re-

entail the graph resulting from the describe of the subjects and predicates.

G3 Gup ≡ ∆(G′2, G2)

Delete (1) Insert into G3 the triples in Gup∩G1. (2) Re-entail the graph resulting

from the describe of the triples.

G1 and

G3.

Gup ≡ ∆(G′2, G2). And

G1 if not cached.

G3 =

Gent(G2\G1)

Insert (1) Insert into G3 the triples in Gup\G1. (2) Re-entail the graph resulting

from the describe of the triples.

G1 and

G3

Gup ≡ ∆(G′2, G2). And

G1 if not cached.

Delete (1) Delete from G3 the triples in Gup and those inferred by them. (2) Re-

entail the graph resulting from the describe of the subjects and predicates.

G3 Gup ≡ ∆(G′2, G2).

Table 4.1: Re�ecting the Update on G3 based on ST◦ performed on G1 and G2.

Chapter 4 Application of RGPROV 73

4.3 Vocabulary for Update Propagation

We return to the running example to demonstrate the use of RGPROV to describe how

the updates get propagated. We map G1 to Gcopy(A), G2 to Gcopy(B), G
up to Gup

copy(B),

G′2 to Gcopy(B′), and G3 to GC .

4.3.1 Update Retrieval

When C has been informed that an update operation using the triples in Gup
B has been

applied to GB, it sends a get request to retrieve Gup
B resulting in the reply containing

a copy of the update graph along with a copy of its provenance graph P up
B . The reply

that C receives back from B consists of a copy of Gup
B , namely Gup

copy(B) and a copy of

its provenance.

C then creates the provenance graph P up
copy(B) similar to how it created Pcopy(B). So,

P up
copy(B) contains the information in P up

B as well as the following:

• Which instance of rgprov:Fetch made the fetch call to system B, namely :Fetch-

BUp-YYYYMMDD.

• That :Fetch-BUp-YYYYMMDD were ran by :jersey2.25.

• The URI accessed by :Fetch-BUp-YYYYMMDD.

• The name of the update graph that Fetch-BUp-YYYYMMDD copied, namely Gup
B .

• That the copying resulted in the new update graph Gup
copy(B), and that it was an

exact copy of Gup
B .

• The start and end times of :Fetch-BUp-YYYYMMDD.

• That if the new graph - GB′ - was also copied, then Gcopy(B′) is a new version of

Gcopy(B).

• That the provenance graph P up
copy(B) was derived from P up

B and is a new version of

Pcopy(B).

Recall that we are only interested in the provenance of the graphs which are pertinent

exclusively to system C. Therefore, Pcopy(B) may be discarded at this stage if P up
copy(B)

contains the whole of the provenance of Gcopy(B′); we discuss the discarding of old prove-

nance graphs and copies of source graphs in our plans for future work, Section 8.2. The

relationships between the graphs is shown in Figure 4.8. Note that the grey-shaded entity

is the copy of P up
B .

74 Chapter 4 Application of RGPROV

Figure 4.8: Relationships Between Update and Provenance Graphs and Their
Copies.

Figure 4.9: First Iteration of Pent(C′).

C then creates the provenance graph Pent(C′) by including the above information as

well as the information stating that Pent(C′) is a new version of Pent(C), this creates

the triple: Pent(C′) prov:wasRevisionOf Pent(C). The �rst iteration of Pent(C′) is shown

in Figure 4.9, with the full triple list is detailed in Appendix B. Stating that Gent(C′)

prov:wasRevisionOf Gent(C) will be added after Gent(C′) has been created.

4.3.2 E�ects of Updates

The next step is that C checks Pent(C) to see which set theoretic operation was performed

to produce GC and which graphs originally contributed to its creation, in this case the

graphs Gcopy(A) and Gcopy(B). It also checks what sort of propagation needs to be applied

and uses Jena to perform the update and produce the graph GC′ .

Chapter 4 Application of RGPROV 75

4.3.2.1 Insert

Jena performs the Insert operation on graphGent(C) by inserting into it either the entirety

of Gup
copy(B) or a subgraph of it, namely Gup

sub(copy(B)), to produce graph GC′ . Afterwards,

C adds the following information to Pent(C′):

• Which instance of rgprov:InsertOperation was invoked, namely insert-C-YYYYMMDD.

• That :insert-C-YYYYMMDD was associated with :jena3.1.1.

• That :insert-C-YYYYMMDD used GC in its insert operation.

• If the entirety of Gup
copy(B) was inserted, then that :insert-C-YYYYMMDD used

Gup
copy(B) in its insert operation. If a subgraph of it was used, then that the update

graph Gup
sub(copy(B)) was derived from both Gup

copy(B) and Gcopy(A) and that :insert-

C-YYYYMMDD used Gup
sub(copy(B)) in its insert operation.

• That :insert-C-YYYYMMDD generated the graph GC′ .

• That Gup
copy(B) was a contributor in the creation of GC′ .

• If the subgraph Gup
sub(copy(B)) was used, then that Gcopy(A) and G

up
sub(copy(B)) were

contributors in the creation of GC′ .

• That GC′ is a new version of GC .

• The start and times of :insert-C-YYYYMMDD.

The above list is shown in Figures 4.10 and 4.11, with the full triple list is detailed in

Appendix B.

4.3.2.2 Delete

Jena performs the Delete operation on graph GC either by deleting the entirety of the

update graph Gup
copy(B) or a subgraph of it, namely Gup

sub(copy(B)), to produce the graph

GC′ . Afterwards, C adds the following information to Pent(C′):

• Which instance of rgprov:DeleteOperation was invoked, namely :delete-C-YYYYMMDD.

• That :delete-C-YYYYMMDD was associated with :jena3.1.1

• That :delete-C-YYYYMMDD used GC in its delete operation.

• If all the triples inGup
copy(B) were used in the deletion, then that :delete-C-YYYYMMDD

used Gup
copy(B) in its delete operation. If a subgraph of it was used, then that the

update graph Gup
sub(copy(B)) was derived from both Gup

copy(B) and Gcopy(A) and that

:delete-C-YYYYMMDD used Gup
sub(copy(B)) in its delete operation.

76 Chapter 4 Application of RGPROV

Figure 4.10: Second Iteration of Pent(C′) - Case Insert After Union.

Figure 4.11: Second Iteration of Pent(C′) - Cases Insert After Intersection and
Di�erence 2 and Delete After Di�erence 1.

Chapter 4 Application of RGPROV 77

Figure 4.12: Second Iteration of Pent(C′) - Case Delete After Union.

• That :delete-C-YYYYMMDD generated GC′ .

• That Gup
copy(B) was a contributor in the creation of GC′ .

• If the subgraph Gup
sub(copy(B)) was used, then that both Gcopy(A) and G

up
sub(copy(B))

were contributors in the creation of GC′ .

• That GC′ is a new version of GC .

• The start and end times of :delete-C-YYYYMMDD.

The above list is shown in Figures 4.12 and 4.13, with the full triple list is detailed in

Appendix B.

4.3.3 Re-Entailment

In the �nal stage of producing Gent(C′) from GC′ , C invokes the Jena methods for RDFS

entailment as per Subsection 4.2.4. Despite the fact that only a subgraph of GC′ is

being re-entailed, we �nd no need to single that subgraph out when documenting the

provenance of re-entailment, as we �nd it su�cient to state that Gent(C′) was the product

of an entailment process applied on GC′ . Hence, after Gent(C′) is created, C adds the

same information to Pent(C′) that is found in Subsection 4.1.2.2, namely:

• Which instance of rgprov:RDFSEntailment was invoked, namely :ge-C-YYYYMMDD.

• That :ge-C-YYYYMMDD was associated with :jena3.1.1.

• That :ge-C-YYYYMMDD used GC′ .

78 Chapter 4 Application of RGPROV

Figure 4.13: Second Iteration of Pent(C′) - Cases Delete After Intersection and
Di�erence 2 and Insert After Di�erence 1.

• That :ge-C-YYYYMMDD produced the graph Gent(C′).

• That GC′ entailed Gent(C′).

• That Gent(C′) was derived from Gup
copy(B). In case Gup

sub(copy(B)) was used to produce

GC′ , then also that Gent(C′) was derived from it.

• That Gent(C′) is a new version of Gent(C).

• The start and end times of :ge-C-YYYYMMDD's.

The above list constitutes the �nal additions to Pent(C′) and is shown in Figures 4.14

and 4.15. The full triple list is detailed in Appendix B.

4.4 Summary

In this chapter, we demonstrated an application of the RGPROV vocabulary on the

running example presented in the previous chapter. First, we showed how RGPROV

describes the provenance of graphs produced by fetching other graphs from separate

systems and by applying set theoretic operations on them, as well as the provenance of

graphs produced by entailment. Then we shifted the focus to establish how updates on

source graphs are to be propagated in systems whose entailed graphs were derived from

them. Finally, we showed how RGPROV can describe the provenance of propagating

updates.

Chapter 4 Application of RGPROV 79

Figure 4.14: Final Iteration of Pent(C′) Using all the Update Graph.

Figure 4.15: Final Iteration of Pent(C′) Using a Subgraph of the Update Graph.

80 Chapter 4 Application of RGPROV

In the next chapter, we present the design of the model we have implemented to test our

approach, and describe that implementation.

Chapter 5

Design and Implementation

In this chapter, we present the system which we have implemented that makes use of the

RGPROV vocabulary. We start by presenting its design and then describe the di�erent

components that make it up and expand on each of them.

This chapter consists of four parts. In Section 5.1, we outline the design of our system.

In Section 5.2, we detail the components of the system which we have implemented.

In Section 5.3, we present the third party components which we have used. Finally, in

Section 5.4, we summarise this chapter.

5.1 System Design

We have designed a system comprising seven components, of which we have implemented

four. The system architecture is shown in Figure 5.1. The main component, named

the Operator, is responsible for controlling and invoking the operations performed on

the graphs in the system. As it is the central component, it's the one which invokes

and communicates with all the other components. The second component, named the

Provenance Handler, is responsible for creating, querying, and updating the provenance

graphs. The third component is the independent SPARQL Server and Graph Store,

which we have not implemented but used the third party Jena Fuseki Server. The

fourth component is the independent reasoner, which we have also not implemented

but used the third party Jena. Jena is responsible for performing the set theoretic and

entailment operations on all graphs. The �fth component is the Update Producer, which

handles any updates applied on the system's internal graphs that are used as source

graphs by outside systems. The sixth component is the Cache. Finally, the remaining

component is the REST client, which we have not implemented, as it does not pertain

to the demonstrating the application of the RGPROV vocabulary nor does it a�ect the

evaluation of the system.

81

82 Chapter 5 Design and Implementation

Figure 5.1: System Architecture, with the Shaded Parts Indicating the Imple-
mented Components.

Note that unless they have been marked as inferred triples, all triples in the source

graphs are treated as ground triples in the system. Then, after it is produced, graph

Gent(C) is stored as two graphs. The �rst, GC , consists of the ground triples and the

second, Ginf(C), consists of the inferred triples produced by our system's reasoner. This

separation proves bene�cial when re-deriving to minimise over-deletions and re-insertions.

All components have been implemented in Java.

5.2 Implemented Components

5.2.1 Operator

This is the main and central component of our system, and as such it is responsible for

invoking the other components and handling most of the communications between them.

Initial Graph Creation

Recall that graph Gent(C) is created as shown in Figure 5.2 and in more detail in Figure

5.3 (these �gure are copies of Figures 3.3 and 3.4).

Chapter 5 Design and Implementation 83

Figure 5.2: Copy of Figure 3.3 - Production of Gent(C) from GA and GB.

Figure 5.3: Copy of Figure 3.4 - Detailed Production of Gent(C) and its Prove-
nance graph Pent(C) from GA, GB, and their Provenance Graphs.

84 Chapter 5 Design and Implementation

Before the graph Gent(C) is to be initially created, the Operator loads the copies of graphs

GA and GB, namely Gcopy(A) and Gcopy(B) along with their provenance graphs from the

Cache. As previously mentioned, we assume, in our implementation, that graphs GA and

GB, and subsequently their copies Gcopy(A) and Gcopy(B), contain only ground triples,

i.e. there are no inferred triples in them. In addition to allowing di�erent systems to use

di�erent entailment regimes internally, this saves the Operator having to go through all

the triples to �nd and mark the inferred triples.

Afterwards, the Operator instructs the Provenance Handler to create the graphs Pcopy(A)

and Pcopy(B) from the copies of PA and PB respectively, as well as the �rst iteration of

Pent(C), as detailed in Section 4.1.1.

The Operator then invokes Jena to create GC and subsequently instructs the Provenance

Handler to produce the second iteration of Pent(C), as detailed in Section 4.1.2.1. Next,

it invokes Jena again to create Gent(C) by applying RDFS reasoning to GC . Here, Jena

may return to the Operator two graphs, the �rst, named Ginf(C), containing the inferred

triples and the second being the entirety Gent(C), containing both the base and the

inferred triples. We do need the latter as we are storing it as two graphs. While it is not

necessary to split the graph, doing do saves the Operator from having to go through each

triple to �nd the inferred ones whenever there is an update. It also allows the Operator

to avoid over-deletions and re-insertions.

Afterwards, the Operator instructs the Provenance Handler to produce the �nal iteration

of Pent(C), as detailed in Section 4.1.2.2. We have elected to keep copies of the original

graphs, and so the Operator's �nal task is uploading Gcopy(A) and Gcopy(B) to Fuseki

along with Pcopy(A), Pcopy(B), GC , Ginf(C), and Pent(C) and deleting the graphs Gcopy(A),

Gcopy(B), and the copies of PA and PB from the Cache.

Graph Update

Recall that graph Gent(C′) is entailed from a portion of graph GC′ , and that the latter

may be produced in one of four ways: inserting all the update graph, inserting a subgraph

of the update graph, deleting all the update graph, or deleting a subgraph of the update

graph. The production of Gent(C′) is summed up in Figures 5.4 and 5.5 and expanded

upon next.

After an update graph, Gup
B , has been received into C as Gup

copy(B), the Operator loads it

along with the new provenance from the Cache. It also loads graphs GC and Ginf(C) and

the provenance graph Pent(C) from Fuseki into the Cache. It then directs the Provenance

Handler to produce the graph P up
copy(B) and the �rst iteration of Pent(C′), as described in

Section 4.3.1.

Chapter 5 Design and Implementation 85

Figure 5.4: Production of Gent(C′) (All the Update Graph is Used).

Figure 5.5: Production of Gent(C′) (A Subgraph of the Update Graph is Used).

86 Chapter 5 Design and Implementation

Next, the Operator checks the provenance graph Pent(C), on Fuseki, to see which set

theoretic operation was used to create GC and based on this it determines which update

propagation to apply, as detailed in Section 4.2.2 and shown in Steps (1) in Table 4.1.

The Operator also checks whether all the update Gup
copy(B) is to be used or invokes Jena

to compute the subgraph of Gup
copy(B), G

up
sub(copy(B)), to be applied. If G

up
sub(copy(B)) is to be

computed, then the Operator either requests a new copy of graph GA
1 from system A,

or, as in our current implementation, loads Gcopy(A) from Fuseki. The aforementioned is

shown in Algorithm 1. Although not required in our implementation, the algorithm can

contain an optional extra step at the beginning to check whether any of the triples are

inferred by comparing them against Ginf(C) and removing them. Algorithm 1 has O(1)

complexity, although the complexity of the SELECT queries depend on the implemen-

tation of SPARQL.

If the update is an insert, the Operator creates a SPARQL Insert statement and sends

it to Fuseki to add those triples to GC . As previously mentioned, those triples may

either be all those in the update Gup
copy(B), or some of them thus comprising Gup

sub(copy(B)).

The result of adding those triples is the graph GC′ . The Operator then requests the

graphs resulting from the SPARQL Describe of those triples from Fuseki, and forwards

their union to Jena for reasoning. Jena then returns the entailed triples resulting from

reasoning on this union, the Operator creates another SPARQL Insert statement that

adds those inferred triples into Ginf(C), thus evolving it into Ginf(C′). This completes the

steps needed to produce Gent(C′ . Finally, the Operator directs the Provenance Handler

to produce the graph Pent(C′), as detailed in Section 4.3.2. This completes the steps

needed to produce Gent(C′). The aforementioned is shown in Algorithm 2. Algorithm

2 has O(n) complexity - where n is the number of triples to be inserted, although the

complexity of the DESCRIBE query depends on the implementation of SPARQL and

the complexity of the entailment depends on the implementation of the reasoner.

If the update is a delete, then the Operator �rst gets, from Fuseki, the graphs resulting

from the SPARQL Describe of the triples to be deleted. As previously mentioned, those

triples may either be all those in the update Gup
copy(B), or some of them comprising

Gup
sub(copy(B)). The Operator then loops over each triple to be deleted and examines

its predicate. If the predicate is an rdf:type or has super-properties (i.e. it is a sub-

property of another property), then it adds, to the list of inferred triples to be deleted,

the triples with the same subject and any objects that relate it to the predicate. This is

in accordance to the RDFS entailment rules described in Section 2.1.3.2.2 in Table 2.1.

Next, the Operator sends two SPARQL Delete statements to Fuseki, the �rst to delete

the ground triples from GC , thus resulting in it becoming GC′ , and the second to delete

the inferred triples from Ginf(C), thus evolving it into in Ginf(C′). This completes the

steps needed to produce Gent(C′).

1The graph and provenance retrieval will be identical to the �rst time GA had been retrieved.

Chapter 5 Design and Implementation 87

Algorithm 1 Generate What Is To Be Applied As Update

Function: getGraph : URL → graph
Function: getStOpFromProv : graph → String
Function: getSubtrahend : graph → String

1: procedure generateUpdate(provGraph, SPARQLupType, updateGraph)
. Start by assuming the use of all the update graph

2: graphB.updateGraph← updateGraph
. Get the set theoretic operation

3: qStOpType← getStOpFromProv(provGraph)

.

Where getStOpFromProv queries provGraph using:
SELECT ?stOpType FROM <provGraph> WHERE {

?stOp rdf:type ?stOpType .
Gent(C).Name rgprov:wasEntailedFrom ?g .
?g prov:wasGeneratedBy ?stOp . }

4: if qStOpType = “Union” and SPARQLupType = “Delete” then
5: graphAcopy ← getGraph(GA)
6: graphB.updateGraph← updateGraph \ graphAcopy
7: else if qStOpType = “Intersection” and SPARQLupType = “Insert” then
8: graphAcopy ← getGraph(GA)
9: graphB.updateGraph← updateGraph ∩ graphAcopy
10: else if qStOpType = “Difference” then

. Get the subtrahend
11: subtrahend← getSubtrahend(provGraph)

.

Where getSubtrahend queries provGraph using:
SELECT FROM <provGraph> ?s WHERE {

?stOp rdf:type rgprov:Di�erence .
?g prov:wasGeneratedBy ?stOp .
Gent(C).Name rgprov:wasEntailedFrom ?g .
?stOp rgprov:hadSubtrahend ?s . }

12: if subtrahend = Gcopy(B).Name then . This is Case Di�erence 1
13: if SPARQLupType = “Insert” then
14: SPARQLupType← “Delete”
15: else

16: SPARQLupType← “Insert”
17: graphAcopy ← getGraph(GA)
18: graphB.updateGraph← updateGraph ∩ graphAcopy
19: else . This is Case Di�erence 2
20: if SPARQLupType = “Insert” then
21: graphAcopy ← getGraph(GA)
22: graphB.updateGraph← updateGraph \ graphAcopy

It is also possible to apply a delete followed by an insert. In this case, after the triples

to be deleted have been removed from GC and Ginf(C), the Operator adds the triples

to be inserted to GC . Afterwards, the Operator requests the SPARQL Describe of all

the subjects and predicates that were in the triples to be updated and sends the union

of the resulting graphs to Jena for reasoning. When Jena returns the entailed triples

resulting from reasoning on the union, the Operator sends a SPARQL Insert statement

88 Chapter 5 Design and Implementation

Algorithm 2 Apply Insert Update

Function: describe : graph x triple → graph
Function: entail : graph → graph

1: procedure applyInsertUpdate(baseGraph, infGraph, triplesTBI)
2: described← φ

. Step 1: Insert all triplesTBI into the base graph:
3: baseGraph← baseGraph ∪ triplesTBI

. Step 2: Loop over all triplesTBI and get their Describe:
4: for each triple in triplesTBI do
5: described← described ∪ describe(baseGraph ∪ infGraph, triple)

. Step 3: Re-entail using described only:
6: newlyEntailed← entail(described)

. Step 4: Insert the inferred triples into the graph:
7: infGraph← infGraph ∪ newlyEntailed

containing the inferred triples to Fuseki which adds them to Ginf(C), thus evolving it into

in Ginf(C′). This completes the steps needed to produce Gent(C′). The aforementioned

is shown in Algorithm 3. Algorithm 3 has O(n3) complexity - where n is the number

of triples returned by the DESCRIBE query of the triples to be deleted, although the

complexity of the DESCRIBE queries depend on the implementation of the SPARQL

and the complexity of the entailment depends on the implementation of the reasoner.

Finally, the Operator directs the Provenance Handler to produce the graph Pent(C′), as

detailed in 4.3.2.

As with the initial creation of graph Gent(C), the last step is to upload the provenance

graphs P up
copy(B) and Pent(C′) to Fuseki and then to empty the Cache. Two additional

steps need to be undertaken when an update happens. The �rst step is to be taken only

if copies of the source graphs are kept in the system and that is to either apply UpB
to Gcopy(B), resulting in Gcopy(B′) which re�ects GB′ , or to upload the update graph -

whether Gup
copy(B) or G

up
sub(copy(B)) on its own - and save it with the other copies of source

graphs. The second step is for the Operator to send the list of added or deleted triples

to the Update Producer. Finally, since there is now a new graph Gent(C′) with its new

provenance graph Pent(C′), the graphs that form Gent(C), namely GC and Ginf(C) as well

as the old provenance Pent(C) may either be deleted or kept for historical bookkeeping

purposes. For now, we have chosen to keep the old copies. However, a deeper look needs

to be taken into how and why older copies may be kept, and we leave this to our future

work.

5.2.2 Provenance Handler

This component is responsible for producing and updating provenance graphs. It is

invoked by the Operator to perform these tasks at certain steps of producing Gent(C)

Chapter 5 Design and Implementation 89

Algorithm 3 Delete and Re-entail

Function: describe : graph x triple → graph
Function: describe : graph x iri → graph
Function: entail : graph → graph

1: procedure DeleteReEntail(baseGraph, infGraph, triplesTBD, triplesTBI)
2: described← φ, describedTBI ← φ, describedTBD ← φ

. Step 1: Loop over the triples to be deleted and get their describe.
3: for each triple in triplesTBD do

4: described← described ∪ describe(baseGraph ∪ infGraph, tripleTBD)

. Step 2: Loop over the triples to be deleted again.
5: for each triple in triplesTBD do

. Step 2.1: Get the triples that share this triple's subject.
6: subject = triple.Subj
7: t← {t ∈ described|t.Subj = subject}

. Step 2.2: Now loop over these triples to check their predicates.
8: for each tripleWithSameSubject in t do

. Step 2.3: Check the triple's property.
9: if tripleWithSameSubject.Prop = rdf : type then

. Step 2.3.1: Get all the super classes.
10: superClasses← {tsOAsS.Obj|tsOAsS ∈ described

∧tsOAsS.Subj = tripleWithSameSubject.Obj
∧tsOAsS.Prop = rdfs : subClassOf}

. Step 2.3.1.1: Loop again to mark inferred triples to be deleted.
11: for each superClass in superClasses do

. Step 2.3.1.2: Add to the inferred triples to be deleted:
12: infTriplesTBS ← infTriplesTBS ∪

〈subject, rdf : type, superClass〉
13: else

. Step 2.3.2: Get the super-properties of this property
14: superProps← {tp.Obj|tp ∈ described

∧tp.Subj = tripleWithSameSubject.Prop
∧tp.Prop = rdfs : subPropertyOf}

15: for each superProp in superProps do
16: infTriplesTBS ← infTriplesTBS ∪ 〈subject,

∧superProp, tripleWithSameSubject.Obj〉
. Step 3: Delete from graph all the chosen triples

. and add the triples to be inserted.
17: baseGraph← (baseGraph \ triplesTBD) ∪ triplesTBI
18: infGraph← infGraph \ infTriplesTBS

. Step 4: Re-derive and insert inferred triples.
19: for each triple in triplesTBI do
20: describedTBI ← describedTBI ∪ describe(baseGraph ∪ infGraph, triple)
21: subjsAndObjs← {iri|iri ∈ triplesTBD.Subjects ∪ triplesTBD.Objects}
22: for each iri in subjsAndObjs do
23: describedTBD ← describedTBD ∪ describe(baseGraph ∪ infGraph, iri)
24: infGraph← infGraph ∪ entail(describedTBI ∪ describedTBD)

90 Chapter 5 Design and Implementation

and updating it to Gent(C′).

In the initial step of creating Gent(C), as shown in Section 4.1, copies of graphs GA and

GB and their provenance graphs are retrieved, then, this component creates the updated

provenance graphs Pcopy(A) and Pcopy(B) and also creates Pent(C). While we have not

implemented it to do so and despite that it doing so counteracts our approach to avoid

keeping provenance at the triple level, this component may also keep a list of sources

marking them as either credible or untrustworthy, and may use it to check the provenance

of the source graphs to decide whether or not to discard any triples that may have been

imported from unreliable sources. Then at each step of the creation of graph Gent(C),

this component updates Pent(C).

When an update reaches C, as shown in Section 4.3, this component creates P up
copy(B)

and Pent(C′). Again, it may check the provenance of the update and decide whether or

not to discard any triples that may have been imported from unreliable sources. Thus, it

may reject the change Gup
copy(B), accept part of it, or accept it all. Then, at each step of

updating Gent(C) to become Gent(C′), this component is responsible for updating Pent(C′).

5.2.3 Update Producer

This component is responsible for making available the list of triples that have been

added or deleted from GC after every update. As we have previously mentioned, systems

publish graphs with only the base triples. Thus, the list either contains Gup
copy(B) or its

subgraph Gup
sub(copy(B)). The Update Producer receives this list from the Operator, and

uploads it to Fuseki. It may then perform its job in two ways, as discussed in Section

4.2.1. The �rst way is by forwarding the list of triples to the REST client to make it

available for access to any system which requires it. The second way is by maintaining

a list of systems that use graphs produced by C.

5.2.4 Cache

This component is the straightforward temporary storage. It contains copies of source

and provenance graphs retrieved from other systems as well as intermediate graphs pro-

duced internally. We have elected to empty the cache after the creation or updates of

graphs because whilst storing those graphs may be helpful, the storage overhead may get

very high very quickly. Additionally, those intermediate graphs do not serve any purpose

and the data they contain can be easily accessed from the graphs saved on Fuseki.

Chapter 5 Design and Implementation 91

5.3 Third Party Components

In this section we present the two third-party components which we have used in our

system, the Jena Reasoner and the Jena Fuseki SPARQL Server and Graph Store.

5.3.1 Reasoner

The Jena Reasoner is the component we use in our system to perform set theoretic

operations on graphs as well as to perform reasoning2 on them. The version we have in

our system is 3.1.13. It is invoked by the Operator. Unfortunately, Jena does not tell

us how many triples it processed when performing the set theoretic operation nor how

many times each triple was processed. However, after reasoning, Jena can be used to

split the entailed graph into two graphs, the �rst containing the original triples and the

second containing the inferred triples. In our con�guration, Jena cannot perform any

SPARQL operations on the RDF graphs other than select, so the Insert, Delete, and

Describe statements that need to be performed are done by Fuseki.

5.3.2 SPARQL Server and Graph Store

As previously mentioned, we use the third party Apache Jena Fuseki SPARQL server

and graph store. The version in our system is Fuseki24.

In its capacity as a graph store, Fuseki allows the storage of named or unnamed graphs

in various datasets. Both RDF and provenance graphs are stored on Fuseki. We have

created one dataset which contains copies of the original graphs, namely Gcopy(A) and

Gcopy(B) and their provenance graphs Pcopy(A) and Pcopy(B). We have also created another

dataset which contains the graph Gent(C), split into GC and Ginf(C), and its provenance

Pent(C). A third and last dataset has been created to store previous copies of any graphs

that have been updated.

In its capacity as a SPARQL server, Fuseki executes SPARL queries communicated to

it by the Operator. This is straightforward and done as per the W3C SPARQL 1.1

Speci�cations. The implementation of SPARQL Describe in Fuseki allows it to be run

on a dataset. In this case, and because both GC and Ginf(C) are stored in the same

dataset, the Describe statement of any triple would return a graph describing all the

triples related to it, whether they are in the �rst graph or the second.

2At the time of the implementation and subsequent writing of this report, Jena had not yet supported
OWL 2 inference.

3All Jena binary distributions are available on http://archive.apache.org/dist/jena/binaries/
4Fuseki2 is available on https://jena.apache.org/documentation/fuseki2/

http://archive.apache.org/dist/jena/binaries/
https://jena.apache.org/documentation/fuseki2/

92 Chapter 5 Design and Implementation

5.4 Summary

In this chapter, we presented the system which we have implemented that makes use of

the RGPROV vocabulary by �rst illustrating the system's design then describing each

component. We also presented algorithms, used by the system, that detail the means

to select whether the whole update or a part of it, applied to a source graph, needs to

be propagated to an entailed graph derived from that source graph. We also showed

how partial re-derivation can be applied to the entailed graph. In the next chapter we

describe the evaluation framework we designed and implemented to test our system and

present our results.

Chapter 6

Evaluation Framework

Benchmarks have been developed by the Semantic Web community to provide default

and standard references by which systems can be measured, with the W3C maintaining

a list1 of those benchmarks for the past decade. Existing works focus on di�erent factors

and performance metrics when presenting their benchmarks, for example, some focus

on reasoning capabilities and scalability, while others focus on e�ciency of querying

and storage. Additionally, almost all benchmarks arti�cially generate synthetic data;

the exceptions being those that use the DBpedia dataset. The former argue that their

requirements are not met by real data sources, while the latter argue that synthetically-

generated data are not representative of the real world and so their datasets are real

world data taken from actual sources.

In order to test our approach of update propagation, we require a dataset with two

features. The �rst is that it can vary in size. The second is that it would be dynamic,

with both the original data and the changes applied to them to be available. Since

there are no real data sources that we are aware of which satisfy both our requirements,

we chose the synthetically generated data produced by Meimaris and Papastefanatos

(2016)'s EvoGen; especially because EvoGen is based on the widely used LUBM (Guo

et al., 2005).

However, the description of EvoGen in (Meimaris and Papastefanatos, 2016) is mislead-

ing; while the published paper claims that the implementation2 handles deletions, this is

incorrect and has been con�rmed as such in (Meimaris, 2018). Speci�cally, new versions

of the generated datasets contain only insertions; with deletions not being part of the

changes that graphs undergo. Moreover, its generated datasets consist of the initial ver-

sion of each department within a university and the subsequent insertions. So, it does

not produce fully updated graphs.

1The RDF Store Benchmarking list maintained by the W3C is available on https://www.w3.org/

wiki/RdfStoreBenchmarking.
2https://github.com/mmeimaris/EvoGen

93

https://www.w3.org/wiki/RdfStoreBenchmarking
https://www.w3.org/wiki/RdfStoreBenchmarking
https://github.com/mmeimaris/EvoGen

94 Chapter 6 Evaluation Framework

Therefore, in this chapter we describe the evaluation framework that we created by

extending EvoGen to address some of its shortcoming, most importantly by applying

deletions. At this stage, however, we do not apply strict deletions; we extend EvoGen

from only performing insertions to performing insertions followed by having it delete the

previously-inserted triples. Additionally, we incorporate UOBM's ontology, as described

in (Ma et al., 2006), so that the generated graphs contain e�ective instance links. Finally,

we make use of Moreau et al. (2018)'s PROV-TEMPLATE to produce provenance graphs

complying with RGPROV so as to make the evaluation framework provenance-aware.

While we leave the evaluation for Chapter 7, we note that there is a need for a provenance-

aware Semantic Web benchmark which generates both RDF graphs and provenance

graphs, to be used in evaluating systems that require the presence of both the data and

their provenance.

This chapter consists of three parts. In Section 6.1, we present the goals of our evaluation

benchmark. Next, in Section 6.2, we describe the framework by relating its design and

implementation. Finally, in Section 6.3, we summarise this chapter.

6.1 The Evaluation Framework's Goals

In order to test our approach of update propagation, we require a dataset with the

following two features. The �rst is that it can vary in size. The second is that it

would be dynamic, with both the original data and the changes applied to them to

be available. Since there are no real data sources that we are aware of which satisfy

both those requirements, we chose to extend EvoGen by addressing its shortcomings and

augmenting it to produce instance links similar to those of UOBM's, as well as enriching

it with provenance.

Thus, the evaluation framework we present is based on EvoGen, which in turn is based on

LUBM. It also incorporates UOBM's ontology and uses PROV-TEMPLATE to become

provenance-aware. Figure 6.1 shows these relationships. This combination allows the

framework to explicitly satisfy the following goals:

1. The sizes of the generated data to be of a range: Because we want to test our

approach on datasets of di�erent sizes, we want the sizes of the generated data to

be of a range, including that which could be very large.

2. Ontology of moderate size and complexity: Because our focus is on the data and

how our algorithms perform, we made use of an ontology that did not need to be

too large.

3. E�ective instance links: Because the graphs generated using the operations are

shaped depending on existent links between the generated graphs, we require the

Chapter 6 Evaluation Framework 95

Figure 6.1: The Relationships Among our Evaluation Framework, the Bench-
marks, and PROV-TEMPLATE.

generated graphs to contain connected instances, as opposed to LUBM's smaller

isolated graphs.

4. The presence of provenance graphs: This stems from our observation that none

of the available benchmarks are provenance-aware. While we do not strictly need

any of our source graphs to have provenance graphs describing them, because our

update propagation approach relies only the provenance graphs created within our

system, we have chosen to make our evaluation framework provenance-aware so

that it is well-rounded.

6.2 Framework Design and Implementation

LUBM, UOBM, EvoGen, and subsequently our evaluation framework, produce graphs

containing synthetic information about universities. Each university is made up of a

number of departments, along with instances describing people, courses, and publications

as well as relations between those instances. The high-level architecture of our framework

is shown in Figure 6.2, and its components are described next.

6.2.1 Data Generator

LUBM's Univ-Bench Arti�cial data generator - UBA - generates a dataset containing uni-

versities split into departments along with entities describing university faculty members,

students, and research publications as per the LUBM ontology schema3. The number

3http://swat.cse.lehigh.edu/onto/univ-bench.owl

http://swat.cse.lehigh.edu/onto/univ-bench.owl

96 Chapter 6 Evaluation Framework

Figure 6.2: Architecture of Evolution Framework, with the Shaded Parts Indi-
cating the Implemented Components.

of generated instances is chosen randomly from a pre-de�ned range of minimums and

maximums according to their type. Instances are linked to each other either directly,

for example, an associate professor works for a certain department and is the advisor of

certain students, or indirectly, for example, an associate professor gives a course which

in turn is taken by certain students. Generated instances also conform to hard-coded

ranges, for example, any generated department would contain a minimum of 10 and a

maximum of 14 associate professors and each of the associate professors has a minimum

of 10 and 18 publications. EvoGen's data generator - EvoGenerator - replicates UBA's

exact recipe, but also creates instances types for their 10 new classes linked with their

19 new properties. These new classes and properties are subclasses and subproperties of

LUBM's classes and classes, and like LUBM, these new classes and properties are also

hard-coded. The default con�gurations of both LUBM and EvoGen are shown in Table

6.1.

Our Data Generator carries out the generation of the randomised data. As a design

decision we kept EvoGen's new classes and properties and produce data according to

them. We have also added some of UOBM's classes and properties that create the links

between universities. The design of the Data Generator is fundamentally the same as

the benchmarks' generators; the most substantial di�erence is its implementation. First,

while both UBA and EvoGenerator produce their data by creating a graph for each

department in each university, our Data Generator, like that of UOBM's generator -

Instance Generator - creates one graph for each university containing all its departments

and respective instances. More importantly, all three benchmark generators save the

Chapter 6 Evaluation Framework 97

LUBM EvoGen

Departments per university 15 ≤ r ≤ 25

Per Department

Full professor 7 ≤ r ≤ 10
Associate professor 10 ≤ r ≤ 14
Assistant professor 8 ≤ r ≤ 11
Lecturer 5 ≤ r ≤ 7
Visiting professor N/A 7 ≤ r ≤ 10
(Undergraduate) Course r ≤ 100
Graduate course r ≤ 100
Web course N/A 100
Chair 1
Research r ≤ 30
Research group 10 ≤ r ≤ 20
Research project N/A 10 ≤ r ≤ 30
Event N/A 15 ≤ r ≤ 45

Ratios

Undergrad students to faculty 8 ≤ r ≤ 14
Undergrad students to visiting faculty 2 ≤ r ≤ 3
Graduate students to faculty 3 ≤ r ≤ 4
Graduate students to TA 4 ≤ r ≤ 5
Graduate students to RA 3 ≤ r ≤ 4
Undergrad students to advisor r ≤ 5
Undergrad students to visiting advisor r ≤ 2
Graduate students to advisor r ≤ 1

Publication Allocation

Full professor 15 ≤ r ≤ 20
Associate professor 10 ≤ r ≤ 18
Assistant professor 5 ≤ r ≤ 10
Lecturer 0 ≤ r ≤ 5
Graduate student 0 ≤ r ≤ 5

Course Allocation

Course per faculty 1 ≤ r ≤ 2
Graduate course per faculty 1 ≤ r ≤ 2
Course per undergrad student 2 ≤ r ≤ 4
Course per graduate student 1 ≤ r ≤ 3
Course per visiting student N/A 2 ≤ r ≤ 4

Table 6.1: LUBM's and EvoGen's Default Restrictions for Data Generation

generated instances directly to �le. Contrarily, we make use of Jena4 and its libraries to

create a graph object for each university before it is saved to �le. This facilitates the

process of deleting resources and related triples later.

Similarly to the three benchmarks, the user provides as input to our system the number

of universities to be generated. Also, similarly to EvoGen, the user inputs a parameter

4All Jena binary distributions are available on http://archive.apache.org/dist/jena/binaries/

http://archive.apache.org/dist/jena/binaries/

98 Chapter 6 Evaluation Framework

indicating the number of versions that each university will have. Our Data Genera-

tor creates most of the triples using the same recipe as UBA, Instance Generator, and

EvoGenerator, however, we have opted to make the following minor changes:

1. Instances describing people:

(a) The URI of a person: In the three benchmarks, the URI of the person,

whether faculty or student is generated containing the department she was

created in. So, an example person URI is

http://www.Department1.University0.edu/AssociateProfessor7. Con-

trarily, we have chosen to generate a person's URI independently of her uni-

versity and department, similar to an ORCiD5. So, and example person URI

is http://example.org/Person000000000000000007.

(b) The telephone number of a person: In the three benchmarks, the telephone

number of all generated person instances always has the String value �xxx-

xxx-xxxx�. Contrarily, we have chosen to generate a unique telephone number

for each person in the form of a sequence of digits.

(c) The email address of a person: In the three benchmarks, the email address

of a person is generated containing the department she was created in. So,

an example email address is

AssociateProfessor7@Department1.University0.edu. Contrarily, we have

chosen to generate a person's email address independently of her department,

because not all departments within universities provide their faculty and stu-

dents with email address, while all universities provide email addresses for

them.

2. Instances describing courses:

(a) The name of a course: In LUBM and EvoGen, while the URI of a course is

generated containing its university and department, its name doesn't. For

example, Course42, o�ered by department 11 at university 3 and Course42

o�ered by department 12 at university 3 both share the name �Course42�.

Contrarily, we have chosen to include the course's department in its generated

name. This re�ects more real world scenarios where COMP200, which is

o�ered by the Computer Science department, is di�erent than CHEM200,

which is o�ered by the Chemistry department. Course names are still shared

across universities.

(b) The topic of a web course: In EvoGen, all web courses regardless of which

department in which university they are o�ered, have as their topic a String

5https://orcid.org/

https://orcid.org/

Chapter 6 Evaluation Framework 99

comprising the word �topic� and a random number between 1 and 150 ap-

pended to it. Contrarily, and in the same vein as our change to a course's

name, we have chosen to include the course's department in its generated

name.

(c) The URL of a web course: In EvoGen, all web courses regardless of which

department in which university they are o�ered, have as their WWW URL a

String comprising �http://example.com/webcourse/� and a random number

between 1 and 150 appended to it. Contrarily, and in the same vein as our

change to a course's name and a web course's topic, we have chosen to include

the course's university and department and the course's name in its generated

URL.

3. Instances describing publications:

(a) The URI of a publication: In LUBM and EvoGen, the URI of a publications is

generated containing the URI of its �rst author. So, an example publication

URI is http://www.Department1.University0.edu/AssociateProfesso-

r7/Publication3. Contrarily, we have chosen to generate a publication's

URI independently of its �rst author, whilst still containing its department's

URI. So, an example publication URI is

http://www.Department1.University0.edu/Publication0001000000802.

This is similar to UOBM's generation of publications.

(b) The name of a publication: In LUBM and EvoGen, while the URI of a

publication is generated containing its university and department, its name

doesn't. For example, Publication42 published by AssociateProfessor7 in

department 11 at university 3 and Publication42 published by FullProfessor12

in department 12 at university 3 both share the name. Contrarily, we have

chosen to generate a unique name for each publication.

(c) The ISBN of a publication: In EvoGen, the ISBN of a publication is generated

using Java's System.nanotime method. While this ensures uniqueness, we

have opted to use the generated unique 13 digit number used for its name.

(d) The date of a publication: In EvoGen, the date of a publication is generated

by getting a random number between 1 and 28 for days, a random number

between 1 and 12 for months, and a random number between 2000 and 2016

for years. We have chosen to generate a random date after 2007 so it conforms

better to the ISBN.

100 Chapter 6 Evaluation Framework

6.2.2 Change Producer

EvoGen's Change Creation component is responsible for computing the number of new

instances to be created or deleted for each class type. The Change Producer component

in our evaluation framework is an exact re-implementation of EvoGen's Change Creation

component with one di�erence. Our Change Producer does not implement its Change

Materialisation and Change Creation modules. These two modules are responsible for

creating the log �les according to the Characteristic Set encoded as per the Change

Ontology described in (Meimaris et al., 2014). Since we are not utilising the Change Set

or the Change ontology, we have forgone implementing these modules. The remaining

two modules in the Change Producer in our evaluation framework have been implemented

to re�ect EvoGen's Change Creation component without change. This is because our

aim was not to change the basis of EvoGen's proposed approach; rather, our aim was to

extend EvoGen to do deletions as well as to make it provenance-aware.

We �rst list the notations and parameters used before describing the modules of the

Change Producer.

6.2.2.1 Notations and Parameters

In order to facilitate the description of the Change Producer, we start of by de�ning the

notations used throughout the description.

• D: a dataset.

• Di: the ith version of the dataset D.

• |Di|: the size of Di which is the number of triples in it.

• h: the shift, de�ned as the percentage of change in size between any two versions

of D, measured using the di�erence of number of triples.

• h(D)|ji : the shift between versions Di and Dj . It is de�ned as h(D)|ji =
|Dj |−|Di|
|Di| ,

where j > i.

The change in EvoGen, and subsequently our evaluation framework, is tunable using the

following parameters set by the user:

1. The number of total versions for each university: The user can also decide on

producing one version per university.

2. The shift, h: As previously mentioned, this is �the percentage of change in size

(measured as triples) between� any two versions of D. A positive shift indicates an

increase in size between the two version, while a negative shift indicates a decrease

Chapter 6 Evaluation Framework 101

in size between them. The greater the shift, the greater the di�erence in sizes

between versions. When the user provides it as an input, this shift is used to

calculate the di�erence between the size of one version of the dataset and the next

by spreading it over the number of total versions. We have chosen to rely on this

concept despite its current limitation of evenly distributing the change across all

versions.

3. Parameters de�ned by EvoGen's authors but ignored in its implementation:

(a) The monotonicity : This indicates whether a change incorporates either both

insertions and deletions or one of insertions and deletions. While the authors

have de�ned this, they were clear that this parameter is ignored as they do

not incorporate both types of updates in their system. We incorporate it as

we have extended EvoGen to perform deletions after insertions.

(b) The option to save either all fully materialised versions or the initial version

along with the series of changes: This has not been implemented by the

authors; only the inserted triples are saved. Contrarily, we have elected to

always produce all the fully materialised versions as well as the series of

changes. So, we produce an RDF graph for every version of the university,

along with all the changes applied to the previous version to produce it.

(c) The schema variation: We do not incorporate this parameter because it

relates to characteristic sets, which we have not implemented.

6.2.2.2 Weight Assignment and Shift Management

As previously mentioned, EvoGen's Change Creation module is responsible for going

through each instance type per ontology class within each university and calculating the

probability of its change to dictate the number of instances to be created or deleted.

This is referred to as its weight, and is handled by the Weight Assignment and Shift

Management modules. It is based on some parameters set by the user as well as some

internal hard-coded con�gurations. We note the following:

1. The change in the size of the dataset between two consecutive versions Di and

Di+1, change(Di, Di+1), is calculated by EvoGen as follows:

(a) Between the �rst version of the dataset, D0, and its second version, D1:

change(D0, D1) is set to the value of the shift as input by the user.

(b) After the �rst version is created, the change is calculated as:

change(Di, Di+1) = change(Di−1, Di)+[(total versions)×(change(D0, D1))
2]

102 Chapter 6 Evaluation Framework

Instance Type Weight

Department bNo of existing instances × change(Di, Di+1)c × 0.2
Faculty bNo of existing instances × change(Di, Di+1)c
Full professor bNo of existing instances × change(Di, Di+1)c × 16
Associate professor bNo of existing instances × change(Di, Di+1)c × 22
Assistant professor bNo of existing instances × change(Di, Di+1)c × 18
Lecturer bNo of existing instances × change(Di, Di+1)c × 11
Visiting professor bNo of existing instances × change(Di, Di+1)c × 18
Undergraduate student bNo of existing instances × change(Di, Di+1)c × 35
Graduate student bNo of existing instances × change(Di, Di+1)c × 24
Visiting student bNo of existing instances × change(Di, Di+1)c × 14
Undergraduate course bNo of existing instances × change(Di, Di+1)c
Graduate course bNo of existing instances × change(Di, Di+1)c
Web course bNo of existing instances × change(Di, Di+1)c
Research group bNo of existing instances × change(Di, Di+1)c × 28
Project bNo of existing instances × change(Di, Di+1)c × 14
Publication bNo of existing instances × change(Di, Di+1)c × 61

Table 6.2: EvoGen's Assignment of Change Probability

2. The probability of change to be applied to each instance type when generating

each new version - after the initial version has been produced - is its weight. It is

calculated as per Table 6.2. There is no clear explanation as to why those speci�c

numbers were chosen.

As it is part of the Change Producer module, and much like the rest of that module, we

have opted not to change anything in those modules so we use them as-is, because our

aim was not to change the basis of EvoGen's proposed approach; rather, our aim was

to extend EvoGen to do the deletions as well as to make it provenance-aware. We have

done so by re-implementing it whilst maintaining some continuity.

6.2.3 Version Manager

Similar to the Change Producer component, the Version Manager in our evaluation

framework is an exact re-implementation of EvoGen's Version Management component

with two di�erences. The �rst is, in addition to generating the changes applied to evolve

the graphs, it generates all the fully materialised versions of the universities as well. The

second is that, in case deletions are needed along with insertions, it deletes the triples

inserted to the previous version. This is temporary and to realise its full potential, the

evaluation framework needs to be extended to delete randomly-chosen data according

to their weights. We propose this in our Future Work in Section 8.2.3. The Version

Manager would then not be responsible for deleting the previously inserted triples.

Chapter 6 Evaluation Framework 103

6.2.4 Provenance

Despite the adoption of provenance becoming more widespread and the emergence of

provenance-aware systems becoming more prevalent, to the best of our knowledge, there

is still no provenance-aware Semantic Web benchmark which generates both RDF graphs

and provenance graphs to be used in evaluating systems that require the presence of both

the data and their provenance. Our solution to addressing this shortcoming is to make

use of PROV-TEMPLATE (Moreau et al., 2018), as a stand-alone component appended

to our evaluation framework to produce provenance graphs.

PROV-TEMPLATE was developed to remove the responsibility of the generation of

provenance graphs from systems' other components which performs the systems' func-

tions. Thus, using PROV-TEMPLATE allows the components of a system to be free

from any code used solely to generate PROV triples. Instead, a system generates a dif-

ferent sort of data, a set of bindings to be provided to PROV-TEMPLATE to use when

generating provenance graphs. To produce provenance graphs which are compliant with

PROV, PROV-TEMPLATE is provided with a document, or a template, which contains

placeholders, or variables. It is also provided with the aforementioned set of bindings

produced by the system. Then, when invoked, PROV-TEMPLATE declaratively binds

the template's variables by replacing them with real values.

While the optimal way to make use of PROV-TEMPLATE is to produce the bindings

using a system's code, at this current stage, we make use of our pre-prepared templates

and binding documents and feed them to PROV-TEMPLATE to generate the provenance

graphs.

6.3 Summary

In this chapter, we presented the evaluation framework which we have implemented to

generate synthetic data based on LUBM, UOBM, and EvoGen and which makes use of

PROV-TEMPLATE to generate provenance graphs. We �rst presented our goals for the

evaluation framework. Then we illustrated the evaluation framework's design. Finally,

we described each component focusing on how it di�ers from the three benchmarks it is

based on. The evaluation framework �lls the gap of synthetic evolving data generation

accompanied with provenance graphs.

In the next chapter we test our approach of update propagation using data generated by

the evaluation framework and present and discuss the results.

Chapter 7

Evaluation and Discussion

In this chapter, we turn our attention to evaluating our update propagation approach

implemented in the system described in Chapter 5 by using the data produced using the

evaluation framework described in the previous chapter. We do so as follows. First, we

describe the evaluation criteria we will be using to assess our system. We also list and

describe the dimensions we view as needed for a thorough evaluation. While we do not

use all those dimensions, due to space and time restrictions, we argue that their usage

enable a full evaluation of approaches similar to ours. Next, we describe the datasets

generated using the evaluation framework described in the previous chapter and that we

used to test our approach. Finally, we present our results and discuss them.

This chapter consists of four parts. In Section 7.1, we describe our evaluation criteria

and list and describe the dimensions for evaluating update approaches. In Section 7.2,

we describe the datasets used to evaluate our approach. In Section 7.3, we present and

discuss the results. Finally, in Section 7.4, we summarise this chapter.

7.1 Evaluation Criteria and Dimensions

In this section, we present the evaluation criteria we will be using to assess our system.

We also list and describe the dimensions we view as needed for a thorough evaluation.

While we do not use all those dimensions, due to space and time restrictions, we argue

that their usage enable a full evaluation of approaches similar to ours.

7.1.1 Evaluation Criteria

The evaluation criteria we chose aim to address our second research question, `How can

the recorded provenance of a derived RDF graph facilitate scalable partial re-derivation

by generating less overhead in update communication and re-entailment?'. There are

105

106 Chapter 7 Evaluation and Discussion

three criteria as follows. The �rst criterion is concerned with communication overhead.

It studies where our approach saves on the number of triples to be communicated to our

system from the systems managing the source graphs. The second criterion presents a

trade-o� with the �rst criterion. It studies where our approach saves on the number of

triples, which are copies of those of the source graphs', to be stored in our system. Finally,

the third criterion is concerned with re-derivation. It studies where our approach saves

on the number of triples involved in the set theoretic operations and in re-entailment.

The criteria are summarised in the list below:

1. EC1 - Communication: retrieving the update is less overhead than retrieving both

source graphs.

2. EC2 - Storage: the possibility of avoiding storing source graphs.

3. EC3 - Execution: propagating the update results in less triples processed during:

(a) EC3a - The set theoretic operation.

(b) EC3b - Re-derivation: this is related to the number of triples sent to the

reasoner after an update.

7.1.2 Evaluation Dimensions

The dimensions involved in evaluating update approaches similar to ours are as follows:

1. Sizes of the initial graphs: The size of the initial graph plays a role in assessing the

performance of update approaches. A full evaluation would look at how the perfor-

mance varies among small, medium, and large graphs. While the exact mappings

of these sizes to number of triples may vary depending on individual preferences,

we consider a graph to be small if it contains less than 50,000 triples, medium if it

contains less than 250,000 triples, and large if it contains 1 million triples or more.

Others may choose di�erent mappings of sizes to number of triples.

2. Sizes of the update graphs: Similar to the size of the initial graphs, the size of

the update also plays a role in assessing the performance of approaches, and a

full evaluation would look at how the performance varies among small, medium,

and large update graphs. While the exact mappings of these sizes to number of

triples in the update graph may also vary depending on individual preferences, we

consider an update graph to be small if it contains less than a quarter of the number

of triples contained in the initial graph, medium if it contains less than half the

number of triples contained in the initial graph, and large if it contains almost as

much triples in the initial graph or more. Others may chose di�erent mappings of

Chapter 7 Evaluation and Discussion 107

sizes to number of triples. The nine combinations of both initial graph and update

graph sizes also provide a more comprehensive evaluation of the performance of an

update approach.

3. Sizes of the provenance graphs: The size of the provenance graphs plays a role

in assessing the storage requirements of the approaches. A full evaluation would

look at how storage needs vary among the absence of provenance graphs, the size

of a provenance graph containing triples describing the graphs in the dataset, i.e.

graph-based provenance, and the size of a provenance graph containing triples

describing the triples in each graph in the dataset, i.e. triple-based provenance.

While our evaluation framework is provenance aware on the graph-level, we do not

take this dimension into consideration when evaluating our approach.

4. The connections among instances: Similar to the sizes of graphs, the connections

among instances contained in the graphs also plays a role in assessing the perfor-

mance of update approaches, and a full evaluation would look at how the perfor-

mance varies among minimal connections, moderate connections, and high connec-

tions among instances. At the moment, we do not take this dimension into account

due to two reasons. First, the connections are produced according to the scaling of

UOBM, which in addition to being somewhere between minimal and moderate, is

constant. Second, the types of instances contained in updates depend on EvoGen's

assignment of weights. As shown in Table 6.2, the instance types which ends up

being more prevalent in updates is the publications and its subclasses, which do

not contribute to connections among the di�erent graphs.

5. Ontology complexity: Similar to the connections among instances, the complex-

ity of the algorithm also plays a role in assessing the performance of update ap-

proaches, and a full evaluation would look at how the performance varies among

minimal complexity, moderate complexity, and high complexity of the ontology.

At the moment, we do not take this dimension into account because our evalu-

ation framework makes use of EvoGen's ontology, which is moderate in size and

complexity.

6. The type of set theoretic operation: The type of set theoretic operation used to

produce the initial graph in�uences the number of triples to be processed when an

update is propagated. Coupled with how the instances are connected among the

graphs, the operation type also a�ects the number of processed triples. As we are

not taking the degrees of connections between instances into consideration, we are

only concerned with which of the four previously identi�ed set theoretic operations

has been performed.

7. The type of update applied on the graphs: Whether an update is an insert or a

delete also in�uences the number of triples to be processed.

108 Chapter 7 Evaluation and Discussion

We remind the reader that we do not take all the dimensions into consideration when

evaluating our approach, this is because the total number of experiments needed to be

run to evaluate our approach would be 1296∗ and another 1296 to test the naïve graph

re-creation approach and be able to compare the results, totalling 2592 runs. Instead

we perform one test per set theoretic operation per initial graph size with one update

graph size, resulting in 24† runs along with another 24 runs to compare with, totalling

48 tests.

7.2 Experimental Data

For the purpose of testing the system we presented Chapter 5, we have used our evalua-

tion framework to create two universities with the second having triples added to it and

then removed from it. We have combined the generated data about the two universities

with a modi�ed university schema, originating from the LUBM schema3 but containing

only RDF descriptions, i.e. any object or data properties are converted to RDF properties

and OWL restrictions and equivalent class de�nitions have been removed. Additionally,

descriptions of the 10 new classes and 19 new properties introduced in EvoGen have been

added to the ontology, bringing the total to 53 classes and 51 properties.

We grouped the tests into three bundles depending on the sizes of the graphs. Each

group contains the results of inserting then deleting taking place after performing the

four set theoretic operations. Recall that we are deleting the same triples we had inserted

into GC′ .

The small graph GA contains ≈50K triples, while the small graph GB contains ≈40K
triples. There are ≈37K triples to be inserted into GB, resulting in graph GB′ having

≈77K triples. The sizes of the produced graphs GC , Gent(C), GC′ and Gent(C′) are shown

in Tables 7.1. Since the same triples that had been inserted are then deleted, the sizes

of the �nal base graph and �nal entailed graph revert to the original sizes after creation,

i.e. those of GC and Gent(C) respectively.

The medium graph GA contains ≈300K triples, while the medium graph GB contains

≈242K triples. There are ≈223K triples to be inserted into GB, resulting in graph GB′

having ≈465K triples. The sizes of the produced graphs GC , Gent(C), GC′ and Gent(C′)

are shown in Table 7.2. Since the same triples that had been inserted are then deleted,

the sizes of the �nal base graph and �nal entailed graph revert to the original sizes after

creation, i.e. those of GC and Gent(C) respectively.

∗Calculated as Initial GraphSize (3) × UpdateGraphSize (3) × ProvenanceGraphSize (2)
× Connectivity Level (3) × Ontology Complexity (3) × Set theoreticOperation Type (4)
× Update Type (2) = 1296.

†Calculated as Initial GraphSize (3)×UpdateGraphSize (1)× Set theoreticOperation Type (4)×
Update Type (2) = 24.

3http://swat.cse.lehigh.edu/onto/univ-bench.owl

http://swat.cse.lehigh.edu/onto/univ-bench.owl

Chapter 7 Evaluation and Discussion 109

Table 7.1: Size of Small Graphs Initially and After Insert.

Sizes after Creation Sizes After Insert
ST |GC |

∣∣Gent(C)

∣∣ |GC′ |
∣∣Gent(C′)

∣∣
Union ≈87K ≈130K ≈120K ≈180K
Intersection ≈3K ≈4K ≈5K ≈7K
Di�erence 1 ≈48K ≈70K ≈45K ≈66K
Di�erence 2 ≈37K ≈56K ≈73K ≈110K

Table 7.2: Size of Medium Graphs Initially and After Insert.

Sizes after Creation Sizes After Insert
ST \Sizes |GC |

∣∣Gent(C)

∣∣ |GC′ |
∣∣Gent(C′)

∣∣
Union ≈540K ≈800K ≈760K ≈1.2M
Intersection ≈6K ≈8K ≈10K ≈13K
Di�erence 1 ≈300K ≈440K ≈300K ≈440K
Di�erence 2 ≈240K ≈360K ≈460K ≈700K

Table 7.3: Size of Large Graphs Initially and After Insert.

Sizes After Creation Sizes After Insert
ST \Sizes |GC |

∣∣Gent(C)

∣∣ |GC′ |
∣∣Gent(C′)

∣∣
Union ≈2.3M ≈3.5M ≈3.25M ≈5M
Intersection ≈25K ≈33.6K ≈41K ≈55K
Di�erence 1 ≈1.27M ≈1.86M ≈1.27M ≈1.86M
Di�erence 2 ≈1.03M ≈1.5M ≈2M ≈3M

The large graph GA contains ≈1.27M triples, while the large graph GB contains ≈1.03M
triples. There are ≈950K triples to be inserted into GB, resulting in graph GB′ having

≈2M triples. The sizes of the produced graphs GC , Gent(C), GC′ and Gent(C′) are shown

in Table 7.3. Since the same triples that had been inserted are then deleted, the sizes of

the �nal base graph and �nal entailed graph revert to the original sizes after creation,

i.e. those of GC and Gent(C) respectively.

7.3 Results and Discussion

We now present and discuss our results and show that there is indeed less overhead in

applying our approach as detailed below.

7.3.1 Evaluation Criteria 1: Communication

When the update is an Insert, the size of update will always be less than the size of the

whole graph. Hence, there is less communication overhead.

The number of triples to be fetched per our experiment is shown in Table 7.4

110 Chapter 7 Evaluation and Discussion

Table 7.4: Comparison of Number of Fetched Triples.

Size of GB′ Size of Gup
B′ % of Di�erence

Small Graphs ≈77K ≈37K
≈48%Medium Graphs ≈465K ≈223K

Large Graphs ≈2M ≈950K

However, when the update is a Delete, the overhead of communicating the update is

acceptable unless more than half of the triples in the graph are to be deleted. In this

case, the size of the update becomes greater than the size of the new source graph, and

it may be more preferable for the system to retrieve GB′ than to retrieve the update

graph Gup
B . As we saw in the analysis of the update propagation in Section 4.2.2, in the

case of intersection and the second case of di�erence, there is no need to store GA, thus

retrieving GB′ will force the re-retrieval of GA - if it is not stored in the system - and the

generation of GC′ from scratch. Together, this would cause more overhead depending

on the availability and on the comparative size of GA. Hence, retrieving GB′ would be

more preferable. In the case of union and the �rst di�erence case where we may need to

re-retrieve GA - if it is not stored in the system, it may be more bene�cial to retrieve

GB′ instead of update graph Gup
B . This boils down to a case-by-case bases and can be

alleviated by requesting the size of the update from system B and depends on whether

the other source graph needs to be retrieved as well.

Since we delete the same triples that were inserted, the overhead saved is the same as

that of the insert, shown in Table 7.4.

7.3.2 Evaluation Criteria 2: Storage

The storage of source graphs is not needed in half of the cases. In the other half of the

cases, when a source graph is needed in the system, it may be retrieved. This leads

to a trade-o� between storage and retrieval. It is further complicated when a chain of

updates is applied, we discuss this further in Appendix D.

7.3.3 Evaluation Criteria 3: Execution

7.3.3.1 Evaluation Criteria 3a: Set theoretic operations

We were not able to use Jena to count the number of triples processed during set theoretic

operations. However, from our analysis in Section 4.2.2, we see that there are less triples

to be checked because we are at most using the update and one source graph and not

the entirety of both source graphs.

Chapter 7 Evaluation and Discussion 111

7.3.3.2 Evaluation Criteria 3b: Re-derivation

We note that there is a consistency in the reduction of the number of triples being sent to

the reasoner. This is because, as we mentioned before, the scaling of instance generation

and the connections among instances are constant.

Union: Inserting or deleting part of the update and then re-deriving by only taking

into account the a�ected triples and those related to them results in sending to the

reasoner 38% and 26% of the total number of triples that would have been sent to the

reasoner respectively. This is shown in Figures 7.1 and 7.2.

Intersection: Inserting or deleting part of the update and then re-deriving by only

taking into account the a�ected triples and those related to them results in sending to

the reasoner 64% and 81% of the total number of triples that would have been sent to

the reasoner respectively. This is shown in Figures 7.3 and 7.4.

Di�erence 1: Inserting or deleting part of the update and then re-deriving by only

taking into account the a�ected triples and those related to them results in sending to

the reasoner 34% and 30% of the total number of triples that would have been sent to

the reasoner respectively. This is shown in Figures 7.5 and 7.6.

Di�erence 2: Inserting or deleting part of the update and then re-deriving by only

taking into account the a�ected triples and those related to them results in sending to

the reasoner 62% and 55% of the total number of triples that would have been sent to

the reasoner respectively. This is shown in Figures 7.7 and 7.8.

7.3.4 Additional Observations

7.3.4.1 Datasets' Shortcomings

We note that the results obtained in the previous section are in�uenced by the datasets

produced using our evaluation framework because of the following two reasons.

First, the university ontology, while moderate in size and complexity, has at most four

degrees of class subtypes and two degrees of property subtypes. Recall that entailment is

done according to the RDFS entailment regime, which was described in Section 2.1.3.2,

and that the Delete and Re-entail Algorithm is based on the regime's patterns. This

a�ects the re-derivation after deletion results as the algorithm would produce better

results with a simpler ontology and worse results with a more complex ontology.

112 Chapter 7 Evaluation and Discussion

Figure 7.1: Comparison of Triples Sent to Reasoner - Insert After Union.

Figure 7.2: Comparison of Triples Sent to Reasoner - Delete After Union.

Chapter 7 Evaluation and Discussion 113

Figure 7.3: Comparison of Triples Sent to Reasoner - Insert After Intersection.

Figure 7.4: Comparison of Triples Sent to Reasoner - Delete After Intersection.

114 Chapter 7 Evaluation and Discussion

Figure 7.5: Comparison of Triples Sent to Reasoner - Case Insert After Di�erence
1.

Figure 7.6: Comparison of Triples Sent to Reasoner - Case Delete After Di�er-
ence 1.

Chapter 7 Evaluation and Discussion 115

Figure 7.7: Comparison of Triples Sent to Reasoner - Case Insert After Di�erence
2.

Figure 7.8: Comparison of Triples Sent to Reasoner - Case Delete After Di�er-
ence 2.

116 Chapter 7 Evaluation and Discussion

Second, the datasets produced su�er shortcomings arising from the evaluation frame-

work's default con�guration and restrictions; speci�cally, the instances to be inserted or

deleted depend on the following. First, both the maximum number of instances to be

generated per class type and the ratios of some instances to others are hard-coded - as

described in Section 6.2.1 and summarised in Table 6.1. Second, the probability that a

change is applied to an instance type is also calculated based on hard-coded values - as

described in Section 6.2.2 and summarised in Table 6.2. This results in update graphs

where instances of certain types are disproportionally higher than others, especially in-

stances of type `publication'. This is most obvious in the case of re-derivation after

delete on graph GC produced from intersection. Because the triples sent to the reasoner

are all those that were already in the graph GC minus those in the update graph Gup,

and since Gup contains a high proportion of triples not shared, a large proportion of GC

ends up being used for re-derivation. The worst case scenario would be when none of

the triples in Gup to be deleted are present in GC , resulting in all of GC being used for

re-entailment. Similar e�ects can be seen in the di�erence cases but to a lesser extent.

7.3.4.2 Provenance Cost

Because we developed RGPROV with the intent of keeping it as light-weight as possible,

the cost associated with managing such graph-based provenance produced inside the

system is minimal. We list below the number of triples created at each stage of creating

Gent(C) and updating it to Gent(C′):

1. Creating Gent(C), a total of 42 triples are created as follows:

(a) After fetching the source graphs: 22 triples are created - independent of the

triples inside the provenance graphs of GA and GB.

(b) After the set theoretic operation: 10 triples are created.

(c) After entailment: 10 triples are created.

2. Propagating an update, a minimum of 31 triples are created, with the maximum

being 37 triples, as follows:

(a) After fetching the update graph: 12 triples are created - independent of the

triples inside the provenance graph of Gup
B . If a copy of the new graph GB′

is also fetched then 1 additional triple is created.

(b) After the update is re�ected: either 9 triples or 14 are created, depending on

whether the whole update graph was used or a subset of it.

(c) After re-entailment: 10 triples are created.

Chapter 7 Evaluation and Discussion 117

Therefore, the total size of producing graph Gent(C′) ranges between 73 and 79 triples -

in addition to the triples copied from the provenance graphs of the source graphs.

We therefore consider this cost negligible when considering the two other possible ways

a graph may be re-derived. In the �rst case, triple-based provenance is used, i.e. prove-

nance is tracked on the triple level. While this results in minimal re-derivation costs,

we have argued in Section 2.5.3 that it comes at the hight cost of managing provenance,

as the size of the provenance graph would be at least as large as the graph. In the

second case, where provenance is not used, i.e. the provenance cost is 0, the graph needs

to be created from scratch and entailments need to be redone. As shown in the previ-

ous section, compared to this approach, our solution saves on both communication and

re-derivation overhead and only requires 79 additional triples.

7.3.4.3 Implementation-Speci�c Issues

We realised that the implementation of the update propagation algorithm needs to be

further improved as its run-time is currently hindered in two ways when the update graph

contains more than 1000 triples.

The �rst way is related to inserting or deleting from graphs on the Fuseki server. When

there is a large number of insert or delete statements to be executed, our �rst approach

was to create one insert or delete statement containing all the a�ected triples. However,

this caused a Java Stack Over Flow Error. To avoid this, we split the update statements

and group them into a collection of inserts or deletes having a manageable size. However,

those additional update requests sent to the server end up taking some additional time

due to the communication between the system and the Fuseki server4.

Second, the algorithm currently loops over the triples to be inserted or those to be deleted

and requests their describe statements one by one from the Fuseki server. Sending all

those describe requests to the server one after the other causes Fuseki to run out of ports

to listen on. In Jena's current implementation, closing the connection does not actually

send a close request to the server's port. To avoid the resulting Java Bind Exception,

we forced the system to go to sleep for a few second after every 1000 describe requests

sent to the Fuseki server. This workaround is obviously not optimal, but has brought

our attention that even if there were enough ports to accept all created connections,

there will always be additional time spent on communicating all the describe statements

individually to the server.

4This communication between the components inside our system is separate from the communication
between our system and the systems where the source graphs are published, hence why we did not include
this observation and the next within Evaluation Criteria 1.

118 Chapter 7 Evaluation and Discussion

7.4 Summary

In this chapter, we �rst described our evaluation criteria. Then we presented the datasets

that were generated using the evaluation framework described in Chapter 6 to test our

update propagation approach. Next, we presented our experimental results showing that,

under the current default con�gurations, partial re-derivation based on select parts of the

update performed on a source graph consumes less resources whilst requiring minimal

provenance management costs. Speci�cally, there is an average of 48% less triples being

communicated when an update happens. Moreover, when the update is an Insert, there

are between 36% and 66% less triples being processed by the reasoner. Lastly, when

the update is a delete, there are between 19% and 73% less triples being processed by

the reasoner. Finally, we discussed the datasets' shortcomings and how di�erent factors

would a�ect the aforementioned results.

Chapter 8

Conclusions and Future Work

This thesis looked into how the light-weight and high-level provenance of a derived RDF

graph on the Semantic Web can enable its scalable partial re-derivation when one of its

source graphs changes compared to the naïve approach of recreating it. In this chapter,

we summarise the thesis and then discuss how our work can be extended in the future.

8.1 Conclusions

In Chapter 3, we started by examining what documentation is needed to track the prove-

nance of derived RDF graphs which use the entirety of other source graphs, from their

initial creation and through their modi�cation. We did so as follows. We presented a

scenario and explored a running example where a derived RDF graph is created using

data from two other graphs and impressed upon the need to propagate changes applied to

those source graphs. In order to track the provenance of derived graphs on the Semantic

Web and facilitate the propagation of their modi�cation, we presented the RGPROV vo-

cabulary, a specialisation of the PROV-O ontology that models the classes and properties

involved in a graph's creation and update. We split those into four categories according

to the activity that produces a graph. The �rst describes how the provenance of a graph

fetched from an outside system is represented. The second describes how the provenance

of a graph produced using a set theoretic operation is represented. The third describes

how the provenance of a graph produced using entailment is represented. Finally, the

fourth describes how the provenance of a graph produced using an update operation

is represented. RGPROV addresses our �rst subsidiary research question (SRQ1) and

constitutes our �rst contribution.

Then, in Chapter 4, we looked into how an update on a source graph needs to be

propagated in an entailed graph derived from it. We studied which triples, inserted into

or deleted from a source graph, needs to be propagated through to the derived graph.

119

120 Chapter 8 Conclusions and Future Work

This is based on the combination of the set theoretic operation applied initially to the

source graphs and whether the update applied to the source graph is an insert or a delete.

To manage these stages e�ciently, we made use of the proposed vocabulary, RGPROV,

and detailed how it can be applied in our running example. This chapter addresses our

�rst research question and our second subsidiary research question (SRQ2).

Next, in Chapter 5, we described the model we had implemented to test our approach

of e�cient update propagation. The described system contains three algorithms. The

�rst makes use of RGPROV to determines whether or not the whole update needs to

be propagated to the entailed graph. If only a part of it is to be propagated, then it

determines which triples are to be used. The second and third algorithms are RDF graph

partial re-derivation algorithms based on the Delete and Rederive (DRed) algorithm and

tailored to RDF graphs. To the best of our knowledge, this is the �rst time DRed has

been used in a Semantic Web context, and thus the algorithms constitute our second

contribution. The model we presented constitutes our third contribution.

Afterwards, in Chapter 6, we moved on to presenting the goals of a framework that would

adequately evaluate our system. The goals were arbitrary scaling of data, an ontology

of moderate size and complexity, graphs of di�erent sizes ranging from small to very

large, e�ective instance links, and dynamic graphs, as well as for the framework to be

provenance-aware and produce provenance graphs of di�erent sizes. We then described

the design of the evaluation framework we implemented to achieve these goals, which

is based on LUBM, UOBM, and EvoGen and which makes use of PROV-TEMPLATE.

The evaluation framework we presented constitutes our forth and �nal contribution.

Finally, in Chapter 7, we discussed our evaluation criteria, described the datasets that we

used in our experiments, presented our results, and o�ered our observations on the short-

comings of the datasets and implementation issues. We showed that, under the current

default con�gurations, partial re-derivation based on select parts of the update performed

on a source graph consumes less resources whilst requiring minimal provenance manage-

ment costs. Speci�cally, there is an average of 48% less triples being communicated when

an update happens. Moreover, when the update is an Insert, there are between 36% and

66% less triples being processed by the reasoner. Lastly, when the update is a delete,

there are between 19% and 73% less triples being processed by the reasoner. The results

presented address our second research question.

8.2 Future Work

Based on the work we presented, there are a few directions worth exploring that extend

our work.

Chapter 8 Conclusions and Future Work 121

8.2.1 Graph Operations

The operations that produce a derived graph in our system are limited and we acknowl-

edge that there are additional operations that we have not taken into consideration.

8.2.1.1 Beyond Set Theoretic

We have restricted the operations performed on the copies of the two source graphs to

the set theoretic union, intersection, and di�erence, and we have also limited the usage

of those copies to their entirety. A graph, however, may be produced in more than those

ways. Our system may be extended to use a portion of the copy of a source graph by

�ltering out undesired triples. This would need to be re�ected after an update on a source

graph when choosing triples to be propagated to the source graph. Moreover, after the

two copies of the source graphs - or parts of them - have been combined, compared, or

contrasted, a user may wish to further �lter out some triples, or insert some of their

triples into the produced graph. This would also need to be re�ected after an update on

a source graph when choosing triples to be propagated to the source graph. Finally, we

have also limited the number of source graphs to only two. However, a user may wish

to work with three or more graphs. Again, this would also need to be re�ected after an

update on a source graph when choosing triples to be propagated to the source graph.

8.2.1.2 Di�erent Entailment Regimes

Our system may be extended to support more than just the RDFS entailment rules

by also expanding the deletion and re-derivation algorithm to take into account the

di�erent OWL entailment regimes. Additionally, our system currently only uses source

graphs containing base triples, i.e. non-inferred triples. It may be extended to allow it

to use source graphs that may contain inferred triples. This, however, brings about two

complexities that need to be taken into consideration. The �rst is that the delete and

re-derive algorithm would need to look into each triple to see whether it is inferred or

not. While this is straightforward, it adds time expenses. The second is that this may

give rise to a situation where one source graph was produced using one entailment regime

while the other source graph was produced using a di�erent entailment regime and the

derived graph from the two is produced using yet a third entailment regime. To address

this problem of heterogeneous entailments, the extended system needs to implement a

method to reconcile what is to be entailed.

122 Chapter 8 Conclusions and Future Work

8.2.2 Time-Sensitivity and Streaming

Our system may be extended to handle time-sensitive information; i.e. data which at a

certain pre-known point in time in the future become automatically invalid. This could

occur if a certain property has a time limit, for example, the �xed term membership of

parliament. Extending the system to cater to such a scenario would require, in addition

to a new component, introducing a new vocabulary that can describe the current and

future validity of information as described by Della Valle et al. (2009). Current systems

which propose such vocabularies cater more towards sensor systems. It would also require

handling of more �ne-grained provenance than our system does. While the entirety of

the provenance graphs may not necessarily need to be as �ne-grained as provenance

information used to maintain ontological entailments with data streams, it would still

add storage expenses.

8.2.3 Benchmarking the Evaluation Framework

The evaluation framework we developed is limited in its current state. First, it only

deletes previously inserted data. We would like to extend it to delete random data chosen

by its Change Producer module according to their weights, similar to how insertions are

done. This would lead to the removal of its second limitation; in its current state the

evaluation framework a�ords the user one of two options for evolving datasets: monotonic

insertions or insertions followed by deletions. By deleting randomly-chosen data, the

framework would provide the user with an additional third option of monotonic deletions.

Moreover, the evaluation framework may be extended to a�ord the user the option to

produce modi�ed information about instances and relations. Thus far, we have only

discussed inserting into or deleting from a dataset. A user may wish for more changes

than those o�ered by the current insertions and deletions. We have compiled a list of

suggested modi�cations in Appendix C. By allowing for modi�cations, the framework

would provide the user with an additional fourth option for evolving datasets, that of

modi�cations.

Additionally, the evaluation framework, in its current state, makes use of pre-prepared

binding templates and provides those to PROV-TEMPLATE to generate PROV com-

pliant provenance graphs. It may be expanded to produce those bindings dynamically

within the framework's code while the datasets are being generated.

Finally, the evaluation framework we developed can be extended to become a benchmark

for testing reasoning and querying performance as well as storage scalability. To bring it

to the such a standard, queries need to be introduced. Such queries would include those

of LUBM and UOBM as well as queries for both the evolving data and the provenance.

We have compiled a list of suggested categories of queries in Appendix C.

Chapter 8 Conclusions and Future Work 123

8.2.4 Storage of Old Graphs and Provenance Elision

We have previously alluded to the issue of having to deal with older copies of changing

graphs. This is twofold and pertains to both RDF graphs and the provenance graphs

that describe them.

The old RDF graphs in the system may be old copies of source graphs or old copies of

graphs produced by the system. We study which graphs are required in case a system

needs to deal with chains of di�erent updates. This is shown in Appendix D.

Keeping all previous copies of a graph and its previous provenance would result in max-

imal storage expenses that would keep on growing. However, and while deleting all old

graphs would result in minimal storage expenses, one needs to also consider what would

happen to the most recent provenance graph that describes the current version of an

RDF graph. In our current approach, when creating the most recent provenance graph,

we make a copy of the older provenance graph and insert into it the provenance that

describes how the most recent RDF graph was created. Thus, such a provenance graph

could end up describing parts of an RDF graph that initially contributed to a previous

version of it despite those parts not in�uencing the most recent version of that graph.

Moreover, this leads to a provenance graph that continues to increase in size. Along

those lines, Pimentel et al. (2018)'s reference sharing and checkpoints may be adapted

to address this limitation.

Finally, one may need more information describing the versioning of the provenance

graphs. In the current version of RGPROV, versioning is not documented. Building

on Halpin and Cheney (2014), RGPROV may be extended to include relations simi-

lar to UPD's version and prevVersion. Thus, we propose the addition of the relations

currentVersion, previousVersion, and �rstVersion.

Appendix A

RGPROV Ontology

@base <http://www.ecs.soton.ac.uk/rgprov> .

@prefix : <http://www.ecs.soton.ac.uk/rgprov#> .

@prefix owl: <http://www.w3.org/2002/07/owl#> .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@prefix prov: <http://www.w3.org/ns/prov#> .

<http://www.ecs.soton.ac.uk/rgprov#> a owl:Ontology ;

owl:imports <http://www.w3.org/ns/prov-o> ;

rdfs:comment "A specialization of PROV-O"@en .

##

Classes

##

http://www.ecs.soton.ac.uk/rgprov#Graph

:Graph a owl:Class ;

rdfs:subClassOf prov:Entity ;

prov:definition "An RDF or OWL graph" .

http://www.ecs.soton.ac.uk/rgprov#UpdateGraph

:UpdateGraph a owl:Class ;

rdfs:subClassOf :Graph ;

prov:definition "A subclass of rgprov:Graph that represents the graphs

whose triples are to be inserted or deleted." .

http://www.ecs.soton.ac.uk/rgprov#Fetch

125

126 Appendix A RGPROV Ontology

:Fetch a owl:Class ;

rdfs:subClassOf prov:Activity ;

owl:disjointWith :GraphOperation ;

prov:definition "An activity that indicates that a fetch (copy) operation

has taken place." .

http://www.ecs.soton.ac.uk/rgprov#GraphOperation

:GraphOperation a owl:Class ;

rdfs:subClassOf prov:Activity ;

prov:definition "An activity that was performed on at least one

rgprov:Graph to produce another graph." .

http://www.ecs.soton.ac.uk/rgprov#Intersection

:Intersection a owl:Class ;

rdfs:subClassOf :GraphOperation ;

owl:disjointWith :Union ;

prov:definition "An activity that was performed on at least two

rgprov:Graphs to produce their intersection graph." .

http://www.ecs.soton.ac.uk/rgprov#Union

:Union a owl:Class ;

rdfs:subClassOf :GraphOperation ;

prov:definition "An activity that was performed on at least two

rgprov:Graphs to produce their union graph." .

http://www.ecs.soton.ac.uk/rgprov#Difference

:Difference a owl:Class ;

rdfs:subClassOf :GraphOperation ;

owl:disjointWith :Intersection , :Union ;

prov:definition "An activity that was performed on exactly two

rgprov:Graphs to produce their difference." .

http://www.ecs.soton.ac.uk/rgprov#InsertOperation

:InsertOperation a owl:Class ;

rdfs:subClassOf :GraphOperation ;

prov:definition "An activity that was performed on exactly one

rgprov:Graph, consisting of inserting triples found in exactly

one other rgprov:Graph, to produce a third rgprov:Graph." .

http://www.ecs.soton.ac.uk/rgprov#DeleteOperation

:DeleteOperation a owl:Class ;

Appendix A RGPROV Ontology 127

rdfs:subClassOf :GraphOperation ;

owl:disjointWith :InsertOperation ;

prov:definition "An activity that was performed on exactly one

rgprov:Graph, consisting of deleting triples found in exactly

one other rgprov:Graph, to produce a third rgprov:Graph." .

http://www.ecs.soton.ac.uk/rgprov#Entailment

:Entailment a owl:Class ;

rdfs:subClassOf :GraphOperation ;

prov:definition "An activity that was performed on exactly one

rgprov:Graph to produce another rgprov:Graph that contains

inferred triples." .

http://www.ecs.soton.ac.uk/rgprov#DEntailment

:DEntailment a owl:Class ;

rdfs:subClassOf :Entailment ;

prov:definition "An activity that was performed on exactly one

rgprov:Graph to produce another rgprov:Graph that contains

inferred triples, based on the Datatype Entailment Regime." .

http://www.ecs.soton.ac.uk/rgprov#OWLDirectEntailment

:OWLDirectEntailment a owl:Class ;

rdfs:subClassOf :Entailment ;

prov:definition "An activity that was performed on exactly one

rgprov:Graph to produce another rgprov:Graph that contains

inferred triples, based on the OWL Direct Entailment Regime." .

http://www.ecs.soton.ac.uk/rgprov#OWLRDFEntailment

:OWLRDFEntailment a owl:Class ;

rdfs:subClassOf :Entailment ;

prov:definition "An activity that was performed on exactly one

rgprov:Graph to produce another rgprov:Graph that contains

inferred triples, based on the OWL RDF-based Entailment Regime." .

http://www.ecs.soton.ac.uk/rgprov#RDFSEntailment

:RDFSEntailment a owl:Class ;

rdfs:subClassOf :Entailment ;

prov:definition "An activity that was performed on exactly one

rgprov:Graph to produce another rgprov:Graph that contains

inferred triples, based on the RDFS Entailment Regime." .

128 Appendix A RGPROV Ontology

http://www.ecs.soton.ac.uk/rgprov#RIFEntailment

:RIFEntailment a owl:Class ;

rdfs:subClassOf :Entailment ;

prov:definition "An activity that was performed on exactly one

rgprov:Graph to produce another rgprov:Graph that contains

inferred triples, based on the RIF Core Entailment Regime." .

http://www.ecs.soton.ac.uk/rgprov#RDFEntailment

:RDFEntailment a owl:Class ;

rdfs:subClassOf :Entailment ;

prov:definition "An activity that was performed on exactly one

rgprov:Graph to produce another rgprov:Graph that contains

inferred triples, based on the RDF Entailment Regime." .

http://www.ecs.soton.ac.uk/rgprov#Reasoner

:Reasoner a owl:Class ;

rdfs:subClassOf prov:SoftwareAgent ;

prov:definition "The software that bears the responsibility of reasoning

on an rgprov:Graph." .

http://www.ecs.soton.ac.uk/rgprov#OWLRDFReasoner

:OWLRDFReasoner a owl:Class ;

rdfs:subClassOf :Reasoner ;

prov:definition "The software that bears the responsibility of reasoning

on an rgprov:Graph using the OWL RDF-Based Entailment Regime." .

http://www.ecs.soton.ac.uk/rgprov#DReasoner

:DReasoner a owl:Class ;

rdfs:subClassOf :Reasoner ;

prov:definition "The software that bears the responsibility of reasoning

on an rgprov:Graph using the Datatype Entailment Regime." .

http://www.ecs.soton.ac.uk/rgprov#OWLDirectReasoner

:OWLDirectReasoner a owl:Class ;

rdfs:subClassOf :Reasoner ;

prov:definition "The software that bears the responsibility of reasoning

on an rgprov:Graph using the OWL Direct Entailment Regime." .

http://www.ecs.soton.ac.uk/rgprov#RDFReasoner

:RDFReasoner a owl:Class ;

rdfs:subClassOf :Reasoner ;

Appendix A RGPROV Ontology 129

prov:definition "The software that bears the responsibility of reasoning

on an rgprov:Graph using the RDF Entailment Regime." .

http://www.ecs.soton.ac.uk/rgprov#RDFSReasoner

:RDFSReasoner a owl:Class ;

rdfs:subClassOf :Reasoner ;

prov:definition "The software that bears the responsibility of reasoning

on an rgprov:Graph using the RDFS Entailment Regime." .

http://www.ecs.soton.ac.uk/rgprov#RIFReasoner

:RIFReasoner a owl:Class ;

rdfs:subClassOf :Reasoner ;

prov:definition "The software that bears the responsibility of reasoning

on an rgprov:Graph using the RIF Core Entailment Regime." .

##

Object Properties

##

http://www.ecs.soton.ac.uk/rgprov#copied

:copied a owl:ObjectProperty ;

rdfs:subPropertyOf prov:used;

rdfs:domain :Fetch ;

rdfs:range :Graph ;

rdfs:comment "A copy of rgprov:Graph was fetched."@en .

http://www.ecs.soton.ac.uk/rgprov#wasExactCopy

:wasExactCopy a owl:ObjectProperty ;

rdfs:subPropertyOf prov:wasQuotedFrom ;

rdfs:domain :Graph ;

rdfs:range :Graph ;

rdfs:comment "A graph was an exact replica of another."@en .

http://www.ecs.soton.ac.uk/rgprov#wasCopyResult

:wasCopyResult a owl:ObjectProperty ;

rdfs:subPropertyOf prov:wasGeneratedBy ;

rdfs:domain :Graph ;

rdfs:range :Fetch ;

rdfs:comment "An rgprov:Graph was the result of copy (fetch)

activity."@en .

130 Appendix A RGPROV Ontology

http://www.ecs.soton.ac.uk/rgprov#inserted

:inserted a owl:ObjectProperty ;

rdfs:subPropertyOf prov:used ;

rdfs:domain :InsertOperation ;

rdfs:range :UpdateGraph ;

rdfs:comment "The rgprov:UpdateGraph used by the rgprov:InsertOperation

to add triples into an rgprov:Graph."@en .

http://www.ecs.soton.ac.uk/rgprov#deleted

:deleted a owl:ObjectProperty ;

rdfs:subPropertyOf prov:used ;

rdfs:domain :DeleteOperation ;

rdfs:range :UpdateGraph ;

rdfs:comment "The rgprov:UpdateGraph used by the rgprov:InsertOperation

to delete triples into an rgprov:Graph."@en .

http://www.ecs.soton.ac.uk/rgprov#hadMinuend

:hadMinuend a owl:ObjectProperty ;

rdfs:subPropertyOf prov:used ;

rdfs:domain :Difference ;

rdfs:range :Graph ;

rdfs:comment "An rgprov:Graph was used as the first component of a graph

difference activity."@en .

http://www.ecs.soton.ac.uk/rgprov#hadSubtrahend

:hadSubtrahend a owl:ObjectProperty ;

rdfs:subPropertyOf prov:used ;

rdfs:domain :Difference ;

rdfs:range :Graph ;

rdfs:comment "An rgprov:Graph was used as the second component of a graph

difference activity."@en .

http://www.ecs.soton.ac.uk/rgprov#wasEntailedFrom

:wasEntailedFrom a owl:ObjectProperty ;

rdfs:subPropertyOf prov:wasDerivedFrom ;

rdfs:domain :Graph ;

rdfs:range :Graph ;

rdfs:comment "An entailment is the construction of a new rgprov:Graph

based on a pre-existing rgprov:Graph."@en .

Appendix B

Application of RGPROV - Extended

B.1 Vocabulary for Initial Graph Creation

In this section we describe the usage of the proposed vocabulary RGPROV during the

process of creating the initial graph Gent(C).

B.1.1 Graph Retrieval

Graph Pcopy(A) contains, in addition to the information contained from PA, the following

information:

• :FETCH-A-YYYYMMDD, an instance of rgprov:Fetch, that represents a fetch call

that was made to system A at that time. This creates the triple

:FETCH-A-YYYYMMDD rdf:type rgprov:Fetch .

• :jersey2.25 ran a GET method. This creates the triple

:FETCH-A-YYYYMMDD prov:wasAssociatedWith :jersey2.25 .

• information describing the copying process. This creates the �ve triples:

� :FETCH-A-YYYYMMDD :retrievedFrom URI-of-(A)-for-GA .

� :FETCH-A-YYYYMMDD rgprov:copied :GA .

� :Gcopy(A) rdf:type rgprov:Graph .

� :Gcopy(A) rgprov:wasCopyResult :FETCH-A-YYYYMMDD .

� :Gcopy(A) rgprov:wasExactCopy :GA .

• :FETCH-A-YYYYMMDD's start and end time. This creates the two triples:

131

132 Appendix B Application of RGPROV - Extended

� :FETCH-A-YYYYMMDD prov:startedAtTime

"YYYY-MM-DDYThh:mm:ssZ"∧∧xsd:dateTime .

� :FETCH-A-YYYYMMDD prov:endedAtTime

"YYYY-MM-DDYThh:mm:ssZ"∧∧xsd:dateTime .

Similarly, graph Pcopy(B) contains, in addition to the contained in PB, the following

information:

• :FETCH-B-YYYYMMDD, an instance of rgprov:Fetch, that represents a fetch call

that was made to system B at that time. This creates the triple

:FETCH-A-YYYYMMDD rdf:type rgprov:Fetch .

• :jersey2.25 ran a GET method. This creates the triple

:FETCH-B-YYYYMMDD prov:wasAssociatedWith :jersey2.25 .

• information describing the copying process. This creates the �ve triples:

� :FETCH-B-YYYYMMDD :retrievedFrom URI-of-(B)-for-GB .

� :FETCH-B-YYYYMMDD rgprov:copied :GB .

� :Gcopy(B) rdf:type rgprov:Graph .

� :Gcopy(B) rgprov:wasCopyResult :FETCH-B-YYYYMMDD .

� :Gcopy(B) rgprov:wasExactCopy :GB .

• :FETCH-B-YYYYMMDD's start and end time. This creates the two triples:

� :FETCH-B-YYYYMMDD prov:startedAtTime

"YYYY-MM-DDYThh:mm:ssZ"∧∧xsd:dateTime .

� :FETCH-B-YYYYMMDD prov:endedAtTime

"YYYY-MM-DDYThh:mm:ssZ"∧∧xsd:dateTime .

The provenance graph Pent(C) contains the information listed in the preceding two lists.

It is shown in Figures B.1. Additionally, to show that Pent(C) contains the information

in the other provenance graphs, we add the two triples

• :Pent(C) prov:wasDerivedFrom :Pcopy(A) .

• :Pent(C) prov:wasDerivedFrom :Pcopy(B) .

Appendix B Application of RGPROV - Extended 133

Figure B.1: First Iteration of Pent(C).

B.1.2 Graph Operations

B.1.2.1 Set Theoretic Operations

The production of Gent(C) can be the result of any one of the following set theoretic

operations:

Union, Gent(C) = Gcopy(A)∪copy(B). After Jena creates Gent(C), C adds the following

information to Pent(C):

• :gu-A-B-YYYYMMDD, an instance of rgprov:Union, that represents a union op-

eration on Gcopy(A) and Gcopy(B). This creates the triple

:gu-A-B-YYYYMMDD rdf:type rgprov:Union .

• :jena3.1.1 ran the union operation :gu-A-B-YYYYMMDD. This creates the triple

:gu-A-B-YYYYMMDD prov:wasAssociatedWith :jena3.1.1 .

• :gu-A-B-YYYYMMDD used both Gcopy(A) and Gcopy(B) in its union operation.

This creates the two triples

� :gu-A-B-YYYYMMDD prov:used Gcopy(A) .

� :gu-A-B-YYYYMMDD prov:used Gcopy(B) .

134 Appendix B Application of RGPROV - Extended

• GC is a graph which was produced by :gu-A-B-YYYYMMDD. This creates the

two triples:

� GC rdf:type rgprov:Graph .

� GC prov:wasGeneratedBy :gu-A-B-YYYYMMDD .

• :gu-A-B-YYYYMMDD's start and end time. This creates the two triples:

� :gu-A-B-YYYYMMDD prov:startedAtTime

"YYYY-MM-DDYThh:mm:ssZ"∧∧xsd:dateTime .

� :gu-A-B-YYYYMMDD prov:endedAtTime

"YYYY-MM-DDYThh:mm:ssZ"∧∧xsd:dateTime .

Intersection, GC = Gcopy(A)∩ copy(B). After Jena creates GC , C adds the following

information to Pent(C):

• :gi-A-B-YYYYMMDD, an instance of rgprov:Intersection, that represents an in-

tersection operation performed on Gcopy(A) and Gcopy(B). This creates the triple

:gi-A-B-YYYYMMDD rdf:type rgprov:Intersection .

• :jena3.1.1 ran the intersection operation :gi-A-B-YYYYMMDD. This creates the

triple :gi-A-B-YYYYMMDD prov:wasAssociatedWith :jena3.1.1 .

• :gi-A-B-YYYYMMDD used both Gcopy(A) and Gcopy(B) in its intersection opera-

tion. This creates the two triples

� :gi-A-B-YYYYMMDD prov:used Gcopy(A) .

� :gi-A-B-YYYYMMDD prov:used Gcopy(B) .

• GC was produced by :gi-A-B-YYYYMMDD. This creates the two triples:

� GC rdf:type rgprov:Graph .

� GC prov:wasGeneratedBy :gi-A-B-YYYYMMDD .

• :gi-A-B-YYYYMMDD's start and end time. This creates the two triples:

� :gi-A-B-YYYYMMDD prov:startedAtTime

"YYYY-MM-DDYThh:mm:ssZ"∧∧xsd:dateTime .

� :gi-A-B-YYYYMMDD prov:endedAtTime

"YYYY-MM-DDYThh:mm:ssZ"∧∧xsd:dateTime .

Appendix B Application of RGPROV - Extended 135

Di�erence Case 1, GC = Gcopy(A) \ copy(B). After Jena creates GC , C adds the fol-

lowing information to Pent(C):

• :gd-A-B-YYYYMMDD, an instance of rgprov:Di�erence, that represents a dif-

ference operation performed on Gcopy(A) and Gcopy(B). This creates the triple

:gd-A-B-YYYYMMDD rdf:type rgprov:Difference .

• :jena3.1.1 ran the di�erence operation :gd-A-B-YYYYMMDD. This creates the

triple :gd-A-B-YYYYMMDD prov:wasAssociatedWith :jena3.1.1 .

• :gd-A-B-YYYYMMDD used Gcopy(A) as the �rst component in its di�erence oper-

ation. This creates the triple

:gd-A-B-YYYYMMDD rgprov:hadMinuend Gcopy(A) .

• :gd-A-B-YYYYMMDD used Gcopy(B) as the second component in its di�erence

operation. This creates the triple

:gd-A-B-YYYYMMDD rgprov:hadSubtrahend Gcopy(B) .

• GC was produced by :gd-A-B-YYYYMMDD. This creates the two triples:

� GC rdf:type rgprov:Graph .

� GC prov:wasGeneratedBy :gd-A-B-YYYYMMDD .

• :gd-A-B-YYYYMMDD's start and end time. This creates the two triples:

� :gd-A-B-YYYYMMDD prov:startedAtTime

"YYYY-MM-DDYThh:mm:ssZ"∧∧xsd:dateTime .

� :gd-A-B-YYYYMMDD prov:endedAtTime

"YYYY-MM-DDYThh:mm:ssZ"∧∧xsd:dateTime .

Di�erence: Case 2, GC = Gcopy(B) \ copy(A), After Jena creates GC , C adds the

following information to Pent(C):

• :gd-A-B-YYYYMMDD, an instance of rgprov:Di�erence, that represents a dif-

ference operation performed on Gcopy(A) and Gcopy(B). This creates the triple

:gd-A-B-YYYYMMDD rdf:type rgprov:Difference .

• :jena3.1.1 ran the di�erence operation :gd-A-B-YYYYMMDD. This creates the

triple :gd-A-B-YYYYMMDD prov:wasAssociatedWith :jena3.1.1 .

• :gd-A-B-YYYYMMDD used Gcopy(B) as the �rst component in its di�erence oper-

ation. This creates the triple

:gd-A-B-YYYYMMDD rgprov:hadMinuend Gcopy(B) .

136 Appendix B Application of RGPROV - Extended

• :gd-A-B-YYYYMMDD used Gcopy(A) as the second component in its di�erence

operation. This creates the triple

:gd-A-B-YYYYMMDD rgprov:hadSubtrahend Gcopy(A) .

• GC was produced by :gd-A-B-YYYYMMDD. This creates the two triples:

� GC rdf:type rgprov:Graph .

� GC prov:wasGeneratedBy :gd-A-B-YYYYMMDD .

• :gd-A-B-YYYYMMDD's start and end time. This creates the two triples:

� :gd-A-B-YYYYMMDD prov:startedAtTime

"YYYY-MM-DDYThh:mm:ssZ"∧∧xsd:dateTime .

� :gd-A-B-YYYYMMDD prov:endedAtTime

"YYYY-MM-DDYThh:mm:ssZ"∧∧xsd:dateTime .

Two triples are shared among all the above set theoretic operations and they indicate

that:

• Gcopy(A) was a contributor in the creation of GC . This creates the triple

GC prov:wasDerivedFrom Gcopy(A) .

• Gcopy(B) was a contributor in the creation of GC . This creates the triple

GC prov:wasDerivedFrom Gcopy(B) .

The second iteration of Pent(C) is shown in Figure B.2 with the union operation used as

an example of set theoretic operations.

B.1.2.2 Entailment

After C invokes Jena to entail Gent(C) from GC , the following information is added to

Pent(C):

• :ge-C3-YYYYMMDD, an instance of rgprov:RDFSEntailment, that represents an

entailment operation performed on GC . This creates the triple

:ge-C3-YYYYMMDD rdf:type rgprov:RDFSEntailment .

• :jena3.1.1 ran the entailment operation :ge-C3-YYYYMMDD. This creates the

triple :ge-C3-YYYYMMDD prov:wasAssociatedWith :jena3.1.1 .

• :ge-C3-YYYYMMDD used GC to produce Gent(C). This creates the triple

:ge-C3-YYYYMMDD prov:used GC .

Appendix B Application of RGPROV - Extended 137

Figure B.2: Second Iteration of Pent(C).

• Gent(C) was produced by :ge-C3-YYYYMMDD. This creates the two triples

� Gent(C) rdf:type rgprov:Graph .

� Gent(C) prov:wasGeneratedBy :ge-C3-YYYYMMDD .

• GC was a contributor in the creation of Gent(C), more speci�cally GC entailed

Gent(C). This creates the triple Gent(C) rgprov:wasEntailedFrom GC .

• Since Gent(C) was itself derived from Gcopy(A) and Gcopy(B), the two additional

triples are also created:

� Gent(C) prov:wasDerivedFrom Gcopy(A) .

� Gent(C) prov:wasDerivedFrom Gcopy(B) .

• :ge-C3-YYYYMMDD's start and end time. This creates the two triples:

� :ge-C3-YYYYMMDD prov:startedAtTime

"YYYY-MM-DDYThh:mm:ssZ"∧∧xsd:dateTime .

� :ge-C3-YYYYMMDD prov:endedAtTime

"YYYY-MM-DDYThh:mm:ssZ"∧∧xsd:dateTime .

The above list constitutes the �nal additions to Pent(C) and is shown in Figure B.3.

138 Appendix B Application of RGPROV - Extended

Figure B.3: Final Iteration of Pent(C).

B.2 Vocabulary for Update Propagation

B.2.1 Update Retrieval

C creates the provenance graph P up
copy(B) similar to how it created Pcopy(B), where the

information is copied from P up
B into P up

copy(B) and the following is added to it:

• :Fetch-BUp-YYYYMMDD, an instance of rgprov:Fetch, that indicates that a fetch

call that made to system B at that time. This creates the triple

:FETCH-A-YYYYMMDD rdf:type rgprov:Fetch .

• :jersey2.25 ran a GET method. This creates the triple

:Fetch-BUp-YYYYMMDD prov:wasAssociatedWith :jersey2.25 .

• information describing the copying process. This creates the �ve triples

� :Fetch-BUp-YYYYMMDD :retrievedFrom URI-of-(B)-for-G
up
B .

� :Fetch-BUp-YYYYMMDD rgprov:copied G
up
B .

� G
up
copy(B) rgprov:wasCopyResult :Fetch-BUp-YYYYMMDD .

� G
up
copy(B) rdf:type rgprov:UpdateGraph .

� G
up
copy(B) rgprov:wasExactCopy G

up
B .

• :Fetch-BUp-YYYYMMDD's start and end time. This creates the two triples:

Appendix B Application of RGPROV - Extended 139

Figure B.4: First Iteration of Pent(C′).

� :Fetch-BUp-YYYYMMDD prov:startedAtTime

"YYYY-MM-DDYThh:mm:ssZ"∧∧xsd:dateTime .

� :Fetch-BUp-YYYYMMDD prov:endedAtTime

"YYYY-MM-DDYThh:mm:ssZ"∧∧xsd:dateTime .

• If the graphs are being copied, then Gcopy(B′) is a new version of Gcopy(B). This

creates the triple Gcopy(B') prov:wasRevisionOf Gcopy(B) .

• That the provenance graph P up
copy(B) was derived from P up

B and is a new version of

Pcopy(B). P
up
copy(B) is a new version of Pcopy(B), this creates the two triples:

� P
up
copy(B) prov:wasDerivedFrom P

up
B .

� P
up
copy(B) prov:wasRevisionOf Pcopy(B) .

The above list is shown in Figure B.4.

C then creates the provenance graph Pent(C′) by including the above information as

well as the information stating that Pent(C′) is a new version of Pent(C), this creates the

triple: Pent(C') prov:wasRevisionOf Pent(C) . Stating that Gent(C′) is a new version of

Gent(C) will be added after Gent(C′) has been created.

B.2.2 E�ects of Updates on Set Theoretic Operations

B.2.2.1 Union

Insert C invokes Jena to insert the triples in Gup
copy(B) into GC , resulting in graph GC′ .

The following information is then added to Pent(C′):

140 Appendix B Application of RGPROV - Extended

• :insert-C-YYYYMMDD, an instance of rgprov:InsertOperation, that represents an

insert operation performed on GC . This creates the triple

:insert-C-YYYYMMDD rdf:type rgprov:InsertOperation .

• :jena3.1.1 ran the insert operation :insert-C-YYYYMMDD. This creates the triple

:insert-C-YYYYMMDD prov:wasAssociatedWith :jena3.1.1 .

• :insert-C-YYYYMMDD used Gup
copy(B) in its insert operation. This creates the

triple :insert-C-YYYYMMDD rgprov:inserted G
up
copy(B) .

• :insert-C-YYYYMMDD used GC in its insert operation. This creates the triple

:insert-C-YYYYMMDD prov:used GC .

• GC′ was produced by :insert-C-YYYYMMDD. This creates the triple

GC' prov:wasGeneratedBy :insert-C-YYYYMMDD .

• Gup
copy(B) was a contributor in the creation of GC′ . This creates the triple

GC' prov:wasDerivedFrom G
up
copy(B) .

• GC was a contributor in the creation of GC′ . This creates the triple

GC' prov:wasDerivedFrom Gent(C).

• :insert-C-YYYYMMDD's start and end time. This creates the two triples:

� :insert-C-YYYYMMDD prov:startedAtTime

"YYYY-MM-DDYThh:mm:ssZ"∧∧xsd:dateTime .

� :insert-C-YYYYMMDD prov:endedAtTime

"YYYY-MM-DDYThh:mm:ssZ"∧∧xsd:dateTime .

The above list is shown in Figure B.5.

Delete C invokes Jena to produce Gup
sub(copy(B)) ≡ G

up
copy(B)\Gcopy(A) and then to delete

that from GC resulting in GC′ . The following information is then added to Pent(C′):

• :delete-C-YYYYMMDD, an instance of rgprov:DeleteOperation, that represents a

delete operation performed on GC . This creates the triple

:delete-C-YYYYMMDD rdf:type rgprov:DeleteOperation .

• :jena3.1.1 ran the delete operation :delete-C-YYYYMMDD. This creates the triple

:delete-C-YYYYMMDD prov:wasAssociatedWith :jena3.1.1 .

• Gup
sub(copy(B)), an instance of rgprov:UpdateGraph, that represents the subgraph of

the Gup
copy(B) to be deleted. This creates the triple

G
up
sub(copy(B)) rdf:type rgprov:UpdateGraph .

Appendix B Application of RGPROV - Extended 141

• Gup
sub(copy(B)) was derived from Gup

copy(B). This creates the triple

G
up
sub(copy(B)) prov:wasDerivedFrom G

up
copy(B) .

• Gcopy(A) was a contributor in the creation of Gup
sub(copy(B)). This creates the triple

G
up
sub(copy(B)) prov:wasDerivedFrom :Gcopy(A) .

• :delete-C-YYYYMMDD used Gup
sub(copy(B)) in its delete operation. This creates the

triple :delete-C-YYYYMMDD rgprov:deleted G
up
sub(copy(B)) .

• :delete-C-YYYYMMDD used GC in its delete operation. This creates the triple

:delete-C-YYYYMMDD prov:used GC .

• GC′ was produced by :delete-C-YYYYMMDD. This creates the triple

GC' prov:wasGeneratedBy :delete-C-YYYYMMDD .

• Gcopy(A) was a contributor in the creation of GC′ . This creates the triple

GC' prov:wasDerivedFrom :Gcopy(A) .

• Gup
copy(B) was a contributor in the creation of GC′ . This creates the triple

GC' prov:wasDerivedFrom G
up
copy(B) .

• Gup
sub(copy(B)) was a contributor in the creation of GC′ . This creates the triple

GC' prov:wasDerivedFrom G
up
sub(copy(B)) .

• GC′ was a new version of GC . This creates the triple

GC prov:wasRevisionOf GC' .

• :delete-C-YYYYMMDD's start and end time. This creates the two triples:

� :delete-C-YYYYMMDD prov:startedAtTime

"YYYY-MM-DDYThh:mm:ssZ"∧∧xsd:dateTime .

� :delete-C-YYYYMMDD prov:endedAtTime

"YYYY-MM-DDYThh:mm:ssZ"∧∧xsd:dateTime .

The above list is shown in Figure B.6.

B.2.2.2 Intersection

Insert C invokes Jena to produce Gup
sub(copy(B)) ≡ Gcopy(A)∩G

up
copy(B) and then to insert

that into graph GC resulting in GC′ . The following information is then added to Pent(C′):

• :insert-C-YYYYMMDD, an instance of rgprov:InsertOperation, that represents an

insert operation performed on GC . This creates the triple

:insert-C-YYYYMMDD rdf:type rgprov:InsertOperation .

142 Appendix B Application of RGPROV - Extended

Figure B.5: Provenance of Insert Propagation on Graph from Union.

Figure B.6: Provenance of Delete Propagation on Graph from Union.

• :jena3.1.1 ran the insert operation :insert-C-YYYYMMDD. This creates the triple

:insert-C-YYYYMMDD prov:wasAssociatedWith :jena3.1.1 .

• Gup
sub(copy(B)), an instance of rgprov:UpdateGraph, that represents the subgraph of

Gup
copy(B) to be inserted. This creates the triple

G
up
sub(copy(B)) rdf:type rgprov:UpdateGraph .

• Gcopy(A) was a contributor in the creation of Gup
sub(copy(B)). This creates the triple

G
up
sub(copy(B)) prov:wasDerivedFrom :Gcopy(A) .

• Gup
sub(copy(B)) was derived from Gup

copy(B). This creates the triple

G
up
sub(copy(B)) prov:wasDerivedFrom G

up
copy(B) .

Appendix B Application of RGPROV - Extended 143

• :insert-C-YYYYMMDD used Gup
sub(copy(B)) in its insert operation. This creates the

triple :insert-C-YYYYMMDD rgprov:inserted G
up
sub(copy(B)) .

• :insert-C-YYYYMMDD used GC in its insert operation. This creates the triple

:insert-C-YYYYMMDD prov:used GC.

• GC′ was produced by :insert-C-YYYYMMDD. This creates the triple

GC' prov:wasGeneratedBy :insert-C-YYYYMMDD .

• Gup
copy(B) was a contributor in the creation of GC′ . This creates the triple

GC' prov:wasDerivedFrom G
up
copy(B) .

• Gup
sub(copy(B)) was a contributor in the creation of GC′ . This creates the triple

GC' prov:wasDerivedFrom G
up
sub(copy(B)) .

• Gcopy(A) was a contributor in the creation of GC′ . This creates the triple GC'

prov:wasDerivedFrom :Gcopy(A) .

• GC′ was a new version of GC . This creates the triple

GC prov:wasRevisionOf GC' .

• :insert-C-YYYYMMDD's start and end time. This creates the two triples:

� :insert-C-YYYYMMDD prov:startedAtTime

"YYYY-MM-DDYThh:mm:ssZ"∧∧xsd:dateTime .

� :insert-C-YYYYMMDD prov:endedAtTime

"YYYY-MM-DDYThh:mm:ssZ"∧∧xsd:dateTime .

The above list is shown in Figure B.7.

Delete C invokes Jena to delete from GC the triples in Gup
copy(B) resulting in graph

GC′ . The following information is then added to Pent(C′):

• :delete-C-YYYYMMDD, an instance of rgprov:InsertOperation, that represents a

delete operation performed on GC . This creates the triple

:delete-C-YYYYMMDD rdf:type rgprov:DeleteOperation .

• :jena3.1.1 ran the delete operation :delete-C-YYYYMMDD. This creates the triple

:delete-C-YYYYMMDD prov:wasAssociatedWith :jena3.1.1 .

• :delete-C-YYYYMMDD used Gup
copy(B) in its delete operation. This creates the

triple :delete-C-YYYYMMDD rgprov:deleted G
up
copy(B) .

• :delete-C-YYYYMMDD used GC in its delete operation. This creates the triple

:delete-C-YYYYMMDD prov:used GC .

144 Appendix B Application of RGPROV - Extended

Figure B.7: Provenance of Insert Propagation on Graph from Intersection and
Di�erence Case 2 and of Delete Propagation on Graph from Di�erence Case 1.

• GC′ was produced by :delete-C-YYYYMMDD. This creates the triple

GC' prov:wasGeneratedBy :delete-C-YYYYMMDD .

• Gup
copy(B) was a contributor in the creation of GC′ . This creates the triple

GC' prov:wasDerivedFrom G
up
copy(B) .

• GC′ was a new version of GC . This creates the triple

GC prov:wasRevisionOf GC' .

• :delete-C-YYYYMMDD's start and end time. This creates the two triples:

� :delete-C-YYYYMMDD prov:startedAtTime

"YYYY-MM-DDYThh:mm:ssZ"∧∧xsd:dateTime .

� :delete-C-YYYYMMDD prov:endedAtTime

"YYYY-MM-DDYThh:mm:ssZ"∧∧xsd:dateTime .

The above list is shown in Figure B.8.

B.2.2.3 Di�erence Case 1

This case studies Gcopy(A) \Gcopy(B).

Insert This operation results in deleting from GC the triples in Gup
copy(B). As its results

are equivalent to deleting from a graph produced from intersection, we refer the reader

to Section B.2.2.2.

Appendix B Application of RGPROV - Extended 145

Figure B.8: Provenance of Delete Propagation on Graph from Intersection and
Di�erence Case 2 and of Insert Propagation on Graph from Di�erence Case 1.

Delete This operation results in inserting into GC the triples in Gup
copy(B) ∩ Gcopy(A).

As its results are equivalent to inserting into a graph produced from intersection, we

refer the reader to Section B.2.2.2.

B.2.2.4 Di�erence Case 2

This case studies Gcopy(B) \Gcopy(A).

Insert This operation results in inserting into GC the triples in Gup
copy(B) \ Gcopy(A).

As its results are equivalent to inserting into a graph produced from intersection, with

the only di�erence being how Gup
sub(copy(B)) is produced, we refer the reader to Section

B.2.2.2.

Delete Deleting triples from Gcopy(B) results in deleting from GC the triples in Gup
copy(B)

As its results are equivalent to deleting from a graph produced from intersection, we refer

the reader to Section B.2.2.2.

B.2.3 Re-Entailment

After C invokes Jena to entail Gent(C′), the following information is added to Pent(C′):

146 Appendix B Application of RGPROV - Extended

• :ge-C3-YYYYMMDD, an instance of rgprov:RDFSEntailment, that represents an

entailment operation performed on - a portion of - GC′ . This creates the triple

:ge-C3-YYYYMMDD rdf:type rgprov:RDFSEntailment .

• :jena3.1.1 ran the entailment operation :ge-C3-YYYYMMDD. This creates the

triple :ge-C3-YYYYMMDD prov:wasAssociatedWith :jena3.1.1 .

• :ge-C3-YYYYMMDD used GC′ to produce Gent(C′). This creates the triple

:ge-C3-YYYYMMDD prov:used GC' .

• Gent(C′) was produced by :ge-C3-YYYYMMDD. This creates the triple

Gent(C') prov:wasGeneratedBy :ge-C3-YYYYMMDD .

• GC′ was a contributor in the creation of Gent(C′), more speci�cally GC′ entailed

Gent(C′). This creates the triple Gent(C') rgprov:wasEntailedFrom GC' .

• Gent(C′) was derived from Gup
copy(B), and if Gup

sub(copy(B)) was used then also that

Gent(C′) was derived from Gup
sub(copy(B)). This creates one or both of the following

two triples:

� Gent(C') prov:wasDerivedFrom G
up
copy(B) .

� Gent(C') prov:wasDerivedFrom G
up
sub(copy(B)) .

• Gent(C′) is a new version of Gent(C). This creates the triple

Gent(C) prov:wasRevisionOf Gent(C') .

• :ge-C3-YYYYMMDD's start and end time. This creates the two triples:

� :ge-C3-YYYYMMDD prov:startedAtTime

"YYYY-MM-DDYThh:mm:ssZ"∧∧xsd:dateTime .

� :ge-C3-YYYYMMDD prov:endedAtTime

"YYYY-MM-DDYThh:mm:ssZ"∧∧xsd:dateTime .

The above list constitutes the �nal additions to Pent(C′) and is shown in Figures B.9 and

B.10.

Appendix B Application of RGPROV - Extended 147

Figure B.9: Final Iteration of Pent(C′) Using all the Update Graph.

Figure B.10: Final Iteration of Pent(C′) Using a Subgraph of the Update Graph.

Appendix C

Extending the Evaluation

Framework

C.1 Suggested Modi�cations

In this section, we describe the proposed changes that can be applied to instances and

relations in our evaluation framework. These are listed below per instance type.

1. University Instances: a new university may be created and an existing one may be

deleted. This would require the user to input, instead of the number of universities

to be generated, a minimum number and a maximum number of universities to be

generated. A university may also undergo a name change.

2. Department Instances: In addition to creating new departments and deleting ex-

isting ones, the following changes may be applied:

(a) Name change.

(b) Merge two departments together.

(c) Split an existing department into two departments.

3. People instances: the suggested modi�cations apply to all types of faculty and

student instances.

(a) Name change.

(b) Telephone change.

(c) Email change.

(d) Move to a di�erent department in the same university.

149

150 Appendix C Extending the Evaluation Framework

(e) Move to a di�erent department in a di�erent university.

4. Faculty instances: the suggested modi�cations apply to all types of faculty in-

stances.

(a) Give one or more additional courses.

(b) Stop giving one or more courses.

5. Full Professor: In addition to creating new full professors and deleting existing

ones, the following changes may be applied:

(a) If they are chair of a department, then they may be removed as chair of said

department.

(b) Make chair of department.

6. Associate Professor: In addition to creating new associate professors and deleting

existing ones, an associate professor may be promoted to full professor.

7. Assistant Professor: In addition to creating new assistant professors and deleting

existing ones, an assistant professor may be promoted to associate professor.

8. Lecturer: In addition to creating new lecturers and deleting existing ones, a lecturer

may be promoted to assistant professor.

9. Student instances: the suggested modi�cations apply to all types of student in-

stances.

(a) Take one or more additional courses.

(b) Stop taking one or more courses.

10. Graduate Student: In addition to creating new graduate students and deleting

existing ones, a graduate student may become a lecturer, at the same university or

at a di�erent university. This requires the deletion of any courses they take as well

as having a faculty member as an adviser. It also requires providing them with

courses to give and students to advise.

11. Undergraduate Student: In addition to creating new undergraduate students and

deleting existing ones, an undergraduate student may become a graduate student,

at the same university or at a di�erent university.

12. Project: In addition to creating new projects and deleting existing ones, the fol-

lowing changes may be applied:

(a) A new budget.

Appendix C Extending the Evaluation Framework 151

(b) A new end date.

(c) Mark as complete if no longer active.

13. Research Group: In addition to creating new research groups and deleting existing

ones, the following changes may be applied:

(a) Name change.

(b) Merging two research groups together.

(c) Split a research group into two others.

Note that the following need to be taken into consideration:

1. When deleting university and department instances, a decision needs to be made

whether all its faculty, students, courses, etc. need to be deleted as well or moved

to a di�erent university or department respectively.

2. When deleting faculty instances or when moving them to new departments:

(a) Any courses they give, provided they themselves are not deleted as well, need

to be assigned new lecturers.

(b) The students who have the deleted faculty as advisers, provided they them-

selves are not deleted as well, need to provided a new adviser. They may not

necessarily be the case in the real-world, and may not be implemented.

3. When deleting a course, the relation linking it to the faculty that gives it is to be

deleted as well.

C.2 Suggested Categories of Queries

In this section, we describe the proposed categories of queries that the Evaluation Frame-

work may be extended to produce in addition those of LUBM and UOBM.

C.2.1 Querying Evolving Datasets

The suggested queries below are related to evolving datasets, they have been adapted

from EvoGen's queries.

Retrieval of a speci�c version: The user must be able to retrieve a speci�c version

of a dataset.

Queries on changes: The user must be able to query the changes a dataset has gone

through.

152 Appendix C Extending the Evaluation Framework

C.2.2 Querying Provenance Graphs

The suggested queries below are related to the generated provenance graphs. Note that

most of the below have been adapted from Chebotko et al. (2012)'s test queries.

1. Dependencies:

(a) Find all derivation dependencies of all entities.

(b) Find all derivation dependencies of all processes.

(c) Find all usage dependencies of all entities.

(d) Find all generation dependencies of all entities.

(e) Find all attribution dependencies.

2. Entities: Find all entities which a particular graph depends on.

3. Activities: Find all activities which resulted in a particular graph.

4. Agents:

(a) What are the graphs that an agent contributed to?

(b) Chain of Custody: Find all agents whose contribution resulted in a particular

graph. This has been suggested by Allen et al. (2015).

5. Time span: Find the time span between the oldest and the newest graph. This has

been suggested by Allen et al. (2015)

Appendix D

Chain of Events

In our main work, we only considered re�ecting one update on the Graph GC . We now

look at how a chain of updates needs to be propagated, taking into consideration the old

entities needed and the entities that need to be fetched or to have been stored.

For readability, we revert to using G1 for Gcopy(A), G2 for Gcopy(B), and G3 for GC . The

update operation performed on G2 is Upop using the update graph Gup and resulting in

G2 becoming the updated graph G′2. The second update graph to be applied to any of

G1 or G′2 graph is Gup′ and the third is Gup′′ .

For each of the four set operations, we consider 32 cases where a sequence of updates

may occur. The �rst 16 cases are shown in Table D.1 and re�ect changes after initially

performing an Insert on Graph G2. The second 16 cases are shown in Table D.2 and

re�ect changes after initially performing a Delete on Graph G2.

D.1 Union

Inserting into a graph created by performing a union is straightforward regardless of the

previous sequence of updates. Only the update needs to be fetched and applied on G3.

Deleting, however, requires additional inspection. In addition to requiring the other

source graph, we must check if there has been any updates on it. If no updates were

previously performed, then this is straightforward as explained in Table 4.1. If, however,

an update had been performed on the other source graph, then there is a need for either

that updated graph or the old one and any updates that were applied on it.

The above is shown in Tables D.3, D.4, D.5, D.6, D.7, D.8, D.9, and D.10.

153

154 Appendix D Chain of Events

Event 1 Event 2 Event 3
Insert Gup Insert Gup′ into G′2 resulting in G′′2. Insert Gup′′ into G′′2.
into G2 Insert Gup′′ into G1.
resulting in G′2. Propagate update resulting in G′3 Delete Gup′′ from G′′2.

becoming G′′3. Delete Gup′′ from G1.
Propagate update Insert Gup′ into G1 resulting in G′1. Insert Gup′′ into G′2
resulting in G3 Insert Gup′′ into G′1.
becoming G′3. Propagate update resulting in G′3 Delete Gup′′ from G′2.

becoming G′′3. Delete Gup′′ from G′1.
Delete Gup′ from G′2 resulting in G′′2. Insert Gup′′ into G′′2.

Insert Gup′′ into G1.
Propagate update resulting in G′3 Delete Gup′′ from G′′2.
becoming G′′3. Delete Gup′′ from G1.
Delete Gup′ from G1 resulting in G′1. Insert Gup′′ into G′2.

Insert Gup′′ into G′1.
Propagate update resulting in G′3 Delete Gup′′ from G′2.
becoming G′′3. Delete Gup′′ from G′1.

Table D.1: Chain of Updates After Insert

Event 1 Event 2 Event 3
Delete Gup Insert Gup′ into G′2 resulting in G′′2. Insert Gup′′ into G′′2.
from G2 Insert Gup′′ into G1.
resulting in G′2. Propagate update resulting in G′3 Delete Gup′′ from G′′2.

becoming G′′3. Delete Gup′′ from G1.
Propagate update Insert Gup′ into G1 resulting in G′1. Insert Gup′′ into G′2
resulting in G3 Insert Gup′′ into G′1.
becoming G′3. Propagate update resulting in G′3 Delete Gup′′ from G′2.

becoming G′′3. Delete Gup′′ from G′1.
Delete Gup′ from G′2 resulting in G′′2. Insert Gup′′ into G′′2.

Insert Gup′′ into G1.
Propagate update resulting in G′3 Delete Gup′′ from G′′2.
becoming G′′3. Delete Gup′′ from G1.
Delete Gup′ from G1 resulting in G′1. Insert Gup′′ into G′2.

Insert Gup′′ into G′1.
Propagate update resulting in G′3 Delete Gup′′ from G′2.
becoming G′′3. Delete Gup′′ from G′1.

Table D.2: Chain of Updates After Delete

A
p
p
en
d
ix

D
C
h
a
in

o
f
E
v
en
ts

155

Table D.3: Chain of Updates 1 for Graph Union.

156
A
p
p
en
d
ix

D
C
h
a
in

o
f
E
v
en
ts

Table D.4: Chain of Updates 2 for Graph Union.

A
p
p
en
d
ix

D
C
h
a
in

o
f
E
v
en
ts

157

Table D.5: Chain of Updates 3 for Graph Union.

158
A
p
p
en
d
ix

D
C
h
a
in

o
f
E
v
en
ts

Table D.6: Chain of Updates 4 for Graph Union.

A
p
p
en
d
ix

D
C
h
a
in

o
f
E
v
en
ts

159

Table D.7: Chain of Updates 5 for Graph Union.

160
A
p
p
en
d
ix

D
C
h
a
in

o
f
E
v
en
ts

Table D.8: Chain of Updates 6 for Graph Union.

A
p
p
en
d
ix

D
C
h
a
in

o
f
E
v
en
ts

161

Table D.9: Chain of Updates 7 for Graph Union.

162
A
p
p
en
d
ix

D
C
h
a
in

o
f
E
v
en
ts

Table D.10: Chain of Updates 8 for Graph Union.

Appendix D Chain of Events 163

D.2 Intersection

Inserting into a graph created by performing an intersection requires additional inspec-

tion. In addition to requiring the other source graph, we must check if there has been

any updates on it. If no updates were previously performed, then this is straightforward

as explained in Table 4.1. If, however, an update had been performed on the other source

graph, then there is a need for either that updated graph or the old one and any updates

that were applied on it.

Deleting is straightforward regardless of the previous sequence of updates. Only the

update needs to be fetched and applied on G3.

The above is shown in Tables D.11, D.12, D.13, D.14, D.15, D.16, D.17, and D.18.

D.3 Di�erence Case 1

Similar to intersection, inserting into a graph created by performing an intersection

requires additional inspection. In addition to requiring the other source graph, we must

check if there has been any updates on it. If no updates were previously performed,

then this is straightforward as explained in Table 4.1. If, however, an update had been

performed on the other source graph, then there is a need for either that updated graph

or the old one and any updates that were applied on it.

Deleting is straightforward regardless of the previous sequence of updates. Only the

update needs to be fetched and applied on G3.

The above is shown in Tables D.19, D.20, D.21, D.22, D.23, D.24, D.25, and D.26.

D.4 Di�erence Case 2

Similar to intersection and di�erence case 1, inserting into a graph created by performing

an intersection requires additional inspection. In addition to requiring the other source

graph, we must check if there has been any updates on it. If no updates were previously

performed, then this is straightforward as explained in Table 4.1. If, however, an update

had been performed on the other source graph, then there is a need for either that

updated graph or the old one and any updates that were applied on it.

Deleting is straightforward regardless of the previous sequence of updates. Only the

update needs to be fetched and applied on G3.

The above is shown in Tables D.27, D.28, D.29, D.30, D.31, D.32, D.33, and D.30.

164
A
p
p
en
d
ix

D
C
h
a
in

o
f
E
v
en
ts

Table D.11: Chain of Updates 1 for Graph Intersection.

A
p
p
en
d
ix

D
C
h
a
in

o
f
E
v
en
ts

165

Table D.12: Chain of Updates 2 for Graph Intersection.

166
A
p
p
en
d
ix

D
C
h
a
in

o
f
E
v
en
ts

Table D.13: Chain of Updates 3 for Graph Intersection.

A
p
p
en
d
ix

D
C
h
a
in

o
f
E
v
en
ts

167

Table D.14: Chain of Updates 4 for Graph Intersection.

168
A
p
p
en
d
ix

D
C
h
a
in

o
f
E
v
en
ts

Table D.15: Chain of Updates 5 for Graph Intersection.

A
p
p
en
d
ix

D
C
h
a
in

o
f
E
v
en
ts

169

Table D.16: Chain of Updates 6 for Graph Intersection.

170
A
p
p
en
d
ix

D
C
h
a
in

o
f
E
v
en
ts

Table D.17: Chain of Updates 7 for Graph Intersection.

A
p
p
en
d
ix

D
C
h
a
in

o
f
E
v
en
ts

171

Table D.18: Chain of Updates 8 for Graph Intersection.

172
A
p
p
en
d
ix

D
C
h
a
in

o
f
E
v
en
ts

Table D.19: Chain of Updates 1 for Graph Di�erence 1.

A
p
p
en
d
ix

D
C
h
a
in

o
f
E
v
en
ts

173

Table D.20: Chain of Updates 2 for Graph Di�erence 1.

174
A
p
p
en
d
ix

D
C
h
a
in

o
f
E
v
en
ts

Table D.21: Chain of Updates 3 for Graph Di�erence 1.

A
p
p
en
d
ix

D
C
h
a
in

o
f
E
v
en
ts

175

Table D.22: Chain of Updates 4 for Graph Di�erence 1.

176
A
p
p
en
d
ix

D
C
h
a
in

o
f
E
v
en
ts

Table D.23: Chain of Updates 5 for Graph Di�erence 1.

A
p
p
en
d
ix

D
C
h
a
in

o
f
E
v
en
ts

177

Table D.24: Chain of Updates 6 for Graph Di�erence 1.

178
A
p
p
en
d
ix

D
C
h
a
in

o
f
E
v
en
ts

Table D.25: Chain of Updates 7 for Graph Di�erence 1.

A
p
p
en
d
ix

D
C
h
a
in

o
f
E
v
en
ts

179

Table D.26: Chain of Updates 8 for Graph Di�erence 1.

180
A
p
p
en
d
ix

D
C
h
a
in

o
f
E
v
en
ts

Table D.27: Chain of Updates 1 for Graph Di�erence 2.

A
p
p
en
d
ix

D
C
h
a
in

o
f
E
v
en
ts

181

Table D.28: Chain of Updates 2 for Graph Di�erence 2.

182
A
p
p
en
d
ix

D
C
h
a
in

o
f
E
v
en
ts

Table D.29: Chain of Updates 3 for Graph Di�erence 2.

A
p
p
en
d
ix

D
C
h
a
in

o
f
E
v
en
ts

183

Table D.30: Chain of Updates 4 for Graph Di�erence 2.

184
A
p
p
en
d
ix

D
C
h
a
in

o
f
E
v
en
ts

Table D.31: Chain of Updates 5 for Graph Di�erence 2.

A
p
p
en
d
ix

D
C
h
a
in

o
f
E
v
en
ts

185

Table D.32: Chain of Updates 6 for Graph Di�erence 2.

186
A
p
p
en
d
ix

D
C
h
a
in

o
f
E
v
en
ts

Table D.33: Chain of Updates 7 for Graph Di�erence 2.

A
p
p
en
d
ix

D
C
h
a
in

o
f
E
v
en
ts

187

Table D.34: Chain of Updates 8 for Graph Di�erence 2.

References

Computer Science Bibliography. DBLP. URL: http://dblp.uni-trier.de.

Karim Alami, Radu Ciucanu, and Engelbert Mephu Nguifo. EGG: A framework for

generating evolving RDF graphs. In ISWC Posters & Demonstrations, 2017.

M. David Allen, Adriane P Chapman, and Barbara Blaustein. Engineering Choices for

Open World Provenance. In Bertram Ludäscher and Beth Plale, editors, Interna-

tional Provenance and Annotation Workshop, pages 242�253, Allen2014, 2015. URL:

https://link.springer.com/chapter/10.1007/978-3-319-16462-5_25.

Günes Aluç, Olaf Hartig, M. Tamer Özsu, and Khuzaima Daudjee. Diversi-

�ed Stress Testing of RDF Data Management Systems. In The Semantic Web

- ISWC 2014, pages 197�212. Springer International Publishing, 2014. URL:

https://link.springer.com/chapter/10.1007/978-3-319-11964-9_13.

Renzo Angles, Peter Boncz, Josep Larriba-Pey, Irini Fundulaki, Thomas Neumann, Orri

Erling, Peter Neubauer, Norbert Martinez-Bazan, Venelin Kotsev, and Ioan Toma.

The Linked Data Benchmark Council: a Graph and RDF industry benchmarking

e�ort. ACM SIGMOD Record, 43(1):27�31, 2014.

Argyro Avgoustaki, Giorgos Flouris, Irini Fundulaki, and Dimitris Plexousakis.

Provenance Management for Evolving RDF Datasets. In International Se-

mantic Web Conference, pages 575�592. Springer, Cham, 2016. URL:

http://link.springer.com/10.1007/978-3-319-34129-3.

Guillaume Bagan, Angela Bonifati, Radu Ciucanu, George H. L. Fletcher, Aurelien

Lemay, and Nicky Advokaat. gMark: Schema-Driven Generation of Graphs and

Queries. IEEE Transactions on Knowledge and Data Engineering, 29(4):856�869, April

2017. URL: http://ieeexplore.ieee.org/document/7762945/.

Tim Berners-Lee, Wendy Hall, James Hendler, Kieron O'Hara, Nigel Shadbolt, and

Daniel J. Weitzner. A Framework for Web Science. Foundations and Trends in Web

Science, 1(1):1�130, January 2006.

Tim Berners-Lee, James Hendler, and Ora Lassila. The Semantic Web. Scienti�c Amer-

ican, pages 34�43, May 2001.

189

http://dblp.uni-trier.de
http://dblp.uni-trier.de
https://link.springer.com/chapter/10.1007/978-3-319-16462-5{_}25
https://link.springer.com/chapter/10.1007/978-3-319-16462-5{_}25
https://link.springer.com/chapter/10.1007/978-3-319-16462-5{_}25
https://link.springer.com/chapter/10.1007/978-3-319-11964-9{_}13
https://link.springer.com/chapter/10.1007/978-3-319-11964-9{_}13
https://link.springer.com/chapter/10.1007/978-3-319-11964-9{_}13
http://link.springer.com/10.1007/978-3-319-34129-3
http://link.springer.com/10.1007/978-3-319-34129-3
http://ieeexplore.ieee.org/document/7762945/
http://ieeexplore.ieee.org/document/7762945/
http://ieeexplore.ieee.org/document/7762945/

190 REFERENCES

Tim Berners-Lee, Vladimir Kolovski, Dan Connolly, James Hendler, and

Yoseph Scharf. A Reasoner for the Web, Unpublished, 2003. URL:

https://www.w3.org/2000/10/swap/doc/paper/index.pdf.

Christian Bizer and Andreas Schultz. The Berlin SPARQL Benchmark. Interna-

tional Journal on Semantic Web and Information Systems, 5(2):1�24, 2009. URL:

https://www.igi-global.com/article/berlin-sparql-benchmark/4112.

Rajendra Bose and James Frew. Lineage retrieval for scienti�c data processing: a survey.

ACM Computing Surveys (CSUR), 37(1):1�28, 2005.

Steve Bratt. Semantic Web, and Other Technologies to Watch, W3C Talk, 2007. URL:

https://www.w3.org/2007/Talks/0130-sb-W3CTechSemWeb.

David Murray Bridgeland and Michael N Huhns. Distributed Truth Maintenance. In

Proceedings of AAAI-90, pages 72�77, 1990.

Jeen Broekstra and Arjohn Kampman. Inferencing and Truth Maintenance in RDF

Schema: Exploring a Naive Practical Approach. InWorkshop on Practical and Scalable

Semantic Systems (PSSS), 2003.

Jeen Broekstra, Arjohn Kampman, and Frank van Harmelen. Sesame: A Generic Archi-

tecture for Storing and Querying RDF and RDF Schema. In Ian Harrock and James

Hendler, editors, The Semantic Web - ISWC 2002, pages 54�68. Springer, Berlin,

Heidelberg, 2002. URL: http://link.springer.com/10.1007/3-540-48005-6_7.

François Bry and Jakub Kotowski. Reason Maintenance - State of the Art. Technical

report, 2008. URL: http://epub.ub.uni-muenchen.de/14900/.

Peter Buneman, James Cheney, and Stijn Vansummeren. On the expres-

siveness of implicit provenance in query and update languages. ACM

Transactions on Database Systems, 33(4):1�47, November 2008. URL:

http://portal.acm.org/citation.cfm?doid=1412331.1412340.

Peter Buneman, Sanjeev Khanna, and Wang-chiew Tan. Data Provenance : Some Ba-

sic Issues. In FST TCS 2000: Foundations of Software Technology and Theoretical

Computer Science, pages 87�93, 2000a.

Peter Buneman, Sanjeev Khanna, and Wang-Chiew Tan. Why and where: A characteri-

zation of data provenance. In Proceedings of 8th International Conference on Database

Theory (ICDT'01), pages 316�330, 2001.

Peter Buneman, David Maier, and Jennifer Widom. Where was your data yesterday ,

and where will it go tomorrow? Data Annotation and Provenance for Scienti�c Appli-

cations. In Position paper for NSF Workshop on Information and Data Management

(IDM '00), pages 10�12, Chicago IL, 2000b.

https://www.w3.org/2000/10/swap/doc/paper/index.pdf
https://www.w3.org/2000/10/swap/doc/paper/index.pdf
https://www.igi-global.com/article/berlin-sparql-benchmark/4112
https://www.igi-global.com/article/berlin-sparql-benchmark/4112
https://www.w3.org/2007/Talks/0130-sb-W3CTechSemWeb
https://www.w3.org/2007/Talks/0130-sb-W3CTechSemWeb
http://link.springer.com/10.1007/3-540-48005-6{_}7
http://link.springer.com/10.1007/3-540-48005-6{_}7
http://link.springer.com/10.1007/3-540-48005-6{_}7
http://epub.ub.uni-muenchen.de/14900/
http://epub.ub.uni-muenchen.de/14900/
http://portal.acm.org/citation.cfm?doid=1412331.1412340
http://portal.acm.org/citation.cfm?doid=1412331.1412340
http://portal.acm.org/citation.cfm?doid=1412331.1412340

REFERENCES 191

Jeremy J. Carroll, Christian Bizer, Pat Hayes, and Patrick Stickler. Named graphs,

provenance and trust. In Proceedings of the 14th international conference on World

Wide Web - WWW '05, pages 613�622, New York, New York, USA, 2005. ACM Press.

Artem Chebotko, Eugenio De Hoyos, Carlos Gomez, Andrey Kashlev, Xiang Lian, and

Christine Reilly. UTPB: A Benchmark for Scienti�c Work�ow Provenance Storage and

Querying Systems. In 2012 IEEE 8th World Congress on Services, pages 17�24, 2012.

URL: http://ieeexplore.ieee.org/document/6274027/.

Paulo Pinheiro da Silva, Deborah L. Mcguinness, Nicholas Del Rio, and Li Ding. In-

ference Web in Action: Lightweight Use of the Proof Markup Language A Use Case

for Provenance. In Amit Sheth, Ste�en Staab, Mike Dean, Massimo Paolucci, Diana

Maynard, Timothy Finin, and Krishnaprasad Thirunarayan, editors, The Semantic

Web - ISWC 2008, pages 847�860. Springer, Berlin, Heidelberg, 2008.

Paulo Pinheiro da Silva, Deborah L. McGuinness, and Rob McCool. Knowledge Prove-

nance Infrastructure. IEEE Data Engineering Bulletin, 26(4):26�32, 2003.

Carlos Viegas Damásio, Anastasia Analyti, and Grigoris Antoniou. Provenance for

SPARQL queries. In The Semantic Web - ISWC 2012. Springer, Berlin, Heidelberg,

2012.

Johan de Kleer. An Assumption-Based TMS. Arti�cial Intelligence, 28(2):127�162,

March 1986.

Emanuele Della Valle, Stefano Ceri, Frank van Harmelen, and Dieter Fensel.

It's a Streaming World! Reasoning upon Rapidly Changing Informa-

tion. IEEE Intelligent Systems, 24(6):83�89, November 2009. URL:

http://ieeexplore.ieee.org/document/5372206/.

Renata Dividino, Simon Schenk, Sergej Sizov, and Ste�en Staab. Provenance, trust,

explanations - and all that other meta knowledge. KI, 23(2):24�30, February 2009.

Jon Doyle. A Truth Maintenance System. Arti�cial Intelligence, 12(3):231�272, Novem-

ber 1979.

Jon Doyle. The Ins and Outs of Reason Maintenance. In Proceedings of the Eighth

International Joint Conference on Arti�cial Intelligence, pages 349�351, 1983.

Aldo Franco Dragoni and Paolo Giorgini. Distributed Belief Revision. Autonomous

Agents and Multi-Agent Systems, 6(2):115�143, 2003.

Aldo Franco Dragoni and Puliti Puliti. Distributed Belief Revision versus Distributed

Truth Maintenance. In Proceedings. Sixth International Conference on Tools with

Arti�cial Intelligence, pages 499�505, November 1994.

http://ieeexplore.ieee.org/document/6274027/
http://ieeexplore.ieee.org/document/6274027/
http://ieeexplore.ieee.org/document/6274027/
http://ieeexplore.ieee.org/document/5372206/
http://ieeexplore.ieee.org/document/5372206/
http://ieeexplore.ieee.org/document/5372206/

192 REFERENCES

Giorgos Flouris, Irini Fundulaki, Panagiotis Pediaditis, Yannis Theoharis, and Vassilis

Christophides. Coloring RDF triples to capture provenance. In Abraham Bernstein,

David R. Karger, Tom Heath, Lee Feigenbaum, Diana Maynard, Enrico Motta, and

Krishnaprasad Thirunarayan, editors, The Semantic Web - ISWC 2009, pages 196�

212. Springer, Berlin, Heidelberg, 2009.

Mark S Fox and Jingwei Huang. Knowledge Provenance: An Approach to Modeling and

Maintaining The Evolution and Validity of Knowledge. EIL Technical Report, 2003.

URL: http://www.eil.toronto.edu/wp-content/uploads/km/papers/fox-kp1.pdf.

Paula Gearon, Alexandre Passant, and Axel Polleres. SPARQL 1.1 Update, W3C Rec-

ommendation 21 March, 2013. URL: https://www.w3.org/TR/2013/REC-sparql11-

update-20130321/.

Floris Geerts, Grigoris Karvounarakis, Vassilis Christophides, and Irini Fundulaki. Al-

gebraic structures for capturing the provenance of SPARQL queries. Journal of the

ACM, 63(1), 2016. URL: http://dl.acm.org/citation.cfm?doid=2448496.2448516.

Yolanda Gil, Simon Miles, Khalid Belhajjame, Helena Deus, Daniel Gar-

ijo, Graham Klyne, Paolo Missier, Stian Soiland-Reyes, and Stephan Zednik.

PROV Model Primer, W3C Working Group Note 30 April, 2013. URL:

https://www.w3.org/TR/2013/NOTE-prov-primer-20130430/.

Boris Glavic and Gustavo Alonso. Perm: Processing Provenance and Data on the Same

Data Model through Query Rewriting. 2009 IEEE 25th International Conference on

Data Engineering, pages 174�185, 2009.

Carole Goble. Position Statement: Musings on Provenance, Work�ows, and (Semantic

Web) Annotations for Bioinformatics. In Workshop on Data Derivation and Prove-

nance, Chicago, 2002.

Todd J. Green, Grigoris Karvounarakis, Zachary G. Ives, and Val Tannen. Update

Exchange with Mappings and Provenance. In Proceedings of the 33rd International

Conference on Very Large Data Bases, pages 675�686, Vienna, Austria, 2007a. URL:

http://dl.acm.org/citation.cfm?id=1325851.1325929.

Todd J. Green, Grigoris Karvounarakis, and Val Tannen. Provenance Semirings. In

Proceedings of the Twenty-sixth ACM SIGMOD-SIGACT-SIGART Symposium on

Principles of Database Systems, pages 31�40, Beijing, China, 2007b. ACM. URL:

http://doi.acm.org/10.1145/1265530.1265535.

Paul Groth and Luc Moreau. PROV-Overview: An Overview of the PROV

Family of Documents, World Wide Web Consortium Note, 2013. URL:

http://www.w3.org/TR/2013/NOTE-prov-overview-20130430/.

Tom R. Gruber. A Translation Approach to Portable Ontology Speci�cations. Knowledge

Acquisition, 5(2):199�220, 1993.

http://www.eil.toronto.edu/wp-content/uploads/km/papers/fox-kp1.pdf
http://www.eil.toronto.edu/wp-content/uploads/km/papers/fox-kp1.pdf
http://www.eil.toronto.edu/wp-content/uploads/km/papers/fox-kp1.pdf
https://www.w3.org/TR/2013/REC-sparql11-update-20130321/
https://www.w3.org/TR/2013/REC-sparql11-update-20130321/
https://www.w3.org/TR/2013/REC-sparql11-update-20130321/
http://dl.acm.org/citation.cfm?doid=2448496.2448516
http://dl.acm.org/citation.cfm?doid=2448496.2448516
http://dl.acm.org/citation.cfm?doid=2448496.2448516
https://www.w3.org/TR/2013/NOTE-prov-primer-20130430/
https://www.w3.org/TR/2013/NOTE-prov-primer-20130430/
http://dl.acm.org/citation.cfm?id=1325851.1325929
http://dl.acm.org/citation.cfm?id=1325851.1325929
http://dl.acm.org/citation.cfm?id=1325851.1325929
http://doi.acm.org/10.1145/1265530.1265535
http://doi.acm.org/10.1145/1265530.1265535
http://www.w3.org/TR/2013/NOTE-prov-overview-20130430/
http://www.w3.org/TR/2013/NOTE-prov-overview-20130430/
http://www.w3.org/TR/2013/NOTE-prov-overview-20130430/

REFERENCES 193

Yuanbo Guo, Zhengxiang Pan, and Je� He�in. LUBM: A benchmark for OWL knowledge

base systems. Web Semantics, 3(2-3):158�182, 2005.

Ashish Gupta, Inderpal Singh Mumick, and Venkatramanan Siva Subrahmanian. Main-

taining Views Incrementally. ACM SIGMOD Record, 22(2):157�166, 1993.

Harry Halpin and James Cheney. Dynamic provenance for SPARQL updates. Interna-

tional Semantic Web Conference, pages 425�440, 2014.

Steve Harris and Andy Seaborne. SPARQL 1.1 Query Language, W3C Recommen-

dation 21 March, 2013. URL: https://www.w3.org/TR/2013/REC-sparql11-query-

20130321/.

Olaf Hartig. Provenance Information in the Web of Data. In Proceedings of the Linked

Data on the Web LDOW Workshop at WWW, volume 39, pages 1�9. CEUR-WS, 2009.

Olaf Hartig and Jun Zhao. Publishing and Consuming Provenance Metadata on the

Web of Linked Data. In Deborah L McGuinness, James R Michaelis, and LucEditors

Moreau, editors, Provenance and Annotation of Data and Processes, pages 78�90.

Springer, Berlin, Heidelberg, 2010.

Sandro Hawke, Ivan Herman, Bijan Parsia, Axel Polleres, and Andy Seaborne.

SPARQL 1.1 Entailment Regimes, W3C Recommendation 21 March, 2013. URL:

https://www.w3.org/TR/2013/REC-sparql11-entailment-20130321/.

Patrick J. Hayes and Peter F. Patel-Schneider. RDF 1.1 Semantics, W3C Recom-

mendation 25 February, 2014. URL: https://www.w3.org/TR/2014/REC-rdf11-mt-

20140225/.

Steven R. Haynes, Mark A. Cohen, and Frank E. Ritter. Designs for explaining intelligent

agents. International Journal of Human-Computer Studies, 67(1):90�110, January

2009.

Robert Ikeda, Semih Salihoglu, and Jennifer Widom. Provenance-based refresh in data-

oriented work�ows. In Proceedings of the 20th ACM International Conference on

Information and Knowledge Management, pages 1659�1668, 2011.

Robert Ikeda, Akash Das Sarma, and Jennifer Widom. Logical Provenance in Data-

Oriented Work�ows? In Proceedings of the 2013 IEEE International Confer-

ence on Data Engineering (ICDE 2013), ICDE '13, pages 877�888, 2013. URL:

http://dx.doi.org/10.1109/ICDE.2013.6544882.

Robert Ikeda and Jennifer Widom. Panda: A System for Provenance and Data. In

Proceedings of the 2nd USENIX Workshop on the Theory and Practice of Provenance

TaPP'10, volume 33, pages 1�8, 2010.

https://www.w3.org/TR/2013/REC-sparql11-query-20130321/
https://www.w3.org/TR/2013/REC-sparql11-query-20130321/
https://www.w3.org/TR/2013/REC-sparql11-query-20130321/
https://www.w3.org/TR/2013/REC-sparql11-entailment-20130321/
https://www.w3.org/TR/2013/REC-sparql11-entailment-20130321/
https://www.w3.org/TR/2014/REC-rdf11-mt-20140225/
https://www.w3.org/TR/2014/REC-rdf11-mt-20140225/
https://www.w3.org/TR/2014/REC-rdf11-mt-20140225/
http://dx.doi.org/10.1109/ICDE.2013.6544882
http://dx.doi.org/10.1109/ICDE.2013.6544882
http://dx.doi.org/10.1109/ICDE.2013.6544882

194 REFERENCES

Zachary G. Ives, Todd J. Green, Grigoris Karvounarakis, Nicholas E. Taylor, Val Tannen,

Partha Pratim Talukdar, Marie Jacob, and Fernando Pereira. The ORCHESTRA

Collaborative Data Sharing System. ACM SIGMOD Record, 37(3):26�32, 2008. URL:

http://portal.acm.org/citation.cfm?doid=1462571.1462577.

Felix Leif Keppmann, Maria Maleshkova, and Andreas Harth. DLUBM: A Benchmark for

Distributed Linked Data Knowledge Base Systems. In Hervé Panetto, Christophe De-

bruyne, Walid Gaaloul, Mike Papazoglou, Adrian Paschke, Claudio Agostino Ardagna,

and Robert Meersman, editors, On the Move to Meaningful Internet Systems. OTM

2017 Conferences, pages 427�444, 2017. URL: http://link.springer.com/10.1007/978-

3-319-73805-5.

Graham Klyne, Jeremy J. Carroll, and Brian McBride. RDF 1.1 Concepts

and Abstract Syntax, W3C Recommendation 25 February, 2014. URL:

http://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/.

Timothy Lebo, Satya Sahoo, Deborah L. McGuinness, Khalid Belhajjame, James Ch-

eney, David Corsar, Daniel Garijo, Stian Soiland-Reyes, Stephan Zednik, and Jun

Zhao. PROV-O: The PROV Ontology, W3C Recommendation 30 April, 2013. URL:

http://www.w3.org/TR/2013/REC-prov-o-20130430/.

Bernadette Farias Lóscio, C Burle, and Newton Calegari. Data on the Web Best Prac-

tices, W3C Recommendation 31 January, 2017. URL: https://www.w3.org/TR/dwbp.

Li Ma, Yang Yang, Zhaoming Qiu, Guotong Xie, Yue Pan, and Shengping Liu. Towards a

Complete OWL Ontology Benchmark. In York Sure and John Domingue, editors, Eu-

ropean Semantic Web Conference, pages 125�139. Springer, Berlin, Heidelberg, 2006.

URL: https://link.springer.com/chapter/10.1007%2F11762256_12.

Frank Manola, Eric Miller, and Brian McBride. RDF 1.1 Primer, W3C Working Group

Note 24 June 2014, June 2014. URL: http://www.w3.org/TR/2014/NOTE-rdf11-

primer-20140225/.

João P Martins. The Truth, the Whole Truth and Nothing But the Truth: An Indexed

Bibliography to the Literature of Truth Maintenance Systems. AI Magazine, 11(5):

7�25, 1990.

Deborah L. McGuinness. Ontologies Come of Age. In Dieter Fensel, Jim Hendler, Henry

Lieberman, and Wolfgang Wahlster, editors, Spinning the Sematic Web: Brining the

World Wide Web to Its Full Potential, pages 1�14. MIT Press, 2014.

Deborah L. McGuinness and Paulo Pinheiro Da Silva. Infrastructure for Web Expla-

nations. In Proceedings of 2nd International Semantic Web Conference - ISWC2003,

pages 113�129, 2003a.

http://portal.acm.org/citation.cfm?doid=1462571.1462577
http://portal.acm.org/citation.cfm?doid=1462571.1462577
http://portal.acm.org/citation.cfm?doid=1462571.1462577
http://link.springer.com/10.1007/978-3-319-73805-5
http://link.springer.com/10.1007/978-3-319-73805-5
http://link.springer.com/10.1007/978-3-319-73805-5
http://link.springer.com/10.1007/978-3-319-73805-5
http://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
http://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
http://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
http://www.w3.org/TR/2013/REC-prov-o-20130430/
http://www.w3.org/TR/2013/REC-prov-o-20130430/
https://www.w3.org/TR/dwbp
https://www.w3.org/TR/dwbp
https://www.w3.org/TR/dwbp
https://link.springer.com/chapter/10.1007{%}2F11762256{_}12
https://link.springer.com/chapter/10.1007{%}2F11762256{_}12
https://link.springer.com/chapter/10.1007{%}2F11762256{_}12
http://www.w3.org/TR/2014/NOTE-rdf11-primer-20140225/
http://www.w3.org/TR/2014/NOTE-rdf11-primer-20140225/
http://www.w3.org/TR/2014/NOTE-rdf11-primer-20140225/

REFERENCES 195

Deborah L. McGuinness and Paulo Pinheiro Da Silva. Registry-Based Support for In-

formation Integration. In Proceedings of IJCAI-2003 Workshop on Information Inte-

gration on the Web (IIWeb-03), pages 117�122, 2003b.

Deborah L. McGuinness and Paulo Pinheiro da Silva. Explaining answers from

the Semantic Web: the Inference Web approach. Web Semantics: Science, Ser-

vices and Agents on the World Wide Web, 1(4):397�413, October 2004. URL:

http://www.sciencedirect.com/science/article/pii/S1570826804000083.

Deborah L. McGuinness, Li Ding, Paulo Pinheiro da Silva, and Cynthia Chang. PML

2: A Modular Explanation Interlingua. In Proceedings of AAAI, volume 7, 2007.

Marios Meimaris. EvoGen: A generator for synthetic versioned RDF. In EDBT/ICDT

Workshops, 2016.

Marios Meimaris. Personal Communication (Email), September 2018.

Marios Meimaris and George Papastefanatos. The EvoGen Benchmark Suite for Evolving

RDF Data. In MEPDaW/LDQ@ ESWC, pages 20�35, 2016.

Marios Meimaris, George Papastefanatos, and Christos Pateritsas. Towards a Framework

for Managing Evolving Information Resources on the Data Web. In PROFILES@

ESWC, 2014. URL: http://ceur-ws.org/Vol-1151/paper6.pdf.

Paolo Missier, Jacek Caªa, and Eldarina Wijaya. The data, they are a-

changin'. In 8th USENIX Workshop on the Theory and Practice of Prove-

nance (TaPP 16), Washington, D.C., 2016. USENIX Association. URL:

https://www.usenix.org/conference/tapp16/workshop-program/presentation/missier.

Paolo Missier, Tanu Malik, and Jacek Cala. Report on the �rst international workshop

on incremental re-computation: Provenance and beyond. SIGMOD Rec., 47(4):35�38,

May 2019. ISSN 0163-5808. URL: http://doi.acm.org/10.1145/3335409.3335418.

Luc Moreau. The Foundations for Provenance on the Web. Founda-

tions and Trends in Web Science, 2(2-3):99�241, February 2010. URL:

https://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=8187020.

Luc Moreau, Belfrit Victor Batlajery, Trung Dong Huynh, Danius Michaelides, and

Heather Packer. A Templating System to Generate Provenance. IEEE Transactions

on Software Engineering, 44(2):103�121, 2018.

Luc Moreau, Ben Cli�ord, Juliana Freire, Joe Futrelle, Yolanda Gil, Paul Groth, Na-

talia Kwasnikowska, Simon Miles, Paolo Missier, Jim Myers, Beth Plale, Yogesh L

Simmhan, Eric Stephan, and Jan Van Den Bussche. The Open Provenance Model

Core Speci�cation (v1.1). Future Generation Computer Systems, pages 1�30, 2009.

URL: http://eprints.ecs.soton.ac.uk/18332/.

http://www.sciencedirect.com/science/article/pii/S1570826804000083
http://www.sciencedirect.com/science/article/pii/S1570826804000083
http://www.sciencedirect.com/science/article/pii/S1570826804000083
http://ceur-ws.org/Vol-1151/paper6.pdf
http://ceur-ws.org/Vol-1151/paper6.pdf
http://ceur-ws.org/Vol-1151/paper6.pdf
https://www.usenix.org/conference/tapp16/workshop-program/presentation/missier
https://www.usenix.org/conference/tapp16/workshop-program/presentation/missier
https://www.usenix.org/conference/tapp16/workshop-program/presentation/missier
http://doi.acm.org/10.1145/3335409.3335418
http://doi.acm.org/10.1145/3335409.3335418
http://doi.acm.org/10.1145/3335409.3335418
https://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=8187020
https://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=8187020
http://eprints.ecs.soton.ac.uk/18332/
http://eprints.ecs.soton.ac.uk/18332/
http://eprints.ecs.soton.ac.uk/18332/

196 REFERENCES

Luc Moreau, Paul Groth, and Trung Dong Huynh. Provenance: An Introdution to

PROV, 2014. URL: http://www.provbook.org/tutorial/provenanceweek2014/prov-

tutorial.pptx.

Luc Moreau, Paolo Missier, Khalid Belhajjame, Reza B'Far, James Cheney, Sam

Coppens, Stephen Cresswell, Yolanda Gil, Paul Groth, Graham Klyne, Timothy

Lebo, Jim McCusker, Simon Miles, James Myers, Satya Sahoo, and Curt Tilmes.

PROV-DM: The PROV Data Model, W3C Recommendation 30 April, 2013. URL:

http://www.w3.org/TR/2013/REC-prov-dm-20130430/.

Leora Morgenstern, Chris Welty, Harold Boley, and Gary Hallmark. RIF

Primer (Second Edition), W3C Working Group Note 5 February, 2013. URL:

http://www.w3.org/TR/2013/NOTE-rif-primer-20130205/.

Mohamed Morsey, Jens Lehmann, Sören Auer, and Axel-Cyrille Ngonga Ngomo. DBpe-

dia SPARQL Benchmark � Performance. In Lora Aroyo, Chris Welty, Harith Alani,

Jamie Taylor, Abraham Bernstein, Lalana Kagal, Natasha Noy, and Eva Blomqvist,

editors, The Semantic Web - ISWC 2011, pages 454�469. Springer, Berlin, Heidelberg,

2011.

Boris Motik, Bernardo Cuenca Grau, Ian Horrocks, Zhe Wu, Achille Fokoue, and Carsten

Lutz. OWL 2 Web Ontology Language Pro�les, W3C Recommendation 11 December,

2012a. URL: https://www.w3.org/TR/2012/REC-owl2-pro�les-20121211/.

Boris Motik, Yavor Nenov, Robert Piro, and Ian Horrocks. Incremental Update of

Datalog Materialisation: The Backward / Forward Algorithm. In Proceedings of the

Twenty-Ninth AAAI Conference on Arti�cial Intelligence, pages 1560�1568. AAAI

Press, 2015. URL: http://dl.acm.org/citation.cfm?id=2886521.2886537.

Boris Motik, Peter F. Patel-Schneider, Bernardo Cuenca Grau, Ian Horrocks, Bi-

jan Parsia, and Uli Sattler. OWL 2 Web Ontology Language Direct Se-

mantics (Second Edition), W3C Recommendation 11 December, 2012b. URL:

https://www.w3.org/TR/2012/REC-owl2-direct-semantics-20121211/.

Boris Motik, Peter F. Patel-Schneider, Bijan Parsia, Conrad Bock, Achille Fokoue, Pe-

ter Haase, Rinke Hoekstra, Ian Horrocks, Alan Ruttenberg, Uli Sattler, and Michael

Smith. OWL 2 Web Ontology Language - Structural Speci�cation and Functional-

Style Syntax (Second Edition), W3C Recommendation 11 December, 2012c. URL:

https://www.w3.org/TR/2012/REC-owl2-syntax-20121211/.

W3C OWL Working Group. OWL 2 Web Ontology Language Document

Overview (Second Edition), W3C Recommendation 11 December, 2012. URL:

https://www.w3.org/TR/2012/REC-owl2-overview-20121211/.

http://www.provbook.org/tutorial/provenanceweek2014/prov-tutorial.pptx
http://www.provbook.org/tutorial/provenanceweek2014/prov-tutorial.pptx
http://www.provbook.org/tutorial/provenanceweek2014/prov-tutorial.pptx
http://www.provbook.org/tutorial/provenanceweek2014/prov-tutorial.pptx
http://www.w3.org/TR/2013/REC-prov-dm-20130430/
http://www.w3.org/TR/2013/REC-prov-dm-20130430/
http://www.w3.org/TR/2013/NOTE-rif-primer-20130205/
http://www.w3.org/TR/2013/NOTE-rif-primer-20130205/
http://www.w3.org/TR/2013/NOTE-rif-primer-20130205/
https://www.w3.org/TR/2012/REC-owl2-profiles-20121211/
https://www.w3.org/TR/2012/REC-owl2-profiles-20121211/
http://dl.acm.org/citation.cfm?id=2886521.2886537
http://dl.acm.org/citation.cfm?id=2886521.2886537
http://dl.acm.org/citation.cfm?id=2886521.2886537
https://www.w3.org/TR/2012/REC-owl2-direct-semantics-20121211/
https://www.w3.org/TR/2012/REC-owl2-direct-semantics-20121211/
https://www.w3.org/TR/2012/REC-owl2-direct-semantics-20121211/
https://www.w3.org/TR/2012/REC-owl2-syntax-20121211/
https://www.w3.org/TR/2012/REC-owl2-syntax-20121211/
https://www.w3.org/TR/2012/REC-owl2-syntax-20121211/
https://www.w3.org/TR/2012/REC-owl2-overview-20121211/
https://www.w3.org/TR/2012/REC-owl2-overview-20121211/
https://www.w3.org/TR/2012/REC-owl2-overview-20121211/

REFERENCES 197

Hitzler Pascal, Markus Krotzsch, Pasia Bijan, Patel-Schneider Peter, and Rudolph Se-

bastian. OWL 2 Web Ontology Language Primer (Second Edition), W3C Recommen-

dation 11 December, 2012. URL: https://www.w3.org/TR/2012/REC-owl2-primer-

20121211/.

Beatriz Pérez, Julio Rubio, and Carlos Sáenz-Adán. A systematic review of provenance

systems. Knowledge and Information Systems, 57(3):495�543, December 2018. URL:

https://doi.org/10.1007/s10115-018-1164-3.

João Felipe N. Pimentel, Paolo Missier, Leonardo Murta, and Vanessa Braganholo.

Versioned-PROV: A PROV Extension to Support Mutable Data Entities. In Khalid

Belhajjame, Ashish Gehani, and Pinar Alper, editors, Provenance and Annotation of

Data and Processes, pages 87�100. Springer International Publishing, 2018.

Stuart Russell and Peter Norvig. Knowledge Represenation. In Arti�icial Intelligence A

Modern Approach, chapter 12. Prentice Hall, third edition, 2010.

Satya Sahoo, Roger S. Barga, Jonathan Goldstein, and Amit P Sheth. Provenance

Algebra and Materialized View-based Provenance Management. Technical report,

Microsoft Research, 2008. URL: http://research.microsoft.com/pubs/76523/tr-2008-

170.pdf.

Michael Schmidt, Thomas Hornung, Michael Meier, Christoph Pinkel, and Georg Lausen.

SP2bench: A SPARQL performance benchmark. In ICDE'09. IEEE 25th International

Conference on Data Engineering, pages 222�233, 2009.

Michael Schneider, Jeremy J. Carroll, Ivan Herman, and Peter F. Patel-Schneider. OWL

2 Web Ontology Language RDF-Based Semantics (Second Edition), W3C Recom-

mendation 11 December, 2012. URL: https://www.w3.org/TR/2012/REC-owl2-rdf-

based-semantics-20121211/.

Nigel Shadbolt, Tim Berners-Lee, and Wendy Hall. The Semantic Web

Revisited. IEEE Intelligent Systems, 21(3):96�101, May 2006. URL:

http://ieeexplore.ieee.org/document/1637364/.

Yogesh L Simmhan, Beth Plale, and Dennis Gannon. A survey of data prove-

nance in e-science. SIGMOD Record, 34(3):31�36, September 2005. URL:

http://doi.acm.org/10.1145/1084805.1084812.

Steve Speicher, John Arwe, and Ashok Malhotra. Linked Data Platform 1.0, W3C

Recommendation 30 April, 2015. URL: https://www.w3.org/TR/ldp/.

Yannis Theoharis, Irini Fundulaki, Grigoris Karvounarakis, and Vassilis Christophides.

On provenance of Queries on Semantic Web Data. IEEE Internet Computing, 15(1):

31�39, January 2011. URL: http://dx.doi.org/10.1109/MIC.2010.127.

https://www.w3.org/TR/2012/REC-owl2-primer-20121211/
https://www.w3.org/TR/2012/REC-owl2-primer-20121211/
https://www.w3.org/TR/2012/REC-owl2-primer-20121211/
https://doi.org/10.1007/s10115-018-1164-3
https://doi.org/10.1007/s10115-018-1164-3
https://doi.org/10.1007/s10115-018-1164-3
http://research.microsoft.com/pubs/76523/tr-2008-170.pdf
http://research.microsoft.com/pubs/76523/tr-2008-170.pdf
http://research.microsoft.com/pubs/76523/tr-2008-170.pdf
http://research.microsoft.com/pubs/76523/tr-2008-170.pdf
https://www.w3.org/TR/2012/REC-owl2-rdf-based-semantics-20121211/
https://www.w3.org/TR/2012/REC-owl2-rdf-based-semantics-20121211/
https://www.w3.org/TR/2012/REC-owl2-rdf-based-semantics-20121211/
https://www.w3.org/TR/2012/REC-owl2-rdf-based-semantics-20121211/
http://ieeexplore.ieee.org/document/1637364/
http://ieeexplore.ieee.org/document/1637364/
http://ieeexplore.ieee.org/document/1637364/
http://doi.acm.org/10.1145/1084805.1084812
http://doi.acm.org/10.1145/1084805.1084812
http://doi.acm.org/10.1145/1084805.1084812
https://www.w3.org/TR/ldp/
https://www.w3.org/TR/ldp/
http://dx.doi.org/10.1109/MIC.2010.127
http://dx.doi.org/10.1109/MIC.2010.127

198 REFERENCES

Raphael Volz, Ste�en Staab, and Boris Motik. Incremental Maintenance Of Materialized

Ontologies. In Robert Meersman, Zahir Tari, and Douglas C. Schmidt, editors, On

The Move to Meaningful Internet Systems 2003: CoopIS, DOA, and ODBASE, pages

707�724. Springer, Berlin, Heidelberg, 2003.

Raphael Volz, Ste�en Staab, and Boris Motik. Incrementally maintaining materializa-

tions of ontologies stored in logic databases. Journal on Data Semantics II, pages

1�34, 2005.

Timo Weithöner, Thorsten Liebig, Marko Luther, and Sebastian Böhm. What's

Wrong with OWL Benchmarks? In Proc. of the Second Int. Workshop on Scal-

able Semantic Web Knowledge Base Systems (SSWS 2006), pages 101�114, 2006. URL:

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.139.6934&rep=rep1&type=pdf.

Allison Woodru� and Michael Stonebraker. Supporting Fine-Grained Data Lineage in

a Database Visualization Environment. In Proceedings of the Thirteenth Interna-

tional Conference on Data Engineering, number January in ICDE '97, pages 91�102,

Birmingham, England, 1997. IEEE Computer Society Washington, DC, USA. URL:

http://dl.acm.org/citation.cfm?id=645482.653450.

Marcin Wylot, Philippe Cudré-Mauroux, and Paul Groth. TripleProv: E�cient Process-

ing of Lineage Queries in a Native RDF Store. In Proceedings of the 23rd interna-

tional conference on World Wide Web - WWW '14, pages 455�466. ACM, 2014. URL:

http://doi.acm.org/10.1145/2566486.2568014.

Ying Zhang, Minh-Duc Pham, Oscar Corcho, and Jean-paul Calbimonte. SRBench : A

Streaming RDF / SPARQL Benchmark. In Iswc 2012, pages 641�657, 2012.

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.139.6934{&}rep=rep1{&}type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.139.6934{&}rep=rep1{&}type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.139.6934{&}rep=rep1{&}type=pdf
http://dl.acm.org/citation.cfm?id=645482.653450
http://dl.acm.org/citation.cfm?id=645482.653450
http://dl.acm.org/citation.cfm?id=645482.653450
http://doi.acm.org/10.1145/2566486.2568014
http://doi.acm.org/10.1145/2566486.2568014
http://doi.acm.org/10.1145/2566486.2568014

	Declaration of Authorship
	Acknowledgements
	1 Introduction
	1.1 Research Focus
	1.2 Thesis Contributions
	1.3 Thesis Structure

	2 Background and Related Work
	2.1 The Semantic Web
	2.1.1 The Case for the Semantic Web
	2.1.2 The Semantic Web Architecture
	2.1.2.1 URIs and IRIs
	2.1.2.2 RDF
	2.1.2.3 Ontologies
	2.1.2.4 SPARQL Protocol and RDF Query Language
	2.1.2.5 Proof and Trust

	2.1.3 Graph Operations
	2.1.3.1 Set Theoretic Operations
	2.1.3.1.1 Union
	2.1.3.1.2 Merging
	2.1.3.1.3 Intersection
	2.1.3.1.4 Difference

	2.1.3.2 Entailment
	2.1.3.2.1 RDF Entailment
	2.1.3.2.2 RDFS Entailment
	2.1.3.2.3 Datatype Entailment (D-entailment)
	2.1.3.2.4 OWL 2 Entailment
	2.1.3.2.5 RIF Core Entailment

	2.2 Reason Maintenance and Materialisation
	2.2.1 Reason Maintenance
	2.2.2 Local Belief Revision
	2.2.3 Distributed Belief Revision
	2.2.4 Incremental Maintenance of View Materialisations
	2.2.5 Reason Maintenance on the Semantic Web

	2.3 Provenance
	2.3.1 What Provenance Is
	2.3.2 Provenance Benefits and Usages
	2.3.3 The Different Perspectives on Provenance
	2.3.4 Provenance Vocabularies
	2.3.5 The PROV Data Model

	2.4 Provenance and Partial Recomputation
	2.5 Provenance and the Semantic Web
	2.5.1 The Need for Provenance on the Semantic Web
	2.5.2 Proofs and Explanations for the Semantic Web
	2.5.3 Provenance of SPARQL Updates

	2.6 Semantic Web Benchmarks
	2.6.1 Static Benchmarks
	2.6.2 Dynamic Benchmarks

	2.7 Summary

	3 RGPROV: A Vocabulary for RDF Graph Provenance
	3.1 Scenario
	3.2 Summary of Notations
	3.3 Running Example
	3.4 Graph Retrieval
	3.4.1 Single Graph Retrieval
	3.4.2 Graph Retrieval in Running Example

	3.5 Graph Operations in Running Example
	3.5.1 Initial Graph Creation
	3.5.2 Graph Updates

	3.6 The RGPROV Vocabulary
	3.6.1 Vocabulary Extensions
	3.6.1.1 Vocabulary for Graph Retrieval
	3.6.1.2 Vocabulary for Graph Operations

	3.6.2 Vocabulary Usage in Running Example

	3.7 Summary

	4 Application of RGPROV
	4.1 Vocabulary for Initial Graph Creation
	4.1.1 Graph Retrieval
	4.1.2 Graph Operations
	4.1.2.1 Set Theoretic Operations
	4.1.2.2 Entailment

	4.2 Graph Updates
	4.2.1 Update Retrieval
	4.2.2 Update Propagation
	4.2.3 Propagation of Updates According to Set Theoretic Operations
	4.2.3.1 Union
	4.2.3.2 Intersection
	4.2.3.3 Difference Case 1
	4.2.3.4 Difference Case 2

	4.2.4 Re-Entailment
	4.2.4.1 Re-EntailmentAfter Insert
	4.2.4.2 Re-EntailmentAfter Delete

	4.3 Vocabulary for Update Propagation
	4.3.1 Update Retrieval
	4.3.2 Effects of Updates
	4.3.2.1 Insert
	4.3.2.2 Delete

	4.3.3 Re-Entailment

	4.4 Summary

	5 Design and Implementation
	5.1 System Design
	5.2 Implemented Components
	5.2.1 Operator
	5.2.2 Provenance Handler
	5.2.3 Update Producer
	5.2.4 Cache

	5.3 Third Party Components
	5.3.1 Reasoner
	5.3.2 SPARQL Server and Graph Store

	5.4 Summary

	6 Evaluation Framework
	6.1 The Evaluation Framework's Goals
	6.2 Framework Design and Implementation
	6.2.1 Data Generator
	6.2.2 Change Producer
	6.2.2.1 Notations and Parameters
	6.2.2.2 Weight Assignment and Shift Management

	6.2.3 Version Manager
	6.2.4 Provenance

	6.3 Summary

	7 Evaluation and Discussion
	7.1 Evaluation Criteria and Dimensions
	7.1.1 Evaluation Criteria
	7.1.2 Evaluation Dimensions

	7.2 Experimental Data
	7.3 Results and Discussion
	7.3.1 Evaluation Criteria 1: Communication
	7.3.2 Evaluation Criteria 2: Storage
	7.3.3 Evaluation Criteria 3: Execution
	7.3.3.1 Evaluation Criteria 3a: Set theoretic operations
	7.3.3.2 Evaluation Criteria 3b: Re-derivation

	7.3.4 Additional Observations
	7.3.4.1 Datasets' Shortcomings
	7.3.4.2 Provenance Cost
	7.3.4.3 Implementation-Specific Issues

	7.4 Summary

	8 Conclusions and Future Work
	8.1 Conclusions
	8.2 Future Work
	8.2.1 Graph Operations
	8.2.1.1 Beyond Set Theoretic
	8.2.1.2 Different Entailment Regimes

	8.2.2 Time-Sensitivity and Streaming
	8.2.3 Benchmarking the Evaluation Framework
	8.2.4 Storage of Old Graphs and Provenance Elision

	Appendix A RGPROV Ontology
	Appendix B Application of RGPROV - Extended
	B.1 Vocabulary for Initial Graph Creation
	B.1.1 Graph Retrieval
	B.1.2 Graph Operations
	B.1.2.1 Set Theoretic Operations
	B.1.2.2 Entailment

	B.2 Vocabulary for Update Propagation
	B.2.1 Update Retrieval
	B.2.2 Effects of Updates on Set Theoretic Operations
	B.2.2.1 Union
	B.2.2.2 Intersection
	B.2.2.3 Difference Case 1
	B.2.2.4 Difference Case 2

	B.2.3 Re-Entailment

	Appendix C Extending the Evaluation Framework
	C.1 Suggested Modifications
	C.2 Suggested Categories of Queries
	C.2.1 Querying Evolving Datasets
	C.2.2 Querying Provenance Graphs

	Appendix D Chain of Events
	D.1 Union
	D.2 Intersection
	D.3 Difference Case 1
	D.4 Difference Case 2

	References

