
UNIVERSITY OF SOUTHAMPTON

FACULTY OF ENGINEERING AND PHYSICAL SCIENCES

School of Electronics and Computer Science

A rigorous tool-supported methodology for assuring the security and

safety of cyber-physical systems

by

Giles Howard

ORCID ID: 0000-0002-6879-8544

Thesis for the degree of Doctor of Philosophy

28/12/2019

mailto:giles.howard@soton.ac.uk
https://orcid.org/0000-0002-6879-8544

University of Southampton Research Repository

Copyright c⃝ and Moral Rights for this thesis and, where applicable, any accompanying

data are retained by the author and/or other copyright owners. A copy can be downloaded for

personal non-commercial research or study, without prior permission or charge. This thesis and

the accompanying data cannot be reproduced or quoted extensively from without first obtaining

permission in writing from the copyright holder/s. The content of the thesis and accompanying

research data (where applicable) must not be changed in any way or sold commercially in any

format or medium without the formal permission of the copyright holder/s.

When referring to this thesis and any accompanying data, full bibliographic details must be

given, e.g.

Thesis: Author (Year of Submission) “Full thesis title”, University of Southampton, name of

the University Faculty or School or Department, PhD Thesis, pagination.

Data: Author (Year) Title. URI [dataset]

iii

UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING AND PHYSICAL SCIENCES

School of Electronics and Computer Science

Doctor of Philosophy

A RIGOROUS TOOL-SUPPORTED METHODOLOGY FOR ASSURING THE

SECURITY AND SAFETY OF CYBER-PHYSICAL SYSTEMS

by Giles Howard

The increased usage of cyber-physical systems in a number of domains poses a unique

challenge: how can one be assured of both the security and safety of these systems?

While there are a large number of methodologies in the literature for performing security

analysis or safety analysis, many of these are not specific to cyber-physical systems and

the challenges these pose. Attempts at producing methodologies for security & safety

co-analysis have equally met difficulties in terms of reconciling the different approaches

and terminology often used by the separate domains.

One solution involves the development of a systems theory-based model for understand-

ing how safety, security & other emergent behaviours of systems can be framed and

understood. Such an understanding can then be used in a systematic methodology for

performing co-analysis in a structured and robust way.

This thesis presents a methodology called Security-Enhanced Systems-Theoretic Process

Analysis (SE-STPA), based on an underlying model known as Systems-Theoretic Ac-

cident & Attack Model and Processes (STAAMP), which combines safety and security

analysis into one unified co-analysis method. It represents an evolution on existing work

in safety by Leveson [90] and attempts to address several shortfalls of the existing ap-

proach in regards to security. SE-STPA is presented with two case studies that were

utilised to evolve the methodology into a mature state. Finally, this thesis presents a

discussion on future improvements that could be undertaken to develop the methodology

further.

mailto:giles.howard@soton.ac.uk

Contents

Declaration of Authorship xvii

Acknowledgements xix

1 Introduction 1

1.1 Research questions . 2

1.2 Approach . 3

1.2.1 Research method . 3

1.3 Contribution . 4

1.4 Structure of thesis . 4

2 Literature review 7

2.1 Security & privacy analysis methodologies 8

2.1.1 CORAS . 8

2.1.2 LINDDUN . 9

2.1.3 STRIDE . 10

2.1.4 Summary . 12

2.2 Safety analysis . 12

2.2.1 HAZOP . 12

2.2.2 FMEA/FMECA . 13

2.2.3 FTA . 15

2.2.4 Summary . 16

2.3 Co-analysis methodologies . 16

2.3.1 CHASSIS . 16

2.3.2 FMVEA . 18

2.3.3 Attack-fault trees . 20

2.3.4 Summary . 20

2.4 Methodologies combining formal methods and analysis techniques 21

2.4.1 Formal methods in the safety domain 21

2.4.1.1 Z-notation, B-method and Event-B 21

2.4.1.2 Symbolic Analysis Laboratory (SAL) 22

2.4.1.3 Other approaches . 22

2.4.2 Formal methods in the security domain 23

2.4.3 Formal methods in a co-analysis context 24

2.4.4 Summary . 25

2.5 Industrial safety/security standards . 25

2.5.1 IEC 61508 . 25

vii

viii CONTENTS

2.5.2 IEC/ISA 62443 . 26

2.5.3 ISO 13849 . 27

2.5.4 Common Criteria . 27

2.5.5 Summary . 28

2.6 Summary of literature review . 28

3 Development of SE-STPA 29

3.1 Introduction . 29

3.2 Justification of approach . 29

3.2.1 Existing expertise within the research community at the home
institution . 30

3.2.2 Adaptability of the chosen methodology 30

3.2.3 On-going work around STAMP and STPA 31

3.3 STPA & STAMP . 31

3.3.1 STAMP . 32

3.3.2 The STPA analysis process . 35

3.4 Developments of STPA/STAMP . 36

3.5 Shortcomings of STPA/STAMP . 37

3.5.1 Expert review dependence . 37

3.5.2 Checking of constraints . 38

3.5.3 Consideration of security . 39

3.6 Iterative development of the methodology 39

3.7 Creation of SE-STPA/STAAMP . 40

3.7.1 Expansion of the underlying systems-theoretic model 41

3.7.2 Embedding security into STPA . 45

3.7.2.1 Relationship of adversarial modelling to the literature . . 46

3.7.3 Integration of a formal model . 47

3.7.3.1 Event-B summary . 47

Proof obligations: . 49

Refinement: . 49

3.7.3.2 Benefits of utilising Event-B within SE-STPA 50

3.7.4 Adjustment of terminology . 51

3.7.4.1 Accidents vs Losses . 51

3.7.4.2 Critical Requirements . 52

3.7.4.3 Hazards . 52

3.7.5 Modification of several steps that are carried over from the baseline
STPA approach . 53

3.7.5.1 Establishing the system engineering basis 54

3.7.5.2 Identify unsafe control actions 54

3.7.5.3 Generate constraints to address unsafe control actions . . 55

3.7.6 Reduction in dependence on expert review 55

3.8 Summary . 55

4 SE-STPA in detail 57

4.1 Introduction . 57

4.2 A high-level overview of SE-STPA . 57

4.2.1 Glossary . 57

CONTENTS ix

4.2.2 SE-STPA steps . 58

4.2.3 Clarification on the illustrative example 59

4.2.4 Methodology steps . 59

4.2.4.1 Step 1 - Establishing the system engineering basis 59

Consideration of safety & security in relation to the purpose
statement: . 61

4.2.4.2 Step 2 - Build the control structure 61

4.2.4.3 Step 3 - Identify control actions 62

4.2.4.4 Step 4 - Building the initial formal model 63

4.2.4.5 Step 5 - Control action analysis and identification of crit-
ical requirements . 63

4.2.4.6 Step 6 - Adversary modelling and generation of further
critical requirements . 65

4.2.4.7 Step 7 - Integration of critical requirements into the for-
mal model . 68

4.2.4.8 Step 8 - Causal factors analysis 70

4.2.4.9 Step 9 - Iteration and re-scoping 72

4.3 Tool support (Rodin, Lucidchart, etc) . 72

4.3.1 Rodin . 73

4.3.2 Lucidchart . 74

5 Smart meter case study 75

5.1 Introduction . 75

5.2 A summary of the case study . 75

5.3 Application of the methodology . 76

5.3.1 Step 1 - Establish the system engineering basis 76

5.3.2 Step 2 - Build the control structure 79

5.3.3 Step 3 - Generate control actions 80

5.3.4 Step 4 - Build the initial formal model 81

5.3.4.1 Outline of the formal model 81

5.3.5 Step 5 - Hazard analysis and critical requirement generation 83

5.3.5.1 The notion of ‘tokens’ and its justification 87

5.3.6 Step 6 - Critical requirement integration 87

5.3.6.1 Challenges of representing critical requirements within
the formal model . 91

DisconnectMeter occurs repeatedly 91

AdvanceTime event improvements 91

General remarks on the use of the formal method in support
of representing and refining critical requirements 92

5.3.7 Step 7 - Causal factors analysis . 93

5.3.8 Step 8 - Iteration and scoping . 95

5.4 Lessons learned from the smart meter case study 96

5.4.1 Security analysis issues and improvements 96

5.4.1.1 Adversarial modelling as applied to the smart meter case
study . 98

Fraudulent consumer . 99

Insider threat . 100

x CONTENTS

5.4.1.2 Analysis . 101

5.4.2 Sequencing of methodology steps 103

6 UAV case study 105

6.1 Introduction & outline of case study . 105

6.2 Application of SE-STPA . 106

6.2.1 Step 1 - Establishing the system engineering basis 106

6.2.2 Step 2 - Building the control structure 108

6.2.3 Step 3 - Identify control actions . 109

6.2.4 Step 4 - Construction of initial formal model 111

6.2.5 Step 5 - Control action analysis & critical requirement generation . 113

6.2.5.1 Control action analysis 113

6.2.5.2 Critical requirement generation 116

6.2.6 Step 6 - Adversary modelling & critical requirement generation . . 120

6.2.6.1 Annotating the control structure 120

6.2.6.2 Adversary modelling . 120

Nation-state actors: . 121

Activist/hacktivist groups and organisations: 124

Curious individuals: . 125

Unintentional adversaries: 127

6.2.6.3 Critical requirement generation 128

6.2.7 Step 7 - Integration of critical requirements into formal model . . . 130

6.2.7.1 Challenges of representing critical requirements within
the formal model . 136

Validation queues and sequencing 137

AircraftRoutes improvements 138

Functions and relations . 139

ReportLocation refinement 139

6.2.8 Step 8 - Causal factors analysis . 140

6.2.8.1 Existing route becomes hazardous in some way and is
not corrected by an update 141

6.2.8.2 Initial route is set before command passes validation . . . 143

6.2.8.3 Command validation state is reported incorrectly 144

6.2.9 Step 9 - Iteration of design & further analysis 146

6.3 Lessons learned . 148

7 Discussion 151

7.1 Research questions . 151

7.2 Discussion of Research Question 1 . 151

7.2.1 Context and approach . 152

7.2.2 Contribution . 152

7.2.2.1 Contribution of the STAAMP theoretical model 152

Conceptualising safety and security together 152

Considering system actors and mitigations within the the-
oretical model 153

7.2.2.2 Contribution of the SE-STPA technique 155

7.2.3 Limitations . 158

CONTENTS xi

7.2.4 Summary . 158

7.3 Discussion of Research Question 2 . 159

7.3.1 Context and approach . 159

7.3.2 Contribution . 159

7.3.3 Limitations . 162

7.3.3.1 Expertise in formal methods 162

7.3.3.2 Representing complex critical requirements 162

7.3.4 Summary . 162

7.4 Discussion of Research Question 3 . 163

7.4.1 Context and approach . 163

7.4.2 Contribution . 163

7.4.2.1 Smart meter case study 164

7.4.2.2 Multi-UAV case study . 164

7.4.3 Limitations . 165

7.4.4 Summary . 166

7.5 Additional academic review of the methodology 166

8 Conclusion 167

8.1 Contributions . 167

8.2 Future work . 168

8.2.1 Iterative improvements to the methodology 168

Modelling of trust between entities 168

Improvements in formal traceability 168

Tool support . 169

8.2.2 Additional validation steps . 169

Workshop with experienced practitioners 169

Industrial case studies . 169

Direct comparison with other co-analysis methodologies . . 169

Comparison of adversary modelling to existing security best
practice frameworks 170

A Smart meter case study - initial formal model - machine & context 171

B Smart meter case study - final formal model - machine & context 177

C Drone case study - initial formal model - machine & context 185

D Drone case study - first refinement of formal model - machine & con-
text 193

E Drone case study - second refinement of formal model - machine &
context 201

F Drone case study - third refinement of formal model - machine &
context 215

References 233

List of Figures

2.1 FMVEA analysis process [123]. 19

3.1 Visual representation of the “boundary of acceptable performance” con-
cept, adapted from [110] . 32

3.2 Visual representation of the ‘boundary of acceptable performance’ concept
as applied to safety, adapted from [90]. 33

3.3 Visual representation of the controller paradigm defined by Leveson [86] . 34

3.4 Simplistic representation of the ‘boundary of acceptable performance’ con-
cept as applied to safety and security jointly 42

3.5 Advanced representation of the ‘boundary of acceptable performance’ con-
cept as applied to safety and security jointly 43

4.1 A visual summary of the steps of SE-STPA 59

4.2 Functional control structure for smart meter example. 62

4.3 Annotated functional control structure for smart meter, with manipula-
tion points. 66

4.4 Causal factor analysis of one hazard from the example. 71

5.1 Final functional control structure . 80

5.2 Scoping areas/identification . 96

5.3 Annotated functional control structure for smart meter, with manipula-
tion points. 99

6.1 Overall functional control structure for UAV case study. 108

6.2 Scoped functional control structure between operators and GCS. 109

6.3 Scoped functional control structure between GCS and aircraft. 109

6.4 Manipulation point view of functional control structure for UAV case
study. 120

6.5 Causal factors breakdown for Failure-to-Update-Route Hazard 142

6.6 Causal factors breakdown for Initial-Route-Potentially-Invalid Hazard . . 143

6.7 Causal factors breakdown for Command-Validation-Incorrectly-Reported
Hazard - Approach 1 . 145

6.8 Causal factors breakdown for Command-Validation-Incorrectly-Reported
Hazard - Approach 2 . 145

6.9 Modified functional control structure to account for design changes 148

7.1 Representation of the “boundary of acceptable performance” concept as
applied to safety and security jointly . 153

7.2 Steps of SE-STPA with an emphasis on security-relevant steps 157

7.3 Steps of SE-STPA with an emphasis on formal method-relevant steps . . 160

xiii

List of Tables

3.1 Event-B terminology . 47

3.2 Comparison of steps of STPA and SE-STPA 53

4.1 Glossary of key SE-STPA terms . 57

4.2 Example purposes, hazards and losses mappings 60

4.3 Control action analysis results . 64

4.4 Critical requirement generation (control action analysis) from the example 65

4.5 Adversary description from the smart meter example 67

4.6 Critical requirement generation (adversary modelling) from the example . 68

4.7 Causal factors and the resulting critical requirements/design changes . . 71

5.1 Loss identifiers, descriptions and mapping to purposes 78

5.2 Hazard identifiers, descriptions and mappings to losses 78

5.3 Control actions mapped to formal event representations 82

5.4 Control action analysis results . 84

5.5 Identification of hazards and critical requirement generation 86

5.6 Summary of integration steps for each critical requirement 88

5.7 Causal factors and potential critical requirements 94

5.8 Fraudulent consumer adversary description 99

5.9 Critical requirement generation to address Fraudulent Consumer adversary100

5.10 Insider threat adversary description . 101

5.11 Critical requirement generation to address Insider Threat adversary . . . 101

6.1 Hazards and losses mappings for UAV case study 107

6.2 Control actions extracted from functional control structure for UAV case
study . 110

6.3 UAV control action analysis results . 113

6.4 UAV hazards & resultant critical requirements 117

6.5 Nation-state actor adversary profile . 121

6.6 Nation-state adversary: Aircraft-focused adversary actions 122

6.7 Nation-state adversary: GCS-focused adversary actions 122

6.8 Nation-state adversary: Operator-focused adversary actions 123

6.9 Hacktivist/activist adversary profile . 124

6.10 Hacktivist individuals/groups: All adversary actions 124

6.11 Curious individual adversary profile . 125

6.12 Curious individual: All adversary actions 125

6.13 Unintentional adversary profile . 127

6.14 Unintentional adversary: All adversary actions 127

xv

xvi LIST OF TABLES

6.15 Generation of critical requirements . 128

6.16 Model refinements . 130

6.17 Detail of integration of critical requirements into formal model 131

6.18 Statistics on proof obligations for each model refinement 136

6.19 Design modifications resulting from critical requirements 147

7.1 Comparison of approaches to security and safety 155

Declaration of Authorship

I, Giles Howard, declare that the thesis entitled A rigorous tool-supported methodology

for assuring the security and safety of cyber-physical systems and the work presented in

the thesis are both my own, and have been generated by me as the result of my own

original research. I confirm that:

• this work was done wholly or mainly while in candidature for a research degree at

this University;

• where any part of this thesis has previously been submitted for a degree or any

other qualification at this University or any other institution, this has been clearly

stated;

• where I have consulted the published work of others, this is always clearly at-

tributed;

• where I have quoted from the work of others, the source is always given. With the

exception of such quotations, this thesis is entirely my own work;

• I have acknowledged all main sources of help;

• where the thesis is based on work done by myself jointly with others, I have made

clear exactly what was done by others and what I have contributed myself;

• parts of this work have been published as: [62] and [61]

Signed:...

Date:..

xvii

mailto:giles.howard@soton.ac.uk

Acknowledgements

Thanks are owed to my supervisors, particularly Professor Michael Butler, whose expe-

rience, measured advice and assistance have guided me through every success and failure.

Thanks are owed also to my friends, for their tolerance for every missed social event

and birthday celebration. Their further endurance of my consistent complaining about

the volume of work I have put on myself is also greatly appreciated.

xix

To my wife, Katherine

xxi

Chapter 1

Introduction

Cyber-physical systems - those systems with a real-world physical component and “whose

operations are monitored, coordinated, controlled and integrated by a computing and

communication core” [6] - are increasingly finding a place in infrastructure across the

world, as well as in domains such as vehicle design and healthcare. While these cyber-

physical systems present opportunities to monitor and manipulate the physical world

through computation and networking [11], there exists within this growing field a need

to ensure safety and security of such systems. This is due to the fact that cyber-physical

systems represent a synergy of software and hardware wherein any failure modes within

the system may have profound effects on anything from the success of a continued med-

ical treatment to the survival of a plane full of passengers. It is therefore clear that this

category of computing systems require an extensive regime of design and formal assur-

ance support to ensure that these opportunities are fully embraced while still maintaining

the safety and security of this class of systems.

This represents a challenge - particularly on the side of the security of these systems -

where historically cyber-security researchers are said to have not considered how attacks

affect the estimation and control algorithms and ultimately, how attacks affect the phys-

ical world [27]. It is therefore clear that there is a requirement for a robust methodology

to ensure that the need for both safety and security within cyber-physical systems is

addressed.

One possibility for addressing the need to ensure both security and safety of a system is

through the use of formal method techniques. Cai et al. concisely describe the potential

benefits of formal methods as follows:

Formal methods is an effective way to improve the quality of large-scale soft-

ware and reduce the cost of software development. . . formal methods also en-

able accountable validation and verification of the resulting system, which

1

2 Chapter 1 Introduction

reduces or even eliminates possible defects in the software and thus better

maintains safety of the system [26].

This view is reinforced in the recently-published guidelines for systems security engineer-

ing [116], which states that “Security, like safety and other system quality properties, is

an emergent property of a system.” Since this emergent behaviour cannot be predicted

through analysis at any level simpler than the system as a whole [46], the sheer com-

plexity of this analysis means that traditional testing methods alone are insufficient for

full and proper verification. Formal methods are one solution to this challenge as they

utilise mathematical rigour in modelling and verifying system properties [146] which can

provide a higher degree of confidence that the system behaviours are well-defined and

understood.

Additionally, as the complexity of systems increase, it becomes ever-more important to

ensure that security and safety are embedded into all stages of the system life-cycle, as

the cost of addressing issues and deficiencies within a system grows dramatically larger

as the system development proceeds [54]. This is another area which formal methods can

provide benefits, as they enable the system model to be created and expanded on, and

so security and safety can be considered continuously throughout the system life-cycle.

[146].

1.1 Research questions

The aim of this thesis is to develop a co-analysis methodology to allow the safety and

security of cyber-physical systems to be analysed and for meaningful constraints on

system behaviour - sufficient to successfully mitigate against the security/safety issues

- to be generated for that system. This methodology also makes use of formal method

techniques to validate that the generated constraints can demonstrate their effectiveness

on a formal model of the system. The methodology should also be applicable in as many

life-cycle stages as possible, to ensure that safety and security issues can be rectified

earlier in the system life-cycle and therefore in the most cost-effective manner.

The formal research questions addressed by this thesis are therefore:

RQ1: Can a methodology be produced to analyse the requirements and design of

cyber-physical systems with an aim to improve both their security and safety?

RQ2: Can the methodology additionally leverage formal method techniques in order

to provide assurance that the mitigations generated as a result of analysis are

demonstrably successful in reducing or eliminating security and safety hazards?

Chapter 1 Introduction 3

RQ3: Can the methodology demonstrate its utility through application to case stud-

ies of differing sizes and complexity, ideally utilising case studies involving

cyber-physical systems in multiple domains?

1.2 Approach

The approach undertaken within this thesis in order to further the above research ques-

tions is to explore existing methodologies for performing security, safety or combined

analysis (otherwise known as ‘co-analysis’) within the literature. From this point, a

methodology is proposed which seeks to combine some existing approaches with new

ideas in order to meet each of the three research questions; RQ3, in particular, requires

that the methodology be applied and lessons to be learned from each new application of

the methodology. The major contribution of this thesis is therefore a methodology that

answers each research question and represents a foundation for future work in the area

of co-analysis of cyber-physical systems.

Furthermore, due to the multiple dimensions of cyber-physical systems, there is a need

to ensure that while the ‘physical’ portion of the system is not causing harm through

its interactions with the real world and the environment, that the ‘cyber’ portion is

also not being used as a launchpad for further harm to networks and other information

assets. These two concepts are heavily intertwined and thus this thesis seeks to provide

a methodology that can address both security and safety as first-class citizens of the

analysis in order to meaningfully address both aspects.

1.2.1 Research method

The research method chosen for undertaking this thesis was the case study method,

which is a qualitative approach where a “contemporary phenomenon” is studied “in a

real-life context” [119]. The case studies were to be utilised in an exploratory fashion in

order to assess whether the developed methodology was capable of suitable consideration

of both safety & security jointly, and how successful it was at both. In order to ensure

that the methodology did not become highly effective at analysing one system to the

detriment of others, a multiple-case case study approach was utilised where each case

study was an instance of a cyber-physical system but drawn from a separate domain [17].

This approach can be seen to have significant ‘face validity’ [120] due to the fact that it

involved the application of a methodology for co-analysis of cyber-physical systems to a

number of case studies of individual cyber-physical systems.

This approach was chosen in preference to a quantitative research method as it enabled

rapid development of the methodology, and lessons learned to be released in short order.

An aspect of future work (as detailed in Section 8.2) proposes the use of quantitative

4 Chapter 1 Introduction

research methods to provide further assessment, validation and improvement of the

methodology.

1.3 Contribution

The major contributions of this work can be summarised as follows:

1. A methodology (SE-STPA) has been produced which is based on an existing,

robust technique for assuring safety in critical domains. This methodology is able

to identify both safety and security issues in systems under consideration and aid

in the development of mitigations against them. It also leverages an appropriate

formal method to enable the mitigations to be tested against a formal model of

the system to ensure they are meaningful and correct in addressing the underlying

issue.

2. A theoretical model underpinning SE-STPA known as Systems-Theoretic Accident

& Attack Model and Processes (STAAMP) which provides the theoretical basis

for understanding the interactions between safety and security in a cyber-physical

system.

3. An analysis of the shortcomings of the original technique (STPA) and theoretical

model underpinning it (STAMP) in the security domain.

4. Validation and development of SE-STPA through applying it to two real-world

case studies involving cyber-physical systems of varying sizes and complexity.

5. An analysis of the outcome from both applications of the methodology, as well as

lessons learned and proposed future improvements to the methodology.

1.4 Structure of thesis

This thesis describes the development and application of the methodology. It does so

over the course of seven further chapters, which are described below:

Chapter 2 - Literature review: This chapter seeks to provide an overview of the

various methodologies and techniques available in the academic literature for undertak-

ing and mitigating against security and safety risks, as well as performing such analysis

jointly. It further presents a brief outline on a range of formal method techniques within

the literature as this is also an aspect of the work.

Chapter 3 - Development of SE-STPA: This chapter seeks to outline the STPA/S-

TAMP technique that has been chosen for adaptation into the SE-STPA, in addition

Chapter 1 Introduction 5

to presenting existing work that has been undertaken in adapting the STPA/STAMP

approach for other domains/contexts, and the specific modifications of the original ap-

proach undertaken to create SE-STPA.

Chapter 4 - Methodology: This chapter presents the methodology and provides

a high-level overview of each step, as well as some details from the smart meter case

study as a running example. It further describes the iterative approach in creating the

methodology in its current state, as well as tools that are used to underpin and support

the analysis process.

Chapter 5 - Smart meter case study: This chapter presents the smart meter case

study and the results of applying the methodology to it.

Chapter 6 - UAV case study: This chapter presents the multi-UAV case study and

the results of applying the methodology to it.

Chapter 7 - Discussion: This chapter considers the outcomes of both case stud-

ies, as well as potential refinements that could be made in future applications of the

methodology.

Chapter 8 - Conclusion: This chapter concludes with a detailed assessment of the

contribution against the research questions, as well as an outline of future work.

Chapter 2

Literature review

This chapter explores the literature around the topics of security analysis, safety analysis

and combined (or co-analysis) methodologies that seek to perform both security and

safety analysis in a combined manner. It then progresses into considering formal methods

and their application to performing analysis. Finally, it ends with a section on the

relevant industrial safety and security standards governing cyber-physical systems and

their lifecycles.

The selection of security, safety and co-analysis methodologies is not intended to be

exhaustive; instead, the selection of methodologies is based on the following criteria:

1. The applicability of the methodologies to cyber-physical systems. This was con-

sidered through examining if a candidate methodology had any association with

case studies in cyber-physical contexts, such as having been applied on projects,

products or concepts for smart cities, medical devices, autonomous vehicles or sim-

ilar. For some techniques, the focus was clear due to the initial presentation of the

methodologies being within a cyber-physical context. For a number of pre-existing

techniques, their widespread usage and primacy within security or safety analysis

meant they were included without explicit reference to a cyber-physical case study.

2. The pedigree of the methodology/techniques. This led to a degree of mixing

of more modern and up-and-coming techniques (such as attack-fault trees) with

established techniques (such as HAZOPs). Many of the newer techniques are

themselves based around ‘lessons learned’ with the more-established techniques,

and so are able to demonstrate improvement on some of the limitations of the

original techniques.

3. The novelty of the technique/methodology in relation to other techniques. The

focus of this chapter was to present various approaches which exist for perform-

ing security, safety or joint analysis, and so a number of iterations/variations on

techniques were not included in order to maintain this focus.

7

8 Chapter 2 Literature review

2.1 Security & privacy analysis methodologies

2.1.1 CORAS

The CORAS risk management methodology attempts to identify security risks through

a series of workshops and modelling steps, with the end goal state being each security

issue identified having risk treatment/reduction strategies proposed to the client in order

to manage the security issues identified [50, 23]. The seven steps can be summarised as

follows:

Step 1 - Introductory meeting: This step involves an introductory meeting with the

client in order to scope the target system for analysis, the boundaries that may exist in

terms of interdependent systems and what the client’s goals are in terms of what they

wish to get out of the analysis process.

Step 2 - High-level analysis: This step involves an initial analysis of the target,

in order to identify high-risk assets or those requiring more in-depth analysis, and this

process aids the analysts in performing a full analysis on the system at a later date. This

allows targets to be modelled in terms of both their static and dynamic behaviours.

Step 3 - Approval: The final of the preparatory steps; this step ensures that the

client is presented with the analysts understanding of all assets within scope and their

behaviours. This also involves the overt identification of consequence and likelihood of

security risks, the competing importance of various assets to be noted and other required

aspects of a risk evaluation criteria to be finalised and agreed with the client.

Step 4 - Risk identification: This step involves the identification of specific risks to

assets by users and technical representatives of the client. This means understanding

how issues like failure to follow training, compromise of user credentials, etc. can all

contribute to result in assets being lost or undermined and allows threat diagrams to be

drawn to understand how all these aspects inter-relate.

Step 5 - Risk estimation: This step assigns each threat scenario a likelihood which

come together to create an unwanted incident score. Each unwanted incident that in-

teracts with some asset must also be given a consequence scoring, to indicate the risk

involved to assets of each unwanted incident.

Step 6 - Risk evaluation: This step maps risk values within a risk matrix and presents

this to the client for approval and any additional comments/adjustments.

Step 7 - Risk treatment: This step attempts to mitigate identified risks with treat-

ments which may be training, security-enhancing technologies, restrictions on access to

aspects of the system, etc. Existing models/diagrams are to be updated with the treat-

ments, and each treatment is to be given a cost/benefit assessment and presented to the

client.

Chapter 2 Literature review 9

As can be seen, this is a very person-centric approach; many steps involve meetings and

workshops, and the representatives of the client are involved in essentially every step.

The approach attempts to make extensive use of those representatives of the client which

use, maintain and have ultimate responsibility for the system. This permits analysts to

work on a more complete view of the system and its potential security pitfalls than would

perhaps be possible without this level of detail being actively exchanged and questioned.

CORAS utilises UML [118] for the purpose of modelling the system under consideration

and borrows from many other methodologies, such as Hazard and Operability Study

(HAZOP) [113] and Failure Modes and Effects Criticality Analysis (FMECA) [21], to

inform its own perspective and approach [50].

While CORAS claims to be aimed at addressing risk in its many forms, case studies

appear to primarily leverage it for security in IT-based systems [43, 137] thus it appearing

in this section rather than in the later section on safety analysis.

2.1.2 LINDDUN

LINDDUN - an acronym based on the names of the underlying privacy threats it seeks

to address - is a privacy-analysis methodology [40]. It seeks to address possible privacy

issues within the context of a system in a highly systematic way, through explicitly

mapping all data flows within a system using ‘data flow diagrams’ and attempting to

mitigate identified privacy risks with known and tested privacy enhancing solutions .

Once again, this is a highly structured process, consisting of the following steps:

Step 1 - Define DFD: This step involves the identification of all data flows around

the system within a data flow diagram (DFD); undertaking this step requires a solid

understanding of the underlying system and therefore necessitates a complete high-level

description of the system in order for the analysis to begin.

Step 2 - Map privacy threats to DFD: The next step involves overt mapping of

threat categories to elements of the DFD, where appropriate. As privacy threats are ex-

plicitly defined by the methodology documentation, there are some inherent suggestions

as to which types of elements of the DFD may experience which privacy threats, which

can simplify the analysis.

Step 3 - Identify misuse case scenarios: This step considers the usage patterns

and scenarios of the system to understand how the privacy threats may result in the

degradation of privacy based on misuse of the system by insider and outsider actors. The

generic threat tree patterns in the documentation for the methodology can therefore be

applied and customised to suit the system in question and how the data and assets of

the system are managed.

10 Chapter 2 Literature review

Step 4 - Risk-based prioritisation: The results of the preceding steps are prioritised

to ensure that the highest privacy risks are addressed the most urgently, although the

methodology makes use of no specific technique, leaving this up to the preference and

experience of the analyst.

Step 5 - Elicit privacy requirements: This step considers the positive privacy goals

that are implied by the privacy risks identified as part of the system’s data flows.

Step 6 - Select privacy enhancing solutions: This final step aims to mitigate

against the privacy risks by the use of various privacy-enhancing solutions which are

suggested within the methodology’s documentation and based on the experiences of the

authors of the methodology.

As can be seen, this methodology takes a highly systematic approach to enhancing the

privacy associated with data flows within a system, as well as aiming to mitigate through

providing a number of suggestions at many of the steps of the methodology.

While privacy is not strictly related purely to security, maintaining confidentiality and

integrity of information is an overlap of both security and privacy domains and this

makes this methodology relevant in considering the existing work within the literature

that is seeking to mitigate against malicious activity against systems. Much of the

methodology is also high-level, concerning itself with data flows rather than specific

aspects of architecture, and utilises generic elements within its documentation to enable

the methodology to be applied as broadly across many domains as possible.

LINDDUN has found application in the RERUM smart cities project where it was used

to elicit privacy risks [102] but also in more conventional architectural domains such

as assessing the privacy risks inherent in an alumni relations system [5]. This would

indicate a broad applicability to the domain under consideration, as this is also aimed

at cyber-physical systems.

2.1.3 STRIDE

STRIDE, a threat modelling and analysis methodology, originates from Microsoft as

part of their wider project on the Secure Development Lifecycle [55]. STRIDE seeks to

mitigate against the following malicious behaviours:

1. Spoofing - this is where an individual or system may intentionally misrepresent

itself in order to deceive other further systems or individuals to interact with

it beyond its actual status within a system. This end goal of this is often the

acquisition of information that the entity, if behaving legitimately, would not have

access to.

Chapter 2 Literature review 11

2. Tampering - Tampering of data seeks to undermine or manipulate data to change

it from its correct, valid purpose towards some nefarious goals through modification

to the data either at rest or while it is in transit.

3. Repudiation - This threat attempts to reduce confidence in the ‘truthfulness’ of

data through tampering with logs or hiding the origin of an attack or piece of

data. This allows attackers to operate while covering their tracks and reducing

the chance of detection.

4. Information disclosure - This threat occurs when data that should remain available

to a restricted number of parties or system is made available more widely, either

intentionally or unintentionally. This may range from information that is helpful

for debugging being available to curious parties, all the way up to databases of

information being siphoned off by attackers.

5. Denial of service - This threat manifests when attackers are able to reduce the

availability of a given service to normal, legitimate users through tying up network

or processing resources. This results in legitimate users being unable to utilise the

system for a period of time.

6. Elevation of privilege - This threat is where an attacker is able to gain a higher

level of access to the system than they should otherwise be allowed, either through

exploiting vulnerabilities in access control systems or manipulating existing work-

flows to elevate one’s credentials to a higher level.

STRIDE is similar to LINDDUN as the process involves the identification of data flows

and data stores within the system using a data flow diagram (DFD) in order to enable

easier identification of threats to the system. Each standardised type of entity when

using the STRIDE methodology documentation also has a standard list of which of the

above threats are most likely to apply to a given modelled entity - data stores tend

to differ in threat model to a data flow, for example. The subsequent steps of the

methodology then focus on mitigating the identified threats, and then validating that

the mitigations are appropriate.

This approach is once again highly systematic through attempting to identify all threats

across all aspects of the system, by completely modelling how data is transferred and

stored within the system, and how the entities of the system interact with each other

and with the aforementioned data.

STRIDE has been used across a number of domains: from applications of STRIDE to

cyber-physical systems such as micro-grids and embedded healthcare systems [72, 127]

to analysis of high-level networking topics such as OpenFlow [74] and software-defined

networking components [10]. This would suggest it has applicability in the domains that

this thesis attempts to address, and will therefore aid in informing the approach.

12 Chapter 2 Literature review

2.1.4 Summary

The three substantial methodologies considered in this section take highly systematic

approaches to identifying and mitigating against security & privacy risks through a

combination of guide-words, the explicit identification of the flow of information around

the system, and an explicit identification of what actions attackers may take in reducing

the security of the system. Each methodology also attempts to provide either a standard

set of mitigations against these threats/attacks or a set of suggestions in focusing the

analyst’s efforts in both identifying and mitigating threats even where these may not be

highly specific.

2.2 Safety analysis

This section will consider a selection of safety analysis methodologies which may either

have a substantial pedigree in the area of safety analysis, or be particularly relevant to

the cyber-physical domain.

2.2.1 HAZOP

Hazard and operability studies (HAZOP) are a structured approach to consider safety

risks to a system, analysing all processes and sub-processes within a system for possible

deviations with the help of a set of guidewords [36]. The use of the guidewords in the

identification of deviations allows a consistent approach and each characteristic of each

element of the system should have all possible guidewords applied to enable this to be

as robust and complete as possible.

HAZOP also makes extensive use of documentation as analysis is undertaken; from

the assumptions made in analysing the system, the scope of the analysis, all the way

through to which exact characteristic and guide word have which consequences, and

what safeguards can be applied in order to mitigate these consequences. Each safeguard

is also assigned to an individual, to ensure that action is taken to actually ensure each

safeguard is applied and integrated into the system operation.

HAZOP originated in the 1970s to handle the increased complexity of systems and the

failure of existing techniques to handle it - the existing approaches primarily considered

equipment-oriented practices rather than the increasing use of process-oriented prac-

tices [Dunjo2010a]. HAZOP has been extensively recommended through standards

bodies, and many publications are associated with the technique over several decades

[Dunjo2010a].

Chapter 2 Literature review 13

The limitations of HAZOP have been well understood for many years; one such paper

aimed at addressing why HAZOPs sometimes do not reach their full potential dates

from 1988 [99] and identifies 6 primary issues with how HAZOPs are often performed:

1. Lack of experience of the team - and especially of the study leader - in undertaking

HAZOPs.

2. Failure to acquire sufficient detailed documentation around the system under con-

sideration.

3. Inadequate management buy-in to the HAZOP process, or other managerial inter-

ferences that result in studies being rushed or otherwise incomplete.

4. Complacency around existing processes and procedures that are seen to not require

review during the study, also known as ‘blindspots’.

5. Shortage of technical information due to novelty or complexity of aspects of the

system.

6. The ‘ultimate limitation’; that the HAZOP team is a human and may fail to

discover issues or hazards due to boredom or exhaustion.

McKelvey’s identification of these six issues, as well as proposed solutions, indicate that

even a technique with decades of use can be undermined relatively simply. This is due to

the bulk of the effectiveness of the technique being drawn from human judgement, and

so it is highly dependant on the HAZOP study team performing well with appropriate

access to information. Attempts have also been made at automating HAZOP analyses

and/or adding an expert system to reduce the human effort involved in performing a

HAZOP analysis [144], which further suggests that the primary issue with the analysis

technique is around its time-consuming nature and innate complexity. In-depth critiques

of the technique, such as one by Baybutt [14], further emphasise the myriad issues that

can degrade the effectiveness of the technique; these criticisms are related both to the

people involved in a HAZOP as well as the underlying process.

2.2.2 FMEA/FMECA

Failure Mode and Effects Analysis (FMEA) is another technique for assessing and miti-

gating safety risks for systems of varying scales and, much like HAZOP, utilises a cross-

disciplinary team of persons involved in the system to enable a robust approach to

analysing a system [138].

FMEA uses this multi-disciplinary team to build an understanding of the system, as

well as to collect data on known or suspected failures and their rate of occurrence.

Ordinarily, the FMEA analysis will address sub-processes of the system in a prioritised

14 Chapter 2 Literature review

manner; either being provided by the system owner at the initial stages of the analysis,

or identified through the analysis team. The team will then seek to consider each failure

mode of the system in turn with an aim to reduce risk through meaningful safeguards.

FMEA can be considered to be more quantitative than other methodologies in this area

of the literature as it focuses on three key metrics for each identified failure mode:

• Occurrence - the frequency of the failure mode.

• Severity - the risk to the overall operation of the system posed by the failure mode.

• Detection - the ability of the system to determine whether a failure mode has been

entered into. This criterion is usually scored in the opposite manner to the other

two, with a low score indicating a high certainty that the failure mode will be

detected.

The multiplication of these three values together provides a Risk Priority Number (RPN)

per failure mode, and enables the prioritisation of each failure mode against each other.

Much like HAZOP, these RPNs should then lead to actions to be taken and responsibil-

ity/timeframes to be assigned to each action to ensure they are undertaken in a timely

and accountable manner. Unlike HAZOP, these actions should then be continually as-

sessed in such a way that the failure mode continues to have data collected in order to

create a new RPN value. This new RPN value can then be compared with the original

one to determine the success of the actions.

FMEA has been extended in several ways, with the development of an off-shoot known

as Failure Mode, Effects, and Criticality Analysis being the most notable [22]. This

particular adaptation of the underlying technique also concerns itself with criticality

- the relationship that a failure may have when considered against the wider system

purpose [39]. This tends to take the form of a matrix of probability mapped against

criticality where criticality concerns itself with the impact on the system as a whole;

ranging as an example from ‘Undesirable’ all the way up to ‘Catastrophic’. A further

extension of FMEA (into the security domain) was presented by Schmitter et al. [123]

and is explored in Section 2.3.

Criticism has been levelled at the FMEA family of techniques, such as by Gilchrist who

recommended improvements to how the methodology arrives at a Risk Priority Number

(RPN) for faults as part of a deeper critique of the ad hoc nature of how RPNs are often

generated during an FMEA analysis [53]. Further criticism of the effectiveness of RPN as

a metric and how it cannot be used to meaningfully assess mitigations against identified

failure is made as part of further suggestions of improvements to baseline FMEA by

Puente et al. [108].

Chapter 2 Literature review 15

The use of FMEA/FMECA continues despite the first version of the technique being

almost 70 years old and continues to be an integral part of several standards and pre-

scribed processes in various industries [136], which speaks to the widespread applicability

and utility of the technique.

2.2.3 FTA

Fault Tree Analysis (FTA) is another safety and reliability tool which enables the anal-

ysis of contributing causes and factors towards a single event of interest through a

top-down approach [47]. Explicit identification of these contributing causes is enabled

through the construction of a graph composed of basic boolean gates and events that all

contribute towards the event under consideration [117]. The construction of fault trees

and the subsequent analysis ordinarily consists of four steps [81]:

1. System definition.

2. Fault-tree construction.

3. Qualitative evaluation.

4. Quantitative evaluation.

5. Addressing underlying faults through adjustments to system design.

While the first step of system definition is common to most system analysis techniques,

the process of constructing a fault tree is noted to often be highly manual and uses a

common symbol definition across all domains [68]. The subsequent step of qualitative

evaluation ordinarily results in minimal cut sets (MCS) [81] and a number of approaches

for reducing a given fault tree to a minimal cut set have been proposed/developed [143,

76]. A minimal cut set enables the minimal set of contributing circumstances around

a top-level event to be identified, which can focus the efforts and mitigations resulting

from the fault tree analysis process.

The quantitative evaluation of fault trees is another area of active research. Quantitative

evaluation of fault trees ordinarily results from the assignment of probabilistic scores to

each contributing event/cause in order to determine the probability of the top-level event

[145]. Many approaches have been presented to aid performing quantitative analysis on

special cases or systems of high complexity such as work involving Markov Chains [20]

or the use of priority AND gates [148]. Further approaches to enable modelling where

exact probabilities are unavailable due to failure rates of components being unknown

involve fuzzy fault trees [140].

Extensions to Fault Tree Analysis include Dynamic Fault Trees [29], which permits the

modelling of timing across contributing events/factors, as well as state/event fault trees

(SEFTs) [69], which seek to address state dependencies and temporal events.

16 Chapter 2 Literature review

2.2.4 Summary

As can be seen by the selection of three methodologies in this section, there are a variety

of approaches available for performing safety analysis. Each of the selected techniques

are well-tested, with all three having a history that stretches back at least 50 years, and

involve substantial development and extension over that time-frame in order to account

for the changes that have occurred within systems engineering within this time. There

is also a contrast between HAZOP and its person-focused approach when contrast with

FMEA and FTA, which are primarily numerical. There is also a mixture of approaches in

terms of directionality: FMEA and HAZOP are both bottom-up approaches, while FTA

is top-down in its analysis. This is because fault tree analysis considers a fault and then

quantitatively analyses contributing causes, while HAZOP and FMEA are exploratory

techniques which start by considering the low-level functionality and faults of aspects

of the system and then attempt to determine if any of these component failures can

contribute to a broader system failure.

2.3 Co-analysis methodologies

This section describes a selection of methodologies attempting to achieve a combined

approach to performing both safety and security analysis. It does not seek to be ex-

haustive but to give a flavour of comparative methods within the domain of security and

safety co-analysis.

2.3.1 CHASSIS

One example of a methodology that attempts to combine security and safety analysis

into a unified framework is Combined Harm Assessment of Safety and Security for In-

formation Systems (CHASSIS), developed by Katta et al. [71] and subsequently revised

by Raspotnig et al. [112]. This framework aims to produce a unified process for safety

and security assessments and analysis during the system development process.

It consists of three broad steps:

1. Elicitation of functional requirements.

2. Elicitation of safety/security requirements.

3. Specifying safety/security requirements.

The first phase of the assessment - elicitation of functional requirements - is carried

out by the identification of users, system functions and services, through the drawing

Chapter 2 Literature review 17

of a diagrammatical use case (D-UC). Functions and services of the system are further

understood by writing textual use cases (T-UC) and drawing UML sequence diagrams.

The sequence diagrams (SD) defines components or ‘objects’ and their interactions,

which are equally described in T-UCs.

The second phase - the elicitation of safety/security requirements - begins through the

drawing of a misuse case diagram (D-MUC) using all of the items identified in the

preceding phase. This step seeks to define misusers, harms and mitigations to the

functions and services. The methodology then defines two distinct routes of analysis:

1. For eliciting safety requirements: the writing of textual misuse cases (T-MUC)

and drawing failure sequence diagrams (FSD) which results in harm scenarios.

2. For eliciting security requirements: the writing of textual misuse cases (T-MUC)

and drawing misuse sequence diagrams (MUSD) which also results in harm sce-

narios.

Once mitigations are identified, a trade-off analysis process is performed to assess mit-

igations against each other and acceptance criteria to ensure that mitigations are not

contradictory between harm scenarios [111].

The third and final phase involves the translation of the harm scenarios into HAZOP

tables from the T-MUCs, which enables the safety and security requirements to be

specified and to provide a traceable artefact for other documentation to reference.

The CHASSIS methodology relies heavily on the existing analysis techniques by at-

tempting to make them part of a unified methodology for performing both safety and

security analysis; diagrams are based on UML [118] and the textual descriptions lever-

age the misuse cases technique [131]. Furthermore, the actual elicitation of misuse cases

leverages HAZOP [113] as does the final step of actually specifying harm scenarios and

their recommended mitigations.

CHASSIS can be considered favourably in many regards; its use of existing, well-

explored techniques provides a degree of reassurance about the utility inherent in its

approach. However, by opting to use existing techniques such as HAZOP, it also suf-

fers similarly from the issues identified with the HAZOP approach within the literature

[Baybutt2015].

CHASSIS has been applied in several case studies - one such example involves it be-

ing contrasted with the FMVEA approach in the context of automotive cyber-physical

systems. In this case study, it was noted that the CHASSIS approach of separately

considering safety and security had some weaknesses, such as CHASSIS being highly

dependant on the knowledge of experts [122].

18 Chapter 2 Literature review

2.3.2 FMVEA

Another example of a co-analysis methodology is the Failure Mode, Vulnerabilities and

Effects Analysis (FMVEA) methodology by Schmittner et al. [123] which takes the

existing Failure Mode and Effective Analysis (FMEA) methodology for safety [9] and

adds security/vulnerability analysis to it in order to produce a “unified model for safety

and security cause-effect analysis”.

FMVEA takes a bottom-up approach and attempts to integrate security into the stan-

dard FMEA-approach through the addition of a security-specific cause-effect terminology

and analysis. Through making the security-specific language equivalent to the safety-

specific language, a commonality is created between much of the standard FMEA life-

cycle:

• Failure causes as safety terminology are viewed as equivalent to vulnerabilities

for security terminology;

• Likewise, failure modes are deemed equivalent to threat agents.

• Failure effects are therefore equivalent to threat modes.

• Failure severity is therefore equivalent to threat effect.

• And finally, failure criticality has a security parallel in the form of attack

probabilities.

This essentially creates a process similar to FMEA but with two internal streams, with

one stream considering security vulnerabilities per component and the other considering

failure modes. This can be seen in more detail in Figure 2.1.

Chapter 2 Literature review 19

Figure 2.1: FMVEA analysis process [123].

FMVEA has been used in case studies by the authors to consider the safety/security

impacts within an automotive cyber-physical systems context [121, 122]. It has also

been applied as part of a combination of techniques for considering the security and

safety issues which may apply to an autonomous boat platform [142]. One criticism

drawn from this case study was that FMVEA was effective at determining hazards

relating to single component failure or misuse, but was less capable at considering safety

and security interactions that generally arise from autonomy or other complex systems.

Furthermore, the approach was considered in some ways to generate fewer hazards than

could be identified through comparative methodologies such as STPA or CHASSIS and

could therefore be viewed as being less robust than these competing approaches. Credit

was however given to the ease of use of the technique when considered to more in-depth

techniques such as STPA/CHASSIS.

20 Chapter 2 Literature review

2.3.3 Attack-fault trees

Attack-fault trees represent an attempt to combine attack trees [126] from the security

domain with fault trees [117]. This is undertaken in a formal manner [77] and attempts

to augment the existing fault tree formalisms with some security-focused gate concepts.

This approach differs substantively from FMVEA and CHASSIS as it attempts to be

primarily quantitative; attack-fault trees permit the risk of both safety and security

failures to be determined probabilistically through a stochastic analysis method, in order

to provide a quantitative basis for decision-making by system owners.

This approach to formalising safety and secure risk permits several novel concepts to

be explored. Kumar and Stoelinga [77] are able to model attackers (who have certain

attributes such as ‘risk appetite’) to consider both the system as-is, but they can also

perform a what-if analysis to consider the impact of attackers on the system with certain

design changes implemented. Attackers and accidents can both be quantified in terms

of cost and probabilistic risk and the interplay between malicious damage to the system,

and whether this can undermine redundancy or other measures used to increase safety.

As this approach represents a fusion of both attack and fault trees, it comes from a

pedigree in both domains; the fault tree technique has been used for many years and

has a substantial body of research to support its use in safety analysis [117, 82], while

attack trees are also well understood in the security literature, particularly with regards

to cyber security [97]. This approach has not been utilised beyond any case studies

provided by the author, however, and the attempt to quantify many aspects of security

risk in terms of cost or disruption appears to rely on subject-matter expertise with no

true basis of data to make certain determinations as part of the methodology.

2.3.4 Summary

This section does not seek to fully consider all co-analysis methodologies, but instead

seeks to provide a general comparison of existing techniques. A broader and more

systematic literature review can be found on the topic of safety and security co-analyses,

such as that by Lisova et al. [94] or by Kriaa et al. [75]. What can be drawn from the

co-analysis techniques/methodologies in this section is that all three of the co-analysis

techniques appear to leverage an existing technique or approach, and then seeks to add

consideration for another domain to it. FMVEA is a key example of this; the original

technique (FMEA) is ordinarily used for safety and reliability analysis, but FMVEA has

additional steps to enable it to be used to perform security analysis.

Chapter 2 Literature review 21

2.4 Methodologies combining formal methods and analysis

techniques

This section explores the use of formal methods as applied to support safety, security or

combined co-analysis techniques.

2.4.1 Formal methods in the safety domain

The use of formal methods in the safety domain is ordinarily concerned with specifying,

modelling and verifying of correct and safe system behaviour for safety-critical systems,

in order to support a safety case or other argumentation structure that the system

is well-defined and only transitions between safe states in a predictable manner. The

literature has a number of formal methods available to support these activities, a sample

of which are considered in this subsection.

2.4.1.1 Z-notation, B-method and Event-B

The Z-notation permits the formal specification of systems to be undertaken. A formal

specification describes ‘what a system must do, without saying how it is to be done’

[135] and therefore exists as a single source of truth for all parties involved in the system

engineering process. It may also be viewed as a technical contract between client and

engineers [146]. The Z-notation has been combined with automated theorem provers

with an aim to producing reliable and unambiguous system specifications; one example

of work in this area is given by Lockhart et al. in which system specifications in Z-

notation were then passed to an automated theorem prover known as ProofPower in

order to provide the consistency of the system specification under consideration.

A development from Z-notation, known as the B-method, is another approach to formal

specification but using the mechanism of refinement to enable specifications to be made

more concrete over time [4]. Refinement also generates a number of formal proof obliga-

tions which ensure that each refinement preserves constraints placed upon the previous

level of abstraction. This means that an ever-increasing level of detail can be added to

the specification as the system life-cycle proceeds, and enables a highly concrete model

of system behaviour to be created which can then serve as the basis for implementation

and testing, with a formal proof of correctness. One significant industrial case study

of the B-method in use was to specify and formally verify the Météor project, a fully

automated line on the Paris Metro system [15]. The result of this analysis demonstrated

that the B-method could be utilised in the design and verification of a large-scale system

with an aim to create zero-fault specifications, which is to say that no errors or faults

were found in the resulting software during development or deployment, and therefore

the specification can be deemed to be free of inherent faults.

22 Chapter 2 Literature review

The B-method has also been subject to its own extension known as Event-B, which

utilises the B-method’s approach to refinement but is focused around the notion of events

which transition the system between states in order to enable richer, more detailed formal

modelling of systems [3]. Case studies in various domains using Event-B [114, 25] have

been undertaken, supported by the Rodin toolset for Event-B [58], primarily in support

of providing formal demonstration of the safety of systems.

2.4.1.2 Symbolic Analysis Laboratory (SAL)

Another example of formal methods within the safety domain is given by Baronti et

al. [12] in which formal verification techniques were applied to a novel charge equaliza-

tion circuit design for lithium-ion batteries in order to demonstrate the safety of their

approach. In this work, the authors leveraged the Symbolic Analysis Laboratory [18]

environment to verify both safety and liveness properties associated with their proposed

system through the creation of an initial formal specification and subsequent model

checking and verification. The use of this formal method enabled claims to be made

which were supported by proofs generated by the SAL environment.

2.4.1.3 Other approaches

Other formal methods have been used in support of analysing and verifying safety-

critical systems; one such example is Uppaal [80], which is based on the theory of

timed automata and has been applied to case studies in real-time automotive systems

[73], as well as more broadly to verify translated Functional Block Diagrams for safety

systems [132]. Enhancements to Uppaal have also been proposed, such as that by

Larsen et. al to permit Uppaal to be applied to non-deterministic real time systems

[79].

A related area of research is into the use of formal methods to produce ‘oracles’ which

are derived from formal specifications of the system, in order to serve as monitors of

safety-related systems [13]. An oracle is created from the formal specification of the

system and therefore can monitor that the system only ever enters known safe states,

while flagging any behaviours that diverge from this set of states. Alloy is one example of

a formal method that has been applied to support the creation of an oracle; specifically,

a test oracle was created for a modelled train station with knowledge of all positive

traces (sequences of events, ordered by time, that are known to be safe) in order to

verify that all test-cases execute and produce traces known to the oracle [139]. Alloy

has additionally found use in a Problem-Orientated Software Engineering (POSE) case

study which explored an aerospace case study relating to the safe release of stores from

an aircraft at altitude [96].

Chapter 2 Literature review 23

2.4.2 Formal methods in the security domain

Primarily, the state of the art in terms of the usage of formal methods and their associ-

ated tools with regards to security is focused on analysis of protocols. An example of this

approach is by Alexiou et al. [8] who performed a formal security analysis of the NFC

(near-field communication protocol) through modeling the protocol and then performing

probabilistic model checking to determine the probability of carrying out replay attacks

depending on various contextual parameters (such as packet size, timeout settings, etc).

Another example of usage of formal methods in security with an emphasis on formal

protocol analysis is work by Künnemann and Steel in which they constructed a model

of the Yubikey secure token protocols and performed a variety of analyses in order to

determine the platform’s susceptibility to replay attacks [78]. There has also been work

in attempting to understand the emergent security properties that arise when multiple

provably ‘secure’ subsystems are combined. One such model is proposed by Datta et al.

and attempts to demonstrate a reasoning that - so long as all subsystems fulfill an invari-

ant (which itself is associated with a security property of the system) - then the system

should be immune to a class of attacks that would require a failure in the given security

property [37]. The longest-standing formal approach to security analysis originates in

the form of the Dolev-Yao adversary model, which permits encrypted communication

protocols to be formally modelled and analysed in a symbolic manner [44].

Another example of using formal methods in security is work utilising the Communi-

cation Sequential Processes (CSP) formal specification language which enables the de-

scription of parallel communicating processes with a formal notation which is suited to

communication/message passing that is inherent in communication protocols [124]. CSP

was originally proposed in 1978 by Hoare as a process calculus but has been expanded on

in recent years [59]. Case studies considering the Needham-Schroeder protocol [125] and

demonstrating anonymity of voting systems [100] have utilised CSP as part of specifying

system behaviours, particularly around information exchange by actors, and therefore

this is a clear example of the use of CSP as a formal method in the security domain.

The Common Criteria has also found itself paired with formal methods previously; an

example of this is given by Morimoto et al. which attempts to verify the security

characteristics of a system through specifying the system specification in Z and then

determining whether a set of instantiated security functional requirements, which are

equally specified in Z, are met by the system specification [101]. Further work by Qamar

et al. has also followed a similar methodology in an attempt to formalise and verify that

systems meet security properties through implementation in Z, and animation in the Jaza

tool [109]. It is clear therefore that there has been some substantial work undertaken

broadly towards the generation of functional security requirements and then automated

verification that a given system meets these requirements.

24 Chapter 2 Literature review

Event-B has also been leveraged as a formal method in performing security analysis such

as work by Hoang et al. [56] in which Event-B was used to model a sample access control

scenario representing the basic functionality of a bank and its security properties. A fur-

ther example of Event-B being used for security analysis involves a high-level theoretical

analysis by Mu [103] in which the issue of information flow security was considered and

a framework was proposed for reasoning about secure information flows when refining

from abstract to concrete models. A final example is with work by Gawanmeh et al. [52]

in which Event-B was used to formally verify secrecy within group key distribution

protocols.

2.4.3 Formal methods in a co-analysis context

Formal methods have also been utilised to support co-analysis methodologies, however,

the literature has fewer examples than formal methods being applied to either safety or

security individually.

One example that has been previously mentioned is the stochastic modelling used by

the attack-fault trees methodology [77] which is able to translate the attack-fault tree

structure into a stochastic model which is subject to simulation and model-checking

through the Uppaal SMC toolbox [38]. This approach bases itself off of a technique

known as Statistical Model Checking [128] which seeks to address the tendency of model

state-space to grow exponentially when modelling complex systems through the use of

statistics-based reasoning to reduce the search space.

Another example of formal methods used as part of co-analysis involves the use of Inte-

grated Behaviour Trees [149] to develop a system specification with safety and security

requirements in such a way as to ensure these requirements do not conflict. The result-

ing Design Behaviour Tree can then be translated into other representations to enable

model checking and verification, such as Symbolic Analysis Laboratory format. This

enables formal verification using existing well-supported formats and languages.

A further example is the use of a variety of semi-formal methods such as UML [118] as

part of the CHASSIS analysis methodology [71, 112]. Other semi-formal method use

includes work by Nicklas et al. which makes use of SysML models [60] to encourage

system design that is both safe and secure, and to ensure both facets of the system

design are adequately captured [104].

Finally, formal methods such as Event-B [31] have been paired with the Systems-

Theoretic Analysis Process methodology [88], which is covered in significantly more

detail in Chapter 4.

Chapter 2 Literature review 25

2.4.4 Summary

Formal methods have been utilised in many different ways to support both safety and

security analysis according to the literature; they have also been used to support co-

analysis methodologies and techniques. Formal methods in this context have either

been used to create formal specifications of systems, which can then form the ‘technical

contract’ in understanding a given system, or they have been utilised to undertake formal

verification or model checking against a model of the system with an aim to demonstrate

that the system meets required safety and/or security characteristics. This indicates that

formal methods can be used to support a combined safety and security analysis through

specification and/or verification.

2.5 Industrial safety/security standards

This section will identify a selection of relevant standards from the security and safety

domains which are relevant to the cyber-physical system context of this thesis.

2.5.1 IEC 61508

The IEC 61508 standard represents best practice for ensuring functional safety through-

out the life-cycle of a safety-related system where these safety-related systems utilise

electrical, electronic or programmable electronic (E/E/PE) components [32]. It also

serves as a broader high-level framework upon which many sector-specific standards are

designed and constructed [16], such as IEC 61511 (covering the lifecycle of Safety In-

strumented Systems within a Process Industry context) [33] and IEC 61513 (covering

the lifecycle of Safety Instrumented Systems within the Nuclear Industry) [34].

In summary, the standard provides seven parts, which cover the following areas:

1. General requirements.

2. Requirements for electrical, electronic or programmable electronic safety-related

systems.

3. Software requirements.

4. Definitions and abbreviations.

5. Examples of methods for the determination of safety integrity levels.

6. Guidelines on the application of IEC 61508-2 and IEC 61508-3.

7. Overview of techniques and measures.

26 Chapter 2 Literature review

The standard covers all life-cycle phases, from requirements elicitation through to op-

eration and maintenance. It seeks to make functional safety a core consideration at

all stages of the V-model of system development, and has a high focus on traceability

as verification between each phase of system development as a mandatory activity. It

additionally provides a number of techniques and measures with which to demonstrate

that software is functionally safe. Finally, it permits the assignment of Safety Integrity

Levels (SIL), which are quantitative measures of failure rate for the hardware of a sys-

tem; a given SIL level (ranging from 1 to 4) will additionally define a number of Highly

Recommended and Recommended techniques and measures which should be fulfilled for

software in order to make claims that the software of a given system meets this level.

The standard therefore covers both quantitative assessment of systems as well as qual-

itative measures that can be taken in situations where quantitative analysis would be

inadequate (such as with newly authored software). It therefore emphasises systematic

process and best practices to ensure safety throughout the system life-cycle - this in-

cludes granularity such as ensuring that personnel working across all system are suitably

qualified to be performing in their role.

2.5.2 IEC/ISA 62443

IEC/ISA 62443 represents the functional security equivalent of IEC 61508. It concerns

itself with ensuring functional security across the life-cycle of industrial automation and

control systems (IACS) [35] and consists of four major parts [106]:

1. Terminology, concepts and models common to all parts of the 62443 standard.

2. Design and operation of robust IACS cyber security management systems.

3. System-level requirements for effective IACS cyber security.

4. Specific, component-level requirements for effective IACS cyber security.

In the same theme as IEC 61508, IEC 62443 defines Security Levels (SLs) in three cate-

gories - Target Security Levels, Capability Security Levels and Achieved Security Levels.

Furthermore, IEC 62443 goes a step further and attempts to provide a quantitative pro-

cess for determining the maturity of cyber security-related processes and policies in the

form of Maturity Levels - a Maturity Level of 1 may correspond to a process that is

extremely fluid and inconsistent in application, while a Maturity Level of 4 indicates a

well-developed, consistent process that is subject to continuous improvement.

IEC 62443 is a standard which is less mature than IEC 61508 but seeks to replicate many

of the approaches of the IEC 61508 standard, such as its approach to quantification of

safety and a significant body of requirements across the system life-cycle to ensure safety.

Chapter 2 Literature review 27

2.5.3 ISO 13849

ISO 13849 [66] is a standard similar in principle to IEC 61508 but is more focused

on system design and architecture. Like IEC 61508, ISO 13849 focuses on functional

safety; it even provides a metric for measuring the maximum probability that a safety

function may fail per hour in terms of Performance Levels (PL) which range from A to

E. Furthermore, it provides a second metric known as Category, which allows a broader

classification of systems based on the safety-related techniques and measures used within

the architecture, as well as capturing the diagnostic coverage of the system. Performance

Levels and Categories are inter-related; it is not possible to meaningfully claim a system

meets certain Performance Levels without equally meeting a given Category, which itself

is dependant on the architecture of the system.

This dual-classification system differs from the IEC 61508 approach which utilises Safety

Integrity Levels (SILs) as the sole metric that can be used to judge a system. While

SILs and PLs are reached in broadly the same way (through consideration of statistical

failure rates and factoring in other relevant measures of system reliability), the Category

level in ISO 13849 has no equivalent in IEC 61508.

A further difference arises in the scope of the standards. IEC 61508 focuses on whole-

system through-life safety management, including the operation and maintenance stage

of the lifecycle, while ISO 13849 is more prescriptive and focuses more substantially on

the design of the system and architectures that can be demonstrated to be provably safe.

2.5.4 Common Criteria

The Common Criteria for Information Technology Security Evaluation (also referred to

as simply the ‘Common Criteria’) represents a common set of requirements for the secu-

rity functionality of information system products and for assurance measures applied to

these products during a security evaluation [28]. These requirements can be utilised to

provide formal assurance of a system’s security through the generation of a document

known as the Security Target (ST) which attempts to summarise the security properties

of a system under evaluation. The Security Target may also reference and indicate com-

pliance with what are known as Protection Profiles (PPs) which are effectively generic or

template forms of Security Target documents for entire classes of systems such as ‘fire-

wall’ or ‘identification smart card’. These PPs therefore define a baseline set of security

characteristics that a system in that class should possess at a minimum. More detailed

information on the standard is available from the full Common Criteria standard [28].

This standard is useful for managing the security life-cycle of elements in Information

Technology but is not specific to Operational Technology such as most cyber-physical

systems considered in this thesis. It is however an aspect of the security standards

landscape, and so has been included for completeness.

28 Chapter 2 Literature review

2.5.5 Summary

This section of the literature review identifies relevant, high-level standards for use in

managing safety and security throughout the system lifecycle within the cyber-physical

domain. There are a number of child standards which have not been considered in this

section and are applied in specific domains (such as the ISO 26262 for the automotive

domain); this section does not seek to be exhaustive in that regard. Instead, it seeks to

provide a flavour for standards that are often discussed in reference to cyber-physical

systems more broadly.

2.6 Summary of literature review

This literature review captures a number of approaches for dealing with security, safety

and combined analysis. It also considers a selection of formal methods that have been

utilised to support security/safety or combined analysis in the past. Finally, the liter-

ature review considers a number of prominent safety and security standards governing

the life-cycle of systems within a cyber-physical context.

It is clear from the literature that there have been a number of attempts to meaningfully

combine security and safety analysis in order to permit systems at all phases of the life-

cycle to be analysed and their safety/security properties to be assured. It also appears

that few formal method techniques have been deployed to support a co-analysis context,

instead these formal method techniques appear to have been used for one domain or the

other, but rarely in a unified way. As cyber-physical systems become increasingly promi-

nent, it is likely that security & safety analysis will be in increasing use, and one route

for validating the security and safety aspects of a system design and implementation is

formal methods.

This approach of co-analysis, supported by formal methods, may benefit cyber-physical

systems as they become more regulated by various standards such as IEC 61508 and

IEC 62443 where the underlying spirit of the standard is to take a holistic, through-

life view of the entire system life-cycle. Having an approach which can provide this

view of both the security and safety aspects of a system will be increasingly useful in a

highly-standardised environment and context.

Chapter 3

Development of SE-STPA

3.1 Introduction

This chapter presents the origin of the methodology presented by this thesis. It begins

with consideration of the factors that led to the creation of the methodology, in addition

to why an approach built from an existing methodology and model was selected. It then

discusses the existing technique in detail, as well as other work undertaken to apply

these models and techniques to other domains. Finally, it details the additions made in

SE-STPA that represent improvements on the original technique.

3.2 Justification of approach

The choice to take the existing Systems-Theoretic Accident Model and Processes (STAMP)

theoretical model and System-Theoretic Process Analysis (STPA) methodology and

modify them to enable them to be applied for both security and safety analysis was

driven by the following major considerations:

1. Existing expertise within the research community at the home institution.

2. Adaptability of the chosen methodology.

3. On-going work around STAMP and STPA.

Each of these are detailed significantly in their own sub-sections.

29

30 Chapter 3 Development of SE-STPA

3.2.1 Existing expertise within the research community at the home

institution

The choice of STPA was at least partially driven by existing work undertaken by Colley

and Butler at the University of Southampton [31] which explored utilising the Event-B

formal method to support STPA analysis by utilising the notions of refinement and proof

that are provided by this formal method. This represented a bedrock for further work

which this thesis sought to advance.

Furthermore, the University of Southampton is host to two relevant research groups

which provided the requisite expertise and scholarly community to support the creation

of SE-STPA:

1. The Cyber-Physical Systems Research Group: This research group focuses

primarily on the engineering of robust systems and has a number of research staff

with backgrounds in safety-critical systems and formal methods [133].

2. The Cyber Security Research Group: This research group works in a number

of fast-moving research areas such as blockchains and provenance, in addition to

extensive work in the areas of security & privacy [134]. It is additionally one of the

Academic Centres for Excellence in Cyber Security Research which represents a

tripartite collaboration between industry, academia and government in the domain

of cyber security. [41].

3.2.2 Adaptability of the chosen methodology

The choice of methodology was also driven by a desire to utilise an existing, well-

established technique from one of the domains under consideration, and modify it to

additionally address the other domain. This was due to the literature review indicating

that a substantial number of the co-analysis methodologies considered had taken this

approach, and it was felt to be the most pragmatic way forward with this thesis.

For this reason, Leveson’s work in STPA and STAMP [90] was chosen for modification,

as this framework had the following characteristics:

1. STAMP, as a theoretical model for understanding systems, essentially takes a ‘first

principles’ approach and therefore views safety as an emergent system property.

This was desirable as it enabled meaningful consideration of security, which is a

similarly emergent property, to be integrated in a cohesive way without displacing

or otherwise impinging on STAMP’s understanding of safety.

2. STPA, as an analysis technique based atop the STAMP model, utilises this under-

standing of emergent behaviour to then carry out a systematic analysis to draw out

Chapter 3 Development of SE-STPA 31

possible safety concerns and generate constraints in mitigation. This is a desirable

characteristic as the challenge represented by cyber-physical systems necessitates

a systematic approach to both safety and security. It was felt that STPA could

therefore also be extended to enable systematic consideration of both safety and

security.

3. Previous attempts have been made at including security into STPA as explored

in Section 3.4. However, these contributions to the literature are lacking in ways

that as explored in Section 3.5, and so it was felt that applying STPA as part of

co-analysis of safety and security could be approached in a more robust manner

with thorough consideration of security as well as safety.

4. STPA has been used in a number of safety-related case studies, such as in safety-

critical applications in collaboration with the Federal Aviation Administration

of the United States [49] and the Japanese Aerospace Exploration Agency [65],

which indicated that the technique had a demonstrable history of being successfully

applied to perform systematic safety analysis.

3.2.3 On-going work around STAMP and STPA

A significant driver towards the choice of existing methodology was that there is an ac-

tive research community around the STAMP model and STPA technique. A number of

conferences occur annually which are dedicated to consideration of STPA and method-

ologies derived from it; examples of this include the European STAMP Workshop and

Conference [70] and the STAMP Workshop that is held annually at the Massachusetts

Institute of Technology (MIT) [87].

There are also a number of derived techniques and approaches that are detailed more

significantly in Section 3.4 which are representative of the continued interest in, and

application of, STPA and its derived methodologies.

Furthermore, the STPA technique itself has been developed in several stages, beginning

with Leveson’s publication of Engineering a Safer World [88], followed by the STPA

Primer [86] and culminating in newer publications such as the STPA Handbook [91].

This indicates that the technique is under a continuous development by the authors and

this factored into the choice of it as the methodology of choice for modification.

3.3 STPA & STAMP

This section will provide a brief overview of both STAMP (the theoretic model underpin-

ning Leveson’s work) as well as STPA (the analysis technique for meaningfully analysing

system behaviour for hazards).

32 Chapter 3 Development of SE-STPA

3.3.1 STAMP

STAMP - Systems-Theoretic Accident Model and Processes - departs significantly from

the historical, linear accident models of Heinrich and his contemporaries [85]. In this

accident model, accidents are not the result of a linear chain of events as it was often

considered in the early days of accident analysis, but instead are viewed as resulting from

inadequate enforcement of constraints on system behaviour [92]. Safety is therefore an

emergent property which is a result of adequate control of the system through sufficiently

complete constraints on system behaviour. Failure to adequately constrain the system

can result in the system entering an unsafe state and thus, a certainty of causing an

accident when worst-case environmental conditions occur.

Leveson’s development of the STAMP model was based primarily around the work of

Rasmussen and his systems-theoretic work on ‘natural migration of activities towards

the boundary of acceptable performance’ [88]. This concept inter-relates the economic,

technical and social aspects of modern systems and additionally attempts to frame ac-

cidents or other undesirable situations as resulting from various pressuring influences or

‘gradients’ (i.e. work pattern optimisations, management pressure towards efficiency)

which gradually push a system into the undesirable state. Rasmussen further felt that

the best and most promising mitigation against this tendency appeared to be through

the identification and highlighting of the boundaries of acceptable operation such that

actors involved with the system could ensure their behaviours did not exceed these

boundaries [110] which is the lens through which Leveson’s methodologies attempt to

understand and analyse systems.

System under
consideration

Boundary of
 acceptable
performance

"Unacceptable"
region

"Acceptable"
region

Figure 3.1: Visual representation of the “boundary of acceptable performance”
concept, adapted from [110]

Chapter 3 Development of SE-STPA 33

Leveson views that this notion of systems existing on a plane wherein actions can oc-

cur which bring them ever closer to the boundary of acceptable performance is a useful

analogue to how system safety is maintained [89]. An ideal and safe system is designed

such that a suitable degree of distance is maintained between itself and this boundary of

acceptable performance; however, movement towards this boundary occurs when actors

involved with the system make choices that trade safety for some other desirable charac-

teristic (i.e. cost savings, reduction in maintenance burden, easier operability). The best

method for ensuring a system remains safe is to therefore maintain adequate distance

from this boundary by constraining system behaviour, as well as the behaviour of those

who interact with the system, to ensure they cannot cause the system to migrate too

close to this boundary and, ultimately, into the unacceptable performance region. In

safety terms, this is what occurs during an accident. Furthermore, those interacting with

a system should be made aware of why these constraints exist, and they should be carried

through the entire system life-cycle [86]. A further benefit of this approach is that, as all

systems have a degree of exposure to an environment that cannot be fully controlled, the

maintenance of distance from this boundary means worst-case environmental conditions

alone should not be able to push the system over the boundary.

System
under

consideration

Boundary of
safety

Safe region

Intentional actions by
actors who are not aware

of their safety impact

Unsafe/
accident
region

System
under

consideration

Boundary of
safety

Unsafe/
accident
region

Safe region

System
under

consideration

Boundary of
safety

Safe region

Unsafe/
accident
region

System is now in a precarious state
where a single event or environmental
change could result in an accident due

to the system entering the "unsafe"
region

System has entered the unsafe
region, resulting in an accident due
to a random environmental change.

Random

environm
ental change

Figure 3.2: Visual representation of the ‘boundary of acceptable performance’
concept as applied to safety, adapted from [90].

Therefore, on a practical level, the STAMP model views that systems can be adequately

modelled as interrelated components that are kept in equilibrium through feedback loops

and control actions in order to maintain the system within the region of acceptable

performance and therefore safe. Controllers are viewed as having a ‘process model’ which

represents their understanding of the current state of the process they are controlling

and they update this with information coming from a ‘feedback’ or sensor channel (which

may correlate to multiple actual sensors in the system). They then ‘act’ on the process

in response through some form of actuator. Any given system therefore consists of

34 Chapter 3 Development of SE-STPA

a multitude of these controllers which are acting on each other and their individual

processes in order to carry out the functions of the system. The emergent property of

safety within STAMP is ensuring that these individual controllers maintain their process

within a set of constraints, as well as ensuring that these constraints cover all potential

states of the underlying process. There is an additional requirement that the process

model for each controller is also detailed enough and that the sensor channels can read

- to a sufficient granularity - the current process state and relay this information when

necessary. Failure to meet any of the prior conditions can result in a natural progression

of the system towards the boundary of unacceptable performance and therefore ever

closer to an accident.

Controller

Control
algorithm

(Procedure)

Process
Model

Controlled Process

Control
Actions

Feedback

Other controllers
(i.e. managerial,

regulatory)

Environmental
inputs

Figure 3.3: Visual representation of the controller paradigm defined by Leveson
[86]

A ‘safe’ system therefore contains some number of controllers which all have a sufficient

understanding of the underlying process that they are controlling and which can also

react to maintain the state of their processes within some set of constraints. Safety is

therefore a result of emergent behaviour and accidents are often the result of more than a

single action or failure but instead require multiple failings across a series of control loops

at a variety of levels across the entire system life-cycle; this is the fundamental difference

between a systems theory-based approach as compared to the existing linear/causal

Chapter 3 Development of SE-STPA 35

chain-of-events models embodied by the historical Domino Model and its derivatives

[86, 88].

3.3.2 The STPA analysis process

Based on the STAMP understanding of systems, Systems-Theoretic Process Analysis

(STPA) attempts to mitigate against accidents through identification and generation of

constraints on control actions throughout a given system [88]. STPA consists of three

major steps:

1. Begin by identifying the system engineering basis of the analysis:

(a) Define the system purpose, which represents what the system exists to do.

(b) Define the top-level accident and system-wide hazard states that will be con-

sidered over the course of the analysis.

(c) Define safety constraints based off the hazards at this stage.

(d) Draw a functional control structure for the system.

2. Identify potentially unsafe control actions and generate safety constraints in miti-

gation:

(a) Control actions are analysed in each of the following four scenarios and if

there is any risk of an hazardous state occurring as a result, that is recorded.

i. A normally safe control action is provided and this creates an unsafe

situation.

ii. A control action required for safety is not provided.

iii. A potentially safe control action is provided too early or too late; that

is, at the wrong time or in the wrong sequence.

iv. A control action required for safety is stopped too soon or applied too

long.

(b) For each of the identified unsafe control actions, generate a safety constraint

which is simply a sentence representing some constraint on system behaviour

such that the unsafe control action may not occur, to be integrated into either

a future design or the implementation of the system.

3. Identify the causes of unsafe control; this involves understanding how combinations

of control actions, or control actions being issued and not being followed, can lead

to unsafe control. This is sometimes known as ‘causal factors analysis’ or ‘scenario

generation’. The result of this analysis may generate further safety constraints or

necessitate the iteration of the system design if the unsafe behaviour is too complex

to simply constrain within the current design.

36 Chapter 3 Development of SE-STPA

The STPA technique can be applied at any point in the system life-cycle and therefore

can be used either to design systems to be safe-by-design, or it can be used for analysis

of existing systems with the aim of increasing their safety through the generation of

constraints in order to highlight inviolable system limits. The STPA analysis supports

this through being an iterable analysis process; the constraints generated in a previous

analysis can be used to improve the design of the system before subjecting it to further

analysis to validate that the new design is safer.

3.4 Developments of STPA/STAMP

One of the first substantial pieces of work to build on STPA was the STPA-Sec methodol-

ogy proposed by Young [147]. This extension of the existing STPA methodology focuses

tightly on the notion of ‘mission assurance’ and the security elements of a system under

analysis. Through manipulating the terminology used in the analysis, it is possible to

utilise STPA-based analysis to derive security vulnerabilities which may lead to loss

states. The result of the analysis is a set of constraints which can then be used to iterate

the system concept and design towards a more secure design.

Further methodologies - such as STPA-Priv - generalise the STPA approach once again,

but this time towards privacy-based concerns. This is primarily realised through modifi-

cation of the terminology once more to allow the privacy issues to be highlighted through

the analysis; the notion of a ‘loss’ is instead substituted for ‘adverse consequences’ as

this terminology is better understood in the field of privacy engineering [129]. An ad-

ditional development is that, in place of mitigations, the focus on addressing privacy

failings is instead addressed through implementation of ‘privacy enhancing technologies’

which serve to reduce the possibility of the identified adverse consequences occurring.

STPA-SafeSec is an additional methodology developed to address perceived shortcom-

ings in the STPA-Sec methodology, which was criticised for viewing security as an issue

only in relation to safety. STPA-SafeSec seeks to improve the capabilities of STPA-Sec

by aligning terminology and viewing security and safety as equal concerns when per-

forming the analysis [51]. Furthermore, STPA-SafeSec involves extensive analysis and a

highly prescriptive approach to undertaking analysis on systems in order to ensure that

all safety and security aspects are covered.

A final example is the work by Procter et al., which is named SAFE and Secure [107],

that seeks to deeply integrate safety and security analysis and has roots in perceived

shortcomings of existing methodologies such as STPA-Sec and STPA-SafeSec. It does

so through a systematic identification of possible fault states a component or element of

a system may have, and then creating an input-space compression in order to classify

all possible inputs which may result in these faults. As this approach primarily focuses

on the notion of inputs and their effect on the system, it can therefore be used to

Chapter 3 Development of SE-STPA 37

consider both safety and security risks as fundamentally, it does not matter whether an

input is accidentally incorrect, as is often the concern in safety, or whether it has been

manipulated by an adversary, as is often the concern in security. The mitigations chosen

to address these erroneous inputs are then chosen with a view to effectively constrain the

inputs to only acceptable values; this may include the use of encryption, data integrity

mechanisms, extensive checks, etc. A final analysis is then undertaken to analyse for

undesirable internal behaviours which may equally result in fault states that can occur

within the component itself. Any identified internal faults are then equally mitigated to

ensure total coverage of the component, before another component is selected and the

analysis started afresh.

It is therefore clear that the STPA approach has demonstrated itself to be quite malleable

in the hands of researchers and has permitted refinement and development in a variety

of ways as demonstrated by the methodologies detailed in this section.

3.5 Shortcomings of STPA/STAMP

The primary shortcomings of STPA and STAMP can be enumerated as follows:

1. A dependence on expert review during the analysis.

2. No built-in verification that generated constraints successfully mitigate against

identified unsafe control actions, and therefore hazards.

3. Security considered only as a causal factor in relation to the safety of the system.

3.5.1 Expert review dependence

One of the major dependencies of STPA is a requirement for adequate subject-matter

experts (SMEs) to be present during the analysis. This dependency is not isolated to

STPA in particular; a HAZOP study is undertaken by a team which involves a number

of subject-matter experts [63]. However, this usage of experts can be a detriment as

much as a benefit. Even with the systematic approach provided by techniques such

as HAZOP or STPA, much of the success of the activity is highly associated with the

imagination, creativity and stamina of the team undertaking the analysis [14, 45]

There are essentially two types of experts normally present during hazard identification

& analysis sessions when these take place in an industrial setting:

38 Chapter 3 Development of SE-STPA

1. System experts: These experts have expertise in the system behaviours and so

are useful when exploring how the system under consideration may become haz-

ardous, especially as their expertise can be utilised to fill in gaps in existing docu-

mentation such as ambiguous requirements and/or design documentation. These

experts tend to belong to the system creator.

2. Domain experts: These experts have broader expertise on the threat/hazard

profile which may exist within the system’s operating environment, as well as

emerging threats/hazards.

The shortcoming of STPA is that it places a high degree of emphasis on the interaction

between these two groups of experts, but in domains which are rapidly adopting cyber-

physical systems, there may not be a significant number of domain experts who have

a solid grasp of both the ‘cyber’ and ‘physical’ challenges within the domain and can

articulate this in support of the analysis. This difficulty is magnified by the safety-

focused nature of STPA, as it may therefore be difficult to ‘tease out’ security issues

with the same degree of thoroughness.

In the baseline STPA approach, there is no clear guidance on how to address such

a situation. Any methodology seeking to improve on this shortcoming of STPA would

therefore need to provide some manner of understanding and analysing the system where

these experts may not be available.

3.5.2 Checking of constraints

As STPA presents itself as an iterative analysis technique, the generated constraints as

a result of identification of unsafe control actions (UCAs) do not undergo any formal

validation. It is assumed that the expert input utilised during the analysis would in-

herently drive sensible constraints, and that the iterative intent of STPA would ensure

that any issues with constraints would be addressed on a subsequent loop or during the

re-design to integrate the constraints into the system design.

This represents a shortcoming in several dimensions:

1. The process of re-engineering the system is likely to be costly in terms of resource,

and therefore it is essential to ensure that the design of the system is not built

around constraints that are ineffectual at addressing the identified hazard.

2. It is entirely possible that generated constraints are contradictory or represent

opposing behaviours when addressing different or complex hazards. This may not

be detected until later in the system life-cycle, which would reduce confidence in

both the technique and the remaining constraints. Furthermore, it may require a

costly review of the design to ensure no other constraints are contradictory.

Chapter 3 Development of SE-STPA 39

3. There is a practical ‘tipping point’ where the cost of undertaking further STPA

analysis is seen to outweigh the benefit it may provide. This would mean that the

constraints and any resulting design changes may be erroneous and there would

not be a subsequent analysis undertaken to detect and address this.

Once again, in the baseline STPA approach, this dependency on continuous analysis

does not mesh with the practical realities of engineering with finite time and resource.

It is therefore clear that any methodology seeking to improve on STPA would be well

served in addressing this shortcoming.

3.5.3 Consideration of security

The final major shortcoming of STPA relates to security; while the methodology does

consider security as part of the analysis during the ‘scenario generation’ stage, this is

purely considering security as it relates to safety, and not security in its own right. This

may seem an irrelevant criticism when considering a safety-focused methodology, but for

the intent of this thesis, this represents a substantial shortcoming.

Existing work that has already been explored, such as STPA-Sec and STPA-SafeSec,

attempts to address this by either modifying the guidewords utilised to guide STPA

analysis, or through integration of a number of well-regarded security techniques into

the analysis. However, both of these approaches do not truly consider security and safety

as part of a unified methodology, which represents a shortcoming when both of these

aspects are of equal concern when considering the life-cycle of cyber-physical systems.

STPA-SafeSec also involves a number of security analysis techniques which requires the

system design to be finalised or for the system to actually have been implemented in

some manner, before the security analysis can take place. This limits it to existent

systems, and represents a late stage of the life-cycle to be undertaking security analysis.

This is the final major shortcoming of STPA; that security is essentially a ‘second-

class’ citizen to safety within the framework of existing work within the STPA family

of methodologies. A methodology seeking to improve on STPA in the context of cyber-

physical systems should therefore consider security and safety in a meaningful, unified

manner.

3.6 Iterative development of the methodology

Prior to the creation of the methodology and its associated model presented in this

thesis, an initial phase of exploratory work was undertaken, followed by the usage of

a candidate version of the methodology against a case study. The development of the

methodology therefore can be seen to have occurred within 3 distinct phases:

40 Chapter 3 Development of SE-STPA

1. The initial methodology: This stage involved a methodology that was minimally

modified from standard STPA/STPA-Sec in its approach. A formal model of

systems under consideration was built, but the relationship between generated

constraints from the analysis and the formal model was unclear and poorly defined.

This methodology also struggled to identify security issues that had no bearing on

the system’s safety.

2. The second version: This version of the methodology was clearer on the involve-

ment of the formal model; dictating that a formal model was to be created prior to

control action analysis being undertaken, and that the constraints generated dur-

ing control action analysis were to be modelled in refinements of the formal model.

This version attempted to integrate security analysis into the causal factors anal-

ysis step of STPA, which had limited success due to the fact that this made causal

factors a very complicated step as the analyst had to both consider residual safety

issues within the control loop through considering how control might be lost, as

well as considering the bulk of all security issues such as manipulation of informa-

tion in transit by malicious actors, etc. Causal factors analysis also occurred after

the step integrating critical requirements into the formal model in this version

of the methodology and therefore the bulk of security requirements could not be

tested against the formal model without repeating the step a second time which

was time-consuming. This version of the methodology was deployed against the

smart meter case study, as detailed in Chapter 5.

3. SE-STPA: This is the final version of the methodology, as detailed in Chap-

ter 4. The explicit identification of adversaries in its own distinct step (‘adversary

modelling’) is designed to enable thoughtfulness around security risks, while the

placement of this step prior to the integration of critical requirements into the

formal model seeks to ensure that both the safety- and security-focused critical

requirements can both be validated against the formal model to provide a higher

level of assurance that they are reasonable and sufficiently-detailed in their ap-

proach. The unification of terminology such that all constraints - whether they

come from causal factors analysis, adversary modelling or control action analysis

- are known as critical requirements aids the consideration of both security and

safety issues as first-class citizens of the analysis. This version was applied against

the multi-UAV case study, as detailed in Chapter 6.

3.7 Creation of SE-STPA/STAAMP

The creation of Security-Enhanced Systems-Theoretic Process Analysis (SE-STPA) is

intended to address the shortcomings detailed in Section 3.5, in addition to representing

a robust methodology in line with the research questions as detailed in Section 1.1.

Chapter 3 Development of SE-STPA 41

The methodology therefore integrates the following elements, above and beyond the

baseline STPA approach:

1. The development of the existing STAMP theoretical model to include security to

create Systems-Theoretic Accident & Attack Model and Processes (STAAMP).

2. The integration of a specific analysis step for security issues within SE-STPA,

utilising unified terminology to ensure security is treated as a first-class citizen of

the analysis.

3. The integration of the Event-B formal method into the analysis to provide a formal

capability for validation and verification (V&V) of generated constraints.

4. Substantial modification of terminology utilised when compared to the baseline

STPA approach.

5. Modification of several steps that are carried over from the baseline STPA ap-

proach.

Each of these developments from baseline STPA are explored and justified in their own

section.

3.7.1 Expansion of the underlying systems-theoretic model

The first significant modification of the existing STAMP/STPA paradigm presented in

this thesis involves the creation of the theoretical model known as Systems-Theoretic

Accident & Attack Model and Processes (STAAMP). This new model integrates at-

tacks into the broader framework of STAMP and therefore provides an understanding

of security as an emergent property of systems. This section serves to present the devel-

opment of this model from the baseline Systems Theoretic Accident Model and Processes

(STAMP).

As previously described in subsection 3.3.1, STAMP approaches safety from Rasmussen’s

systems-theoretic perspective; namely that of the ‘boundary of acceptable performance’

which Leveson has applied to the domain of safety. Expanding this model to include

security issues requires the addition of a further ‘boundary of acceptable performance’

which represents security as can be seen in Figure 3.4

42 Chapter 3 Development of SE-STPA

System
under

consideration

Boundary of
safety

Boundary of
security

Safety enhancing actions
result in the system being

less secure.

Security enhancing
actions result in the

system being less safe.

Figure 3.4: Simplistic representation of the ‘boundary of acceptable perfor-
mance’ concept as applied to safety and security jointly

The fundamental issue with a model such as that represented by Figure 3.4 is that it

fails to account for the fact that there are modifications to the design which can improve

or degrade both safety and security in lockstep; i.e. that safety and security are not

always trade-offs.

An example can be found in industrial control systems where role-based access controls

are utilised to ensure that individuals may only control equipment that they are trained

or certified to operate. This is beneficial from both a safety and a security perspective:

• From a security perspective, attempting to control aspects of the equipment will

require authentication as a valid user with appropriate privileges. This prevents

casual attackers and represents an additional layer of defence on top of any physical

access controls that exist on the site. Furthermore, having user-level access controls

ensures a degree of traceability and transparency in the case of a user misusing

the equipment with an intent to disrupt or degrade the underlying process.

• From a safety perspective, there are likely to be safety consequences if someone

with an inadequate understanding of the machinery and its limitations is permitted

to operate the machinery. The management of user privileges prevents users from

controlling aspects of the machinery they may not understand, which can reduce

the risk of fire, energetic releases, etc.

While it may be possible to make an argument that this restricts wider operation of

the equipment, which in some hazardous situations may be desirable from a safety

Chapter 3 Development of SE-STPA 43

perspective, a majority of industrial control systems are also equipped with emergency

stop functionality in the form of physical buttons placed near all machinery. This enables

any user, regardless of role, privilege or training, to halt the machinery if they perceive

a potentially dangerous situation emerging, while restricting control of the equipment

in more general sense to those who are adequately qualified and experienced with the

equipment.

A more mature and realistic model is therefore one that takes into account that while

there are design choices influenced by safety which can degrade a system’s security and

vice-versa, there are also a number of design choices which can improve both security

and safety. This is represented in Figure 3.5.

System
under

consideration

Boundary of
safety

Boundary of
security

Safe & secure
region

Insecure
region

Unsafe
region

Unsafe &
insecure
region

Figure 3.5: Advanced representation of the ‘boundary of acceptable perfor-
mance’ concept as applied to safety and security jointly

The model as seen in Figure 3.5 represents several concepts:

1. There remain design choices or operational decisions which can result in the system

drifting towards one undesirable region (i.e. the unsafe region) without getting

closer to the other undesirable region (i.e. the insecure region).

2. On the other hand, there may be design choices or operational decisions that

migrate the system away from both boundaries and therefore improve both the

safety and the security of the system under consideration.

3. There exists an undesirable region where the system can be both unsafe and inse-

cure. This might manifest through an attacker breaching the security of a system

44 Chapter 3 Development of SE-STPA

(i.e. bringing it into the insecure region) and then subsequently utilising the sys-

tem to cause direct harm through bypassing safety constraints (i.e. bringing it

into the unsafe & insecure region).

This elaboration of the STAMP model includes security on a theoretical level and con-

siders both accidents, which ordinarily result from a series of unintentional actions by

benevolent actors, as well as attacks, which result from a combination of intentional

actions by malicious actors in addition to unintentional actions by benevolent actors.

The revised model presented in Figure 3.5 assumes that there is a strong likelihood that

well-intentioned actors may occasionally make decisions that undermine the security of

a system broadly, such as through reusing passwords or disabling security features that

interfere with their interaction with a system. These unintentional actions can then form

part of a general drift towards the insecure region, which a malicious actor can then ex-

ploit by taking further actions that push the system over into the insecure region. The

end result of this is what would commonly be known as an ‘attack’, in the same way

that a system entering the unsafe region is ultimately known as an ‘accident’.

This view of the drivers behind accidents and attacks differs from the understanding

presented by Young et al. [147] in which it was suggested that unintentional actions by

benevolent actors were the leading cause of accidents, while intentional actions by malev-

olent actors were the primary cause of security issues. However, Young’s understanding

of the security and safety dichotomy is derived from a military domain and context, in

which the discipline of individual users is higher than can reasonably be assumed when

considering cyber-physical systems.

These revisions of the STAMP model to include security also results in a similar conclu-

sion to that of Leveson [90], which is that the best defence against both accidents and

attacks is the creation, implementation and maintenance of constraints that are known

to users of the system throughout the system life-cycle. Through constraining users,

maintainers and management, as well as the system behaviours, it is possible to main-

tain a significant ‘distance’ from the boundaries of security and safety, and to ensure

that all who interact with the system maintain that distance.

This also applies to malevolent actors, who often rely on vulnerabilities or weaknesses

in the system architecture to establish a foothold from which to take further actions to

undermine the system and eventually successfully attack it. Through identification and

analysis of any innate weaknesses of the system, as well as likely attack paths, these can

be constrained and controlled to reduce the attack surface of the system to a manageable

degree.

The revised model as presented in this section is therefore entitled Systems-Theoretic

Accident & Attack Model and Processes or STAAMP to account for its consid-

eration of security and safety.

Chapter 3 Development of SE-STPA 45

3.7.2 Embedding security into STPA

As STPA uses STAMP as the lens through which systems are understood and consid-

ered, SE-STPA presented by this thesis equally utilises the Systems-Theoretic Accident

& Attack Model and Processes (STAAMP) for its view on systems, as detailed in subsec-

tion 3.7.1. This adds the requirement for the analysis to consider security as a first-class

citizen, as the underlying model views both security and safety as equal concerns. This is

addressed through the addition of a security-focused step into the usual steps of applying

STPA, which is known as adversary modelling.

Adversary modelling takes place subsequent to Control Action Analysis (Step 3 in ‘stan-

dard’ STPA) in SE-STPA as this ensures that the system model has been constructed

in terms of controllers and controlled processes and that information exchanges between

controllers have been identified. It seeks to provide an explicit capture that various

categories of adversary and their possible attack paths through the system have been

considered. As the major goal of analysing cyber-physical systems is ensuring that cor-

rect and safe operation occurs despite the additional attack surface represented by the

cyber/networking components, the placement of this step subsequent to Control Action

Analysis also ensures that the safety-relevant behaviours of the system have been thor-

oughly analysed prior to considering how adversaries may interfere with the system; this

is important as it contextualises the correct, safety-related behaviour of the system prior

to considering the impact that an adversary may have, and thus enables consideration of

security issues which interfere with achieving these safety-related behaviours in addition

to considering around security issues that do not interfere with the safety of the system.

Adversary modelling achieves this through identification of the adversary, their possible

resources, and their intent with regards to the system (e.g., disruption, mere curiosity,

etc). Attack paths are considered through labelling controllers and information links

between controllers with ‘manipulation points’ and then allocating a number of ma-

nipulation points commensurate with the perceived threat of the adversary and their

capabilities. Finally, constraints can be generated to either represent constraints on

system and user behaviours or to inform design revisions to reduce the anticipated at-

tack surface available to a given adversary. More detail on this step in practice can be

found in subsubsection 4.2.4.6, but the overall intent is to provide an explicit capture of

perceived malicious actors and their capabilities and constrain the system accordingly.

This approach was chosen over alternatives as many alternative approaches, such as

undertaking hands-on penetration tests against perceived weaknesses of the system,

would limit which life-cycle stages that SE-STPA could actually be utilised on a system.

The STPA family of methodologies are intended for use throughout a system life-cycle

with an aim to identify constraints as early as possible, and therefore it would be contrary

to the expectations of a systems-theoretic approach if SE-STPA was only applicable once

the system had been implemented. This is due to the STPA family of methodologies

46 Chapter 3 Development of SE-STPA

seeking to meaningfully constrain system behaviour as part of design, and so the later

the analysis is carried out, the less malleable the system design is likely to be, and

the greater the risk of constraints not being integrated into the design in a meaningful

way. This means that, in particular reference to adversary modelling, it trades some

specificity in terms of the exact approach that may be taken by an adversary in order

to have broader applicability throughout the system life-cycle.

3.7.2.1 Relationship of adversarial modelling to the literature

Adversary modelling as a concept is informed and inspired by a number of approaches

from the literature, which are detailed below:

1. Misuse cases as presented by Sindre and Opdahl represent an explicit capture

of a sequence of actions which can undermine the security of a system, as well

as identification of other metadata involved in the misuse (i.e. pre-conditions,

existing mitigations, etc) [131]. These serve as a counter-point to the use cases

that are often used in software engineering requirements elicitation.

2. Abuse cases as presented by McDermott and Fox which take a threat actor-

centric approach, considering the resources, skills and objectives of each actor

involved in abuse/misuse of the system [98]. These actors are then considered in

the context of an abuse case, where characteristics such as harm, privileges utilised

and the active steps involved in the actor abusing the system are captured and

considered.

3. The Dolev-Yao adversary represents a formal adversary with a significant de-

gree of influence over communication protocols and channels [44]. While a formal

adversary model is not used by adversarial modelling, it was an aspect of the lit-

erature that was considered during the development of the adversarial modelling

step in SE-STPA .

4. Attack trees [126] were an additional source of inspiration for adversarial mod-

elling. Once again, although adversarial modelling does not prescribe the use of

attack trees, it does explicitly outline attack paths through the system, and so at-

tack trees are one technique that could be utilised within the adversarial modelling

step for providing a visual representation of an adversary’s actions.

Adversarial modelling can therefore be said to primarily have been influenced by the no-

tion of abuse/misuse cases. These approaches seek to inform the security design through

explicit capture of aspects of a threat and/or an actor, and then provide an argument

that the current security mitigations in the design are sufficient or, where inadequate,

that additional requirements are generated to address this shortfall. Adversarial mod-

elling is also intended to serve as the basis for an explicit security assurance case [7]; to

Chapter 3 Development of SE-STPA 47

serve as evidence that all valid threat actors and their possible impact on the system

have been analysed and addressed.

3.7.3 Integration of a formal model

The usage of the Event-B formal method [3], and the associated Rodin toolset [2], aids

the methodology by providing a higher degree of assurance that identified constraints

actually mitigate against potentially insecure/unsafe system behaviours. This is in di-

rect response to the shortcoming of the baseline STPA approach which has no formal

validation step to ensure generated constraints meaningfully address the associated un-

desirable behaviour, as detailed in subsection 3.5.2. Instead, STPA relies on the expert

review involved in the analysis process to serve as the sole ‘check’ on generated con-

straints, which can lead to contradictory or conflicting constraints.

3.7.3.1 Event-B summary

This section of the thesis aims to provide the reader with a high-level overview of Event-

B, sufficient to understand its role in the methodology. Terminology is sourced from

Abrial [3] and Robinson [115] and can be found in Table 3.1.

Table 3.1: Event-B terminology

Term Definition

Machine

Machines model the dynamic behaviour of the system.

They can see a context, and contain a state as well as a

number of events. The state of the system is represented

through variables, which themselves are defined by either

invariants or theorems within the model. A Machine may

refine another Machine.

Context

Contexts are used to model constant values such as carrier

sets, relations and functions as well as properties of those

constants which are called axioms. Furthermore, theorems,

which express properties of the constants that can be

deduced from the axioms, are modelled within the context.

A Context may extend another Context, through

providing additional sets or constants.

48 Chapter 3 Development of SE-STPA

Table 3.1: Event-B terminology (continued)

Term Definition

Events

Events are representations of transitions between states.

To this end, they consist of a number of guards, which

represents pre-conditions for the event to fire, in addition

to parameters, which are symbolic representations of

values involved in the transition. Finally, there are a

number of actions which are able to manipulate the state

of the machine, primarily through acting on variables of

the machine.

Axioms

Axioms declare properties of carrier sets and constants.

They can therefore be used to provide type information

for constants and carrier sets, in addition to specifying

properties of carrier sets and constants, such as whether a

carrier set is finite.

Theorems

Theorems can be utilised within both machines and

contexts. They represent properties that must be derived

from the axioms and other properties of the model. Every

theorem will therefore generate a proof obligation which

must be discharged in order to prove the theorem.

Guards

Guards are pre-conditions that must be true in order for

an event to be enabled (i.e. the set of all guards for an

event must equate to true before that event can occur).

Guards are also utilised to provide type information to

parameters within events.

Parameters
Parameters are symbolic representation of values that are

relevant to a given event.

Variables

Variables are representations of the state of a machine.

They are provided with type information through

invariants and must be provided with an initial value

within the INITIALISATION event of the model.

Invariant

Invariants are used to specify the type of variables.

Additionally, invariants are also used to specify permitted

values of variables, and therefore is used to constrain the

valid states that the modelled system may be in, as the

system state is represented by the machine’s variables. All

invariants must equate to true after each event, and proof

obligations are generated on events in order to ensure that

actions taken within events do not contradict invariants.

Chapter 3 Development of SE-STPA 49

Table 3.1: Event-B terminology (continued)

Term Definition

Actions

Actions occur within events and are used to manipulate

the variables of the machine, while respecting the

constraints represented by the invariants.

Proof obligations: The generation of proof obligations ensures that the Event-B

model remains consistent and correct with regards to its axioms and invariants. The

process of discharging a proof obligation is a formal demonstration (or proof) that the

behaviour of some aspect of the model is consistent and as declared. Furthermore, a

seeming inability to discharge a proof obligation is usually indicative that some aspect

of the model has been incorrectly specified. Some major proof obligations that are

frequently encountered in modelling systems using Event-B are as follows:

1. INV, the invariant preservation proof obligation, is generated on events that ma-

nipulate variables of the model. Discharging of this proof obligation ensures that

events do not manipulate the variables of the model in a way that is contradictory

with regards to invariants relevant to those variables.

2. WD, the well-definedness proof obligation, is generated to ensure that a potentially

ill-defined expression of the model is in fact well-defined. Discharging this proof

involves meeting a given ‘well-definedness condition’ of the expression.

3. GRD, the guard strengthening proof obligation, is generated to ensure that the

concrete guards in a concrete event are stronger than the abstract guards in an ab-

stract event. Discharging this proof ensures that, through having concrete guards

strictly stronger than abstract guards, the concrete event being enabled means the

underlying abstract event is also enabled.

Refinement: The process of refinement enables a formal model of a system in Event-

B to be iteratively constructed such that more detail is added with each refinement.

This therefore creates an ordered sequence of models in which either more functionality

is added such as additional events, variables and invariants (known as horizontal refine-

ment) or where the model and its variables become more precisely specified with the

intent of the model being at sufficient detail to use it as a reference model for authoring

of code or tests (known as vertical refinement or data refinement). Data refinements

are a special case as they also require what are known as gluing invariants which map

the specification of variables in the more concrete model to the variables in the abstract

model that precedes it. This essentially ‘glues’, or formalises the relationship between,

the refining machine and the refined machine.

50 Chapter 3 Development of SE-STPA

3.7.3.2 Benefits of utilising Event-B within SE-STPA

The benefits of the chosen formal method are numerous:

1. The use of the Rodin tool for the Event-B formal method provides the ability to

use interactive proving (and a variety of formal proof plug-ins) to demonstrate

formally that the properties of the model hold or are unprovable in their current

state. This can aid in improving the model (and thus the underlying system design)

and also aid in improving the constraints themselves by increasing their specificity

when attempting to ensure they meet the proof obligations of the model.

2. Model checking can provide counter-example traces where there is a possible series

of events which may undermine any given constraints which can allow the analyst

to consider development/refinements of each constraint to ensure that constraints

cannot be undermined by a specific sequence of system behaviour.

3. The use of model checking within Rodin can additionally check that there are no

deadlock states which may be a risk when constraining system behaviour. Due to

the state-space involved in formal modelling of this type, model checking cannot

totally guarantee that no deadlock states exist within the system.

4. Event-B supports the notion of refinement of a model as well as decomposing

models into sub-models which can then be composed together once more to verify

overall system behaviour. This can be of significant aid when carrying out the

methodology in an iterative fashion over multiple system designs and then down

into component-level analysis, as the formal model can be decomposed into sub-

systems to keep pace with the analysis.

The last point is one of particular significance as it allows the formal method to keep

pace with the system as its design becomes more detailed over time and can also be

used in circumstances such as when a new subsystem is proposed for an existing system;

the new subsystem can be analysed, modelled and confirmed to not breach any of the

existing constraints.

The prescription of the Event-B model therefore serves to support SE-STPA by providing

a higher degree of assurance that the constraints produced by SE-STPA sufficiently

mitigate against undesirable system states and behaviours (as represented by hazards)

through the ability to formally specify constraints on the system as invariants. In the

standard STPA methodology, the constraints generated as a result of the analysis are not

formally validated in any sense; though Leveson recommends the use of expert review in

the analysis, this does not confirm the constraints are complete in terms of total, or even

partial, mitigation against identified hazards. The methodology produced as a result of

this thesis therefore aims to provide an additional verification of the robustness of its

Chapter 3 Development of SE-STPA 51

constraints, when compared to STPA where constraints may only have any verification

as to their completeness in mitigating against unsafe system states or behaviours once

the system is being implemented or tested.

The integration of Event-B into SE-STPA creates two additional steps when compared

to baseline STPA:

• The first step involves creating a formal model of the system prior to carrying out

control action analysis/adversary modelling. This step represents an opportunity

for an analyst to develop their understanding of the system and its documentation

through having to translate it into a formal model. This may highlight any short-

falls in understanding how some of the controller interactions work, for instance.

• The second step involves the translation of constraints generated by adversary

modelling and control action analysis into constraints on the formal model. This

enables the constraints to be modelled to ensure they meaningfully address the

issue they arose from, as well as ensuring that the set of all constraints do not

unintentionally constrain the system into deadlock states or contradict each other.

This improves the confidence that can be assigned to the set of constraints deter-

mined through analysis and reduces the risk that contradictory constraints may

be integrated into the design simultaneously and not be uncovered until the later

life-cycle stages.

3.7.4 Adjustment of terminology

In order to create a methodology capable of undertaking security and safety analysis

as equal concerns, it is necessary to substitute some existing terminology from STPA

in order to generalise the analysis such that it can be applied to both domains. While

traditional STPA terminology has been used until this point of the thesis, subsequent

chapters will make exclusive use of SE-STPA terminology.

3.7.4.1 Accidents vs Losses

One primary departure from the standard STPA is that SE-STPA substitutes the term

of ‘accident’ for the more broadly applicable ‘loss’ due to the methodology aiming to

identify and mitigate against both security and safety issues within the system design.

The use of a term that is perhaps not entirely familiar or native to safety or security has

been done to encourage analysts using the methodology to think in a multi-dimensional

manner so as to avoid fixating purely on safety or security issues. Furthermore, the

notion of ‘accidents’ has no real meaning in a security context, while ‘vulnerabilities’

works in a security context but is a foreign concept in safety analysis; thus, ‘loss’ has

been selected as a word that is as broadly applicable as possible.

52 Chapter 3 Development of SE-STPA

3.7.4.2 Critical Requirements

‘Critical requirements’ are SE-STPA’s form of STPA’s ‘constraints’; this is once again

attempting to avoid the anchoring effect with regards to terminology that is native

to one domain while being foreign to the other domain. Utilising the terminology of

‘critical requirements’ is done to attempt to highlight the importance of integrating

the results of the analysis into not only the design but also the subsequent stages of

the life cycle. Furthermore, as some of the resulting constraints produced by SE-STPA

will cover what are traditionally described as ‘functional requirements’ (i.e. constraints

which may modify system behaviours) while others will represent ‘non-functional require-

ments’ (i.e. constraints which may modify or define system attributes), it is essential

that the terminology used does not conflict too significantly with standard systems en-

gineering terminology which sometimes groups the notion of ‘constraints’ in with the

non-functional requirements whereas ‘critical requirements’ may be of either category

due to their status as previously unused terminology.

3.7.4.3 Hazards

Under the standard STPA methodology, the result of the analysis of each control action

produces artefacts in the form of ‘unsafe control actions’. Clearly, this terminology is not

appropriate when the analysis is considering both safety and security issues. Therefore,

SE-STPA substitutes this term such that the results of the control action analysis are

also called ‘hazards’. The justification for this is multi-faceted:

• The scenarios normally described by the ‘unsafe control actions’ artefacts resemble

hazards in their wording and thus the additional category is superfluous.

• The ‘unsafe control action’ artefacts are generally then tagged with the identifier

for a system-level hazard to which they are related, in order to create a pseudo-

hierarchy.

• One or more critical requirements (‘constraints’ in standard STPA) are then at-

tached to ‘unsafe control actions’ until the analyst is certain that the undesirable

system states or behaviours are successfully mitigated against.

• The connection of sub-system level ‘hazards’ to system-level hazards can be of

benefit when the system is decomposed and analysed one sub-system at a time as

then the top level hazards for that analysis will be the sub-system level hazards.

This can benefit assurance as there is then a hierarchy of hazards and mitigations,

and identification of hazards that are not mitigated sufficiently will be immediately

obvious when the hazards are drawn in the form of a tree diagram.

Chapter 3 Development of SE-STPA 53

This substitution of terminology does not apply to adversary modelling. In adversary

modelling, an adversary may have a number of action sequences which are manifestations

of the adversary’s intent, capabilities and access to the system. As a result of this, critical

requirements are generated to address action sequences and so there is nothing termed

as a ‘hazard’ during adversary modelling.

3.7.5 Modification of several steps that are carried over from the base-

line STPA approach

The difference in steps between the baseline STPA approach and the SE-STPA approach

are given in Table 3.2. Although several steps have been pulled through from the baseline

approach, they have been modified, both in terms of the terminology utilised (covered

in subsection 3.7.4) and additionally what each step actually involves from the analyst’s

perspective.

Table 3.2: Comparison of steps of STPA and SE-STPA

Step STPA SE-STPA

Step 1
Establish the system engineering

basis

Establish the system engineering

basis

Step 2
Draw a functional control

structure for the system

Draw a functional control

structure for the system

Step 3 Generate control actions Generate control actions

Step 4 Identify unsafe control actions Build the initial formal model

Step 5
Generate constraints to address

unsafe control actions

Hazard analysis on control actions

& critical requirement generation

Step 6
Perform scenario analysis/causal

factors analysis

Adversarial modelling/analysis &

critical requirement generation

Step 7
Iterate design or re-scope the

analysis

Critical requirement integration

into formal model

Step 8 N/A
Perform scenario analysis/causal

factors analysis

Step 9 N/A
Iterate design or re-scope the

analysis

Three of the steps carried forward from baseline STPA have undergone changes in SE-

STPA:

1. Establish the system engineering basis.

54 Chapter 3 Development of SE-STPA

2. Identify unsafe control actions.

3. Generate constraints to address unsafe control actions.

An examination of the changes to each step are considered in the sections following this

one.

3.7.5.1 Establishing the system engineering basis

In the baseline STPA approach, this step involves the identification of accidents and

hazards at the system level. Accidents are system states where the system has in some

way failed to achieve its safety-related purpose. Hazards are system states which may,

through a combination of environmental changes or further system activity, result in an

accident. The STPA family of methodologies therefore focus substantially on identifica-

tion and control of the system to ensure it does not enter a hazardous state, as hazards

can eventually become accidents. A further consideration is defining the purpose state-

ment of the system, from which all accidents are naturally derived, and which occurs

prior to any derivation of system-level accidents or hazards.

In SE-STPA, the equivalent terminology is instead losses and hazards, respectively. This

has been previously justified in subsubsection 3.7.4.1 but enables the analyst to think

in both safety and security domains. This re-contextualisation is also intended with

regards to the purpose statement that is generated when analysing a system; the system

is likely to have a number of security goals in addition to safety goals, and so the purpose

statement that is generated during the course of applying SE-STPA to the system shall

likely be more extensive than it would when applying baseline STPA.

3.7.5.2 Identify unsafe control actions

This step has been expanded in terms of terminology, as covered in subsubsection 3.7.4.3,

which enables safety and security issues to be teased out while undertaking analysis of

control actions. The intent of this step in SE-STPA , where it is instead titled Hazard

analysis on control actions & critical requirement generation, is to enable identification

of both safety issues as well as security issues relating to the control actions. This step

can therefore be considered to be focused primarily on safety issues, as well as security

issues that can affect the primary means of maintaining safety (i.e. the control actions).

Security issues that are not necessarily relating to maintaining safety, but rather consider

the security of the platform as its own distinct aim, are instead considered in Step 5 -

Adversarial modelling & critical requirement generation of SE-STPA .

Chapter 3 Development of SE-STPA 55

3.7.5.3 Generate constraints to address unsafe control actions

This step has been pulled through and combined with the control action analysis step,

so as to create the step of SE-STPA entitled Hazard analysis on control actions &

critical requirement generation. The rationale for this combining is that Step 5 of SE-

STPA also generates critical requirements, and so the critical requirements necessary

to address hazardous control actions are best generated while the analysis on control

actions is ongoing.

3.7.6 Reduction in dependence on expert review

As outlined in subsection 3.5.1, the baseline STPA technique requires both system experts

as well as domain experts in order to ensure that the analysis is undertaken in the best

possible manner, that the identified failure modes/threats are credible, and that the

resulting constraints are therefore effective and provide adequate protection against the

given failure modes/threats.

The benefit provided by SE-STPA is that, while system experts will still be required, the

methodology itself can be utilised in a way that provides effective co-analysis and can

compensate for a lack of available domain experts. This is due to it covering both safety

& security in a systematic, structured way which enables thoughtfulness around how

control can be undermined (degrading safety) and what adversaries/threat actors are

likely to threaten the system as well as their likely attack paths/behaviours (degrading

security). While this does not fully replace the need for domain experts, it can enable

both security-by-design and safety-by-design to be achieved with traceable evidence.

Furthermore, if at a later date, domain expertise becomes available, the existing analysis

and associated artefacts generated by SE-STPA can be considered by the domain expert

and aspects of the analysis can be revisited if there are additional threats/hazards that

are felt to be relevant to the system in its operational environment.

This approach represents a net improvement over the baseline STPA methodology as this

primarily fixated on safety concerns, and was not underpinned by a theoretical model

which accounted for the complex interactions between safety and security as emergent

properties. By undertaking structured co-analysis, SE-STPA provides the capability to

generate critical requirements to address perceived credible safety and security hazards

with or without domain expertise being available.

3.8 Summary

This chapter intended to provide an overview of why the STAMP model and STPA

analysis approach were chosen for modification to create the STAAMP model and the

56 Chapter 3 Development of SE-STPA

SE-STPA analysis technique. It also details the modifications that have been made

compared to the baseline model/analysis technique, and justifies the inclusion of the

Event-B formal method in the methodology based on the capabilities that are offered

by this formal method to enable verification of generated critical requirements to ensure

they meaningfully address identified hazards of the system being modelled.

Chapter 4

SE-STPA in detail

4.1 Introduction

This chapter presents SE-STPA by exploring each step of the methodology through an

illustrative example. This chapter is provided to detail the methodology prior to the

detailed case study chapters, and therefore seeks to provide a high-level explanation of

each step and its context.

4.2 A high-level overview of SE-STPA

4.2.1 Glossary

A glossary of key terms utilised throughout the methodology is provided in Table 4.1.

Table 4.1: Glossary of key SE-STPA terms

Key term Description

Loss

A loss results from the system failing to achieve/meet its

declared purpose. All losses are deemed to be of equal

importance and are derived from the system purpose

statement(s). A loss may represent a security breach or an

accident; the term ‘loss’ is utilised due to its applicability in

both security and safety domains.

57

58 Chapter 4 SE-STPA in detail

Table 4.1: Glossary of key SE-STPA terms (continued)

Key term Description

Hazard

Hazards are unsafe or insecure system states which, when

coupled with worst-case environmental conditions, will result in

a loss. STPA and its derived methodologies (including

SE-STPA) aims to prevent losses by constraining the system and

its behaviours such that it does not enter into hazardous states

in the first place, as not all environmental conditions can be

controlled and managed effectively.

Causal

factor

Causal factors are behaviours/actions which contribute to a

hazard. One example may be an operator being overloaded by

poorly-designed alarms from a control system, another may be a

failure/disruption in networking between components. The

systems-theory based approach of STPA and SE-STPA take a

holistic view of what may contribute to a hazard and so these

may be from any aspect of the socio-technical spectrum.

Critical

requirements

The terminology of critical requirements was chosen to represent

what the standard STPA methodology terms as ‘constraints’. In

the baseline STPA approach, ‘constraints’ are generated on the

system in order to prevent unsafe control actions. In SE-STPA,

the use of ‘critical requirements’ embodies the concept of

constraining the system, but terming these as ‘requirements’ has

been done to emphasise that these are not just constraints that

can be implemented and then ignored; critical requirements

should be considered all throughout the system life-cycle as with

any other type of requirements.

4.2.2 SE-STPA steps

SE-STPA consists of nine distinct steps, which are demonstrated visually in Figure 4.1.

Each step is then further detailed in its own subsection.

Chapter 4 SE-STPA in detail 59

Step 1: Establishing
the system

engineering basis

Step 2: Build the
control structure

Step 3: Generate
control actions

Step 4: Build the
initial formal model

Step 5: Hazard
analysis & critical

requirement
generation

Step 7: Critical
requirement

integration into formal
model

Step 8: Causal
factors analysis

Step 6: Adversarial
modelling & critical

requirement
generation

Step 9: Iteration and
re-scoping

Figure 4.1: A visual summary of the steps of SE-STPA

4.2.3 Clarification on the illustrative example

The illustrative example used to highlight each step of the methodology within subsec-

tion 4.2.4 is based on an abstracted and simplified version of the end-to-end technical

architecture of the UK’s smart meter system [42]. The system therefore consists of a

multitude of smart meters on consumers’ premises, as well as a central system which

they report to.

A case study was undertaken using this simplified smart meter architecture with an

earlier form of SE-STPA; this is detailed, with lessons learned, in Chapter 5. This

chapter therefore utilises the smart meter concept to illustrate each step of the method-

ology, but with the current form of the methodology instead, and so some steps within

subsection 4.2.4 will not have an equivalent within Chapter 5.

4.2.4 Methodology steps

4.2.4.1 Step 1 - Establishing the system engineering basis

The analysis process begins by taking the system under analysis and defining its bound-

aries as well as the underlying purpose of the system. The underlying purpose of the

system (or multiple purposes where the system may require this) and system boundaries

should be explained in plain English, in the form of a statement.

In the context of the example, the purpose statement is:

60 Chapter 4 SE-STPA in detail

The system purpose is to maintain an accurate and up-to-date record of the

electricity usage by a cluster of Meters and additionally, keep track of any

issues arising from Meters failing to report their correct and current usage

value in a timely manner. The system will additionally be responsible for

keeping track of registered and retired meters, managing billing for each

Meter, and for sending disconnect commands to Meters that have fallen

behind on their billing.

The purpose statement(s) then allow the determination of a system’s losses which es-

sentially represent a failure of the system to carry out its purpose. These are essentially

once more plain language statements representing an inability to meet any aspect of the

purpose statement.

One of the losses associated with the example is therefore “Loss of accurate registra-

tion/retired data for meters.” This loss represents a failure of the system to meet the

second sentence within its purpose statement.

The final part of this step involves the identification of system-level hazards which are

inferred from the losses. Hazards are essentially system states which may lead to losses

and are therefore what the analysis seeks to develop mitigations against. As per the

STAMP model, controllers are unlikely to have total control over the environment in

which a system operates so preventing hazards from occurring becomes fundamental

to ensuring that systems do not experience a loss, as losses are often just the result of

a hazard occurring at the same time as some combination of negative environmental

conditions.

An example of a hazard within the context of the example is “Meter registration is not

correctly recorded by the system”. It is easiest to represent these in a table; for large

collections of purposes, losses and hazards, it is more efficient to allocate identifiers to

each item and then use tables to map identifiers alone. An example of a simple table

format can be found in Table 4.2.

Table 4.2: Example purposes, hazards and losses mappings

Purpose Loss Hazard

P1: The system will be

responsible for keeping

track of registered and

retired meters.

L1: Inaccurate

registration/retirement data

is held by the system.

H1: Meter registrations are

not correctly recorded by the

system.

H2: Meter retirements are

not actioned by the system.

System-level losses and hazards will also be mapped to by component-level hazards to

create a hierarchy of possible ways of reaching a loss state. The analysis aims, in later

Chapter 4 SE-STPA in detail 61

steps, to generate critical requirements and verify their effectiveness at mitigating against

each potential ‘path’ of hazards to a loss. This aids the traceability of the analysis and

provides assurance that the system-level issues are being considered when dealing with

component- or control-level aspects.

Consideration of safety & security in relation to the purpose statement:

It is worth noting that this step does not focus specifically on safety or security, but

instead on how the system may fail to meet its purpose (a loss) and how system states

may contribute to any given loss (a hazard). Due to the emergent nature of both safety

and security, even if the purpose statement does not contain an explicit outline of the

security aspects of the system, these will be considered thoroughly at later points in the

analysis, with safety being considered primarily in the hazard analysis step (as detailed

insubsubsection 4.2.4.5) and security being considered within the adversary modelling

step (as detailed in subsubsection 4.2.4.6).

As these steps enable thoughtfulness around safety & security aspects of the system, as

well as likely threat/hazard profiles, this can essentially compensate where the system

purpose statement is more functional and has not provided much in the way of security

or safety context. Furthermore, both of these steps work in a ‘bottom-up’ manner and

so a lack of purpose or losses that explicitly capture possible safety/security concerns

will not hinder the effectiveness of these steps.

4.2.4.2 Step 2 - Build the control structure

The construction of the functional control structure seeks to create a representation of

all entities involved in the control of the system and any underlying processes with which

the system interfaces. This may not necessarily map to individual components if the

system design is moderately finalised; in fact, this step is designed such that it could

be performed against a system that only consists of a set of requirements from which

entities may be inferred.

Controllers (i.e. components that communicate with other components or control some

underlying process) have both responsibilities (which can be viewed as a form of com-

ponent purpose if this aids in visualisation) as well as process models which model the

understanding that a controller has of aspects of the system state or underlying process

that are relevant to it and its responsibilities. Controllers may also be passing commands

around to one another and feedback may also be passed between either controllers and

processes, or controllers and other controllers. It is important to not be too explicit in

what exactly represents commands versus feedback, as this can be unduly restrictive. It

may indeed also be the case that feedback and commands are transmitted in essentially

the same way.

62 Chapter 4 SE-STPA in detail

Whatever the state of the system in terms of how finalised the system design or architec-

ture is, an abstract functional control structure should be developed from the available

information on the system.

Going back to the smart meter example, an exemplar control structure for it is given

in Figure 4.2. As can be seen, there are essentially two tiers of controllers, which pass

commands/feedback between themselves. The meter controller is directly interfacing

with the underlying process, which is the electricity supply.

Billing System (singular)

Process Model:
- For each Meter:
- Tracks Registered OR

Retired state
- Collection of Meter

readings and date sent
- If Bill exists for Meter
- If Bill has been paid

- Current Week counter

Responsibilities:
- Track all Meters
- Send commands in

response to Meters
exceeding allowed leeway
in reporting readings or in
paying bills.

Meter
(many)

Responsibilities:
- Report meter readings at frequent

intervals
- Pay bills when issued

Commands:
- Notify bill has

been
generated

- Disconnect

Feedback:
- Pay bill
- Provide

reading

Electricity supply
(underlying process) [one per meter]

Commands:
- Disconnect

from supply

Feedback:
- Connection

status
- Electricity

usage/readings

Figure 4.2: Functional control structure for smart meter example.

It can also be useful to express the cardinality of elements within the control structure

rather than duplicating controllers/processes unnecessarily. This could be expressed

through UML-like multiplicity, or alternatively, via annotations on each controller/pro-

cess as has been used in the example.

4.2.4.3 Step 3 - Identify control actions

The development of the functional control structure should aid the identification of

control actions; commands and feedback passed around the control loops are extremely

likely to comprise the bulk of control actions available within the system. The purpose

of this step is two-fold: to identify the control actions such that they can be analysed in

Chapter 4 SE-STPA in detail 63

later steps is one element, but the identification also permits the creation of an initial

formal model of the system in the next step.

Going back once more to the example, some clear control actions have arisen, such as:

• Register Meter.

• Retire Meter.

• Generate Bill.

Once all control actions have been identified, the next phase of the analysis can begin.

4.2.4.4 Step 4 - Building the initial formal model

At this stage, an initial formal model is constructed of the system using Event-B and

its associated tool, Rodin. The purpose of this step is to allow for an abstraction of the

system behaviours to be modelled (broadly in line with the functional control structure)

and to ensure that all control actions that exist have been identified.

There is generally a straightforward transposition of control actions into one or more

events within Event-B, while process models can be most easily modelled as combina-

tions of variables and invariants. Restrictions or conditions on control actions can be

modelled through guards on events. Constraints within the design are to be modelled

on the system where these may already exist in requirements or are within the system

design already; if control actions may only occur in certain circumstances, this should

be modelled accurately.

The construction of the formal model can also aid in determining whether the under-

standing of the system is adequate; if it is unclear what effect a given control action may

have on the receiving controller/process, or perhaps the process model seems incomplete,

then this indicates that the system under analysis has been scoped incorrectly or that

the functional control structure is incomplete.

Further detail on the initial formal model for the smart meter example can be found in

subsection 5.3.4.

4.2.4.5 Step 5 - Control action analysis and identification of critical require-

ments

The control actions as determined in Step 3 (subsubsection 4.2.4.2) are then subjected

to analysis through considering if any insecure/unsafe system states (or hazards) can

occur if:

64 Chapter 4 SE-STPA in detail

1. The control action is issued.

2. The control action is not issued.

3. The control action is issued too soon or too late within the expected sequence of

system events.

4. The control action is continuous and is issued for too long/too short a period of

time.

If there is the potential for a control action to cause an unsafe/insecure system state as

a result of one of these conditions, the hazard is noted down (a tabular form is often

used for this in STPA; with the four conditions as columns, and each control action as

a row). All the hazards discovered through analysis of each control action can then be

used to generate critical requirements which represent constraints or limits in natural

language on when/how control actions may be issued; these critical requirements should

seek to constrain the system such that the identified hazards may not arise.

Going back once more to the example, one can take the ‘Register Meter’ control action

and subject it to analysis as is shown in Table 4.3 .

Table 4.3: Control action analysis results

Control

Action
Is issued Is not issued

Is issued out of

sequence

Is issued for

incorrect

duration

Register

Meter

An invalid

meter is

re-registered.

A meter fails to

be registered.

A meter is

registered

multiple times.

N/A -

registration is

discrete.

The first output from this step is the information in each row which represents a set

of hazards associated with each control action. Many of these will map back to the

identified system-level hazards; this is intentional. Due to the fact that STPA works on a

model of inadequate control, critical requirements are not directly generated for system-

level hazards as these would essentially be vague and not beneficial to future stages of the

system life-cycle. Instead, identification of all ways that hazardous control can produce

contributory hazards towards system-level hazards is undertaken, and hazardous control

is mitigated through the generation of critical requirements.

The second output from this step involves generating critical requirements to address

the identified hazards. The generation of critical requirements is once again centered

around natural-language statements that seek to address a given hazard. The critical

requirements should be specific enough to address the hazard directly but without being

Chapter 4 SE-STPA in detail 65

too prescriptive in terms of actual implementation. Some example hazards and critical

requirements are given in Table 4.4.

Table 4.4: Critical requirement generation (control action analysis) from the
example

Hazard Generated critical requirement

H3: An invalid meter is re-

registered.

CR1: Meters, once retired, may not be returned

to a state of registration.

H4: A meter is registered

multiple times.

CR2: Registration for a given meter may only

occur once.

These critical requirements will be integrated into the formal model in a later step.

4.2.4.6 Step 6 - Adversary modelling and generation of further critical re-

quirements

The next aspect of the analysis involves the notion of adversary modelling. An adver-

sary is essentially an abstraction of any unauthorised party interacting with the system

in a way that might undermine the system’s purpose, including any implicit security

requirements a system may have.

A given adversary consists of the following properties:

1. An identifier, such that other aspects of the analysis may be mapped back to this

adversary.

2. A name/categorisation.

3. The intent of the adversary, ranging from something as minor as ‘curiosity’ all the

way to ‘denial of service’ or ‘permanent damage’.

4. The access or perspective of the adversary, which will ideally consist of some num-

ber of manipulation points - described later in this section.

5. The information held by the adversary, which may be expressed explicitly or more

generically in terms on a scale such as ‘minimal’ to ‘complete’.

6. The actions that an adversary may undertake. This may be a linear flowchart

but may also consist of multiple paths of action that the adversary may carry out.

These may be described in broad strokes, much like the identification of hazards

from control actions as detailed in subsubsection 4.2.4.5.

66 Chapter 4 SE-STPA in detail

The system’s functional control structure itself must also be annotated with manipula-

tion points (MP); essentially, these are any communication links between controllers, or

the controllers and processes themselves, that may feasibly be accessible to any adver-

sary. Not all adversaries will utilise all manipulation points, but all interfaces between

different entities in the functional control structure should be tagged with an identifier

in order to facilitate the adversary modelling process.

The purpose of the adversary modelling is essentially to provide a traceable and explicit

security assurance case: an artefact demonstrating that a given type of adversary has

been considered, and has had sufficient mitigations against their behaviours generated in

the form of critical requirements. Consideration of all possible actions that an adversary

may take is not necessary; a sample can be provided to exemplify the capabilities of the

attacker and allow critical requirements to be generated accordingly, if expert review

determines that the most likely or damaging attack paths through the system have been

considered1.

Going back to the example, the annotated version of the functional control structure for

the smart meter system is given in Figure 4.3, as well as a table containing the definition

of an adversary in Table 4.5.

Billing System

Meter

Electricity supply
(underlying process) [one per meter]

MP1 MP3MP4

MP2

MP5 MP7MP6

Figure 4.3: Annotated functional control structure for smart meter, with ma-
nipulation points.

1Equally, consideration may be focused around three model adversaries who represent an intent to
undermine each aspect of the CIA triad and this could be utilised to demonstrate that confidentiality,
integrity and availability of the system have been considered and addressed appropriately through critical
requirements.

Chapter 4 SE-STPA in detail 67

Table 4.5: Adversary description from the smart meter example

Property Detail

Identifier Adversary 1 (A1)

Name/categorisation Fraudulent user

Intent Adversary intends to reduce their bill through tampering

with the meter.

Access Adversary can see and manipulate MP5 and MP7.

Information Adversary is aware that feedback channel MP7 reports

electricity usage by the consumer.

Actions Single step: Adversary intercepts and modifies MP7 result

at all times. This has the net effect of putting the electric-

ity consumption, as recorded by the smart meter, below

what has actually been used.

As detailed briefly in subsubsection 3.7.4.3, adversary actions are viewed as analogous

to hazards as adversaries and their actions cannot be directly controlled. Instead, much

like hazards, the actions of an adversary are a result of a combination of factors that

manifest themselves as a hazard; the adversary essentially can just be seen as a malicious

environment. The intent is therefore to generate critical requirements as with any other

type of hazard in order to ensure that control over the system can be maintained in

a meaningful way in spite of the identified hazard. This differs from the later causal

factors analysis, which is focused on the derivation of possible contributing factors to

a loss of control to ensure that identified factors can be mitigated in the design or

processes around the management of the system; adversaries seek to directly undermine

system control with a malicious intent and therefore performing it at this step is a more

meaningful way of modelling the true way that adversarial behaviour works rather than

to simply consider it as a causal factor.

To generate critical requirements, a summary of the adversary behaviours can be used

in lieu of the hazard column used in Table 4.4 and the table can otherwise be reused.

For hazards that have originated from the adversary modelling, it can be simpler to

summarise in terms of the functional control structure than discussing manipulation

points, though occasionally the use of manipulation points in the description may bring

greater clarity, so this is situational. Going back once more to the example, some hazards

and their associated critical requirements are presented in Table 4.6.

68 Chapter 4 SE-STPA in detail

Table 4.6: Critical requirement generation (adversary modelling) from the ex-
ample

Hazard Generated critical requirement

H5: Adversary manipulates

data between electricity sup-

ply and meter to reduce re-

ported electricity usage.

CR4: Meter will receive local average usage and

will raise an alert if readings are more than 25%

below this in a month’s period.

CR5: Billing System flags any meters that send

alerts or provide readings that are more than

20% below the projections for that meter over a

month’s period.

Once a set of critical requirements have been collected through this generation process,

an analyst would ordinarily proceed to the next step. However, if the critical require-

ments generated propose a significant modification of the design of the system - such

as the addition of new entities to the control structure - then it may be worthwhile

to iterate the design/requirements and begin the process once more from Step 1. The

example has identified new commands between the two controllers in the form of the

‘flagging’ and the ‘alert’ control actions that are implicitly defined by the generated crit-

ical requirements and so this could inform a change to the functional control structure,

which would necessitate beginning analysis again.

4.2.4.7 Step 7 - Integration of critical requirements into the formal model

The integration of the critical requirements leverages the existing initial formal model,

represented in Event-B using the Rodin tool, to validate each critical requirement. Each

critical requirement is integrated into the model in its own distinct refinement of the

model in order to enable greater traceability.

The integration may consist of the following aspects which seek to extend and refine the

model:

• Addition of invariants to the machine element of the model in order to constrain

variables. An example below is an invariant indicating that the variables of regis-

tered meters and retired meters may not overlap:

MetersRetireOverlapInvariant:

RegisteredMeters ∩RetiredMeters = ∅

• Addition of guards to events to narrow the circumstances in which they may occur.

The RegisterMeter event can be restricted through the guard below to ensure that

Chapter 4 SE-STPA in detail 69

retired meters may not be re-registered, for instance:

NotAlreadyRetiredGuard:

meter /∈ RetiredMeters

where meter is a parameter of type METER and RetiredMeters is the set of all

retired meters.

• Addition of more actions to events. As part of the illustrative example, it was

determined that the use of ‘tokens’ were a sufficiently capable abstraction of the

notion of encryption between a meter and the billing system. Tokens represent a

secret assigned to each meter during registration of a smart meter, and are required

to be submitted to the billing system in order to take an action. It is therefore

necessary to store a valid token when registering a meter as demonstrated by the

following action:

tokenAssignAction:

RegisteredTokens(meter) := token

• Addition of axioms to the context element of the model to add properties to the

constants and carrier sets represented therein. The illustrative example did not

leverage any axioms but one of the most commonly used axioms is an axiom

to partition a given set such as a MeterType set being partitioned into two for

electricity and gas meter types:

MeterTypePartitionAxiom:

partition(METERTYPE, {Electricity}, {Gas})

• Addition of new events, variables and other elements to the model and restricting

existing variables, events, etc. The example created new variables to model the

token concept by storing all tokens seen by the system and all currently registered

tokens:

VARIABLES:

AllTokens

RegisteredTokens

Additionally, the example made extensive use of event extension in refinements

of the initial model to allow for additional events to be reused but have further

guards and actions added to them.

70 Chapter 4 SE-STPA in detail

The goal of the integration of critical requirements is to ensure that they mitigate against

their associated hazard sufficiently. Many critical requirements will result in invariants

being created and violation of these will be indicated by the tool through an inability

to discharge all of the proof obligations associated with that invariant or alternatively

through the identification of counterexamples through model checking.

The strength of the formal method in this regard is that one has both mathematical - i.e.

proof obligations either being discharged or remaining undischarged - and operational -

i.e. counter-examples being generated during model simulations - demonstrations that

a critical requirement either prevents the system from reaching the hazard state or is

unable to prevent the system from entering the hazard state. These can guide either

further iteration on the critical requirements to ensure they do fully mitigate against

the system entering the hazardous state through becoming more descriptive/detailed,

or the iteration of the design itself to ensure critical requirements can be generated to

sufficiently mitigate hazards.

4.2.4.8 Step 8 - Causal factors analysis

This step seeks to address how many of the identified hazardous behaviours in the

system have arisen. This is less of a concern with the hazards identified as a result of

adversary modelling as security is often framed as being an issue of “intentional actions

by malevolent actors” [147], but is instead a more significant and meaningful task when

undertaken against the hazards found through control action analysis, as safety concerns

and analysis focus on preventing “unintentional actions by benelovent actors” [147] and

therefore these hazards sometimes lack much in the way of context or causality. This

stage of the analysis attempts to investigate this aspect.

The core process for undertaking this step of analysis should involve selecting each hazard

in turn and subjecting it to causal factors analysis through considering how a series of

actions or contexts in the control loop could lead to the hazard arising. A guidance

diagram for this can be found in a variety of STPA sources which give guidance on

exactly what may be considered a ‘causal factor’. The analyst then attempts to generate

further critical requirements or design changes in order to mitigate against any causal

factors that are deemed to be reasonable. Each ‘causal factor’ can therefore essentially be

viewed as a contributing sub-hazard to a larger hazard; examples of causal factors tend

to be around ways in which sensors may misreport information, how communications

can be disrupted, or how controller understanding can fall out of sync with the process

they are modelling with their process models.

The importance of this step is that it should provide an opportunity for identifying how

the design may not be optimal for ensuring control can be maintained of the underlying

process or between control entities within the system design, and how this degradation

Chapter 4 SE-STPA in detail 71

in control can eventually lead to a hazard. This allows aspects of hazardous control that

are commonly overlooked, such as human factors in terms of interfaces or understanding

of feedback, to be considered in a meaningful way and to be treated as first-rate concerns

within future system designs and iterations.

Going back once more to the example, the hazard of ‘A retired meter is re-registered’ can

be subjected to causal factors analysis; this can be seen in Figure 4.4. The controllers in

this example have been annotated with what causal factors might cause the hazard as

well as any commands/feedback that may be passed that may also lead to the hazard.

The causal factors are then addressed in Table 4.7.

Billing System

Meter

- Billing System never actions retirement of meter.
- Billing System moves retired meter into registered meter category

unprompted.
- Billing System actions a registration request from a retired meter.

Billing System:
- spuriously notifies

meter that it is
registered when it
has been retired.

- fails to notify meter
of retirement.

Hazard:
A retired meter is re-registered

No causal factors beyond continuing to operate as unretired meter despite
notification of retirement.

Meter:
- sends registration

requests despite
being retired.

- sends data as though
it is registered
despite being

retired.

Figure 4.4: Causal factor analysis of one hazard from the example.

Table 4.7: Causal factors and the resulting critical requirements/design changes

Causal factor Critical requirement or design change

H6: Meters continue to send

data and take no notice of

their retirement which may

cause the billing system to

erroneously respond to com-

mands.

CR6: The Billing System will ignore all commu-

nications from meters once they have been retired.

As a further example of causal analysis, if a human operator was included to serve as a

controller that sits hierarchically above the Billing System, it may perhaps be that meters

that are correctly reporting readings and appear in every way to be active (despite being

retired previously) may be assumed to have been mistakenly retired, which can cause a

retired meter to be re-registered erroneously. The causal factors analysis can then reveal

72 Chapter 4 SE-STPA in detail

how the human operator (or indeed, any controller) can come to such a conclusion, and

ensure that design modifications and constraints are generated to ensure this does not

happen.

4.2.4.9 Step 9 - Iteration and re-scoping

The final step of analysis, shared with the baseline STPA analysis process, is the notion

of iterating the design, and re-performing the analysis. This is due to the fact that some

of the constraints generated by the baseline STPA methodology may recommend archi-

tectural changes, fundamental shifts in the process models of controllers, the addition of

new control actions or indeed the addition of brand new entities to the control structure

of the system. Another possible end-state of one pass of analysis is that the system

requires only minimal changes in terms of design, and therefore the existing design is

taken forward with a small number of modifications plus the set of constraints that have

been generated as part of the analysis. These constraints will aid the subsequent steps

in the system life-cycle and so do not necessarily have to be fully integrated into the

design, and they may indeed represent behaviours the system should have once made

more concrete.

In SE-STPA, a similar view is taken; the result of the analysis may be a set of critical

requirements that propose sweeping changes to the architecture of the system and the

entities within, or the critical requirements may simply refine and curtail certain un-

desirable behaviours and system states which can lead to hazards. The end-goal is to

ensure that the system maintains security and safety through complete and thorough

enforcement of critical requirements to ensure the system is not able to drift towards

the boundaries of safety and security as detailed in subsection 3.7.1. If the design has

potentially hazardous aspects that are difficult to remediate without a re-design, then

this should be undertaken prior to further analysis.

4.3 Tool support (Rodin, Lucidchart, etc)

The tools used to support the analysis are also necessary to describe due to the method-

ology’s aim to be “tool-supported”. The primary tool used to support analysis is the

Rodin toolset [2], but other tools have been used to support the visualisation of the

system and the drawing of control diagrams etc. The primary tool used for this purpose

is Lucidchart [95] which is a cloud-based diagramming tool.

Chapter 4 SE-STPA in detail 73

4.3.1 Rodin

Rodin is a toolset and modelling environment designed for use with the Event-B formal

method [3, 2]. It allows for models to be constructed through a user-interface, as well as

providing interfaces enabling users to consider and discharge proof obligations that exist

on the model through manual proving as well as automated provers. Rodin also allows for

model checking to be undertaken through its integration of ProB; ProB enables models

to be simulated interactively, allowing users to step through a model event-by-event,

as well as permitting automated checks to enable detection of deadlocks and invariant

violations [83, 84].

Rodin is highly extensible due to being built using the open-source Eclipse platform.

This permits the development of plugins which can provide new functionality from im-

proved text editing capabilities to allowing new provers to be integrated into the platform

[67].

Many of the capabilities of the basic Rodin platform were leveraged as part of this

thesis and in support of SE-STPA. The proving perspective within Rodin was utilised

to discharge proof obligations on case studies, the Event-B perspective was used for

editing and refining the formal model, and the ProB perspective allowed the model to

be stepped-through which permitted model behaviour to be explored in real time.

The platform was also augmented by several plug-ins to enable other activities as part

of this thesis:

• The Event-B to LaTeX exporter plugin was used to export Event-B models to a

LATEX-compatible format such that models could be included in appendices of this

document where relevant to case studies.

• The SMT Solvers plugin was used to enable a larger number of proof obligations

to be discharged automatically by providing more automated solvers for use within

Rodin. This enabled more time to be spent on proving more complex proof obli-

gations associated with case studies.

The tool support provided by Rodin allowed for models to be rapidly refined, and there-

fore enabled the methodology through providing appropriate and capable tooling which

encouraged the usage of the formal method within several steps of the methodology.

The net result of this was a higher degree of assurance that generated critical require-

ments were robust and addressed the hazardous behaviours that they sought to mitigate

against.

74 Chapter 4 SE-STPA in detail

4.3.2 Lucidchart

Lucidchart is an online, cloud-based diagramming tool that allows for free-form diagram-

ming, as well as providing a variety of export file formats [95]. The use of Lucidchart

within this thesis was primarily in creating the variety of figures throughout this docu-

ment such as functional control structures for the case studies, diagrams outlining the

high-level steps of the methodology, etc. These visual aids help both the understand-

ing of the methodology, as well as enabling the presentation of aspects of case studies

in a visual format. The latter point is particularly important as the drawing of func-

tional control structures is core to several steps of Security-Enhanced Systems-Theoretic

Process Analysis.

Lucidchart as a platform has a variety of collaborative features and integrations above-

and-beyond what was used as part of the production of this document, and can inter-

operate with a variety of desktop software that performs similar functions.

Chapter 5

Smart meter case study

5.1 Introduction

This chapter details the application of a previous version of SE-STPA to a smart meter

case study. It is presented as the case study was undertaken. A section on the lessons

learned from this case study and the impact that was had on the methodology can be

found in Section 5.4.

5.2 A summary of the case study

The case study presented within this case study is based on an abstracted and simplified

version of the end-to-end technical architecture of the UK’s smart meter system [42].

The system under consideration will be a ‘smart meter’ and its infrastructure, wherein

electricity metering is performed by a low-powered cyber-physical system which has a

responsibility to periodically transmit the current meter reading of a consumer’s elec-

tricity usage to a remote system which then executes billing and manages payment for

generated bills, as well as disconnecting a consumer’s electricity supply.

The system is therefore comprised of two substantial subsystems – the remote end and

the meter itself. The remote end is assumed to be connected to a multitude of meters

at any given time and therefore manages at least two meters at any given time. The

remote end is described as though it is located somewhere on the supplier premises and it

can only receive information from meters through whatever network link exists between

them. The meter itself is viewed as being only active during its time on consumer

premises, where it is referred to as ‘registered’. A meter which ceases to be ‘registered’

will be ‘retired’ but may not return from a state of retirement as this represents the

meter being decommissioned and replaced by another meter on the customer premises.

75

76 Chapter 5 Smart meter case study

Meters may also be ‘disconnected’ as a third possible status and this may only occur

with meters which are ‘registered’ and a meter may then be subsequently retired at any

point after a disconnection; this would represent a state in which a meter is suspected of

either being damaged or compromised and will be commanded to temporarily disconnect

the supply to the consumer premises.

For the ease of description, the system components shall be referred to as follows:

Billing System: responsible for communicating with meters, keeping track of the billing

state of the accounts and validating that correct meter readings are

being submitted in good time.

Meter(s): responsible for making measurements and submitting them to the Billing

System, as well as submitting bill payments.

For the ease of analysis, Consumers and Meters are to be viewed as synonymous such that

a Meter is required to perform actions that might be traditionally performed outside

of the interactions between Meter and Billing System; this includes submitting bill

payments which would traditionally form another control loop.

The Billing System’s primary role is to maintain accurate billing and payment informa-

tion for each meter connected. To maintain this, the Billing System may keep internal

state information about the last billed and last paid information for each Meter. The

Billing System is also authorised to send disconnect signals to Meters which have failed

to send readings for 4 weeks or have failed to pay a bill in 8 weeks. Meters are allowed

12 weeks of ‘grace’ before either of these restrictions will be actively checked for that

Meter. This is to permit post-installation issues with the smart meter to be diagnosed

without an effect on the end-user.

5.3 Application of the methodology

5.3.1 Step 1 - Establish the system engineering basis

As part of scoping the system under analysis, it is clear from the documentation that the

Billing System is the core of the system and will therefore be the centre of the analysis.

The Billing System communicates with Meters but there is not a fully trusting relation-

ship as the Billing System will maintain additional data on each Meter to determine if

it is still reporting faithfully and often enough.

The system purpose can therefore be succinctly summarised as the following:

Chapter 5 Smart meter case study 77

The system purpose is to maintain an accurate and up-to-date record of the

electricity usage by a cluster of Meters and additionally keep track of any

issues arising from Meters failing to report their correct and current usage

value in a timely manner. The system will additionally be responsible for

keeping track of registered and retired meters, managing billing for each

Meter, and for sending disconnect commands to Meters that have fallen

behind on their billing.

This can be dissected into four inter-related (but distinct) purposes (to aid in represen-

tation and classification of each purpose):

Purpose 1: Keeping track of the registered/retired/disconnected state of all Meters

known to the system.

Purpose 2: Accurate tracking of Meter readings and the frequency with which Me-

ters send their readings.

Purpose 3: Generation and monitoring of billing for meters.

Purpose 4: Sending of disconnect commands to Meters that have failed to pay bills

for a unacceptably long period of time.

Of the above, purposes 1, 2 and 3 clearly have security concerns associated, as infor-

mation integrity will be compromised, while purpose 4 possesses a safety concern due

to the fact that the disabling of a Meter can cause issues if a given consumer relies on

electricity to provide heating or has medical need of electrical power to power medical

equipment.

In order to determine a loss state, each purpose is taken under consideration for ways

in which the system may ultimately fail to meet this purpose (from either a safety or

security perspective). Each loss will be attached to one or more purpose statements via

its identifier as shown in Table 5.1.

78 Chapter 5 Smart meter case study

Table 5.1: Loss identifiers, descriptions and mapping to purposes

Loss

identifier
Description Purposes

Loss 1

(L.1.)
Loss of accurate registration/retired data for meters.

P.1.,

P.2.1,

P.3.2

Loss 2

(L.2.)

Loss of ability to correctly maintain

connection/disconnection status for all Meters.
P.4.

Loss 3

(L.3.)

Loss of ability to generate valid and correct bills for

Meters.
P.3.

Loss 4

(L.4.)

Loss of ability to track Meter reading accuracy and

timeliness.

P.2.,

P.3.3,

P.4.4

These losses are then utilised to generate system-level hazards; these may be fairly

generic to begin as they represent top-level system states; later steps will generate much

more specific hazards but these must be done initially. These can be found in Table 5.2.

Table 5.2: Hazard identifiers, descriptions and mappings to losses

Hazard

identifier
Description Losses

Hazard 1

(H.1.)

Meter registration is not correctly recorded by

the system.

L.1., L.4.,

L.3.

Hazard 2

(H.2.)

Meters fail to provide correct reading

information.
L.3., L.4.

Hazard 3

(H.3.)

Meters are incorrectly treated as retired while

they should not be.

L.1., L.3.,

L.4.

Hazard 4

(H.4.)

Meters are disconnected when they should not

be.
L.2.

Hazard 5

(H.5.)

Meters remain connected when they should have

been disconnected.
L.2.

1Inability to track Meter registration/retired status precludes the ability to accurately track Meter
readings; if the system is unaware of a Meter that should be providing readings then it must have
additionally failed to keep accurate readings for that Meter.

2As before, correct billing first requires the system to know of all of its Meters.
3Correct billing is dependent on accurate reading information for each Meter.
4Not being able to to keep track of how accurate/timely Meter readings are (perhaps due to replay

attacks - or inaccurate readings - as two examples) means that Meters which should be disconnected
may not be disconnected, etc. and so this crosses over to Purpose 4.

Chapter 5 Smart meter case study 79

Table 5.2: Hazard identifiers, descriptions and mappings to losses (continued)

Hazard

identifier
Description Losses

Hazard 6

(H.6.)

Meters fail to pay bills and correct action is not

taken.
L.2., L.3.

With purposes, losses and hazards broadly identified at a system-level and based upon

the provided description of the system under analysis, it is then possible to advance to

Step 2.

5.3.2 Step 2 - Build the control structure

The information provided in subsection 5.3.1 has made this step significantly easier

through identification what the important entities involved in the system are; this in-

formation would ordinarily have to be derived from any existing designs of the system

or proposed based off of elicitation of requirements.

From this information, it is then possible to develop a detailed functional control struc-

ture, enumerating exactly what commands or data may pass between entities of the

control structure as well as what each entity in the control structure keeps track of in

terms of state information; this is also known as a ‘process model’. This final functional

control structure can be seen in Figure 5.1.

80 Chapter 5 Smart meter case study

Billing System (singular)

Process Model:
- For each Meter:
- Tracks Registered OR

Retired state
- Collection of Meter

readings and date sent
- If Bill exists for Meter
- If Bill has been paid

- Current Week counter

Responsibilities:
- Track all Meters
- Send commands in

response to Meters
exceeding allowed leeway
in reporting readings or in
paying bills.

Meter
(many)

Responsibilities:
- Report meter readings at frequent

intervals
- Pay bills when issued

Commands:
- Notify bill has

been
generated

- Disconnect

Feedback:
- Pay bill
- Provide

reading

Electricity supply
(underlying process) [one per meter]

Commands:
- Disconnect

from supply

Feedback:
- Connection

status
- Electricity

usage/readings

Figure 5.1: Final functional control structure

It is clear within this figure that many of the ‘internal’ commands make up the process

model5 for the Billing System. Furthermore, as the Meter does not need to track much

in the way of internal state, it does not possess a process model within this analysis. The

‘commands’ and ‘feedback’ channels hint towards potential control actions that may be

of use in the next step.

5.3.3 Step 3 - Generate control actions

At this stage, all possible control actions are enumerated in order to cover all actions6

which may be taken within the boundaries of the system, following the process detailed

in subsubsection 4.2.4.3 and derived from Figure 5.1:

1. Register Meter.

2. Retire Meter.

3. Submit Meter Reading.

5The process model as defined in STPA/STAMP refers to the information that a controller maintains
about the process it is monitoring and acting on.

6As the system description in subsection 5.3.1 does not declare a workflow for the reconnection of a
meter, the author decided to not consider this as a control action as it appears to not be in the scope of
the system.

Chapter 5 Smart meter case study 81

4. Generate Bill.

5. Pay Bill.

6. Disconnect Supply.

5.3.4 Step 4 - Build the initial formal model

The construction of the formal model involves the translation of the previously identified

control actions and other system elements into an Event-B formal specification utilising

the Rodin toolset.

This is done through the modelling of each control action as an event (where possible)

and the representation of elements of the process model as variables and invariants.

Additional events and variables have to be added in order to model some natural phe-

nomenon such as the passage of time.

The initial formal model provides a foundation for the later steps and enables thought-

fulness around the system as specified. It can allow for some theorem proving and

model checking to ensure that the model is free of deadlocks which may be caused by

too many contradictory requirements on the design, as well as providing proof that the

formal model has sensible events and variables through the satisfaction of the proof

obligations. Furthermore, the formal model enables the analyst to consider whether the

system behaviours are adequately specified in order to facilitate a model of the system,

and if not, this can allow the system specification to be refined prior to the rest of the

analysis being started.

5.3.4.1 Outline of the formal model

In this section, an overview of the formal model as used as part of this case study is

provided. It will outline the major variables and events and how these relate to the

preceding steps of the analysis. A full listing of the initial formal model can be found in

Appendix A.

Based off the results from Step 3, the initial formal model consisted of the following

events:

1. INITIALISATION, a default event required by Event-B, used for initialisation

of all variables to some valid default state.

2. RegisterMeter, enabling the registration of a smart meter through the addition

of the meter parameter to the RegisteredMeters variable.

82 Chapter 5 Smart meter case study

3. RetireMeter, which marks a smart meter as retired by adding it to the Retired-

Meters variable and removes it from variables associated with registered meters.

4. GenerateBill, which attaches a bill to a meter via the MeterBill variable.

5. PayBill, which marks an attached bill as ‘paid’ within the BillPaid variable.

6. AddMeterReading, which adds a new meter reading via the MeterReading and

ReadingValue variables.

7. AdvanceTime, which represents the passage of time in terms of weeks and up-

dates the CurrentWeek variable.

8. DisconnectMeter, which represents an irreversible change of state of the meter to

disconnected, which manifests in the model in the MeterDisconnectState variable.

A mapping is provided in Table 5.3 to detail to how each of the control actions deter-

mined in Step 3 (subsection 5.3.3) maps to a representation within the formal model.

Table 5.3: Control actions mapped to formal event representations

Control action Formal event representation

Not based on any control action; the

INITIALISATION event is a mandatory

component of any Event-B model

INITIALISATION

Register Meter RegisterMeter

Retire Meter RetireMeter

Submit Meter Reading AddMeterReading

Generate Bill GenerateBill

Pay Bill PayBill

Disconnect Supply DisconnectMeter

Not based on any control action; the

system as detailed in subsection 5.3.1

involves the notion of time and so the

AdvanceTime event has been created to

simulate passage of real time

AdvanceTime

Additionally, the major variables represented by the initial formal model are therefore:

1. RegisteredMeters, a variable representing all currently registered meters; typed

as a subset of the METERS carrier set, declared in the SmartMeterContext.

Chapter 5 Smart meter case study 83

2. RetiredMeters, a variable representing all meters that have been marked as

retired; a subset of the METERS carrier set.

3. MeterReading, a variable representing a mapping from meters to all recorded

readings; typed as a relation between the METERS and READINGS carrier sets.

4. BillPaid, a variable representing whether a given bill has been paid; typed as a

relation between the BILLS carrier set and BOOL type.

5. CurrentWeek, a variable representing the current week; typed as a natural num-

ber (N).

6. AllBills, a variable representing all bills issued by the Billing System; typed as a

subset of the BILLS carrier set.

7. MeterBill, a variable representing a mapping from all known meters (i.e. Regis-

teredMeters ∪ RetiredMeters) to the AllBills set. This represents the concept of

which meter ‘owns’ which bill and is modelled as a surjective relation.

8. MeterDisconnectState, a variable representing whether a meter has been dis-

connected, which is irreversible within the context of the model; typed as a partial

function between the METERS and BILLS carrier sets.

This model serves as the basis for the later integration of critical requirements.

5.3.5 Step 5 - Hazard analysis and critical requirement generation

Hazard analysis is then performed on each of the control actions in order to understand

how hazards may occur in the context of any given control action. The control actions

are analysed in line with subsubsection 4.2.4.5 and the figure covering each control action

can be found in Table 5.4.

In Table 5.4, the ‘Is issued for incorrect duration’ analysis condition has been included.

This could be removed in the circumstance that the analyst is convinced all control

actions are discrete and thus the notion of a ‘duration’ is irrelevant to the control actions

being considered, as is the case here. It is left in merely for completeness.

An example of a continuous control action may be one that controls a motorised actuator

or similar, where a control action must be constantly transmitted until the actuator

has transitioned between states. Failure to transmit that control action for the correct

duration may therefore leave the actuator in between desirable states and put the system

into a hazardous state. A real-world example of such a control action would be the flaps

on an aircraft wing; a controller may intend to extend the flaps to a given degree and this

may require the control action to be provided until the appropriate degree of extension

is reached. Were this interrupted, it may result in a hazard due to the flaps not reaching

the desired state, which can have an undesirable effect on aircraft handling.

84 Chapter 5 Smart meter case study

Table 5.4: Control action analysis results

Control

Action
Is issued Is not issued

Is issued out of

sequence

Is issued for

incorrect

duration

Register

Meter

A retired meter

is re-registered.

A meter

somehow fails

to be registered.

A meter is

registered

multiple times.

N/A -

registration is

discrete.

Retire

Meter

Retiring of a

meter which

should remain

registered may

have adverse

effects.

Failing to retire

a Meter which

should be

retired.

Retiring a

meter which

still has bills.

N/A -

retirement is a

discrete action.

Submit

Meter

Reading

Readings are

submitted that

are invalid.

Readings are

recorded from

the wrong

meter.

Readings are

not submitted

and billing

becomes

impossible.

Readings are

submitted in

the wrong

sequence.

N/A -

submitting

readings is a

discrete action.

Generate

Bill

Bills that have

already been

paid are

generated

again.

Meters which

should be

issued bills are

not.

Generating a

bill too soon

after a previous

bill has been

issued.

N/A - generate

bill is a discrete

action.

Pay Bill

A meter pays

the bill of

another meter.

None.

Attempting to

pay a bill

before a bill has

been generated.

N/A - paying a

bill is a discrete

action.

Chapter 5 Smart meter case study 85

Table 5.4: Control action analysis results (continued)

Control

Action
Is issued Is not issued

Is issued out of

sequence

Is issued for

incorrect

duration

Disconnect

Supply

The wrong

meter is

commanded to

disconnect.

A meter is not

commanded to

disconnect

when it should

be.

A meter is

commanded to

disconnect prior

to being

registered.

A retired meter

is disconnected.

N/A -

disconnecting a

meter is a

discrete action.

Hazards in Table 5.4 are identified by considering the way that a control action may

become hazardous in any of the given cases (provided in the header of each column).

This means a consideration of the control action under analysis in each of the cases

while also attempting to cover all possible environmental or system states that the case

may occur in. Taking an example from the table above, issuing the ‘Register Meter’

control action may become hazardous in the event the action is issued and the meter

in question has already been marked as retired. This is clearly outside of the expected

system behaviour, but the analysis is not restricted to respecting the usual flow of system

events or states and therefore it can be ensured that all possible hazards can be found

and have critical requirements generated so as to ensure the hazards do not arise.

These identified hazards may relate back to the previously identified system-level haz-

ards as described in Table 5.2 but this does not necessarily have to constrain or guide

the control action analysis; it may be that hazards are identified as a result of the anal-

ysis which do not connect innately with any previously identified system-level hazard.

Nonetheless, it is anticipated that the majority of identified hazards will relate back to

the system-level ones.

To continue the analysis, each of the cells in the table that are not marked as N/A,

‘none’ or are otherwise empty will be extracted in order to identify whether they are

true hazards (and therefore in need of mitigation) or represent issues which are beyond

the scope of the analysis. For those that are true hazards, critical requirements shall

be generated for them. This can be seen in Table 5.5. In the interest of brevity, a

table mapping these Hazards (determined through control action analysis) onto existing

Hazards/Loss artefacts (determined at system-level) is not provided but this would be

fairly straightforward as each of the hazards in Table 5.5 will fall under one of the

previously-defined system-level hazards.

86 Chapter 5 Smart meter case study

Table 5.5: Identification of hazards and critical requirement generation

Identified hazard Resulting Critical Requirement

[H.7.] A retired meter is re-registered.
[CR.1.] Meters may not return from a

state of retirement.

[H.8.] A meter somehow fails to be

registered.

Out-of-scope of analysis - the

assumption is that all known meters

are registered.

[H.9.] A meter is registered multiple

times.

[CR.2.] During registration, meters

must be checked to ensure they are not

registered twice.

[H.10.] Retirement of a meter which

should remain registered may have

adverse effects.

[CR.3.] Meters with outstanding bills

may not be retired.

[H.11.] Failing to retire a Meter which

should be retired.

Out-of-scope of analysis - meters are

retired using a work-flow that is

unspecified in the documentation.

[H.12.] Retiring a meter which still has

bills
Duplicate of [CR.3.]

[H.13.] Readings are submitted that

are invalid.

[CR.4.] Meters’ readings must strictly

increase.

[H.14.] Readings are recorded from the

wrong meter.

[CR.5.] Meters must have some token

that is known only to them and the

billing system and must use this to

authorise actions.

[H.15.] Readings are not submitted

and billing becomes impossible.

[CR.6.] All meters should be checked

as to whether they have fallen behind

with submitting readings before the

system’s internal time may advance.

[H.16.] Readings are submitted in the

wrong sequence.
Duplicate of [CR.4.]

[H.17.] Bills that have already been

paid are generated again.
[CR.7.] Each bill must be unique.

[H.18.] Meters which should be issued

bills are not.

[CR.8.] All meters which are due to

have bills generated shall have these

generated in a timely manner.

[H.19.] Generating a bill too soon after

a previous bill has been issued.

[CR.9.] Billing should be carried out

with a fixed frequency.

Chapter 5 Smart meter case study 87

Table 5.5: Identification of hazards and critical requirement generation (contin-
ued)

Identified hazard Resulting Critical Requirement

[H.20.] A meter pays the bill of

another meter.
Duplicate of [CR.5.]

[H.21.] Attempting to pay a bill before

a bill has been generated.

[CR.10.] Meters must specify which

bill they are paying.

[H.22.] An incorrect meter is

disconnected.

[CR.11.] Only meters matching the

disconnection criteria may be

disconnected.

[H.23.] A meter is not disconnected

when it should be disconnected.

[CR.12.] A meter meeting the

disconnection criteria must be

disconnected in a timely manner.

[H.24.] A meter is disconnected prior

to being registered.

[CR.13.] Meters may only be

disconnected if they are in registered

state.

[H.25.] A retired meter is

disconnected.
Duplicate of [CR.13]

5.3.5.1 The notion of ‘tokens’ and its justification

The most significant of the critical requirements is CR5 which mandates that all me-

ters should have a unique token that is only known to them and the billing system,

and that they must use this to authorise actions. This represents a fairly significant

design change, and is intended to represent a generic critical requirement representation

of the notion of security with the aim of preventing attackers or maliciously-modified

meters from undertaking actions as though they were another meter. By providing a

critical requirement defining the abstract notion of a token, a degree of flexibility is

provided at later iterations where this may be concretely implemented using symmetric

or asymmetric encryption, as an example.

5.3.6 Step 6 - Critical requirement integration

The integration of the critical requirements leverages the Rodin tool and the underlying

formal representation in Event-B in order to constrain the model and to demonstrate

the effectiveness of each critical requirement. In Table 5.6, a summary of how each

critical requirement was integrated into a refinement of the existing formal model can

be found. For the full model, this can be found without commentary in Appendix B.

88 Chapter 5 Smart meter case study

The critical requirements were integrated into a single refinement of the system due to

the relatively small size of the initial system model, but this would be unusual in a

system of larger scope, as attempting to integrate all possible critical requirements into

a single model refinement would represent an unwieldy and unnecessary challenge. The

recommendation from subsubsection 4.2.4.7, which states that each critical requirement

should be integrated into its own refinement, remains the recommended practice.

Table 5.6: Summary of integration steps for each critical requirement

Critical Requirement Adjustments made to model

[CR.1.] Meters may not

return from a state of

retirement.

• Creation of Machine invariant (MetersRetireOver-

lapInvariant) to assert that the intersection of

the RegisteredMeters and RetiredMeters variables

should be the empty set.

• Guard added to RegisterMeter event to constrain

such that any meter parameter may not already

be within the RetiredMeters set (NotAlreadyRetired-

Guard).

[CR.2.] During

registration, meters must

be checked to ensure they

are not registered twice.

Guard added to the RegisterMeter event to constrain

such that a meter parameter may not already be

within the RegisteredMeters set

(NotAlreadyRegisteredGuard).

[CR.3.] Meters with

outstanding bills may not

be retired.

Guard added to the RetireMeter event to constrain

such that a meter with any outstanding bills will not

be eligible for being marked as retired

(RetireMeterMayNotHaveBillGuard).

[CR.4.] Meters’ readings

must strictly increase.

Guard added to the AddMeterReading event to

enforce that each new meter reading must be greater

than the preceding value (readingIncreasesGuard).

Chapter 5 Smart meter case study 89

Table 5.6: Summary of integration steps for each critical requirement (contin-
ued)

Critical Requirement Adjustments made to model

[CR.5.] Meters must have

some token that is known

only to them and the

billing system, and must

be used to authorise

actions.

• Creation of a TOKENS carrier set within the Con-

text (SmartMeterContextFull).

• Creation of an AllTokens variable (and associated

invariant) representing a subset of the TOKENS car-

rier set to keep track of all used tokens during the

lifetime of the system (AllTokensTypeInvariant).

• Creation of an RegisteredTokens variable (and asso-

ciated invariant) to map RegisteredMeters to AllTo-

kens to represent the association between a meter

and its unique token (RegisteredTokensTypeInvari-

ant).

• Addition of a new ‘token’ parameter and Guards

to the RegisterMeter event to ensure the token is

unique and has not previously been associated with

a meter (tokenUniquenessUnassignedGuard and to-

kenUniquenessAbsentGuard).

• Addition of a new ‘token’ parameter as well as

Guards to PayBill and AddMeterReading requiring

the correct associated token and meter parameters

to be provided (tokenAssignedToMeterGuard).

[CR.6.] All meters should

be checked as to whether

they have fallen behind

with submitting readings

before the system’s

internal time may

advance.

Guard added to AdvanceTime to not allow the system

time to advance when Meters have failed to submit

readings in the preceding 4 week period of time. This

only applies once a Meter is out of its 12 week grace

period (noAdvanceHoldGuard).

[CR.7.] Each bill must be

unique.

Guard added to GenerateBill event to ensure that the

bill parameter is not already known to the system

(and therefore is unique) through checking if the bill

parameter is a member of the AllBills variable

(billUniqueGuard).

90 Chapter 5 Smart meter case study

Table 5.6: Summary of integration steps for each critical requirement (contin-
ued)

Critical Requirement Adjustments made to model

[CR.8.] All meters which

are due to have bills

generated shall have these

generated in a timely

manner.

Addition of Guard to AdvanceTime event to prevent

system time from advancing while any meters do not

have bills on a regular billing week (i.e. weeks 4, 8, 12,

etc.) (billsGeneratedHoldGuard).

[CR.9.] Billing should be

carried out with a fixed

frequency.

A Guard has been added to the GenerateBill event

which only allows billing to occur on weeks that are a

multiple of 4 through use of the modulo operator

(CurrentWeekGuard).

[CR.10.] Meters must

specify which bill they are

paying.

A Guard was added to supplement the existing

Guards on PayBill events such that a bill must have

been issued to a meter. This is done through

domain-restricting the MeterBill variable (which maps

Meters to their Bills) for a given meter parameter

and then validating that the Bill appears within the

range of the relation (billAssignedToMeterGuard).

[CR.11.] Only meters

matching the

disconnection criteria may

be disconnected.

Existing constraints modelled (namely two Guards

representing the two disconnection conditions which

have been AND’d together) during the initial model

meet this critical requirement. An additional Guard

was added to the refined model as the author noticed

that the DisconnectMeter event could be issued

repeatedly - so meters may not be disconnected more

than once (meterNotAlreadyDisconnected).

[CR.12.] A meter meeting

the disconnection criteria

must be disconnected in a

timely manner.

A Guard has been expanded within the AdvanceTime

event to prevent system time from advancing if any

meters are eligible for disconnection

(noAdvanceHoldGuard).

[CR.13.] Meters may only

be disconnected if they

are in registered state.

Existing Guard in DisconnectMeter event already

ensured this critical requirement was met successfully

(meterTypeGuard).

Chapter 5 Smart meter case study 91

5.3.6.1 Challenges of representing critical requirements within the formal

model

Representing the critical requirements within the formal model was a task for which

many aspects of the Rodin toolset were utilised. This step involved the translation

of critical requirements in natural language into the formalism required by the system

model. Examples are given below, demonstrating challenges of integrating critical re-

quirements, as well as the tool support that was used to resolve these challenges. A

subsequent heading discusses the general approach to integrating critical requirements

into the formal model.

DisconnectMeter occurs repeatedly This issue with CR11 - Only meters match-

ing the disconnection criteria may be disconnected was revealed during ProB animation

of the formal model. The existing guards within the DisconnectMeter event essentially

met this critical requirement, however, during ProB animation, it was clear that the Dis-

connectMeter event was triggering multiple times for the same meter parameter. This

was due to the fact that the event does not remove the meter from the RegisteredMeters

variable, as a disconnected meter is still registered although it is marked as disconnected.

This resulted in any meters which met the disconnection criteria (as modelled in the

disconnectCriteria guard) being subject to the DisconnectMeter event repeatedly. The

use of ProB event traces enabled the author to notice this occurence and subsequently

an additional guard was added (meterNotAlreadyDisconnected) which disables the event

if the meter parameter has already been marked as disconnected.

AdvanceTime event improvements The AdvanceTime event was improved through

integration of CR6 and CR8 which limited the situations in which the internal system

time could advance, so as to ensure that bills were generated by the formal model on

a regular schedule and that meters submitted readings in good time. This involved the

implementation of two guards; the billsGeneratedHoldGuard and noAdvanceHoldGuard

which represent predicates which only equate to true when meter readings have been

submitted and billing has taken place (if it should have taken place during that Curren-

tWeek). The noAdvanceHoldGuard was then additionally expanded in scope by CR12,

which included an additional restriction to prevent system time from advancing if meters

were eligible for disconnection.

The construction of these predicates benefited significantly from the use of both anima-

tion and proof obligations.

Animation was utilised to ensure that time could not advance in circumstances where

it should not (i.e. any meters had not submitted meters in over 4 weeks, that bills had

92 Chapter 5 Smart meter case study

not been generated on schedule, and that meters eligible for disconnection remained

connected). This was undertaken in two stages:

• Initially, the guards were formulated and the animation tool’s option to choose

which event was triggered next was utilised.

• When the guards appeared to be functioning correctly from this perspective (i.e.

the AdvanceTime event was disabled at appropriate and correct points), a number

of automatic Random Animations were used and the traces were manually exam-

ined to ensure that the AdvanceTime event was remaining disabled at appropriate

points.

Once the guards appeared to be functionally correct, the proving view of the Rodin

tool was used as each of these guards had an associated well-definedness proof obligation

generated. This resulted in some minor additions to the guards in order to facilitate the

discharging of these proof obligations.

General remarks on the use of the formal method in support of representing

and refining critical requirements In the interest of not repeating the elements

discussed in subsubsection 4.2.4.7, a summary of the primary representations that were

utilised in integrating the case study critical requirements into its formal model is pro-

vided:

1. The primary representation of critical requirements was done through guards as

many of the identified critical requirements related to the circumstances under

which a control action may be issued and this is best represented as a guard due

to guards being predicates which must all be true for the event to occur.

2. A smaller number of critical requirements were represented through invariants

such as an invariant stating that the RegisteredMeters and RetiredMeters variables

should have an intersection of the empty set. This was done to ensure that an event

could not accidentally re-register a meter that had already been retired. Another

collection of invariants were created related to the ‘token’ concept, which will be

detailed below.

3. The integration of the ‘token’ concept required the creation of a new carrier set

within the Context of the model, as well as a new variables, invariants and the

adjustment of the existing collection of events to ensure that the notion of a token

was fully integrated into various places within the model.

It is therefore clear, at least within the context of this case study, that the STPA focus

on ‘control actions’ lends itself significantly to many critical requirements which will

Chapter 5 Smart meter case study 93

translate cleanly into guards on the formal model and the critical requirements relating

to elements of the process model tend towards being most-effectively represented by

invariants. Larger scale critical requirements that propose entirely new components or

aspects to the system design (as with the ‘tokens’ concept) may involve a combination

of many formal specification elements together.

5.3.7 Step 7 - Causal factors analysis

To determine causal factors, the analysis begins by reviewing the existing functional

control structure developed in subsection 5.3.2, in line with the guidance provided in

subsubsection 4.2.4.8, as well as taking the existing set of hazards as identified in Ta-

ble 5.5. Likely causal factor aspects7 are then considered with regards to their ability

to undermine the system.

One way of viewing this aspect of the analysis process is that many of the hazards

specify some nebulous ‘failure’ which often at its root would be due to a miscommuni-

cation (or malicious subversion of communications) between components as described

by the functional control structure or alternatively a given controller misunderstand-

ing its controlled process or the state of another controller (which may once again be

due to manipulation of the controller by a malicious actor). Performing causal factors

analysis aims to contextualise these failures and provide further critical requirements in

mitigation against them.

As an example to highlight this meaning, consider H.23. which states that A meter is

not disconnected when it should be disconnected.. The critical requirement generated to

address this hazard is as follows:

[CR.12.] A meter meeting the disconnection criteria must be disconnected in

a timely manner.

This critical requirement seeks to create a meaningful mitigation through requiring that

system time may only advance once all meters eligible for disconnection have been

disconnected, but this is only a mitigation of the immediate result of the hazard and

does not deal with the circumstances of how this may occur.

Based on the functional control structure given in Figure 5.1, two scenarios are envi-

sioned in which a meter may not be disconnected despite the controller deeming this the

appropriate route to take and are presented below. Each of these scenarios are provided

with exemplar critical requirements to demonstrate how these could be addressed.

7Though they are referred to as ‘causal factors’ within the table and throughout the text, these are
also an additional form of hazard.

94 Chapter 5 Smart meter case study

• The controller issues the disconnect command successfully but it is not received

by the meter.

– A critical requirement here would likely require acknowledgements to be sent

by the meter to confirm it has actioned the disconnection of the electricity

supply before the billing system ceases transmitting the disconnect command.

• The controller issues the disconnect command and it is received by the meter,

which disregards it.

– This hazard may be out-of-scope - there is not much that can be done by the

billing system to ensure this occurs if the meter is disregarding commands due

to either a malfunction or malicious tampering. However, the integration of

anti-tamper systems into the meter may be an example of a suitable critical

requirement to address this particular hazard.

These are both ‘causal’ factors in that they are contributing minor hazards towards a

more significant hazard. Causal factors may arise which are essentially unmitigable,

however, the identification of them is important for assurance and traceability purposes

as they may highlight some innate issue with the system design or architecture that may

require reconsideration.

Further example causal factors relating to the system under analysis, as well as their

associated hazards, are detailed in Table 5.7 as well as what critical requirements may

be generated in order to address them.

Table 5.7: Causal factors and potential critical requirements

Causal factor Related hazards Sample critical requirements

Control actions are

issued but not

successfully received -

i.e. the

communication

channel between the

Meter and

BillingSystem entities

is not reliable at the

transport layer.

H.11., H.15., H.16.,

H.23.

• Requirement that all com-

mands between the Meters and

BillingSystem entities have a

confirmation sent after being

received in order to ensure that

all commands are successfully

received.

• Stipulation of a reliable transport

layer between the entities.

Chapter 5 Smart meter case study 95

Table 5.7: Causal factors and potential critical requirements (continued)

Causal factor Related hazards Sample critical requirements

Tokens become known

to third-parties

allowing for malicious

or fraudulent actions

to be undertaken on

behalf of meters.

H.14. and H.20.

• Requirement that Meters /

BillingSystem utilise asymmetric

encryption or similar, in addition

to;

• A key management infrastructure

to ensure that keys can be regu-

larly rotated and allow revocation

of compromised keys.

Compromise of the

Meter’s measuring

sensors such that

readings out of line

with reality may be

transmitted.

Related to H.13.

• Anti-tampering systems on the

Meter to ensure that any at-

tempts to tamper with the me-

ter causes it to either attempt to

notify the BillingSystem or cease

working.

There are several categories of hazards which, while not mitigable on the case study

without extensive decomposition and significantly more detail in the initial case study,

have not been considered.

5.3.8 Step 8 - Iteration and scoping

Given the scale of the provided system, iteration/scoping into sub-systems was not

undertaken due to the lack of low-level detail available in the synthetic case study.

Were such an analysis to be undertaken, it would likely begin as detailed in Figure 5.2

where each box would encompass a sub-system of the overall whole. The analysis would

then be carried out once in its entirety per sub-system (with each sub-system’s formal

model being composed into a single model for the purpose of validating overall system

behaviour is as defined in the system documentation).

96 Chapter 5 Smart meter case study

Billing System

Meter

Figure 5.2: Scoping areas/identification

5.4 Lessons learned from the smart meter case study

The smart meter case study presented an opportunity to gain an understanding of the

positive and negative aspects of the early version of SE-STPA. These ‘lessons learned’

were then used to inform the development of the methodology into the version presented

in Chapter 4. The lessons learned, as well as the modifications made to SE-STPA, are

given in this section.

5.4.1 Security analysis issues and improvements

The second version of SE-STPA, as applied to this smart meter case study, concentrated

security analysis into two steps of the analysis:

• Step 5 - Hazard analysis and critical requirement generation.

• Step 7 - Causal factors analysis

While each of these steps allowed for the identification of security issues relating to

control actions, it did not permit analysis of security issues more broadly (i.e. where

these security issues did not necessarily impinge on the control actions themselves). For

instance, one can consider the CIA triad [116] as an example of possible classifications

of security issues:

Chapter 5 Smart meter case study 97

• Confidentiality, the practice of restricting information which does not need to

be widely known, may have no impact on the safety-related functioning of the

system, but may be critical to maintaining as small an attack surface as possible

from a security perspective.

– In the case of the smart meter case study, sensitive information such as billing

information may be being exchanged over communications channels. Equally,

there may be an aspect of proprietary or otherwise commercially-sensitive

information being exchanged between entities of the system. This is not a

feature of control action analysis or causal factors analysis as applied to this

case study.

The exchange of this information unencrypted, ‘in the clear’, represents a possible

confidentiality concern but does not make itself known during either the hazard

analysis or causal factors analysis as it is unlikely to result in a control action

becoming hazardous. This means that confidentiality is not adequately con-

sidered by this version of the methodology.

• Integrity, the practice of ensuring that data is correct, trustworthy and at-

tributable to known sources8, represents a crossover of both security and safety

concerns.

– Within the existing case study, CR5 is an example of a critical requirement

generated in response to a number of hazards such as H14 and H20. These

hazards relate to control actions being incorrectly processed as being at-

tributable to another smart meter than the one that is actually intended.

This is an issue from both a security and safety perceptive, as disconnection

of an incorrect smart meter is an unsafe action, and if done maliciously, could

form part of a broader attack on an individual.

This aspect is partially covered by the existing methodology, but there are aspects

that are not currently considered. For instance, the integrity of the smart meters is

not considered. These are smart devices that reside within individual’s homes, and

possess networking and other capabilities that could make them ideally positioned

for cyber attacks. If a smart meter device was utilised to spread malware to the

user’s home network, and also continued to behave normally within the context

of being a smart meter from the perspective of the Billing System, this would not

be captured by the current methodology. Other threats, such as smart meters

being used for crypto-currency mining, are also outside of the scope of the existing

analysis. There are therefore aspects of integrity which are not currently

considered by the methodology as applied in this case study.

8Non-repudiation is included in this category for brevity, although other interpretations of the CIA
Triad have it as a separate category.

98 Chapter 5 Smart meter case study

• Availability, the practice of ensuring that the system functions are available to

end users and other stakeholders, is primarily a safety concern for cyber-physical

systems.

– Within the existing case study, CR11 was generated to address H22 which

is an example of a critical requirement generated to ensure that parts of the

system that should remain active and available are maintained in this state.

This aspect is well considered by the existing control action analysis and causal fac-

tors analysis steps, as control actions are the primary means through which avail-

ability manifests. Availability is therefore well considered by the method-

ology as utilised in this case study.

In response to this ‘lessons learned’ analysis, the adversarial modelling step was

added to SE-STPA. The justification for the development and inclusion of this step

into SE-STPA is justified in subsection 3.7.2 and general detail on the exact process of

applying the new step can be found in subsubsection 4.2.4.6. The next section consid-

ers application of adversarial modelling to the case study retrospectively, in order to

demonstrate the advantage this step provides to the methodology in its consideration of

security issues.

5.4.1.1 Adversarial modelling as applied to the smart meter case study

Adversarial modelling as applied to the case study involves first the annotation of the

manipulation points within the functional control structure, followed by identification

and specification of possible adversaries, and then generation of critical requirements

as required to mitigate the adversarial behaviours. The annotation of the functional

control structure can be found in Figure 5.3, which is a restatement of Figure 4.3.

Chapter 5 Smart meter case study 99

Billing System

Meter

Electricity supply
(underlying process) [one per meter]

MP1 MP3MP4

MP2

MP5 MP7MP6

Figure 5.3: Annotated functional control structure for smart meter, with ma-
nipulation points.

From here, we can identify two major adversaries who are reasonable when one considers

the function of the system:

1. Fraudulent consumers, who wish to pay less on their electricity bill.

2. An insider threat with access to the Billing System, who has been unduly influ-

enced to disrupt the activities of the smart meter infrastructure.

Fraudulent consumer This adversary is a capture of a fairly simplistic threat to

the purpose of the smart meter system from a security perspective. The main threat

actor involved is a technically-knowledgeable consumer who has access to a physical

smart meter on their premises, and so is able to effectively ‘reduce’ their electricity bill

through tampering with the meter’s interface to the electricity supply. The adversary is

further detailed in Table 5.8.

Table 5.8: Fraudulent consumer adversary description

Property Detail

Identifier Adversary 1 (A1)

Name/categorisation Fraudulent consumer

100 Chapter 5 Smart meter case study

Table 5.8: Fraudulent consumer adversary description (continued)

Property Detail

Intent Adversary intends to reduce their bill through tampering

with the meter.

Access Adversary can see and manipulate MP5 and MP7.

Information Adversary is aware that feedback channel MP7 reports

electricity usage by the consumer.

Actions Single step: Adversary intercepts and modifies MP7 result

at all times via some sort of interception device. This

has the net effect of putting the electricity consumption,

as recorded by the smart meter, below what has actually

been used.

The generation of critical requirements to address Adversary 1 can be found in Table 5.9.

Table 5.9: Critical requirement generation to address Fraudulent Consumer
adversary

Hazard Generated critical requirement

H26: Adversary manipu-

lates data between electricity

supply and meter to reduce

reported electricity usage.

CR14: Meter will receive local average usage

and will raise an alert if readings are more than

25% below this in a month’s period.

CR15: Billing System shall flag any meters that

send alerts or provide readings that are more than

20% below the projections for that meter over a

month’s period.

CR16: Meter’s interface to the electricity sup-

ply shall involve tamper-evident seals which can

be manually inspected when meter readings are

suspected.

Insider threat The insider threat adversary represents an individual who works

in an administrative capacity with the Billing System, who has been influenced (either

through blackmail, bribery or other mechanism) to interfere with the correct functioning

of the broader smart meter architecture. This adversary therefore has extensive access

to the system, and has been manipulated into modifying the Billing System such that

all messages to Meters shall include malware which will then be installed on the Meters.

Chapter 5 Smart meter case study 101

Table 5.10: Insider threat adversary description

Property Detail

Identifier Adversary 2 (A2)

Name/categorisation Insider threat

Intent Adversary intends to spread malware through smart me-

ter architecture having been influenced by some external

threat actor.

Access Adversary has administrative access to MP2 and can ma-

nipulate it extensively. This includes modification of MP1,

which is constructed automatically by MP2 based on a

proprietary protocol.

Information Adversary has full understanding and visibility of all in-

formation flowing across MP1, MP2 and MP3.

Actions Single step: Adversary modifies MP2 such that malware

is included in all communications from the Billing System

to Meters.

The generation of critical requirements to address Adversary 2 can be found in Table 5.9.

Table 5.11: Critical requirement generation to address Insider Threat adversary

Hazard Generated critical requirement

H27: Adversary embeds

malware into all communica-

tions from Billing System to

Meters.

CR17: Modifications to MP2 from authorised

staff shall operate on a ‘two-man rule’ such that

one staff member proposes a modification, and an-

other must confirm it.

CR18: A log shall be kept, held at a higher priv-

ilege level than system administrators, to track all

modifications to the Billing System made by sys-

tem administrators.

5.4.1.2 Analysis

The benefit of the adversary modelling step is that it enables the analyst to consider

‘pure’ security threats that do not necessarily affect the proper functioning of the smart

meter system. This is demonstrated through the analysis of Adversary 2 who is nega-

tively influencing the system in terms of security, but this may have no knock-on effect

from a safety perspective.

102 Chapter 5 Smart meter case study

Undertaking this within the existing methodology framework (i.e. the second version of

SE-STPA) would involve one of the following:

1. Having to contemplate an extensive list of all possible adversary types and actions

while undertaking control action analysis (Step 4), such that all control actions are

considered in all situations where security of the system may have been degraded.

This would introduce a significant burden on this step, and would complicate the

control action analysis. The current approach of considering how control actions

may be hazardous where ‘hazardous’ can mean both unsafe and insecure enables

thoughtfulness around individual control actions and how security/safety issues

can arise through the control actions, without being too unwieldy to apply.

• The insider threat adversary (A2) proves a good example for testing this

approach; to consider it in the control action analysis context, one would

need to consider the hazard of ‘control action contains malware’ as part of

the Is issued context. This hazard could apply to every control action in

every system, and therefore consideration of it, as well as all other security

hazards/scenarios, as part of the control action analysis stage is onerous.

2. Placing this degree of security analysis within the causal factors analysis would

once again focus on control actions and while it may be possible to consider ad-

versaries or degradation in the security of the system within this notion, this is

not the intent of this step. Causal factors analysis is intended to consider what

possible influencing factors exist and contribute to a control action being issued

in a situation that made it unsafe or insecure (i.e. hazardous). This means that

the causal factors analysis does not ordinarily consider situations where control

actions are not hazardous, but the system security is degraded nonetheless.

• The insider threat adversary (A2) also demonstrates why this approach is

not efficient or useful. Causal factors is usually undertaken with a standard

‘diagram’ that models a large number of the contributory factors that can

result in control actions becoming hazardous, based on analyst experience

and guidance from the literature. To include all possible adversary actions or

influences within this step (which is essentially unbounded) would not scale

efficiently when compared to the adversarial modelling approach.

The difference therefore is in fundamental approach; the notion of including this level of

security/threat modelling in either of the two existing steps would involve consideration

of an unbounded number of possible adversaries and their actions in a reactive sense,

while adversarial modelling focuses the analysis on proactive identification of a number

of adversaries and their most likely attack paths through the system to achieve their

goals. This bounds the problem and generates an artefact which aids traceability when

writing future security documentation.

Chapter 5 Smart meter case study 103

5.4.2 Sequencing of methodology steps

The sequencing of steps within the second version of SE-STPA also represented a short-

coming during the smart meter case study. The concentration of security analysis within

the causal factors stage meant that a large number of security critical requirements would

be generated once the analysis was in its last stages and therefore could not be validated

through the formal model.

In order to resolve this, adversarial modelling (as the ‘major’ step for consideration

of security issues) was placed after control action analysis and prior to the integration

of critical requirements into the formal model. This ensured that the bulk of critical

requirements were generated prior to the critical requirements being integrated into the

formal model. This can be seen in how the steps are detailed in subsection 4.2.4.

Chapter 6

UAV case study

6.1 Introduction & outline of case study

For the second case study, a scaled down version of existing work on a multi-UAV

(unmanned aerial vehicle) system [19] was considered. This system manages a number

of aircraft, with a ground control station serving as the interface between the aircraft

and human operators who seek to task aircraft with activities and routes. The ground

control station may also be used by human operators to plan routes and validate whether

these are valid and within the constraints of the system.

The system therefore consists of three entities that can be immediately identified:

• Operators which are human actors within the system who provide either plans or

commands to the Ground Control Station which will be validated in the case of

the former and the result of validation fed-back, or acted upon in the case of the

latter (so long as they pass validation).

• The Ground Control Station which contains an interface to both the human oper-

ators and to the aircraft, as well as an intelligent planning system which receives

input from operators and attempts to plan routes for the aircraft to satisfy this in-

put (within the set of constraints that exist around restricted airspace and ensuring

minimum safe separation distances).

• A number of Aircraft which attempt to fulfill their routes with deviations allowed

for obstacle avoidance.

Several assumptions can also be made, as detailed below:

1. There is always at least one aircraft attached to the system.

105

106 Chapter 6 UAV case study

2. There is always at least one operator interacting with the system.

3. The ground control station always exists.

4. There is no more than one ground control station at any one time.

This level of detail will suffice in allowing the first pass of analysis using SE-STPA to

be undertaken.

6.2 Application of SE-STPA

6.2.1 Step 1 - Establishing the system engineering basis

The basis for performing the analysis has been reasonably scoped already by the identifi-

cation of entities and the assumptions made when outlining the case study in Section 6.1.

From this information, it is possible to then derive a system purpose statement, as fol-

lows:

The system shall maintain adequate and necessary separation between obsta-

cles and aircraft, as well as between aircraft. In addition to this, the system

shall maintain complete control of UAVs at all stages of flight, as well as

avoiding no-fly zones and fulfil all other requirements of the Civil Aviation

Authority, with particular reference to the Air Navigation Order 2016 (ANO

2016) [30].

It is then possible to arrive at a set of system losses, derived from failure to meet any

aspect of the system purpose:

L1: Separation between aircraft and environment falls below threshold, causing damage

to aircraft and/or environment.

L2: Separation between aircraft is not maintained, damaging aircraft.

L3: Aircraft deviate from flight plan without notifying GCS.

L4: GCS is uncertain of current state of any aircraft at any point.

L5: Aircraft violate any restrictions as defined in the Air Navigation Order 2016 while

in transit.

The generation of these losses permits the further derivation of top-level (system) hazards

to be done:

Chapter 6 UAV case study 107

H1: Aircraft fail to detect and route around other aircraft or the environment.

H2: Aircraft deviate to compensate for a change in flight conditions without notification

to the GCS.

H3: Aircraft do not report position and other telemetry data to GCS sufficiently fre-

quently while in any stage of flight.

H4: Aircraft enter restricted airspace.

H5: GCS provides routes to aircraft that violate regulations if flown.

H6: Operators provide routes which cannot be fulfilled without violation of regulations.

The goal here is to identify sufficiently-broad losses and hazards which work at a system-

level to guide future analysis, and allow the relation of more localised or specialised

hazards to be made to system-level hazards and their associated losses.

The final aspect of this step involves the multi-dimensional mapping of losses and hazards

which can be found in Table 6.1.

Table 6.1: Hazards and losses mappings for UAV case study

Loss Hazard

L1: Separation between aircraft and

environment falls below threshold,

causing damage to aircraft and/or

environment.

H1: Aircraft fail to detect and route

around other aircraft or the environ-

ment.

H2: Aircraft deviate to compensate

for a change in flight conditions with-

out notification to the GCS.

H3: Aircraft do not report position

and other telemetry data to GCS suf-

ficiently frequently while in any stage

of flight.

L2: Separation between aircraft is

not maintained, damaging aircraft.

See L1 for hazards associated with

this loss.

L3: Aircraft deviate from flight plan

without notifying GCS.

H2: Aircraft deviate to compensate

for a change in flight conditions with-

out notification to the GCS.

H3: Aircraft do not report position

and other telemetry data to GCS suf-

ficiently frequently while in any stage

of flight.

108 Chapter 6 UAV case study

Table 6.1: Hazards and losses mappings for UAV case study (continued)

Loss Hazard

L4: GCS is uncertain of current

state of any aircraft at any point.
See L3 for hazards associated with

this loss.

L5: Aircraft violate any restrictions

as defined in the Air Navigation

Order 2016 while in transit.

All identified hazards apply to this

loss.

6.2.2 Step 2 - Building the control structure

At this stage, it is necessary to build a control structure. This permits the analysis to

consider the interaction between the three entities already identified in Section 6.1, with

the intent of identifying specific control actions which are needed in latter steps of the

analysis.

This begins with an overall functional control structure diagram which maps the three

entities and the interactions between them, which can be found in Figure 6.1. This will

then enable the next step of analysis.

Figure 6.1: Overall functional control structure for UAV case study.

Chapter 6 UAV case study 109

6.2.3 Step 3 - Identify control actions

The identification of control actions is enabled by scoping further into the functional

control structure and considering each ‘pair’ of entities. This is possible due to the

fact there is only communication between operators and aircraft via the ground control

system, allowing the interactions on either side of the GCS to be isolated and considered.

The visual representation of this can be found in Figure 6.2 and Figure 6.2.

Figure 6.2: Scoped functional control structure between operators and GCS.

Ground Control Station

Process Model:

- Aircraft registered with
this ground control station

- Route plans for each
registered aircraft

- Most recent location of
each aircraft

- Constraints on potential
routes (i.e. no-fly zones)

Responsibilities

- Transmit flight plans to
registered aircraft

- Ensure that flight plans
generated meet

constraints.

- Receive input from
human operators to

update existing routes or
plan new ones

Aircraft

Process model:

- Current location

- Current stored route

Responsibilities

- Obey route received
from GCS

- Follow route without
deviation unless
required to avoid

obstacles

Control actions:
7) Set initial route
8) Update route
9) Recall aircraft

Control actions:
10) Confirm receipt of

route or update
11) Report location

12) Report deviation

Figure 6.3: Scoped functional control structure between GCS and aircraft.

110 Chapter 6 UAV case study

The control actions extracted from this visual process, and their broad descriptions, can

be found in Table 6.2.

Table 6.2: Control actions extracted from functional control structure for UAV
case study

Control action Description

1 Transmit plan

The operator provides a plan to the

GCS to be validated and awaits the

result of this validation.

2 Transmit command

The operator provides a plan to the

GCS with the expectation it is

enacted immediately, and awaits the

result of validation.

3 Cancel command
The operator requests cancellation of

an existing command via the GCS.

4
Report validation state of

existing plan

The GCS runs the validation process

on a plan provided previously by an

operator and reports whether the

plan validates successfully (i.e. there

are no violations or restricted

aspects to the plan).

5
Report validation state of

existing command

The GCS runs the validation process

on the provided plan. If validation

passes successfully, the GCS will

report validation status to the

operator.

6
Confirm cancellation of a

command

The GCS confirms to the operator

requesting a cancellation whether

the cancellation was successful, or

whether it has failed (i.e. as the

command was already completed).

7 Set initial route

The GCS provides an aircraft with a

validated command/plan and

instructs the aircraft to begin the

route immediately.

8 Update route

The GCS sends an adjustment in

some way to the existing route an

aircraft possesses and is currently

following.

Chapter 6 UAV case study 111

Table 6.2: Control actions extracted from functional control structure for UAV
case study (continued)

Control action Description

9 Recall aircraft

The GCS instructs an aircraft to

return to its starting point

immediately and disregard any

existing route it was following.

10
Confirm receipt of route or

update

The aircraft notifies the GCS that it

has fully received and processed

either the initial route it has been

provided with or has processed an

in-flight update provided by the

GCS into its future route.

11 Report location

The aircraft provides a periodic

update of its location to the GCS

such that the GCS can be assured of

an aircraft’s progress within its

planned route.

12 Report deviation

The aircraft informs the GCS

whenever it makes an unplanned

diversion or substantial change to

the flight path due to external

factors (i.e. unexpected obstacle,

poor weather).

This identification once again facilitates the next step of analysis.

6.2.4 Step 4 - Construction of initial formal model

An overview is provided in this section of the formal model used as part of this case

study. It will provide a general outline of the major variables and events and how these

relate to the preceding steps of the analysis. Based off the results from Step 3, the initial

formal model consisted of the following major events:

1. The INITIALISATION event, providing default instantiations for all variables

used by the model.

2. The RegisterAircraft event, which enables a parameter from the carrier set of

DRONES - which has not already been registered - to be added to the fleet of

registered aircraft (as represented by the RegisteredAircraft variable).

112 Chapter 6 UAV case study

3. The Transmit events (TransmitPlan and TransmitCommand) which model op-

erators lodging plans and commands with the Ground Control Station. Plans and

commands must first be lodged with the Ground Control Station before they can

be validated.

4. The Validate events (ValidatePlan and ValidateCommand) which serve to change

the validation state of plans/commands which are valid (i.e. they do not contain

any restricted locations) to formally being valid.

5. A number of events which model the tasking of aircraft (TaskAircraft, RetaskAir-

craft, RecallAircraft and CancelCommand) by setting or modifying an aircraft’s

route. Aircraft routes are tracked via the AircraftRoutes variable.

6. The Report events (ReportLocation and ReportDeviation) which represent the

aircraft reporting back its current location and/or any deviations which have to

occur to its route, such that the Ground Control Station has a record of all locations

that an aircraft visits.

7. The Confirm events (ConfirmReceipt and ConfirmCancellation) which represent

the feedback from an aircraft in response to being tasked by the GCS.

8. The Query events (QueryPlanValidationState and QueryCommandValidation-

State) which model an operator requesting the validation status of a command

or plan.

The major variables in use in the model are as follows:

1. Plans and Commands variables which represent plans and commands held by

the GCS; typed as subsets of the powerset of the LOCATIONS carrier set that is

defined in DroneContextInitial.

2. RegisteredAircraft variable which models all aircraft registered with the GCS;

typed as a subset of the DRONES carrier set present in the Context.

3. RestrictedLocations variable which models locations that should not be present

in aircraft routes; typed as a subset of the LOCATIONS carrier set.

4. PlanValidationState and CommandValidationState which represent the sta-

tus of plans and commands and are mapped to a validation state. This is achieved

in the model as a partial function, mapping the respective set (e.g. Commands) to

VALIDATIONSTATE, which is a carrier set defined in DroneContextInitial. This

carrier set is partitioned into three constants via an axiom:

• VALID.

• INVALID.

Chapter 6 UAV case study 113

• UNDETERMINED.

5. AircraftRoutes variable, which maps registered aircraft to a command; typed

as a partial function between the RegisteredAircraft variable and the Commands

variable.

The complete formal model for this step can be found in Appendix C. This model will

be refined and improved through later steps.

6.2.5 Step 5 - Control action analysis & critical requirement generation

6.2.5.1 Control action analysis

The control actions generated in subsection 6.2.3 and modelled in subsection 6.2.4 are

then subject to analysis in order to identify any hazards, using a slightly modified form

of the STPA analysis table as detailed in subsubsection 4.2.4.5. The fourth column -

Control action is issued for incorrect duration - is included though it can be omitted in

the circumstance in which all control actions are discrete and therefore have no notion

of duration.

The results of this control action analysis are presented in Table 6.3.

Table 6.3: UAV control action analysis results

Control

Action
Is issued Is not issued

Is issued out of

sequence

Is issued for

incorrect

duration

Transmit

Plan

No hazards

found.

No hazards

found.

Transmitting a

plan while

another plan is

already

undergoing

validation may

leave the

system in an

indeterminable

state. [H7]

N/A -

transmitting

plan is a

discrete action.

114 Chapter 6 UAV case study

Table 6.3: UAV control action analysis results (continued)

Control

Action
Is issued Is not issued

Is issued out of

sequence

Is issued for

incorrect

duration

Transmit

Command

Command

containing

unsafe

waypoints is

transmitted.

[H8]

Aircraft

receive no

commands.

[H9]

Transmitting

command

while another

command is

undergoing

validation may

leave the

system in an

indeterminable

state. [H10]

N/A -

transmitting

command is a

discrete action.

Cancel

Command

Cancelling a

command

before any

command is

issued. [H11]

No hazards

found.

A command is

cancelled after

an aircraft has

already

completed it.

[H12]

N/A -

cancelling a

command is a

discrete action.

Report

Validation

State Of

Plan

Plan validation

state is

reported

incorrectly.

[H13]

Plan validation

state being

unreported

causes

operator

confusion.

[H14]

Plan validation

state reported

prior to

validation

being

complete.

[H15]

N/A -

reporting

validation

state is

discrete.

Report

Validation

State of

Command

Command

validation

state is

reported

incorrectly.

[H16]

Command

validation

state being

unreported

causes

operator

confusion.

[H17]

Command

validation

state reported

prior to

validation

being

complete.

[H18].

N/A -

reporting

validation

state is

discrete.

Chapter 6 UAV case study 115

Table 6.3: UAV control action analysis results (continued)

Control

Action
Is issued Is not issued

Is issued out of

sequence

Is issued for

incorrect

duration

Confirm

Cancella-

tion of a

Command

Command

cancellation

confirmation is

issued before

aircraft ceases

following

route. [H19]

Cancellation is

never

confirmed.

[H20]

Confirmation

of cancellation

issued when

cancellation

has not been

requested.

[H21]

N/A -

confirmation of

cancellation is

discrete.

Set Initial

Route

Initial route is

set containing

restricted or

hazardous

waypoints.

[H22]

Commands are

not executed if

routes are not

set. [H23]

Initial route is

set before

command

passes

validation.

[H24]

N/A - setting

route is a

discrete action.

Update

Route

Updated

waypoints

contains

restricted or

hazardous

waypoints.

[H25]

Existing route

becomes

restricted/haz-

ardous in some

way and is not

corrected by

an update.

[H26]

Update is sent

before initial

route is set

[H27]

N/A - update

route is a

discrete action.

Recall

Aircraft

Aircraft

recalled when

recall would

cause aircraft

to enter

restricted/haz-

ardous

airspace.

[H28]

Aircraft not

recalled in

response to

existing route

becoming

hazardous/re-

stricted.

[H29]

Aircraft

recalled while

not on a route.

[H30]

N/A - recalling

aircraft is a

discrete action.

116 Chapter 6 UAV case study

Table 6.3: UAV control action analysis results (continued)

Control

Action
Is issued Is not issued

Is issued out of

sequence

Is issued for

incorrect

duration

Confirm

receipt of

route or

update

Aircraft

confirms

receipt of

update/route

when GCS has

not issued an

update/route

to aircraft.

[H31]

Aircraft fails

to confirm

receipt of

update/route.

[H32]

[H31]

encapsulates

hazards in this

category also.

N/A - confirm

receipt is

discrete.

Report

location

Aircraft

incorrectly

reports

location.

[H33]

Aircraft fails

to report

location.

[H34]

Aircraft

reports

locations in an

irregular

sequence.

[H35]

N/A -

reporting

location is

discrete.

Report

deviation

Aircraft

incorrectly

reports

deviation.

[H36]

Aircraft fails

to report

deviations.

[H37]

Aircraft

reports

deviations in

an irregular

sequence.

[H38]

N/A -

reporting

deviations is

discrete.

6.2.5.2 Critical requirement generation

At this stage, the generated hazards are then ‘sifted’ to see if they fall within the scope

of the analysis as some may not. The ones that are deemed to be in scope will then have

a critical requirement generated for them, which will be taken forward in the process.

The results of this process can be found in Table 6.4.

Chapter 6 UAV case study 117

Table 6.4: UAV hazards & resultant critical requirements

Hazard & identifier
In

scope?

Resulting critical

requirement/justification

Transmitting a plan while another

plan is already undergoing validation

may leave the system in an

indeterminable state. [H7]

In-scope

Transmitted plans will be entered

into a validation queue and shall be

validated in order of submission.

[CR1]

Command containing unsafe

waypoints is transmitted. [H8]
In-scope

Commands must not contain unsafe

waypoints. [CR2]

Aircraft receive no commands. [H9]

Out-of-

scope in

general

terms

Aircraft may receive no commands

when there are simply no commands

to be given during a specified

time-frame; this is therefore not

within scope as this is a business

decision1.

Transmitting command while

another command is undergoing

validation may leave the system in

an indeterminable state. [H10]

In-scope

Transmitted commands will be

entered into a validation queue and

shall be validated in order of

submission. [CR3]

Cancelling a command before any

command is issued. [H11]
In-scope

Cancellation of a command must

specify a command which already

exists. [CR4]

A command is cancelled after an

aircraft has already completed it.

[H12]

In-scope

Cancellation may only occur for

commands which are not already

complete. [CR5].

Plan validation state is reported

incorrectly. [H13]
In-scope

Plan validation states must always

be reported accurately. [CR6]

Plan validation state being

unreported causes operator

confusion. [H14]

In-scope
Plan validation state must always be

reported when requested. [CR7]

Plan validation state reported prior

to validation being complete. [H15]
In-scope

Plan validation state must always be

reported as undetermined if

requested prior to validation being

complete. [CR8]

1This hazard may be revisited during causal factors analysis (subsection 6.2.8) however

118 Chapter 6 UAV case study

Table 6.4: UAV hazards & resultant critical requirements (continued)

Hazard & identifier
In

scope?

Resulting critical

requirement/justification

Command validation state is

reported incorrectly. [H16]
In-scope

Command validation state must

always be reported accurately.

[CR9]

Command validation state being

unreported causes operator

confusion. [H17]

In-scope

Command validation state must

always be reported when requested.

[C10]

Command validation state reported

prior to validation being complete.

[H18]

In-scope

Command validation state must

always be reported as undetermined

if requested prior to validation being

complete. [CR11]

Command cancellation confirmation

is issued before aircraft ceases

following route. [H19]

In-scope

Command cancellation confirmation

is not to be issued until aircraft has

ceased following route. [CR12]

Cancellation is never confirmed.

[H20]
In-scope

Command cancellation state must

always be reported. [CR13]

Confirmation of cancellation issued

when cancellation has not been

requested. [H21]

In-scope

Command cancellation confirmation

must only ever be issued in response

to a cancellation request. [CR14]

Initial route is set containing

restricted or hazardous waypoints.

[H22]

In-scope

Initial route must not contain

restricted or hazardous waypoints.

[CR15]

Commands are not executed if

routes are not set. [H23]
In-scope

Commands passing validation must

be passed to aircraft in the form of

routes. [CR16]

Initial route is set before command

passes validation. [H24]
In-scope

Aircraft may not have their initial

routes set to commands that do not

pass validation. [CR17]

Updated waypoints contains

restricted or hazardous waypoints.

[H25]

In-scope

Updates provided to aircraft may

not contain restricted or hazardous

waypoints. [CR18]

Existing route becomes

restricted/hazardous in some way

and is not corrected by an update.

[H26]

In-scope

Routes that aircraft are currently on

should be updated to remove

hazardous waypoints or return

aircraft home. [CR19]

Chapter 6 UAV case study 119

Table 6.4: UAV hazards & resultant critical requirements (continued)

Hazard & identifier
In

scope?

Resulting critical

requirement/justification

Update is sent before initial route is

set. [H27]
In-scope

Aircraft may not be updated until

provided with an initial route.

[CR20]

Aircraft recalled when recall would

cause aircraft to enter

restricted/hazardous airspace.

[H28]

In-scope
Aircraft may not be recalled when to

do so is hazardous [CR21]

Aircraft not recalled in response to

existing route becoming

hazardous/restricted. [H29]

In-scope Addressed by [CR19]

Aircraft recalled while not on a

route. [H30]
In-scope

Aircraft may only be recalled while

on a route. [CR22]

Aircraft confirms receipt of

update/route when GCS has not

issued an update/route to aircraft.

[H31]

In-scope

Aircraft may only confirm receipt of

update/initial route when provided

one by the GCS. [CR23]

Aircraft fails to confirm receipt of

update/route. [H32]
In-scope

Aircraft will always confirm receipt

of update/initial route when one is

provided by the GCS. [CR24]

Aircraft incorrectly reports location.

[H33]
In-scope

Aircraft must report accurate,

regular location data. [CR25]

Aircraft fails to report location.

[H34]
In-scope Addressed by [CR25]

Aircraft reports locations in an

irregular sequence. [H35]
In-scope

Aircraft must report locations with a

time-stamp to prevent sequencing

issues. [CR26]

Aircraft incorrectly reports

deviation. [H36]
In-scope

Aircraft must report accurate

deviations where these occur.

[CR27]

Aircraft fails to report deviations.

[H37]
In-scope Addressed by [CR27].

Aircraft reports deviations in an

irregular sequence. [H38]
In-scope

Aircraft must report deviations with

a time-stamp to prevent sequencing

issues. [CR28]

120 Chapter 6 UAV case study

6.2.6 Step 6 - Adversary modelling & critical requirement generation

This step of the analysis focuses on the identification of likely adversaries that the

system may encounter during its operation. Overt identification of such adversaries

and consideration of their potential actions enables the secure-by-design concept to be

realised. The adversary profile is leveraged to generate critical requirements through

likely attack or manipulation paths that are identified as part of this step.

6.2.6.1 Annotating the control structure

The first aspect of this step involves the annotation of the existing functional control

structure for the system with ‘manipulation points’ so as to enable the consideration

of manipulation/attack paths through the system. A fully annotated version of the

functional control structure can be found in Figure 6.4. This annotation aids discussion

of steps that adversaries may take, by allocating each part of the functional control

structure a unique identifier - the aim is to reduce ambiguity when describing parts of

the control loop (i.e. MP1 is clearer than the connection between an operator and a

ground control station).

Figure 6.4: Manipulation point view of functional control structure for UAV
case study.

6.2.6.2 Adversary modelling

For a system of this scale, four adversary types are considered, ranked in order of sever-

ity/threat:

1. Nation-state actors.

2. Activist/hacktivist groups and organisations.

3. Curious individuals.

Chapter 6 UAV case study 121

4. Unintentional adversaries.

While there may be many more adversaries, four adversaries ranging so substantially in

capabilities, intent and possible actions should sufficiently address any security issues

inherent in the design and provide meaningful critical requirements at this stage of

analysis. The benefit of the abstraction of the analysis is to highlight architectural

flaws inherent in the design that can represent a systematic security risk, in contrast to

performing a more low-level analysis which might highlight implementation flaws but

would limit the analysis to only being valid when undertaken on a system where much

of the design was already fixed.

Each adversary is presented with both a profile and (at least one) separate table rep-

resenting actions that the adversary may take in order to disrupt the system. Each of

these actions can be considered a manipulation sequence and will be assigned an

identifier of [MSxx] where xx is a free identifier. Manipulation sequences are identified

globally rather than having an identifier relative to their adversary, much in the same

way that hazards are assigned a global identifier rather than one relating to their control

action under analysis.

Nation-state actors: The scale of this adversary is such that all aspects of the

system control structure may be under threat. See Table 6.5 for adversary profile.

Table 6.5: Nation-state actor adversary profile

Category Detail

Identifier Adversary 1 (A1)

Name/categorisation Nation-state actors

Intent To undermine system completely as part of a wider dis-

ruptive campaign.

Access All manipulation points are accessible to adversary.

Information Command language between entities is fully understood.

Actions Detailed in Table 6.6, Table 6.7, Table 6.8.

122 Chapter 6 UAV case study

Table 6.6: Nation-state adversary: Aircraft-focused adversary actions

Action name/identifier Action steps/explanation

Jamming of all commands from legit-

imate GCS to aircraft [MS1]

Prevention of all messages transmitted via MP2

and MP4, isolating aircraft from valid control

by GCS and preventing aircraft from informing

GCS of current state.

Malicious control of aircraft by mali-

cious GCS [MS2]

Aircraft receive and follow commands from a ma-

licious GCS via MP2, as well as providing up-

dates to malicious GCS over MP4.

Permitting only selective control of

aircraft by legitimate GCS [MS3]

Commands from GCS to aircraft via MP2 are

selectively permitted and otherwise jammed, as

is feedback sent from aircraft to GCS via MP4.

Manipulation of control software on

aircraft [MS4]

Aircraft are manipulated by [MS2] to carry

malicious software unknown to legitimate GCS;

this may permit the aircraft to transmit/interact

with other entities maliciously with the intent of

gaining a foothold into other insecure systems by

the adversary.

Table 6.7: Nation-state adversary: GCS-focused adversary actions

Action name/identifier Action steps/explanation

Malicious clearing of aircraft registra-

tion data [MS5]

GCS has registered aircraft data cleared, un-

dermining control loop of aircraft via MP2 and

MP4.

Malicious clearing of plans/com-

mands held by GCS and mapped to

aircraft registrations [MS6]

GCS has plan & command data cleared, under-

mining control of aircraft via MP2/MP4 as well

as causing operator confusion via MP3/MP1.

Malicious clearing of aircraft location

data held by GCS [MS7]

GCS has aircraft location data cleared, under-

mining control of aircraft via MP2/MP4 and re-

ducing GCS ability to meet system purpose.

Malicious adjustment of restricted/-

hazardous location database [MS8]

GCS restricted/hazardous location database

modified to either include valid/useful locations

or have restricted/hazardous locations excluded,

thus leading to potential aircraft loss and failure

to fulfil system purpose.

Chapter 6 UAV case study 123

Table 6.8: Nation-state adversary: Operator-focused adversary actions

Action name/identifier Action steps/explanation

Malicious operator compelled to enter

a large number of plans & commands

into GCS [MS9]

A malicious operator is manipulated into enter-

ing a large number of plans & commands for val-

idation into the GCS via MP1, thus resulting in

a denial-of-service to other operators.

Malicious operator submits cancel-

lations for commands belonging to

other operators [MS10]

A malicious operator submits command cancel-

lation requests via MP1 for commands not be-

longing to them with the aim of disrupting legit-

imate use of the system.

Malicious operator submits com-

mands with the intention of caus-

ing aircraft damage/denial-of-service

[MS11]

A malicious operator submits commands via

MP1 that innately exceed safe operating condi-

tions for the aircraft attached to the GCS with

the intent of having the GCS relay these to air-

craft.

124 Chapter 6 UAV case study

Activist/hacktivist groups and organisations: This adversary is more limited

in their approach and access; the relevant adversary profile can be found in Table 6.9.

Table 6.9: Hacktivist/activist adversary profile

Category Detail

Identifier Adversary 2 (A2)

Name/categorisation Hacktivist/activist groups and organisations

Intent To disrupt system activity as part of a political campaign.

Access Control loop between GCS and Aircraft (consisting of

MP2, MP7, MP4).

Information Command language between entities not understood ini-

tially; awareness of existence of control loop consisting of

MP2, MP4

Actions Detailed in Table 6.10

Table 6.10: Hacktivist individuals/groups: All adversary actions

Action name/identifier Action steps/explanation

Snooping of traffic between aircraft

and GCS to increase understanding of

the system and how control between

the two entities operates [MS12]

The adversary seeks to snoop traffic between the

aircraft and GCS via MP2 and MP4 in order to

develop an understanding of control and feed-

back actions to facilitate future manipulations.

Transmission of recall signal to all air-

craft local to adversary [MS13]

The adversary, based on increased system under-

standing developed through MS12, transmits

the recall signal to all aircraft within range of

adversary via MP2 with the intent of disruption

of the system.

Confusion of GCS through spoof-

ing of aircraft updates/deviations

[MS14]

The adversary transmits location updates and

deviations to the GCS maliciously via MP4 on

behalf of aircraft in the area, leading to the GCS

misunderstanding aircraft locations.

Transmission of update route to all

aircraft to act as denial-of-service

[MS15]

The adversary transmits update route com-

mands via MP2 in order to deny the legitimate

use of aircraft assets. This may include send-

ing all aircraft to one location, directing aircraft

outside of GCS transmission range, etc.

Chapter 6 UAV case study 125

Curious individuals: This category of adversary represents anyone with a non-

malicious (but still potentially disruptive) interest in the system and the technical capa-

bility to potentially snoop traffic between aircraft and GCS. The adversary profile can

be found in Table 6.11.

Table 6.11: Curious individual adversary profile

Category Detail

Identifier Adversary 3 (A3)

Name/categorisation Curious individuals.

Intent To develop an understanding of the system out of curiosity.

Access Control loop between GCS and Aircraft (consisting of

MP2, MP7, MP4).

Information Command language between entities not understood ini-

tially; awareness of information being exchanged over-the-

air via MP2 and MP4.

Actions Detailed in Table 6.12

Table 6.12: Curious individual: All adversary actions

Action name/identifier Action steps/explanation

Capturing and analysis of commands

and feedback exchanged by GCS and

aircraft [MS16]

The adversary observes communication between

the GCS and the aircraft via MP2 and MP4 and

therefore develops an understanding of the con-

trol language between aircraft and GCS.

Repeating of commands sent by GCS

to aircraft [MS17]

The adversary, in an attempt to develop fur-

ther understanding of the command loop and

the entities involved, chooses to capture com-

mands sent via MP2 and then re-transmit the

captured commands over MP2 in order to ob-

serve results in terms of feedback via MP4. This

may result in unintended effects, such as aircraft

adding the same waypoint to its route multiple

times, attempting to set initial route once air-

craft is already underway, etc.

126 Chapter 6 UAV case study

Table 6.12: Curious individual: All adversary actions (continued)

Action name/identifier Action steps/explanation

Repeating of feedback sent by aircraft

to GCS [MS18]

The adversary, much like in MS17, chooses to

capture feedback sent from aircraft to GCS via

MP4 and then repeats these captured commands

via MP4 at some later point. This can result

in the GCS misunderstanding aircraft position,

taking into account multiple deviations where

only one has occurred, etc.

Chapter 6 UAV case study 127

Unintentional adversaries: This class of adversary may not even be aware that

the system exists - they may interact only incidentally as the communication between

system entities may be similar to their own system or use similar protocols.

Table 6.13: Unintentional adversary profile

Category Detail

Identifier Adversary 4 (A4)

Name/categorisation Unintentional adversaries.

Intent To interact with their own systems, with incidental effect

on the system under analysis.

Access Control loop between GCS and Aircraft (consisting of

MP2, MP7, MP4).

Information Command language not understood; using similar proto-

cols/transmission systems as are being used in MP2 and

MP4.

Actions Detailed in Table 6.14

Table 6.14: Unintentional adversary: All adversary actions

Action name/identifier Action steps/explanation

Disruption of control between GCS

and aircraft due to traffic on similar

networks/protocols [MS19]

Adversary makes use of similar communication

protocols/networks to interact with their own

systems via the same medium as MP2 and MP4.

The net result is aircraft and GCS receiving in-

valid or irrelevant commands, which can result in

denial-of-service or a reduction in effective con-

trol.

128 Chapter 6 UAV case study

6.2.6.3 Critical requirement generation

Generation of critical requirements involves the consideration of each manipulation se-

quence in order to permit a critical requirement to be generated in order to mitigate the

identified adversarial behaviour. Each critical requirement is assigned an identifier and

will later be integrated into the formal model to validate its effectiveness at eliminating

the undesirable behaviour. The list of critical requirements can be found in Table 6.15.

Table 6.15: Generation of critical requirements

Manipulation sequence Critical requirement

Jamming of all commands from legiti-

mate GCS to aircraft [MS1]

Aircraft should attempt to complete

route and return home in absence of

control from GCS. [CR29]

Malicious control of aircraft by mali-

cious GCS [MS2]

Instructions/control actions to aircraft

must be accompanied by unique tokens,

which are never reused. [CR30]

Permitting only selective control of air-

craft by legitimate GCS [MS3]

In addition to CR29, aircraft and GCS

will maintain a message queue and will

not remove items from the message

queue in the absence of confirmation.

[CR31]

Manipulation of control software on air-

craft [MS4]

Aircraft behaving unusually will be

marked as suspect and will not be as-

signed routes until their status is set to

clear once again. Aircraft already on

routes shall be permitted to complete

them. [CR32]

Malicious clearing of aircraft registra-

tion data [MS5]

This will result in an inability to control

aircraft, therefore, addressed by CR29

Malicious clearing of plans/commands

held by GCS and mapped to aircraft

registrations [MS6]

Addressed by CR29

Malicious clearing of aircraft location

data held by GCS [MS7]

Aircraft must retain their own in-

dependent history of their locations

once assigned a route to ensure air-

craft location data can be reconsti-

tuted. [CR33]

Chapter 6 UAV case study 129

Table 6.15: Generation of critical requirements (continued)

Manipulation sequence Critical requirement

Malicious adjustment of restricted/-

hazardous location database [MS8]

Where aircraft hazardous/restricted lo-

cation database is greater in size than

that of the GCS, the aircraft database

is to be retained [CR34].

Malicious operator compelled to enter

a large number of plans & commands

into GCS [MS9]

Operators are limited to submitting

up to 10 plans/commands at any time

[CR35]

Malicious operator submits cancella-

tions for commands belonging to other

operators [MS10]

Operators may not cancel the plans of

other operators [CR36]

Malicious operator submits commands

with the intention of causing aircraft

damage/denial-of-service [MS11]

Partially addressed by CR35 ; GCS

may not include waypoints for air-

craft outside of maximum control range

[CR37]

Snooping of traffic between aircraft and

GCS to increase understanding of the

system and how control between the

two entities operates [MS12]

Traffic between aircraft and GCS

should be obfuscated [CR38]

Transmission of recall signal to all air-

craft local to adversary [MS13]

Addressed by CR30

Confusion of GCS through spoofing of

aircraft updates/deviations [MS14]

Feedback from aircraft to GCS should

be accompanied by unique tokens,

which are never reused [CR39]

Transmission of update route to all air-

craft to act as denial-of-service [MS15]

Addressed by CR30

Capturing and analysis of commands

and feedback exchanged by GCS and

aircraft [MS16]

Addressed by CR38

Repeating of commands sent by GCS

to aircraft [MS17]

Addressed by CR30

Repeating of feedback sent by aircraft

to GCS [MS18]

Addressed by CR39

Disruption of control between GCS and

aircraft due to traffic on similar net-

works/protocols [MS19]

Aircraft and GCS will only process

messages/instructions that are cor-

rectly formatted and expected [CR40]

130 Chapter 6 UAV case study

6.2.7 Step 7 - Integration of critical requirements into formal model

The integration of the critical requirements into the formal model occurs in multiple

refinements; detail of each refinement can be found in Table 6.16.

Table 6.16: Model refinements

Model refinement Detail

Initial formal model [MR0]

Full model available in Appendix C

Formal model created during Step 4 of anal-

ysis subsection 6.2.4. Represented within

DroneMachineInitial and DroneContextIni-

tial files.

Model refinement 1 [MR1]

Full model available in Appendix D

First refinement - represented within

DroneMachine2 and DroneContext2 files.

Model refinement 2 [MR2]

Full model available in Appendix E

Second refinement - represented within

DroneMachine3 and DroneContext3 files.

Model refinement 2 [MR3]

Full model available in Appendix F

Third refinement - represented within

DroneMachine4 and DroneContext4 files.

The process of integrating the critical requirements into the formal model can take many

forms within the model itself. Detail of each critical requirement against details of how

it was integrated into a refinement of the formal model is available in Table 6.17.

In addition to this, it is important to note that it may not be possible to integrate some

critical requirements into the formal model as refinements where these critical require-

ments represent substantial design changes to the underlying system as the formal model

is based on the system as scoped in subsection 6.2.1. This is a limitation of the formal

model as substantial changes to the design may be incompatible in terms of formal rep-

resentations when compared to the initial system formal model, and so it is not possible

to vertically refine the model to accommodate the change. More detail on how critical

requirements that necessitate such substantial design changes are handled can be found

in subsection 6.2.9.

Chapter 6 UAV case study 131

Table 6.17: Detail of integration of critical requirements into formal model

Critical Requirement Model refinement/details

Transmitted plans will be entered

into a validation queue and shall

be validated in order of submission.

[CR1]

Added in MR1 through introduction of

variables and invariants relating to plan and

command validation queues, and the ad-

dition of guards and actions to relevant

events such as TransmitCommand & Val-

idateCommand as two examples.

Commands must not contain un-

safe waypoints. [CR2]

Initially in place in MR0 when adding

a new restricted location results in all

commands containing that location being

marked as invalid and aircraft assigned

said command being commanded to return

home. Expanded in MR1 through guards

on TransmitCommand to ensure commands

contain no unsafe waypoints.

Transmitted commands will be en-

tered into a validation queue and

shall be validated in order of sub-

mission. [CR3]

Added in MR1 similarly to how CR1 was

integrated.

Cancellation of a command must

specify a command which already

exists. [CR4]

Initially in place with MR0, CancelCom-

mand event requires specified command to

exist within the set modelling all transmit-

ted commands.

Cancellation may only occur for

commands which are not already

complete [CR5].

Integrated in MR2, guards on CancelCom-

mand event check for the status of the speci-

fied command to ensure the command is not

already complete.

Plan validation states must always

be reported accurately. [CR6]

Modelled from MR0 where the QueryPlan-

ValidationState event reports the plan vali-

dation state.

Plan validation state must al-

ways be reported when requested.

[CR7]

Modelled from MR0 where the QueryPlan-

ValidationState will always report the plan

validation state when requested.

Plan validation state must always

be reported as undetermined if re-

quested prior to validation being

complete. [CR8]

Transmitted plans are set to undetermined

validation state once received and this be-

haviour is modelled from MR0.

132 Chapter 6 UAV case study

Table 6.17: Detail of integration of critical requirements into formal model
(continued)

Critical Requirement Model refinement/details

Command validation state must

always be reported accurately.

[CR9]

Modelled from MR0 where the

QueryCommandValidationState event

reports the command validation state.

Command validation state must

always be reported when re-

quested. [C10]

Modelled from MR0 where the

QueryCommandValidationState event

reports the command validation state.

Command validation state must

always be reported as undeter-

mined if requested prior to valida-

tion being complete. [CR11]

Transmitted commands are set to undeter-

mined validation state once received and

this behaviour is modelled from MR0.

Command cancellation confirma-

tion is not to be issued until air-

craft has ceased following route.

[CR12]

Modelled in MR0, command cancellations

via the CancelCommand event are viewed

to be atomic and so aircraft are instantly

assigned new routes as soon as the cancel-

lation is issued. The ConfirmCancellation

event will return TRUE if specified com-

mand is marked as cancelled.

Command cancellation state must

always be reported. [CR13]

Modelled from MR0. Due to the non-

determinism of the model, command can-

cellation state will be eventually reported.

Command cancellation confirma-

tion must only ever be issued in

response to a cancellation request.

[CR14]

It is only possible to confirm cancelled com-

mands once the command has been can-

celled so this is modelled from MR0.

Initial route must not contain re-

stricted or hazardous waypoints.

[CR15]

TaskAircraft event ensures this is not the

case via a guard on the event checking

the command validation state from MR2.

Furthermore, the registration of a new re-

stricted location fromMR0 ensures aircraft

have their routes replaced if the existing

route becomes hazardous.

Chapter 6 UAV case study 133

Table 6.17: Detail of integration of critical requirements into formal model
(continued)

Critical Requirement Model refinement/details

Commands passing validation

must be passed to aircraft in the

form of routes. [CR16]

Due to the non-deterministic nature of

Event-B models, this is hard to model.

TaskAircraft will eventually pass all valid

commands to aircraft that have no route as-

signed from MR2.

Aircraft may not have their initial

routes set to commands that do

not pass validation [CR17]

Modelled successfully from MR2 using a

guard in TaskAircraft that checks command

validation state.

Updates provided to aircraft may

not contain restricted or hazardous

waypoints. [CR18]

Modelled from MR2 using a guard in Re-

taskAircraft that checks command valida-

tion state.

Routes that aircraft are currently

on should be updated to remove

hazardous waypoints or return air-

craft home. [CR19]

Modelled from MR0 when registration of

a new restricted location will cause the air-

craft route to be replaced with a route to

return home.

Aircraft may not be updated un-

til provided with an initial route

[CR20]

Modelled from MR2 where guards on Re-

taskAircraft will check that the route for an

existing aircraft is not blank.

Aircraft may not be recalled when

to do so is hazardous [CR21]

This was not possible to model and is there-

fore potentially a poor quality critical re-

quirement.

Aircraft may only be recalled while

on a route [CR22]

Modelled from MR0 - aircraft may not be

recalled when at home, and therefore will

always be on a route.

Aircraft may only confirm receipt

of update/initial route when pro-

vided one by the GCS. [CR23]

Modelled from MR2, ConfirmReceipt

event guards against confirmation happen-

ing without route being assigned. Confir-

mations may only occur once.

Aircraft will always confirm receipt

of update/initial route when one is

provided by the GCS. [CR24]

Modelled from MR2 - once more, due

to the non-determinism of the underlying

model, this will eventually occur but it can-

not be guaranteed immediately.

134 Chapter 6 UAV case study

Table 6.17: Detail of integration of critical requirements into formal model
(continued)

Critical Requirement Model refinement/details

Aircraft must report accurate, reg-

ular location data. [CR25]

Modelled from MR2, where multi-

ple events (ReportLocationElsewhere,

ReportLocationHomeNormal, ReportLoca-

tionHomeRecall) cover all possibilities of

airports reporting location data.

Aircraft must report locations with

a time-stamp to prevent sequenc-

ing issues. [CR26]

Modelled from MR1 where locations must

be reported in a strictly-increasing manner.

Aircraft must report accurate devi-

ations where these occur. [CR27]

Modelled most completely from MR2,

where deviations are reported so long as

they do not belong to the existing route.

Aircraft must report deviations

with a time-stamp to prevent se-

quencing issues. [CR28]

Modelled fromMR1 where deviations must

be reported in a strictly-increasing manner.

Aircraft should attempt to com-

plete route and return home in

absence of control from GCS.

[CR29]

Modelled from MR2 where aircraft will re-

port locations in sequence and then return

home automatically. It is however difficult

to model the notion of removing the GCS

control from the model.

Instructions/control actions to air-

craft must be accompanied by

unique tokens, which are never

reused. [CR30]

Modelled from MR3 through extensive

guards and actions added to events, and the

maintenance of a UsedTokens variable, as

well as a TokenMapping between Aircraft

and Tokens. A lone token is removed for

each action involving the GCS communicat-

ing with the aircraft.

Aircraft and GCS will maintain

a message queue and will not

remove items from the message

queue in the absence of confirma-

tion. [CR31]

Not possible with formal model in present

state.

Chapter 6 UAV case study 135

Table 6.17: Detail of integration of critical requirements into formal model
(continued)

Critical Requirement Model refinement/details

Aircraft behaving unusually will be

marked as suspect and will not be

assigned routes until their status is

set to clear once again. Aircraft al-

ready on routes shall be permitted

to complete them. [CR32]

Modelled from MR3 - aircraft may be

marked suspect at any time, will complete

their routes and may not be tasked/re-

tasked until they have both reached the

home location and had their status set back

to normal.

Aircraft must retain their own in-

dependent history of their loca-

tions once assigned a route to en-

sure aircraft location data can be

reconstituted. [CR33]

Not possible with formal model in present

state.

Where aircraft hazardous/re-

stricted location database is

greater in size than that of the

GCS, the aircraft database is to

be retained [CR34].

Not possible with formal model in present

state.

Operators are limited to submit-

ting up to 10 plans/commands at

any time [CR35]

Modelled fromMR3 - a given operator may

only have 10 of each plans and commands

and this is enforced through invariants and

guards on all relevant events.

Operators may not cancel the

plans of other operators [CR36]

Modelled from MR3 - CommandOwner-

ship variable maps Operators to Commands

and guards in CancelCommand prevent the

cancellation of a command owned by an-

other operator.

GCS may not include waypoints

for aircraft outside of maximum

control range [CR37]

Not possible with formal model in current

state.

Traffic between aircraft and GCS

should be obfuscated [CR38]

Not possible with formal model in current

state.

136 Chapter 6 UAV case study

Table 6.17: Detail of integration of critical requirements into formal model
(continued)

Critical Requirement Model refinement/details

Feedback from aircraft to GCS

should be accompanied by unique

tokens, which are never reused

[CR39]

Modelled from MR3 through extensive

guards and actions added to events, and the

maintenance of a UsedTokens variable, as

well as a TokenMapping between Aircraft

and Tokens. A lone token is removed for

each action involving the aircraft communi-

cating with the GCS.

Aircraft and GCS will only pro-

cess messages/instructions that are

correctly formatted and expected

[CR40]

Not possible with formal model in current

state.

The statistics relating to proof obligations in each refinement can be found in Table 6.18.

Table 6.18: Statistics on proof obligations for each model refinement

Refinement Total Automatically

proved

Manually

proved

Undischarged

MR0 30 29 1 0

MR1 22 9 13 0

MR2 89 58 31 0

MR3 76 52 17 72

6.2.7.1 Challenges of representing critical requirements within the formal

model

Representing the critical requirements within the formal model was a task for which

many aspects of the Rodin toolset were utilised. Examples are given below, demonstrat-

ing challenges of integrating critical requirements, as well as the tool support that was

used to resolve these challenges. These challenges arose due to the complexity of trans-

lating natural language requirements into formal aspects of a system model and further

demonstrated that the natural language critical requirements, while often sensible and

2This is due to the proof obligations around ensuring that operators may not submit more than 10
plans and commands for validation at any point which the author has been unable to discharge.

Chapter 6 UAV case study 137

detailed, still fell short of the formalism and detail required to automatically translate

into constraints on the system model.

Validation queues and sequencing The introduction of CR1 into the formal model

occurred during Model Refinement 1 and involved the creation of queues for both

commands and plans, in addition to a counter which tracked the number of items in the

respective queues. This enabled plans to be submitted into queues, where they would be

mapped (via a partial injection) to a value in the range of 0 . . . P lanV alidationQueueCount−
1. A similar mechanism exists for commands. The intent of this implementation was to

model a first-in first-out (FIFO) queue structure.

In order to satisfy the relevant invariants, this meant that all events which involved

adding to the validation queues needed to achieve two things:

1. To modify the relevant queue variable through adding an item to the queue and

mapping it to the current value of the counter variable.

2. To incremeent the relevant counter variable to ensure it reflected the number of

items within the queue after the action had been taken.

Events that sought to remove from the queue (i.e. the validation events) had to under-

take the above two actions (albeit from the opposite perspective of shrinking the queue

and decrementing the counter variable), in addition to the following:

3. Iterating through the current queue and adjusting all of the mappings to their new

positions.

• This was due to the fact that the former ‘first’ item in the queue had been

removed, which would make the new first item in the queue map to the value

1. However, the first item in the queue should map to the value 0, as this

was the position that removal events accessed.

The desired functionality was achieved using a lamba operator and the set comprehen-

sion operator. However, this was relatively complex for the author who had no prior

experience with either of these operators, and so the Rodin tool had several aspects of

functionality which aided with the implementation of this critical requirement:

1. Animation was used extensively. This involved the manual choice of a sequence

of events which exercised the queue functionality (i.e. TransmitPlan followed by

ValidatePlan). The ability to inspect the state of the machine at all stages enabled

the actions to be reworked until they functioned correctly in terms of a FIFO queue.

138 Chapter 6 UAV case study

• This was followed by a number of Random Animation runs, where the traces

and model state were inspected at each step to ensure that the queues behaved

correctly at each step.

2. Proof obligations were generated for the invariants which provided the type for

PlanValidationQueue and CommandValidationQueue. As both of these variables

were typed to map from a plan/command to a value in the range of

0 . . . P lanV alidationQueueCount−1, this provided an additional level of scrutiny

over the behaviour of events that interacted with the queue:

• An action attempting to map above that range (i.e. mapping to PlanVal-

idationQueueCount without the subtraction due to zero-indexing) or below

the valid range (i.e. -1) would result in the proof obligation remaining undis-

charged.

• Furthermore, the violation of the invariant during animation provided a

counter-example, as well as all relevant state information, to enable the action

to be corrected.

3. Once a high degree of confidence was had regarding the behaviour of the FIFO

queues for plans/commands, Rodin’s model checking was utilised and ran for sev-

eral hours in various configurations to check whether any invariant violations could

be found. This did not highlight any violations within its execution3.

The process of modelling this critical requirement highlighted that the wording of the

critical requirement could have been improved; the wording ‘shall be validated in order of

submission’ could have been substituted for something more prescriptive such as ‘shall

be entered into a first-in, first-out (FIFO) queue’ which would’ve focused modelling

activities accordingly.

AircraftRoutes improvements This improvement occurred before critical require-

ments integration could begin, and was due to a deficiency identified in the initial for-

mal model. In the initial formal model, the AircraftRoutes variable mapped the Regis-

teredAircraft variable to the Commands variable, however, this resulted in residual proof

obligations which could not be discharged, and frequent violation of invariants during

animation.

Further investigation indicated that this was due to the need for aircraft to possess an

empty route for times when they were not on a route (i.e. a route consisting of ∅), as

well as a route for when they were returning home due to being recalled, or being at the

end of their route (i.e. a route consisting of only the HOME location). This resulted in

3Due to the search space, this is not a hard guarantee, but it provided more confidence that the
invariants and actions involved in the queueing behaviour were correct.

Chapter 6 UAV case study 139

the expansion of the AircraftRoutes type invariant to map from the RegisteredAircraft

variable to Commands ∪{HOME} ∪ {∅}.

This permits a registered aircraft to have a normal route, a route just consisting of

‘HOME’ or, when at the home location, to have no route at all.

Functions and relations The choice of functions and relations to model new vari-

ables where these variables are used to map between existing variables proved quite

complex on a case study of this scale. However, this choice paid substantial dividends

in terms of ensuring that the behaviour of the model was correct with regards to the

critical requirements, as the characteristics of the functions and relations being violated

generated useful counter-examples and proof obligations that could not be discharged.

Several examples are given below:

1. The use of a partial injection as part of the Command and Plan queue variables

ensured that there was not any duplicate mapping to positions within the queue

(i.e. no two elements shared an index of 0 at any one time). The violation of

this invariant by several events drew attention to the actions involved and enabled

them to be corrected.

2. The use of a number of total functions within a number of mapping variables

highlighted that the registration of aircraft did not have actions corresponding to

some variables. This was corrected as otherwise proof obligations relating to these

variables could not be discharged.

3. The animation of the model often revealed that the ‘wrong’ relation or function had

been used in several places. This encouraged the use of a more-specific function/re-

lation, which then highlighted further events that were not behaving correctly with

regards to all variables.

Broadly speaking, the majority of undischarged proof obligations often reflected that

events were not meeting their obligations as required by the critical requirements. The

use of specific types of relations/functions enabled these issues to be detected and cor-

rected, and to ensure that all events interacting with these variables behaved correctly

and in a well-defined manner.

ReportLocation refinement The refinement of the ReportLocation event in Model

Refinement 2 involved the creation of three events which all extended from the abstract

ReportLocation event in DroneMachine2 :

• ReportLocationElsewhere, for aircraft to report when they are anywhere aside from

home (i.e. when they are in transit and following a route).

140 Chapter 6 UAV case study

• Two events were then required to adequately model the act of an aircraft returning

home, as there are two situations in which this can occur:

1. ReportLocationHomeNormal, which reports the aircraft returning to theHOME

location at the end of a route.

2. ReportLocationHomeRecall, which reports the aircraft returning to the HOME

location in response to the aircraft being recalled by the Ground Control

Station.

The rationale for the different events for reporting when an aircraft returns to the HOME

location ‘normally’ versus when it is recalled relates to other variables within the model

which are set when the RecallAircraft event is triggered. In order to clear these, the Re-

portLocationHomeRecall adjusts several of these variables back to states which indicate

that the aircraft has been successful recalled. In contrast, the ReportLocationHomeNor-

mal serves to essentially reset the aircraft to the ‘default’ state that a newly registered

aircraft would be in. These behaviours did not require modifications to ReportLoca-

tionElsewhere as recalled aircraft essentially terminate their existing route and are set

to only return home, so the behaviour of ReportLocationElsewhere is consistent in all

possible situations as there is a guard to prevent recalled aircraft utilising this event.

This combination of events required extensive testing to ensure that the model behaved

appropriately and did not enter into nonsensical states (e.g. an aircraft being recalled

and triggering the ReportLocationHomeNormal event). This involved two steps:

1. The first step involved the creation of a number of guards (e.g. on the relevant

events and the discharging of proof obligations as a number of the guards had

well-definedness proof obligations due to being non-trivial predicates.

2. The second step involved animation which was undertaken manually (via manual

choice of enabled events) and then automatically (via Random Animation) to

ensure that aircraft were triggering the appropriate event for their situation.

Undertaking this refinement demonstrated how a number of critical requirements in-

fluencing the same system behaviour can complicate the formal model, but the tools

provided by the Rodin platform can be used to ensure that complex behaviours such as

these can be demonstrated to be correct.

6.2.8 Step 8 - Causal factors analysis

At this stage, the bulk of critical requirements that can be integrated into the formal

model have been, thus increasing the assurance that these critical requirements are

meaningful. However, the process of identifying hazards in the control action analysis

Chapter 6 UAV case study 141

step (subsection 6.2.5) does not meaningfully tell us how such hazards can arise, simply

that they might as a result of the standard analysis table.

To bolster this aspect of the analysis, SE-STPA uses the existing process of causal

factors analysis from the original STPA process. This takes each hazard identified in

the control action analysis and seeks to understand how it might arise within the context

of the control loop in which it takes place. This aids the identification of potential human

factors issues or areas where the process models of controllers may not be consistent.

These issues can all result in the hazardous behaviour arising in the first place, and

therefore overt identification and generation of critical requirements can once again

ensure the system does not enter a hazardous state.

In the interest of brevity, a select number of causal factor analyses are presented in

this subsection relating to the UAV case study to demonstrate the value of this step of

analysis.

6.2.8.1 Existing route becomes hazardous in some way and is not corrected

by an update

This hazard relates to the Update Route control action not being issued in response to

a material change in circumstances that makes an aircraft’s existing route hazardous in

some way. In line with the system-level hazards identified in subsection 6.2.1, this would

put the system into a hazard state represented by Hazard 4 and/or Hazard 5.

As the responsibility for tasking aircraft and ensuring they follow safe routes lies with

the Ground Control Station, and operators have no direct influence on aircraft once they

are following a route, the control structure relevant to this hazard is only the control

loop between the GCS and an aircraft.

The causal factors associated with the hazard can therefore be found in Figure 6.5.

142 Chapter 6 UAV case study

Ground Control Station

Process Model issues:

- Ground control station is not made aware of
hazard within aircraft's existing route and does

not issue update.
- GCS issues update to incorrect aircraft.

- GCS believes aircraft to be past the hazardous
location within the route it has been given and so

does not issue update.
- GCS does not maintain an up-to-date list of

hazardous/restricted locations and so does not
issue update.

- GCS fails to await confirmation of route update
and therefore believes aircraft route has been

updated when it has not.

Aircraft

Process Model issues:

- Aircraft receives update but does not
correctly update route.

- Aircraft receives update and is unable
to communicate a confirmation to GCS.
- Aircraft cannot follow updated route

due to local hazards/restrictions.

- Update Route is not received by Aircraft.
- Update Route is received by Aircraft but is

malformed or nonsensical.
- Update Route is received by Aircraft too late.

- Acknowledgement of updated route is issued but
not received.

- Acknowledgement is received but is malformed or
nonsensical.

- Acknowledgement is received after newer update
is sent, and GCS incorrectly marks the newer

update as acknowledged.

Figure 6.5: Causal factors breakdown for Failure-to-Update-Route Hazard

From this, several observations can be made:

1. Several of the identified causal factors relate to the notion of whether commands

and confirmations between the GCS and aircraft are received and processed cor-

rectly by both entities. This will substantially be mitigated by CR31 when this

critical requirement is integrated into a future design iteration of the system.

2. Several other causal factors relate to the notion of information exchanged by both

parties becoming malformed in transit - this will be mitigated by CR40 being

integrated into the design.

3. One further identified causal factor is around timeliness and is mitigated by CR26,

although the integration of this critical requirement to this version of the model

is partial and could be more thoroughly integrated into a future system design by

modelling the passage of time. This would enable the locations to be reported

with timestamps and model more-concrete functionality of the system.

The remainder of causal factors rely on a failure of either the GCS or the aircraft to

act in line with their process models, and this can be mitigated against by the following

design revisions/critical requirements:

CR41: Aircraft shall attempt to follow updates even if unable to communicate a confir-

mation back to the GCS.

Chapter 6 UAV case study 143

CR42: Aircraft are permitted to skip hazardous stops on assigned routes if they are unable

to navigate them safely.

CR43: Aircraft will notify of skipped stops, as defined in CR42, as deviations to the GCS

as soon as they are able.

This covers the identified causal factors for this hazard, and provides further critical

requirements for refining the design when iterating or re-scoping.

6.2.8.2 Initial route is set before command passes validation

This hazard relates to the Set initial route control action being issued prior to a com-

mand being successfully validated and therefore being safe to pass to aircraft. In line

with system-level hazards identified in subsection 6.2.1, the risks placing the system into

a hazard state defined by Hazard 4, Hazard 5 and Hazard 6 or some combination

thereof.

This is once again an issue that is essentially contained purely to the control loop between

the GCS and an aircraft, therefore the functional control structure to be considered can

be isolated to these two entities. The causal factors diagram can be found in Figure 6.6.

Ground Control Station

Process Model issues:

- Command initially passes validation
before an update to restricted/hazardous

locations list occurs.
- Command mistakenly passes validation

while containing restricted/hazardous
locations.

Aircraft

Process Model issues:

None; aircraft are not responsible
for validation and depend on

GCS for determination of which
routes are valid/invalid.

- Initial route is sent to aircraft prior to
command validation status being set to

invalid.

- Initial route is never confirmed to GCS,
leading to GCS assuming Aircraft is still at

home and available for tasking.

Figure 6.6: Causal factors breakdown for Initial-Route-Potentially-Invalid Haz-
ard

Observations can once again be made based off of this diagram:

144 Chapter 6 UAV case study

1. The bulk of causal factors here have been identified and mitigated by both CR154

and CR175 when this hazard was first identified in subsection 6.2.5.

2. The causal factor around the aircraft failing to transmit the confirmation of initial

route, is mitigated by CR246 as well as CR317.

3. The final causal factor (a command is validated but then subsequently should

become invalidated) is mitigated by CR198.

As there are no more causal factors that do not already have critical requirements, this

means there are no further critical requirements that can be derived from this hazard

as a result of causal factors analysis.

6.2.8.3 Command validation state is reported incorrectly

This hazard relates to the Report Validation State of Command control action reporting

the validation status for a given command, but doing so incorrectly. This can lead

to operators assuming an aircraft will be tasked to carry out a command when the

command has failed validation, or believing that a command has failed validation when

in fact it has passed.

This issue spans the entirety of the control loop across the system as the GCS reports

command validation state to operators, but will also be interacting with aircraft poten-

tially if the command has actually passed validation.

Two cases can be considered in terms of causal factors (and to keep the diagram from

becoming too crowded) - the one in which the state is reported to be valid when it is

in fact invalid, and the other when the command validation state is reported as invalid

when it is in fact valid.

4Initial route must not contain restricted or hazardous waypoints
5Aircraft may not have their initial routes set to commands that do not pass validation
6Aircraft will always confirm receipt of update/initial route when one is provided by the GCS.
7Aircraft and GCS will maintain a message queue and will not remove items from the message queue

in the absence of confirmation.
8Routes that aircraft are currently on should be updated to remove hazardous waypoints or return

aircraft home.

Chapter 6 UAV case study 145

Ground Control Station

Process Model issues:

- GCS misinterprets which command
validation state is being requested.

- GCS reports validation state while
re-validation is occurring due to an update to
restricted/hazardous location list held by the

GCS.

Operator

Process Model issues:

- Operator believes command
to be underway and this can

have knock-on effects.

Aircraft

Process Model issues:

- Aircraft carries out route;
potentially entering hazardous or

restricted airspace.

- GCS reports command
validation state as valid
when it is in fact invalid.

- Operator submits further
commands on the understanding

that the original command is
underway.

- GCS submits route to aircraft
despite it being invalid.

- Aircraft provides updates as it
follows invalid route.

Figure 6.7: Causal factors breakdown for Command-Validation-Incorrectly-
Reported Hazard - Approach 1

Ground Control Station

Process Model issues:

- GCS misinterprets which command
validation state is being requested.

- GCS reports validation state while
re-validation is occurring due to an update to
restricted/hazardous location list held by the

GCS which makes command valid.

Operator

Process Model issues:

- Operator believes command
to be invalid and submits an

adjusted version.

Aircraft

Process Model issues:

No process model issues.

- GCS reports command
validation state as invalid when it

is in fact valid.

- Operator submits further
commands on the understanding
that the original command is not

underway.

- GCS submits route to aircraft as
normal

- Aircraft provides updates as
normal.

Figure 6.8: Causal factors breakdown for Command-Validation-Incorrectly-
Reported Hazard - Approach 2

146 Chapter 6 UAV case study

Observations can be made for both cases:

1. The causal factor around misinterpreting which command validation state is being

requested can be resolved by ensuring that operators interfaces are clear in dis-

playing the status of their submitted commands and the current validation state.

2. Commands undergoing a process of re-validation should be set back to undeter-

mined prior to the re-validation occurring in order to prevent validation state from

being reported incorrectly, therefore preventing this causal factor from being an

issue. Aircraft on a route that is being revalidated should be recalled in the interest

of not further violating system-level hazards.

3. The remaining causal factors appear to be a result of the natural functioning of

the system and do not warrant further constraints.

This permits the creation of three further critical requirements:

CR44: Upon an update to restricted/hazardous locations list, any commands affected will

be set back to undetermined validation status until re-validated.

CR45: Aircraft following commands that are set back to undetermined must be recalled

immediately.

CR46: Operators interfaces must clearly show all command validation statuses to prevent

potential confusion.

CR44 and CR45 essentially represent a refinement of the existing critical requirements

governing the interaction of command validation states, hazardous/restricted locations

and when aircraft can be tasked with commands. These existing critical requirements

(CR15 through CR19) should therefore be read in conjunction with the newly-created

critical requirements and will be handled accordingly when refining/revising the system

in subsection 6.2.9 to ensure they do not conflict.

6.2.9 Step 9 - Iteration of design & further analysis

This step of analysis allows the design of the UAV system to be iterated with the full

benefit of the critical requirements derived during the preceding steps. This should

result in a design that is more safe and secure, and is somewhat more concrete than the

original system design.

Several of the critical requirements proposed design modifications which should be taken

into consideration at this stage of the analysis; these design changes are distilled (against

the relevant critical requirements) in Table 6.19.

Chapter 6 UAV case study 147

Table 6.19: Design modifications resulting from critical requirements

Critical Requirement Design modification

CR45: Aircraft following com-

mands that are set back to unde-

termined must be recalled immedi-

ately.

Aircraft shall have the ability to support

an ‘emergency recall’. Aircraft shall return

immediately to their home location in re-

sponse to an emergency recall message from

the GCS.

CR31: Aircraft and GCS will

maintain a message queue and will

not remove items from the message

queue in the absence of confirma-

tion.

Aircraft have a distinct message queue.

Outgoing confirmations and other messages

shall be placed into this queue. Items shall

not be removed from the queue until confir-

mation is received from the GCS.

The GCS shall equally have its own mes-

sage queue per aircraft. Outgoing messages,

commands and updates shall be placed into

this queue. Items shall not be removed

from the queue until confirmation is re-

ceived from the relevant aircraft.

CR34: Where aircraft haz-

ardous/restricted location

database is greater in size than

that of the GCS, the aircraft

database is to be retained

The process for updating hazardous/re-

stricted location database will involve a rec-

oncilation process to ensure that both the

GCS and aircraft are aligned on where haz-

ardous locations are.

CR34: Aircraft must retain their

own independent history of their

locations once assigned a route to

ensure aircraft location data can be

reconstituted

Aircraft shall maintain their own location

log.

CR37: GCS may not include way-

points for aircraft outside of maxi-

mum control range

GCS shall define a maximum control range,

and shall check that a route contains no

waypoints outside of this control range.

CR38: Traffic between aircraft

and GCS should be obfuscated

The communication channel between air-

craft and GCS shall utilise reasonable se-

curity features so as to ensure that commu-

nication is not in cleartext.

CR40: Aircraft and GCS will only

process messages/instructions that

are correctly formatted and ex-

pected

Messages shall have a data integrity field

which will be checked by the receiving ele-

ment of the system.

148 Chapter 6 UAV case study

The remaining body of critical requirements, as they refine existing behaviour of the

system, shall also be carried forward as part of the design. A new functional control

structure capturing the design modifications can be found in Figure 6.9. This represents

a solid starting point for a second round of analysis.

Ground Control Station

Process Model:

- Aircraft registered with this ground
control station

- Route plans for each registered
aircraft

- Most recent location of each
aircraft

- Constraints on potential routes (i.e.
no-fly zones)

- Message queue for each
registered aircraft

- Maximum control range

Responsibilities

- Transmit flight plans to
registered aircraft

- Ensure that flight plans
generated meet constraints.

- Receive input from human
operators to update existing

routes or plan new ones

- Reconcile
restricted/hazardous location

list with aircraft

- Ensure routes contain no
locations outside of maximum

range

0...*

Operator

Process model:

- Commands
available to be

issued.

- Plans to query with
GCS

Responsibilities

- Submit new
commands to GCS

- Submits plans for
verification by GCS

Aircraft

Process model:

- Current location

- Current stored route

- Message queue

- Log of previous
locations

- Emergency recall
status

Responsibilities

- Obey route received
from GCS

- Follow route without
deviation unless
required to avoid

obstacles

- Log all visited
locations

-

0...*

Commands and plans

Feedback on whether plans and
commands have been validated

successfully or not.

Initial route to fly OR route
updates

Emergency recall command

Location updates

Figure 6.9: Modified functional control structure to account for design changes

6.3 Lessons learned

The lessons learned from undertaking this case study with the third version of method-

ology are as follows:

• Adversarial modelling represents an explicit identification of security threat actors.

It can serve as the basis for thoughtful discussion about the ways in which the

system can be manipulated by an adversary, and can be used to generate critical

requirements to mitigate or reduce the attack surface of the cyber-physical system

in question. This step is more robust than the previous attempts to concentrate

the majority of security analysis into causal factors analysis.

• The structured usage of the formal model at steps 4 and 7 of the methodology

requires that critical requirements are generated that are specific enough to miti-

gate against their identified hazards. Without the formal method, it is likely that

Chapter 6 UAV case study 149

critical requirements may end up being vague and difficult-to-implement, which

might result in system behaviours which are poorly defined or counter-intuitive

when compared to the critical requirement.

• Security issues are considered at multiple stages of the analysis which ensures that

security and safety hazards are given equal treatment and consideration within

the analysis process. This is a significant improvement from the second iteration

of the methodology, where security ended up being left to the ‘end’ of the analysis

in the causal factors analysis step.

• The methodology in its current state can be applied to a cyber-physical case study

of reasonable size and draw out a useful number of critical requirements, which can

then be utilised to refine and improve on the design of the system. Though this

case study does not go through a second analysis loop, it is clear that integration

of a number of critical requirements into the design will result in a substantially

safer and more secure system.

There are also a number of improvements which could be taken forward into a future

version of the methodology:

• In order to improve the robustness of the methodology, traceability should be

stipulated between stages and a clear expectation should be communicated within

the description of the methodology as to the appropriate level of traceability to

be expressed at each stage. The current version of the methodology does not

make explicit the minimum traceability which should exist between artefacts of

the analysis and so it can be unclear if all hazards have been adequately mitigated.

• The notion of ‘trust’ between entities of the system is currently not modelled.

This can make a difference in both security and safety terms for the system; as a

simplistic example, a system may consist of a number of sensors which are used in

a voting configuration, either for redundancy or security reasons. Future versions

of the methodology may wish to explore how this is modelled if it is key to system

behaviour and how it is analysed for possible safety/security impacts.

Chapter 7

Discussion

This chapter begins with a restatement of the research questions before exploring the

contribution of this thesis towards each of these research questions. It additionally

explores the shortcomings of SE-STPA.

7.1 Research questions

The intent of this thesis was to provide answers to the following three research questions:

RQ1: Can a methodology be produced to analyse the requirements and design of

cyber-physical systems with an aim to improve both their security and safety?

RQ2: Can the methodology additionally leverage formal method techniques in order

to provide assurance that the mitigations generated as a result of analysis are

demonstrably successful in reducing or eliminating security and safety hazards?

RQ3: Can the methodology demonstrate its utility through application to case stud-

ies of differing sizes and complexity, ideally utilising case studies involving

cyber-physical systems in multiple domains?

The findings, implications and limitations against each research question can be found

in the following sections.

7.2 Discussion of Research Question 1

Can a methodology be produced to analyse the requirements and design of

cyber-physical systems with an aim to improve both their security and safety?

151

152 Chapter 7 Discussion

7.2.1 Context and approach

The approach to addressing this research question was to take an existing methodology

with a significant history and reputation within one of the relevant domains and then

modify it to be able to undertake analysis on the other domain, in a unified manner. The

chosen methodology was Leveson’s Systems-Theoretic Process Analysis (STPA) and its

associated Systems-Theoretic Accident Model and Processes (STAMP). This existing

work has been used extensively with regards to carrying out safety analysis across a

multitude of domains (as detailed in Section 3.3) and therefore the intent of this thesis

was to modify STPA to enable it to undertake security analysis. This approach enabled

the author to build upon the existing documentation and case studies that exist from

applying STPA to a number of domains.

The drivers behind the choice of this methodology are provided in Section 3.2. The

approach to this research question also sought to address a number of shortcomings

identified in existing attempts to utilise STPA, which has been detailed in Section 3.5,

and in particular reference to the shortcomings identified when STPA is used for security

analysis as detailed in subsection 3.5.3.

7.2.2 Contribution

The modification of STPA and STAMP to account for security occurred in two major

steps:

1. Development of the theoretical model known as Systems-Theoretic Accident &

Attack Model and Processes (STAAMP) from the existing Systems-Theoretic Ac-

cident Model & Processes (STAMP) model.

2. Development of the Security-Enhanced Systems-Theoretic Process Analysis (SE-

STPA) to accomplish co-analysis of both security and safety issues in a single

methodology.

Each of these is therefore considered as their own distinct contribution in answering this

research question, and can be found in the following sections.

7.2.2.1 Contribution of the STAAMP theoretical model

Conceptualising safety and security together The theoretical model proposed

by this thesis reconciles safety and security within a systems-theoretic model of system

behaviours. It expands on the view proposed by Leveson in her STAMP model, which

conceptualised safety in terms of Rasmussen’s ‘boundary of acceptable performance’

Chapter 7 Discussion 153

by including a second boundary representing the dividing line between a system being

secure and a system entering into an insecure state. This second boundary is not parallel

to that of the safety boundary and intersects it at a single point, representing the notion

that there are choices or decisions which can be made in the context of the system which

can degrade both security and safety. Equally, however, there remain choices which can

improve safety and security jointly, and decisions which can improve safety but degrade

the security of a system and vice-versa. A visual representation of the boundary of

security & safety concept is given in subsection 3.7.1 and is repeated in this section as

Figure 7.1.

System
under

consideration

Boundary of
safety

Boundary of
security

Safe & secure
region

Insecure
region

Unsafe
region

Unsafe &
insecure
region

Figure 7.1: Representation of the “boundary of acceptable performance” con-
cept as applied to safety and security jointly

This model serves as the basis for a methodology which seeks to analyse both security

and safety as first-class citizens of the analysis. Previous contributions which involved

expanding STPA to apply to security, as detailed in Section 3.4, do not provide a concep-

tual model to frame the approach, instead only seeking to modify the analysis technique

to include security analysis aspects. This deprives the new methodology of a firm the-

oretical basis for interpreting and understanding the inter-relation between safety and

security behaviours of a system.

Considering system actors and mitigations within the theoretical model

Another contribution of this theoretical model is that it provides a more rigorous ba-

sis for understanding the behaviours of all individuals involved with the system when

154 Chapter 7 Discussion

compared to Leveson’s safety-focused model. In the STAMP model, the understanding

of the primary influences on the safety of the system was through the consideration of

authorised users who may take actions which unintentionally degrade the safety of the

system. There were many stated reasons why authorised users may take these actions

such as optimisation of work patterns, a desire to reduce costs, etc. but the clear view

was these were authorised users who needed to be made aware consistently throughout

the system life-cycle of how to maintain the system in a safe state. This was best achieved

through placing constraints on the system behaviours, or on the operators/controllers

associated with the system, to ensure that hazardous states could not be entered into.

The notion of unwanted or malicious actors who may be actively seeking to undermine

the system is not a primary consideration within the theoretical framework, although

the STPA technique does feature some consideration of security as it relates to safety.

The STAAMP theoretical model enables a more thorough consideration, when compared

with STAMP, of all individuals involved in the system as it can conceptualise the pro-

cesses behind a system approaching the boundary of safety and security as significantly

different in origin and motivations. While it reuses the understanding from STAMP that

the maintenance of safety is primarily focused on curtailing unsafe or hazardous actions

and decisions from operators and system controllers, it conceptualises the process of

maintaining system security as a process of curtailing the actions of motivated, unau-

thorised actors in taking intentional actions which degrade the security of the system.

There is additionally consideration of ordinarily-authorised users taking unintentional

actions which may degrade the system security, as this is another relevant factor in

maintaining system security. In either case, the focus of any mitigation of malicious

actor activity must be an aspect of the system design; it is not possible to constrain the

behaviours of malicious actors as they are, by definition, acting outside the usual rules

and procedures that govern the correct (i.e. safe and secure) operation of the system in

question. A minority of constraints may be placed on authorised users to ensure they

do not unintentionally reduce the security of the system (such as enforcing unique pass-

words) but these are essentially secondary concerns in compared to the primary means

through which system security is degraded. A high-level comparison of the approaches

of STAMP and STAAMP can be found in Table 7.1.

Chapter 7 Discussion 155

Table 7.1: Comparison of approaches to security and safety

Model Approach to security Approach to safety

STAMP
Minor consideration of security

in relation to safety

Primary focus; safety

understood as a failure of

control by either system

controllers or operators within

the system; mitigations placed

on system design and

operators equally.

STAAMP

Security understood in terms

of intentional actions taken by

malicious users; mitigations

must be built into system

design as the majority of

malicious users cannot be

constrained directly.

Safety understood as a failure

of control by either system

controllers or operators within

the system; mitigations placed

on system design and

operators equally.

7.2.2.2 Contribution of the SE-STPA technique

Once the theoretical model was in place to contextualise the relationship between safety

and security, the SE-STPA methodology was created. This methodology provides a

distinct step for security analysis step which was termed ‘adversarial modelling’. This

step involves the identification of an adversary who seeks to undermine the system’s

security in some manner. The construction of the adversary during this step of the

analysis seeks to provide an explicit capture of possible threat actors against the system,

as well as their capabilities and intent. The purpose of this step is to enable consideration

of how existing system behaviours and design features can either permit or deny the

attacker from undermining the system. In this regard, it acts as an explicit security

assurance case, to demonstrate that the design adequately handles attacks from threat

actors identified during the adversarial modelling step of analysis. It also provides a

traceable artefact to which critical requirements can be attached. Further detail on

the adversary modelling step can be found in subsubsection 4.2.4.6 and a summary is

provided here for brevity.

Furthermore, in order to enable this analysis to be undertaken in a unified way, the

terminology for both security and safety steps was unified. This was a decision which

enabled a unified lexicon to be used throughout the process of applying SE-STPA to

a system. This was done in order to ensure that confusion would not occur between

analysts when performing the safety analysis steps and the security analysis steps. The

156 Chapter 7 Discussion

decisions made in regards to unifying the terminology, and their justifications, can be

found in subsection 3.7.4.

Finally, SE-STPA provides two additional points at which security hazards can deter-

mined. These two points primarily focus on individual control actions and how these

can become hazardous from both a safety and security viewpoint, and therefore serves

as a complementary step to adversarial modelling which focuses on a broader notion of

a threat actor in the form of an adversary, who can take a number of actions.

The first point of additional security analysis is during the control action analysis step

subsubsection 4.2.4.5 where the generic terminology of ‘hazard’ is utilised in the control

action analysis step. Due to the generic terminology, this step enables safety issues

to be determined (as with standard STPA) but it also enables the identification of

security issues relating to an individual control action. This is similar in some regards

to the approach taken by STPA-Sec, but STPA-Sec utilises the terminology of ‘insecure

or unsafe’ which results in the reader context-switching between safety and security

domains, rather than considering it as a unified whole.

The second point of additional security analysis is during the step known either as

‘scenario generation’ or ‘causal factors analysis’ in baseline STPA, where control actions

are subjected to analysis for how they can become hazardous1. This enables issues such

as human factors to be considered in the baseline STPA methodology, but once again, the

unified terminology of hazard in SE-STPA relating to both security and safety enables

thoughtfulness about causal factors that can contribute to hazardous control actions

emerging.

A copy of Figure 4.1 with an emphasis on steps relevant to security analysis can be

found in Figure 7.2.

1SE-STPA maintains the naming of this step as ‘causal factors analysis’ as the methodology was
substantially developed prior to the creation of the current version of the STPA Handbook, which
re-titles this step.

Chapter 7 Discussion 157

Step 1: Establishing
the system

engineering basis

Step 2: Build the
control structure

Step 3: Generate
control actions

Step 4: Build the
initial formal model

Step 5: Hazard
analysis & critical

requirement
generation

Step 7: Critical
requirement

integration into formal
model

Step 8: Causal
factors analysis

Step 6: Adversarial
modelling & critical

requirement
generation

Step 9: Iteration and
re-scoping

Figure 7.2: Steps of SE-STPA with an emphasis on security-relevant steps

When contrasted with existing approaches to enabling security analysis using STPA,

SE-STPA therefore has some distinct advantages:

1. No existing co-analysis techniques, whether based on STPA or standalone method-

ologies such as CHASSIS, provide a detailed assurance case of which threat actors

are explicitly considered during security analysis. The identification of a threat

actor in the form of an adversary enables a clear, traceable understanding of what

a given threat actor is perceived to be able to do the system in terms of actions and

what they are perceived to be able to understand in terms of system information.

SE-STPA provides all of this in the adversarial modelling stage.

2. Standalone security analysis techniques do not easily integrate with safety analy-

sis techniques due to the conflicting terminology often used by the two separate

domains. The unified terminology utilised in SE-STPA ensures that whatever the

source of a hazard (i.e. whether it be from security or safety analysis), there

will always be a critical requirement generated to mitigate it. The set of critical

requirements generated during analysis can then be considered as a whole to en-

sure there are not contradictory critical requirements between safety and security

analysis steps.

3. This approach maintains the broad applicability of STPA across the entire sys-

tem life-cycle, while also providing a number of opportunities and manners for

security issues (in the form of hazards) to be identified and mitigated. This in

direct contrast to a number of security analysis techniques which are focused

on implementation-specifics or design-specifics, and so cannot be applied outside

158 Chapter 7 Discussion

of their intended life-cycle phase. This is additionally true for some co-analysis

methodologies, such as STPA-SafeSec [51], which involve security analysis tech-

niques which require an implementation of the system to have been undertaken to

actually use the techniques.

7.2.3 Limitations

The limitations of the contribution to this research question at present can be broadly

described as follows:

1. It is not clear whether the methodology would scale successfully to large cyber-

physical systems. In the absence of a large case study to determine this one

way or another, this must be declared as a potential limitation. Nonetheless, the

methodology scaled well from the smaller smart meter case study to the more-

complex multi-UAV case study.

2. The ‘adversarial modelling’ analysis step is relatively immature in terms of its us-

age by a number of practitioners on a number of case studies and systems when

compared to the baseline aspects of STPA, and therefore a number of future valida-

tion activities may demonstrate that there are more effective means of undertaking

co-analysis than the use of this concept.

7.2.4 Summary

The major contributions as presented in this section towards addressing this research

question are two-fold:

1. The systems-theoretic model in the form of STAAMP which conceptualises security

and safety concepts for cyber-physical systems in systems theory terms, and serves

a conceptual foundation for a co-analysis methodology to be developed.

2. The systems-theoretic analysis technique in the form of SE-STPA which includes

security as a first-class citizen of the analysis through unified terminology, a robust

security analysis step that is broadly applicable throughout the system life-cycle

and a number of other steps which enable the identification of both security and

safety hazards in relation to maintaining correct control of the system.

The research question can therefore be considered to have been met by these

contributions.

Chapter 7 Discussion 159

7.3 Discussion of Research Question 2

Can the methodology additionally leverage formal method techniques in order

to provide assurance that the mitigations generated as a result of analysis

are demonstrably successful in reducing or eliminating security and safety

hazards?

7.3.1 Context and approach

In the baseline STPA methodology, constraints are generated to address unsafe control

actions, and this analysis is intended to be undertaken with expert review to inform

the generation of the constraints. However, when considering safety and security jointly

as intended by Research Question 1 and embodied by SE-STPA , it is entirely possible

and likely that a number of critical requirements will conflict or require contradictory

system behaviours. This may not be picked up until a subsequent analysis loop, or

potentially even during implementation, and so ensuring that the critical requirements

as a set are consistent and non-contradictory before refining the design is important to

ensuring confidence in the methodology as a whole.

In response to this, a formal method technique was to be integrated into SE-STPA in

order to provide further assurance or rigour that critical requirements were consistent

and enabled the system to still maintain its purpose. The formal method chosen was

Event-B; a summary of the formal method is provided in subsubsection 3.7.3.1 while the

benefits of this formal method are provided in subsubsection 3.7.3.2.

7.3.2 Contribution

The integration of the Event-B formal method into the methodology is primarily under-

taken in two major steps of the analysis:

• In Step 4 of the analysis, once the system’s control structure and actions are

understood, as detailed in subsubsection 4.2.4.4.

• In Step 7 of the analysis, the set of critical requirements generated in prior steps

is integrated into the formal model, as detailed in subsubsection 4.2.4.7.

A copy of Figure 4.1 with an emphasis on steps relevant to the involvement of the

formal method can be found in Figure 7.3. Examples of how the formal method was

used for translating critical requirements into constraints on the system model within

each case study can be found in subsubsection 5.3.6.1 for the smart meter case study

and subsubsection 6.2.7.1 for the multi-UAV case study.

160 Chapter 7 Discussion

Step 1: Establishing
the system

engineering basis

Step 2: Build the
control structure

Step 3: Generate
control actions

Step 4: Build the
initial formal model

Step 5: Hazard
analysis & critical

requirement
generation

Step 7: Critical
requirement

integration into
formal model

Step 8: Causal
factors analysis

Step 6: Adversarial
modelling & critical

requirement
generation

Step 9: Iteration and
re-scoping

Figure 7.3: Steps of SE-STPA with an emphasis on formal method-relevant
steps

The contribution of the formal method in assuring that safety and security critical

requirements are consistent can be broadly summarised as follows:

1. The construction of the formal method prior to undertaking any detailed analysis

forces the analyst to consider whether the system’s behaviours are sufficiently

defined in order to model them in Event-B terms. This increases thoughtfulness

around the system specification and documentation, and enables clarification of

the system behaviours prior to the analysis truly beginning.

2. The integration of the critical requirements into the formal model enables a number

of features which can be used for validating that the critical requirements as a whole

are consistent and do not either introduce contradictory or otherwise undesirable

behaviours into the system:

(a) Contradictory critical requirements will result in the model consistently vio-

lating invariants when animated, as critical requirements are primarily mod-

elled as invariants when they restrain system behaviours. A trace of all events

(i.e. state transitions) can be reviewed to indicate which invariants are likely

contradictory, and this can enable modification or unification of the critical

requirements into a single, non-contradictory critical requirement.

(b) Critical requirements that impose contradictory limits on variables will be

flagged by the tool before any animation is possible, as variable types must

be consistent.

Chapter 7 Discussion 161

(c) Critical requirements modelled as invariants and guards may result in the

system entering into deadlock states where no further transitions are enabled.

This enables these critical requirements to be taken away for further analysis

and reworked to ensure the system model can behave as required, while still

respecting the critical requirements2.

(d) The use of animation also enables the model execution to be simulated for a

time and the state of each variable to be viewed at each step. This is used to

provide a higher degree of confidence3 that states that critical requirements

should prevent (i.e. a forbidden state occurs despite the associated critical

requirement being modelled) are never entered by the formal model.

3. The generation of critical requirements becomes more specific as the analyst is

aware that they will need to be entered into a formal model at a later point in the

analysis. This can focus attention and ensure that nebulous critical requirements

are not generated, as the level of specificity required to model them is also likely to

be required during implementation of the critical requirements on the real system.

4. The generation and discharging of proof obligations provides a formal proofs of

system behaviours. This is helpful in ensuring that the system model behaves in

a well-defined way, as there will be formal proofs to demonstrate that even with a

number of critical requirements integrated into the system model, it is possible to

discharge all proof obligations.

5. The formal model provides an additional ‘hook’ in traceability terms; each refine-

ment to the formal model embodies a critical requirement, which mitigates against

a hazard, which connects back up to the system engineering context of the system

such as Purposes, Losses and system-level Hazards. This enables a clear, traceable

link to be demonstrated when writing assurance cases against the system, as is

likely to be required in highly regulated domains and industries.

The use of the Event-B formal method provides a degree of assurance of critical require-

ments that is more substantial than that provided by the baseline STPA methodology,

which is highly reliant on expert review and iterative analysis to identify flaws in gen-

erated constraints. The use of the formal model with a co-analysis methodology is a

novel contribution within the literature and serves to reduce the burden of, as well as re-

lieve some of the dependency on, domain experts undertaking analysis of cyber-physical

systems. This is particularly important when one considers the ever-increasing use of

cyber-physical systems in a number of domains. Additionally, it can serve to reduce the

2Deadlock state checking as provided by the Rodin tool can execute for an unbounded amount of
time and still not guarantee that deadlock states are not entered into. Nonetheless, it provides a degree
of confidence of correctness that is not otherwise possible were the formal model not used.

3Model animation possesses an unbounded state space for anything beyond the most trivial model,
and so this can only provide a higher degree of confidence, not absolute certainty

162 Chapter 7 Discussion

cost and expense involved in revising the system design or implementation to integrate

the results of the analysis in the form of critical requirements, as the critical require-

ments will essentially have been ‘vetted’ by integrated into the formal method prior to

design modifications taking place.

7.3.3 Limitations

The primary limitations of the Event-B formal method are common to a number of

formal method techniques, but bear repeating for the purpose of this thesis.

7.3.3.1 Expertise in formal methods

The use of the formal method technique as a core aspect of the analysis relies on there

being expertise within the analysis team in the use of formal methods techniques, and

specifically one who understands the syntax and structure of Event-B formal models, as

well as the associated tools. A lack of this expertise may result in incomplete or poorly

defined formal models, which do not serve as a strong basis for validating the correctness

of critical requirements. However, in the worst-case scenario where the formal method

is discarded and the formal method is not utilised during analysis, the resulting analysis

is no worse than a standard, baseline application of STPA to the system in terms of

validating the correctness of critical requirements.

7.3.3.2 Representing complex critical requirements

The representation of particularly advanced critical requirements may be challenging

within the Event-B formal method environment. As the system design becomes more

concrete and specific, security critical requirements may hinge on the correct use of

asymmentric encryption as an example, or by a determinism that is difficult to model

within Event-B. Once again however, dispensing with the formal method results in a

similar situation to baseline STPA application in terms of a lack of formal validation of

critical requirements. Furthermore, the Rodin tool for Event-B has a number of plugins

- such as the theory plug-in [24], the decomposition plug-in [130] and the qualitative

probability plug-in [57] - which may enable these concepts to be modelled sufficiently.

7.3.4 Summary

The major contributions presented in this section demonstrate that there is significant

value in the use of the Event-B formal method for validating the critical requirements

generated by other steps of the methodology. Event-B and the associated tooling enables

Chapter 7 Discussion 163

a degree of thoughtfulness and analysis that would not otherwise be possible if the critical

requirements were immediately integrated into the system design. While the Event-B

approach and associated tooling have some limitations relevant to this thesis, it is still

a significant improvement above the baseline STPA technique. The use of a formal

method to support a co-analysis approach in this way is also a novel contribution of

this thesis as prior attempts in the literature have not used the formal method in such

a heavily-integrated way. The research question can therefore be considered to

be met.

7.4 Discussion of Research Question 3

Can the methodology demonstrate its utility through application to case stud-

ies of differing sizes and complexity, ideally utilising case studies involving

cyber-physical systems in multiple domains?

7.4.1 Context and approach

The approach to this research question was to apply the methodology at varying points

of its development to case studies which were sourced from public information or the

existing literature. These were selected from two separate domains to ensure the method-

ology was broadly applicable to all cyber-physical systems, and not just those belonging

to a single domain.

The intent of applying the methodology to case studies was to undertake a ‘lessons

learned’ review at the end of each case study, and to use the results to inform improve-

ments to the methodology.

7.4.2 Contribution

The two case studies selected were as follows:

1. A case study based on a simplified smart meter system, as detailed in Chapter 5.

2. A case study based on system comprising of a number of unmanned aerial vehicles

(multi-UAV), as detailed in Chapter 6.

As each of these case studies were undertaken at different maturities of SE-STPA , their

contributions are broken down in the following sections.

164 Chapter 7 Discussion

7.4.2.1 Smart meter case study

This case study was based around a simplified version of a smart metering system for

electricity, based on a proposed national architecture for smart metering technologies.

It was therefore ‘synthetic’ as it was generated from a number of public information

sources and was felt to have been the appropriate size and scale in applying the second

version of SE-STPA .

This case study involved the application of the second version of the methodology and so

was primarily beneficial in developing the methodology into the third version described

in Chapter 4. This case study revealed some flaws with the second iteration of the

methodology which drove the following improvements4:

• Security analysis was made more prominent and the adversary modelling step was

added, which represents an explicit security assurance case for a number of relevant

threat actors.

• Critical requirements are primarily captured in two steps, Control Action Analysis

and Adversary Modelling, and then are integrated into the formal model rather

than being done in an ad-hoc or unstructured manner.

• The methodology was better defined and so was clearer and easier to apply to case

studies.

The primary contribution of this case study was therefore in providing structural im-

provements in how SE-STPA is undertaken as well as providing an opportunity for the

first medium-scale application of the methodology. A secondary contribution was that it

also served to highlight that the core concept of the methodology, including the formal

method, was sound as there were no fundamental issues in applying it to the smart

meter case study. It was therefore decided that a more substantial case study could be

utilised once the methodology had been iterated on.

7.4.2.2 Multi-UAV case study

This case study served as a more substantial test of the methodology. It was based on

an existing multi-UAV system as described in [19] and therefore involved a number of

entities which were cyber-physical in nature. There was also a deeper complexity to

each of the entities, as they maintained distinct process models and information of their

own.

4Further detail on the identified issues and resulting improvements can be found in Section 5.4

Chapter 7 Discussion 165

The primary contribution of this case study was to provide a significant test of the

methodology in its third version. This involved the following novel aspects compared to

prior case studies:

1. The first extensive use of the adversarial modelling concept and analysis step. This

had been used in an ad-hoc manner with some small, informal case studies but

had not been used as part of the integrated methodology until this case study.

2. The use of the formal method in a more disciplined, structured way. This involved

the creation of an Event-B model that completely represented the defined func-

tionality of the system prior to the safety & security analysis occurring, whereas

previous attempts had used the formal method in a less prescriptive manner.

3. The approach of undertaking the bulk of the analysis and generating the critical

requirements, before seeking to integrate all generated critical requirements into

the formal model, ensured that the bulk of critical requirements (exempting those

from causal factors) would be validated in the formal model before the system

design was iterated.

4. The size of the case study was more substantial in terms of entities and analysis

required than the preceding one, and so involved a more thorough application of

the methodology than had previously been achieved.

The multi-UAV case study served as a useful validation step in the development of the

methodology, and ensured that the current version of the methodology was sound for

future case studies or other validation activities.

7.4.3 Limitations

A limitation of the case studies is that only two were achieved during the course of

the thesis. This was primarily driven by the lack of public information regarding the

detailed behaviours of cyber-physical systems in key domains and so the construction

of case studies was laborious; often it was not possible to develop a case study of the

appropriate scope and size to serve as a suitable test of the methodology and its ap-

proach. Nonetheless, the two case studies undertaken in validating the methodology

were effective in proving the core concept of the methodology, and provided an oppor-

tunity to iteratively improve the methodology both conceptually and in terms of the

precise steps of analysis that were performed. Furthermore, the first case study enabled

the author to identify that a much more substantial and detailed approach to security

analysis was required, and this drove the improvement of the third version of SE-STPA

which resulted in security having a significant role in the overall analysis.

166 Chapter 7 Discussion

A secondary limitation is that the use of only two case studies from the infrastructure

and transport domains may have cyber-physical challenges that are similar, while the

selection of a third case study from another domain using cyber-physical systems (e.g.

maritime) may have provided a number of additional challenges not present in either case

study. This is a driver for future work to contain further validation activities, including

case studies from other industries, and is an unavoidable limitation at this stage. Work

by Omitola et al. [105] may represent an opportunity for future collaboration in applying

SE-STPA to cyber-physical systems in the marine domain.

7.4.4 Summary

In summary, the methodology was applied in two case studies involving cyber-physical

systems in two separate domains. The application of these case studies enabled the

core concept of the analysis to be validated, and provided an opportunity to increase

the scale of the analysis as the methodology matured. While further case studies would

have likely benefited in refining the methodology further, the research question can

be considered to have been met as SE-STPA has been applied to two case studies

and demonstrated utility in both.

7.5 Additional academic review of the methodology

A further activity during the construction and improvement of the methodology was

the authoring of two papers; one for a conference workshop, later published in its pro-

ceedings, and one in a peer-reviewed journal. This activity sought to ensure that the

methodology had been through some degree of academic peer review as part of its de-

velopment.

The first paper involved a presentation of the methodology, against a low-complexity

example, at the 2017 IEEE European Symposium on Security and Privacy Workshops

(EuroS&PW); the specific workshop was the 2nd International Workshop on Safety &

Security aSSurance for Critical Infrastructures Protection [62]. This paper represented

the second version of SE-STPA and therefore had not benefited from the lessons learned

from the smart meter case study.

The second paper was published in the International Journal of Critical Computer-Based

Systems [61] and represented a methodology that was broadly equivalent to the third

version of SE-STPA . This paper presented the adversarial modelling concept for the

first time, as well as applying this against the smart meter case study. The peer review

process for this paper informed a number of smaller changes to the methodology, which

are embodied in the version of SE-STPA presented in Chapter 4.

Chapter 8

Conclusion

This thesis proposes a theoretical model in the form of STAAMP and associated analysis

methodology in the form of SE-STPA for undertaking security and safety co-analysis. It

does this by building on Leveson’s work in STPA and STAMP to create a methodology

which treats security and safety as first-class citizens of the analysis. Additionally,

robustness is provided through the use of the Event-B formal method, which has been

integrated to distinct steps of the analysis to ensure that all mitigations produced to

address hazards are validated in the formal model before they are integrated into the

design.

This analysis methodology has been validated through application to two case studies

involving cyber-physical systems from different domains, and has demonstrated itself

as being adept and thorough in its ability to identify both security and safety hazards

and propose mitigations which have been formally validated. The thesis has therefore

addressed the three research questions as detailed in Chapter 7.

8.1 Contributions

The contributions of this thesis can be summarised as follows:

1. A theoretical model, STAAMP, which provides a conceptual framework for under-

standing the inter-relation of security and safety from a systems-theoretic perspec-

tive. While this is used within this thesis as the basis for the SE-STPA methodol-

ogy, it may also be utilised in understanding security and safety in other contexts,

such as when performing analysis of system failures.

2. An analysis methodology, SE-STPA, which is capable of performing security &

safety analysis jointly on cyber-physical systems in order to provide assurance

that safety and security hazards have been identified, mitigated in the form of

167

168 Chapter 8 Conclusion

critical requirements, and the underlying design corrected for these systems. The

use of a formal model throughout this process also provides a higher degree of

assurance that critical requirements do indeed mitigate the hazards they seek to

address.

3. Two case studies which may be useful for testing other co-analysis methodologies

in a cyber-physical systems context; one of low complexity and one of medium

complexity.

4. A literature review, covering a number of existent techniques in both security anal-

ysis, safety analysis and co-analysis. Furthermore, the literature review contains

a high-level review of formal method techniques as applied to the safety, security

and co-analysis domains. This survey can be utilised as a starting point for other

cyber-physical researchers with an interest in these topics.

5. An exploration of the STPA family of methodologies as well as perceived short-

comings in terms of general shortcomings and those specific to the security domain.

8.2 Future work

A number of avenues of future work can be foreseen in terms of both iterative improve-

ments to the methodology and additional steps which could be utilised in pursuit of

validating the methodology further.

8.2.1 Iterative improvements to the methodology

Modelling of trust between entities As previously explored in Section 6.3, the

current methodology does not model trust in a significant way, although this is often an

aspect of system design when considering cyber-physical systems. Both safety and secu-

rity can result in varying degrees of trust of components involved in the cyber-physical

system; an example of this from a safety perspective would be voting between sensor

channels to ensure there is tolerance in the event of a single sensor failure, while a se-

curity example of trust behaviours would be treating all data from a physically-remote

system which may be tampered with as suspect and subject to further analysis/valida-

tion before accepting the value. A future version of SE-STPA could incorporate a trust

model as part of the analysis, which may aid the process of carrying out co-analysis.

Improvements in formal traceability In order to utilise the methodology in highly

regulated domains, it is important that the methodology generates uniquely identified

artefacts which can form part of a traceability chain. This would permit the artefacts

of the analysis to be utilised in assurance cases and other activities as required in these

Chapter 8 Conclusion 169

domains. The process for improving this would require the generation of standard

templates for carrying out the analysis, as well as explicitly requiring each step of the

analysis to map artefacts it generates to those generated in prior stages of the analysis.

Tool support The current methodology utilises Rodin as the tool support for the use

of the formal method, but does not use any other tools that are specific to the method-

ology. A number of tools exist for performing STPA analysis or managing artefacts

generated as part of the analysis [1, 141] and so future work could explore the creation

of tools to streamline the use of SE-STPA . As Rodin is built on the extensible Eclipse

framework [2], this may be an avenue of exploration.

8.2.2 Additional validation steps

Workshop with experienced practitioners Validation of the methodology would

significantly benefit from a workshop with domain experts on security & safety of cyber-

physical systems, where the methodology is applied to a smaller-scale case study, and

feedback from the attendees on the strengths and weaknesses of the methodology from

their experience. Such a validation activity would require identification of a suitable

group of domain experts, as well as an appropriate case study, as well as ethical approval

due to human involvement. Nonetheless, this would be a useful next step in gaining

further feedback on the methodology and iterating on it further.

Industrial case studies A further useful validation activity would be to take SE-

STPA and apply it to a cyber-physical system in an industrial context. This would

involve working with local subject matter experts and would provide a degree of ‘real

world’ validation that many of the techniques in Chapter 2 have benefited from.

Another example of an industrial case study approach which would further validate and

provide improvement to SE-STPA would be through comparison of the existing two

case studies provided in Chapter 6 and Chapter 5 to other analyses undertaken against

this class of cyber-physical system. For the smart meter case study given in Chapter 5,

it could be compared with work undertaken by the National Cyber Security Centre in

assessing the national smart meter infrastructure [93] and the results used to inform

improvements in SE-STPA.

Direct comparison with other co-analysis methodologies A final useful avenue

would be to undertake a SE-STPA analysis of a system or case study for which another

co-analysis technique had been applied. This analysis would be applied ‘blind’, with no

knowledge of the results from the other co-analysis methodology, and then the results

compared to determine the comparative coverage of SE-STPA.

170 Chapter 8 Conclusion

Comparison of adversary modelling to existing security best practice frame-

works A further validation activity would involve the comparison of adversary mod-

elling aspect of SE-STPAspecifically to existing security best practice frameworks for

cyber-physical systems and/or Internet of Things (IoT) devices. This work would draw

upon existing frameworks such of that proposed by the Internet of Things Security Foun-

dation (IoTSF) [64] and/or the European Union Agency for Cybersecurity (ENISA) [48]

and would provide a demonstration of how effective the adversary modelling concept is

in drawing out similar issues and mitigations when compared to these frameworks.

Appendix A

Smart meter case study - initial

formal model - machine & context

CONTEXT SmartMeterContext

SETS

METERS

BILLS

READINGS

END

171

An Event-B Specification of SmartMeterMachine

MACHINE SmartMeterMachine

SEES SmartMeterContext

VARIABLES

RegisteredMeters

RetiredMeters

MeterReading

BillGenerated

BillPaid

CurrentWeek

AllBills

MeterBill

ReadingValue

ReadingReported

AllReadings

MeterDisconnectState

MeterRegisteredDate

INVARIANTS

RegisteredMeterTypeInvariant: RegisteredMeters ⊆ METERS

RetiredMeterTypeInvariant: RetiredMeters ⊆ METERS

MeterReadingTypeInvariant: MeterReading ∈ METERS ↔READINGS

AllBillsTypeInvariant: AllBills ⊆ BILLS

BillGeneratedTypeInvariant: BillGenerated ∈ AllBills ↦→ N

BillPaidTypeInvariant: BillPaid ∈ BILLS ↔BOOL

CurrentWeekTypeInvariant: CurrentWeek ∈ N

MeterBillTypeInvariant: MeterBill ∈ RegisteredMeters∪RetiredMeters↔→AllBills

AllReadingsTypeInvariant: AllReadings ⊆ READINGS

ReadingValueTypeInvariant: ReadingV alue ∈ AllReadings↔ N

ReadingReportedTypeInvariant: ReadingReported ∈ AllReadings↔ N

MeterDisconnectStateTypeInvariant: MeterDisconnectState ∈ METERS ↦→BOOL

MeterRegisteredDateTypeInvariant: MeterRegisteredDate ∈ RegisteredMeters ↦→
N

EVENTS

Initialisation

begin

AllBillsInit: AllBills := ∅
RegisteredMeterInit: RegisteredMeters := ∅

An Event-B Specification of SmartMeterMachine

RetiredMetersInit: RetiredMeters := ∅
MeterReadingsInit: MeterReading := ∅
CurrentWeekInit: CurrentWeek := 0

BillGeneratedInit: BillGenerated := ∅
BillPaidInit: BillPaid := ∅
AllReadingsInit: AllReadings := ∅
MeterDisconnectStateInit: MeterDisconnectState := ∅
ReadingValueInit: ReadingV alue := ∅
ReadingReportedInit: ReadingReported := ∅
MeterBillInit: MeterBill := ∅
MeterRegisteredDateInit: MeterRegisteredDate := ∅

end

Event RegisterMeter ⟨ordinary⟩ =̂

any

meter

where

meterTypeGuard: meter ∈ METERS

then

RegisterMeterAction: RegisteredMeters := RegisteredMeters ∪ {meter}
MeterSetRegistrationDateAction: MeterRegisteredDate(meter) := CurrentWeek

MeterDisconnectedInit: MeterDisconnectState(meter) := FALSE

end

Event RetireMeter ⟨ordinary⟩ =̂

any

meter

where

meterTypeGuard: meter ∈ RegisteredMeters

then

RetireMeterAction: RetiredMeters := RetiredMeters ∪ {meter}
RemoveRegisteredMeter: RegisteredMeters := RegisteredMeters \ {meter}
RemoveMeterRegDate: MeterRegisteredDate := {meter}◁−MeterRegisteredDate

RemoveDisconnectState: MeterDisconnectState := {meter}◁−MeterDisconnectState

end

Event GenerateBill ⟨ordinary⟩ =̂

any

meter

bill

where

An Event-B Specification of SmartMeterMachine

meterTypeGuard: meter ∈ RegisteredMeters

billTypeGuard: bill ∈ BILLS

currentWeekType: CurrentWeek ∈ N
then

AddBillAction: AllBills := AllBills ∪ {bill}
MarkGeneratedBillAction: BillGenerated(bill) := CurrentWeek

MarkBillUnpaidAction: BillPaid(bill) := FALSE

MeterBillAssign: MeterBill := MeterBill ∪ {meter ↦→ bill}
end

Event PayBill ⟨ordinary⟩ =̂

any

meter

bill

where

meterTypeGuard: meter ∈ RegisteredMeters

billTypeGuard: bill ∈ AllBills

then

setBillPaidAction: BillPaid(bill) := TRUE

end

Event AddMeterReading ⟨ordinary⟩ =̂

any

meter

reading

readingValue

where

meterTypeGuard: meter ∈ RegisteredMeters

readingTypeGuard: reading ∈ READINGS

currentWeekType: CurrentWeek ∈ N
readingValueType: readingV alue ∈ N

then

AllReadingsAddAction: AllReadings := AllReadings ∪ {reading}
AddMeterReadingAction: MeterReading := MeterReading∪{meter ↦→ reading}

ReadingValueAction: ReadingV alue(reading) := readingV alue

ReadingReportedAction: ReadingReported(reading) := CurrentWeek

end

Event AdvanceTime ⟨ordinary⟩ =̂

begin

CurrentWeekAdvance: CurrentWeek := CurrentWeek + 1

end

Event DisconnectMeter ⟨ordinary⟩ =̂

An Event-B Specification of SmartMeterMachine

any

meter

where

meterTypeGuard: meter ∈ RegisteredMeters∧meter ∈ dom(MeterRegisteredDate)

disconnectCriteria: (∀x, y, z ·x = MeterBill[{meter}]∧y = (x◁BillGenerated)▷−
{item|item ∈ CurrentWeek − 999 .. CurrentWeek − 8} ∧ z = (dom(y) ◁

BillPaid)⇒(FALSE ∈ ran(z))∧(MeterRegisteredDate(meter)+12 ≤ CurrentWeek))

∨(∀x, y ·x = MeterReading[{meter}]∧y = (x◁ReadingReported)▷−{item|item ∈
CurrentWeek − 4 .. CurrentWeek − 1}
⇒ y = ∅ ∧MeterRegisteredDate(meter) + 12 ≤ CurrentWeek)

then

DisconnectMeterAction: MeterDisconnectState(meter) := TRUE

end

END

Appendix B

Smart meter case study - final

formal model - machine & context

CONTEXT SmartMeterContextFull

EXTENDS SmartMeterContext

SETS

TOKENS Added to address CR.5.

END

177

An Event-B Specification of SmartMeterMachineRefinement

MACHINE SmartMeterMachineRefinement

REFINES SmartMeterMachine

SEES SmartMeterContextFull

VARIABLES

RegisteredMeters

RetiredMeters

MeterReading

BillGenerated

BillPaid

CurrentWeek

AllBills

MeterBill

ReadingValue

ReadingReported

AllReadings

MeterDisconnectState

MeterRegisteredDate

AllTokens CR5

RegisteredTokens CR5

INVARIANTS

AllTokensTypeInvariant: AllTokens ⊆ TOKENS

CR5

RegisteredTokensTypeInvariant: RegisteredTokens ∈ RegisteredMeters↣AllTokens

CR5

MetersRetireOverlapInvariant: RegisteredMeters ∩ RetiredMeters = ∅
CR1

EVENTS

Initialisation ⟨extended⟩

begin

AllBillsInit: AllBills := ∅
RegisteredMeterInit: RegisteredMeters := ∅
RetiredMetersInit: RetiredMeters := ∅
MeterReadingsInit: MeterReading := ∅
CurrentWeekInit: CurrentWeek := 0

BillGeneratedInit: BillGenerated := ∅
BillPaidInit: BillPaid := ∅
AllReadingsInit: AllReadings := ∅

An Event-B Specification of SmartMeterMachineRefinement

MeterDisconnectStateInit: MeterDisconnectState := ∅
ReadingValueInit: ReadingV alue := ∅
ReadingReportedInit: ReadingReported := ∅
MeterBillInit: MeterBill := ∅
MeterRegisteredDateInit: MeterRegisteredDate := ∅
AllTokensInit: AllTokens := ∅
RegisteredTokensInit: RegisteredTokens := ∅

end

Event RegisterMeter ⟨ordinary⟩ =̂

extends RegisterMeter

any

meter

token

where

meterTypeGuard: meter ∈ METERS

NotAlreadyRetiredGuard: meter /∈ RetiredMeters

CR1

tokenTypeGuard: token ∈ TOKENS

CR5

NotAlreadyRegisteredGuard: meter /∈ RegisteredMeters

CR2

tokenUniquenessUnassignedGuard: token /∈ ran(RegisteredTokens)

CR5

tokenUniquenessAbsentGuard: token /∈ AllTokens

CR5

then

RegisterMeterAction: RegisteredMeters := RegisteredMeters ∪ {meter}
MeterSetRegistrationDateAction: MeterRegisteredDate(meter) := CurrentWeek

MeterDisconnectedInit: MeterDisconnectState(meter) := FALSE

tokenAssignAction: RegisteredTokens(meter) := token

CR5

tokenAddAction: AllTokens := AllTokens ∪ {token}
CR5

end

Event RetireMeter ⟨ordinary⟩ =̂

extends RetireMeter

any

meter

where

meterTypeGuard: meter ∈ RegisteredMeters

An Event-B Specification of SmartMeterMachineRefinement

RetireMeterMayNotHaveBillGuard: ∀x, y ·x = MeterBill[{meter}] ∧ y = x ◁

BillPaid⇒ FALSE /∈ ran(y)

CR3

then

RetireMeterAction: RetiredMeters := RetiredMeters ∪ {meter}
RemoveRegisteredMeter: RegisteredMeters := RegisteredMeters \ {meter}
RemoveMeterRegDate: MeterRegisteredDate := {meter}◁−MeterRegisteredDate

RemoveDisconnectState: MeterDisconnectState := {meter}◁−MeterDisconnectState

removeTokenAction: RegisteredTokens := {meter}◁−RegisteredTokens

CR5

end

Event GenerateBill ⟨ordinary⟩ =̂

extends GenerateBill

any

meter

bill

where

meterTypeGuard: meter ∈ RegisteredMeters

billTypeGuard: bill ∈ BILLS

currentWeekType: CurrentWeek ∈ N
billUniqueGuard: bill /∈ AllBills

CR7

CurrentWeekGuard: CurrentWeekmod4 = 0

CR9

NoDoubleBillGuard:

∀checkBill, temp·checkBill = MeterBill[{meter}] ∧ temp ∈ checkBill⇒
temp ∈ dom(BillGenerated) ∧ CurrentWeek ̸= BillGenerated(temp)

CR9

then

AddBillAction: AllBills := AllBills ∪ {bill}
MarkGeneratedBillAction: BillGenerated(bill) := CurrentWeek

MarkBillUnpaidAction: BillPaid(bill) := FALSE

MeterBillAssign: MeterBill := MeterBill ∪ {meter ↦→ bill}
end

Event PayBill ⟨ordinary⟩ =̂

extends PayBill

any

meter

bill

An Event-B Specification of SmartMeterMachineRefinement

token

where

meterTypeGuard: meter ∈ RegisteredMeters

billTypeGuard: bill ∈ AllBills

tokenTypeGuard: token ∈ TOKENS

CR5

tokenAssignedToMeterGuard: token = RegisteredTokens(meter)

CR5

billAssignedToMeterGuard: bill ∈ ran({meter}◁MeterBill)

CR10

then

setBillPaidAction: BillPaid(bill) := TRUE

end

Event AddMeterReading ⟨ordinary⟩ =̂

extends AddMeterReading

any

meter

reading

readingValue

token

where

meterTypeGuard: meter ∈ RegisteredMeters

readingTypeGuard: reading ∈ READINGS

currentWeekType: CurrentWeek ∈ N
readingValueType: readingV alue ∈ N
readingIncreasesGuard: ∀x, y ·x ∈ MeterReading[{meter}] ∧

y ∈ ReadingV alue[{x}]⇒ readingV alue ≥ y

CR4

tokenTypeGuard: token ∈ TOKENS

CR5

tokenAssignedToMeterGuard: token = RegisteredTokens(meter)

CR5

ReadingUniquenessCheck: reading /∈ AllReadings

CR4/improvement in the spirit of ensuring Readings advance

then

AllReadingsAddAction: AllReadings := AllReadings ∪ {reading}
AddMeterReadingAction: MeterReading := MeterReading∪{meter ↦→ reading}

ReadingValueAction: ReadingV alue(reading) := readingV alue

ReadingReportedAction: ReadingReported(reading) := CurrentWeek

end

An Event-B Specification of SmartMeterMachineRefinement

Event AdvanceTime ⟨ordinary⟩ =̂

extends AdvanceTime

when

billsGeneratedHoldGuard:

(∀meter, bill·meter ∈ RegisteredMeters ∧ bill = MeterBill[{meter}]
⇒ (BillGenerated ̸= ∅ ∧ (∃bill2·bill2 ∈ dom(BillGenerated) ∧ bill2 ∈ bill ∧
BillGenerated(bill2) = CurrentWeek))∨(CurrentWeekmod4 ̸= 0))∨(CurrentWeek =

0)

CR8

noAdvanceHoldGuard:

(∀meter, x, y, z ·meter ∈ RegisteredMeters∧meter ∈ dom(MeterDisconnectState)∧
meter ∈ dom(MeterRegisteredDate) ∧ x = MeterBill[{meter}] ∧ y = (x ◁

BillGenerated)▷−{item|item ∈ CurrentWeek−999 ..CurrentWeek−8}∧z =

(dom(y)◁BillPaid)⇒ (FALSE ∈ ran(z)∧ ((MeterRegisteredDate(meter)+

12 ≥ CurrentWeek)∨MeterDisconnectState(meter) = TRUE))∨(FALSE /∈
ran(z)))∨(∀meter, x, y ·meter ∈ RegisteredMeters∧meter ∈ dom(MeterDisconnectState)

∧ meter ∈ dom(MeterRegisteredDate) ∧ x = MeterReading[{meter}] ∧ y =

(x◁ReadingReported)▷−{item|item ∈ CurrentWeek−4..CurrentWeek−1}⇒
(y = ∅∧(MeterRegisteredDate(meter)+12 ≥ CurrentWeek∨MeterDisconnectState(meter) =

TRUE)) ∨ (y ̸= ∅))

CR12, CR6

then

CurrentWeekAdvance: CurrentWeek := CurrentWeek + 1

end

Event DisconnectMeter ⟨ordinary⟩ =̂

extends DisconnectMeter

any

meter

where

meterTypeGuard: meter ∈ RegisteredMeters∧meter ∈ dom(MeterRegisteredDate)

disconnectCriteria: (∀x, y, z ·x = MeterBill[{meter}]∧y = (x◁BillGenerated)▷−
{item|item ∈ CurrentWeek − 999 .. CurrentWeek − 8} ∧ z = (dom(y) ◁

BillPaid)⇒(FALSE ∈ ran(z))∧(MeterRegisteredDate(meter)+12 ≤ CurrentWeek))∨
(∀x, y ·x = MeterReading[{meter}]∧y = (x◁ReadingReported)▷−{item|item ∈
CurrentWeek−4..CurrentWeek−1}⇒y = ∅∧MeterRegisteredDate(meter)+

12 ≤ CurrentWeek)

meterNotAlreadyDisconnected: meter ∈ dom(MeterDisconnectState)

∧MeterDisconnectState(meter) ̸= TRUE

then

An Event-B Specification of SmartMeterMachineRefinement

DisconnectMeterAction: MeterDisconnectState(meter) := TRUE

end

END

Appendix C

Drone case study - initial formal

model - machine & context

CONTEXT DroneContextInitial

SETS

LOCATIONS

DRONES

POINTS

VALIDATIONSTATE

CONSTANTS

VALID

INVALID

UNDETERMINED

HOME

AXIOMS

ValidationStatePartitionAxm: partition(V ALIDATIONSTATE, {V ALID},
{INV ALID}, {UNDETERMINED})

HomeLocationAxm: HOME ∈ LOCATIONS

END

185

An Event-B Specification of DroneMachineInitial

MACHINE DroneMachineInitial

SEES DroneContextInitial

VARIABLES

RegisteredAircraft

RestrictedLocations

Plans

Commands

AircraftLocations

AircraftRoutes

PlanValidationState

CommandValidationState

CancelledCommands

INVARIANTS

TypeRegisteredAircraft: RegisteredAircraft ⊆ DRONES

TypeRestrictedLocations: RestrictedLocations ⊆ LOCATIONS

TypePlans: Plans ⊆ P (LOCATIONS)

TypeCommands: Commands ⊆ P (LOCATIONS)

TypeAircraftLocations: AircraftLocations ∈ RegisteredAircraft ↦→LOCATIONS

TypeAircraftRoutes: AircraftRoutes ∈ RegisteredAircraft ↦→(Commands∪{{HOME}}∪
{∅})

TypePlanValidationState: PlanV alidationState ∈ Plans ↦→V ALIDATIONSTATE

TypeCommandValidationState: CommandV alidationState ∈ Commands ↦→V ALIDATIONSTATE

AircraftRoutesDomainInv: dom(AircraftLocations) = RegisteredAircraft

AircraftRoutesRangeInv: ran(AircraftLocations) ⊆ LOCATIONS

CancelledCommandsType: CancelledCommands ⊆ P (LOCATIONS)

EVENTS

Initialisation

begin

InitRegisteredAircraft: RegisteredAircraft := ∅
InitRestrictedLocations: RestrictedLocations := ∅
InitPlans: Plans := {{HOME},∅}

Home is always a valid plan.

InitCommands: Commands := {{HOME},∅}
Home is always a valid command.

InitAircraftLocations: AircraftLocations := ∅
InitAircraftRoutes: AircraftRoutes := ∅

An Event-B Specification of DroneMachineInitial

InitCommandValidationState: CommandV alidationState := {{HOME} ↦→ V ALID,

∅ ↦→ V ALID}
InitPlanValidationState: PlanV alidationState := {{HOME} ↦→ V ALID,∅ ↦→

V ALID}
InitCancelledCommands: CancelledCommands := ∅

end

Event RegisterAircraft ⟨ordinary⟩ =̂

any

aircraft

where

aircraftType: aircraft ∈ DRONES

aircraftNotDuplicate: aircraft /∈ RegisteredAircraft

then

addAircraft: RegisteredAircraft := RegisteredAircraft ∪ {aircraft}
addAircraftLocations: AircraftLocations := AircraftLocations∪{aircraft ↦→

HOME}
addAircraftRoute: AircraftRoutes := AircraftRoutes ∪ {aircraft ↦→ ∅}

end

Event RegisterRestrictedLocation ⟨ordinary⟩ =̂

any

restricted

where

restrictedType: restricted ∈ LOCATIONS

restrictedNotDuplicate: restricted /∈ RestrictedLocations

restrictedNotHome: restricted ̸= HOME

then

addRestricted: RestrictedLocations := RestrictedLocations ∪ {restricted}
invalidExistingCommands:

CommandV alidationState := ({y ·y ∈ dom(CommandV alidationState)∧restricted ∈
y|y}◁− CommandV alidationState) ∪
(λq ·q ∈ dom(CommandV alidationState) ∧ restricted ∈ q ∧
CommandV alidationState(q) ̸= INV ALID|INV ALID)

replaceAffectedAircraft:

AircraftRoutes := (AircraftRoutes▷−{y ·y ∈ ran(AircraftRoutes)∧restricted ∈
y|y}) ∪
(λq ·q ∈ dom(AircraftRoutes)∧q ∈ dom(AircraftLocations)∧AircraftLocations(q) =

HOME ∧ restricted ∈ AircraftRoutes(q)|∅) ∪
(λq ·q ∈ dom(AircraftRoutes)∧q ∈ dom(AircraftLocations)∧AircraftLocations(q) ̸=
HOME ∧ restricted ∈ AircraftRoutes(q)|{HOME})

end

Event TransmitPlan ⟨ordinary⟩ =̂

An Event-B Specification of DroneMachineInitial

any

plan

where

locationsType: plan ∈ P (LOCATIONS)

planNotDuplicate: plan /∈ Plans

then

addPlan: Plans := Plans ∪ {plan}
planValidationState: PlanV alidationState(plan) := UNDETERMINED

Added to discharge TypePlanValidationState invariant, or else it would be un-

provable.

end

Event ValidatePlan ⟨ordinary⟩ =̂

any

plan

where

planType: plan ⊆ LOCATIONS

planRegistered: plan ∈ Plans

planDoesntContainRestricted: ∀x·x ∈ RestrictedLocations⇒ x /∈ plan

then

validateAction: PlanV alidationState(plan) := V ALID

end

Event TransmitCommand ⟨ordinary⟩ =̂

any

command

where

commandType: command ⊆ LOCATIONS

commandNotDuplicate: command /∈ Commands

commandContainsHome: HOME ∈ command

then

addCommand: Commands := Commands ∪ {command}
commandValidationState: CommandV alidationState(command) := UNDETERMINED

end

Event ValidateCommand ⟨ordinary⟩ =̂

any

command

where

commandType: command ⊆ LOCATIONS

commandRegistered: command ∈ Commands

commandDoesntContainRestricted: ∀x·x ∈ RestrictedLocations⇒x /∈ command

An Event-B Specification of DroneMachineInitial

then

commandValidationStateUpdate: CommandV alidationState(command) := V ALID

end

Event TaskAircraft ⟨ordinary⟩ =̂

any

aircraft

command

where

aircraftType: aircraft ∈ RegisteredAircraft

commandType: command ∈ Commands \ {{HOME},∅}
then

taskAircraftGo: AircraftRoutes(aircraft) := command

end

Event RetaskAircraft ⟨ordinary⟩ =̂

any

command

aircraft

where

commandType: command ∈ Commands

aircraftType: aircraft ∈ RegisteredAircraft

then

retaskAircraftGo: AircraftRoutes(aircraft) := command

end

Event RecallAircraft ⟨ordinary⟩ =̂

any

aircraft

where

aircraftType: aircraft ∈ RegisteredAircraft

aircraftTypeHard: aircraft ∈ DRONES

aircraftLocationCheck: AircraftLocations(aircraft) ̸= HOME

then

aircraftRouteChange: AircraftRoutes(aircraft) := {HOME}
end

Event CancelCommand ⟨ordinary⟩ =̂

any

command

where

commandType: command ∈ Commands \ {{HOME},∅}
then

removeCommands: Commands := Commands \ {command}

An Event-B Specification of DroneMachineInitial

removeCommandValidationState: CommandV alidationState := {command} ◁−
CommandV alidationState

removeAircraftRoutes: AircraftRoutes := (λq ·q ∈ dom(AircraftRoutes) ∧
AircraftRoutes(q) = command|{HOME})

addToCancelled: CancelledCommands := CancelledCommands ∪ {command}
end

Event ReportLocation ⟨ordinary⟩ =̂

any

aircraft

newlocation

where

aircraftType: aircraft ∈ RegisteredAircraft

newlocationType: newlocation ∈ LOCATIONS

then

updateLocationAction: AircraftLocations(aircraft) := newlocation

end

Event ReportDeviation ⟨ordinary⟩ =̂

any

deviation

aircraft

where

deviationType: deviation ∈ LOCATIONS

aircraftType: aircraft ∈ RegisteredAircraft

then

updateLocationDeviation: AircraftLocations(aircraft) := deviation

end

Event ConfirmReceipt ⟨ordinary⟩ =̂

any

route or update

where

RouteOrUpdateType: route or update ∈ P (LOCATIONS)

RouteOrUpdateBelongs: route or update ∈ Commands

then

skip

end

Event ConfirmCancellation ⟨ordinary⟩ =̂

any

command

result

where

commandType: command ∈ P (LOCATIONS)

An Event-B Specification of DroneMachineInitial

commandInCancelled: command ∈ CancelledCommands

resultsSet: result = TRUE

then

skip

end

Event QueryPlanValidationState ⟨ordinary⟩ =̂

any

plan

result

where

planBelongsToPlans: plan ∈ (Plans \ {∅, {HOME}})
planDomain: plan ∈ dom(PlanV alidationState)

resultsSet: result = PlanV alidationState(plan)

then

skip

end

Event QueryCommandValidationState ⟨ordinary⟩ =̂

any

command

result

where

commandBelongsToCommands: command ∈ (Commands \ {∅, {HOME}})
commandDomain: command ∈ dom(CommandV alidationState)

resultsSet: result = CommandV alidationState(command)

then

skip

end

END

Appendix D

Drone case study - first

refinement of formal model -

machine & context

CONTEXT DroneContext2

EXTENDS DroneContextInitial

END

193

An Event-B Specification of DroneMachine2

MACHINE DroneMachine2

REFINES DroneMachineInitial

SEES DroneContext2

VARIABLES

RegisteredAircraft

RestrictedLocations

Plans

Commands

AircraftLocations

AircraftRoutes

PlanValidationState

CommandValidationState

CancelledCommands

PlanValidationQueue [CR1

CommandValidationQueue [CR3

PlanValidationQueueCount [CR1

CommandValidationQueueCount [CR3

RecentTimestamp

INVARIANTS

PlanValidationQueueType: PlanV alidationQueue ∈ P (LOCATIONS)

↦↣ 0 .. P lanV alidationQueueCount− 1

CommandValidationQueueType: CommandV alidationQueue ∈ P (LOCATIONS) ↦↣
0 .. CommandV alidationQueueCount− 1

PlanValidationQueueCountType: PlanV alidationQueueCount ∈ N

CommandValidationQueueCountType: CommandV alidationQueueCount ∈ N

RecentTimestampType: RecentT imestamp ∈ RegisteredAircraft→ N

EVENTS

Initialisation ⟨extended⟩

begin

InitRegisteredAircraft: RegisteredAircraft := ∅
InitRestrictedLocations: RestrictedLocations := ∅
InitPlans: Plans := {{HOME},∅}

Home is always a valid plan.

InitCommands: Commands := {{HOME},∅}
Home is always a valid command.

InitAircraftLocations: AircraftLocations := ∅
InitAircraftRoutes: AircraftRoutes := ∅
InitCommandValidationState: CommandV alidationState := {{HOME} ↦→ V ALID,

∅ ↦→ V ALID}

An Event-B Specification of DroneMachine2

InitPlanValidationState: PlanV alidationState := {{HOME} ↦→ V ALID,∅ ↦→
V ALID}

InitCancelledCommands: CancelledCommands := ∅
PlanValidationQueueInit: PlanV alidationQueue := ∅
CommandValidationQueueInit: CommandV alidationQueue := ∅
PlanValidationQueueCountInit: PlanV alidationQueueCount := 0

CommandValidationQueueCountInit: CommandV alidationQueueCount := 0

RecentTimestampInit: RecentT imestamp := ∅
end

Event RegisterAircraft ⟨ordinary⟩ =̂

extends RegisterAircraft

any

aircraft

where

aircraftType: aircraft ∈ DRONES

aircraftNotDuplicate: aircraft /∈ RegisteredAircraft

then

addAircraft: RegisteredAircraft := RegisteredAircraft ∪ {aircraft}
addAircraftLocations: AircraftLocations := AircraftLocations∪{aircraft ↦→

HOME}
addAircraftRoute: AircraftRoutes := AircraftRoutes ∪ {aircraft ↦→ ∅}
act1: RecentT imestamp := RecentT imestamp ∪ {aircraft ↦→ 0}

end

Event RegisterRestrictedLocation ⟨ordinary⟩ =̂

extends RegisterRestrictedLocation

any

restricted

where

restrictedType: restricted ∈ LOCATIONS

restrictedNotDuplicate: restricted /∈ RestrictedLocations

restrictedNotHome: restricted ̸= HOME

then

addRestricted: RestrictedLocations := RestrictedLocations ∪ {restricted}
invalidExistingCommands:

CommandV alidationState := ({y ·y ∈ dom(CommandV alidationState)∧restricted ∈
y|y}◁− CommandV alidationState) ∪
(λq ·q ∈ dom(CommandV alidationState) ∧ restricted ∈ q

∧ CommandV alidationState(q) ̸= INV ALID|INV ALID)

replaceAffectedAircraft:

AircraftRoutes := (AircraftRoutes▷−{y ·y ∈ ran(AircraftRoutes)∧restricted ∈
y|y}) ∪

An Event-B Specification of DroneMachine2

(λq ·q ∈ dom(AircraftRoutes)∧q ∈ dom(AircraftLocations)∧AircraftLocations(q) =

HOME ∧ restricted ∈ AircraftRoutes(q)|∅) ∪
(λq ·q ∈ dom(AircraftRoutes)∧q ∈ dom(AircraftLocations)∧AircraftLocations(q) ̸=
HOME ∧ restricted ∈ AircraftRoutes(q)|{HOME})

end

Event TransmitPlan ⟨ordinary⟩ =̂

extends TransmitPlan

any

plan

where

locationsType: plan ∈ P (LOCATIONS)

planNotDuplicate: plan /∈ Plans

planValidationQueueGuard: PlanV alidationQueueCount ∈ N
grd1: plan ∩ RestrictedLocations = ∅

then

addPlan: Plans := Plans ∪ {plan}
planValidationState: PlanV alidationState(plan) := UNDETERMINED

PlanAddQueue: PlanV alidationQueue(plan) := PlanV alidationQueueCount

PlanValidationQueueIncrement: PlanV alidationQueueCount :=

PlanV alidationQueueCount+ 1

end

Event ValidatePlan ⟨ordinary⟩ =̂

extends ValidatePlan

any

plan

where

planType: plan ⊆ LOCATIONS

planRegistered: plan ∈ Plans

planDoesntContainRestricted: ∀x·x ∈ RestrictedLocations⇒ x /∈ plan

grd1: dom({plan}◁− PlanV alidationQueue) ⊆ P (LOCATIONS)

grd2: 0 ∈ ran(PlanV alidationQueue)

grd3: PlanV alidationQueue−1(0) = plan

then

validateAction: PlanV alidationState(plan) := V ALID

act1: PlanV alidationQueue := (λq ·q ∈ dom({plan} ◁− PlanV alidationQueue) ∧
q ∈ P (LOCATIONS) ∧ PlanV alidationQueue(q) ∈ 0 ..

P lanV alidationQueueCount|PlanV alidationQueue(q)− 1)

act2: PlanV alidationQueueCount := PlanV alidationQueueCount− 1

end

Event TransmitCommand ⟨ordinary⟩ =̂

extends TransmitCommand

An Event-B Specification of DroneMachine2

any

command

where

commandType: command ⊆ LOCATIONS

commandNotDuplicate: command /∈ Commands

commandContainsHome: HOME ∈ command

grd1: CommandV alidationQueueCount ∈ N
grd2: command ∩ RestrictedLocations = ∅

then

addCommand: Commands := Commands ∪ {command}
commandValidationState: CommandV alidationState(command) :=

UNDETERMINED

act1: CommandV alidationQueue(command) := CommandV alidationQueueCount

act2: CommandV alidationQueueCount := CommandV alidationQueueCount +

1

end

Event ValidateCommand ⟨ordinary⟩ =̂

extends ValidateCommand

any

command

where

commandType: command ⊆ LOCATIONS

commandRegistered: command ∈ Commands

commandDoesntContainRestricted: ∀x·x ∈ RestrictedLocations⇒x /∈ command

grd1: dom({command}◁− CommandV alidationQueue) ⊆ P (LOCATIONS)

grd2: 0 ∈ ran(CommandV alidationQueue)

grd3: CommandV alidationQueue−1(0) = command

then

commandValidationStateUpdate: CommandV alidationState(command) := V ALID

act1: CommandV alidationQueue := (λq ·q ∈ dom({command}
◁− CommandV alidationQueue)

∧ q ∈ P (LOCATIONS)|CommandV alidationQueue(q)− 1)

act2: CommandV alidationQueueCount :=

CommandV alidationQueueCount− 1

end

Event TaskAircraft ⟨ordinary⟩ =̂

extends TaskAircraft

any

An Event-B Specification of DroneMachine2

aircraft

command

where

aircraftType: aircraft ∈ RegisteredAircraft

commandType: command ∈ Commands \ {{HOME},∅}
then

taskAircraftGo: AircraftRoutes(aircraft) := command

end

Event RetaskAircraft ⟨ordinary⟩ =̂

extends RetaskAircraft

any

command

aircraft

where

commandType: command ∈ Commands

aircraftType: aircraft ∈ RegisteredAircraft

then

retaskAircraftGo: AircraftRoutes(aircraft) := command

end

Event RecallAircraft ⟨ordinary⟩ =̂

extends RecallAircraft

any

aircraft

where

aircraftType: aircraft ∈ RegisteredAircraft

aircraftTypeHard: aircraft ∈ DRONES

aircraftLocationCheck: AircraftLocations(aircraft) ̸= HOME

then

aircraftRouteChange: AircraftRoutes(aircraft) := {HOME}
end

Event CancelCommand ⟨ordinary⟩ =̂

extends CancelCommand

any

command

where

commandType: command ∈ Commands \ {{HOME},∅}
then

removeCommands: Commands := Commands \ {command}
removeCommandValidationState: CommandV alidationState := {command} ◁−

CommandV alidationState

An Event-B Specification of DroneMachine2

removeAircraftRoutes: AircraftRoutes := (λq ·q ∈ dom(AircraftRoutes) ∧
AircraftRoutes(q) = command|{HOME})

addToCancelled: CancelledCommands := CancelledCommands ∪ {command}
end

Event ReportLocation ⟨ordinary⟩ =̂

extends ReportLocation

any

aircraft

newlocation

timestamp

where

aircraftType: aircraft ∈ RegisteredAircraft

newlocationType: newlocation ∈ LOCATIONS

grd1: timestamp ∈ N ∧ aircraft ∈ dom(RecentT imestamp) ∧
RecentT imestamp(aircraft) < timestamp

then

updateLocationAction: AircraftLocations(aircraft) := newlocation

RecentTimestampUpdate: RecentT imestamp(aircraft) := timestamp

end

Event ReportDeviation ⟨ordinary⟩ =̂

extends ReportDeviation

any

deviation

aircraft

timestamp

where

deviationType: deviation ∈ LOCATIONS

aircraftType: aircraft ∈ RegisteredAircraft

timestampGuard: timestamp ∈ N ∧ aircraft ∈ dom(RecentT imestamp) ∧
RecentT imestamp(aircraft) < timestamp

then

updateLocationDeviation: AircraftLocations(aircraft) := deviation

RecentTimestampUpdate: RecentT imestamp(aircraft) := timestamp

end

Event ConfirmReceipt ⟨ordinary⟩ =̂

extends ConfirmReceipt

any

route or update

where

RouteOrUpdateType: route or update ∈ P (LOCATIONS)

An Event-B Specification of DroneMachine2

RouteOrUpdateBelongs: route or update ∈ Commands

then

skip

end

Event ConfirmCancellation ⟨ordinary⟩ =̂

extends ConfirmCancellation

any

command

result

where

commandType: command ∈ P (LOCATIONS)

commandInCancelled: command ∈ CancelledCommands

resultsSet: result = TRUE

then

skip

end

Event QueryPlanValidationState ⟨ordinary⟩ =̂

extends QueryPlanValidationState

any

plan

result

where

planBelongsToPlans: plan ∈ (Plans \ {∅, {HOME}})
planDomain: plan ∈ dom(PlanV alidationState)

resultsSet: result = PlanV alidationState(plan)

then

skip

end

Event QueryCommandValidationState ⟨ordinary⟩ =̂

extends QueryCommandValidationState

any

command

result

where

commandBelongsToCommands: command ∈ (Commands \ {∅, {HOME}})
commandDomain: command ∈ dom(CommandV alidationState)

resultsSet: result = CommandV alidationState(command)

then

skip

end

END

Appendix E

Drone case study - second

refinement of formal model -

machine & context

CONTEXT DroneContext3

EXTENDS DroneContext2

SETS

COMMANDSTATE

ROUTEIDENTIFIERS

CONSTANTS

UNASSIGNED

ASSIGNED

COMPLETE

SPECIAL

CONFIRMED

NO ROUTE

HOME ONLY ROUTE

AXIOMS

commandstatepartitionaxm: partition(COMMANDSTATE, {UNASSIGNED},
{ASSIGNED}, {CONFIRMED}, {COMPLETE}, {SPECIAL})

norouteaxm: {NO ROUTE,HOME ONLY ROUTE} ⊆ ROUTEIDENTIFIERS

axm1: NO ROUTE ̸= HOME ONLY ROUTE

END

201

An Event-B Specification of DroneMachine3

MACHINE DroneMachine3

REFINES DroneMachine2

SEES DroneContext3

VARIABLES

RegisteredAircraft

RestrictedLocations

Plans

Commands

AircraftLocations

AircraftRoutes

PlanValidationState

CommandValidationState

CancelledCommands

PlanValidationQueue [CR1

CommandValidationQueue [CR3

PlanValidationQueueCount [CR1

CommandValidationQueueCount [CR3

RecentTimestamp

CommandStatus [CR4, CR5

AircraftLocationHistory

RouteIDs

AircraftRouteIDs

AircraftRouteTasks

CurrentIdentifiers

INVARIANTS

CommandStatusType: CommandStatus ∈ Commands→ COMMANDSTATE

AircraftLocationHistoryType: AircraftLocationHistory ∈ RegisteredAircraft→
P (LOCATIONS)

CurrentIdentifiersType: CurrentIdentifiers ⊆ ROUTEIDENTIFIERS

RouteIdentifierType: RouteIDs ∈ Commands→ CurrentIdentifiers

AircraftRouteIDsType: AircraftRouteIDs ∈ RegisteredAircraft→CurrentIdentifiers

AircraftRouteTasksType: AircraftRouteTasks ∈ CurrentIdentifiers ↦→P (LOCATIONS)

EVENTS

Initialisation ⟨extended⟩

begin

InitRegisteredAircraft: RegisteredAircraft := ∅

An Event-B Specification of DroneMachine3

InitRestrictedLocations: RestrictedLocations := ∅
InitPlans: Plans := {{HOME},∅}

Home is always a valid plan.

InitCommands: Commands := {{HOME},∅}
Home is always a valid command.

InitAircraftLocations: AircraftLocations := ∅
InitAircraftRoutes: AircraftRoutes := ∅
InitCommandValidationState: CommandV alidationState := {{HOME} ↦→ V ALID,

∅ ↦→ V ALID}
InitPlanValidationState: PlanV alidationState := {{HOME} ↦→ V ALID,

∅ ↦→ V ALID}
InitCancelledCommands: CancelledCommands := ∅
PlanValidationQueueInit: PlanV alidationQueue := ∅
CommandValidationQueueInit: CommandV alidationQueue := ∅
PlanValidationQueueCountInit: PlanV alidationQueueCount := 0

CommandValidationQueueCountInit: CommandV alidationQueueCount := 0

RecentTimestampInit: RecentT imestamp := ∅
CommandStatusInit: CommandStatus := {{HOME} ↦→ SPECIAL,∅ ↦→ SPECIAL}

AircraftLocationHistoryInit: AircraftLocationHistory := ∅
CurrentIdentifiersInit: CurrentIdentifiers := {HOME ONLY ROUTE,

NO ROUTE}
RouteIdentifierInit: RouteIDs := {{HOME} ↦→ HOME ONLY ROUTE,

∅ ↦→ NO ROUTE}
AircraftRouteIDsInit: AircraftRouteIDs := ∅
AircraftRouteTasksInit: AircraftRouteTasks := {HOME ONLY ROUTE ↦→

{HOME}, NO ROUTE ↦→ ∅}
end

Event RegisterAircraft ⟨ordinary⟩ =̂

extends RegisterAircraft

any

aircraft

where

aircraftType: aircraft ∈ DRONES

aircraftNotDuplicate: aircraft /∈ RegisteredAircraft

norouteCurrent: NO ROUTE ∈ CurrentIdentifiers

then

addAircraft: RegisteredAircraft := RegisteredAircraft ∪ {aircraft}
addAircraftLocations: AircraftLocations := AircraftLocations∪{aircraft ↦→

HOME}
addAircraftRoute: AircraftRoutes := AircraftRoutes ∪ {aircraft ↦→ ∅}

An Event-B Specification of DroneMachine3

act1: RecentT imestamp := RecentT imestamp ∪ {aircraft ↦→ 0}
AircraftLocationHistoryRegister: AircraftLocationHistory(aircraft) := {HOME}

AircraftRouteIDsRegister: AircraftRouteIDs := AircraftRouteIDs∪{aircraft ↦→
NO ROUTE}

end

Event RegisterRestrictedLocation ⟨ordinary⟩ =̂

extends RegisterRestrictedLocation

any

restricted

aircraft not at home

aircraft at home

aircraft with restricted waypoints

where

restrictedType: restricted ∈ LOCATIONS

restrictedNotDuplicate: restricted /∈ RestrictedLocations

restrictedNotHome: restricted ̸= HOME

grd1: {HOME ONLY ROUTE,NO ROUTE} ⊆ CurrentIdentifiers

grd2: aircraft not at home = {y ·y ∈ RegisteredAircraft∧y ∈ dom(AircraftLocations)∧
AircraftLocations(y) ̸= HOME|y}

grd3: aircraft at home = {y ·y ∈ RegisteredAircraft∧y ∈ dom(AircraftLocations)∧
AircraftLocations(y) = HOME|y}

grd4: aircraft with restricted waypoints = {y ·y ∈ (aircraft at home∪aircraft not at home)∧
y ∈ dom(AircraftRoutes) ∧ restricted ∈ AircraftRoutes(y)|y}

then

addRestricted: RestrictedLocations := RestrictedLocations ∪ {restricted}
invalidExistingCommands:

CommandV alidationState := ({y ·y ∈ dom(CommandV alidationState)∧restricted ∈
y|y}◁− CommandV alidationState) ∪
(λq ·q ∈ dom(CommandV alidationState)∧restricted ∈ q∧CommandV alidationState(q) ̸=
INV ALID|INV ALID)

replaceAffectedAircraft:

AircraftRoutes := (AircraftRoutes▷−{y ·y ∈ ran(AircraftRoutes)∧restricted ∈
y|y}) ∪
(λq ·q ∈ dom(AircraftRoutes)∧q ∈ dom(AircraftLocations)∧AircraftLocations(q) =

HOME ∧ restricted ∈ AircraftRoutes(q)|∅) ∪
(λq ·q ∈ dom(AircraftRoutes)∧q ∈ dom(AircraftLocations)∧AircraftLocations(q) ̸=
HOME ∧ restricted ∈ AircraftRoutes(q)|{HOME})

act1:

AircraftRouteIDs := (aircraft with restricted waypoints◁−AircraftRouteIDs)

∪{y ·y ∈ aircraft with restricted waypoints∩aircraft at home|y ↦→ NO ROUTE}

An Event-B Specification of DroneMachine3

∪ {y ·y ∈ aircraft with restricted waypoints ∩ aircraft not at home|y
↦→ HOME ONLY ROUTE}

end

Event TransmitPlan ⟨ordinary⟩ =̂

extends TransmitPlan

any

plan

where

locationsType: plan ∈ P (LOCATIONS)

planNotDuplicate: plan /∈ Plans

planValidationQueueGuard: PlanV alidationQueueCount ∈ N
grd1: plan ∩ RestrictedLocations = ∅

then

addPlan: Plans := Plans ∪ {plan}
planValidationState: PlanV alidationState(plan) := UNDETERMINED

PlanAddQueue: PlanV alidationQueue(plan) := PlanV alidationQueueCount

PlanValidationQueueIncrement: PlanV alidationQueueCount :=

PlanV alidationQueueCount+ 1

end

Event ValidatePlan ⟨ordinary⟩ =̂

extends ValidatePlan

any

plan

where

planType: plan ⊆ LOCATIONS

planRegistered: plan ∈ Plans

planDoesntContainRestricted: ∀x·x ∈ RestrictedLocations⇒ x /∈ plan

grd1: dom({plan}◁− PlanV alidationQueue) ⊆ P (LOCATIONS)

grd2: 0 ∈ ran(PlanV alidationQueue)

grd3: PlanV alidationQueue−1(0) = plan

then

validateAction: PlanV alidationState(plan) := V ALID

act1: PlanV alidationQueue := (λq ·q ∈ dom({plan} ◁− PlanV alidationQueue) ∧
q ∈ P (LOCATIONS) ∧
PlanV alidationQueue(q) ∈ 0..P lanV alidationQueueCount|PlanV alidationQueue(q)−
1)

act2: PlanV alidationQueueCount := PlanV alidationQueueCount− 1

end

Event TransmitCommand ⟨ordinary⟩ =̂

extends TransmitCommand

An Event-B Specification of DroneMachine3

any

command

identifier

where

commandType: command ⊆ LOCATIONS

commandNotDuplicate: command /∈ Commands

commandContainsHome: HOME ∈ command

grd1: CommandV alidationQueueCount ∈ N
grd2: command ∩ RestrictedLocations = ∅
identifierType: identifier ∈ ROUTEIDENTIFIERS

identifierIsNew: identifier /∈ CurrentIdentifiers

commandNotIn: command ̸= {HOME} ∧ command ̸= ∅
then

addCommand: Commands := Commands ∪ {command}
commandValidationState: CommandV alidationState(command) := UNDETERMINED

act1: CommandV alidationQueue(command) := CommandV alidationQueueCount

act2: CommandV alidationQueueCount := CommandV alidationQueueCount +

1

act3: CommandStatus(command) := UNASSIGNED

act4: RouteIDs := RouteIDs ∪ {command ↦→ identifier}
act5: CurrentIdentifiers := CurrentIdentifiers ∪ {identifier}

end

Event ValidateCommand ⟨ordinary⟩ =̂

extends ValidateCommand

any

command

where

commandType: command ⊆ LOCATIONS

commandRegistered: command ∈ Commands

commandDoesntContainRestricted: ∀x·x ∈ RestrictedLocations⇒x /∈ command

grd1: dom({command}◁− CommandV alidationQueue) ⊆ P (LOCATIONS)

grd2: 0 ∈ ran(CommandV alidationQueue)

grd3: CommandV alidationQueue−1(0) = command

then

commandValidationStateUpdate: CommandV alidationState(command) := V ALID

act1: CommandV alidationQueue := (λq ·q ∈ dom({command}◁−CommandV alidationQueue)

∧ q ∈ P (LOCATIONS)|CommandV alidationQueue(q)− 1)

An Event-B Specification of DroneMachine3

act2: CommandV alidationQueueCount := CommandV alidationQueueCount −
1

end

Event TaskAircraft ⟨ordinary⟩ =̂

extends TaskAircraft

any

aircraft

command

where

aircraftType: aircraft ∈ RegisteredAircraft

commandType: command ∈ Commands \ {{HOME},∅}
commandDomainCheck: command ∈ dom(CommandV alidationState)

commandCheck: CommandV alidationState(command) = V ALID

aircraftRouteDom: aircraft ∈ dom(AircraftRoutes)

aircraftNoRoute:

AircraftRoutes(aircraft) = ∅ ∨
(AircraftRoutes(aircraft) ̸= ∅ ∧
AircraftRoutes(aircraft) ∈ Commands ∧
CommandStatus(AircraftRoutes(aircraft)) ∈ {COMPLETE, SPECIAL})

routeNotSpecial: CommandStatus(command) = UNASSIGNED

aircraftRouteIDCheck: RouteIDs(command) /∈ {NO ROUTE,

HOME ONLY ROUTE}
noExistingAssignment: RouteIDs(command) /∈ ran(AircraftRouteIDs)

then

taskAircraftGo: AircraftRoutes(aircraft) := command

CommandStatusUpdate: CommandStatus(command) := ASSIGNED

act1: AircraftRouteIDs(aircraft) := RouteIDs(command)

act2: AircraftRouteTasks(RouteIDs(command)) := command

end

Event RetaskAircraft ⟨ordinary⟩ =̂

extends RetaskAircraft

any

command

aircraft

existing command

where

commandType: command ∈ Commands

aircraftType: aircraft ∈ RegisteredAircraft

commandDomainCheck: command ∈ dom(CommandV alidationState)

commandCheck: CommandV alidationState(command) = V ALID

An Event-B Specification of DroneMachine3

aircraftRouteDom: aircraft ∈ dom(AircraftRoutes)

existingCommandCheck: existing command = AircraftRoutes(aircraft)

existingNotBlank: existing command ̸= ∅
existingNotSame: existing command ̸= command

existingNotSameTwo: command ̸= {HOME} ∧ command ̸= ∅
existingIsCommand:

existing command ∈ Commands∧existing command ∈ dom(CommandStatus)

∧ CommandStatus(existing command) /∈ {COMPLETE, SPECIAL}
CommandStateCheck: CommandStatus(command) = UNASSIGNED

then

retaskAircraftGo: AircraftRoutes(aircraft) := command

CommandStatusExistingUpdate: CommandStatus := ({command, existing command}◁−
CommandStatus) ∪ {command ↦→ ASSIGNED} ∪ {existing command ↦→
UNASSIGNED}

act2: AircraftRouteIDs(aircraft) := RouteIDs(command)

act3: AircraftRouteTasks(RouteIDs(command)) := command

end

Event RecallAircraft ⟨ordinary⟩ =̂

extends RecallAircraft

any

aircraft

where

aircraftType: aircraft ∈ RegisteredAircraft

aircraftTypeHard: aircraft ∈ DRONES

aircraftLocationCheck: AircraftLocations(aircraft) ̸= HOME

grd1: {HOME} ∈ dom(RouteIDs)

then

aircraftRouteChange: AircraftRoutes(aircraft) := {HOME}
act1: AircraftRouteIDs(aircraft) := RouteIDs({HOME})
act2: AircraftRouteTasks(RouteIDs({HOME})) := {HOME}

end

Event CancelCommand ⟨ordinary⟩ =̂

extends CancelCommand

any

command

where

commandType: command ∈ Commands \ {{HOME},∅}
grd1: CommandStatus(command) ̸= COMPLETE

grd3: HOME ONLY ROUTE ∈ CurrentIdentifiers

grd4: command ∈ dom(RouteIDs)

then

An Event-B Specification of DroneMachine3

removeCommands: Commands := Commands \ {command}
removeCommandValidationState: CommandV alidationState := {command} ◁−

CommandV alidationState

removeAircraftRoutes: AircraftRoutes := (λq ·q ∈ dom(AircraftRoutes) ∧
AircraftRoutes(q) = command|{HOME})

addToCancelled: CancelledCommands := CancelledCommands ∪ {command}
CommandStatusRemove: CommandStatus := {command}◁− CommandStatus

AircraftRouteIDsChange: AircraftRouteIDs := (AircraftRouteIDs▷−
{RouteIDs(command)})∪(λq ·q ∈ RegisteredAircraft∧q ∈ dom(AircraftRouteIDs)

∧AircraftRouteIDs(q) = RouteIDs(command)|HOME ONLY ROUTE)

RouteIDsRemove: RouteIDs := {command}◁−RouteIDs

end

Event ReportLocationElsewhere ⟨ordinary⟩ =̂

extends ReportLocation

any

aircraft

newlocation

timestamp

where

aircraftType: aircraft ∈ RegisteredAircraft

newlocationType: newlocation ∈ LOCATIONS

grd1: timestamp ∈ N ∧ aircraft ∈ dom(RecentT imestamp)

∧RecentT imestamp(aircraft) < timestamp

grd3: aircraft ∈ dom(AircraftLocationHistory)

grd5: aircraft ∈ dom(AircraftRoutes)

grd4: newlocation ∈ AircraftRoutes(aircraft)

grd6: AircraftRoutes(aircraft) ∈ dom(CommandStatus) ∧
CommandStatus(AircraftRoutes(aircraft)) = CONFIRMED

grd7: AircraftRoutes(aircraft) ̸= {HOME}
grd8: aircraft ∈ dom(AircraftRouteIDs) ∧ AircraftRouteIDs(aircraft) ∈

dom(AircraftRouteTasks)

grd9: AircraftRouteTasks(AircraftRouteIDs(aircraft)) ∈ P (LOCATIONS)

grd10: AircraftRouteTasks(AircraftRouteIDs(aircraft)) \ {HOME} ≠ ∅
grd11: newlocation ̸= HOME

grd12: newlocation ∈ AircraftRouteTasks(AircraftRouteIDs(aircraft))

then

updateLocationAction: AircraftLocations(aircraft) := newlocation

RecentTimestampUpdate: RecentT imestamp(aircraft) := timestamp

AircraftLocationHistoryUpdate: AircraftLocationHistory(aircraft) :=

(AircraftLocationHistory(aircraft) ∪ {newlocation})

An Event-B Specification of DroneMachine3

AircraftRouteTasksUpdate: AircraftRouteTasks := AircraftRouteTasks ◁−
{AircraftRouteIDs(aircraft) ↦→ AircraftRouteTasks(AircraftRouteIDs(aircraft))\
{newlocation}}

end

Event ReportLocationHomeNormal ⟨ordinary⟩ =̂

extends ReportLocation

any

aircraft

newlocation

timestamp

where

aircraftType: aircraft ∈ RegisteredAircraft

newlocationType: newlocation ∈ LOCATIONS

grd1: timestamp ∈ N∧aircraft ∈ dom(RecentT imestamp)∧RecentT imestamp(aircraft) <

timestamp

grd2: aircraft ∈ dom(AircraftLocationHistory)

grd3: aircraft ∈ dom(AircraftRoutes)

grd5: newlocation ∈ AircraftRoutes(aircraft)

grd4: AircraftRoutes(aircraft) ∈ dom(CommandStatus) ∧
CommandStatus(AircraftRoutes(aircraft)) ∈ {CONFIRMED}

grd7: aircraft ∈ dom(AircraftRouteIDs) ∧ AircraftRouteIDs(aircraft) ∈
dom(AircraftRouteTasks)

grd6: AircraftRouteTasks(AircraftRouteIDs(aircraft)) ∈ P (LOCATIONS)

grd8: AircraftRouteTasks(AircraftRouteIDs(aircraft)) \ {HOME} = ∅
grd9: newlocation ∈ AircraftRouteTasks(AircraftRouteIDs(aircraft))

grd10: NO ROUTE ∈ CurrentIdentifiers

then

updateLocationAction: AircraftLocations(aircraft) := newlocation

RecentTimestampUpdate: RecentT imestamp(aircraft) := timestamp

AircraftLocationHistoryUpdate: AircraftLocationHistory(aircraft) :=

(AircraftLocationHistory(aircraft) ∪ {newlocation})
AircraftRouteTasksUpdate: AircraftRouteTasks := AircraftRouteTasks ◁−

{AircraftRouteIDs(aircraft) ↦→ AircraftRouteTasks(AircraftRouteIDs(aircraft))\
{newlocation}}

CommandStatusComplete: CommandStatus(AircraftRoutes(aircraft)) := COMPLETE

AircraftRouteIDUpdate: AircraftRouteIDs(aircraft) := NO ROUTE

end

Event ReportLocationHomeRecall ⟨ordinary⟩ =̂

extends ReportLocation

An Event-B Specification of DroneMachine3

any

aircraft

newlocation

timestamp

where

aircraftType: aircraft ∈ RegisteredAircraft

newlocationType: newlocation ∈ LOCATIONS

grd1: timestamp ∈ N ∧ aircraft ∈ dom(RecentT imestamp)

∧RecentT imestamp(aircraft) < timestamp

grd2: aircraft ∈ dom(AircraftLocationHistory)

grd10: aircraft ∈ dom(AircraftRoutes)

grd3: newlocation ∈ AircraftRoutes(aircraft)

grd4: AircraftRoutes(aircraft) ∈ dom(CommandStatus) ∧
CommandStatus(AircraftRoutes(aircraft)) ∈ {SPECIAL}

grd5: aircraft ∈ dom(AircraftRouteIDs) ∧ AircraftRouteIDs(aircraft) ∈
dom(AircraftRouteTasks)

grd6: AircraftRouteTasks(AircraftRouteIDs(aircraft)) ∈ P (LOCATIONS)

grd7: AircraftRouteTasks(AircraftRouteIDs(aircraft)) \ {HOME} = ∅
grd8: newlocation ∈ AircraftRouteTasks(AircraftRouteIDs(aircraft))

grd9: NO ROUTE ∈ CurrentIdentifiers

then

updateLocationAction: AircraftLocations(aircraft) := newlocation

RecentTimestampUpdate: RecentT imestamp(aircraft) := timestamp

act1: AircraftLocationHistory(aircraft) := (AircraftLocationHistory(aircraft)∪
{newlocation})

act2: CommandStatus(AircraftRoutes(aircraft)) := SPECIAL

act3: AircraftRouteIDs(aircraft) := NO ROUTE

end

Event ReportDeviation ⟨ordinary⟩ =̂

extends ReportDeviation

any

deviation

aircraft

timestamp

where

deviationType: deviation ∈ LOCATIONS

aircraftType: aircraft ∈ RegisteredAircraft

timestampGuard: timestamp ∈ N ∧ aircraft ∈ dom(RecentT imestamp)

∧RecentT imestamp(aircraft) < timestamp

aircraftDomainLocation: aircraft ∈ dom(AircraftLocationHistory)

An Event-B Specification of DroneMachine3

aircraftDomainRoute: aircraft ∈ dom(AircraftRoutes)

deviationNotPartOfRoute: deviation /∈ AircraftRoutes(aircraft)

deviationNotNoneOrHome: deviation ̸= HOME

grd1: AircraftRoutes(aircraft) ∈ dom(CommandStatus) ∧
CommandStatus(AircraftRoutes(aircraft)) = CONFIRMED

grd3: aircraft ∈ dom(AircraftLocations)

grd2: AircraftLocations(aircraft) ̸= HOME

then

updateLocationDeviation: AircraftLocations(aircraft) := deviation

RecentTimestampUpdate: RecentT imestamp(aircraft) := timestamp

AircraftLocationHistoryUpdate: AircraftLocationHistory(aircraft) :=

(AircraftLocationHistory(aircraft) ∪ {deviation})
end

Event ConfirmReceipt ⟨ordinary⟩ =̂

extends ConfirmReceipt

any

route or update

aircraft

where

RouteOrUpdateType: route or update ∈ P (LOCATIONS)

RouteOrUpdateBelongs: route or update ∈ Commands

aircraftType: aircraft ∈ RegisteredAircraft

aircraftInRoutesDomain: aircraft ∈ dom(AircraftRoutes)

aircraftHasRoute: AircraftRoutes(aircraft) ̸= ∅
commandStatus: AircraftRoutes(aircraft) ∈ dom(CommandStatus)

aircraftRouteAssigned: CommandStatus(AircraftRoutes(aircraft)) = ASSIGNED

route or update valid: route or update = AircraftRoutes(aircraft)

then

updateCommandStatus: CommandStatus(AircraftRoutes(aircraft)) := CONFIRMED

end

Event ConfirmCancellation ⟨ordinary⟩ =̂

extends ConfirmCancellation

any

command

result

where

commandType: command ∈ P (LOCATIONS)

commandInCancelled: command ∈ CancelledCommands

resultsSet: result = TRUE

An Event-B Specification of DroneMachine3

then

skip

end

Event QueryPlanValidationState ⟨ordinary⟩ =̂

extends QueryPlanValidationState

any

plan

result

where

planBelongsToPlans: plan ∈ (Plans \ {∅, {HOME}})
planDomain: plan ∈ dom(PlanV alidationState)

resultsSet: result = PlanV alidationState(plan)

then

skip

end

Event QueryCommandValidationState ⟨ordinary⟩ =̂

extends QueryCommandValidationState

any

command

result

where

commandBelongsToCommands: command ∈ (Commands \ {∅, {HOME}})
commandDomain: command ∈ dom(CommandV alidationState)

resultsSet: result = CommandV alidationState(command)

then

skip

end

END

Appendix F

Drone case study - third

refinement of formal model -

machine & context

CONTEXT DroneContext4

EXTENDS DroneContext3

SETS

TOKENS

OPERATORS

AIRCRAFTSTATE

CONSTANTS

SUSPECT

NORMAL

AXIOMS

operatorsFinite: finite(OPERATORS)

operatorsSize: card(OPERATORS) = 2

aircraftstateAxm: partition(AIRCRAFTSTATE, {SUSPECT}, {NORMAL})

END

215

An Event-B Specification of DroneMachine4

MACHINE DroneMachine4

REFINES DroneMachine3

SEES DroneContext4

VARIABLES

RegisteredAircraft

RestrictedLocations

Plans

Commands

AircraftLocations

AircraftRoutes

PlanValidationState

CommandValidationState

CancelledCommands

PlanValidationQueue [CR1

CommandValidationQueue [CR3

PlanValidationQueueCount [CR1

CommandValidationQueueCount [CR3

RecentTimestamp

CommandStatus [CR4, CR5

AircraftLocationHistory

RouteIDs

AircraftRouteIDs

AircraftRouteTasks

CurrentIdentifiers

UsedTokens

TokenMapping

CurrentOperators

OperatorMappingPlans

OperatorMappingCommands

AircraftStatus

INVARIANTS

UsedTokensType: UsedTokens ⊆ P (TOKENS)

TokenMappingType: TokenMapping ∈ RegisteredAircraft ↦→ P (TOKENS)

CurrentOperatorsType: CurrentOperators ⊆ OPERATORS

OperatorMappingPlansType: OperatorMappingP lans ∈ CurrentOperators ↦→P (P (LOCATIONS))

OperatingMappingCommandsType: OperatorMappingCommands ∈ CurrentOperators ↦→
P (P (LOCATIONS))

An Event-B Specification of DroneMachine4

OperatorMappingPlansFinite: ∀o·o ∈ dom(OperatorMappingP lans)

⇒ finite(OperatorMappingP lans(o))

OperatorMappingCommandsFinite: ∀o·o ∈ dom(OperatorMappingCommands) ⇒
finite(OperatorMappingCommands(o))

OperatorMappingPlanSize: ∀o, i·o ∈ CurrentOperators∧o ∈ dom(OperatorMappingP lans)∧
i = OperatorMappingP lans(o)⇒ card(i) ≤ 10

OperatorMappingCommandSize: ∀o, i·o ∈ CurrentOperators

∧ o ∈ dom(OperatorMappingCommands)

∧ i = OperatorMappingCommands(o)⇒ card(i) ≤ 10

CommandOwnershipType: CommandOwnership ∈ CurrentOperators ↦→P (P (LOCATIONS))

AircraftStatusType: AircraftStatus ∈ RegisteredAircraft ↦→AIRCRAFTSTATE

EVENTS

Initialisation ⟨extended⟩

begin

InitRegisteredAircraft: RegisteredAircraft := ∅
InitRestrictedLocations: RestrictedLocations := ∅
InitPlans: Plans := {{HOME},∅}

Home is always a valid plan.

InitCommands: Commands := {{HOME},∅}
Home is always a valid command.

InitAircraftLocations: AircraftLocations := ∅
InitAircraftRoutes: AircraftRoutes := ∅
InitCommandValidationState: CommandV alidationState := {{HOME} ↦→ V ALID,

∅ ↦→ V ALID}
InitPlanValidationState: PlanV alidationState := {{HOME} ↦→ V ALID,

∅ ↦→ V ALID}
InitCancelledCommands: CancelledCommands := ∅
PlanValidationQueueInit: PlanV alidationQueue := ∅
CommandValidationQueueInit: CommandV alidationQueue := ∅
PlanValidationQueueCountInit: PlanV alidationQueueCount := 0

CommandValidationQueueCountInit: CommandV alidationQueueCount := 0

RecentTimestampInit: RecentT imestamp := ∅
CommandStatusInit: CommandStatus := {{HOME} ↦→ SPECIAL,∅ ↦→ SPECIAL}

AircraftLocationHistoryInit: AircraftLocationHistory := ∅
CurrentIdentifiersInit: CurrentIdentifiers := {HOME ONLY ROUTE,

NO ROUTE}
RouteIdentifierInit: RouteIDs := {{HOME} ↦→ HOME ONLY ROUTE,∅ ↦→

NO ROUTE}

An Event-B Specification of DroneMachine4

AircraftRouteIDsInit: AircraftRouteIDs := ∅
AircraftRouteTasksInit: AircraftRouteTasks := {HOME ONLY ROUTE ↦→

{HOME}, NO ROUTE ↦→ ∅}
TokenMappingInit: TokenMapping := ∅
UsedTokensInit: UsedTokens := ∅
CurrentOperatorsInit: CurrentOperators := {x·x ∈ OPERATORS|x}
OperatoMappingPlansInit: OperatorMappingP lans := {x·x ∈ OPERATORS|x ↦→

∅}
OperatorMappingCommandsInit: OperatorMappingCommands :=

{x·x ∈ OPERATORS|x ↦→ ∅}
CommandOwnershipInit: CommandOwnership := {x·x ∈ OPERATORS|x ↦→

∅}
AircraftStatusInit: AircraftStatus := ∅

end

Event RegisterAircraft ⟨ordinary⟩ =̂

extends RegisterAircraft

any

aircraft

tokens

where

aircraftType: aircraft ∈ DRONES

aircraftNotDuplicate: aircraft /∈ RegisteredAircraft

norouteCurrent: NO ROUTE ∈ CurrentIdentifiers

tokensType: tokens ∈ P (TOKENS)

tokensSize: finite(tokens) ∧ card(tokens) > 20

tokensUnique: ∀tok, existing ·tok ∈ tokens ∧ existing ∈ UsedTokens ⇒ tok /∈
existing

then

addAircraft: RegisteredAircraft := RegisteredAircraft ∪ {aircraft}
addAircraftLocations: AircraftLocations := AircraftLocations∪{aircraft ↦→

HOME}
addAircraftRoute: AircraftRoutes := AircraftRoutes ∪ {aircraft ↦→ ∅}
act1: RecentT imestamp := RecentT imestamp ∪ {aircraft ↦→ 0}
AircraftLocationHistoryRegister: AircraftLocationHistory(aircraft) := {HOME}

AircraftRouteIDsRegister: AircraftRouteIDs := AircraftRouteIDs∪{aircraft ↦→
NO ROUTE}

mapTokens: TokenMapping(aircraft) := tokens

usedTokensAdd: UsedTokens := UsedTokens ∪ {tokens}
aircraftStatusAdd: AircraftStatus(aircraft) := NORMAL

end

An Event-B Specification of DroneMachine4

Event RegisterRestrictedLocation ⟨ordinary⟩ =̂

extends RegisterRestrictedLocation

any

restricted

aircraft not at home

aircraft at home

aircraft with restricted waypoints

where

restrictedType: restricted ∈ LOCATIONS

restrictedNotDuplicate: restricted /∈ RestrictedLocations

restrictedNotHome: restricted ̸= HOME

grd1: {HOME ONLY ROUTE,NO ROUTE} ⊆ CurrentIdentifiers

grd2: aircraft not at home = {y ·y ∈ RegisteredAircraft∧y ∈ dom(AircraftLocations)∧
AircraftLocations(y) ̸= HOME|y}

grd3: aircraft at home = {y ·y ∈ RegisteredAircraft∧y ∈ dom(AircraftLocations)∧
AircraftLocations(y) = HOME|y}

grd4: aircraft with restricted waypoints = {y ·
y ∈ (aircraft at home ∪ aircraft not at home) ∧ y ∈ dom(AircraftRoutes) ∧
restricted ∈ AircraftRoutes(y)|y}

then

addRestricted: RestrictedLocations := RestrictedLocations ∪ {restricted}
invalidExistingCommands:

CommandV alidationState := ({y ·y ∈ dom(CommandV alidationState)∧restricted ∈
y|y}◁− CommandV alidationState) ∪
(λq ·q ∈ dom(CommandV alidationState) ∧ restricted ∈ q

∧ CommandV alidationState(q) ̸= INV ALID|INV ALID)

replaceAffectedAircraft:

AircraftRoutes := (AircraftRoutes▷−{y ·y ∈ ran(AircraftRoutes)∧restricted ∈
y|y}) ∪
(λq ·q ∈ dom(AircraftRoutes)∧q ∈ dom(AircraftLocations)∧AircraftLocations(q) =

HOME ∧ restricted ∈ AircraftRoutes(q)|∅) ∪
(λq ·q ∈ dom(AircraftRoutes)∧q ∈ dom(AircraftLocations)∧AircraftLocations(q) ̸=
HOME ∧ restricted ∈ AircraftRoutes(q)|{HOME})

act1:

AircraftRouteIDs := (aircraft with restricted waypoints◁−AircraftRouteIDs)

∪{y ·y ∈ aircraft with restricted waypoints∩aircraft at home|y ↦→ NO ROUTE}
∪ {y ·y ∈ aircraft with restricted waypoints

∩ aircraft not at home|y ↦→ HOME ONLY ROUTE}
end

Event TransmitPlan ⟨ordinary⟩ =̂

extends TransmitPlan

An Event-B Specification of DroneMachine4

any

plan

operator

where

locationsType: plan ∈ P (LOCATIONS)

planNotDuplicate: plan /∈ Plans

planValidationQueueGuard: PlanV alidationQueueCount ∈ N
grd1: plan ∩ RestrictedLocations = ∅
operatorType: operator ∈ CurrentOperators∧operator ∈ dom(OperatorMappingP lans)

OperatingMappingFinite: finite(OperatorMappingP lans(operator))

planNotInOperatorMapping: plan /∈ OperatorMappingP lans(operator)

planIsFinite: finite(plan)

combinedFinite: finite(OperatorMappingP lans(operator) ∪ {plan})
operatorCardinality: card(OperatorMappingP lans(operator)) < 10

grd2: card(OperatorMappingP lans(operator)) + card({plan}) ≤ 10

grd3: card({plan}) = 1

then

addPlan: Plans := Plans ∪ {plan}
planValidationState: PlanV alidationState(plan) := UNDETERMINED

PlanAddQueue: PlanV alidationQueue(plan) := PlanV alidationQueueCount

PlanValidationQueueIncrement: PlanV alidationQueueCount := PlanV alidationQueueCount+

1

operatorJobsAdd: OperatorMappingP lans(operator) := OperatorMappingP lans(operator)∪
{plan}

end

Event ValidatePlan ⟨ordinary⟩ =̂

extends ValidatePlan

any

plan

operator

where

planType: plan ⊆ LOCATIONS

planRegistered: plan ∈ Plans

planDoesntContainRestricted: ∀x·x ∈ RestrictedLocations⇒ x /∈ plan

grd1: dom({plan}◁− PlanV alidationQueue) ⊆ P (LOCATIONS)

grd2: 0 ∈ ran(PlanV alidationQueue)

grd3: PlanV alidationQueue−1(0) = plan

planInRange: plan ⊆ LOCATIONS

operatorType: operator ∈ dom(OperatorMappingP lans)

operatorInQuestion: ∃op·op ∈ dom(OperatorMappingP lans) ∧
{plan} ⊆ OperatorMappingP lans(op)⇒ op = operator

An Event-B Specification of DroneMachine4

then

validateAction: PlanV alidationState(plan) := V ALID

act1: PlanV alidationQueue := (λq ·q ∈ dom({plan} ◁− PlanV alidationQueue) ∧
q ∈ P (LOCATIONS)

∧PlanV alidationQueue(q) ∈ 0..P lanV alidationQueueCount|PlanV alidationQueue(q)−
1)

act2: PlanV alidationQueueCount := PlanV alidationQueueCount− 1

operatorJobsRemove: OperatorMappingP lans(operator) :=

OperatorMappingP lans(operator) \ {plan}
end

Event TransmitCommand ⟨ordinary⟩ =̂

extends TransmitCommand

any

command

identifier

operator

where

commandType: command ⊆ LOCATIONS

commandNotDuplicate: command /∈ Commands

commandContainsHome: HOME ∈ command

grd1: CommandV alidationQueueCount ∈ N
grd2: command ∩ RestrictedLocations = ∅
identifierType: identifier ∈ ROUTEIDENTIFIERS

identifierIsNew: identifier /∈ CurrentIdentifiers

commandNotIn: command ̸= {HOME} ∧ command ̸= ∅
operatorType: operator ∈ CurrentOperators

operatorDom: operator ∈ dom(CommandOwnership)

commandNotInOperatorSet: command /∈ CommandOwnership(operator)

operatorDomCommands: operator ∈ dom(OperatorMappingCommands)

operatorMappingCommandsSize: card(OperatorMappingCommands(operator)) <

10

commandNotInOPC: command /∈ OperatorMappingCommands(operator)

then

addCommand: Commands := Commands ∪ {command}
commandValidationState: CommandV alidationState(command) := UNDETERMINED

act1: CommandV alidationQueue(command) := CommandV alidationQueueCount

act2: CommandV alidationQueueCount := CommandV alidationQueueCount +

1

act3: CommandStatus(command) := UNASSIGNED

An Event-B Specification of DroneMachine4

act4: RouteIDs := RouteIDs ∪ {command ↦→ identifier}
act5: CurrentIdentifiers := CurrentIdentifiers ∪ {identifier}
CommandOwnershipSet: CommandOwnership(operator) := CommandOwnership(operator)∪

{command}
OperatorMappingCommandsSet: OperatorMappingCommands(operator) :=

OperatorMappingCommands(operator) ∪ {command}
end

Event ValidateCommand ⟨ordinary⟩ =̂

extends ValidateCommand

any

command

operator

where

commandType: command ⊆ LOCATIONS

commandRegistered: command ∈ Commands

commandDoesntContainRestricted: ∀x·x ∈ RestrictedLocations⇒x /∈ command

grd1: dom({command}◁− CommandV alidationQueue) ⊆ P (LOCATIONS)

grd2: 0 ∈ ran(CommandV alidationQueue)

grd3: CommandV alidationQueue−1(0) = command

operatorType: operator ∈ CurrentOperators

operatorDom: operator ∈ dom(OperatorMappingCommands)

operatorMappingCommandsFinite: ∃op·op ∈ dom(OperatorMappingCommands)∧
{command} ⊆ OperatorMappingCommands(op)⇒ op = operator

commandInOPC: command ∈ OperatorMappingCommands(operator)

then

commandValidationStateUpdate: CommandV alidationState(command) := V ALID

act1: CommandV alidationQueue := (λq ·q ∈ dom({command}◁−CommandV alidationQueue)∧
q ∈ P (LOCATIONS)|CommandV alidationQueue(q)− 1)

act2: CommandV alidationQueueCount := CommandV alidationQueueCount −
1

OperatorMappingCommandsReduce: OperatorMappingCommands(operator) :=

OperatorMappingCommands(operator) \ {command}
end

Event TaskAircraft ⟨ordinary⟩ =̂

extends TaskAircraft

any

aircraft

command

token

An Event-B Specification of DroneMachine4

where

aircraftType: aircraft ∈ RegisteredAircraft

commandType: command ∈ Commands \ {{HOME},∅}
commandDomainCheck: command ∈ dom(CommandV alidationState)

commandCheck: CommandV alidationState(command) = V ALID

aircraftRouteDom: aircraft ∈ dom(AircraftRoutes)

aircraftNoRoute:

AircraftRoutes(aircraft) = ∅ ∨
(AircraftRoutes(aircraft) ̸= ∅ ∧
AircraftRoutes(aircraft) ∈ Commands ∧
CommandStatus(AircraftRoutes(aircraft)) ∈ {COMPLETE, SPECIAL})

routeNotSpecial: CommandStatus(command) = UNASSIGNED

aircraftRouteIDCheck: RouteIDs(command) /∈ {NO ROUTE,

HOME ONLY ROUTE}
noExistingAssignment: RouteIDs(command) /∈ ran(AircraftRouteIDs)

aircraftMapExists: aircraft ∈ dom(TokenMapping)

tokenType: token ∈ TokenMapping(aircraft)

aircraftDom: aircraft ∈ dom(AircraftStatus)

AircraftStatusCheck: AircraftStatus(aircraft) = NORMAL

then

taskAircraftGo: AircraftRoutes(aircraft) := command

CommandStatusUpdate: CommandStatus(command) := ASSIGNED

act1: AircraftRouteIDs(aircraft) := RouteIDs(command)

act2: AircraftRouteTasks(RouteIDs(command)) := command

withdrawToken: TokenMapping(aircraft) := (TokenMapping(aircraft)\{token})

end

Event RetaskAircraft ⟨ordinary⟩ =̂

extends RetaskAircraft

any

command

aircraft

existing command

token

where

commandType: command ∈ Commands

aircraftType: aircraft ∈ RegisteredAircraft

commandDomainCheck: command ∈ dom(CommandV alidationState)

commandCheck: CommandV alidationState(command) = V ALID

aircraftRouteDom: aircraft ∈ dom(AircraftRoutes)

An Event-B Specification of DroneMachine4

existingCommandCheck: existing command = AircraftRoutes(aircraft)

existingNotBlank: existing command ̸= ∅
existingNotSame: existing command ̸= command

existingNotSameTwo: command ̸= {HOME} ∧ command ̸= ∅
existingIsCommand:

existing command ∈ Commands∧existing command ∈ dom(CommandStatus)

∧ CommandStatus(existing command) /∈ {COMPLETE, SPECIAL}
CommandStateCheck: CommandStatus(command) = UNASSIGNED

aircraftMapExists: aircraft ∈ dom(TokenMapping)

tokenType: token ∈ TokenMapping(aircraft)

then

retaskAircraftGo: AircraftRoutes(aircraft) := command

CommandStatusExistingUpdate: CommandStatus := ({command, existing command}◁−
CommandStatus) ∪ {command ↦→ ASSIGNED} ∪ {existing command ↦→
UNASSIGNED}

act2: AircraftRouteIDs(aircraft) := RouteIDs(command)

act3: AircraftRouteTasks(RouteIDs(command)) := command

withdrawToken: TokenMapping(aircraft) := (TokenMapping(aircraft)\{token})

end

Event RecallAircraft ⟨ordinary⟩ =̂

extends RecallAircraft

any

aircraft

where

aircraftType: aircraft ∈ RegisteredAircraft

aircraftTypeHard: aircraft ∈ DRONES

aircraftLocationCheck: AircraftLocations(aircraft) ̸= HOME

grd1: {HOME} ∈ dom(RouteIDs)

then

aircraftRouteChange: AircraftRoutes(aircraft) := {HOME}
act1: AircraftRouteIDs(aircraft) := RouteIDs({HOME})
act2: AircraftRouteTasks(RouteIDs({HOME})) := {HOME}

end

Event CancelCommand ⟨ordinary⟩ =̂

extends CancelCommand

any

command

operator

where

commandType: command ∈ Commands \ {{HOME},∅}

An Event-B Specification of DroneMachine4

grd1: CommandStatus(command) ̸= COMPLETE

grd3: HOME ONLY ROUTE ∈ CurrentIdentifiers

grd4: command ∈ dom(RouteIDs)

operatorType: operator ∈ CurrentOperators

operatorMembership: operator ∈ dom(CommandOwnership)

commandExists: command ∈ Commands \∅
commandOwned: command ∈ CommandOwnership(operator)

then

removeCommands: Commands := Commands \ {command}
removeCommandValidationState: CommandV alidationState := {command} ◁−

CommandV alidationState

removeAircraftRoutes: AircraftRoutes := (λq ·q ∈ dom(AircraftRoutes) ∧
AircraftRoutes(q) = command|{HOME})

addToCancelled: CancelledCommands := CancelledCommands ∪ {command}
CommandStatusRemove: CommandStatus := {command}◁− CommandStatus

AircraftRouteIDsChange: AircraftRouteIDs := (AircraftRouteIDs▷−
{RouteIDs(command)})∪(λq ·q ∈ RegisteredAircraft∧q ∈ dom(AircraftRouteIDs)∧
AircraftRouteIDs(q) = RouteIDs(command)|HOME ONLY ROUTE)

RouteIDsRemove: RouteIDs := {command}◁−RouteIDs

removeOwnership: CommandOwnership := CommandOwnership▷−{{command}}

end

Event ReportLocationElsewhere ⟨ordinary⟩ =̂

extends ReportLocationElsewhere

any

aircraft

newlocation

timestamp

token

where

aircraftType: aircraft ∈ RegisteredAircraft

newlocationType: newlocation ∈ LOCATIONS

grd1: timestamp ∈ N ∧ aircraft ∈ dom(RecentT imestamp)

∧RecentT imestamp(aircraft) < timestamp

grd3: aircraft ∈ dom(AircraftLocationHistory)

grd5: aircraft ∈ dom(AircraftRoutes)

grd4: newlocation ∈ AircraftRoutes(aircraft)

grd6: AircraftRoutes(aircraft) ∈ dom(CommandStatus) ∧
CommandStatus(AircraftRoutes(aircraft)) = CONFIRMED

grd7: AircraftRoutes(aircraft) ̸= {HOME}

An Event-B Specification of DroneMachine4

grd8: aircraft ∈ dom(AircraftRouteIDs) ∧
AircraftRouteIDs(aircraft) ∈ dom(AircraftRouteTasks)

grd9: AircraftRouteTasks(AircraftRouteIDs(aircraft)) ∈ P (LOCATIONS)

grd10: AircraftRouteTasks(AircraftRouteIDs(aircraft)) \ {HOME} ≠ ∅
grd11: newlocation ̸= HOME

grd12: newlocation ∈ AircraftRouteTasks(AircraftRouteIDs(aircraft))

aircraftMapExists: aircraft ∈ dom(TokenMapping)

tokenType: token ∈ TokenMapping(aircraft)

then

updateLocationAction: AircraftLocations(aircraft) := newlocation

RecentTimestampUpdate: RecentT imestamp(aircraft) := timestamp

AircraftLocationHistoryUpdate: AircraftLocationHistory(aircraft) :=

(AircraftLocationHistory(aircraft) ∪ {newlocation})
AircraftRouteTasksUpdate: AircraftRouteTasks := AircraftRouteTasks ◁−

{AircraftRouteIDs(aircraft) ↦→ AircraftRouteTasks(AircraftRouteIDs(aircraft))\
{newlocation}}

withdrawToken: TokenMapping(aircraft) := (TokenMapping(aircraft)\{token})

end

Event ReportLocationHomeNormal ⟨ordinary⟩ =̂

extends ReportLocationHomeNormal

any

aircraft

newlocation

timestamp

token

where

aircraftType: aircraft ∈ RegisteredAircraft

newlocationType: newlocation ∈ LOCATIONS

grd1: timestamp ∈ N∧aircraft ∈ dom(RecentT imestamp)∧RecentT imestamp(aircraft) <

timestamp

grd2: aircraft ∈ dom(AircraftLocationHistory)

grd3: aircraft ∈ dom(AircraftRoutes)

grd5: newlocation ∈ AircraftRoutes(aircraft)

grd4: AircraftRoutes(aircraft) ∈ dom(CommandStatus) ∧
CommandStatus(AircraftRoutes(aircraft)) ∈ {CONFIRMED}

grd7: aircraft ∈ dom(AircraftRouteIDs) ∧ AircraftRouteIDs(aircraft) ∈
dom(AircraftRouteTasks)

grd6: AircraftRouteTasks(AircraftRouteIDs(aircraft)) ∈ P (LOCATIONS)

An Event-B Specification of DroneMachine4

grd8: AircraftRouteTasks(AircraftRouteIDs(aircraft)) \ {HOME} = ∅
grd9: newlocation ∈ AircraftRouteTasks(AircraftRouteIDs(aircraft))

grd10: NO ROUTE ∈ CurrentIdentifiers

aircraftMapExists: aircraft ∈ dom(TokenMapping)

tokenType: token ∈ TokenMapping(aircraft)

then

updateLocationAction: AircraftLocations(aircraft) := newlocation

RecentTimestampUpdate: RecentT imestamp(aircraft) := timestamp

AircraftLocationHistoryUpdate: AircraftLocationHistory(aircraft) :=

(AircraftLocationHistory(aircraft) ∪ {newlocation})
AircraftRouteTasksUpdate: AircraftRouteTasks := AircraftRouteTasks ◁−

{AircraftRouteIDs(aircraft) ↦→ AircraftRouteTasks(AircraftRouteIDs(aircraft))\
{newlocation}}

CommandStatusComplete: CommandStatus(AircraftRoutes(aircraft)) := COMPLETE

AircraftRouteIDUpdate: AircraftRouteIDs(aircraft) := NO ROUTE

withdrawToken: TokenMapping(aircraft) := (TokenMapping(aircraft)\{token})

end

Event ReportLocationHomeRecall ⟨ordinary⟩ =̂

extends ReportLocationHomeRecall

any

aircraft

newlocation

timestamp

token

where

aircraftType: aircraft ∈ RegisteredAircraft

newlocationType: newlocation ∈ LOCATIONS

grd1: timestamp ∈ N ∧ aircraft ∈ dom(RecentT imestamp)

∧RecentT imestamp(aircraft) < timestamp

grd2: aircraft ∈ dom(AircraftLocationHistory)

grd10: aircraft ∈ dom(AircraftRoutes)

grd3: newlocation ∈ AircraftRoutes(aircraft)

grd4: AircraftRoutes(aircraft) ∈ dom(CommandStatus) ∧
CommandStatus(AircraftRoutes(aircraft)) ∈ {SPECIAL}

grd5: aircraft ∈ dom(AircraftRouteIDs) ∧ AircraftRouteIDs(aircraft) ∈
dom(AircraftRouteTasks)

grd6: AircraftRouteTasks(AircraftRouteIDs(aircraft)) ∈ P (LOCATIONS)

grd7: AircraftRouteTasks(AircraftRouteIDs(aircraft)) \ {HOME} = ∅

An Event-B Specification of DroneMachine4

grd8: newlocation ∈ AircraftRouteTasks(AircraftRouteIDs(aircraft))

grd9: NO ROUTE ∈ CurrentIdentifiers

aircraftMapExists: aircraft ∈ dom(TokenMapping)

tokenType: token ∈ TokenMapping(aircraft)

then

updateLocationAction: AircraftLocations(aircraft) := newlocation

RecentTimestampUpdate: RecentT imestamp(aircraft) := timestamp

act1: AircraftLocationHistory(aircraft) := (AircraftLocationHistory(aircraft)∪
{newlocation})

act2: CommandStatus(AircraftRoutes(aircraft)) := SPECIAL

act3: AircraftRouteIDs(aircraft) := NO ROUTE

withdrawToken: TokenMapping(aircraft) := (TokenMapping(aircraft)\{token})

end

Event ReportDeviation ⟨ordinary⟩ =̂

extends ReportDeviation

any

deviation

aircraft

timestamp

token

where

deviationType: deviation ∈ LOCATIONS

aircraftType: aircraft ∈ RegisteredAircraft

timestampGuard: timestamp ∈ N ∧ aircraft ∈ dom(RecentT imestamp)

∧RecentT imestamp(aircraft) < timestamp

aircraftDomainLocation: aircraft ∈ dom(AircraftLocationHistory)

aircraftDomainRoute: aircraft ∈ dom(AircraftRoutes)

deviationNotPartOfRoute: deviation /∈ AircraftRoutes(aircraft)

deviationNotNoneOrHome: deviation ̸= HOME

grd1: AircraftRoutes(aircraft) ∈ dom(CommandStatus)

∧ CommandStatus(AircraftRoutes(aircraft)) = CONFIRMED

grd3: aircraft ∈ dom(AircraftLocations)

grd2: AircraftLocations(aircraft) ̸= HOME

aircraftMapExists: aircraft ∈ dom(TokenMapping)

tokenType: token ∈ TokenMapping(aircraft)

then

updateLocationDeviation: AircraftLocations(aircraft) := deviation

RecentTimestampUpdate: RecentT imestamp(aircraft) := timestamp

AircraftLocationHistoryUpdate: AircraftLocationHistory(aircraft) :=

(AircraftLocationHistory(aircraft) ∪ {deviation})

An Event-B Specification of DroneMachine4

withdrawToken: TokenMapping(aircraft) := (TokenMapping(aircraft)\{token})

end

Event ConfirmReceipt ⟨ordinary⟩ =̂

extends ConfirmReceipt

any

route or update

aircraft

token

where

RouteOrUpdateType: route or update ∈ P (LOCATIONS)

RouteOrUpdateBelongs: route or update ∈ Commands

aircraftType: aircraft ∈ RegisteredAircraft

aircraftInRoutesDomain: aircraft ∈ dom(AircraftRoutes)

aircraftHasRoute: AircraftRoutes(aircraft) ̸= ∅
commandStatus: AircraftRoutes(aircraft) ∈ dom(CommandStatus)

aircraftRouteAssigned: CommandStatus(AircraftRoutes(aircraft)) = ASSIGNED

route or update valid: route or update = AircraftRoutes(aircraft)

aircraftMapExists: aircraft ∈ dom(TokenMapping)

tokenType: token ∈ TokenMapping(aircraft)

then

updateCommandStatus: CommandStatus(AircraftRoutes(aircraft)) := CONFIRMED

withdrawToken: TokenMapping(aircraft) := (TokenMapping(aircraft)\{token})

end

Event ConfirmCancellation ⟨ordinary⟩ =̂

extends ConfirmCancellation

any

command

result

where

commandType: command ∈ P (LOCATIONS)

commandInCancelled: command ∈ CancelledCommands

resultsSet: result = TRUE

then

skip

end

Event QueryPlanValidationState ⟨ordinary⟩ =̂

extends QueryPlanValidationState

An Event-B Specification of DroneMachine4

any

plan

result

where

planBelongsToPlans: plan ∈ (Plans \ {∅, {HOME}})
planDomain: plan ∈ dom(PlanV alidationState)

resultsSet: result = PlanV alidationState(plan)

then

skip

end

Event QueryCommandValidationState ⟨ordinary⟩ =̂

extends QueryCommandValidationState

any

command

result

where

commandBelongsToCommands: command ∈ (Commands \ {∅, {HOME}})
commandDomain: command ∈ dom(CommandV alidationState)

resultsSet: result = CommandV alidationState(command)

then

skip

end

Event MarkAircraftSuspect ⟨ordinary⟩ =̂

any

aircraft

where

aircraftType: aircraft ∈ RegisteredAircraft

aircraftStatusDom: aircraft ∈ dom(AircraftStatus)

aircraftNotAlreadySuspect: AircraftStatus(aircraft) ̸= SUSPECT

then

AircraftStatusAction: AircraftStatus(aircraft) := SUSPECT

end

Event MarkAircraftNormal ⟨ordinary⟩ =̂

any

aircraft

where

aircraftType: aircraft ∈ RegisteredAircraft

aircraftStatusDom: aircraft ∈ dom(AircraftStatus)

aircraftAlreadySuspect: AircraftStatus(aircraft) = SUSPECT

aircraftHome: AircraftRouteIDs(aircraft) = NO ROUTE

aircraftHomeAdditional: AircraftLocations(aircraft) = HOME

An Event-B Specification of DroneMachine4

then

AircraftStatusAction: AircraftStatus(aircraft) := NORMAL

end

END

References

[1] A Abdulkhaleq and W Stefan. “A-STPA: An Open Tool Support for System-

Theoretic Process Analysis”. In: (Jan. 2014). url: http://www.researchgate.

net/publication/265508170_A-STPA_An_Open_Tool_Support_for_System-

Theoretic_Process_Analysis.

[2] Jean Raymond Abrial et al. “Rodin: An open toolset for modelling and reasoning

in Event-B”. In: International Journal on Software Tools for Technology Transfer

12.6 (Nov. 2010), pp. 447–466. issn: 14332779. doi: 10.1007/s10009-010-0145-

y. url: http://link.springer.com/10.1007/s10009-010-0145-y.

[3] Jean-Raymond Abrial. Modeling in Event-B: System and Software Engineer-

ing. Cambridge University Press, 2010. isbn: 9780521895569. doi: DOI : 10 .

1017/CBO9781139195881. url: https://www.cambridge.org/core/books/

modeling-in-eventb/F39FF5F1B60F0AA585718B8E6A4F9DD7.

[4] J.-R. Abrial. The B-book: Assigning Programs to Meanings. New York, NY, USA:

Cambridge University Press, 1996. isbn: 0-521-49619-5.

[5] Kittisak Sa-Adaem and Yunyong Teng-Amnuay. “Assessing Privacy Protection in

Alumni Service”. In: International Journal of Computer and Electrical Engineer-

ing 5.4 (2013), pp. 424–429. issn: 17938163. doi: 10.7763/IJCEE.2013.V5.745.

url: http://www.ijcee.org/index.php?m=content&c=index&a=show&catid=

53&id=807.

[6] Cristina Alcaraz and Javier Lopez. “A Security Analysis for Wireless Sensor Mesh

Networks in Highly Critical Systems”. In: IEEE Transactions on Systems, Man,

and Cybernetics, Part C (Applications and Reviews) 40.4 (July 2010), pp. 419–

428. doi: 10.1109/TSMCC.2010.2045373. url: http://ieeexplore.ieee.org/

document/5443456/.

[7] Rob Alexander, Richard Hawkins, and Tim Kelly. “Security Assurance Cases:

Motivation and the State of the Art”. In: (2011), pp. 1–19. url: http : / /

citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.221.456&rep=

rep1&type=pdf.

233

http://www.researchgate.net/publication/265508170_A-STPA_An_Open_Tool_Support_for_System-Theoretic_Process_Analysis
http://www.researchgate.net/publication/265508170_A-STPA_An_Open_Tool_Support_for_System-Theoretic_Process_Analysis
http://www.researchgate.net/publication/265508170_A-STPA_An_Open_Tool_Support_for_System-Theoretic_Process_Analysis
https://doi.org/10.1007/s10009-010-0145-y
https://doi.org/10.1007/s10009-010-0145-y
http://link.springer.com/10.1007/s10009-010-0145-y
https://doi.org/DOI: 10.1017/CBO9781139195881
https://doi.org/DOI: 10.1017/CBO9781139195881
https://www.cambridge.org/core/books/modeling-in-eventb/F39FF5F1B60F0AA585718B8E6A4F9DD7
https://www.cambridge.org/core/books/modeling-in-eventb/F39FF5F1B60F0AA585718B8E6A4F9DD7
https://doi.org/10.7763/IJCEE.2013.V5.745
http://www.ijcee.org/index.php?m=content&c=index&a=show&catid=53&id=807
http://www.ijcee.org/index.php?m=content&c=index&a=show&catid=53&id=807
https://doi.org/10.1109/TSMCC.2010.2045373
http://ieeexplore.ieee.org/document/5443456/
http://ieeexplore.ieee.org/document/5443456/
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.221.456&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.221.456&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.221.456&rep=rep1&type=pdf

234 REFERENCES

[8] Nikolaos Alexiou, Stylianos Basagiannis, and Sophia Petridou. “Formal security

analysis of near field communication using model checking”. In: Computers &

Security 60 (2016), pp. 1–14. issn: 01674048. doi: 10.1016/j.cose.2016.

03 . 002. url: http : / / www . sciencedirect . com / science / article / pii /

S0167404816300244.

[9] H. Arabian-Hoseynabadi, H. Oraee, and P. J. Tavner. “Failure Modes and Ef-

fects Analysis (FMEA) for wind turbines”. In: International Journal of Electri-

cal Power and Energy Systems 32.7 (2010), pp. 817–824. issn: 01420615. doi:

10.1016/j.ijepes.2010.01.019. url: http://www.sciencedirect.com/

science/article/pii/S0142061510000281.

[10] Ramachandra Kamath Arbettu et al. “Security analysis of OpenDaylight, ONOS,

Rosemary and Ryu SDN controllers”. In: 2016 17th International Telecommuni-

cations Network Strategy and Planning Symposium, Networks 2016 - Confer-

ence Proceedings. IEEE, Sept. 2016, pp. 37–44. isbn: 9781467389914. doi: 10.

1109/NETWKS.2016.7751150. url: http://ieeexplore.ieee.org/document/

7751150/.

[11] Radhakisan Baheti and Helen Gill. “Cyber-physical systems”. In: The impact of

control technology 12 (2011), pp. 161–166.

[12] Federico Baronti et al. “Design and safety verification of a distributed charge

equalizer for modular li-ion batteries”. In: IEEE Transactions on Industrial In-

formatics 10.2 (May 2014), pp. 1003–1011. issn: 15513203. doi: 10.1109/TII.

2014.2299236. url: http://ieeexplore.ieee.org/document/6708416/.

[13] Earl T. Barr et al. “The oracle problem in software testing: A survey”. In:

IEEE Transactions on Software Engineering 41.5 (May 2015), pp. 507–525. issn:

00985589. doi: 10.1109/TSE.2014.2372785. url: http://ieeexplore.ieee.

org/document/6963470/.

[14] Paul Baybutt. “A critique of the Hazard and Operability (HAZOP) study”. In:

Journal of Loss Prevention in the Process Industries 33 (Jan. 2015), pp. 52–

58. issn: 09504230. doi: 10.1016/j.jlp.2014.11.010. url: https://www.

sciencedirect.com/science/article/pii/S0950423014001983.

[15] Patrick Behm et al. “Météor: A Successful Application of B in a Large Project”.

In: FM’99 — Formal Methods: World Congress on Formal Methods in the De-

velopment of Computing Systems Toulouse, France, September 20–24, 1999 Pro-

ceedings, Volume I. Ed. by Jeannette M. Wing, Jim Woodcock, and Jim Davies.

Berlin, Heidelberg: Springer Berlin Heidelberg, 1999, pp. 369–387. isbn: 978-3-

540-48119-5. doi: 10.1007/3-540-48119-2{_}22. url: http://dx.doi.org/

10.1007/3-540-48119-2_22.

https://doi.org/10.1016/j.cose.2016.03.002
https://doi.org/10.1016/j.cose.2016.03.002
http://www.sciencedirect.com/science/article/pii/S0167404816300244
http://www.sciencedirect.com/science/article/pii/S0167404816300244
https://doi.org/10.1016/j.ijepes.2010.01.019
http://www.sciencedirect.com/science/article/pii/S0142061510000281
http://www.sciencedirect.com/science/article/pii/S0142061510000281
https://doi.org/10.1109/NETWKS.2016.7751150
https://doi.org/10.1109/NETWKS.2016.7751150
http://ieeexplore.ieee.org/document/7751150/
http://ieeexplore.ieee.org/document/7751150/
https://doi.org/10.1109/TII.2014.2299236
https://doi.org/10.1109/TII.2014.2299236
http://ieeexplore.ieee.org/document/6708416/
https://doi.org/10.1109/TSE.2014.2372785
http://ieeexplore.ieee.org/document/6963470/
http://ieeexplore.ieee.org/document/6963470/
https://doi.org/10.1016/j.jlp.2014.11.010
https://www.sciencedirect.com/science/article/pii/S0950423014001983
https://www.sciencedirect.com/science/article/pii/S0950423014001983
https://doi.org/10.1007/3-540-48119-2{_}22
http://dx.doi.org/10.1007/3-540-48119-2_22
http://dx.doi.org/10.1007/3-540-48119-2_22

REFERENCES 235

[16] Ron Bell. “Introduction to IEC 61508”. In: Proceedings of the 10th Australian

Workshop on Safety Critical Systems and Software - Volume 55. SCS ’05. Dar-

linghurst, Australia, Australia: Australian Computer Society, Inc., 2006, pp. 3–

12. isbn: 1-920-68237-6. url: http://dl.acm.org/citation.cfm?id=1151816.

1151817.

[17] Izak Benbasat, David K Goldstein, and Melissa Mead. “The Case Research Strat-

egy in Studies of Information Systems”. In: MIS Quarterly 11.3 (1987), pp. 369–

386. issn: 02767783. doi: 10.2307/248684. url: http://www.jstor.org/

stable/248684.

[18] Saddek Bensalem et al. “An overview of SAL”. In: Proceedings of the 5th NASA

Langley Formal Methods Workshop. Williamsburg, VA. 2000.

[19] Chris Bogdiukiewicz et al. “Formal Development of Policing Functions for In-

telligent Systems”. In: 2017 IEEE 28th International Symposium on Software

Reliability Engineering (ISSRE) (Oct. 2017), pp. 194–204. doi: 10.1109/ISSRE.

2017.40. url: http://ieeexplore.ieee.org/document/8109086/.

[20] Hichem Boudali, Pepijn Crouzen, and Marielle Stoelinga. “Dynamic Fault Tree

Analysis Using Input/Output Interactive Markov Chains”. In: 37th Annual IEEE/I-

FIP International Conference on Dependable Systems and Networks (DSN’07).

IEEE, June 2007, pp. 708–717. isbn: 0-7695-2855-4. doi: 10.1109/DSN.2007.37.

url: http://ieeexplore.ieee.org/document/4273022/.

[21] Abdelkader Bouti and Daoud Ait Kadi. “A state-of-the-art review of FMEA/FMECA”.

In: International Journal of Reliability, Quality and Safety Engineering 1.4 (Dec.

1994), pp. 515–543. issn: 0218-5393. doi: 10.1142/S0218539394000362. url:

http://www.worldscientific.com/doi/abs/10.1142/S0218539394000362.

[22] J.B. Bowles. “The new SAE FMECA standard”. In: Reliability and Maintainabil-

ity Symposium. 1998 Proceedings. International Symposium on Product Quality

and Integrity (1998), pp. 48–53. issn: 0149-144X. doi: 10.1109/RAMS.1998.

653561. url: http://ieeexplore.ieee.org/document/653561/.

[23] F. den Braber et al. “Model-based security analysis in seven steps - A guided tour

to the CORAS method”. In: BT Technology Journal 25.1 (Jan. 2007), pp. 101–

117. issn: 13583948. doi: 10.1007/s10550-007-0013-9. url: http://link.

springer.com/10.1007/s10550-007-0013-9.

[24] Michael Butler and IssamMaamria. “Mathematical Extension in Event-B through

the Rodin Theory Component”. In: June (2010), pp. 1–9.

[25] Michael Butler and Divakar Yadav. “An incremental development of the Mondex

system in Event-B”. In: Formal Aspects of Computing 20.1 (2008), pp. 61–77.

doi: 10.1007/s00165- 007- 0061- 4. url: https://link.springer.com/

article/10.1007%2Fs00165-007-0061-4.

http://dl.acm.org/citation.cfm?id=1151816.1151817
http://dl.acm.org/citation.cfm?id=1151816.1151817
https://doi.org/10.2307/248684
http://www.jstor.org/stable/248684
http://www.jstor.org/stable/248684
https://doi.org/10.1109/ISSRE.2017.40
https://doi.org/10.1109/ISSRE.2017.40
http://ieeexplore.ieee.org/document/8109086/
https://doi.org/10.1109/DSN.2007.37
http://ieeexplore.ieee.org/document/4273022/
https://doi.org/10.1142/S0218539394000362
http://www.worldscientific.com/doi/abs/10.1142/S0218539394000362
https://doi.org/10.1109/RAMS.1998.653561
https://doi.org/10.1109/RAMS.1998.653561
http://ieeexplore.ieee.org/document/653561/
https://doi.org/10.1007/s10550-007-0013-9
http://link.springer.com/10.1007/s10550-007-0013-9
http://link.springer.com/10.1007/s10550-007-0013-9
https://doi.org/10.1007/s00165-007-0061-4
https://link.springer.com/article/10.1007%2Fs00165-007-0061-4
https://link.springer.com/article/10.1007%2Fs00165-007-0061-4

236 REFERENCES

[26] H. Cai et al. “Modelling Safety Monitors of Safety-Critical Railway Systems by

Formal Methods”. In: 6th IET Conference on Railway Condition Monitoring

(RCM 2014). Institution of Engineering and Technology, 2014, pp. 2–2. isbn:

978-1-84919-913-1. doi: 10 . 1049 / cp . 2014 . 0993. url: http : / / digital -

library.theiet.org/content/conferences/10.1049/cp.2014.0993.

[27] Alvaro A Cárdenas et al. “Challenges for Securing Cyber Physical Systems”. In:

Workshop on Future Directions in Cyber-physical Systems Security (2009). url:

https://chess.eecs.berkeley.edu/pubs/601.html.

[28] Common Criteria CC. Common Criteria for Information Technology Security

Evaluation, v3.1. 3.1. Sept. 2012. url: http://www.commoncriteriaportal.

org/.

[29] Marko Čepin and Borut Mavko. “A dynamic fault tree”. In: Reliability Engi-

neering and System Safety 75.1 (Jan. 2002), pp. 83–91. issn: 09518320. doi:

10.1016/S0951-8320(01)00121-1. url: https://www.sciencedirect.com/

science/article/pii/S0951832001001211.

[30] Civil Aviation Authority. The Air Navigation Order 2016. 2016. url: http:

//www.legislation.gov.uk/uksi/2016/765/contents/made.

[31] John Colley and Michael Butler. “A Formal, Systematic Approach to STPA using

Event-B Refinement and Proof”. In: 21th Safety Critical System Symposium (Feb.

2013). url: http://eprints.soton.ac.uk/352155/.

[32] International Electrotechnical Commission. IEC 61508: Functional safety of elec-

trical/electronic/programmable electronic safety-related systems. 2010.

[33] International Electrotechnical Commission. IEC 61511: Functional safety – Safety

instrumented systems for the process industry sector. 2.1. Geneva, 2017, p. 163.

[34] International Electrotechnical Commission. IEC 61513: Nuclear power plants -

Instrumentation and control important to safety - General requirements for sys-

tems. 2.0. Geneva, Switzerland: International Electrotechnical Commission, 2011,

p. 205.

[35] International Electrotechnical Commission. IEC 62443: Security for industrial

automation and control systems. 1.0. Geneva, Switzerland: International Elec-

trotechnical Commission, 2018, p. 338.

[36] F Crawley and B Tyler. HAZOP: Guide to Best Practice. Elsevier Science, 2015.

isbn: 9780323394604. url: https://books.google.co.uk/books?id=xaf0rQEACAAJ.

[37] Anupam Datta et al. “On adversary models and compositional security”. In:

IEEE Security & Privacy 3 (2010), pp. 26–32.

[38] Alexandre David et al. Uppaal SMC Tutorial. Tech. rep. 2018, pp. 1–28. url:

http://www.it.uu.se/research/group/darts/papers/texts/uppaal-smc-

tutorial.pdf.

https://doi.org/10.1049/cp.2014.0993
http://digital-library.theiet.org/content/conferences/10.1049/cp.2014.0993
http://digital-library.theiet.org/content/conferences/10.1049/cp.2014.0993
https://chess.eecs.berkeley.edu/pubs/601.html
http://www.commoncriteriaportal.org/
http://www.commoncriteriaportal.org/
https://doi.org/10.1016/S0951-8320(01)00121-1
https://www.sciencedirect.com/science/article/pii/S0951832001001211
https://www.sciencedirect.com/science/article/pii/S0951832001001211
http://www.legislation.gov.uk/uksi/2016/765/contents/made
http://www.legislation.gov.uk/uksi/2016/765/contents/made
http://eprints.soton.ac.uk/352155/
https://books.google.co.uk/books?id=xaf0rQEACAAJ
http://www.it.uu.se/research/group/darts/papers/texts/uppaal-smc-tutorial.pdf
http://www.it.uu.se/research/group/darts/papers/texts/uppaal-smc-tutorial.pdf

REFERENCES 237

[39] United States. Department of Defense. Mil-Std-1629a: 1980: Procedures for Per-

forming a Failure Mode, Effects and Criticality Analysis. Department of Defense,

1980.

[40] Mina Deng et al. “A privacy threat analysis framework: supporting the elicitation

and fulfillment of privacy requirements”. In: Requirements Engineering 16.1 (Mar.

2011), pp. 3–32. doi: 10.1007/s00766- 010- 0115- 7. url: http://link.

springer.com/10.1007/s00766-010-0115-7.

[41] Culture Department of Digital Media and Sport. Developing our capability in

cyber security. Tech. rep. July. Department of Digital, Media, Culture and Sport,

2015. url: https : / / assets . publishing . service . gov . uk / government /

uploads/system/uploads/attachment_data/file/496340/ACE-CSR_Brochure_

accessible_2015.pdf.

[42] Department of Energy and Climate Change. Smart Metering Implementation

Programme - End to End Technical Architecture. 2015. url: https://www.

smartenergycodecompany.co.uk/document- download- centre/download-

info/technical-architecture-document/.

[43] T Dimitrakos and B Ritchie. “Model based Security Risk Analysis for Web Ap-

plications : The CORAS approach”. In: Security (2002).

[44] Danny Dolev and Andrew C. Yao. “On the Security of Public Key Protocols”. In:

IEEE Transactions on Information Theory 29.2 (Mar. 1983), pp. 198–208. issn:

15579654. doi: 10.1109/TIT.1983.1056650. url: http://ieeexplore.ieee.

org/document/1056650/.

[45] Jordi Dunjó et al. “Hazard and operability (HAZOP) analysis. A literature re-

view”. In: Journal of Hazardous Materials 173.1-3 (Jan. 2010), pp. 19–32. issn:

03043894. doi: 10 . 1016 / j . jhazmat . 2009 . 08 . 076. url: https : / / www .

sciencedirect.com/science/article/pii/S0304389409013727?via%3Dihub.

[46] George B Dyson. Darwin Among the Machines: The Evolution of Global Intelli-

gence. Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc., 1997.

isbn: 0201406497. url: https://dl.acm.org/citation.cfm?id=523531.

[47] Clifton a. Ericson. “Fault Tree Analysis – A History”. In: The 17th International

System Safety Conference (1999).

[48] European Union Agency for Cybersecurity (ENISA). Baseline Security Recom-

mendations for IoT in the context of Critical Information Infrastructures. Novem-

ber. 2017, pp. –. isbn: 978-92-9204-236-3. doi: 10.2824/03228. url: https://

www.enisa.europa.eu/publications/baseline-security-recommendations-

for-iot.

https://doi.org/10.1007/s00766-010-0115-7
http://link.springer.com/10.1007/s00766-010-0115-7
http://link.springer.com/10.1007/s00766-010-0115-7
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/496340/ACE-CSR_Brochure_accessible_2015.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/496340/ACE-CSR_Brochure_accessible_2015.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/496340/ACE-CSR_Brochure_accessible_2015.pdf
https://www.smartenergycodecompany.co.uk/document-download-centre/download-info/technical-architecture-document/
https://www.smartenergycodecompany.co.uk/document-download-centre/download-info/technical-architecture-document/
https://www.smartenergycodecompany.co.uk/document-download-centre/download-info/technical-architecture-document/
https://doi.org/10.1109/TIT.1983.1056650
http://ieeexplore.ieee.org/document/1056650/
http://ieeexplore.ieee.org/document/1056650/
https://doi.org/10.1016/j.jhazmat.2009.08.076
https://www.sciencedirect.com/science/article/pii/S0304389409013727?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S0304389409013727?via%3Dihub
https://dl.acm.org/citation.cfm?id=523531
https://doi.org/10.2824/03228
https://www.enisa.europa.eu/publications/baseline-security-recommendations-for-iot
https://www.enisa.europa.eu/publications/baseline-security-recommendations-for-iot
https://www.enisa.europa.eu/publications/baseline-security-recommendations-for-iot

238 REFERENCES

[49] C H Fleming, M Seth Placke, and Nancy G Leveson. Technical Report: STPA

Analysis of NextGen Management Components: Ground Interval Management

(GIM) and Flight Deck Interval Management (FIM). Tech. rep. Cambridge, Mas-

sachusetts: Massachusetts Institute of Technology, 2013, p. 95. url: http://

sunnyday.mit.edu/NextGen-Report.pdf.

[50] Rune Fredriksen et al. “The CORAS Framework for a Model-Based Risk Manage-

ment Process”. In: Safecomp 2002. 2002. isbn: 9783540441571. doi: 10.1007/3-

540-45732-1{_}11.

[51] Ivo Friedberg et al. “STPA-SafeSec: Safety and security analysis for cyber-physical

systems”. In: Journal of Information Security and Applications 34 (2017), pp. 183–

196. issn: 22142126. doi: 10.1016/j.jisa.2016.05.008. url: http://www.

sciencedirect.com/science/article/pii/S2214212616300850.

[52] Amjad Gawanmeh et al. “Formal Verification of Secrecy in Group Key Protocols

Using Event-B”. In: Int. J. Communications, Network and System Sciences 5.03

(Mar. 2012), pp. 165–177. issn: 1913-3715. doi: 10.4236/ijcns.2012.53021.

url: http://www.scirp.org/journal/doi.aspx?DOI=10.4236/ijcns.2012.

53021.

[53] Warren Gilchrist. “Modelling failure modes and effects analysis”. In: International

Journal of Quality & Reliability Management 10.5 (1993). issn: 0265671X. doi:

10.1108/02656719310040105. url: https://doi.org/10.1108/02656719310040105.

[54] Bill Haskins et al. “Error Cost Escalation Through the Project Life Cycle”. In:

INCOSE International Symposium 14.1 (June 2004), pp. 1723–1737. issn: 2334-

5837. doi: 10.1002/j.2334-5837.2004.tb00608.x. url: https://doi.org/

10.1002/j.2334-5837.2004.tb00608.x.

[55] Shawn Hernan et al. “Threat modeling-uncover security design flaws using the

stride approach”. In: MSDN Magazine November (Nov. 2006), pp. 68–75. issn:

1528-4859.

[56] Thai S. Hoang, David Basin, and Jean-Raymond Abrial. “Specifying Access Con-

trol in Event-B”. In: Technical report 624 (2009). doi: 10 . 3929 / ETHZ - A -

006733720. url: https:// www.research- collection.ethz.ch /handle/

20.500.11850/15887.

[57] Thai Son Hoang. “Reasoning about almost-certain convergence properties using

Event-B”. In: Science of Computer Programming 81 (Feb. 2014), pp. 108–121.

issn: 0167-6423. doi: 10.1016/J.SCICO.2013.08.006. url: https://www.

sciencedirect.com/science/article/pii/S0167642313001998?via%3Dihub.

[58] Thai Son Hoang et al. “Rodin: an open toolset for modelling and reasoning in

Event-B”. In: International Journal on Software Tools for Technology Transfer

12.6 (2010), pp. 447–466. issn: 1433-2779. doi: 10.1007/s10009-010-0145-y.

http://sunnyday.mit.edu/NextGen-Report.pdf
http://sunnyday.mit.edu/NextGen-Report.pdf
https://doi.org/10.1007/3-540-45732-1{_}11
https://doi.org/10.1007/3-540-45732-1{_}11
https://doi.org/10.1016/j.jisa.2016.05.008
http://www.sciencedirect.com/science/article/pii/S2214212616300850
http://www.sciencedirect.com/science/article/pii/S2214212616300850
https://doi.org/10.4236/ijcns.2012.53021
http://www.scirp.org/journal/doi.aspx?DOI=10.4236/ijcns.2012.53021
http://www.scirp.org/journal/doi.aspx?DOI=10.4236/ijcns.2012.53021
https://doi.org/10.1108/02656719310040105
https://doi.org/10.1108/02656719310040105
https://doi.org/10.1002/j.2334-5837.2004.tb00608.x
https://doi.org/10.1002/j.2334-5837.2004.tb00608.x
https://doi.org/10.1002/j.2334-5837.2004.tb00608.x
https://doi.org/10.3929/ETHZ-A-006733720
https://doi.org/10.3929/ETHZ-A-006733720
https://www.research-collection.ethz.ch/handle/20.500.11850/15887
https://www.research-collection.ethz.ch/handle/20.500.11850/15887
https://doi.org/10.1016/J.SCICO.2013.08.006
https://www.sciencedirect.com/science/article/pii/S0167642313001998?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S0167642313001998?via%3Dihub
https://doi.org/10.1007/s10009-010-0145-y

REFERENCES 239

[59] C. A. R. Hoare. “Communicating sequential processes”. In: Communications of

the ACM. Vol. 21. 8. Springer, 1978, pp. 666–677. doi: 10.1145/359576.359585.

[60] Jon Holt and Simon Perry. SysML for Systems Engineering: A Model-Based Ap-

proach. 2018. isbn: 9781849196512. doi: 10.1049/pbpc020e.

[61] Giles Howard et al. “A methodology for assuring the safety and security of critical

infrastructure based on STPA and Event-B”. In: International Journal of Critical

Computer-Based Systems 9.1/2 (2019), p. 56. issn: 1757-8779. doi: 10.1504/

ijccbs.2019.10020048. url: http://www.inderscience.com/link.php?id=

98815.

[62] G. Howard et al. “Formal analysis of safety and security requirements of critical

systems supported by an extended STPA methodology”. In: Proceedings - 2nd

IEEE European Symposium on Security and Privacy Workshops, EuroS and PW

2017. 2017. isbn: 9780769561073. doi: 10.1109/EuroSPW.2017.68.

[63] IEC 61882. “Hazard and operability studies (HAZOP studies)-application guide.

[IEC 61882]”. In: International Electrotechnical Commission (2001).

[64] IoT Security Foundation. “IOT Security Archtecture and Policy for the Home - a

Hub Based Approach”. 2018. url: https://www.iotsecurityfoundation.org/

wp-content/uploads/2018/11/IoT-Security-Architecture-and-Policy-

for-the-Home-a-Hub-Based-Approach.pdf.

[65] Takuto Ishimatsu et al. “Hazard analysis of complex spacecraft using systems-

theoretic process analysis”. In: Journal of Spacecraft and Rockets 51.2 (2014),

pp. 509–522. doi: 10.2514/1.A32449. url: https://arc.aiaa.org/doi/pdf/

10.2514/1.A32449.

[66] E N ISO. “13849-1. Safety of machinery, Safety-related parts of control systems,

Part 1: General principles for design”. In: International Organization for Stan-

dardization (2015).

[67] Michael Jastram and Michael Butler. Rodin User’s Handbook. Tech. rep. 2012.

url: https://www3.hhu.de/stups/handbook/rodin/current/pdf/rodin-

doc.pdf.

[68] Sohag Kabir. An overview of fault tree analysis and its application in model based

dependability analysis. July 2017. doi: 10.1016/j.eswa.2017.01.058. url:

https://linkinghub.elsevier.com/retrieve/pii/S0957417417300714.

[69] Bernhard Kaiser, Catharina Gramlich, and Marc Förster. “State/event fault

trees-A safety analysis model for software-controlled systems”. In: Reliability En-

gineering and System Safety 92.11 (Nov. 2007), pp. 1521–1537. issn: 09518320.

doi: 10.1016/j.ress.2006.10.010. url: https://www.sciencedirect.com/

science/article/pii/S0951832006002092.

https://doi.org/10.1145/359576.359585
https://doi.org/10.1049/pbpc020e
https://doi.org/10.1504/ijccbs.2019.10020048
https://doi.org/10.1504/ijccbs.2019.10020048
http://www.inderscience.com/link.php?id=98815
http://www.inderscience.com/link.php?id=98815
https://doi.org/10.1109/EuroSPW.2017.68
https://www.iotsecurityfoundation.org/wp-content/uploads/2018/11/IoT-Security-Architecture-and-Policy-for-the-Home-a-Hub-Based-Approach.pdf
https://www.iotsecurityfoundation.org/wp-content/uploads/2018/11/IoT-Security-Architecture-and-Policy-for-the-Home-a-Hub-Based-Approach.pdf
https://www.iotsecurityfoundation.org/wp-content/uploads/2018/11/IoT-Security-Architecture-and-Policy-for-the-Home-a-Hub-Based-Approach.pdf
https://doi.org/10.2514/1.A32449
https://arc.aiaa.org/doi/pdf/10.2514/1.A32449
https://arc.aiaa.org/doi/pdf/10.2514/1.A32449
https://www3.hhu.de/stups/handbook/rodin/current/pdf/rodin-doc.pdf
https://www3.hhu.de/stups/handbook/rodin/current/pdf/rodin-doc.pdf
https://doi.org/10.1016/j.eswa.2017.01.058
https://linkinghub.elsevier.com/retrieve/pii/S0957417417300714
https://doi.org/10.1016/j.ress.2006.10.010
https://www.sciencedirect.com/science/article/pii/S0951832006002092
https://www.sciencedirect.com/science/article/pii/S0951832006002092

240 REFERENCES

[70] Nektarios Karanikas, Maria Mikela Chatzimichailidou, and Martin Rejzek. Inter-

national Cross-Industry Safety Conference (ICSC) and European STAMP Work-

shop and Conference (ESWC) 2018 Editorial of Proceedings. Tech. rep. 2018,

p. 18. url: https://www.matec-conferences.org/articles/matecconf/pdf/

2019/22/matecconf_ICSC-ESWC2018_About-the-Conference.pdf.

[71] Vikash Katta et al. “Requirements management in a combined process for safety

and security assessments”. In: Proceedings - 2013 International Conference on

Availability, Reliability and Security, ARES 2013. IEEE, Sept. 2013, pp. 780–786.

isbn: 9780769550084. doi: 10.1109/ARES.2013.104. url: http://ieeexplore.

ieee.org/document/6657320/.

[72] Rafiullah Khan et al. “STRIDE-based threat modeling for cyber-physical sys-

tems”. In: 2017 IEEE PES Innovative Smart Grid Technologies Conference Eu-

rope, ISGT-Europe 2017 - Proceedings. Vol. 2018-Janua. IEEE, Sept. 2018, pp. 1–

6. isbn: 9781538619537. doi: 10.1109/ISGTEurope.2017.8260283. url: http:

//ieeexplore.ieee.org/document/8260283/.

[73] Jin Hyun Kim et al. “Formal analysis and testing of real-time automotive sys-

tems using UPPAAL tools”. In: Lecture Notes in Computer Science (including

subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinfor-

matics). Vol. 9128. Springer, Cham, 2015, pp. 47–61. isbn: 9783319194578. doi:

10.1007/978-3-319-19458-5{_}4. url: http://link.springer.com/10.

1007/978-3-319-19458-5_4.

[74] Rowan Klöti, Vasileios Kotronis, and Paul Smith. “OpenFlow: A security anal-

ysis”. In: Proceedings - International Conference on Network Protocols, ICNP.

IEEE, Oct. 2013, pp. 1–6. isbn: 9781479912704. doi: 10.1109/ICNP.2013.

6733671. url: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?

arnumber=6733671.

[75] Siwar Kriaa et al. A survey of approaches combining safety and security for in-

dustrial control systems. 2015. doi: 10.1016/j.ress.2015.02.008. url: http:

//dx.doi.org/10.1016/j.ress.2015.02.008.

[76] Sentot Kromodimoeljo and Peter A Lindsay. “Automatic Generation of Minimal

Cut Sets”. In: Electronic Proceedings in Theoretical Computer Science 184 (2015),

pp. 33–47. issn: 2075-2180. doi: 10.4204/EPTCS.184.3. url: https://arxiv.

org/pdf/1506.03555.pdf%20http://arxiv.org/abs/1506.03555.

[77] Rajesh Kumar and Marielle Stoelinga. “Quantitative security and safety analysis

with attack-fault trees”. In: Proceedings of IEEE International Symposium on

High Assurance Systems Engineering (2017), pp. 25–32. issn: 15302059. doi:

10.1109/HASE.2017.12.

https://www.matec-conferences.org/articles/matecconf/pdf/2019/22/matecconf_ICSC-ESWC2018_About-the-Conference.pdf
https://www.matec-conferences.org/articles/matecconf/pdf/2019/22/matecconf_ICSC-ESWC2018_About-the-Conference.pdf
https://doi.org/10.1109/ARES.2013.104
http://ieeexplore.ieee.org/document/6657320/
http://ieeexplore.ieee.org/document/6657320/
https://doi.org/10.1109/ISGTEurope.2017.8260283
http://ieeexplore.ieee.org/document/8260283/
http://ieeexplore.ieee.org/document/8260283/
https://doi.org/10.1007/978-3-319-19458-5{_}4
http://link.springer.com/10.1007/978-3-319-19458-5_4
http://link.springer.com/10.1007/978-3-319-19458-5_4
https://doi.org/10.1109/ICNP.2013.6733671
https://doi.org/10.1109/ICNP.2013.6733671
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6733671
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6733671
https://doi.org/10.1016/j.ress.2015.02.008
http://dx.doi.org/10.1016/j.ress.2015.02.008
http://dx.doi.org/10.1016/j.ress.2015.02.008
https://doi.org/10.4204/EPTCS.184.3
https://arxiv.org/pdf/1506.03555.pdf%20http://arxiv.org/abs/1506.03555
https://arxiv.org/pdf/1506.03555.pdf%20http://arxiv.org/abs/1506.03555
https://doi.org/10.1109/HASE.2017.12

REFERENCES 241

[78] Robert Künnemann and Graham Steel. “YubiSecure? Formal Security Analysis

Results for the Yubikey and YubiHSM”. In: Security and Trust Management:

8th International Workshop, STM 2012, Pisa, Italy, September 13-14, 2012, Re-

vised Selected Papers. Ed. by Audun Jøsang, Pierangela Samarati, and Marinella

Petrocchi. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 257–272.

isbn: 978-3-642-38004-4. doi: 10.1007/978- 3- 642- 38004- 4{_}17. url:

http://dx.doi.org/10.1007/978-3-642-38004-4_17.

[79] Kim G. Larsen, Marius Mikucionis, and Brian Nielsen. “Online Testing of Real-

time Systems Using Uppaal”. In: Formal Approaches to Software Testing. Ed.

by Jens Grabowski and Brian Nielsen. Berlin, Heidelberg: Springer Berlin Hei-

delberg, 2005, pp. 79–94. isbn: 978-3-540-31848-4. doi: 10.1007/978-3-540-

31848-4{_}6. url: http://link.springer.com/10.1007/978-3-540-31848-

4_6.

[80] Kim G Larsen, Paul Pettersson, and Wang Yi. Uppaal in a nutshell. 1997. doi:

10.1007/s100090050010. url: http://user.it.uu.se/~yi/pdf-files/2017/

nutshell.pdf.

[81] W. S. Lee et al. “Fault Tree Analysis, Methods, and Applications - A Review”.

In: IEEE Transactions on Reliability R-34.3 (Aug. 1985), pp. 194–203. issn:

15581721. doi: 10.1109/TR.1985.5222114. url: http://ieeexplore.ieee.

org/document/5222114/.

[82] W. S. Lee et al. “Fault Tree Analysis, Methods, and Applications - A Review”.

In: IEEE Transactions on Reliability R-34.3 (Aug. 1985), pp. 194–203. issn:

15581721. doi: 10.1109/TR.1985.5222114. url: http://ieeexplore.ieee.

org/document/5222114/.

[83] Michael Leuschel and Michael Butler. “ProB: A Model Checker for B”. In: FME

2003 Formal Methods (2003). issn: 03029743. doi: 10.1007/b13229.

[84] Michael Leuschel and Michael Butler. “ProB: An automated analysis toolset for

the B method”. In: International Journal on Software Tools for Technology Trans-

fer (2008). issn: 14332779. doi: 10.1007/s10009-007-0063-9.

[85] Nancy Leveson. “A new accident model for engineering safer systems”. In: Safety

Science 42.4 (Apr. 2004), pp. 237–270. issn: 09257535. doi: 10.1016/S0925-

7535(03)00047-X. url: http://www.sciencedirect.com/science/article/

pii/S092575350300047X.

[86] Nancy Leveson. “An STPA Primer”. Cambridge, Massachusetts, 2013. url: https:

//psas.scripts.mit.edu/home/home/stpa-primer/.

[87] Nancy Leveson. STAMP Workshop - Partnership for Systems Approaches to

Safety and Security. 2019.

https://doi.org/10.1007/978-3-642-38004-4{_}17
http://dx.doi.org/10.1007/978-3-642-38004-4_17
https://doi.org/10.1007/978-3-540-31848-4{_}6
https://doi.org/10.1007/978-3-540-31848-4{_}6
http://link.springer.com/10.1007/978-3-540-31848-4_6
http://link.springer.com/10.1007/978-3-540-31848-4_6
https://doi.org/10.1007/s100090050010
http://user.it.uu.se/~yi/pdf-files/2017/nutshell.pdf
http://user.it.uu.se/~yi/pdf-files/2017/nutshell.pdf
https://doi.org/10.1109/TR.1985.5222114
http://ieeexplore.ieee.org/document/5222114/
http://ieeexplore.ieee.org/document/5222114/
https://doi.org/10.1109/TR.1985.5222114
http://ieeexplore.ieee.org/document/5222114/
http://ieeexplore.ieee.org/document/5222114/
https://doi.org/10.1007/b13229
https://doi.org/10.1007/s10009-007-0063-9
https://doi.org/10.1016/S0925-7535(03)00047-X
https://doi.org/10.1016/S0925-7535(03)00047-X
http://www.sciencedirect.com/science/article/pii/S092575350300047X
http://www.sciencedirect.com/science/article/pii/S092575350300047X
https://psas.scripts.mit.edu/home/home/stpa-primer/
https://psas.scripts.mit.edu/home/home/stpa-primer/

242 REFERENCES

[88] Nancy G. Leveson. Engineering a Safer World: Systems Thinking Applied to

Safety. The MIT Press, 2011, p. 555. isbn: 9780262016629. doi: 10 . 1017 /

CBO9781107415324.004. url: https://mitpress.mit.edu/books/engineering-

safer-world.

[89] Nancy G Leveson. “Rasmussen’s legacy: A paradigm change in engineering for

safety”. In: Applied Ergonomics 59.Part B (2017), pp. 581–591. issn: 18729126.

doi: 10.1016/j.apergo.2016.01.015. url: http://www.sciencedirect.com/

science/article/pii/S0003687016300151.

[90] Nancy G Leveson, Margaret] Stringfellow, and John Thomas. A Systems Ap-

proach to Accident Analysis. Tech. rep. Cambridge, Massachusetts: Massachusetts

Institute of Technology, 2009. url: http://sunnyday.mit.edu/safer-world/

refinery-edited.doc.

[91] Nancy Leveson and John Thomas. STPA Handbook. 2018, p. 188. url: http:

//psas.scripts.mit.edu/home/get_file.php?name=STPA_handbook.pdf.

[92] Nancy Leveson et al. “Engineering Resilience into Safety-Critical Systems”. In:

Resilience Engineering: Concepts And Precepts (2006), pp. 95–123. issn: 0-7546-

4641-6.

[93] Ian Levy and National Cyber Security Centre. The smart security behind the GB

Smart Metering System. 2016. url: https://www.ncsc.gov.uk/information/

the-smart-security-behind-the-gb-smart-metering-system.

[94] Elena Lisova, Irfan Sljivo, and Aida Causevic. “Safety and Security Co-Analyses:

A Systematic Literature Review”. In: IEEE Systems Journal PP (2018), pp. 1–

12. issn: 1932-8184. doi: 10 . 1109 / JSYST . 2018 . 2881017. url: https : / /

ieeexplore.ieee.org/document/8556001/.

[95] lucidchart. Online Diagram Software and Visual Solution — Lucidchart. 2017.

url: https://www.lucidchart.com/.

[96] Derek Mannering, Jon G Hall, and Lucia Rapanotti. “Safety process improve-

ment with POSE and alloy”. In: Improvements in System Safety - Proceedings

of the 16th Safety-Critical Systems Symposium, SSS 2008. 2008, pp. 25–41. isbn:

9781848000995. doi: 10.1007/978-1-84800-100-8{_}3. url: https://link.

springer.com/content/pdf/10.1007%2F978-3-540-75101-4_23.pdf.

[97] Sjouke Mauw and Martijn Oostdijk. “Foundations of Attack Trees”. In: Informa-

tion Security and Cryptology - ICISC 2005. Ed. by Dong Ho Won and Seungjoo

Kim. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp. 186–198. isbn:

978-3-540-33355-5.

https://doi.org/10.1017/CBO9781107415324.004
https://doi.org/10.1017/CBO9781107415324.004
https://mitpress.mit.edu/books/engineering-safer-world
https://mitpress.mit.edu/books/engineering-safer-world
https://doi.org/10.1016/j.apergo.2016.01.015
http://www.sciencedirect.com/science/article/pii/S0003687016300151
http://www.sciencedirect.com/science/article/pii/S0003687016300151
http://sunnyday.mit.edu/safer-world/refinery-edited.doc
http://sunnyday.mit.edu/safer-world/refinery-edited.doc
http://psas.scripts.mit.edu/home/get_file.php?name=STPA_handbook.pdf
http://psas.scripts.mit.edu/home/get_file.php?name=STPA_handbook.pdf
https://www.ncsc.gov.uk/information/the-smart-security-behind-the-gb-smart-metering-system
https://www.ncsc.gov.uk/information/the-smart-security-behind-the-gb-smart-metering-system
https://doi.org/10.1109/JSYST.2018.2881017
https://ieeexplore.ieee.org/document/8556001/
https://ieeexplore.ieee.org/document/8556001/
https://www.lucidchart.com/
https://doi.org/10.1007/978-1-84800-100-8{_}3
https://link.springer.com/content/pdf/10.1007%2F978-3-540-75101-4_23.pdf
https://link.springer.com/content/pdf/10.1007%2F978-3-540-75101-4_23.pdf

REFERENCES 243

[98] John McDermott and Chris Fox. “Using abuse case models for security require-

ments analysis”. In: Proceedings - Annual Computer Security Applications Con-

ference, ACSAC. Vol. Part F1334. IEEE Comput. Soc, 1999, pp. 55–64. isbn:

0769503462. doi: 10.1109/CSAC.1999.816013. url: http://ieeexplore.

ieee.org/document/816013/.

[99] Thomas C. McKelvey. “How to Improve the Effectiveness of Hazard and Oper-

ability Analysis”. In: IEEE Transactions on Reliability 37.2 (June 1988), pp. 167–

170. issn: 15581721. doi: 10.1109/24.3737. url: http://ieeexplore.ieee.

org/document/3737/.

[100] Murat Moran, James Heather, and Steve Schneider. “Verifying anonymity in

voting systems using CSP”. In: Formal Aspects of Computing 26.1 (Jan. 2014),

pp. 63–98. issn: 09345043. doi: 10.1007/s00165- 012- 0268- x. url: http:

//link.springer.com/10.1007/s00165-012-0268-x.

[101] Shoichi Morimoto et al. “Formal verification of security specifications with com-

mon criteria”. In: Proceedings of the 2007 ACM Symposium on Applied computing

- SAC ’07. New York, New York, USA: ACM Press, 2007, pp. 1506–1512. isbn:

1595934804. doi: 10.1145/1244002.1244325. url: http://portal.acm.org/

citation.cfm?doid=1244002.1244325.

[102] Theodore Mouroutis and Athanasios Lioumpas. RERUM Deliverable D2.1 Use-

cases definition and threat analysis. Tech. rep. 2014. url: https://bscw.ict-

rerum.eu/pub/bscw.cgi/d14540/RERUM_deliverable_D2_1_rev1_1.pdf.

[103] Chunyan Mu. “On information flow control in event-B and refinement”. In: Pro-

ceedings - 2013 International Symposium on Theoretical Aspects of Software En-

gineering, TASE 2013. IEEE, July 2013, pp. 225–232. isbn: 9780768550534. doi:

10.1109/TASE.2013.43. url: http://ieeexplore.ieee.org/document/

6597902/.

[104] Jan Peter Nicklas et al. “Use case based approach for an integrated consideration

of safety and security aspects for smart home applications”. In: 2016 11th Sys-

tems of Systems Engineering Conference, SoSE 2016. IEEE, June 2016, pp. 1–

6. isbn: 9781467387279. doi: 10.1109/SYSOSE.2016.7542908. url: http:

//ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7542908.

[105] Tope Omitola, Abdolbaghi Rezazadeh, and Michael Butler. “Making (Implicit)

Security Requirements Explicit for Cyber-Physical Systems: A Maritime Use

Case Security Analysis”. In: Database and Expert Systems Applications. Ed. by

Gabriele Anderst-Kotsis, A Min Tjoa, and Ismail Khalil. Cham: Springer Interna-

tional Publishing, Aug. 2019, pp. 75–84. isbn: 978-3-030-27684-3. doi: 10.1007/

978-3-030-27684-3{_}11. url: http://link.springer.com/10.1007/978-

3-030-27684-3_11.

https://doi.org/10.1109/CSAC.1999.816013
http://ieeexplore.ieee.org/document/816013/
http://ieeexplore.ieee.org/document/816013/
https://doi.org/10.1109/24.3737
http://ieeexplore.ieee.org/document/3737/
http://ieeexplore.ieee.org/document/3737/
https://doi.org/10.1007/s00165-012-0268-x
http://link.springer.com/10.1007/s00165-012-0268-x
http://link.springer.com/10.1007/s00165-012-0268-x
https://doi.org/10.1145/1244002.1244325
http://portal.acm.org/citation.cfm?doid=1244002.1244325
http://portal.acm.org/citation.cfm?doid=1244002.1244325
https://bscw.ict-rerum.eu/pub/bscw.cgi/d14540/RERUM_deliverable_D2_1_rev1_1.pdf
https://bscw.ict-rerum.eu/pub/bscw.cgi/d14540/RERUM_deliverable_D2_1_rev1_1.pdf
https://doi.org/10.1109/TASE.2013.43
http://ieeexplore.ieee.org/document/6597902/
http://ieeexplore.ieee.org/document/6597902/
https://doi.org/10.1109/SYSOSE.2016.7542908
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7542908
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7542908
https://doi.org/10.1007/978-3-030-27684-3{_}11
https://doi.org/10.1007/978-3-030-27684-3{_}11
http://link.springer.com/10.1007/978-3-030-27684-3_11
http://link.springer.com/10.1007/978-3-030-27684-3_11

244 REFERENCES

[106] R.S.H. Piggin. “Development of industrial cyber security standards: IEC 62443

for SCADA and industrial control system security”. In: IET Conference on Con-

trol and Automation 2013: Uniting Problems and Solutions. Institution of En-

gineering and Technology, 2013, pp. 11–11. isbn: 978-1-84919-710-6. doi: 10.

1049/cp.2013.0001. url: https://digital-library.theiet.org/content/

conferences/10.1049/cp.2013.0001.

[107] Sam Procter. “A development and assurance process for Medical Application

Platform apps”. PhD thesis. Kansas State University, 2016, p. 276. url: http:

//www.clausewitz.com/bibl/Kipp-MilitarizationOfMarxism.pdf.

[108] Javier Puente et al. “A decision support system for applying failure mode and

effects analysis”. In: International Journal of Quality & Reliability Management

19.2 (2002), pp. 137–150. issn: 0265-671X. doi: 10.1108/02656710210413480.

url: https://www.emeraldinsight.com/doi/pdfplus/10.1108/02656710210413480.

[109] Nafees Qamar, Yves Ledru, and Akram Idani. “Validation of security-design

models using Z”. In: Lecture Notes in Computer Science (including subseries

Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics).

Vol. 6991 LNCS. Springer, Berlin, Heidelberg, Oct. 2011, pp. 259–274. isbn:

9783642245589. doi: 10.1007/978- 3- 642- 24559- 6{_}19. url: http://

link.springer.com/10.1007/978-3-642-24559-6_19.

[110] Jens Rasmussen. “Risk management in a dynamic society: a modelling problem”.

In: Safety Science 27.2-3 (Nov. 1997), pp. 183–213. issn: 09257535. doi: 10.1016/

S0925-7535(97)00052-0. url: http://www.sciencedirect.com/science/

article/pii/S0925753597000520.

[111] Christian Raspotnig, Peter Karpati, and Vikash Katta. “A Combined Process for

Elicitation and Analysis of Safety and Security Requirements”. In: Enterprise,

Business-Process and Information Systems Modeling. Ed. by Ilia Bider et al.

Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 347–361. isbn: 978-3-

642-31072-0.

[112] Christian Raspotnig et al. “Enhancing CHASSIS: A method for combining safety

and security”. In: Proceedings - 2013 International Conference on Availability,

Reliability and Security, ARES 2013. IEEE, Sept. 2013, pp. 766–773. isbn: 9780769550084.

doi: 10.1109/ARES.2013.102. url: http://ieeexplore.ieee.org/document/

6657318/.

[113] Felix Redmill, Morris Chudleigh, and James Catmur. System Safety: HAZOP and

Software HAZOP. 2000. isbn: 0471982806 9780471982807. doi: 10.1108/imds.

2000.100.1.46.2.

[114] Abdolbaghi Rezazadeh et al. “Redevelopment of an Industrial Case Study Using

Event-B and Rodin”. In: Proceedings of the 2007th internatioanal conference on

Formal Methods in Industry (FACS-FMI’07) (2007), pp. 1–8.

https://doi.org/10.1049/cp.2013.0001
https://doi.org/10.1049/cp.2013.0001
https://digital-library.theiet.org/content/conferences/10.1049/cp.2013.0001
https://digital-library.theiet.org/content/conferences/10.1049/cp.2013.0001
http://www.clausewitz.com/bibl/Kipp-MilitarizationOfMarxism.pdf
http://www.clausewitz.com/bibl/Kipp-MilitarizationOfMarxism.pdf
https://doi.org/10.1108/02656710210413480
https://www.emeraldinsight.com/doi/pdfplus/10.1108/02656710210413480
https://doi.org/10.1007/978-3-642-24559-6{_}19
http://link.springer.com/10.1007/978-3-642-24559-6_19
http://link.springer.com/10.1007/978-3-642-24559-6_19
https://doi.org/10.1016/S0925-7535(97)00052-0
https://doi.org/10.1016/S0925-7535(97)00052-0
http://www.sciencedirect.com/science/article/pii/S0925753597000520
http://www.sciencedirect.com/science/article/pii/S0925753597000520
https://doi.org/10.1109/ARES.2013.102
http://ieeexplore.ieee.org/document/6657318/
http://ieeexplore.ieee.org/document/6657318/
https://doi.org/10.1108/imds.2000.100.1.46.2
https://doi.org/10.1108/imds.2000.100.1.46.2

REFERENCES 245

[115] Ken Robinson. System Modelling & Design Using Event-B. Sydney: The Uni-

versity of New South Wales, 2010, p. 136. url: http://wiki.event-b.org/

images/SM%26D-KAR.pdf.

[116] Ron Ross, Michael McEvilley, and Janet Carrier Oren. “Systems Security Engi-

neering: Considerations for a Multidisciplinary Approach in the Engineering of

Trustworthy Secure Systems”. In: NIST Special Publication (Nov. 2016), pp. 800–

160. doi: 10.6028/NIST.SP.800- 160. url: http://nvlpubs.nist.gov/

nistpubs/SpecialPublications/NIST.SP.800-160.pdf.

[117] Enno Ruijters and Mariëlle Stoelinga. Fault tree analysis: A survey of the state-

of-the-art in modeling, analysis and tools. Feb. 2015. doi: 10.1016/j.cosrev.

2015.03.001. url: https://www.sciencedirect.com/science/article/pii/

S1574013715000027.

[118] James Rumbaugh, Ivar Jacobson, and Grady Booch. Unified Modeling Language

Reference Manual. 2004. isbn: 0321245628.

[119] Per Runeson and Martin Höst. “Guidelines for conducting and reporting case

study research in software engineering”. In: Empirical Software Engineering 14.2

(2008), p. 131. issn: 1573-7616. doi: 10.1007/s10664-008-9102-8. url: https:

//doi.org/10.1007/s10664-008-9102-8.

[120] Neil Salkind. Encyclopedia of Research Design. Thousand Oaks, California, 2010.

doi: 10.4135/9781412961288. url: https://methods.sagepub.com/reference/

encyc-of-research-design.

[121] Christoph Schmittner, Zhendong Ma, and Paul Smith. “FMVEA for safety and

security analysis of intelligent and cooperative vehicles”. In: Lecture Notes in

Computer Science (including subseries Lecture Notes in Artificial Intelligence

and Lecture Notes in Bioinformatics). Vol. 8696 LNCS. 2014, pp. 282–288. isbn:

9783319105567. doi: 10.1007/978-3-319-10557-4{_}31. url: http://link.

springer.com/10.1007/978-3-319-10557-4_31.

[122] Christoph Schmittner et al. “A Case Study of FMVEA and CHASSIS as Safety

and Security Co-Analysis Method for Automotive Cyber-physical Systems”. In:

Proceedings of the 1st ACM Workshop on Cyber-Physical System Security - CPSS

’15. CPSS ’15. New York, NY, USA: ACM, 2015, pp. 69–80. isbn: 9781450334488.

doi: 10 . 1145 / 2732198 . 2732204. url: http : / / doi . acm . org / 10 . 1145 /

2732198.2732204.

[123] Christoph Schmittner et al. “Security application of Failure Mode and Effect

Analysis (FMEA)”. In: 33rd International Conference, SAFECOMP 2014. Springer

International Publishing, 2014, pp. 310–325. isbn: 9783319105055. doi: 10.1007/

978-3-319-10506-2{_}21. url: http://www.arrowhead.eu/wp-content/

uploads/2013/03/FMVEA_camera_ready.pdf.

http://wiki.event-b.org/images/SM%26D-KAR.pdf
http://wiki.event-b.org/images/SM%26D-KAR.pdf
https://doi.org/10.6028/NIST.SP.800-160
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-160.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-160.pdf
https://doi.org/10.1016/j.cosrev.2015.03.001
https://doi.org/10.1016/j.cosrev.2015.03.001
https://www.sciencedirect.com/science/article/pii/S1574013715000027
https://www.sciencedirect.com/science/article/pii/S1574013715000027
https://doi.org/10.1007/s10664-008-9102-8
https://doi.org/10.1007/s10664-008-9102-8
https://doi.org/10.1007/s10664-008-9102-8
https://doi.org/10.4135/9781412961288
https://methods.sagepub.com/reference/encyc-of-research-design
https://methods.sagepub.com/reference/encyc-of-research-design
https://doi.org/10.1007/978-3-319-10557-4{_}31
http://link.springer.com/10.1007/978-3-319-10557-4_31
http://link.springer.com/10.1007/978-3-319-10557-4_31
https://doi.org/10.1145/2732198.2732204
http://doi.acm.org/10.1145/2732198.2732204
http://doi.acm.org/10.1145/2732198.2732204
https://doi.org/10.1007/978-3-319-10506-2{_}21
https://doi.org/10.1007/978-3-319-10506-2{_}21
http://www.arrowhead.eu/wp-content/uploads/2013/03/FMVEA_camera_ready.pdf
http://www.arrowhead.eu/wp-content/uploads/2013/03/FMVEA_camera_ready.pdf

246 REFERENCES

[124] S. Schneider. “Security properties and CSP”. In: Proceedings of the 1996 IEEE

Conference on Security and Privacy. SP’96. Washington, DC, USA: IEEE Com-

puter Society, 2002, pp. 174–187. isbn: 0-8186-7417-2. doi: 10.1109/secpri.

1996.502680. url: http://dl.acm.org/citation.cfm?id=1947337.1947362.

[125] Steve Schneider. “Verifying authentication protocols with CSP”. In: Proceedings

- IEEE Computer Security Foundations Symposium. Vol. 24. 9. 1997, pp. 3–17.

isbn: 0818679905. doi: 10.1109/CSFW.1997.596775. url: http://ieeexplore.

ieee.org/document/713329/.

[126] Bruce Schneier. “Attack Trees”. In: Dr. Dobb’s Journal of Software Tools 24.12

(1999), p. 60. issn: 1044-789X. url: http : / / www . schneier . com / paper -

attacktrees-ddj-ft.html.

[127] Darren Seifert and Hassan Reza. “A Security Analysis of Cyber-Physical Systems

Architecture for Healthcare”. In: Computers 5.4 (Oct. 2016), p. 27. issn: 2073-

431X. doi: 10.3390/computers5040027. url: http://www.mdpi.com/2073-

431X/5/4/27.

[128] Koushik Sen, Mahesh Viswanathan, and Gul Agha. “Statistical Model Check-

ing of Black-Box Probabilistic Systems”. In: Springer, Berlin, Heidelberg, 2010,

pp. 202–215. doi: 10.1007/978-3-540-27813-9{_}16. url: http://link.

springer.com/10.1007/978-3-540-27813-9_16.

[129] Stuart S Shapiro. “Privacy Risk Analysis Based on System Control Structures:

Adapting System-Theoretic Process Analysis for Privacy Engineering”. In: Pro-

ceedings - 2016 IEEE Symposium on Security and Privacy Workshops, SPW

2016. 2016, pp. 17–24. isbn: 9781509008247. doi: 10.1109/SPW.2016.15. url:

http://ieeexplore.ieee.org/document/7527748/.

[130] Renato Silva et al. “Decomposition Tool for Event-B”. In: Software: Practice and

Experience 41.2 (2011), pp. 199–208.

[131] Guttorm Sindre and Andreas L Opdahl. “Eliciting security requirements with

misuse cases”. In: Requirements engineering 10.1 (2005), pp. 34–44. doi: 10.

1007/s00766-004-0194-4. url: https://link.springer.com/article/10.

1007%2Fs00766-004-0194-4.

[132] Doaa Soliman, Kleanthis Thramboulidis, and Georg Frey. “Transformation of

Function Block Diagrams to UPPAAL timed automata for the verification of

safety applications”. In: Annual Reviews in Control 36.2 (Dec. 2012), pp. 338–

345. issn: 13675788. doi: 10.1016/j.arcontrol.2012.09.015. url: https:

//linkinghub.elsevier.com/retrieve/pii/S1367578812000508.

[133] University Of Southampton. Cyber Physical Systems Research Group. 2019. url:

https://www.cps.ecs.soton.ac.uk.

[134] University of Southampton. Cyber Security Research Group. 2019. url: https:

//cyber.southampton.ac.uk/.

https://doi.org/10.1109/secpri.1996.502680
https://doi.org/10.1109/secpri.1996.502680
http://dl.acm.org/citation.cfm?id=1947337.1947362
https://doi.org/10.1109/CSFW.1997.596775
http://ieeexplore.ieee.org/document/713329/
http://ieeexplore.ieee.org/document/713329/
http://www.schneier.com/paper-attacktrees-ddj-ft.html
http://www.schneier.com/paper-attacktrees-ddj-ft.html
https://doi.org/10.3390/computers5040027
http://www.mdpi.com/2073-431X/5/4/27
http://www.mdpi.com/2073-431X/5/4/27
https://doi.org/10.1007/978-3-540-27813-9{_}16
http://link.springer.com/10.1007/978-3-540-27813-9_16
http://link.springer.com/10.1007/978-3-540-27813-9_16
https://doi.org/10.1109/SPW.2016.15
http://ieeexplore.ieee.org/document/7527748/
https://doi.org/10.1007/s00766-004-0194-4
https://doi.org/10.1007/s00766-004-0194-4
https://link.springer.com/article/10.1007%2Fs00766-004-0194-4
https://link.springer.com/article/10.1007%2Fs00766-004-0194-4
https://doi.org/10.1016/j.arcontrol.2012.09.015
https://linkinghub.elsevier.com/retrieve/pii/S1367578812000508
https://linkinghub.elsevier.com/retrieve/pii/S1367578812000508
https://www.cps.ecs.soton.ac.uk
https://cyber.southampton.ac.uk/
https://cyber.southampton.ac.uk/

REFERENCES 247

[135] J Spivey. The Z notation: A reference manual. Second Edi. Hemel Hempstead:

Prentice Hall, 1992. isbn: 0-13-978529-9. doi: 10.1016/0167-6423(90)90091-Q.

url: http://spivey.oriel.ox.ac.uk/mike/zrm/.

[136] Christian Spreafico, Davide Russo, and Caterina Rizzi. A state-of-the-art review

of FMEA/FMECA including patents. Aug. 2017. doi: 10 . 1016 / j . cosrev .

2017.05.002. url: https://linkinghub.elsevier.com/retrieve/pii/

S1574013716301435.

[137] Yannis C. Stamatiou et al. “The CORAS approach for model-based risk man-

agement applied to a telemedicine service”. In: Studies in Health Technology and

Informatics. 2003. isbn: 1586033476. doi: 10.3233/978-1-60750-939-4-206.

[138] Stamatis, D.H. “Failure Mode and Effect Analysis: FMEA from Theory to Ex-

ecution”. In: American Society For Quality, Quality Press, Milwaukee (2003).

issn: 00401706. doi: 10.2307/1268911.

[139] Andreas Svendsen, Øystein Haugen, and Birger Møller-Pedersen. “Specifying a

testing oracle for train stations - Going beyond with product line technology”. In:

Lecture Notes in Computer Science (including subseries Lecture Notes in Artifi-

cial Intelligence and Lecture Notes in Bioinformatics). Vol. 7167 LNCS. Springer,

Berlin, Heidelberg, Oct. 2012, pp. 187–201. isbn: 9783642296444. doi: 10.1007/

978-3-642-29645-1{_}20. url: http://link.springer.com/10.1007/978-

3-642-29645-1_20.

[140] Hideo Tanaka et al. “FAULT-TREE ANALYSIS BY FUZZY PROBABILITY”.

In: IEEE Transactions on Reliability R-32.5 (Dec. 1983), pp. 453–457. issn:

00189529. doi: 10.1109/TR.1983.5221727. url: http://ieeexplore.ieee.

org/document/5221727/.

[141] John Thomas. “Extending and automating a systems-theoretic hazard analysis

for requirements generation and analysis”. PhD thesis. Massachusetts Institute

of Technology, 2013, p. 232. doi: 10.2172/1044959. url: https://dspace.mit.

edu/handle/1721.1/81055.

[142] Erik Nilsen Torkildson et al. “Empirical studies of methods for safety and security

co-analysis of autonomous boat”. In: Safety and Reliability – Safe Societies in

a Changing World. 2018, pp. 2949–2957. isbn: 9780815386827. doi: 10.1201/

9781351174664-369. url: www.dnvgl.com/technology-innovation/.

[143] Jørn Vatn. “Finding minimal cut sets in a fault tree”. In: Reliability Engineering

& System Safety 36.1 (Jan. 1992), pp. 59–62. issn: 09518320. doi: 10.1016/0951-

8320(92)90152-B. url: https://www.sciencedirect.com/science/article/

pii/095183209290152B.

https://doi.org/10.1016/0167-6423(90)90091-Q
http://spivey.oriel.ox.ac.uk/mike/zrm/
https://doi.org/10.1016/j.cosrev.2017.05.002
https://doi.org/10.1016/j.cosrev.2017.05.002
https://linkinghub.elsevier.com/retrieve/pii/S1574013716301435
https://linkinghub.elsevier.com/retrieve/pii/S1574013716301435
https://doi.org/10.3233/978-1-60750-939-4-206
https://doi.org/10.2307/1268911
https://doi.org/10.1007/978-3-642-29645-1{_}20
https://doi.org/10.1007/978-3-642-29645-1{_}20
http://link.springer.com/10.1007/978-3-642-29645-1_20
http://link.springer.com/10.1007/978-3-642-29645-1_20
https://doi.org/10.1109/TR.1983.5221727
http://ieeexplore.ieee.org/document/5221727/
http://ieeexplore.ieee.org/document/5221727/
https://doi.org/10.2172/1044959
https://dspace.mit.edu/handle/1721.1/81055
https://dspace.mit.edu/handle/1721.1/81055
https://doi.org/10.1201/9781351174664-369
https://doi.org/10.1201/9781351174664-369
www.dnvgl.com/technology-innovation/
https://doi.org/10.1016/0951-8320(92)90152-B
https://doi.org/10.1016/0951-8320(92)90152-B
https://www.sciencedirect.com/science/article/pii/095183209290152B
https://www.sciencedirect.com/science/article/pii/095183209290152B

248 REFERENCES

[144] Venkat Venkatasubramanian, Jinsong Zhao, and Shankar Viswanathan. “Intelli-

gent systems for HAZOP analysis of complex process plants”. In: Computers and

Chemical Engineering 24.9-10 (Oct. 2000), pp. 2291–2302. issn: 00981354. doi:

10.1016/S0098-1354(00)00573-1. url: https://www.sciencedirect.com/

science/article/pii/S0098135400005731.

[145] William Vesely et al. Fault tree handbook with aerospace applications version

1.1. Tech. rep. WASHINGTON DC: National Aeronautics and Space Admin-

istration, 2002, p. 218. url: https://elibrary.gsfc.nasa.gov/_assets/

doclibBidder/tech_docs/25.%20NASA_Fault_Tree_Handbook_with_Aerospace_

Applications%20-%20Copy.pdf.

[146] Jim Woodcock et al. “Formal Methods: Practice and experience”. In: ACM

Computing Surveys 41.4 (Oct. 2009), pp. 1–36. issn: 03600300. doi: 10.1145/

1592434 . 1592436. url: http : / / portal . acm . org / citation . cfm ? doid =

1592434.1592436.

[147] William Young and Nancy G. Leveson. “An integrated approach to safety and

security based on systems theory”. In: Communications of the ACM 57.2 (Feb.

2014), pp. 31–35. issn: 00010782. doi: 10.1145/2556938. url: http://dl.acm.

org/ft_gateway.cfm?id=2556938&type=html.

[148] T. Yuge and S. Yanagi. “Quantitative analysis of a fault tree with priority AND

gates”. In: Reliability Engineering and System Safety 93.11 (Nov. 2008), pp. 1577–

1583. issn: 09518320. doi: 10.1016/j.ress.2008.02.016. url: https://www.

sciencedirect.com/science/article/pii/S0951832008000409.

[149] Saad Zafar and R. G. Dromey. “Integrating safety and security requirements into

design of an embedded system”. In: Proceedings - Asia-Pacific Software Engineer-

ing Conference, APSEC. Vol. 2005. IEEE, 2005, pp. 629–636. isbn: 0769524656.

doi: 10.1109/APSEC.2005.75. url: http://ieeexplore.ieee.org/document/

1607203/.

https://doi.org/10.1016/S0098-1354(00)00573-1
https://www.sciencedirect.com/science/article/pii/S0098135400005731
https://www.sciencedirect.com/science/article/pii/S0098135400005731
https://elibrary.gsfc.nasa.gov/_assets/doclibBidder/tech_docs/25.%20NASA_Fault_Tree_Handbook_with_Aerospace_Applications%20-%20Copy.pdf
https://elibrary.gsfc.nasa.gov/_assets/doclibBidder/tech_docs/25.%20NASA_Fault_Tree_Handbook_with_Aerospace_Applications%20-%20Copy.pdf
https://elibrary.gsfc.nasa.gov/_assets/doclibBidder/tech_docs/25.%20NASA_Fault_Tree_Handbook_with_Aerospace_Applications%20-%20Copy.pdf
https://doi.org/10.1145/1592434.1592436
https://doi.org/10.1145/1592434.1592436
http://portal.acm.org/citation.cfm?doid=1592434.1592436
http://portal.acm.org/citation.cfm?doid=1592434.1592436
https://doi.org/10.1145/2556938
http://dl.acm.org/ft_gateway.cfm?id=2556938&type=html
http://dl.acm.org/ft_gateway.cfm?id=2556938&type=html
https://doi.org/10.1016/j.ress.2008.02.016
https://www.sciencedirect.com/science/article/pii/S0951832008000409
https://www.sciencedirect.com/science/article/pii/S0951832008000409
https://doi.org/10.1109/APSEC.2005.75
http://ieeexplore.ieee.org/document/1607203/
http://ieeexplore.ieee.org/document/1607203/

	Declaration of Authorship
	Acknowledgements
	1 Introduction
	1.1 Research questions
	1.2 Approach
	1.2.1 Research method

	1.3 Contribution
	1.4 Structure of thesis

	2 Literature review
	2.1 Security & privacy analysis methodologies
	2.1.1 CORAS
	2.1.2 LINDDUN
	2.1.3 STRIDE
	2.1.4 Summary

	2.2 Safety analysis
	2.2.1 HAZOP
	2.2.2 FMEA/FMECA
	2.2.3 FTA
	2.2.4 Summary

	2.3 Co-analysis methodologies
	2.3.1 CHASSIS
	2.3.2 FMVEA
	2.3.3 Attack-fault trees
	2.3.4 Summary

	2.4 Methodologies combining formal methods and analysis techniques
	2.4.1 Formal methods in the safety domain
	2.4.1.1 Z-notation, B-method and Event-B
	2.4.1.2 Symbolic Analysis Laboratory (SAL)
	2.4.1.3 Other approaches

	2.4.2 Formal methods in the security domain
	2.4.3 Formal methods in a co-analysis context
	2.4.4 Summary

	2.5 Industrial safety/security standards
	2.5.1 IEC 61508
	2.5.2 IEC/ISA 62443
	2.5.3 ISO 13849
	2.5.4 Common Criteria
	2.5.5 Summary

	2.6 Summary of literature review

	3 Development of SE-STPA
	3.1 Introduction
	3.2 Justification of approach
	3.2.1 Existing expertise within the research community at the home institution
	3.2.2 Adaptability of the chosen methodology
	3.2.3 On-going work around STAMP and STPA

	3.3 STPA & STAMP
	3.3.1 STAMP
	3.3.2 The STPA analysis process

	3.4 Developments of STPA/STAMP
	3.5 Shortcomings of STPA/STAMP
	3.5.1 Expert review dependence
	3.5.2 Checking of constraints
	3.5.3 Consideration of security

	3.6 Iterative development of the methodology
	3.7 Creation of SE-STPA/STAAMP
	3.7.1 Expansion of the underlying systems-theoretic model
	3.7.2 Embedding security into STPA
	3.7.2.1 Relationship of adversarial modelling to the literature

	3.7.3 Integration of a formal model
	3.7.3.1 Event-B summary
	Proof obligations:
	Refinement:

	3.7.3.2 Benefits of utilising Event-B within SE-STPA

	3.7.4 Adjustment of terminology
	3.7.4.1 Accidents vs Losses
	3.7.4.2 Critical Requirements
	3.7.4.3 Hazards

	3.7.5 Modification of several steps that are carried over from the baseline STPA approach
	3.7.5.1 Establishing the system engineering basis
	3.7.5.2 Identify unsafe control actions
	3.7.5.3 Generate constraints to address unsafe control actions

	3.7.6 Reduction in dependence on expert review

	3.8 Summary

	4 SE-STPA in detail
	4.1 Introduction
	4.2 A high-level overview of SE-STPA
	4.2.1 Glossary
	4.2.2 SE-STPA steps
	4.2.3 Clarification on the illustrative example
	4.2.4 Methodology steps
	4.2.4.1 Step 1 - Establishing the system engineering basis
	Consideration of safety & security in relation to the purpose statement:

	4.2.4.2 Step 2 - Build the control structure
	4.2.4.3 Step 3 - Identify control actions
	4.2.4.4 Step 4 - Building the initial formal model
	4.2.4.5 Step 5 - Control action analysis and identification of critical requirements
	4.2.4.6 Step 6 - Adversary modelling and generation of further critical requirements
	4.2.4.7 Step 7 - Integration of critical requirements into the formal model
	4.2.4.8 Step 8 - Causal factors analysis
	4.2.4.9 Step 9 - Iteration and re-scoping

	4.3 Tool support (Rodin, Lucidchart, etc)
	4.3.1 Rodin
	4.3.2 Lucidchart

	5 Smart meter case study
	5.1 Introduction
	5.2 A summary of the case study
	5.3 Application of the methodology
	5.3.1 Step 1 - Establish the system engineering basis
	5.3.2 Step 2 - Build the control structure
	5.3.3 Step 3 - Generate control actions
	5.3.4 Step 4 - Build the initial formal model
	5.3.4.1 Outline of the formal model

	5.3.5 Step 5 - Hazard analysis and critical requirement generation
	5.3.5.1 The notion of `tokens' and its justification

	5.3.6 Step 6 - Critical requirement integration
	5.3.6.1 Challenges of representing critical requirements within the formal model
	DisconnectMeter occurs repeatedly
	AdvanceTime event improvements
	General remarks on the use of the formal method in support of representing and refining critical requirements

	5.3.7 Step 7 - Causal factors analysis
	5.3.8 Step 8 - Iteration and scoping

	5.4 Lessons learned from the smart meter case study
	5.4.1 Security analysis issues and improvements
	5.4.1.1 Adversarial modelling as applied to the smart meter case study
	Fraudulent consumer
	Insider threat

	5.4.1.2 Analysis

	5.4.2 Sequencing of methodology steps

	6 UAV case study
	6.1 Introduction & outline of case study
	6.2 Application of SE-STPA
	6.2.1 Step 1 - Establishing the system engineering basis
	6.2.2 Step 2 - Building the control structure
	6.2.3 Step 3 - Identify control actions
	6.2.4 Step 4 - Construction of initial formal model
	6.2.5 Step 5 - Control action analysis & critical requirement generation
	6.2.5.1 Control action analysis
	6.2.5.2 Critical requirement generation

	6.2.6 Step 6 - Adversary modelling & critical requirement generation
	6.2.6.1 Annotating the control structure
	6.2.6.2 Adversary modelling
	Nation-state actors:
	Activist/hacktivist groups and organisations:
	Curious individuals:
	Unintentional adversaries:

	6.2.6.3 Critical requirement generation

	6.2.7 Step 7 - Integration of critical requirements into formal model
	6.2.7.1 Challenges of representing critical requirements within the formal model
	Validation queues and sequencing
	AircraftRoutes improvements
	Functions and relations
	ReportLocation refinement

	6.2.8 Step 8 - Causal factors analysis
	6.2.8.1 Existing route becomes hazardous in some way and is not corrected by an update
	6.2.8.2 Initial route is set before command passes validation
	6.2.8.3 Command validation state is reported incorrectly

	6.2.9 Step 9 - Iteration of design & further analysis

	6.3 Lessons learned

	7 Discussion
	7.1 Research questions
	7.2 Discussion of Research Question 1
	7.2.1 Context and approach
	7.2.2 Contribution
	7.2.2.1 Contribution of the STAAMP theoretical model
	Conceptualising safety and security together
	Considering system actors and mitigations within the theoretical model

	7.2.2.2 Contribution of the SE-STPA technique

	7.2.3 Limitations
	7.2.4 Summary

	7.3 Discussion of Research Question 2
	7.3.1 Context and approach
	7.3.2 Contribution
	7.3.3 Limitations
	7.3.3.1 Expertise in formal methods
	7.3.3.2 Representing complex critical requirements

	7.3.4 Summary

	7.4 Discussion of Research Question 3
	7.4.1 Context and approach
	7.4.2 Contribution
	7.4.2.1 Smart meter case study
	7.4.2.2 Multi-UAV case study

	7.4.3 Limitations
	7.4.4 Summary

	7.5 Additional academic review of the methodology

	8 Conclusion
	8.1 Contributions
	8.2 Future work
	8.2.1 Iterative improvements to the methodology
	Modelling of trust between entities
	Improvements in formal traceability
	Tool support

	8.2.2 Additional validation steps
	Workshop with experienced practitioners
	Industrial case studies
	Direct comparison with other co-analysis methodologies
	Comparison of adversary modelling to existing security best practice frameworks

	A Smart meter case study - initial formal model - machine & context
	B Smart meter case study - final formal model - machine & context
	C Drone case study - initial formal model - machine & context
	D Drone case study - first refinement of formal model - machine & context
	E Drone case study - second refinement of formal model - machine & context
	F Drone case study - third refinement of formal model - machine & context
	References

