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Abstract
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Doctor of Philosophy

On capture-recapture with validation information

by Carla Azevedo

This work shows how capture-recapture modelling can be performed in the presence of

a validation set, a sample that includes all the counts, in particular, zero counts which

are not observed in typical capture-recapture settings. We start with the simple ho-

mogeneous case for estimation of the Binomial and the Poisson distribution using the

EM algorithm. A flexible non-parametric mixture model approach allowing for hetero-

geneity of the data by means of a nested EM algorithm using validation information

was used to allow for more components in the target population. The estimate for the

total population size can be obtained by jointly fitting a zero-truncated distribution to

the truncated data and an untruncated distribution of the same class to the untrun-

cated data by means of the EM algorithm. Simulation studies demonstrated the value

of including validation information into the modelling to estimate the total size of the

population. This was also done following a ratio regression approach which is explained

in detail along this work.

For illustration of the major ideas of these applications, these methods were applied

to public health problem scenarios related with Salmonella infection in poultry, Bowel

Cancer and transmittable diseases: Brucellosis and Syphilis. A community study on the

number of Heroin users in Bangkok was also considered. The main goal of the present

study is to adjust the undercount of disease/drug use occurrence in the UK farms/peo-

ple during a period of study. Three models were considered for the last approach which

seemed relevant for the data situation. However, situations of zero-inflated counts were

also debated in the case the first ratio is particularly lower than the other ratios indi-

cating potential presence of zero-inflation. This work also introduces simulation studies

which help to understand the role of the validation sample in the estimation process

showing that we can rely more confidently on the estimate for the population size using

that additional information.
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Chapter 1

Introduction

1.1 Introduction

Capture-recapture methods are an important and very useful tool to estimate the global

size of a target population of interest when it cannot be completely observed. Estimating

the size N of a specific population is of crucial importance in many areas such as social,

biological and medical sciences. For example, for ecological purposes it is relevant to

estimate the size of a wildlife population. In medicine, it is essential to estimate the

quantity of people with a specific disease when a screening test is not totally accurate

and we may often get false negatives.

Frequently, in real applications, due to a deficient identification-registration mechanism,

only a portion of the population is observed - the positive counts and we might need to

predict the number of unobserved identifications. Therefore, our interest is to determine

the size N of a potentially elusive population in which zero-counts are missing.

Let us assume that the members of the population are identified at m observational

occasions where m is considered fixed in this work. For each member i, the count Xi

of identifications for a generic unit returns a count in 0, 1, ...,m and i = 1, ..., N . It is

assumed that Xi is available if unit i has been identified for at least one occasion that

is if Xi > 0. In that case Xi is observed; let X1, ..., Xn denote the observed counts

with n representing the total number of recorded individuals. We assume w.l.o.g. that

Xn+1 = ... = XN = 0. Hence, units n+ 1 to N remain unobserved.

1
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Very common examples are screening tests applied to human populations to detect a

specific disease in its early stage when it is easier to treat and cure. Just one application

of a test might have low sensitivity and as we know, any screening test cannot be 100%

accurate. Thus, usually, people with a negative test result are not further assessed, so

it remains unknown which disease status they actually have. In other words, we want

to investigate how many false negatives we have adopting the described procedure.

Using the same notation as above, let us assume for example we are analysing a clinical

disease whose status can be measured in m levels of severity, where the levels x denote

the number of times the screening test is positive (number of captures):

Table 1.1: Frequency of each status of a certain disease.

x 0 1 2 ... m
fx ? f1 f2 ... fm

Here, fx represents the number of individuals captured exactly x times during the screen-

ing test. If the test is negative at all m times, the true status of the person is unknown.

The true status of a person is always unknown until a final and conclusive test is per-

formed. Hence, we intend to estimate f0 using the zero-truncated distribution to esti-

mate the total size of the diseased population N .

This is just a simple generic example of an application of capture-recapture methodology.

However, this methodology can also be applied in other areas such as epidemiology,

ecology or social sciences. In particular, it is a popular analysis to estimate animal

abundance in the ecological field. Other good examples are applications in computer

engineering to estimate the number of errors in a computer software, to estimate the

number of scrapie infected sheep population in Great Britain and to investigate the

number of illegal immigrants living in the Netherlands coming from some Middle East

countries. See Böhning [18], [16] and Van der Heijden [87] for some of these applications.

Let us now see a practical example: from 1984 onwards, at the St Vincents Hospital

in Australia, about 50000 subjects were screened for bowel cancer which is a medical

procedure to detect blood in the bowel motion. This screening procedure was based on

a sequence of binary diagnostic tests, self-administered on 6 successive days. On each

of these 6 occasions, the absence or the presence of blood in faeces was recorded. Post-

verification of the results of the tests was done by physical examination, sigmoidoscopy
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and colonoscopy, performed only if at least one of the six test was positive. People with

all six tests negative were not further assessed.

The frequency distribution of the number of positive tests is reported in the table bellow:

Table 1.2: Bowel cancer data positive sample.

x 0 1 2 3 4 5 6 Total

fx ? 37 22 25 29 34 45 192

We can verify from the positive sample for the Bowel Cancer data that there were 37

individuals with one test positive, 22 individuals with two tests positive and so on.

In capture-recapture applications, we can deal with closed or open population models.

A closed population is a population kept constant (at least approximately) during the

study period, without any births, deaths or migration. It is certain that in the major

part of the cases in the real life, most part of the populations are open. However, if the

study period is short or we are studying small areas, then the assumption of considering

a closed population will have a minor impact.

In the case of the Bowel Cancer data example and similar cases, each capture happens

in a fixed period of time and it is assumed that each individual has equal probability of

being captured during the study period.

Let fx be the frequency of units with count X = x. The associated population density

function can be described by a probability density function px(θ) which denotes the prob-

ability of exactly x identifications for a generic unit where px(θ) ≥ 0 and
∑∞

x=0 px(θ) = 1.

In general, the Poisson or the Binomial distributions are frequently used to model the

observed counts. However, under these homogeneous models, it is assumed that the

individuals of the population have the same probability to be captured which in unlikely

to happen in real life situations. This leads very often to an underestimation of the true

population size.

In practice, a population is naturally formed by different individuals/sub-populations.

Thus, unobserved information translated in unobserved heterogeneity should be taken

into account to model the data. Failure in doing this may lead to a serious underestima-

tion of the population size. Heterogeneity is directly associated with the over-dispersion

of the data, occurring when the variance predicted by the model is smaller than the

variance of the data itself.
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Situations of heterogeneity in the population can be detected by means of the ratio

plot which works like a diagnostic device for the presence of a particular distribution

[16]. We can then extend this theory to a regression approach which will consider the

neighbour ratios of frequency counts and fit a proper model to the data. Finally, we use

the model to derive an estimate for the frequency of hidden counts, f0, projecting the

model backwards. This approach is explained in detail in Chapetr 6.

Another approach to allow for heterogeneity is to use mixture models. Mixture mod-

els allow a flexible approach in modelling heterogeneity. The estimate of N can be

achieved by means of the EM algorithm by fitting jointly a zero-truncated distribution

and an untruncated distribution of the same class to the truncated and untruncated

data respectively. We consider a flexible non-parametric mixture model approach allow-

ing heterogeneity of in the data by means of a nested EM algorithm using a secondary

sample also called validation information.

Eventually, another sub-sample of the target population can be available. In this sec-

ondary sample, usually smaller in size, we do observe zero counts which means that

there are no hidden cases. This sample is called validation sample.

Still considering the example above, let us imagine that another sample of people was

chosen and assessed to repeat the same test. The results are shown in Table 1.3.

Table 1.3: Frequency of each status of a certain disease.

y 0 1 2 ... m
gy g0 g1 g2 ... gm

The structure of the validation sample is similar to the structure of the positive sample.

However, it is important to emphasize that here all the counts are observed and, in

particular, we have information on g0 which is unknown in the positive sample. Again,

gy is the frequency of counts exactly equal to y.

In the case of the Bowel Cancer screening test, a sample of 122 patients with confirmed

cancer status were screened a second time using the same screening procedure. The

corresponding frequency distribution is shown in following table and it represents the

validation sample for this study:
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Table 1.4: Bowel cancer data validation sample.

x 0 1 2 3 4 5 6 Total

fx 22 8 12 16 21 12 31 122

The first introduction of capture-recapture modelling using validation information can

be found in Böhning [16] and it was mentioned as an extension of a ratio regression

approach which will be discussed in detail in Chapter 6.

We used simulation studies to evaluate the performance of validation information in

the modelling. We conclude that the use of a validation sample not only substantially

increases the estimation precision but, also, it reduces the bias significantly.

We are interested in applying this theory to public health problem scenarios which will

be introduced in Chapter 2.

1.2 Basic Assumptions

When the total size of a population is difficult to achieve, capture-recapture methods are

frequently applied to get an estimation of the unknown population size. As mentioned,

a deficient identification system leads to a deficient count of the population when each

individual is repeatedly sampled. It is important to highlight the set of assumptions

which validate this capture-recapture study:

• during the observational period, the population of interest is closed, which means

that there is no changes in its size during the study, i.e. the total number of the

population is constant;

• the target population is well-defined;

• the count of identifications is available if each member has been identified at least

once. All the other counts (non-recorded) remain unobserved;

• all the members of the population are independent of each other;

• all the observational occasions are independent of each other.
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1.3 Objectives of the study

1.3.1 Main objective

This study focuses on the development of methodology to include validation information

into capture-recapture modelling to increase the accuracy and efficiency of the final

estimate for the total population size.

1.3.2 Secondary objectives

To achieve the main goal of this study, we define next the secondary targets that need

to be achieved.

• To explore the limitations of homogeneous zero-truncated Binomial and Poisson

modelling using just the positive sample and the positive and validation sample.

• To investigate the Binomial ratio plot in order to examine the occurrence of het-

erogeneity in the data.

• To incorporate validation information into ratio regression modelling.

• To extend the theory of mixture models to allow for two or more components

of a Binomial mixture model including validation information through the EM

algorithm.

• To investigate the advantage of having a validation sample in estimating the total

population size through simulation studies and in the case of zero-inflated data.

1.4 Thesis outline

The thesis is composed by seven chapters. The first chapter is the Introduction and it

establishes the context and importance of the topic. It is also in this chapter that we

define the research objectives, state the basic assumptions made throughout the thesis

and indicate the outline of this work. Finally, we end this chapter listing the notation

that will be used in the following chapters.



On capture-recapture with validation information. Introduction 7

Chapter 2 exploits what a validation sample is, its role in a capture-recapture study and

how it can be obtained. It also describes the data sets that will be used to illustrate the

practical use of the methods of the thesis. There are five different data sets: Salmonella

data, Bowel cancer data, Syphilis in Izmir - Turkey data, Brucellosis in Izmir - Turkey

data and, finally, Heroin users in Bangkok - Thailand data. The context of the data

collection and the purpose of the study is presented in this chapter.

In Chapter 3, we give a review of the relevant literature on the topic explaining the

background and key terms that are going to be used in the remaining chapters. Thus,

we will review some examples where we can use capture-recapture methods and briefly

introduce some insights on the methods used in the thesis (Chapters 4, 5 and 6).

Chapter 4 starts with the estimation of the parameters for homogeneous Binomial and

Poisson modelling, which is done using maximum likelihood through the EM algorithm.

Evaluation of model performance under homogeneity is carried out using only the pos-

itive sample and both samples. In order to model the heterogeneity of the data, a

Binomial finite mixture using validation information is presented in Chapter 5. Insights

are given about the link between the conditional and the unconditional likelihood esti-

mation and we explore the occurrence of a profile likelihood as a natural path leaded by

the unconditional likelihood. Once again, simulation scenarios are set to compare the

results obtained using validation information. Zero-inflated data is also explored at the

end of the chapter. The ratio plot is explored and this graphical method and results are

applied to the datasets from Chapter 2.

In Chapter 6, ratio regression is proposed as an alternative to model data heterogeneity.

Several models are presented as an extension of this modelling technique in order to

include the validation sample. Simulation studies, which include zero-inflated data,

closes this chapter. Those studies provide a practical guidance to model choice based

on selection criteria. This chapter ends by laying down the main findings of the thesis

and a full discussion exploring, critically, the analysis in Chapters 4, 5 and 6.

Chapter 7 is the final chapter and it draws upon the entire thesis, tying up a summary

of the main conclusions and the next steps for future research.
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1.5 Notation

In this short table, we present the essential notation used throughout the thesis.

Simbol Definition
N Total size of a population
m Maximum number of recaptures in the population
Xi Random variable representing the number of counts of identifications

for unit i during the study period
n Number of observed identifications
fx Frequency of individuals captured exactly x times out of m
px Probability of exactly x identifications
q Mixing density function
LC Conditional Likelihood
LU Unconditional Likelihood
N1 Total size of the validation sample



Chapter 2

Validation information in

capture-recapture studies

2.1 Validation information in capture-recapture

In traditional capture-recapture studies, we have access only to a (truncated at zero)

positive sample. Therefore, it is assumed we are performing well when we model the

unobserved part of the population, i.e., the information of this (incomplete) sample is

enough to achieve an estimate of the total number of zero-counts that is close to the

true value of zero identifications.

Sometimes, another sub-sample of the target population is available. This further sample

is referred to as the validation sample. As already mentioned, zero counts are observed in

this further set. The structure of the validation sample is similar to the structure of the

positive sample, even if the first is normally smaller in size. Since we have information

on g0 while the frequency of zero counts is unknown in the positive sample, one can use

this information to provide a better estimate for the unobserved counts/population size.

The first introduction to capture-recapture modelling with validation information can

be found in Böhning [16] and it can be considered as an extension to the ratio regression

approach which will be detailed in Chapter 6.

A validation sample can occur in a very natural way in a capture-recapture study.

For example, a situation where a screening test was performed and the repeated tests

9
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positive were counted. Right after this, the repeated tests are performed again for all

those individuals which were confirmed positive. This procedure can be generalized to

a sampling plan. This is the case of the Salmonella, the Syphilis and the Brucellosis

datasets presented below. The Bowel Cancer data was already introduced in Chapter 1

is also an example and it is explored here in detail.

Another situation where a validation sample might occur is in a case with two sources

where at least one source is a count and the second source is binary. By conditioning on

the second source, a validation sample is received. This can be checked for the Heroin

users case study introduced in this chapter.

2.2 Datasets

We will introduce some data which will be used to illustrate the theory in the next chap-

ters. These are composed by a positive sample and a validation sample and, therefore,

are appropriated to investigate the proposed approach for population size estimation. It

can be seen in the following datasets how a validation sample was achieved for each case

and even how to construct one from available data (see Heroin users dataset below).

2.2.1 Salmonella data

This project was developed as a joint work with the Animal and Plant Health Agency

(APHA) in the UK and entails data related to Salmonella in commercial egg-laying

flocks.

Human salmonellosis is a major public health concern in Europe, and in particular in

the UK, with the majority of cases in recent years being caused by Salmonella strains

Salmonella Enteritidis and Salmonella Typhimurium. The most common source of in-

fection is thought to be through the consumption of contaminated eggs produced by

infected laying hens, see Gillespie et al. [44] and Arnold et al. [7].

To assess the current prevalence of infected commercial egg-laying flocks, a European

Union wide baseline survey of Salmonella infection was carried out between October

2004 and September 2005. The results of that survey were used as a basis for setting

flock prevalence reduction targets for Salmonella national control programmes in each
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member state of the European Union. The target was set to 10% reduction per annum

for the UK and each member state in the prevalence of Salmonella; for details see Arnold

et al. [10]. As a part of the baseline survey in the UK, a randomized sample of 454

commercial layer flock holdings was tested for Salmonella.

It is known there are a considerable number of unreported cases in surveys because

Salmonella infection in poultry is not associated with clinical signs. To give an instance,

a hen with Salmonella infection can lay non-contaminated eggs during large periods

of time and eventually lay a contaminated one, resulting in a low probability that an

apparently healthy chicken can lay contaminated eggs, see Arnold et al. [8].

In order to be able to monitor the progress of control measures for Salmonella, showing

that, in fact, there is a reduction over time in the UK egg-laying farms, it is important

to be able to obtain an accurate estimate of the initial prevalence at the time of the EU

baseline survey. Therefore, it is important to appropriately adjust the potential under-

count of disease occurrence. The main goal of the study is to provide an estimate, as

accurate as possible, of the number of undetected cases, i.e., the number of farms which

had Salmonella infected poultry but for which the result in the survey was negative.

In total, 454 holdings were sampled in the survey. From those, 53 tested positive for

Salmonella in one or more samples of the survey using a method we will denote as the

EU baseline survey method. Briefly, this consists in sampling 5 faeces samples, each

composing a representative mix of litter from 1/5th of the poultry house, and 2 dust

samples collected from around the poultry house, which would then be cultured for

Salmonella. The EU baseline survey therefore consists of a total of 7 tests, so each farm

could have 0,1,...,7 positives as Table 2.1 shows:

Table 2.1: Salmonella data positive sample.

x 0 1 2 3 4 5 6 7 Total

fx ? 17 9 5 6 5 5 6 53

Table 2.1 shows the frequency distribution of tested farms by the number of positive

tests out of the 7 Salmonella detection tests. We have that 17 farms had one positive

test while 9 farms had two and so on.

The EU baseline survey data reported a prevalence of 11.7% for Salmonella. The sam-

pling method used in the survey is known to be not 100% sensitive since it was developed
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to be a cost-effective method [10]. In order to get comparable results, this method was

implemented by all the member states of the EU. After analysing the data using Bayesian

methods, Arnold et al. [10], indicates a prevalence of 18% (95% credibility interval 12-

25%) for holdings infected with Salmonella which is much higher than the prevalence

rate reported in the survey.

Biosecurity and hygiene practises are designed to prevent the spread of the Salmonella

infection and they have been improved on commercial farms since the peak of human

salmonellosis in the mid-1990s, e.g. through vaccination programmes, see Snow et al.

[80]. It is fair to say that these practises are not implemented in all the farms exactly the

same way, so that the probability that a test is positive (or negative) for Salmonella might

vary across farms. Therefore, farms in which biosecurity and hygiene proceedings are

more effective and taken more carefully are more likely to be successful in reducing the

infection and less likely to have a positive test recorded. This aspect can be translated

into heterogeneity among the farms.

The same method used in the survey was repeated in 21 out of 53 of the infected farms

which provided a validation sample reported in Table 2.2. In fact, two more methods

were applied to these 21 farms: an APHA in-house method that involved collecting 10

dust and 10 faecal samples from around the poultry house and another method, the

“National Control Programme method”, that involved single samples of pooled faeces

and dust, each representing material from all of the poultry house. However, these two

methods could not be applied to all the 21 sampled farms, so our analysis considers only

the results from the EU method. A detailed study on the results and power of detection

for each method can be found in Arnold et al. [9].

Table 2.2: Salmonella data validation sample.

y 0 1 2 3 4 5 6 7 Total

gy 3 1 3 2 3 3 4 2 21

Again, it is important to highlight that we know g0 = 3. It means that the test failed in

3 out of the 21 farms where Salmonella infection was known to be present which allows

to induce a low sensitivity of the test, when this refers to the probability of a positive

test given that the farm is infected.
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2.2.2 Bowel cancer data

Screening for bowel cancer in human populations is a medical examination used to detect

early cases of the disease and treat people timely since this disease can develop without

early symptoms and grow on the inside wall of the bowel for many years before spreading

to other parts of the body. A test called Faecal Occult Blood Test (FOBT) is used to

detect small amounts of blood in the bowel motion, a sign of potential presence of bowel

cancer, because it is simple and non-invasive.

From 1984 onwards, about 50000 subjects were screened for bowel cancer at the St

Vincents Hospital, Sydney, Australia. More details about this data are discussed in

Lloyd and Frommer [61], [62], [63], [23]. The screening procedure was based on a se-

quence of binary diagnostic tests, self-administered on 6 successive days. On each of

these 6 occasions, the absence or the presence of blood in faeces was recorded. Post-

verification of the results of the tests was done by physical examination, sigmoidoscopy

and colonoscopy, performed only if at least one of the six test was positive. People with

all six tests negative were not further assessed.

The frequency distribution of the number of positive tests is reported in Table 2.3.

Table 2.3: Bowel cancer data positive sample.

x 0 1 2 3 4 5 6 Total

fx ? 37 22 25 29 34 45 192

Lloyd and Frommer [61], [62] mentioned that a sample of 122 patients with confirmed

cancer status were screened again using the same screening procedure. The correspond-

ing frequency distribution is shown in Table 2.4 and it represents the validation sample

for this study.

Table 2.4: Bowel cancer data validation sample.

x 0 1 2 3 4 5 6 Total

fx 22 8 12 16 21 12 31 122

2.2.3 Syphilis in Izmir - Turkey

The next surveillance data is related to Syphilis in Izmir, Turkey, diagnosed in 2003 and

collected between 21 January 2003 and 25 March 2005. Specific details about this data
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can be found in Durusoy [37] and Köse et al. [55]. The main goal of the study was to

assess the completeness of the surveillance system for syphilis and other transmittable

diseases in Izmir and quantify the under-notification of disease occurrence. This was

done by collapsing the multiple laboratory identifications and notifications into one

category and applying capture-recapture methodology. Köse et al. [55] consider only

Syphilis and estimate the number of undercounts of the disease by following an extended

Lincoln-Peterson approach for multiple identifications in one source.

The entire province of Izmir (nine urban and 19 rural districts) with approximately 3.5

million inhabitants formed the target case study population. Cases were identified by one

of the two university hospitals, or one of the other six public hospitals. The probability

of having cases identified elsewhere in Izmir was almost non-existent since all main

medical facilities were covered in the study. The Izmir Provinical Health Directorate was

notified of cases, providing a hospital notification list. Thus, 133 serology laboratories

participated in the study with cases frequently identified by multiple laboratories.

The positive data sample for this case study is achieved matching the results from the

hospitals and the laboratories. For each case it was determined if it was identified by

the hospital and how often it was identified by the laboratories. This can be seen in the

first row of Table 4.15.

Table 4.15 shows the frequencies of syphilis cases by hospital notifications and the count

of laboratory identifications. For instance, 73 people with syphilis were identified by

the hospital and the laboratory once. Notice that there were no cases identified by the

hospital and the laboratories six times.

The validation data sample is achieved by the results of the serology laboratories applied

on a sub-sample of the positive sample. The results are presented in the second row of

Table 4.15. This serology test failed in 18 of the identified cases by the hospitals and

the laboratories.

Table 2.5: Positive and validation sample of Syphilis data.

Laboratories
0 1 2 3 4 5 6 Total

Hospital
0 ? 73 52 17 6 1 0 149
1 18 25 22 10 9 1 1 86
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2.2.4 Brucellosis in Izmir - Turkey

As mentioned in the last section, Durusoy [37] had access to data related to other

transmittable diseases from the same surveillance sources. Another infectious disease

was brucellosis. Following the explanation given above, Table 2.6 shows the positive

sample (first row in Table 2.6) and the validation sample (second row in Table 2.6) for

the data collected for this disease.

Table 2.6: Positive and validation sample of Brucellosis data.

Laboratories
0 1 2 3 4 5 6+ Total

Hospital
0 ? 57 15 14 10 4 7 107
1 68 26 14 7 4 1 6 126

2.2.5 Heroin users in Bangkok - Thailand

The following data reports the number of heroin users in Bangkok metropolitan region

who contacted treatment centres (private and public health centres) during the year

2001 to treat drug dependence. The data was provided by the surveillance system of

the Office of the Narcotics Control Board (ONCB) of the Ministry of Public Health in

Thailand. More details about this data set can be seen in Lerdsuwansri [57].

Table 2.7: Count distribution of Heroin user contacts.

2nd half year
0 1 2 3 4 5 6

1
st

h
a
lf

y
e
a
r

0 ? 1401 369 98 23 1 1
1 1736 315 129 50 26 1 0
2 445 137 105 53 20 4 0
3 164 89 75 49 30 1 2
4 47 25 48 34 8 0 0
5 5 7 8 2 3 0 0
6 1 0 1 1 0 0 0
8 0 0 0 1 0 0 0

This data can be split into those with and without contact in the first half year. These

define the positive and the validation data sets for this case study as following.

The positive data is shown in Table 2.8 and it relates to the frequencies of the treatment

episodes per drug addict who were contacting treatment centre only during the second
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half of the year but not during the first half which corresponds to the first row in Table

2.8:

Table 2.8: Heroin users in Bangkok positive sample.

x 0 1 2 3 4 5 6 Total

fx ? 1401 369 98 23 1 1 1893

It can be seen that 1401 drug users contacted a treatment centre one time, 369 heroin

users contacted twice and so on in a maximum of 6 times. The size of this set of heroin

users was n = 1893 during the period of the study.

The validation sample for this case shows the number of heroin users who contacted the

treatment centre not just during the second half of the year but also during the first half.

The results are shown in Table 2.9. These are marginalised over the count of contacts

during the first half.

Table 2.9: Heroin users in Bangkok validation sample.

x 0 1 2 3 4 5 6 Total

gx 2398 573 366 190 87 6 2 3622

This is an interesting data set as it shows how to construct a validation set from capture-

recapture data which were not specifically designed for a validation study.

What is important to emphasize at this point is that the validation sample may help to

check whether the model is “correct” for the unobserved part of the population which

is not possible if we observe the positive sample. Only simulation studies will show that

the use of a validation sample may help derive a better population size estimate with

less bias and more precision.



Chapter 3

Review of Capture-Recapture

Methods

The purpose of this chapter is to review the background on Capture-Recapture studies.

It starts by explaining the problem of having zero-truncated count data and follows on

how to estimate the probability of a zero count where we aim to estimate the total pop-

ulation size, the major issue in Capture-Recapture studies. After that, we describe two

types of data set structure for capture-recapture data and give some examples of estima-

tors that are frequently used to estimate the population size, the Horvitz-Thompson and

the Turing estimator. These estimators will be used throughout this dissertation. Some

other estimators are also presented as part of the literature review on this topic. We

proceed with some practical examples where Capture-Recapture methods have been ap-

plied. Finally, we introduce the concept of validation information in a capture-recapture

context and end this chapter with an introduction to some methodology to be analysed

in the next chapters.

3.1 The zero-truncated count data problem

A very common procedure to estimate the total size of a population of interest and

describe its features is by adopting a census approach. However, this identification/reg-

istration mechanism has some limitations since it may be impractical to reach all the

individuals of the target population. Good examples are wildlife populations, human

17



On capture-recapture with validation information. Literature Review 18

populations with epidemic diseases or homeless people in a certain area [50], [53], [12],

[86]. Another limitation is that this registration process is often dependent on the indi-

vidual willingness to take part in the study. The registration will not be complete or it

might fail if the individuals do not cooperate or are not committed with it. For instance,

in medical studies, it is common to conduct screening tests to detect the presence or

absence of a certain condition. If the patients fail to participate or the test is not totally

accurate, it will lead to a portion of the population being not observed or misclassified

and these individuals are referred to as zero-counts. The situation described forces the

question about the total size of the population and how to deal with zero-truncated data

- data with unobserved zeros.

We say that under-reporting happens when there is a failure in reporting data, i.e., the

quantity of data reported is less than the real amount. In human populations, this is

exemplified in the work undertaken by Merli [67] about the under-reporting of births and

infant deaths in rural China. Approximately three decades after the implementation of

the “One Child Policy” in 1979 in China, it was made an evaluation of the Chinese de-

mographic data [67]. It reported that Chinese birth and infant mortality statistics suffer

from severe under-reporting. The causes of this failure were not investigated, however,

one of the many reasons pointed out for this issue was the flaws of the registration

process.

Another example is the under-reporting rates of domestic violence and sexual abuse

complaints on women. Frequent reasons for women not to report these abuses include

fear/anxiety of not being believed by others, insecurity and fear of getting into trouble

after the indictment against the partner. These factors lead to a sharp under-reporting

collection of data [39].

Also, actions that damage biodiversity like illegal trade in wild animals and plants

are under-reported, as well as the record of the number of illegal immigrants in the

Netherlands [43], [1].

As it can be interpreted by looking at the examples above, a part of the population

cannot be reached through registration or identification processes. Capture-recapture

studies appear as a tool to do inference on the real size of the elusive population of

interest.
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A natural way to proceed with the modelling is to describe the population density

function by a parametric probability density function px(θ) which denotes the probability

of exactly x identifications for a generic unit, where px(θ) ≥ 0 and
∑∞

x=0 px(θ) = 1.

For example, we can consider the simple case of a Binomial distribution. Then, we have

that the probability distribution is as follows:

px(θ) = P (X = x) =

m
x

 θx(1− θ)m−x (3.1)

where X is a Binomial random variable, x = 0, ...,m and px(θ) = 0 for x > m.

Naturally, we have that p0(θ) is the probability of zero-counts (unobserved units) in the

population. In the Binomial case, this is equal to p0(θ) = (1 − θ)m. The probability

that an individual is observed is 1 − p0 and the total size of the population N can be

described by:

N = N(1− p0) +Np0 (3.2)

Taking into account that N(1− p0) = E (n) ' n corresponds to the observed part of the

population, we can rewrite the equation as:

N = n+Np0 (3.3)

where n =
∑m

x=1 fx = f1 + ...+ fm corresponds to the sum of all the observed units.

Note that the population size can also be simply described by:

N = f0 + n (3.4)

where f0 is the frequency of zero-counts.

The Horvitz-Thompson estimator follows:

N̂ =
n

1− p0
(3.5)
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N̂ is a moment and maximum likelihood estimator as n is binomial with known event

probability p0 and unknown size parameter N . Hence, focus is now on p0.

3.2 Estimating the probability of a zero count

Let P (X = x) be the probability that a variable X takes the value x, x ≥ 0, then

P (X = x|X > 0) is the probability of observing X = x given that X > 0 and P (X > 0)

represents the probability of X > 0. We can write P (X = x|X > 0) as follows:

P (X = x|X > 0) =
P (X = x)

P (X > 0)
=

P (X = x)

1− P (X = 0)
(3.6)

which can be written as

p+x =
px

1− p0
(3.7)

When x > 0 and px represents the discrete mass probability function px = P (X = x).

Let us consider then, as an example, the Binomial probability distribution for a Binomial

random variable X:

px(θ) = P (X = x) =

m
x

 θx(1− θ)m−x (3.8)

x = 0, 1, ...,m and px = 0 for x > m.

The zero-truncated Binomial considering that p0 = (1− θ)m is as follows:

px =

m
x

 θx(1− θ)(m−x)

1− (1− θ)m
(3.9)

x = 1, 2, 3, ...,m.

The next step is to derive an estimate θ̂ for θ and use θ̂ in p0(θ̂) = (1− θ̂)m to estimate

N , where p0 is the probability of a zero count distribution. An estimator θ̂ for θ can be

obtained by fitting a zero-truncated Binomial distribution using, for example, the EM
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algorithm. The EM algorithm is a popular approach to estimate a parameter of interest

by means of maximum likelihood estimation when data is not complete, i.e., through

the EM algorithm we can obtain an estimate θ̂ and consequently p̂0. From here, we can

straightly achieve an estimate for N , N̂ = n
1−p̂0 as seen in 3.5.

Another example is the zero-truncated Poisson distribution where, following the same

steps as shown above for the Binomial distribution, we have:

px =
exp(−λ)λx

x!(1− exp(−λ))
(3.10)

where p0 = exp(−λ) and 1− p0 = (1− exp(−λ)).

3.3 Structure of Capture-Recapture data

Typically, capture-recapture data are a result of a history of trappings such as live-

trapping in order to access the total size of an elusive population. During the trapping

or registration process, each individual is identified multiple times over the period of the

study.

Let us set the number of captures in m. The counts for each individual is a sequence

of zeros and ones formed in a matrix X, where Xij is 1 if the individual i has been

identified in the jth occasion and 0 if not.

Xij =


1, if individual i is observed on occasion j

0, otherwise

Notice that Xij is only observed if
∑

j Xij > 0.

The capture-recapture scenario can be expressed like in Table 3.1:
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Table 3.1: Capture-Recapture history.

Individual Occasion j Xi =
∑m

j=iXij

i 1 2 ... m

1 X1,1 X1,2 ... X1,m X1

2 X2,1 X2,2 ... X2,m X2

3 X3,1 X3,2 ... X3,m X3
...

...
...

...
...

...
n Xn,1 Xn,2 ... Xn,m Xn

n+ 1 Xn+1,1 Xn+1,2 ... Xn+1,m Xn+1

n+ 2 Xn+2,1 Xn+2,2 ... Xn+2,m Xn+2

n+ 3 Xn+3,1 Xn+3,2 ... Xn+3,m Xn+3
...

...
...

...
...

...
N − 1 XN−1,1 XN−1,2 ... XN−1,m XN−1
N XN,1 XN,2 ... XN,m XN

The sum Xi refers to the number of times individual i has been identified and takes

values from 0 to m, i.e., each entry Xi,j in the sampling occasions determine the reword

sequence of times that the individual was observed out of m occasions. For example,

if the number of sampling occasions is m = 3, and we get a sequence 101 for a given

individual, this means that individual was observed at the first and last occasion. As

it is shown in Table 3.1, the population is divided into two parts: a truncated and

an untruncated part. The first is the sub-population that we observe X1, X2, ..., Xn,

while the second is composed by the individuals Xn+1, Xn+2, ..., XN that we do not

observe as, without loss of generality, we have assumed that Xi > 0, ∀i = 1, ..., n and

Xi = 0,∀i = (n+1), ..., N . Capture-recapture methods attempt to estimate the number

of missed individuals in order to have access to the total population size N .

Consequently, we are able to rewrite the information given in Table 3.1 using the fre-

quency table in Table 3.2:

Table 3.2: Frequency distribution of the count of identifications per unit.

x 0 1 2 ... m
fx f0 f1 f2 ... fm

where fx represents the number of individuals observed exactly x times during a study

period with x = 0, 1, 2, ...,m. Therefore, the total number of observed individuals is:

f1 + f2 + f3 + ...+ fm =

m∑
x=1

fx = n (3.11)
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and the total number of identifications is
∑m

x=0 xfx where f0 is missing, but that does

not matter as it is multiplied by zero.

We can then write the total size N of the population as follows:

N = f0 + f1 + f2 + ...+ fm = f0 +
m∑
x=1

fm = f0 + n (3.12)

A good starting point to model the observed frequency distribution for the sum Xi is

to use the Binomial distribution B(m, θ); in this case, the number of recaptures m is

fixed and finite and we assume that each identification occasion is independent of each

other, with a homogeneous capture probability θ. If m is not specified in the study,

the Poisson distribution P (λ) where λ denotes the mean for each individual during the

study period, would be a more appropriate way to fit the observed distribution. This is

detailed by using the following benchmark data example.

Example 1: A capture-recapture history data for 38 deer mice with 6 different trapping

occasions analysed by Amstrup et al. [4] is shown in Table 3.3. The duration of the

study was short so it is reasonable to assume that this is a closed population [4]. The

variable Xi denotes the number of times that each deer mice (i = 1) was identified over

the 6 trapping occasions. We can clearly see from the table that the first deer mice was

identified in all the occasions of the sequence is (1,1,1,1,1,1). Consequently, X1 is equal

to 6 for that animal. The second deer mice (i = 2) was identified in the first, fourth,

fifth and sixth occasions (1,0,0,1,1,1). Note that a deer mice which was not identified in

any occasion is represented by (0,0,0,0,0,0) and it corresponds to the unobserved part

of the population.

We are interested in estimating the number of deer mice that were not identified in this

study, hence the frequency of X0.
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Table 3.3: Capture-Recapture history of 38 deer mice with 6 trapping occasions.

Unit Occasion Xi

i 1 2 3 4 5 6

1 1 1 1 1 1 1 6
2 1 0 0 1 1 1 4
3 1 1 0 0 1 1 4
4 1 1 0 1 1 1 5
5 1 1 1 1 1 1 6
6 1 1 0 1 1 1 5
7 1 1 1 1 1 0 5
8 1 1 1 0 0 1 4
9 1 1 1 1 1 1 6
1 0 1 1 0 1 1 1
11 1 1 0 1 1 1 5
12 1 1 1 0 1 1 5
13 1 1 1 1 1 1 6
14 1 0 1 1 1 0 4
15 1 0 0 1 0 0 2
16 0 1 0 0 1 0 2
17 0 1 1 0 0 1 3
18 0 1 0 0 0 1 2
19 0 1 0 1 0 1 3
20 0 1 1 0 1 0 3
21 0 1 0 1 0 1 3
22 0 1 0 0 0 1 2
23 0 1 0 0 1 1 3
24 0 0 1 0 0 0 1
25 0 0 1 1 1 1 4
26 0 0 1 0 1 1 3
27 0 0 1 1 1 1 4
28 0 0 1 0 1 0 2
29 0 0 1 0 0 0 1
30 0 0 0 1 0 0 1
31 0 0 0 1 1 1 3
32 0 0 0 1 1 0 2
33 0 0 0 0 1 0 1
34 0 0 0 0 1 0 1
35 0 0 0 0 1 0 1
36 0 0 0 0 0 1 1
37 0 0 0 0 0 1 1
38 0 0 0 0 0 1 1

Denoting by fx the frequency of units identified exactly x times, x = 1, 2, ..., 6, we can

rearrange the table using the frequency distribution of deer mice counts. See Table 3.4.

Table 3.4: Frequency distribution of counts for 38 deer mice.

x 0 1 2 3 4 5 6 Total
fx ? 9 6 7 6 6 4 37
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It is important to emphasize that f0 is unknown and it needs to be estimated. Since we

have a fixed number of recaptures, m = 6, we could proceed with the modelling using

the Binomial distribution, by estimating p0 and getting the total size of the population

using the Horvitz-Thompson estimator N = n
1−p̂0 .

There are two types of data structures. One originated by repeated count data and

another originated by different sources of data. This is an example of data obtained

from different sources since we are dealing with 6 different trapping occasions, and each

occasion could be considered as a source. For more details about this dataset, please see

[23]. Normally, sources of identified individuals are summarized in frequency/contigency

tables; in the case of two sources, we may have:

Table 3.5: Capture-Recapture history with two sources.

Source 2

Source 1 Yes No Total

Yes f11 f10 n1
No f01 f00 ?

Total n2 ? N

where f00 denotes the frequency of unobserved units, f10 is the frequency of units iden-

tified only by the first source, f01 is the frequency of units identified only by the second

source and f11 denotes the frequency of units identified by both.

The total population size N is given by the sum of the individuals observed by any of

both sources plus the individuals that remain unobserved. Then, N = f00+f01+f10+f11.

Rewriting this table in the form of a table of frequencies as above, we get:

Table 3.6: Frequency distribution counts two sources.

x 0 1 2
fx f00 f10 + f01 f11

For three or more sources, the capture-recapture history can be written following the

same principles. Let’s see an example for three sources:



On capture-recapture with validation information. Literature Review 26

Table 3.7: Capture-Recapture history with three sources.

Sources Frequency count
Source x Source y Source z fxyz

0 0 0 f000
1 0 0 f100
0 1 0 f010
0 0 1 f001
1 1 0 f110
1 0 1 f101
0 1 1 f011
1 1 1 f111

which can be summarized by the frequency table:

Table 3.8: Frequency distribution counts three sources.

x 0 1 2 3
fx f0 f1 f2 f3

In this case, the population size N is:

N = f0 + f1 + f2 + f3 = f000 + (f100 + f010 + f001) + (f110 + f101 + f011) + f111 (3.13)

where f000 = f0 corresponds to the unobserved part of the population. Notice that

f1 + f2 + f3 = n, the observed part of the population and N = f0 + n.

There are many examples in the literature of frequency data obtained as observations

from different sources. We are going to analyse two more examples. To have access to

more datasets, see [23].

Example 2: The number of new HIV diagnoses in French children under 13 years

old was estimated by Heraud-Bousquet [76] between January 2003 and December 2006.

Data was collected from three sources: the EPF/ANRS-French Perinatal Cohort, the

DOVIH-Mandatory HIV case reporting and the LaboVIH - Laboratory surveillance of

HIV testing activity. The data are reported in Table 3.9.
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Table 3.9: Capture-Recapture history with three sources for the HIV diagnoses in
children under 13 years old in France.

Sources Frequency count
DOVIH LaboVIH EPF fxyz

0 0 0 ?
1 0 0 20
0 1 0 36
0 0 1 64
1 1 0 31
1 0 1 22
0 1 1 15
1 1 1 28

There were n = 216 observed diagnosed cases and the corresponding frequency distri-

bution is reported in Table 3.10.

Table 3.10: Frequency distribution counts three sources.

x 0 1 2 3
fx ? 120 68 28

Example 3: Another example of data with different sources is a data set analysed

by Fienberg [40] and Wittes [91]. Five different sources: obstetric records, hospital

records, the Department of Public Health, the department of Mental Health and special

schools were used to estimate the number of children with Down’s syndrome who were

born between 1955 and 1959, based on the empirical evidence that 537 children were

diagnosed during that period. The data is shown in Table 3.11.

Table 3.11: Frequency distribution counts (Down’s syndrome data).

x 0 1 2 3 4 5
fx ? 248 188 81 18 2

The number of children who were not identified by any of these sources (but in fact had

the disease) is unknown.

Another type of data that occurs very frequently in Capture-Recapture studies is re-

peated count data. It occurs when each individual is repeatedly identified by the same

identification process/mechanism any time during the study. The individuals are iden-

tified between 1 to m times with m being the largest observed count. This leads to the

frequency of counts f1, f2, f3,..., fm. In particular, this is a special case where data is

originated by the same source.

Two examples of this type of data are given.
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Example 4: The occurrence of Scrapie in sheep in the holdings of Great Britain is

monitored in the Compulsory Scrapie Flocks Scheme (CSFS) which was established in

2004; it is also monitored by an abattoir survey, stock survey and the statutory reporting

of clinical cases. For more details see [24]. The frequency distribution of the count of

Scrapie cases within each holding for the year 2005 is as follows:

Table 3.12: Frequency distribution counts.

x 0 1 2 3 4 5 6 7 8
fx ? 84 15 7 5 2 1 2 2

A total of n = 118 holdings was observed. The aim here is to estimate the completeness

of the surveillance system or to estimate the undercount of Scrapie by the surveillance

system, that is, the number of holdings that have diseased sheep but which has not been

observed.

Example 5: Oremus [73] estimated the size of a small community of Spinner dolphins

around Moorea Island (Tahiti). Observations were done within an 8-month observational

period. The following frequencies were reported. In total n = 52 different Spinner

dolphins have been observed by Oremus et al [73].

Table 3.13: Frequency distribution counts.

x 0 1 2 3
fx ? 42 7 2

In all of these example data sets, the count distribution could be modelled by a Binomial

model, since the total number of captures m is fixed and known.

Let’s observe now, how N could be estimated for all the presented cases by using two

well known estimators in the next section.

3.4 Simple estimators for the total population size N

Estimating the total size of a population of interest is the main goal of a capture-

recapture study. However, this is not a straightforward process.

Eventually, in the presence of a validation sample, one can raise the question: why not

use g0
N1

where N1 is the total size of the validation sample as an estimate for f0
N . This

is motivated on g0
N1
' f0

f0+n
from which the solution f̂0 = n g0

N1−g0 can be found. This
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non-parametric estimate is possible. However, it only uses g0 (and N1) but neither the

full distribution of the validation sample nor the positive distribution of the positive

sample. This estimate may then suffer from instability and lack of efficiency.

Recalling the definition of p0 in capture-recapture studies, we have that p0 is the prob-

ability of zero-counts, that is unobserved units in the population. Therefore, the proba-

bility that an individual is observed is 1− p0 and the total size of the population N can

be derived using the Horvitz-Thompson estimator N̂ = n
1−p0 as reported before.

However other estimators can be used as well. For more informations about other

estimators, the interested reader is referred to [23], [25], [5], [6], [45], [29].

Another estimator used in the thesis to estimate the total size of the population of

interest was the Good-Turing estimator [45] which will be presented here.

Let us recall fx that denotes the number of individuals identified exactly x times, while

m is the largest observed count. The total number of identifications is given by:

m∑
x=1

xfx = S (3.14)

The Good-Turing estimator is defined in the context of homogeneous Binomial distri-

butions. Then, considering an homogeneous Binomial with parameter θ, we have:

p0 = (1−θ)m =

[
m(1− θ)(m−1)θ

mθ

] m
m−1

=

(
p1

E(X)

) m
m−1

=

(
E(f1)/N

E(S)/N

) m
m−1

=

(
E(f1)

E(S)

) m
m−1

(3.15)

where p1 = m(1− θ)m−1θ. Replacing the expected values in the right-hand side by the

corresponding observed quantities, we obtain:

p̂0 =

(
f1
S

) m
m−1

(3.16)

If we plug p̂0 into the Horvitz-Thompson estimator, the Good-Turing estimator is:

N̂GT =
n

1− (f1/S)
m

m−1

(3.17)
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When m→∞:

N̂GT =
n

1− f1/S
(3.18)

The variance for Turing estimation [57] is derived by:

V̂ ar(N̂GT ) =
nf1S

(1 + f1
S )2

+
n2

(1 + f1
S )4

[
f1(1− f1

N̂
)

S2
+
f21
S3

]
(3.19)

The Good-Turing estimator has the advantage of being easy to calculate, as the estimate

is obtained in a straightforward way, with no need for an iterative procedure.

3.5 Examples of applications of Capture-Recapture data

modelling

Applications of capture-recapture methods are countless. As mentioned in the previous

sections, this methodology can be used to solve problems or challenges in many areas of

research.

In this section, we provide some illustrations of capture-recapture studies which allow

us to demonstrate the versatility and flexibility of these methods and have a rough idea

of the areas of application.

The first example comes from a capture-recapture study originated by repeated count

data in medical sciences. McKendrick [66] analysed data related to a cholera epidemic

in an Indian village. More information about this data set is provided in [66] and [23].

Cholera is an infectious disease caused by a bacteria on the small intestine.

The table below shows the frequency distribution of Cholera cases per household:
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Table 3.14: Frequency distribution counts of cholera in an Indian village.

x 0 1 2 3 4
fx ? 32 16 6 1

As we can see from the table above, there were 32 households with exactly one cholera

case (f1 = 32), 16 households with exactly two cases (f2 = 16), 6 households with

exactly three cases (f3 = 6) and one household with exactly 4 cases (f4 = 1).

In summary, 55 households, n = 55, were identified with at least one cholera case with

a maximum of 4 cases. It is known that this cholera epidemic had spread by many more

households which were never identified in the study. It is then of interest to estimate how

many households were affected by the epidemic but were not registered in this study,

i.e., how many households did not refer any case but having the infection.

The next example is related with the number of illegal immigrants in four cities of

the Netherlands. Data for this study was collected from police records. More details

about this data can be found in Van der Heijden et al. [86], [84] and [85]. This data

was analysed using a truncated Poisson regression model. The study is centred on the

illegal immigrants who cannot be deported out of the country definitively once they are

apprehended by the police. This is the situation that normally happens when there is

no cooperation between the organization of deportation and the country of the deported

immigrants.

The problem that arises from this situation of disagreement between the deportation

organization and the country is that, most likely, those illegal immigrants will not leave

the country where they were apprehended when they are asked to do so. Hence, they

can be caught in this situation more than once.

The following table shows the frequency distribution of the apprehension counts of the

illegal immigrants during the study period:
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Table 3.15: Frequency distribution of illegal immigrants apprehension in four cities
in the Netherlands.

x 0 1 2 3 4 5 6
fx ? 1645 183 37 13 1 1

William Shakespeare is considered the greatest writer in English literature. Spevack [81]

collected data on how many words Shakespeare used in his works. Efron and Thisted

[38] tried to estimate how many words did Shakespeare know but not use. We can see

in the next table part of the frequency distribution of different words:

Table 3.16: Frequency distribution of the words used by Shakespeare (only first 3
counts).

x 0 1 2 3
fx ? 14376 4343 2292

For more information about this data and/or consultation of the data set, please see [81].

Shakespear’s number of known words comprise a total of 884647 words. Spevack’s study

revealed that Shakespeare knew about 31500 different words, while Efron and Thisted

estimated that he knew at least 35000 more words but he did not use all of them.

A closer look to the table of the frequencies shows that exactly 14376 words were used

just once, 4343 words were used exactly twice and so on.

As we can see, capture-recapture methods are applied not only to medical sciences (first

example), as it can be largely used in social sciences, literature studies (second and third

examples respectively). More examples of applications of capture-recapture studies will

be presented throughout the thesis. The next section presents another four examples

with a particular feature.

3.6 Examples of applications of capture-recapture data mod-

elling with inflation

A closer look to the data sets presented in the last section reveals that often, we may

observe an accumulation of units for the first count. This situation is not rare.

Let’s illustrate this situation using the study on the prevalence of domestic violence in

the Netherlands by Van der Heijden et al. [85]. In this study, referring to year 2009,
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capture-recapture methodology was applied to estimate the total population size of the

offenders. The total number of observed indicted people was 17662 (n = 17662). There

are 15169 culprits identified exactly once in a domestic violence incident, 1957 exactly

twice and so forth. From the data, we can notice that the observed data may be in the

form of a one-inflated distribution. It seems that a portion of the culprits captured for

the first time changed their behaviour and have not been registered a second time.

Table 3.17: Frequency of domestic violence culprits by incident.

x 1 2 3 4 5 6
fx 15169 1957 393 99 28 16

The reported data for this situation is evidently suffering from one-inflation. From the

analysis of the table, it seems that many culprits changed their behaviours after being

captured once which generated an increase in observed one counts.

However, it might happen that we have inflation of zeros for the positive sample since

f0 is unknown and no further information is given about unobserved units.

Zero-inflation arises when we are in the presence of a large quantity of zeros with respect

to other counts. In capture-recapture studies, the presence of an excessive number of

zeros tends to violate the underlying homogeneous distributional assumption questioning

the validity of the inference for f0 and, consequently, for the total population size.

It is very common to face count data with many zeros when working in agriculture,

econometrics, manufacturing, species abundance and medicine. See Ridoutet et al. [77]

for more details. Therefore, methodology has to be developed when we have evidence

of zero-inflation occurrence.

Two examples that motivate the application of zero-inflated models for regression anal-

ysis are presented to illustrate the importance of an analysis when zero-inflation may be

present.

The analysis of dental caries indices has been approached using zero-inflated count re-

gression models over the past years. This happens because children are having less caries

experiences due to an improvement in their oral health which leads to low or even zero

counts. Böhning et al. [19], evaluated several programmes for reducing caries from a

dental epidemiological study in an urban area of Belo Horizonte. For this study, the

presence of an excessive quantity of zeros, would violate the usual Poisson distribution
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mean-variance relationship. This study contemplated only school-children with 7 years

of age from schools with similar backgrounds. The main goal of the study was to com-

pare four methods to prevent dental caries. The interventions’ scheme was as follows:

school 1 - oral health education, school 2 - all four methods together, school 3 - control

group, school 4 - enrichment of the school diet with bran, school 5 - mouthwash with

0.2% sodium fluoride (NaF) solution and finally, school 6 - oral hygiene. These six treat-

ments were randomized to the six schools and all children of a given school received the

same treatment. In total, 797 children were examined both before and after the study

period. Results of the number of children per DMFT Index (Decayed, missing and filled

teeth index) are available bellow. The DMFT Index is an indicator that measures the

dental status of a person.

Table 3.18: Frequency of school-children per DMFT index in the beginning and end
of the study period.

DMFTIndexlabels 0 1 2 3 4 5 6 7 8
DMFTbeg 172 73 96 80 95 83 85 65 48
DMFTend 231 163 140 116 70 55 22 0 0

In this study we have confirmation of zero-inflation if a Poisson model is considered. It

is clear also that the DMFT index substantially improved which explains the increasing

weight of zeros at the end of the study. More details about the data can be found in

Böhning et al. [19].

Another example of a zero-inflated situation is given in the paper of Min and Agresti

[70] for a pharmaceutical study. The original data was not used in the paper due to

the companies’ confidentiality, however, despite some values were modified, the basic

structure of the data was kept. Zero-inflation is one of those characteristics. The study

consisted of comparing two treatments for a particular disease in terms of the number

of episodes of a certain side effect. In total, 118 patients (n = 118) were evaluated with

59 random patients receiving treatment A and the remaining receiving treatment B.

At each of six visits, the number of side effects was measured. From the observations,

around 83% were identified as zeros. The table below shows the frequency of side effects

for treatments A and B.

Once again, it is clear the existence of zero-inflated data occurrence in this study when

a homogeneous Poisson distribution is considered with treatment A showing signs of

being more effective in controlling the disease.
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Table 3.19: Side effect frequencies in treatment A and B.

Treatment 0 1 2 3 4 5 6
A 312 30 11 0 1 0 0
B 278 39 20 6 7 2 2

The question is how to deal with situations of excessive zero counts in order to estimate

the total population size? In fact, if there is no information about the data collection, it

might be impossible to identify zero inflated cases with only a positive sample. Conse-

quently, it is impossible to check the performance of the adopted model. This situation

changes if we have access to a validation sample as it will be explained in the next section

and explored along this work.

3.7 Review of important methods used in the thesis

In this section, we will describe some methodology that will be used in the next chapters.

Since the main goal of applying a capture-recapture method is to model the count

probability distribution, several estimators can be used according to the study purpose.

In this dissertation will be presented two important estimators for the population size

N .

The understanding of this chapter is important for the understanding of more complex

topics presented in chapter 4, 5 and 6.

3.7.1 Estimators overview

As aforementioned, the Horvitz-Thompson and the Good-Turing estimators are going

to be used to estimate the total size of the population in next three chapters (4, 5 and

6). Therefore, we start with a brief introduction to both.

3.7.1.1 The Horvitz-Thompson estimator

The Horvitz-Thompson estimator, named by Daniel Horvitz and Donovan Thompson in

1952 [51], is an estimator for the total size of a population of interest.
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Let N be the total population size and 1 − p0 the probability that an individual is

identified by a certain registration mechanism. Then, p0 will be the probability that an

individual is not identified. If X is the random variable which describes if the individual

is identified or not, we have a dummy variable assuming the values:

Xi =


1, if the i individual was identified

0, otherwise

(3.20)

Notice that the total number of observed units n is defined by:

n =

N∑
i=1

Xi (3.21)

As previously shown, N can be written as:

N = N(1− p0) +Np0 (3.22)

Notice that Np0 corresponds to the part of the population which is not observed as

opposite for N(1− p0), which is the expected value for n. Therefore, N can be written

as follows:

N = n+ f0 = E (n) + E (nf0) = E (n) +Np0 (3.23)

where
∑m

x=1 f1 + ...+ fm = n. Solving for N , we obtain:

N =
E (n)

1− p0
(3.24)

which substituting the expected value by the observed one leads to the Horvitz-Thompson

estimator:

N̂ =
n

1− p0
(3.25)
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This can be shown to be the maximum likelihood estimator for the population size N .

For more on this topic, see Bishop et al. [13] and Van der Heijden et al. [84].

3.7.1.2 The Good-Turing estimator

The Good-Turing estimator was developed by Alan Turing and published in 1953 by

I. J. Good [45]. It was initially defined to estimate the number of species in a wildlife

context and then applied to human populations as well.

Again, let N be the total population size and X the number of times an individual

was observed during a study period. Recalling the notation used before to define the

positive sample, let fx be the number of individuals identified exactly x times out of m

recaptures. It was already shown in section 3.4 how to obtain the Good-Turing estimator

for a Binomial distribution:

N̂Turing =
n

1− (f1/S)
m

m−1

(3.26)

where n represents the sum of the number of observed individuals, f1 represents the

number of individuals observed in the first occasion of the study and, S =
∑m

i=1 xfx. It

should be mentioned that there are no iterations to get the final estimate for N using

this method. So, the calculation of the value for N̂ should be achieved directly from the

formula in an easy and direct way.

Notice that for the Poisson case:

p0 = exp(−λ) =
exp(−λ)λ

λ
=

p̂1
E(X)

=
f1
N
S
N

=
f1
S

(3.27)

and the Good-Turing estimator for the Poisson case is:

N̂Turing =
n

1− (f1/S)
(3.28)
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In fact when m becomes large in equation (3.26), the Good-Turing estimator for the Bi-

nomial distribution goes to the expression of the Good-Turing estimator for the Poisson

distribution.

3.7.2 An introduction to the Expectation-Maximization (EM) algo-

rithm

The Expectation-Maximization (EM) algorithm is an iterative algorithm for parameter

estimation formalised first by Dempster et al. in 1977 [32]. This algorithm leads to

maximum likelihood estimation in the presence of unobserved variables, i.e. the data

is incomplete. The EM algorithm is particularly useful when the complete data log-

likelihood is easy to maximize, whereas the incomplete data likelihood does not have a

closed form solution. Examples of the application of the EM algorithm can be found in

McLachlan et al. [65].

The EM algorithm alternates between two steps: the E and the M step. Since the maxi-

mum likelihood computation for the complete data is easier to solve than the maximum

likelihood estimation associated with the incomplete data, we proceed by using the EM

algorithm with the complete data likelihood.

In the E-step of the algorithm, due to lack of observed data, we replace the unobserved

data by its expectation conditional on the observed data and the current parameter

estimates. In the M-step, we update the values of the parameters by maximizing the

likelihood based on the available and the imputed data. The two steps are iterated until

convergence of the algorithm.

3.7.2.1 Maximum Likelihood Estimation using the EM algorithm

Let X be a random vector with probability density function f(x; θ) where θ is an un-

known parameter vector. Using the log-likelihood of X, logL(θ;x), we want to get a

maximum likelihood estimate θ̂ for θ.

To get an estimate θ̂ of θ, let’s consider an initial value for θ, θ(0), and start the first

iteration of the EM algorithm based on the complete data log-likelihood.
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The E-step takes θ(0) and calculates the conditional expectation of the complete log-

likelihood given the observed data X and the current parameter estimates θ̂0:

Q(θ, θ(0)) = Eθ(0)(logL(θ)|x) (3.29)

In the M-step, Q(θ, θ(0)) is maximized with respect to θ to obtain an updated estimate

θ(1):

Q(θ(1), θ(0)) ≥ Q(θ, θ(0)) (3.30)

We begin the second iteration with a new updated estimate for θ, θ(1), and the process

is repeated until convergence.

To sum up, the algorithm performs as follows:

E-step: Calculate

Q(θ, θ(r)) = Eθ(r) logL(θ)|x (3.31)

M-step: Take θ(r+1) such that

Q(θ(r+1), θ(r)) ≥ Q(θ, θ(r)) (3.32)

where r corresponds to the iteration index. For more specific details, please see [65],

[57].

3.7.2.2 Maximum Likelihood Estimation for truncated Binomial/Poisson

distributions

We will detail the EM algorithm for truncated count data using the Binomial and the

Poisson distributions. These distributions will be discussed in more detail in Chapter 4.

The main goal is to estimate the total size N of a population of interest when some of

the information is missing.
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Let X be the total number of times that a unit was identified over a study period

where X ∼ B(n, θ). Hence, X follows a Binomial distribution with probability density

function:

f(x; θ) =

m
x

 θx(1− θ)(m−x) (3.33)

x = 0, ...,m.

As we know, in capture-recapture studies we are dealing with units which were not

identified during a given period and this is the reason why N needs to be estimated.

Then, the observed data includes only non-zero units.

The probability density function in (3.33) becomes zero-truncated Binomial considering

that f(0; θ) = (1− θ)m as follows:

f(x; θ) =
f(x; θ)

1− f(0; θ)
=

m
x

 θx(1− θ)(m−x)

1− (1− θ)m
(3.34)

x = 1, 2, 3, ...,m.

Notice that m is the fixed number of sampling occasions.

Let fx be the number of units identified exactly x times and n = f1 + f2 + ...+ fm the

total number of observed counts.

The incomplete observed likelihood function in this case is given by:

L(θ) =

m∏
i=1



m
i

 θi(1− θ)(m−i)

1− (1− θ)m



fi

(3.35)

Based on the observed counts, we may get an estimate θ̂ for θ in order to achieve an

estimate N̂ for N .
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This is equivalent to estimate the unknown parameter θ by the value for which the

likelihood function L(θ;x) is maximised. This approach is called Maximum-Likelihood

Estimation (MLE) [22].

To find the MLE we need to maximize L(θ;x) with respect to θ. Maximizing the

likelihood function is equivalent to maximize the log-likelihood function since the natural

logarithmic function is an increasing function and normally has a much simpler form

which makes it easier to differentiate.

Let’s then consider the observed zero-truncated Binomial log-likelihood function:

logL(θ) =

m∑
i=1

fi log



m
i

 θi(1− θ)m−i

1− (1− θ)m


(3.36)

The maximum likelihood estimate θ̂ can be achieved by numerical methods simply com-

puting dl(θ)
dθ = 0 where l(θ) represents the log-likelihood function.

Note that the term
∑m

i=1 fi log

m
i

 is a simple fixed constant which does not affect the

MLE so it can be omitted in the calculations and it does not appear in the expression

of the first derivative of the log-likelihood function:

dl(θ)

dθ
=

∑m
i=1 ifi
θ

−
∑m

i=1 fi(m− i)
1− θ

+ n
m(1− θ)m−1

1− (1− θ)m
(3.37)

Solving dl(θ)
dθ = 0 to find the MLE does not lead to a closed-form solution.

Let’s now define the complete data log-likelihood (unconditional likelihood):

logL(θ) =

m∑
i=0

fi log

m
i

 θi(1− θ)m−i
 (3.38)

The E-step takes:
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Q(θ) = E(logL(θ)|f1, f2, ..., fm; θ) (3.39)

Replacing L(θ) by its form as in 3.39 we get:

Q(θ) =
m∑
i=1

fi log

m
i

 θi(1− θ)m−i + f̂0 log(1− θ)m (3.40)

Now, the expectation value of f0 given θ, f̂0 = E(f0|f1, f2, ..., fm; θ), is found:

f̂0 = N(1− θ)m =︸︷︷︸
1

(n+ f̂0)(1− θ)m =︸︷︷︸
2

n(1− θ)m

1− (1− θ)m
(3.41)

Notice that equalities (1) and (2) in (3.41) are justified by the following equalities:

E(f0) = Np0 = (n+ E(f0))p0 (3.42)

and

E(f0)(1− p0) = np0 ⇒ E(f0) = n
p0

1− p0
= n

(1− θ)m

1− (1− θ)m
(3.43)

Replacing this new expression of f0 in 3.40, the unconditional likelihood assumes the

form:

Q(θ) =
n(1− θ)m

1− (1− θ)m
log((1− θ)m) +

m∑
i=1

log

m
i

 θi(1− θ)m−i
 (3.44)

= f̂0 log((1− θ)m) +
m∑
i=1

log

m
i

 θi(1− θ)m−i
 (3.45)

which does have a closed form solution:

θ̂ =

∑m
j=0 jfj

m(n+ f̂0)
(3.46)
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Hence, the EM algorithm maximizes then the observed log-likelihood function and the

computation executed by the algorithm is as shown:

Conditions: choose an initial value for θ̂(0) and set r = 0

E-step: Calculate

f̂
(r)
0 =

n(1− θ(r))m

1− (1− θ(r))m
(3.47)

M-step: Update the estimate of θ:

θ̂(r+1) =

∑m
j=1 jfj

m
(
n+ f̂0

(r+1)
) =

S

m
(
n+ f̂0

(r+1)
) (3.48)

Set r = r + 1 and alternate between the E and M steps until the estimate for θ, θ̂,

converges, i.e., |θ̂(r+1) − θ̂(r)| is smaller than a chosen tolerance threshold.

For the Poisson case, the procedure is similar. Let’s suppose now that Y ∼ P (λ) with

a probability density function:

f(y;λ) =
exp(−λ)λy

y!
(3.49)

Therefore, the probability function for a zero-truncated Poisson distribution stays:

f(y;λ) =
exp(−λ)λy

y!(1− exp(−λ))
(3.50)

for y = 1, 2, 3, ... .

The observed likelihood function, for the Poisson case, is as follows:

L(λ) =

m∏
y=1

(
exp(−λ)λy

y!(1− exp(−λ))

)fy
(3.51)

The MLE is achieved by computing the first derivative of the expected unobserved log-

likelihood function:
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λ̂ =

∑m
j=1 jfj

f̂0 + n
(3.52)

Computing E(f0|f1, f2, ..., fm;λ) which is the same as f̂0, we get the estimator for f0:

f̂0 =
n exp(−λ)

1− exp(−λ)
(3.53)

Similarly, the EM algorithm toggles between steps (3.52) and (3.53). For more details

of the Poisson MLE steps, please see [19], [83], [33].

3.7.3 The ratio plot

Usually, we start the analysis by visualising the graph of the observed frequency distri-

bution since it is a very simple and quick approach that may provide valuable insights

on the next step of the study.

A graphical method was proposed by Dubey [36] and Ord [72] to inspect closeness to

discrete distributions such as the Binomial distribution, the Poisson distribution and

the Pascal distribution. The plot was further investigated by Hoaglin [48].

Böhning et al. [17] developed a graphical device - the ratio plot - to check for a homo-

geneous Poisson model in the context of frequency of frequencies distribution.

3.7.3.1 Zero-truncated power series distribution

Let

η(θ) =
∞∑
x=0

αxθ
x (3.54)

be a power series function. We can rewrite (3.54) as
∑∞

x=0
αxθx

η(θ) = 1. Therefore, px(θ) =

αxθx

η(θ) defines a power series distribution for x = 0, 1, 2, ..., θ > 0 and αx > 0. Notice that

η(θ) =
∑∞

x=0 αxθ
x is the normalizing constant.
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It can be shown that the coefficient αx defines the specific member of a power series. For

example, if αx = 1
x! , it defines a Poisson distribution and if αx =

m
x

 for x = 0, ...,m,

it defines the binomial distribution (for αx = 0 and x > m). We are going now to

introduce the ratio plot which is a member of the power series distributions. For more

details, see [2].

In capture-recapture studies, we deal with zero-truncated distributions. The ratio plot

is simply a plot of the ratio of neighbour frequencies associated with a coefficient related

to a chosen distribution versus the number of captures/counts.

rx = ax
px+1

px
(3.55)

where x = 0, 1, ...,m, px denotes the probability that the unit is identified exactly x

times during the period of the study and is a power series distribution.

ax = αx
αx+1

is chosen so that rx = 1 under the power series.

This can be extended to focus on distributions where the first ratio is unknown as f0 is

unknown. The ratio plot for an untruncated Poisson distribution is obtained by fixing

ax = (x+ 1) as αx
αx+1

= (x+1)!
x! , then obtaining:

rx = ax
px+1

px
= (x+ 1)

px+1

px
(3.56)

which is the expression for the ratio plot in the Poisson case.

The ratio plot is the graph of points (x, rx). In capture-recapture studies, we do not

observe zero counts, so f0, the frequency of zeros, remains unknown. On the other hand,

we do observe the sample frequencies f1, f2, ..., fm. Hence, we need to consider the ratio

plot for the zero-truncated probabilities:

p+(x) =
px

1− p0
. (3.57)

The ratio for the zero truncated probability is defined by:

rx =
(x+ 1)px+1/(1− p0)

px/(1− p0)
(3.58)
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x = 1, ...,m, which is identical to that refering to the untruncated distribution as it

holds:

rx =
(x+ 1)px+1

px︸ ︷︷ ︸
untruncated

=
(x+ 1)px+1/(1− p0)

px/(1− p0)︸ ︷︷ ︸
zero−truncated

(3.59)

Replacing px by the correspondent frequency of counts, we get:

r̂x = (x+ 1)
fx+1

fx
(3.60)

which can be used for checking the zero-truncated distribution and the untruncated

count distribution.

3.7.3.2 The Binomial distribution

As previously described, the ratio plot is an important tool for exploring the observed

count distribution. Let us consider the Binomial probability distribution which is given

by:

px(θ) = P (X = x) =

m
x

 θx(1− θ)m−x (3.61)

x = 0, 1, ...,m.

The main idea is to consider ratios of the observed frequencies to estimate ratios of

neighbouring count probabilities. To illustrate this idea, still working with the Binomial

distribution, let us consider the ratios as below:

px+1

px
=

 m

x+ 1

 θx+1(1− θ)m−x−1

m
x

 θx(1− θ)m−x

=
m− x
x+ 1

θ

1− θ
(3.62)

Using the non-negative coefficients ax = x+1
m−x , we can write the ratio plot terms as

follows:
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rx = ax
px+1

px
=

x+ 1

m− x︸ ︷︷ ︸
ax

px+1

px
=

θ

1− θ
. (3.63)

The result is a constant, the odds for the event, which is independent of x. Note that

rx does not change whether we consider the truncated or the untruncated distributions

as shown in (3.59). As we have mentioned before, the coefficients ax directly depend on

the chosen base distribution. In this situation, the base is represented by the homoge-

neous Binomial distribution which is obtained by assuming the absence of unobserved

heterogeneity.

In the case of the Binomial distribution, the ratio rx is constant over x as we can see in

3.1 for N = 100, N = 1000, N = 10000 and N = 100000 with sampling error naturally

visible for small population sizes. Since the quantity px is unknown, a non-parametric

estimation fx/N of rx is given by:

r̂x = ax
fx+1/N

fx/N
= ax

fx+1

fx
(3.64)

where fx is the observed frequency of counts x.

3.7.3.3 Application to real data

The ratio plot has been frequently used in literature to explore the frequency distribution

of real data and their similarity to homogeneous distributions. Three examples are given

here. The first entails literature data from the work of Shakespeare, other two come from

medicine and entail a colorectal polyps study, and an illicit drug user research. For more

information about this data and the methodology used here, please see [23].

1. Shakespeare’s data

Efron and Thisted [38] took the complete work of Shakespeare to get a prediction for

the number of words he did know but never used.

Data on the work of Shakespeare have been collected previouly by Spevack in 1963 [81].

Following Spevack, the total number of words known by Shakespeare sum up a total of
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Figure 3.1: Ratio plot and regression line for 100, 1000, 10000 and 100000 simulated
data (clockwise) from a Binomial distribution with θ = 0.5 and m = 7.

884647. Out of these, 14376 (=f1) types appearing just once, 4343 (=f2) types appeared

only twice and so on, where fx denotes the number of words appearing exactly x times.

Notice that m is not fixed as it is unkown.

Table 3.20 shows the observed frequency distribution for words count based on the work

of Shakespeare (only the first 50 counts):

The problem consists in replying to the question “how many words did Shakespeare

know but did not use ever in his writings?”. Efron and Thisted estimated that he knew

at least 35000 more different words but did not use them in his writings [38].

Alfó et al. [2] focused in methods specifically designed to estimating the population size,

in particular, using ratio regression methodology. For the presented case, the Poisson

and the Geometric distributions were analysed.
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Table 3.20: Frequency distribution fx of the words used by Shakespeare exactly x
times.

x 1 2 3 4 5 6 7 8 9 10
fx 14376 4343 2292 1463 1043 837 638 519 430 364

x 11 12 13 14 15 16 17 18 19 20
fx 305 259 242 223 187 181 179 130 127 128

x 21 22 23 24 25 26 27 28 29 30
fx 104 105 99 112 93 74 83 76 72 63

x 31 32 33 34 35 36 37 38 39 40
fx 73 47 56 69 63 45 34 49 45 52

x 41 42 43 44 45 46 47 48 49 50
fx 49 41 30 35 37 21 41 30 28 19

The ratio plot for this data set using the Poisson or the Geometric distribution shows

no evidence that these are the right distributions to use for the total number of words

Shakespeare knew but did not use. However, for the Poisson case, the ratio plot gives

evidence of a straight line pattern. See Figure 3.2 (left panel). Used many times as a

diagnostic device, the ratio plot leads in this case to a deviation from these two simple

models since no horizontal line pattern is observed in both ratio plots.
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Figure 3.2: Ratio plot for the Shakespeare data set line for the Poisson (left panel)
and the Geometric distribution (right panel).

Bunge and Sernaker [26] used the empirical probability generating function to estimate

the parameters of the data distribution however using different models to choose the

best estimate of the population size by comparing the goodness of fit from the different

models obtained.
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2. Colorectal polyps:

The second example where the ratio plot was applied in capture-recapture count data

was performed by Maruotti et al. [64], [5]. The authors studied the use of the Conway-

Maxwell-Poisson (CMP) distribution to estimate the unknown population size for zero-

truncated count data in the case of under and over-dispersion. Using the CMP distri-

bution as a base distribution, the ratio plot allowed them to provide insights on the

uncertainty of the population size estimates for three different data sets.

One of the data sets relates to colorectal cancer, one of the most regular cancer in terms

of mortality. In 1990, the Arizona Cancer Center recruited individuals with previous

history of colorectal adenomatous polyps to determine if a wheat bran fibre can prevent

the recurrence of those polyps. The individuals in the study were randomly allocated

to either: low fibre or high fibre diet.

Despite colonoscopy is being seen as an effective tool to screen for this particular cancer,

it is known that any screening test or study for diagnosis a medical condition is totally

accurate and can lead to a misclassification during the process and consequently, to an

undercount of the number of individuals who actually have cancer. Hence, there could

be people false-negatively diagnosed during the colonoscopy and an unknown number of

zero-counts in the sample.

The total population size for each group is known. The low fibre treatment group was

composed by 584 individuals and the high fibre treatment group was composed by 722.

Following this approach, an estimate for the undercount of the non-zero frequencies is

presented using ratio regression. For more details, please see [64], [5].

3. Needle exchange programme in Scotland (1997)

The number of individuals who visited a Scottish needle exchange during 1997 was

reported in a study by Hay and Smit [47]. The data was collected during a research

programme on drug misuse prevalence in Scotland. For each individual accessing the

service, a unique identifier number was assigned. Therefore, the number of individuals

who had contacted the service was recorded, see Table 3.21:
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Table 3.21: Frequency distribution of the individual episode count in the needle
exchanging program in Scotland (first 10 episodes).

x 0 1 2 3 4 5 6 7 8 9 10
fx ? 175 85 50 47 37 38 32 16 17 17
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Figure 3.3: Ratio plot of episode count in Scottish needle exchange program, 1997.

Let us now observe the ratio plot using the Poisson distribution as reference, ax = (x+1):

In this case, as the graph 3.3 shows, the ratio plot for the Poisson distribution leads to

a fitted regression line that adjusts very well to the ratios’ distribution. Notice that the

regression line is passing very close to the origin. Böhning et al. [17] investigated this

effect in the ratio plot to estimate N using an exponential distribution and a generalized

Turing estimator. For more information on this approach, please see [17].



Chapter 4

Estimation Under Homogeneity

4.1 The EM Algorithm

Let us suppose that we are interested in studying the problem of missing zero counts

in a target population of interest. Therefore, the main goal is to estimate the total

population size by estimating the number of missing individuals.

In order to estimate N , simple models using the Binomial or the Poisson distribution are

considered as well as an extension of these models considering validation information.

Finally, more complex and flexible modelling tools using finite mixtures models are

discussed in the next chapter.

We focus here on the estimation of N under homogeneity and this will be done using

the EM algorithm. The EM algorithm for the Binomial and the Poisson distribution

was already introduced in section 3.7.2, and it represents a tool for maximum likelihood

estimation.

For a sample of a population sizeN , let us consider a sample of positive counts x1, x2, ..., xN ,

from a distribution which can be modelled using a mixture probability density function:

px = p(x,Q) =

∫ ∞
0

f(x|θ)q(θ)dθ (4.1)

52
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where q(θ) represents an unspecified mixing density and f(x|θ) a kernel which needs to

be specified. For example, the mixture kernel for the Binomial family will be f(x|θ) =m
x

 θx(1− θ)(m−x), θ ∈ (0, 1).

Let us now recall basic information on the current context:

• xi = 0 is unobserved;

• n =
∑m

i=1 fi is observed, where fi is the frequency of counts with value x = i and

m is the largest observed count;

• f0 is unknown; therefore the total size of the population N is unknown.

Let us now denote by N the sum of all frequencies, N = f0 + f1 + ... + fm, so that

n = N − f0, where f0 is unobserved.

We may define the following likelihoods for capture-recapture modelling when both the

positive and the validation samples of size n and N1, respectively, are available:

• Conditional Likelihood:

LC(p0, ..., pm) =

 n

f1f2...fm

 m∏
j=1

(
pj

1− p0

)fj
︸ ︷︷ ︸

Positive

×

 N1

g0g1...gm

 m∏
j=0

p
gj
j︸ ︷︷ ︸

V alidation

This likelihood is a product of a truncated (observed, incomplete) likelihood referring to

the positive sample and an untruncated (complete) likelihood referring to the validation

sample which is completely observed.

• Unconditional Likelihood:

LU (p0, ..., pm;N) =

 N

f0f1...fm

∏m
j=0 p

fj
j ×

 N1

g0g1...gm

∏m
j=0 p

gj
j

where N1 = g0 + ...+ gm is known while N is unknown, since f0 is unknown.

The maximization of the unconditional likelihood would imply the maximization over

the unknown parameter f0. This could be done considering a profile likelihood which

can be constructed as L(N) = supQL(Q,N) maximizing L(Q,N) in Q for a fixed N .
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This profile likelihood can be then evaluated at N = n, n+ 1, n+ 2, ..., n+M where M

is an upper bound to be determined [57] [74].

Now, let’s observe the following relation [3]:

 n

f1f2...fm

N
n

 =

 N

f0f1...fm

 (4.2)

so that:

LU = LC × pf00 (1− p0)

N
n

 = LC ×B(N,Q) (4.3)

Notice that the unconditional likelihood depends on a large extent on the conditional

likelihood which the EM algorithm is designed to maximize. In fact, the unconditional

likelihood is a product of the conditional likelihood with a simple Binomial likelihood

with parameter N [18]. This relationship is particularly valid for finite mixtures of

Binomials with size parameter m and px =
∑k

l=1 θ
x
l (1− θl)m−xql.

Sanathanan [79] showed that the two approaches are asymptotically equivalent. See

[60] and [49] for more insights. Lerdsuwansri [57] proposed an unconditional maximum

likelihood approach using a profile mixture likelihood for estimating the size of a closed

population.

In this work, we will consider only the conditional likelihood as it does not depend on

N and we believe it contains most of the information. The EM algorithm is defined to

maximize the conditional likelihood above; it may be sketched as follows:

E-STEP: Given an estimate Q̂ of the mixing distribution Q, compute a new estimate

N̂ by

N̂ =
n

1−
∫
p(0|θ)Q̂(dθ)

(4.4)

M-STEP: Given an estimate N̂ of N compute a new estimate of Q by maximizing

pf̂0+g00 pf1+g11 ...pfm+gm
m (4.5)

in Q, where pj =
∫
p(j|θ)Q(dθ) is the mixture model.
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The mixing distribution Q is estimated in the M-step. This new estimate will then be

used to construct a new estimate of f0.

For the time being, we considered the simple case of a homogeneous Binomial (when Q

puts a unit mass at θ). The theory for finite mixtures will be introduced in the next

chapter.

4.1.1 Application of the EM Algorithm to the case studies

Let us consider the simple homogeneous Binomial distribution

f(x|θ) =

m
x

 θx(1− θ)(m−x) (4.6)

and describe how to apply the EM algorithm with validation information.

The first step we choose an initial value for θ.

The incomplete observed likelihood to be maximized by the EM algorithm is as follows:

LC(θ) =

m∏
j=1

((
m
j

)
θj(1− θ)m−j

1− (1− θ)m

)fj
×

m∏
j=0

((
m

j

)
θj(1− θ)m−j

)gj
(4.7)

And the unconditional likelihood is yield as:

LU (θ) =

m∏
j=0

((
m

j

)
θj(1− θ)m−j

)f∗j
(4.8)

where f∗j = fj + gj .

Taking n = f1 + f2 + ... + fm and N1 = g0 + g1 + ... + gm, the algorithm used in this

case is described as following:

Choose some initial value θ̂ and set p̂0 = (1− θ̂)m.

E-STEP: N̂ = n
1−p̂0 ⇒ f̂0 = N − n = n p̂0

1−p̂0 .

M-STEP: θ̂ =
∑m

j=0 f
∗
j j

m
∑m

j=0 f
∗
j

, where f∗j = fj + gj .
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This process is repeated until the difference |θ̂(new) − θ̂(old)| is smaller than a chosen

tolerance threshold, in our cases this threshold was chosen to be 0.0001. Another criteria

could be considered, for instance, the difference between the new log LC and the one

calculated in the step before smaller than a chosen tolerance value as before, |log LC(new)−

log LC(old)|.

The complete likelihood can be maximized calculating the first derivative and solving the

equation δl(θ)
δθ = 0, where l(θ) represents the log-likelihood. This leads to the estimating

equation θ̂ =
∑m

j=0 f
∗
j j

m
∑m

j=0 f
∗
j

.

The EM algorithm could also be applied for the Poisson distribution.

For the Poisson case, the incomplete (observed) likelihood to be maximized by the EM

algorithm is given by:

L(λ) =

m∏
j=1

 λjexp(−λ)
j!

1− exp(−λ)

fj

×
m∏
j=0

(
λjexp(−λ)

j!

)gj
(4.9)

while the unconditional likelihood is defined as:

L(λ) =
m∏
j=0

(
λjexp(−λ)

j!

)f∗j
(4.10)

The algorithm is now as follows:

Choose some initial value λ̂ and consider p̂0 = exp(−λ̂).

E-STEP:f̂0 = n
exp(λ)−1 ⇒ N̂ = f̂0 + n

M-STEP: λ̂ =
∑m

j=0 f
∗
j j∑m

j=0 f
∗
j

where f∗j = fj + gj

The same considerations for the E and the M steps of the EM algorithm can be taken

for the Poisson distribution. More details about this algorithm can be found in [22].

Bellow, we discuss the application of these algorithms to the case studies presented in

2.2 using both the Binomial and the Poisson distributions.
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4.1.1.1 Salmonella Data

Let us recall the Salmonella data frequency distribution of tested farms by the number

of positive tests out of 7 Salmonella detection tests for the positive and the validation

sample:

Table 4.1: Positive and validation sample for Salmonella data.

x 0 1 2 3 4 5 6 7 Total

Positive sample ? 17 9 5 6 5 5 6 53

Validation sample 3 1 3 2 3 3 4 2 21

By adopting a Binomial distribution, we obtain for the Salmonella data set the popula-

tion size equal to 54 farms in total.

The EM algorithm was also applied using the Poisson distribution as mentioned before.

The results using the Binomial distribution do not differ substantially from the results

using the Poisson distribution. We obtained also 1 estimated unreported farm, therefore

a population of 54 farms in total.

The EM algorithm using both the Binomial distribution and the Poisson distribution

seem to indicate that just 54 farms have Salmonella infection in their eggs laying flocks.

In both cases, just a few steps of the algorithm are enough to converge.

The question arises if the validation sample is in fact important in the estimation of the

population size. We should explore the sensitivity of reported estimates to the validation

sample. In other worlds, we would like to measure the impact of the secondary sample

on the observed results.

We re-run the EM algorithm without the validation sample, i.e., using just the positive

sample to compare the results we achieved before by using both the positive and the

validation sample. The same distributions, Binomial and Poisson, were considered.

We obtained just 2 unreported farms using the Binomial distribution and 3 using the

Poisson distribution, that is between 2 to 3 unreported cases in the total sample, as

reported in Table 4.2:
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Table 4.2: Salmonella data: population size estimates.

Distribution f0 N

Binomial with validation information 1 54
Binomial without validation information 2 55

Poisson with validation information 1 54
Poisson without validation information 3 56

The difference between these and the previous results using the validation sample ap-

pears to be minor in this case. We should notice though that we worked with simple

homogeneous models which did not allow for the presence of heterogeneity. Ignoring

heterogeneity can lead to seriously underestimate the true population size.

Moreover, the fit was not adequate to provide a good estimate of the distribution due to

a lack of flexibility, and the benefit of having a validation sample available is not fully

exploited to check if the model is reliable.

Thus, the variability between farms with respect to, for example biosecurity issues, may

play an important role.

4.1.1.2 Bowel Cancer data

For the Bowel Cancer data, the frequency distribution of the number of positive tests is

reported bellow for the positive and the validation sample:

Table 4.3: Positive and validation sample for the Bowel Cancer data.

x 0 1 2 3 4 5 6 Total

Positive Sample ? 37 22 25 29 34 45 192

Validation Sample 22 8 12 16 21 12 31 122

The results for the Bowel Cancer data are reported in Table 4.4. It can be observed that

adding the validation sample into the modelling does not have any major impact on the

population size estimate considering both the Binomial and the Poisson distributions.

Again, it seems that heterogeneity related to individual features is not caught by vali-

dation information.

Only one individual is estimated using the Binomial distribution and 5 individuals using

the Poisson distribution (6 if we consider both the positive and the validation samples).
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Table 4.4: Bowel Cancer data: population size estimates.

Distribution f0 N

Binomial with validation information 1 193
Binomial without validation information 1 193

Poisson with validation information 6 198
Poisson without validation information 5 197

4.1.1.3 Brucellosis data

Next table recalls the positive sample (first row) and the validation sample (second row)

for the data collected for the Brucellosis disease data:

Table 4.5: Positive and validation sample for the Brucellosis data.

x 0 1 2 3 4 5 6 Total

Positive Sample ? 57 15 14 10 4 7 107

Validation Sample 68 26 14 7 4 1 6 126

Looking at the results for the Brucellosis data set, it is clear that there is a substantial

difference between using both the validation sample and the positive sample or this last

one alone. In fact, using the validation information with the Binomial model, we get an

estimate three times higher than the estimate we achieve using only the positive sample

(21 versus 7 individuals with Brucellosis).

When using the Poisson distribution, the difference is doubled - 29 individuals when we

consider the validation sample in the modelling versus 14 using the positive sample only,

see Table 4.6:

Table 4.6: Brucellosis data: population size estimates.

Distribution f0 N

Binomial with validation information 21 128
Binomial without validation information 7 114

Poisson with validation information 29 136
Poisson without validation information 14 121

In this case, modelling the validation sample helps catching some unobserved hetero-

geneity, at least partially, we should therefore investigate if these results are more reliable

than the results achieved using the positive sample only.
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4.1.1.4 Heroin users data

For the Heroin users data, the positive and validation are shown bellow:

Table 4.7: Positive and validation sample for the Heroin users data.

x 0 1 2 3 4 5 6 Total

Positive Sample ? 1401 369 98 23 1 1 1893

Validation sample 2398 573 366 190 87 6 2 3622

The results obtained for the Heroin drug users data (see Table 4.8) also point out some

contrast between using only the positive sample and both samples:

Table 4.8: Heroin data: population size estimates.

Distribution f0 N

Binomial with validation information 1212 3105
Binomial without validation information 533 2426

Poisson with validation information 1364 3257
Poisson without validation information 672 2565

The conclusions we derive by observing the results for the Brucellosis data can be ap-

plied here as well. Again, dealing with simple homogeneous distributions, the estimates

obtained using the validation sample exhibit huge differences when compared to those

achieved by using the positive sample.

This behaviour may point out unobserved heterogeneity in the data that the validation

sample may help to identify assuring a better modelling and, consequently, a better

population size estimate.

Surely, in those situations where there are notable differences between the two estimates,

the validation sample holds more information and it can be used to correct the estimate

for the population size.

4.1.1.5 Syphilis data

The positive and validation sample can be checked again in the next table:

Table 4.9: Positive and validation sample for the Syphilis data.

x 0 1 2 3 4 5 6 Total

Positive Sample ? 73 52 17 6 1 0 149

Validation sample 18 25 22 10 9 1 1 86
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Once again, there is a situation where there are no differences in using the validation

sample. Table 4.10 shows the estimates for the Syphilis dataset.

We obtained an estimate of 22 individuals infected with Syphilis using the Binomial

distribution and 22 without the validation sample. Considering the Poisson distribution,

the estimate rises to 33 using validation information and 32 otherwise.

Table 4.10: Syphilis data: population size estimates.

Distribution f0 N

Binomial with validation information 23 172
Binomial without validation information 22 171

Poisson with validation information 33 182
Poisson without validation information 32 181

In cases like the Salmonella, the Bowel Cancer and the Syphilis data, the untruncated

distribution we obtain by looking at the validation sample is coherent with the truncated

distribution, conditioned on model choice.

It is necessary to underline that the use of a validation sample allows us to avoid unre-

liable estimate for the total population size.

4.1.2 Simulation study

At this point, a question turns up, whether even in the case of homogeneity, there is any

profit in using the validation information. In situations where we get a very different

estimate for f0 using the validation set, how can we check for such estimates reliability.

In the following simulation study we analyse if there is a gain in efficiency using the

validation sample.

We considered several N = {25, 50, 100, 500, 1000} varying population size and fixed θ =

{0.15, 0.20, 0.25}. The data was generated randomly from a Binomial distribution and

zeros were dropped; We considered M = 1000 different simulated sample replications.

The validation sample - 25 observations - was randomly generated each time from a

Binomial distribution using the same parameters; This secondary sample was constant

in all the study. It represents 100%, 50%, 25%, 5% and 2.5% of the population size

when compared.
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Let us now consider X ∼ B(m, p). A non-parametric estimate for p0 could be obtained

by the validation sample:

p̂NP0 =
g0
N1

(4.11)

where g0 is the frequency of zeros from the validation sample and N1 is the size of the

validation sample, N1 =
∑m

i=0 gi.

We can then replace this estimate in the Horvitz-Thompson estimator expression to

achieve an estimate for N , the total size of the population:

N̂NP =
n

(1− p̂NP0 )
(4.12)

Another choice is given by the Good-Turing estimator which is easy to calculate since

it is obtained in a direct way with no need for an iterative procedure.

Assuming p0 = P (X = 0) and p1 = P (X = 1), we have:

(
p1

E(X)

) m
m−1

=

[
m(1− θ)m−1θ

mθ

] m
m−1

= (1− θ)m = p0 (4.13)

Replacing the expression
(

p1
E(X)

) m
m−1

by the observed quantities for the positive and the

validation sample, we obtain the following estimator:

p̂T0 =

[
f1 + g1∑m

j=1(fj + gj)j

] m
m−1

(4.14)

Again, using the Horvitz-Thompson estimator we easily get an estimate for the total

population size:

N̂P =
n

1− p̂T0
(4.15)

We run the EM algorithm using both the positive and the validation samples or using

only the positive sample. The estimation for θ and for the total size of the population

N was registered for each replication. The population size N was also estimated using
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either just the positive sample or both the positive and the validation sample by means

of the non-parametric estimator N̂NP = n
(1−p̂NP

0 )
where p̂NP0 = g0

N1
and the Good-Turing

estimator N̂P = n
(1−p̂T0 )

where p̂T0 =
[

f1+g1∑m
j=1(fj+gj)j

] m
m−1

.

The positive sample was increased to 5000 replications and all the process repeated to

analyse if the results were stable and to eliminate random error effects.

Table 4.11 reports the results for θ = 0.15 and the associated graphical analysis. The

results for the data generated 5000 times can be found between brackets in Tables 4.11

- 4.14. The results for θ = 0.20 and θ = 0.25 are reported in Appendix A for the EM

algorithm simulation study. However, conclusions about these two parts of the study

can be found here.

Table 4.11: Simulation study: θ = 0.15 results for M = 1000 (M = 5000) samples.

N Mean with validation Mean without validation

25 0.1506 (0.1493) 0.1463 (0.1470)
50 0.1493 (0.1493) 0.1485 (0.1489)
100 0.1491 (0.1497) 0.1491 (0.1498)
500 0.1502 (0.1499) 0.1502 (0.1500)
1000 0.1500 (0.1499) 0.1501 (0.1499)

We can conclude from Tables 4.11, A.1 and A.5 that the mean estimated values for the

parameter θ are very close to each other, specially for a big positive sample size (500

and 1000). In fact, differences between the values is negligible. The values become close

as we increase N as it is suggested from the graphical analysis (see left panel of Figure

4.1 and 4.2).

We can also see from the Tables 4.12, A.2 and A.6 that the variance without using

validation information is always higher than the variance using the validation sample. It

is evident that the blue line is always above the red line as we can see in the Figures 4.1

and 4.2 (right panel). This means that even a small amount of validation data makes

difference in the estimation of θ. Nonetheless, when we increase the size of the positive

sample for 500 or 1000, the validation sample acts basically as residual information.
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Table 4.12: Simulation study: θ = 0.15 estimated variance for M = 1000 (M = 5000)
samples using the EM algorithm with and without the validation sample, the Good-

Turing estimator (GT) and the non-parametric estimator (NP).

N EM alg. with validation EM alg. without validation GT NP

25 0.0005 (0.0005) 0.0019 (0.0018) 1.45 (1.30) 1.57 (1.02)
50 0.0004 (0.0004) 0.0009 (0.0009) 1.72 (1.68) 2.08 (1.76)
100 0.0003 (0.0003) 0.0004 (0.0004) 1.42 (1.51) 2.27 (1.98)
500 8.1979× 10−05 (7.8639× 10−05) 9.2990× 10−05 (8.6905× 10−05) 1.74 (1.67) 2.90 (2.68)
1000 4.2494× 10−05 (4.0760× 10−05) 4.4637× 10−05 (4.3092× 10−05) 1.86 (1.85) 3.15 (3.27)

Tables 4.13, A.3 and A.7 show that major differences in terms of efficiency can be found

for relatively small positive sample sizes of 25, 50 and 100. Overall, we can conclude that

we have a gain in efficiency in working with the validation sample instead of working

just with the positive sample.

Table 4.13: Ratio (Variance with validation / Variance without validation) for θ =
0.15 and M = 1000 (M = 5000) samples obtained by the EM algorithm.

N Ratio of variances

25 0.2604 (0.2955)
50 0.4530 (0.4466)
100 0.6402 (0.6349)
500 0.8816 (0.9049)
1000 0.9520 (0.9459)
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Figure 4.1: Simulation study: θ = 0.15 and M = 1000 samples; Left panel: mean
estimates for θ with varying N , using validation information (red) or not (blue); The

true value is the black solid line; Right panel: corresponding variance values.
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Figure 4.2: Simulation study: θ = 0.15 and M = 5000 samples; Left panel: mean
estimates for θ with varying N , using validation information (red) or not (blue); The

true value is the black solid line; Right panel: corresponding variance values.

Let us take a look now at the estimates for N . The values obtained with M = 5000

samples are reported within brackets in Tables 4.11, 4.12 and 4.13. Table 4.13 also shows

the results obtained for N using the Good-Turing estimator and the nonparametric

estimator as described above.

Table 4.14: Simulation study: θ = 0.15 and M = 1000 (M = 5000) samples: mean
estimates for N with and without validation information obtained by the EM algorithm,

the Good-Turing estimator (GT) and the non-parametric estimator (NP).

N EM alg. without validation EM alg. with validation GT NP

25 27.44 (27.14) 25.48 (25.48) 25.93 (25.32) 26.72 (26.41)
50 51.79 (51.59) 50.80 (50.62) 50.21 (50.17) 50.04 (49.89)
100 101.18 (101.39) 100.70 (100.92) 100.08 (99.87) 100.29 (100.04)
500 501.05 (500.95) 500.96 (500.97) 500.92 (500.84) 500.97 (500.21)
1000 1001.76 (1001.23) 1001.99 (1001.28) 1000.83 (1000.59) 1001.21(1000.07)

As expected, under homogeneity, we cannot find substantive differences using validation

or not. However, it seems fair to say that the estimation of N seems to be relatively

more accurate in the presence of a validation sample when we have a relatively small

positive sample. Thus, in those cases, the bias seems to be smaller using validation

information.

However, heterogeneity may play an important role in the estimation process and we

should consider a validation sample to validate our results and a potential model depar-

ture from homogeneity.

Consequently, we will proceed with methodology which incorporates the validation sam-

ple in the study and focus on data heterogeneity.
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4.2 The Ratio Plot

Another approach for the estimation of N under homogeneity is using a graphical device:

the ratio plot. The main idea of this approach is to consider ratios of observed frequencies

to estimate ratios of neighbouring count probabilities. To illustrate this idea, let us

consider the Binomial distribution, and the corresponding ratios:

px+1

px
=

 m

x+ 1

 θx+1(1− θ)m−x−1

m
x

 θx(1− θ)m−x

=
m− x
x+ 1

θ

1− θ
(4.16)

Using the non-negative coefficients ax = x+1
m−x , we can reparameterize the ratios multi-

plying by the inverse of their coefficients as follows:

rx =
x+ 1

m− x︸ ︷︷ ︸
ax

px+1

px
= ax

px+1

px
=

θ

1− θ
. (4.17)

The result is a constant, the odds for the event, independent of x [16]. Note that rx does

not change whether we consider the truncated or the untruncated distributions since it

just depends on the parameter θ. In addiction, we emphasize that the coefficients ax

directly depend on the chosen reference distribution. In this situation, the reference is

represented by the homogeneous Binomial distribution with which any mixture model

of Binomial kernel reduces whenever unobserved heterogeneity is not present.

Since the quantity px is unknown, a non-parametric estimate fx/N of rx is given by:

rx = ax
fx+1/N

fx/N
= ax

fx+1

fx
(4.18)

where fx is the observed frequency of units with exactly x captures, and the unknown

N cancels out. Hence, rx is a natural estimator for rx.

The ratio plot works as a diagnostic device for the Binomial distribution [16] and depends

directly on the coefficients ax:
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x→ rx = ax
fx+1

fx
. (4.19)

Note that the coefficients ax have large influence in the interpretation of the observed

ratio plot; these coefficients change according to the reference distribution we are working

with. Under the Binomial, we can expect that the ratio plot shows at least approximately

an horizontal line (see Figure 3.1).

The general concept and construction of the ratio plot was already introduced in section

3.7.3. For more detailed information on this topic, please see [16], [21], [15].

Let us now consider the ratio plot for the positive sample together with the validation

sample for all the case studies we have presented so far:

4.2.1 Salmonella data

●

●

●

●
●

●

●

0 1 2 3 4 5 6

0
1

2
3

4

x

rx

1 2 3 4 5 6

0
2

4
6

8

Figure 4.3: Salmonella data: ratio plot and estimated lines for the validation sample
(red solid points) and for the positive sample (blue, empty triangles).

The graph in Figure 4.3 shows no evidence of a horizontal line pattern, whether we

consider the validation or the positive sample. Instead, it shows substantial departures

from the standard Binomial distribution as we can see by the monotone increasing

trend. This violation of the Binomial assumption might be seen as supporting evidence

for unobserved population heterogeneity translated in the figure by the non-zero slope.

For instance, in the case of the Salmonella data, it could be that different farms have
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different risks for a positive test result, for example related to biosecurity issues of farm

factors [7].

A closer analysis of the ratio plot shows that there is something in common between

the plots for the positive and the validation sample to be explored and that we can use

to improve the inference on f0. In fact, the regression lines are almost parallel for this

case, which show evidence that both samples refer to distributions with similar shapes.

The fit in the case of a standard homogeneous Binomial distribution does not seem to

be acceptable to the observed, zero-truncated distribution. A chi-square goodness-of-fit

test confirms that we can reject the null hypothesis that the data follows a standard

Binomial distribution.

For the Salmonella case study, the statistics used was χ2 =
∑m−1

x=1 (log r̂x−log ˆ̂r)2/v̂ar(log r̂x),

where v̂ar(log r̂x) = 1
fx+1

+ 1
fx

and ˆ̂r =
∑m−1

x=1 axfx+1∑m−1
x=1 fx

, see [16]. We found the value

χ2 = 46.03 for the positive sample with 5 degrees of freedom and χ2 = 5.26 for the

validation sample with 6 degrees of freedom. We can definitively reject that the data

are consistent with a Binomial distribution at a significance level of α = 0.05.

The ratio plots suggests a regression model taking advantage of the straight line pattern

to determine an estimate of f0. Namely, as log (rx) = α + βx + εx, an estimate of f0

can be found using log
(
a0

f1
f0

)
= α̂+ β̂ × 0, or, f̂0 = a0f1exp(−α̂).

4.2.2 Bowel Cancer data

If we consider the ratio plot for the Bowel Cancer data in Figure 4.4 for the positive and

validation samples, we get no evidence of a horizontal line pattern as in the case of the

Salmonella data ratio plot.

In fact, the validation sample ratios follow an increasing trend, forced mostly by the last

ratio which is substantially bigger than the remaining ones for this sample. This trend

is also followed by the ratios from the positive sample, even if in a smoother way. This

behaviour may suggest the presence of unobserved heterogeneity in the data. Since we

are dealing with human subjects here, it comes naturally that each individual reaction

to the same situation may explain different probabilities of having a positive test result.

It is also important to point out that any screening test is not 100% accurate which has
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Figure 4.4: Bowel Cancer data: ratio plot and estimated lines for the validation
sample (red solid points) and for the positive sample (blue, empty triangles).

a large influence in the data test results [30]. We can then conclude that we are not in

the presence of a standard homogeneous Binomial distribution.

The analysis of the fit shown in the ratio plot for both samples, also suggests that the

regression lines are almost parallel. This indicates that both samples follow distributions

with similar shapes as was also the case for the Salmonella data in 4.2.1.

A chi-square goodness-of-fit test was performed for this study and it corroborates that

we can reject the null hypothesis that the data follows a standard Binomial distribution.

For the Bowel Cancer case study, the statistics used was χ2 =
∑m−1

x=1 (log r̂x−log ˆ̂r)2/v̂ar(log r̂x)

as before, where v̂ar(log r̂x) = 1
fx+1

+ 1
fx

, m = 6 and we used the estimate ˆ̂r =∑m−1
x=1 axfx+1∑m−1

x=1 fx
. We recorded the value χ2 = 127.91 for the positive sample with 4 degrees

of freedom and χ2 = 58.22 for the validation sample with 5 degrees of freedom. We can

reject the null hypothesis that the data are consistent with a Binomial distribution at a

significance level of α = 0.05.
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4.2.3 Brucellosis data
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Figure 4.5: Brucellosis data: ratio plot and estimated lines for the validation sample
(red, solid points) and for the positive sample (blue, empty triangles).

Looking at the ratio plot in Figure 4.5 for the positive and the validation samples from

the Brucellosis data, it is confirmed that both do not seem to follow a standard Binomial

distribution due to an increasing trend pattern.

Actually, the Brucellosis data behaves in a way which is quite similar to the Salmonella

and the Bowel Cancer data. The regression lines look parallel in the graph once again,

which suggests that a model of the type log(rx) = α + βx + εx would perform well in

this data set.

The chi-square goodness-of-fit test confirms that we can reject the null hypothesis that

the data follows a standard Binomial distribution with a value χ2 = 66.95 for the positive

sample with 4 degrees of freedom and χ2 = 39.02 for the validation sample with 5 degrees

of freedom. We can reject that the data are consistent with a Binomial distribution at

a significance level α = 0.05.

4.2.4 Heroin users data

The graph in Figure 4.6 does not support the hypothesis that the positive sample and/or

the validation sample follow a homogeneous Binomial distribution; in fact, we can ob-

serve a positive increasing pattern for the estimated lines in the graph.
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Figure 4.6: Heroin users data: ratio plot and estimated lines for the validation sample
(red, solid points) and for the positive sample (blue, empty triangles).

The positive slope of the regression lines are a sign of the presence of population hetero-

geneity which, in this situation, can be explained by a failure in the registration system

to contact less prone heroin users.

In this case study, the ratio plot suggests that interaction (non-parallelism between the

regression lines) between the positive sample and the validation sample distributions

may play an important role, suggesting to consider a regression model taking advantage

of both to determine an estimate of f0.

Specifically, as log(rx) = α + βx + δS + λ(x × S) an estimate of f0 can be found from

the fitted model log(a0
f1
f0

) = α̂ + β̂ × 0 + δ̂ × 1 + λ̂ × 0, or, f̂0 = a0
f1

exp(−α̂−δ̂)
where S

represents a dummy variable taking the value 1 if x belongs to the positive sample, else

0. The interaction term used is suggested by the non-parallelism between the regression

line of the positive sample and both samples.

The chi-square goodness-of-fit test asserts that we can reject the null hypothesis the

data follows a standard Binomial distribution, with a value χ2 = 51.16 for the positive

sample and 4 degrees of freedom and χ2 = 49.92 for the validation sample and 5 degrees

of freedom. We can reject the hypothesis that the data are consistent with a Binomial

distribution at a significance level α = 0.05.
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4.2.5 Syphilis data

For this study, we re-arranged the Syphilis data for the positive and validation samples,

since f6 = 0 in the original positive sample data set and that would mean we would

have a zero ratio in one sample due to a different number of recaptures m. This process

facilitates the ratio regression study and does not cause any significant major loss of

information.

The Syphilis data is then truncated at m = 5:

Table 4.15: Positive and validation sample of Syphilis data.

Laboratories
0 1 2 3 4 5+

Hospital
0 ? 73 52 17 6 1
1 18 25 22 10 9 2

When m = 5 it is considered now the sum of counts when m = 5 and m = 6. The counts

for m = 5 changes only for the validation sample. The ratio plot for the Syphilis data

shows that any of the samples fit a standard Binomial distribution since both reveal a

rising trend as stated in Figure 4.7.
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Figure 4.7: Syphilis data: ratio plot and estimated lines for the validation sample
(red, solid points) and for the positive sample (blue, empty triangles).

In this case, the presence of interaction (i.e., the non-parallelism between the two re-

gression lines) between the two regression lines is clear and suggests two different dis-

tributions for the positive and the validation sample. Having these aspects in mind, an

estimate for f0 can be achieved by a regression model of the type log(rx) = α+βx+ δS

where S = 1 for units in the positive sample and S = 0 else.
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The chi-square goodness-of-fit test suggests that we can reject the null hypothesis that

the data follows a standard Binomial distribution with a value χ2 = 177.45 for the

positive sample and 3 degrees of freedom and χ2 = 63.57 for the validation sample and

4 degrees of freedom. According to these results, we can reject the hypothesis that the

data are consistent with a Binomial distribution at a significance level α = 0.05.

4.3 Discussion

The EM algorithm is one of the most popular algorithms to derive ML estimates in

problems that involve incomplete data like capture-recapture applications. See [34],

[31], [88], [90] for deep insights into the EM algorithm and applications. The main

objective is to estimate the unseen part of a population of interest since some units are

not observed in the population registration/identification and so data are incomplete.

The algorithm was developed using the Binomial and the Poisson distribution. Analysis

of the modelling process using the positive sample and incorporating the validation

sample were discussed and comparisons illustrated to evaluate the role of the validation

information. The ratio plot for the binomial distribution was also used as a diagnostic

device to check if data heterogeneity is present and to infer about the distributions of

the positive and the validation data.

The case studies presented in Chapter 2 were used to highlight the methodology. The

Salmonella data, the Bowel Cancer data and lastly, the Syphilis data, do not seem to

take advantage of the available validation information since differences between using

validation or not are negligible. However, even under homogeneity, the estimates can

lead to an under- or overestimation of the true population size since natural occurring

variability is surely present in real data applications. In contrast, for the Brucellosis

data and the Heroin users data the validation sample leads to more accurate estimates.

We can observe huge differences when using validation validation or only the positive

sample. Observing the results for these two cases, we may guess that heterogeneity is

playing an important role and cannot be ignored.

Simulation studies showed that when the validation sample is embodied into the mod-

elling process, even under homogeneity conditions, we achieve more accurate estimates
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for f0 with less bias than when only the positive sample is used. Finally, it was demon-

strated that the Good-Turing estimator can be used in this context.

Overall, the use of validation information is important to confirm if the model is per-

forming well for the unobserved part of the population which is not guaranteed if we

have access only to a positive sample as well as to achieve a final estimate with less bias

but still more precise. We follow up with a more flexible methodology to allow modelling

heterogeneity.



Chapter 5

Mixture Models

5.1 Finite mixture models

Specific assumptions such as unit independence and parameter homogeneity are required

by the simple Binomial model (as well as the simple Poisson model). Mixture models

allow to relax these assumptions offering a more flexible approach in modelling hetero-

geneity. Also, mixture models are frequently used to handle situations when parameters

vary across the population due to heterogeneity. For extensive details, see [18], [22], [71],

[35] and [75].

Let f(x, θ) denote a homogeneous, parametric Binomial density function, parametrised

by θ. A finite mixture of Binomial distributions is given by:

f(x,Q) =

k∑
j=1

f(x|θj)qj (5.1)

It represents the distribution of X mariginalised over some discrete unobserved variable

Z with distribution Q. Q is the mixing distribution and gives non-negative weights qj

to θj [18]. Notice that the weights are non-negative and sum to one,
∑k

j=1 qj = 1.

The number of components in the mixture is given by k. If k = 1, we are in the presence

of a homogeneous model which is the case we analysed in Chapter 4. If k > 1, each

component k has the same density but different θ values.

75
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f(x,Q) is a mixture of component densities θj , when the component membership de-

scribed by the latent variable Z is ignored[57], [59]. The mixing distribution Q can be

seen as the heterogeneity distribution of the parameter θ of the population.

In order to model discrete counting frequencies, as it is the case presented, the probability

mass function f(x; θ) will be set as the Binomial distribution.

Recalling for the Binomial distribution, we have the following form for f(x;Q):

f(x,Q) =
k∑
j=1

qj

m
x

 θxj (1− θj)m−x (5.2)

where X represents the number of times a unit was identified over the study period

and
∑k

j=1 qj(1 − θj)m is the probability of observing a zero-count p0, and the mixing

distribution Q has the form Q =

θ1θ2...θk
q1q2...qk

 depending on the number of components

k.

The number of components k is also an unknown parameter which needs to be esti-

mated. In practice, the EM algorithm is used for fixed k, then k is increased from 1

to the maximum component size of the non-parametric maximum likelihood estimate

(NPMLE). More details about the NPMLE and the EM algorithm can be found in [14]

and [20].

If Q is available, we can estimate N by means of the Horvitz-Thompson estimator as

n
(1−f(0,Q)) [51]. Therefore, we need to estimate Q and this will be done by maximum

likelihood.

The EM algorithm for finite mixtures follows the scheme bellow [22]:

E-STEP: Given some initial value for the mixing distribution: Q0 =

θ01 θ02 ... θ0k

q01 q02 ... q0k

,

compute an updated estimate N̂ by

N̂ j+1 =
n

1− f(0, Qj)
(5.3)

and, further f̂0
j+1

= N̂ j+1 − n.
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M-STEP: Use the complete frequency table f̂0
j+1

, f1,..., fm, to compute a new maxi-

mum likelihood estimator Qj+1. Set j = j + 1 and go back to the E-step.

As previously shown, the EM algorithm toggles between step E, where missing data

are replaced by their expected values conditional on the observed data and the current

maximum likelihood parameter estimates, and step M, where the likelihood function is

maximized, until the likelihood converges.

5.1.1 The EM algorithm for mixtures of Binomials

Bellow, we report the EM algorithm for mixtures of Binomial distributions with valida-

tion information.

Choose an initial value for the mixing distribution Q0 =

θ01 θ02 ... θ0k

q01 q02 ... q0k

 and note

again that n = f1 + f2 + ...+ fm and N1 = g0 + g1 + ...+ gm.

Let p̂0 =
∑k

l=1(1− θl)mql and eil =
f(i,θjl )q

j
l

f(i,Qj)
.

E-STEP: f̂0 = n p̂0
1−p̂0 ⇒ N̂ = f̂0 + n

M-STEP: q
(j+1)
l = 1

N̂j+1

∑m
i=0 fie

j
il

θ̂
(j+1)
l =

∑m
j=0 f

∗
j je

j
il∑m

j=0mf
∗
j e

j
il

where f∗j = fj + gj

Here, the unobserved latent variable indicator Z has generic element zil denoting the

component l each individual i belongs to. Therefore, it is replaced by eil which is the

posterior probability that a specific observation belongs to the l -th component. Now,

the conditional likelihood is given by:

L(θ) =

m∏
j=1


k∑
l=1

m
j

 θjl (1− θl)
m−jql

1−
∑k

j=1 qj(1− θj)m



fj

×
m∏
j=0

 k∑
l=1

m
j

 θjl (1− θl)
m−jql

gj

(5.4)



On capture-recapture with validation information. Mixture Models 78

which is maximized using the EM algorithm above. For completeness, the unconditional

likelihood for this case is:

L(θ) =
m∏
j=0

 k∑
l=1

m
j

 θjl (1− θl)
m−jql

fj+gj

(5.5)

5.2 Model selection criteria

The question arises, which model (number of components) should we select? McLachlan

[42] reviews several criteria on this topic in the context of finite mixture models. Usually,

the criteria are built up in a way that the log-likelihood is penalized by a function of

model complexity; for this reason, they differ in the way model complexity is measured

[22].

The AIC (Akaike’s Information Criterion) and the BIC (Bayesian Information Criterion)

are two among those criteria that are frequently applied to choose the most appropriate

model.

The AIC criterion is defined by:

AICα = −2L(Q̂k) + α(2k − 1) (5.6)

where k is the number of components of the finite mixture model, L(Q̂k) represents the

maximum log-likelihood of the model and α = 2 is a model penalization parameter for

the model complexity. Another value for α could be considered as well [69], leading to

a different criterion.

The BIC criterion is defined by:

BIC = −2L(Q̂k) + (2k − 1)log(n) (5.7)

where n is the observed sample size.

The lower the AIC, or the lower the BIC, the better the model when comparing between

different models.
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The BIC penalizes complex models more strongly than the AIC [52]. However, when

working with mixture models, BIC is deemed to be a better model criterion than AIC

to choose the number of components. In fact, the BIC does not (asymptotically) over-

estimate the number of components [54], [56]. Moreover, since the BIC penalises model

complexity more heavily than the AIC, it should be taken as the most appropriated

criteria to choose the right model [42], [28].

In addition, it has been pointed out that AIC tends to overestimate the number of

components,asymptotically [57], [89]. For these reasons, in the next section, when AIC

and BIC criteria disagree on the choice for the best model, the BIC criterion will prevail.

5.3 Application of the finite mixtures estimator to the case

studies

Finite mixtures have been applied to the case studies presented in section 2.2. The

results for each data set follow. The code, developed in the environment R, can be

found in Appendix B.

5.3.1 Salmonella Data

Table 5.1 displays the results of applying mixtures with 2, 3 and 4 Binomial components

to the Salmonella data.

Table 5.1: Estimate for f0 and for the population size N of the Salmonella case study
using a Binomial mixture model of 2 components as described, the first row using the
positive sample only and the second row using the positive and the validation sample.

K Model f̂0 N̂

2
Positive

Positive and Validation
9
7

62
60

3
Positive

Positive and Validation
20
9

73
62

4
Positive

Positive and Validation
16
10

69
63

Notice that since m = 2, the number of components of the mixture model that can be

identified is not greater than 4 [82]. See also [41] for more details about identifiability.

Details on fit for the mixture models K = 2, 3, 4 are shown in the next table:
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Table 5.2: Salmonella data: Model fit assessment.

Model k θ̂j q̂j log-likelihood AIC BIC

Pos 1 0.4548 - -146.05 294.10 296.07

Pos-Val 1 0.4807 - -217.37 221.37 223.34

Pos 2
5.4665
1.2445

0.3380
0.6620

-98.7447 203.4895 209.4004

Pos-Val 2
5.4690
1.4565

0.4058
0.5942

-144.6408 295.2816 301.1925

Pos 3
6.4930
3.9974
0.7808

0.1305
0.2536
0.6159

-96.9100 203.82 213.6715

Pos-Val 3
4.2377
6.3843
1.1601

0.3047
0.1728
0.5225

-143.1297 296.2594 306.1109

Pos 4

0.8390
6.5644
4.2229
1.1620

0.4661
0.1248
0.2589
0.1502

-96.8821 207.7642 221.5562

Pos-Val 4

4.2429
6.3781
1.1182
3.8451

0.2678
0.1729
0.5222
0.0371

-143.1255 300.251 314.043

According to AIC and BIC it is clear that the mixture model with 2 components con-

sidering the positive and the validation information is the best option. The validation

information seems not to impact model fit and this suggests to consider a model with

just the positive sample.

5.3.2 Bowel Cancer Data

Table 5.3 shows the results of applying the EM algorithm with mixtures of 2 and 3

Binomial components to the bowel cancer data. Given that, in this case, we have

m = 6, the highest number of components that can be readily identified is K = 3.

Table 5.3: Bowel cancer data: estimates for f0 and for the population size N . Bino-
mial mixture model with K = 2, 3 components.

K Model f̂0 N̂

2
Positive

Positive and Validation
13
21

205
213

3
Positive

Positive and Validation
34
42

226
234
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Assessment of model fit for the mixture models presented above with two and three

components are shown in Table 5.4:

Table 5.4: Bowel Cancer data: model fit assessment.

Model k θ̂j q̂j log-likelihood AIC BIC

Pos 1 0.6162 - -774.9904 1551.981 1554.654

Pos-Val 1 0.5955 - -1178.382 2358.764 2361.437

Pos 2
5.0788
1.6848

0.5270
0.4730

-342.9233 691.8466 701.6191

Pos-Val 2
1.3257
4.9431

0.4406
0.5594

-589.4105 1170.821 1180.593

Pos 3
3.8096
0.8529
5.6461

0.3679
0.3796
0.2525

-338.578 687.156 703.4435

Pos-Val 3
0.5634
3.5190
5.6987

0.3206
0.4134
0.2660

-571.0765 1152.153 1168.44

When we use the validation information, the best choice is the mixture model with 3

components, following both the AIC and BIC criteria, while these two criteria do not

agree when we are using the positive sample only. Then, following the BIC criteria, the

best model to use is that with only the positive sample.

5.3.3 Brucellosis Data

Table 5.5 shows the results of estimating a mixture of Binomial components to the

Brucellosis data set with K = 2, 3 components. Also in this case, since m = 6, the

maximum number of components that can be identified is K = 3.

Table 5.5: Brucellosis data: estimates for f0 and for the population size N . Binomial
mixture model with K = 2, 3 components.

K Model f̂0 N̂

2
Positive

Positive and Validation
87
106

195
214

3
Positive

Positive and Validation
206
126

314
234

Assessment of model fit is obtained in the next table:



On capture-recapture with validation information. Mixture Models 82

Table 5.6: Brucellosis data: Model fit assessment.

Model k θ̂j q̂j log-likelihood AIC BIC

Pos 1 0.3350 - -219.9097 441.8194 444.4922

Pos-Val 1 0.2597 - -423.3088 848.6176 851.2904

Pos 2
3.9992
0.5711

0.1808
0.8192

-154.6407 315.2814 323.3278

Pos-Val 2
4.0093
0.4954

0.1629
0.8371

-334.5262 675.0524 683.0988

Pos 3
5.9845
3.0101
0.2460

0.0205
0.1354
0.8441

-149.7969 309.5938 323.0045

Pos-Val 3
0.3635
5.9286
2.8027

0.7825
0.0365
0.1810

-322.7791 655.5582 668.9689

In the case we use only the positive sample or the positive and validation samples

together, a model with 3 Binomial components is the best option for these data.

5.3.4 Heroin users Data

Also in this case, m = 6 and we may identify K ≤ 3 components. Table 5.7 shows the

results of applying the EM algorithm with mixtures of 2 and 3 Binomial components to

Heroin users data.

Table 5.7: Heroin users data: estimates for f0 and for the population size N . Binomial
mixture model with K = 2, 3 components.

K Model f̂0 N̂

2
Positive

Positive and Validation
3600
3755

5493
5648

3
Positive

Positive and Validation
3601
3648

5494
5541

Assessment of model fit is reported in the next table:
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Table 5.8: Heroin data: model fit assessment.

Model k θ̂j q̂j log-likelihood AIC BIC

Pos 1 0.1743 - -4723.725 9449.45 9454.996

Pos-Val 1 0.1115 - -8571.805 17145.61 17151.16

Pos 2
0.3095
1.4263

0.8638
0.1362

-1433.614 2873.228 2889.866

Pos-Val 2
0.1847
1.4601

0.7441
0.2559

-5411.459 10828.92 10845.56

Pos 3
0.3111
0.2992
1.4262

0.7433
0.1205
0.1362

-1433.614 2877.228 2904.958

Pos-Val 3
0.3914
0.1898
1.6007

0.1531
0.6357
0.2112

-5406.54 10823.08 10850.81

When using the positive sample, only we should consider 2 Binomial components since

the AIC and BIC both suggest this specific choice. In the case we use the validation

information, the model selection criteria disagree with AIC suggesting 3 and the BIC a

2 components Binomial mixture model.

5.3.5 Syphilis Data

Also in this case, m = 6, and a model with K ≤ 3 can be identified. Table 5.9 shows

the results of a mixture model with Binomial kernel with K = 2, 3 components to the

Syphilis data.

Table 5.9: Syphilis data: estimates for f0 and for the population size N . Binomial
mixture model with K = 2, 3 components.

K Model f̂0 N̂

2
Positive

Positive and Validation
49
43

198
192

3
Positive

Positive and Validation
49
43

198
192

Assessment of model fit is reported in Table 5.10:
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Table 5.10: Syphilis data: model fit assessment.

Model k θ̂j q̂j log-likelihood AIC BIC

Pos 1 0.2499 - -311.6429 625.2858 628.2897

Pos-Val 1 0.2858 - -429.9715 861.943 864.9469

Pos 2
2.0413
1.1285

0.1854
0.8146

-168.4226 -342.8452 -351.857

Pos-Val 2
2.2432
1.1121

0.2918
0.7082

-314.9213 -635.8426 -644.8544

Pos 3
1.1551
1.9942
1.1026

0.2397
0.2048
0.5555

-168.4299 -346.8598 -361.8795

Pos-Val 3
1.1114
2.2433
1.1130

0.3971
0.2918
0.3111

-314.9212 -639.8424 -654.8621

According to the values of the AIC and the BIC criteria, the best choice for the Syphilis

data is a 2 component mixture model regardless we consider the positive sample or both

samples. In this specific case study, mixtures with 2 and 3 components give exactly the

same results for the estimate of f0 and consequently, N .

5.4 Finite mixtures: simulation study

We generated 1000 samples of size N = 100 (positive samples) and considered the vali-

dation samples with size N1 = 0.10N . Data was generated from a Binomial distribution

assuming X ∼
∑2

j=1 pjf(x|θj), x = 0, 1, ...,m. We estimated a mixture model with 2

component Binomial.

The design for this simulation study is:

• N = 100 is the true positive sample size.

• N1 = 0.10N .

• K = 2.

• p1 = p2 = 0.5.

• θ1 = 0.2 and θ2 = 0.7.
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• m = 7.

• M = 1000 samples.

The estimate for f0 and, consequently for N , was obtained using the mixture model

just for the positive sample, using both samples (validation included) and also using a

non-parametric estimate for f0. This non-parametric estimate is based on the estimator:

N̂NP = n
1−p̂NP

0
where p̂NP0 = g0

N1
.

Table 5.11: Simulation study: distribution of estimates of the population size N1 =
0.1N , K = 2 finite mixture.

Positive Pos-Val Non-parametric estimator

Mean 102.43249 98.56646 106.45000
SD 16.801423 8.487229 16.196006
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0
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0

N = 100, Validation = 10%

With Validation Without validation Non−parametric

Figure 5.1: Boxplot of the results for the model with 10% validation (left), with just
the positive sample (middle) and using the non-parametric estimator (right).

The non-parametric estimator overestimates the population size, with a (limited) bias

when compared to the model using both samples. It is also the model with the highest

variability which may lead to spurious estimates for N when the estimate is near the

boundary. See [56], [46] for more details about the boundary problem in mixture models.
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The two components mixture model estimated on the positive and the validation sample

performs better in terms of both accuracy and precision when compared to other models.

As Figure 5.1 shows, the model without validation may sometimes substantially overes-

timate the population size multiple times as it can be derived looking at the outliers in

the boxplot for that model. This is a case where the modelling seems to suffer from the

existence of some influential points which considerably raise the variance of the model

[56]. This is also the case for the non-parametric estimator. Therefore, the mixture

model using validation information outperforms the others as it is more robust in the

most part of the situations.

The simulation study was after repeated now considering a validation sample with size

50% of the size of the positive sample n = 100. The results are reported bellow:

Table 5.12: Simulation study: distribution of estimates of the population size N1 =
0.5n, K = 2 mixture components.

Positive Pos-Val Non-parametric estimator

Mean 103.0408 100.4915 103.5900
SD 18.341070 7.490376 8.561713
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Figure 5.2: Boxplot of the results for the model with 50% validation (left), with just
the positive sample (middle) and using the non-parametric estimator (right).
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The results we achieved here allow us to conclude that using a validation sample brings

mainly two important benefits: it makes the estimator more precise by substantially

decreasing the bias, and increasing the confidence in the final estimate.

5.5 Simulation study: inflated data

Once the model is fixed, it can happen that data has a frequency of zeros much larger

than the expected from the standard distributional assumptions. Therefore, due to this

disproportional number of zeros, the model can suffer from lack of fit for the unobserved

part of the population which is crucial for an accurate estimation of the true population

size N .

We performed a simulation study of a Binomial with 50% zero-inflated data: there were

taken πN = 0.5N zeros and πN = 0.5N sampling data from a homogeneous binomial

distribution. The estimates for N were obtained using the positive sample only, the

positive and the validation samples, the Good-Turing and the non-parametric estimator.

All these estimates were then compared.

Recalling the estimates for N were obtained by a parametric estimate - the Good-Turing

estimator: N̂ = n
1−p̂P0

, where p̂T0 =
[

f1+g1∑m
j=1(fj+gj)j

] m
m−1

and a non-parametric estimator:

N̂ = n
1−p̂NP

0
, where p̂NP0 = g0

N1
.

The design of the simulation study follows:

• N = 100, N = 500, N = 1000 and N = 2000 are the positive sample sizes

considered in the study with f0 = 50 f0 = 250, f0 = 500 and f0 = 1000 expected

zeros, respectively.

• N1 = N .

• πN extra zeros and πN samples from a homogeneous binomial with parameter

θ = 0.5 and size parameter πN ; π = 0.5.

• m = 7.

• M = 1000 samples.
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We implemented a mixture model as described for the Binomial distribution with 2

components, with m = 7. The number of replications is M = 1000. Notice that the

expected value for f0 is 50% of N , i.e., E(f0) = 0.5N .

Table 5.13: Simulation study on inflated data finite mixture model with 2 compo-
nents: distribution of estimates for N .

N Mean - SD Positive Pos-Val Parametric Non-Parametric

100
Mean
SD

50.634
0.704

100.099
0.333

50.814
1.142

104.008
0.971

500
Mean
SD

251.956
1.138

499.911
0.568

251.458
0.811

501.892
0.783

1000
Mean
SD

504.235
0.704

999.964
0.572

503.520
0.680

999.643
0.592

2000
Mean
SD

1007.477
1.447

2000.018
0.417

1007.272
0.827

2000.575
0.502

Undoubtedly, the two components mixture model using both samples (positive and vali-

dation) performs the best in terms of bias and precision. The non-parametric estimator

also captures the zero-inflation implemented in the data through the information given

by the validation sample as expected once p̂0 depends on g0 which gives that information.

The model with validation information offers the smallest bias compared to the other

estimators. Clearly, the parametric estimator underestimates the true population size

sharply.

Despite the fact that the parametric estimator takes into account the validation sample,

there is no special correction for f0 since it does not incorporate the zero-inflation part

of the validation sample given by g0.

Once again, the results achieved by this simulation study show that incorporating the

validation information into the modelling process is essential to get a reliable estimate

for the population size N with a low variance.

5.6 Discussion and conclusions

Finite mixture models represent a flexible class of models to account for heterogeneity.

In this work, finite mixtures of Binomials were introduced and the parameters were esti-

mated using the ML approach through the EM algorithm already introduced in Chapter
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3 and 4. Adding information through a validation sample, which contains complete in-

formation about the data is, in this context, a novelty. We may consider either: the

conditional or the unconditional likelihood. It was shown that the unconditional likeli-

hood depends directly on N , the population size which we do not know access since we

are dealing with a traditional capture-recapture problem. However, this could be done

by constructing a profile mixture likelihood. It was also illustrated how the conditional

likelihood is connected to the unconditional likelihood and that the first is more easily

maximized. Therefore, our approach is based only on the conditional likelihood.

We used AIC and BIC to select the best model, i.e., the model with the most appropriate

number of components. Several other selection criteria could be used for this purpose,

for example, the likelihood ratio test.

Based on these model selection criteria, a Binomial mixture model of 2 components is

the most appropriate model to estimate the total number of unreported farms for the

Salmonella dataset. For the Bowel Cancer data and Brucellosis data, 3 components

seem to be the most appropriate choice, whilst 2 components are needed for the Heroin

users data and for the Syphilis data.

The Salmonella data was supplied by the Animal and Plant Health Agency in the UK. It

is related to Salmonella infection in poultry recorded by a EU survey occurred between

October 2004 and September 2005. The survey reported a prevalence of Salmonella

in 11.7% of the 454 commercial layer flock holdings. Using a 2 components Binomial

mixture model, we estimate 9 out of 454 farms using only the positive sample and 7 out of

454 farms using both samples, positive and validation. Arnold et al. [10] suggest, using

a Bayesian approach on positive data, that the prevalence is 18% (82 infected farms out

of 454 holdings). The results obtained with mixture models indicate a lower prevalence

(13.7% using the positive sample and 13.2% using both) than the one achieved in Arnold

et al. [10] work.

Lloyd and Frommer [61] proposed a beta heterogeneity model for the probability of a

diseased individual testing positive on any single screening test and estimated the false

negative fraction of the population illustrated on the Bowel Cancer data. They found

an estimate f̂0 = 61 individuals who were disease positive but were not identified during

the screening test. When considering the validation sample in the study, this value

dropped to 56 individuals by fitting the beta heterogeneity model with observations from
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both samples and considering a dummy variable S which is 1 if the chosen individual

comes from the secondary sample, 0 else. When using a mixture model of 3 Binomial

components, the estimate is still lower: 34 individuals using the positive sample and 42

using the positive and the validation.

Köse et al. [55] used an extension of the Lincoln-Petersen estimator to estimate the

completeness of the surveillance system for Brucellosis and Syphilis. It was pointed

out that there were 100 individuals with Brucellosis who were not identified by any

laboratory. Considering a 3 component Binomial mixture model an estimate of 206

individuals with the disease using the positive sample were obtained and 126 individuals

when validation sample takes part in the model process. Actually, the last estimate is

quite close to the estimate performed by Köse et al..

For the Syphilis case, Köse et al. [55] produced an estimate f̂0 = 47 who were not

identified by any laboratory. This is again very close to the one obtained by the 2

component mixture model. The model estimates 49 disease positive individuals using

the positive sample only and 43 using the positive and validation sample.

For the Heroin users data, a mixture model of 2 Binomial components provides an esti-

mate f̂0 = 3600 of 3600 users using the positive sample and f̂0 = 3755 using validation.

Lerdsuwansri [57] achieved an estimate of 4808 heroin users using a Non-Parametric

Maximum Likelihood Estimator (NPMLe). Other estimators were used and very differ-

ent estimates were achieved. For details, see [57].

Simulation studies on mixture models were designed and the results proved that the

hypothesis raised in chapter 4 are verified also under heterogeneity: incorporating the

validation sample, increases also in this case, efficiency, and produces more accurate

estimates for the true population size.

The possibility that the positive sample might suffer from zero-inflation was also dis-

cussed. In practise, if only the positive sample is available, it remains unknown whether

the model is performing well in the estimation process. In this specific case, the valida-

tion information is vital to correctly estimate N .



Chapter 6

Ratio Regression

6.1 Introduction

The main goal of any capture-recapture study is to estimate the total size of an elusive

target population N when we do not have complete access to information about all the

individuals that belong to the population.

The size N = n+f0 is unknown since f0, the frequency of units that we not capture any

time during the study period, is unknown and this causes a reduction in the observable

sample, where n =
∑m

i=1 fi.

A natural way to proceed is to achieve an estimate for f0 by means of an estimate for

p0. Using the Horvitz-Thompson estimator N̂ = n
1−p0 , one can see that if we get an

estimate p̂0 for p0, we easily reach an estimate N̂ for N . Hence, we need to estimate p0.

To find an estimate for p0, we may look for a model px = px(θ) to find an estimate θ̂ for

θ so that p̂0 = p0(θ̂).

In all the available datasets, described in chapter 2.2, we deal with a fixed number of

sampling occasions, for example m = 7 for Salmonella data or m = 6 for the Brucellosis

data. Therefore, a Binomial distribution seems to be a natural, good starting point

to be considered. In addition, we are working with situations of presence/absence test

for Salmonella infection, Bowel cancer, Syphilis and Brucellosis or a situation of pres-

ence/absence of a contact for heroin users and a treatment centre, consequently, the

Binomial distribution seems to be the most appropriate to consider.

91
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Let us consider the Binomial probability distribution:

px(θ) = P (X = x) =

m
x

 θx(1− θ)m−x (6.1)

x = 0, 1, ...,m.

Here θ represents the probability that a unit is identified at a trapping occasion, for

example, the probability a Salmonella test is positive for an affected holding or the

probability a heroin user is contacting the treatment centre.

We have to derive an estimate θ̂ for θ and use θ̂ in p0(θ̂) = (1 − θ̂)m to estimate N ,

where p0 is the probability of a zero count. An estimate for θ is usually obtained fitting

a zero-truncated distribution to the available data usually through the Expectation-

Maximization algorithm, see chapter 4.

However, as we are working with a simple homogeneous model, the fit may not be

adequate to provide a good estimate of the distribution due to a lack of flexibility.

Also, the benefit of having a validation sample is neglected, for example using this

further sample to check whether the model is correct also for the unobserved part of the

population. The variability associated with the assumption of homogeneity may not be

appropriate in all empirical studies as unobserved heterogeneity may play an important

role that should be accounted for. Ignoring heterogeneity can lead to underestimate the

true population size [29], [17].

The Binomial model may not be flexible enough to provide a good fit, see section 4

for more details. As seen in Chapter 4, also through the analysis of the ratio plot, the

Binomial model may not be suitable for the presented datasets.

A summary on the ratio plot based on the Salmonella data can be found in Azevedo et

al. [11]. Here, all the datasets from chapter 2 will be used to illustrate the theory.

6.2 Ratio Regression

Let us consider a heterogeneous Binomial model with a marginal distribution given by:
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px =

∫ 1

0

m
x

 θx(1− θ)m−xh(θ)dθ (6.2)

where h(θ) denotes a mixing distribution that controls departures from the homogeneous

Binomial model. Notice that if h(θ) is a 1 point distribution putting the mass at θ, px

defines a Binomial distribution with parameter θ [21].

Under general conditions, Böhning [21] proves that Rx = ax
px+1

px
is monotone increasing

if px refers to a mixture model of the type of (6.2). This leads naturally to consider

a model with response rx once the marginal distribution for the Binomial distribution

satisfies the monotonicity property. Specifically, the ratio plot for binomial mixtures is

monotone non-decreasing.

Let us assume that Rx can be linked to a known set of predictor functions z0(x), ..., zp(x),

so that the following model is defined:

g(Rx) = β′z(x) (6.3)

where x = 0, ...,m−1 and g is a monotone link-function. The link-function is essentially

used to guarantee that the predicted ratios remain positive, i.e., r̂x > 0, x = 0, ...,m. If

we fit a simple straight line to the ratios rx, this can lead to a non-feasible estimate for

the ratios since we can get a negative intercept estimate as we can observe in Figures

4.3, 4.4, 4.5, 4.6 and 4.7. The choice of an appropriate link function avoids this problem;

it is also shown in Böhning [21] and [15] that any regression model with the form (6.3)

corresponds to a proper count distribution.

We are going to use the logarithmic function as link function. The logarithmic function

is an increasing function for z(x) ≥ 1, thus, the suggested for the regression lines is

given by log(Rx) = β0 + β1x with z0(x) = 1 and z1(x) = x; therefore, the ratios are

obtained applying the inverse of the link function on both sides of the model equation:

r̂x = exp(β̂0 + β̂1x).

The estimation of the parameters β may be based on the (conditional) likelihood func-

tion:
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L(β) =
m∏
x=1

(
px

1− p0

)fx
(6.4)

where px is a function of Rx = g−1(β′z(x)). However, we follow a different approach to

find the estimates of β.

In detail, the scheme of this approach is in first place to generate the ratio plot by

plotting x against the estimates of Rx, rx = ax
fx+1

fx
and analyse the graph carefully.

After an appropriate analysis of the ratio plot, we choose the link function g, and fit the

model:

g(rx) = β′z(x) + εx (6.5)

where εx is such that E(εx) = 0, cov(εx) = Σ, while β = (β0, ..., βp)
′ represents a (p+1)-

dimensional vector of unknown fixed parameters, associated to the vector of regression

functions z(x) = (z0(x), ..., zp(x))′. Now we can fit the model (6.5) by generalised least

squares that for a Gaussian assumption on Rx implies maximising (6.4).

The first concern is to estimate Σ, see Rocchetti et al. [78], using the following tridiagonal

matrix:



1
f1

+ 1
f2

−1
f2

0 · · · 0 · · · 0

−1
f2

1
f2

+ 1
f3

−1
f3

0 · · · · · · 0

0
. . .

. . . · · · · · · · · · · · ·
...

. . .

0 0 · · · −1
fi

1
fi

+ 1
fi+1

−1
fi+1

0 · · · 0
...

. . .

0 · · · 0 −1
fm−1

1
fm−1

+ 1
fm


. (6.6)

It is possible to drop the off-diagonal terms of the matrix with a little loss of statistical

precision for our purposes. For details, see Rocchetti et al. [78], Meurant [68] and Anan

et al. [5]. Thus, we will get an estimate Σ̂ of Σ determined just by the diagonal elements

of the matrix above. Now, Σ̂ is a diagonal matrix that contains the estimated variances

given by 1
fi

+ 1
fi+1

. The generalized least-squares estimate of β is known to be:
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β̂ = (X ′Σ̂−1X)−1X ′Σ̂−1Y (6.7)

where Y has elements g(r̂x) and X has rows z0(x), ..., zp(x), x = 1, ...,m − 1, since no

observation is available at x = 0. Note that the estimated covariance matrix of β̂ is

immediately available as cov(β̂) = (X ′Σ̂−1X)−1.

In the current case, since the link function is the logarithmic function, we have:

Y =


log(r̂1)

· · ·

log(r̂m−1)

 and X =


1 1

1 2

· · · · · ·

1 m− 1

 (6.8)

A regression-based estimator can be derived for the zero-count frequency as follows:

g(r̂0) = β̂′z(0) =⇒ r̂0 = g−1(β̂′z(0)) (6.9)

We can now project the recurrence relation rx = axfx+1/fx onto x = 0 to obtain an

estimate of f0:

f̂0 = a0f1/r̂0 = a0f1/g
−1(β̂′z(0)) (6.10)

The population size is then obtained as the sum of the estimated number of unrecorded

individuals and the size of the observed sample:

N̂reg = n+ f̂0. (6.11)

We see that the estimate for f0 in the regression model directly depends on f1, see (6.10).

In case f1 suffers from one-inflation, it might be better to base the estimate of f0 on

the entire distribution. Hence, the f0 using the Horvitz-Thompson estimator could be

more appropriate. The Horvitz-Thompson estimator for f0 can be calculated as follows:

f̂0
HT

= n p0
1−p0 . More information on how to achieve this result can be found in 3.7.1.1.

An estimate for p0 can be obtained as follows. We are able to estimate the probability



On capture-recapture with validation information. Ratio Regression 96

mass at 0 using the fitted values r̂x = g−1(β̂′z(x)), for Rx, x = 0, ...,m− 1, according to

the following result by Böhning [21]:

Theorem 6.1. Let Rx > 0 be given for x = 0, ...,m − 1, and let ax, x = 0, ...,m −

1, be known positive coefficients. Then, there exists a unique probability distribution

p0, ..., pm > 0 such that:

px+1 = Rx
px
ax
, ∀x = 0, ...,m− 1 (6.12)

Furthermore, we have that:

p0 =

[
1 +R0/a0 + (R0/a0)(R1/a1) + ...+

m−1∏
x=0

Rx/ax

]−1
(6.13)

We apply this result using estimates r̂x forRx. This result shows that any valid regression

model leads to a proper probability distribution. Notice that the probability density

function only depends on the model. This characteristic allows a flexible regression

modelling.

Using conditioning moment techniques, it is possible to estimate the variance of f̂0, as

shown in Böhning [21] for the Binomial case:

V ar(f̂0) =
1

m2
f1exp(−β̂0)2(f1V ar(β̂0) + 1− f1/(n+ f̂0)). (6.14)

An estimate for V ar(β̂0) is available from the result for cov(β̂) discussed above. Thus,

we provide the asymptotic 95% prediction interval for f0 which is given by

(
f̂0 − 1.96

√
V ar(f̂0), f̂0 + 1.96

√
V ar(f̂0)

)
(6.15)

Hence, a follow-up prediction interval for N also follows as

(
n+ f̂0 − 1.96

√
V ar(f̂0), n+ f̂0 + 1.96

√
V ar(f̂0)

)
(6.16)
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Until here, the presented approach covers just the analysis of the positive sample. An

interesting extension that is based on incorporating the validation sample into the mod-

elling is shown in section 6.3.

6.3 Ratio regression with validation information

The ratio regression approach can be extended to incorporate the information coming

from the validation sample. Considering our data, this can be done as follows for each

of the case studies:

6.3.1 Application to Salmonella data

For the Salmonella case study, let us consider the regression model as suggested by the

ratio plot:

log(rx) = α+ βx+ δS + εx (6.17)

where S represents a dummy variable defined as S = 1 if x is from the positive sample

and 0 otherwise. With this approach we allow a regression line for the two samples

having the same slope but different intercepts on the log scale as Figure 6.1 shows. For

the positive sample, we have the regression model: log(rx) = (α+δ)+βx+εx while for the

validation sample: log(rx) = α+ βx+ εx. The model: log(r̂x) = −2.21 + 0.70x− 0.12S

holds. The resulting estimate f̂0 = f1exp(−α̂ − δ̂) = 25 represents the frequency of

undetected farms. Here, f1 is the frequency of ones from the positive sample.

Note that if δ = 0 both lines become identical and we allow for a single straight line

regression model as Figure 6.2 shows.
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Figure 6.1: Salmonella data: parallel lines regression model −2.21 + 0.70x− 0.12S.
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Figure 6.2: Salmonella data: single line regression model −2.30 + 0.70x.

The use of a validation sample increases the efficiency of the estimate based on the

positive sample only as well as it guarantees that our model provides a reasonable final

estimate, see Böhning [21]. We can also consider a model with interaction between

the variable S and count x. The presence of a significant interaction between the two

samples would represent that counts are not independent of the sample we consider.

In case of interaction, the model becomes identical to fitting two separate lines and

the benefit of the validation sample diminishes, see Figure 6.3. The model log(r̂x) =

−1.85 + 0.60x− 0.63S + 0.15(S × x) holds.
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Figure 6.3: Salmonella data: separate lines regression model −1.85+0.60x−0.63S+
0.15(S × x).

A zero-inflated model was also considered as it appears we have a large quantity of zeros

in addition to those predicted by the non-inflated models. This can be seen in the ratio

plot by the first ratio that is much lower than the other frequency ratios. A detailed

analysis on this topic is presented in section 6.5.

We conducted simulations based on these models and the results show evidence that

using the validation sample not only decreases the bias in our estimation, but also leads

to more accuracy in the estimation of the population size.

A vast number of choices for regression models are possible once we consider a conve-

nient link function for the frequency ratios. These are just three examples that seemed

appropriate to explore.

The three models (single line, parallel lines, separate lines) were applied to the salmonella

data and the results are presented in Table 6.1. Note that n = 53 for the positive sample

and the coefficients ax were set considering the Binomial distribution as the reference in

our analysis.

Table 6.1: Salmonella data: estimates of the population size N based on different
ratio regression models. The p-value refers to the last coefficient of the respective model.

Application f̂0 PI for f0 N̂ PI for N p-value AIC BIC
RR Positive 29 (1.01,56.63) 82 (54.02,109.64) 0.000

Model 1 24 (3.65,44.90) 77 (56.65,97.90) 0.000 20.53 22.22
Model 2 25 (1.49,48.35) 78 (54.49,101.35) 0.660 22.26 24.52
Model 3 29 (5.98,51.68) 82 (58.98,104.68) 0.316 22.73 25.55
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We obtained 29 undetected farms using just the positive sample. Model 3 provides

exactly the same results as expected. The interaction term is not significant in model 3.

The simple regression model (model 1) and the parallel lines model (model 2) produce

a very similar result. Model 1 indicates 24 undetected farms while model 2 suggests 25

undetected farms. Table 6.1 includes the estimates for the coefficients of each model as

well as prediction intervals for each estimate. As model 2 has a non-significant term for

S, we conclude that model 1 is most suitable in our case and the estimate is f̂0 = 24.

When comparing models fit to the same data, the smaller the AIC or BIC, the better

the fit [27]. In this case, AIC and BIC criteria corroborate that model 1 is the most

appropriate in our case study.

The results shown in this section are included in Azevedo et al. [11] of ”Capture-

Recapture Methods for the Social and Medical Sciences” book. In fact, the number of

undetected farms/individuals may be much greater than the results we obtained using

the various methods discussed in this work. However, a positive detection probability

is assumed by the ratio regression approach. If this does not occur, a lower bound for

the estimation of unreported farms/misclassified individuals was determined which it is

necessary to discuss with the responsible authorities for these health concerns.

6.3.2 Application to Bowel Cancer data

For the Bowel Cancer data, we can point out the same that was said for the Salmonella

data. In Figure 6.4 it is illustrated the regression model −2.15 + 0.86x:
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Figure 6.4: Bowel Cancer data: single line regression model −2.15 + 0.86x.
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The resulting estimate f̂0 = f1exp(−α̂) = 53 denotes the number of individuals for which

the Bowel Cancer screening test failed in identifying the disease. This result turns out

to be the most significant estimate that we could find with the ratio regression for this

study.

A parallel lines model log(r̂x) = −2.10 + 0.86x− 0.10S was also estimated for this case

study and it is presented below in Figure 6.5:
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Figure 6.5: Bowel Cancer data: parallel lines regression model −2.10+0.86x−0.10S.

As it can be easily observed, the intercept of the two lines is almost the same falling in

the case of a single straight line as above in Figure 6.4.

Finally, the two separate lines model log(r̂x) = −2.21 + 0.90x − 0.11S − 0.07(S × x)

shows that in this case, the positive and the validation sample are coherent with the

same model.

The results of the three models for the Bowel Cancer data are reported in Table 6.2.

Here, n = 192 for the positive sample, while the coefficients refer to the Binomial

distribution as reference model.

Table 6.2: Bowel Cancer data: estimates of the population size N based on different
ratio regression models. The p-value refers to the last coefficient of the respective model.

Application f̂0 PI for f0 N̂ PI for N p-value AIC BIC
RR Positive 51 (34.90,66.02) 243 (226.90,258.02) 0.001

Model 1 53 (26.56,79.35) 245 (218.56,271.35) 0.000 17.86 19.06
Model 2 56 (28.54,82.47) 248 (220.54,274.47) 0.751 19.71 21.31
Model 3 51 (13.66,87.25) 243 (205.66,279.25) 0.733 21.52 23.51
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Figure 6.6: Bowel Cancer data: separate lines regression model −2.21 + 0.90x −
0.11S − 0.07(S × x).

As it was already mentioned, using the two separate model regression lines, guides us

to the same result as using the positive sample only: f̂0 = 51 individuals not identified

by the screening test for the bowel cancer.

The estimate for f0 using model 3 has the largest prediction interval and the last term

- the interaction term between S and x- is not significant. The last term in model 2,

associated to the dummy variable S, is also non-significant with the best estimate for

f0 achieved by the straight line model with f̂0 = 53 and N̂ = 245, having the shortest

prediction interval.

6.3.3 Application to the Brucellosis data

The results we obtain by estimating the ratio regression model on the Brucellosis data,

do not differ from the results for the two previous cases (Salmonella and Bowel Cancer

data). In fact, the straight line regression model log(r̂x) = −2.78 + 0.93x produces the

best estimate of f̂0 = 153 misclassified individuals with Brucellosis disease considering

the AIC and BIC criteria. The model is illustrated in the following figure:
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Figure 6.7: Brucellosis data: single line regression model −2.78 + 0.93x.

By estimating a parallel lines model log(r̂x) = −2.74 + 0.97x − 0.20S we have no sub-

stantial gain as shown in Figure 6.8:
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Figure 6.8: Brucellosis data: parallel lines regression model −2.74 + 0.97x− 0.20S.

If we fit a separate lines regression model, we obtain two regression lines that basi-

cally overlap, highlighting that we are using essentially the positive sample. Figure 6.9

illustrates the results.
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Figure 6.9: Brucellosis data: separate lines regression model −2.71+0.94x−0.30S−
0.06(S × x).

Conclusions for model 3 log(r̂x) = −2.71 + 0.94x−0.30S−0.06(S×x) can be confirmed

by Table 6.3 where we get the same estimate for f0 by the ratio regression using the

positive sample and model 3, but with a lower validity. Note that n = 107. Model 1

turns out to be the most appropriate model to estimate f0 with all terms significant and

the best values achieved for AIC and BIC criteria; With f̂0 = 153 we obtain a population

size of 260 individuals.

Table 6.3: Brucellosis data: estimates of the population size N based on different
ratio regression models. The p-value refers to the last coefficient of the respective model.

Application f̂0 PI for f0 N̂ PI for N p-value AIC BIC
RR Positive 193 (47.90,337.63) 300 (154.90,444.63) 0.019

Model 1 153 (89.08,217.55) 260 (196.08,324.55) 0.000 23.25 24.45
Model 2 180 (116.48,244.40) 287 (223.48,351.40) 0.565 24.77 26.36
Model 3 193 (125.80,259.76) 300 (232.80,366.76) 0.830 26.69 28.68

6.3.4 Application to the Heroin users data

In the case of the Heroin users data, the straight line model log(r̂x) = −0.42 − 0.09x

seems not to provide an appropriate fit to the data, as shown in Figure 6.10:



On capture-recapture with validation information. Ratio Regression 105

0 1 2 3 4 5 6
−

2
−

1
0

1
2

counts

lo
g 

ra
tio

s

●

●
●

●

●

●

Figure 6.10: Heroin users data: single line regression model −0.42− 0.09x.

However, with the parallel lines model log(r̂x) = 0.01 + 0.23x − 2.38S, the situation

changes substantially. This model seems to perform quite well with both the positive

and validation sample datasets:
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Figure 6.11: Heroin users data: parallel lines regression model 0.01 + 0.23x− 2.38S.

Figure 6.12 reports the two separate lines model log(r̂x) = 0.05 + 0.18x − 2.87S +

0.40(S × x) for the Heroin users data; Also in this case, the fit seems appropriate, with

a significant interaction term.
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Figure 6.12: Heroin users data: separate lines regression model 0.05+0.18x−2.87S+
0.40(S × x).

We can also suspect that we might be in the presence of zero-inflated data that is

suggested by the negative intercept of the positive sample regression line.

Table 6.4 presents the results for all the models we have estimated on this dataset:

Table 6.4: Heroin users data: estimates of the population size N based on different
ratio regression models. The p-value refers to the last coefficient of the respective model.

Application f̂0 PI for f0 N̂ PI for N p-value AIC BIC
RR Positive 3919 (2945.26,4891.89) 5812 (4838.26,6784.89) 0.013

Model 1 357 (344.11,370.12) 2250 (2237.11,2263.12) 0.830 56.05 57.25
Model 2 2501 (2479.66,2522.69) 4384 (4372.66,4415.69) 0.000 14.08 15.67
Model 3 3919 (3897.28,3939.93) 5812 (5790.28,5832.93) 0.006 3.62 5.61

Both models 2 and 3 have the last term of the model significant with model 3 performing

better in terms of AIC and BIC values and with a slightly shorter prediction interval

than the one for model 2. In this case, using a validation sample will not bring an extra

advantage in the estimation of f0 since we get exactly the same estimate if we use only

the positive sample.

For this case, an estimate of f̂0 = 3919 for the number of heroin users that were not

registered by the treatment centre is quite high, specially if we consider that n = 1893.

This can be an indication for this data suffering from zero-inflation. This conclusion is

corroborated by comparing the results with only the positive sample and model 3 using

both samples.
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6.3.5 Application to the Syphilis data

Finally, we applied the same ratio regression approach to the syphilis data. Figure 6.13

shows the single line regression model log(r̂x) = −1.35− 0.33x for this case study:
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Figure 6.13: Syphilis data: single line regression model −1.35−0.33x for the syphilis
data set.

The estimated parallel lines regression model log(r̂x) = −1.20+0.35x−0.31S is reported

in Figure 6.14:
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Figure 6.14: Syphilis data: parallel lines regression model −1.20 + 0.35x− 0.31S.

Lastly, as it is shown in Figure 6.15, the two separate lines regression model log(r̂x) =

−1.30 + 0.44x− 0.01S− 0.21(S×x) clearly points for a strong impact of the interaction

S × x.
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Figure 6.15: Separate lines regression mode −1.30 + 0.44x− 0.01S − 0.21(S × x) for
the syphilis data set.

Table 6.5: Syphilis data: estimates of the population size N based on different ratio
regression models. The p-value refers to the last coefficient of the respective model.

Application f̂0 PI for f0 N̂ PI for N p-value AIC BIC
RR Positive 54 (18.09,90.32) 203 (167.09,239.32) 0.299

Model 1 56 (32.14,80.23) 205 (181.14,229.23) 0.032 14.40 14.99
Model 2 66 (15.45,116.73) 215 (164.42,265.73) 0.198 13.71 14.50
Model 3 54 (25.91,82.49) 203 (174.91,231.49) 0.422 14.42 15.41

The results for the three models are displayed in Table 6.5. Here, n = 149. Based on a

first look at the table and the values for the AIC and BIC criteria, model 2 gives a more

trustworthy estimate for f0. However, we can see that the term for S is non-significant

and that this model is not substantially different from model 1. In fact, the AIC and BIC

for this model are slightly bigger than for model 2. Nevertheless, the shortest prediction

interval associated with model 1 estimations makes this a preferred option to model 2.

Therefore, the estimate f̂0 produced by model 1 is more reliable than the estimate we

got using model 2.

6.4 Simulation study

A question arises about the real benefit in using the validation sample in the ratio regres-

sion modelling. A natural way to assess this question is to investigate the performance

of each model above in the presence and absence of a validation sample through a simu-

lation study. We are interested in simulating data with a close behaviour to the datasets
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we have discussed. We have generated 1000 samples for positive samples in which all

the 0 units were considered as missing values and discarded. Another 1000 sample repli-

cations were generated for validation samples, each one is paired with a positive sample.

Note that all the samples will have a fixed number of 7 sampling occasions.

The population sizeN for the positive samples varied among 25, 50, 100, 500 and 1000, as

well as for the validation sample size N1. We calculated the population size N using only

the positive sample and incorporating the information from the validation sample. The

Horvitz-Thompson estimate was also considered in the study for comparison purposes.

6.4.1 Single Line Model Simulation Study

We present in this section the results for the simulation study based on the single line

model. We set α = −2 and β = 0.6 and construct the model log(rx) = α + βx =

−2 + 0.6x. After that, we can easily find the ratios rx = exp[α+ βx]. Using (6.12) from

the Theorem 6.1, we find p0 and using the relation px = rx
ax
px−1 for x = 1, ..., 7, we derive

the probabilities p1, ..., p7, which determine the count distribution P (X = x) = px for

x = 0, 1, ..., 7.

In table 6.6, we report the estimator derived by the ratio regression (N̂ Positive), for

the positive sample, the Horvitz-Thompson (N̂ HT) derived by the positive sample and

the single line estimate (N̂ SLM).
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Table 6.6: Mean and variance for positive sample estimators from a population size
N = 25, N = 50, N = 100 and N = 1000.

N̂ Positive N̂ HT N̂ SLM

N = 25
Validation sample size: 25

Mean
Variance

.
51.37
74.30

.
51.35
85.04

.
50.42
42.22

N = 50

Validation sample size: 25
Mean

Variance
Validation sample size: 50

Mean
Variance

.
101.40
132.83

.
101.40
130.64

.
101.21
144.76

.
101.15
135.43

.
100.71
94.94

.
100.41
79.25

N = 100

Validation sample size: 25
Mean

Variance
Validation sample size: 50

Mean
Variance

Validation sample size: 100
Mean

Variance

.
501.12
578.15

.
501.30
609.73

.
502.40
593.41

.
500.99
613.67

.
501.14
642.24

.
502.32
629.47

.
500.79
536.32

.
501.19
534.70

.
501.46
462.94

N = 1000

Validation sample size: 25
Mean

Variance
Validation sample size: 50

Mean
Variance

Validation sample size: 100
Mean

Variance
Validation sample size: 1000

Mean
Variance

.
1000.43
1198.88

.
1001.35
1105.18

.
1002.38
1247.03

.
1001.79
1045.35

.
1000.29
1254.86

.
1001.10
1163.92

.
1002.17
1326.19

.
1000.64
1093.94

.
1000.11
1146.99

.
1001.10
1021.33

.
1001.66
1087.35

.
1000.15
709.89

The estimates for N using the single regression model in the presence of a validation

sample is always more accurate than using the ratio regression approach with only the

positive sample. It can also be stated that the estimates given by the Horvitz-Thompson

approach is consistently closer to the true value than the estimation using only the

positive sample, even if it is associated to a larger variance. Also, it is shown that the

variance using the model incorporating the validation information is smaller than the

other two, revealing that the main differences are in terms of efficiency. The gain in

efficiency is clear with a validation sample.
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6.4.2 Parallel Lines Model Simulation Study

The results for the simulation study based on a parallel lines model are illustrated in

this section. We set α = −2, β = 0.7 and δ = −0.5 and construct the model log(rx) =

α+βx+δS = −2+0.7x−0.5S. This time the ratios are defined by rx = exp[α+βx+δS],

with S = 1 for units in the positive sample, 0 else. Once more, we find p0 using equation

(6.12) and further probabilities by the recurrence px = rx
ax
px−1 for x = 1, ..., 7. The

count distribution P (X = x) = px for x = 0, 1, ..., 7 is used to simulate the observed

population estimators of the populaion size.

In the table below, we report the estimator derived by the ratio regression (N̂ Positive),

for the positive sample, the Horvitz-Thompson (N̂ HT) derived by the positive sample

and the parallel lines estimate (N̂ PLM).

The estimate of N is more accurate and calculated with more efficiency using the val-

idation sample and modelling both samples distributions using a parallel lines model,

independently of the proportion of the validation sample available. In fact, once again,

the Horvitz-Thompson estimator performs better when we use the positive sample only,

even if the efficiency declines strongly.
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Table 6.7: Mean and variance for positive sample estimators from a population size
N = 25, N = 50, N = 100 and N = 1000.

N̂ Positive N̂ HT N̂ PLM

N = 25
Validation sample size: 25

Mean
Variance

.
53.07
320.65

.
52.86
382.01

.
48.88
154.00

N = 50

Validation sample size: 25
Mean

Variance
Validation sample size: 50

Mean
Variance

.
105.96
691.12

.
102.60
470.65

.
105.00
737.01

.
101.67
523.74

.
102.66
409.89

.
100.15
301.15

N = 100

Validation sample size: 25
Mean

Variance
Validation sample size: 50

Mean
Variance

Validation sample size: 100
Mean

Variance

.
502.38
2187.31

.
504.41
2373.50

.
503.03
2065.83

.
501.28
2342.45

.
503.48
2540.94

.
502.19
2210.27

.
500.44
1937.02

.
502.61
1978.10

.
501.71
1622.29

N = 1000

Validation sample size: 25
Mean

Variance
Validation sample size: 50

Mean
Variance

Validation sample size: 100
Mean

Variance
Validation sample size: 1000

Mean
Variance

.
1001.84
4340.12

.
1003.02
4227.55

.
1002.33
4666.76

.
1004.63
4311.05

.
1000.61
4659.68

.
1002.07
4564.76

.
1001.84
4988.44

.
1003.36
4584.05

.
1000.06
4114.06

.
1001.67
3833.54

.
1001.56
3987.99

.
1000.60
2864.56

6.4.3 Separate Lines Model Simulation Study

We report the results for the simulation study based on the separate lines model. We set

α = −2, β = 0.6, δ = −0.5 and λ = 0.1 and construct the model log(rx) = α+βx+δS+

λ(S × x) = −2 + 0.6x− 0.5S + 0.1(S × x). The ratios rx = exp[α+ βx+ δS + λ(S × x)]

are found, where S = 1 if the unit belongs to the positive sample, 0 otherwise. Using

the relation px = rx
ax
px−1 for x = 1, ..., 7 we find all the probabilities p1, ..., p7 while p0

is calculated using equation (6.12). The results are shown in the next tables, where

the estimators based on the positive sample regression (N̂ Positive), Horvitz-Thompson
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based on the p0 derived from the positive sample (N̂ HT) and the separate lines model

(N̂ SepLM) are reported.

Table 6.8: Mean and variance for positive sample estimators from a population size
N = 25, N = 50, N = 100 and N = 1000.

N̂ Positive N̂ HT N̂ SepLM

N = 25
Validation sample size: 25

Mean
Variance

.
53.13
282.21

.
53.03
332.82

.
53.13
282.21

N = 50

Validation sample size: 25
Mean

Variance
Validation sample size: 50

Mean
Variance

.
102.34
490.54

.
104.33
540.39

.
101.40
532.39

.
103.33
579.53

.
102.34
490.54

.
104.33
540.39

N = 100

Validation sample size: 25
Mean

Variance
Validation sample size: 50

Mean
Variance

Validation sample size: 100
Mean

Variance

.
501.71
1985.23

.
501.75
2382.47

.
503.03
2226.05

.
500.55
2124.98

.
500.86
2537.48

.
501.87
2369.86

.
501.71
1985.23

.
501.75
2382.47

.
503.05
2226.05

N = 1000

Validation sample size: 25
Mean

Variance
Validation sample size: 50

Mean
Variance

Validation sample size: 100
Mean

Variance
Validation sample size: 1000

Mean
Variance

.
1004.59
4695.25

.
1001.35
4195.39

.
1004.50
4310.63

.
1002.71
4138.85

.
1003.43
4996.80

.
1000.14
4466.94

.
1003.55
4665.36

.
1001.68
4465.80

.
1004.59
4695.25

.
1001.35
4195.39

.
1004.50
4310.63

.
1002.71
4138.85

For the separate lines regression model, the estimate for N we obtain using the validation

sample is exactly the same we get using only the positive sample, which makes the use of

validation information useless in this situation. Despite the Horvitz-Thompson estimator

gives a closer estimate for the true value, it loses in terms of efficiency, which therefore

makes the use of only the positive sample more reliable in this kind of situations since

the associated variance is consistently smaller.
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6.5 The inflated model

The previous modelling approaches do not account for any zero-inflation. It is possible

that data has a number of non-observed cases much higher than expected which would

lead to a first ratio that is potentially much lower than the others. To account for zero-

inflation, at least approximately, we suggest to model the ratio by a quadratic form of

this kind: log(Rx) = α + βx + δS + λx2. This model may allow if necessary a bend in

the straight line corresponding to the positive sample and, at the same time, to take

advantage of the available validation sample.

The question arises, if this kind of approach may perform well on the previous datasets.

As it turns out, the quadratic term is not significant in any of the cases and the corre-

sponding model is not the best model to consider to any of the datasets than the one

reported in section 6.3.

Table 6.9: Estimates of the population size N for the zero-inflated model according
to the each model equation.

Data f̂0 PI for f0 N̂ PI for N p-value x2 AIC BIC
Salmonella 33 (-8.36,73.63) 86 (44.64,126.63) 0.437 23.34 26.16

Bowel Cancer 65 (24.67,106.20) 257 (216.67,298.20) 0.692 21.45 23.44
Brucellosis 174 (104.38,243.12) 281 (211.38,350.12) 0.889 26.74 28.73

Heroin users 11030 (10468.88,11592.01) 12923 (12361.88,13485.01) 0.562 15.51 17.50
Syphilis 63 (36.07,89.86) 211 (184.07,237.86) 0.775 13.91 14.90

For the Salmonella data, a total of 33 undetected farms were obtained employing the

model equation log(rx) = −2.47 + 0.94x− 0.13S − 0.04x2 as Table 6.9 shows. In other

words, a population size of 86 farms. In fact, the best model for the Salmonella data

is the single line model. AIC and BIC criteria support that statement, since the values

are bigger for this model than for the other three discussed models of Table 6.1.

For the Bowel Cancer data, the estimated model equation is log(rx) = −2.25 + 1.02x−

0.11S − 0.03x2. According to such equation, we get an estimate f̂0 = 65 which means

that according to the model, 65 individuals were misclassified during the screening test.

However, the single line model has lower values of AIC and BIC criteria and a shorter

predictive interval so this is not a more appropriate model to consider for this data set.

The estimated regression equation for the Brucellosis data follows: log(rx) = −2.72 +

0.92x−0.19S−0.01x2. Again, the model applied to this data does not produce a better

fit to the data or a better estimate for f0, based on the AIC and BIC criteria as well as
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on the prediction interval. The best model for this data is still model 1, the single line

model.

For the Heroin users data, the estimated equation is log(rx) = 0.03 + 0.14x − 2.34S +

0.03x2. The model has the quadratic term non-significant and a much larger AIC, BIC

and prediction interval. The model we get the best results for the Heroin users data is

model 3, the separate lines regression model despite the suspicion of zero-inflation based

on the first ratio of the ratio plot as discussed.

Finally, for the Syphilis dataset, we get the following estimated regression equation:

log(rx) = −1.16 + 0.27x − 0.30S − 0.03x2. By using the inflated model, we achieved

f̂0 = 63 individuals estimated as not been identified with Syphilis by any treatment

centre. Comparing the results of this model with the results shown in Table 6.5 we can

state that model 1 (the single line model) performs better in this data set using the

same arguments as before: lower AIC and BIC and shorter confidence interval.

We conducted simulations that show that the estimation of N using the quadratic model,

with the validation sample incorporated, may in some cases produce results that are

substantially better in terms of precision, and bias.

6.6 Simulation study on zero-inflated data

There is no indication that our data suffers zero-inflation, but it could actually happen

and we may know only in the case we have a validation sample. We performed a simu-

lation study entailing a Binomial zero-inflated distribution and obtained the estimates

for f0 using different models after the analysis of the ratio plot. The simulation study

covered the following situations:

• Case 1: Positive sample size: 100 (50 zeros); Validation sample size: 100 (50 zeros).

• Case 2: Positive sample size: 500 (250 zeros); Validation sample size: 500 (250

zeros).

• Case 3: Positive sample size: 1000 (500 zeros); Validation sample size: 1000 (500

zeros).



On capture-recapture with validation information. Ratio Regression 116

• Case 4: Positive sample size: 2000 (1000 zeros); Validation sample size: 2000 (1000

zeros).
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Figure 6.16: Ratio plot of the averaged frequencies for the positive samples (solid
points) and for the validation samples (empty triangles) with corresponding regression

lines.

The estimate for f0 was achieved using the positive sample (Positive), a single line model

(SLM) log(rx) = α+ βx, a single quadratic model (SQM) log(rx) = α+ βx+ λx2, and

a zero-inflation model (Zero-inflation model) log(rx) = α+βx+ρx where ρ is a dummy

variable for the zero values. The true value for f0 is between brackets in Table 6.10.

As we observe from Table 6.10, the zero-inflated model is always much closer to the

true value in all the analysed situations. The results using just the positive sample are

too low to be considered useful. Despite it does not appear in the table, the Horvitz-

Thompson estimate was also calculated and the same values for f0 were achieved. This

can be expected, since we are working with just the positive sample. The single line

model and the single quadratic model are not promising in situations where we have

this type of data.
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Table 6.10: Simulation study: estimates of f0 from the simulation study of a zero-
inflated data from a Binomial distribution.

Positive SLM SQM Zero-inflation model
Case 1 (50) 0 1 6 50
Case 2 (250) 2 11 50 181
Case 3 (500) 3 13 80 500
Case 4 (1000) 8 40 205 933

6.7 Discussion and conclusions

The ratio regression approach was discussed, and the ratio regression approach for the

positive sample has been extended to include information from the validation sample,

defined as a further untruncated sample including also zero counts which are not observed

in conventional capture-recapture settings. Including a validation sample helps reduce

bias and increase efficiency. Simulation studies corroborated the role of the validation

sample in the estimation process showing that we can rely on the estimate for the

population size with more confidence. The identical model might be used for positive

and validation sample, or a partly congruent model such as the parallel lines model, or

two separate models such as the separate lines model. In the latter case, there is no gain

in bias, but only in efficiency. Modelling was also considered to account for a first ratio

that is maybe lower than the others.

The Salmonella data used to illustrate the theory was provided by the Animal and Plant

Health Agency and it is related with an important public health concern: Salmonella

infection in poultry. The objective was to adjust the undercount of disease occurrence

in UK farms during the period of the EU baseline survey which took place between

October 2004 and September 2005. The work focuses essentially in the development of

methodology to include validation information into the capture-recapture modelling to

increase the accuracy and efficiency of the final estimate for the number of unrecorded

cases.

Other data that was used in this study: the Bowel Cancer data, the Brucellosis and

Syphilis data and lastly, the Heroin drug users data.

Using the ratio regression approach there are numerous ways to select an appropriate

model. We have focused here on the Wald-statistic selecting significant coefficients and



On capture-recapture with validation information. Ratio Regression 118

model selection criteria were also used, such as AIC and BIC. Another way would be

the likelihood ratio statistic.

In the case of the Salmonella data, on the basis of these criteria, the single line model

considering only the positive counts variable seem to be the most appropriate to explore.

This is also the case for the Bowel Cancer data, the Brucellosis data and the Syphilis

data. However, in the case we consider the Heroin users data set, the most beneficial

model to use is the separate lines model which is the same as using the positive sample

only.

The EU survey reported a prevalence of Salmonella of 11.7% (53 infected farms out of

454 holdings), however, Arnold et al. [10] indicated a prevalence of 18% after analysing

the positive data using Bayesian methods thus giving a much more alarming result. The

results of this work help to confirm that the prevalence was in fact higher than 11.7%.

According to the results of the most significant model (single line model), obtained by

a ratio regression approach incorporating the validation sample, we report a prevalence

of 17%, with a 95% confidence interval (9.83% - 27.89%).

Many studies using the Bowel Cancer data can be found in the literature. See, for

example, Alfö et al. [2]. Another important study was performed by Lloyd and Frommer

[61]. They estimated the false negative fraction of the population for the Bowel Cancer

screening test by proposing a beta-binomial model to describe individual testing. They

found an estimate f̂0 = 61 for the number of individuals who were disease positive but

were not identified by the screening test, that is, 24% of the total of the individuals who

were diagnosed, while when considering the validation sample, this proportion decreases

to 22%. Using the ratio regression approach, it was estimated a value of 24 false negative

individuals using the best model (single line model) following the mentioned selection

criteria. These two results differ substancially. Other approaches can be studied as

well; for instance, Böhning et al. [21] estimated f̂0 = 21 using a first-order fractional

polynomial ratio regression approach with power p = 0 which is a very close result to

the one we achieved in this case.

Köse et al. [55] used an extension of the Lincoln-Petersen estimator to estimate the

completeness of the surveillance system for Syphilis and other transmittable diseases.

Truncating multiple identifications larger than two and using a truncated Poisson model,

they estimated a total population size of 282 individuals with Syphilis disease, with a 95%
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confidence interval (265 - 300). Note that the population size for this study also includes

the sum of the observed individuals for the validation sample. Therefore, the estimate

f̂0 = 47 gives the number of individuals who were not identified by any laboratory. This

is a close estimate to the one obtained by the ratio regression approach using the Single

Line Model where f̂0 = 56.

The Brucellosis data was also analysed by Köse et al. [55]. Following the same approach

used for the Syphilis data, the estimate was f̂0 = 100 individuals who were not diagnosed

with the disease by any of the laboratories. This result, however, turned out to be very

different from the result we reached using the ratio regression with the Single Line

regression f̂0 = 153 which is, under perspective, the best model for this case study.

Lerdsuwansri [57] considered several estimators on the Heroin users data to find the

total number of Heroin users in Bangkok, such as the Zelterman estimator and a Non-

Parametric Maximum Likelihood estimator (NPMLe). For more details, please see [57]

and Lerdsuwansri et al. [58]. Using a ratio regression approach, the separate lines

regression model revealed to be the best choice for this data set, with f̂0 = 3919 and

N̂ = 5812.

We see the most important aspect of the use of validation information lie in the fact

that more trust can be developed in the model to estimate the unobserved part of the

population. The ratio regression approach allows us to fit a flexible model to the data

without losing identifiability.

The main findings and conclusions follow for each dataset used to illustrate the theory of

the thesis follow. The two first rows show the results under homogeneity and the third

and forth rows show the results for the finite mixture model and the ratio regression

model, respectively.

Using the estimate for N and the estimated parameters obtained by each mixture model,

confidence intervals were determined by simulating 1000 replications of 1000 estimates

of N and the 25th and the 975th order statistics were taken to build the confidence

intervals shown in tables below between brackets.
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• Salmonella data.

Table 6.11: Salmonella data: estimates of N using only the positive sample (second
column) and both samples (third column) with respective confidence intervals.

Model Positive Positive and Validation

Binomial distribution 55 (23.60,86.81) 54 (30.11-80.40)
Poisson distribution 56 (23.42,87.23) 54 (28.82,81.10)
Binomial finite mixture model (2 components) 62 (36.80,88.22) 60 (39.51,81.29)
Ratio regression - Single Line Model 82 (54.02,109.64) 77 (56.65,97.90)

Under homogeneity, there is basically any difference neither between using validation or

the positive sample only nor between using the Binomial or the Poisson distribution.

However, when heterogeneity is included in the modelling, there is a considerable differ-

ence between modelling data using a Binomial finite mixture model with 2 components

or the ratio regression model using a single line model, and the fact we consider the

validation sample since the confidence interval is narrower.

• Bowel Cancer data.

Table 6.12: Bowel Cancer data: estimates of N using only the positive sample (second
column) and both samples (third column) with respective confidence intervals.

Model Positive Positive and Validation

Binomial distribution 193 (150.71,235.9) 193 (151.20,236.71)
Poisson distribution 197 (154.21,241.37) 198 (156.32,239.31)
Binomial finite mixture model (3 components) 226 (211.41,242.03) 234 (209.01,261.05)
Ratio regression - Single Line Model 243 (226.90,258.02) 245 (218.56,271.35)

In the case of the Bowel Cancer data, under homogeneity, we obtain the same estimates

using both samples performing the EM algorithm with the Binomial distribution and

the Poisson distribution. This finding does not occur with the results obtained by the

finite mixtures and the ratio regression approach for for both samples.

• Brucellosis data.

Table 6.13: Brucellosis data: estimates of N using only the positive sample (second
column) and using the both samples (third column) with respective confidence intervals.

Model Positive Positive and Validation

Binomial distribution 114 (49.08,177.35) 128 (76.40,179.33)
Poisson distribution 121 (61.02,179.80) 136 (82.81,188.74)
Binomial finite mixture model (3 components) 314 (178.29,449.30) 234 (192.81,275.63)
Ratio regression - Single Line Model 300 (154.90,444.63) 260 (196.08,324.55)
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In the Brucellosis case, we observe clear differences between estimates using the positive

sample only or the positive and the validation sample, even in the case of homogeneous

models. The same can be seen for finite mixtures and ratio regression models. Notice

that confidence intervals for the cases we use both samples are substantially narrower

than when we use the positive sample only.

• Heroin users data.

Table 6.14: Heroin users data: estimates of N using only the positive sample (second
column) and using both samples (third column) with respective confidence intervals.

Model Positive Positive and Validation

Binomial distribution 2426 (1338.75,3515.47) 3105 (2214.01,3996.92)
Poisson distribution 2565 (1506.37,3622.16) 3257 (2401.02,4114.40)
Binomial finite mixture model (2 components) 5493 (4508.22,6479.14) 5648 (5691.11,5934.01)
Ratio regression - Separate Lines Model 5812 (4838.26,6784.89) 5812 (5790.28,5832.93)

The ratio regression approach determined the best model for this case study is that based

on using the positive sample only, see section 6.3.4. Using a finite mixture Binomial

model with 2 components with and without the validation sample also produce very

close estimates, however using validation information, we obtain a shorter confidence

interval.

• Syphilis data.

Table 6.15: Syphilis data: estimates of N using only the positive sample (second
column) and using both samples (third column) with respective confidence intervals.

Model Positive Positive and Validation

Binomial distribution 171 (130.31,212.91) 172 (133.22,210.39)
Poisson distribution 181 (132.01,227.84) 182 (132.90,230.11)
Binomial finite mixture model (2 components) 198 (167.20,230.34) 192 (174.79,210.19)
Ratio regression - Single Line Model 203 (167.09,239.32) 205 (181.14,229.23)

For the Syphilis data, using an homogeneous approach, there are no difference in the

estimates using the positive sample or both samples which are basically the same. Under

heteroheneity modelling, the Binomial mixture model and the ratio regression model also

produce a close estimate for the total population size.

In fact, as it was aforementioned, it was shown that more trust is developed for esti-

mates of the number of missing observations using models with validation information
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incorporated. For these models, the bias is smaller and the precision of the model in-

creases. However, it cannot be stated that the mixture models approach is a better or

worse choice to estimate the total size of a target population. The number of missing

observations can in fact be greater than the ones obtained by the discussed methods,

however, lower bounds for the estimates of the number of unreported units can be found

in this work.



Chapter 7

Concluding remarks

7.1 Conclusions and Future Work

Capture-recapture methods attempt to estimate the total size of a population of interest

which is only partially observed. The typical capture-recapture structure involves a

positive data sample where the frequency of the individuals of the population are counted

for each occasion they have been identified during the period of study. However, due to

errors in registration/identification processes, a part of the population is not observed.

We focus on the estimation of such hidden part of the population.

Sometimes, tests, studies or procedures are repeated and we have complete access to

another sample, which is called validation sample. Notice that there is no hidden infor-

mation in this secondary sample.

When using only a positive sample, it is impossible to evaluate if our model is performing

well to estimate the number of missing individuals, and therefore, the total size of the

population. However, if we take advantage of the validation sample during the estimation

process, we might be able to have more confidence in our final estimate.

This work focusses on developing methodology to incorporate validation information in

standard capture-recapture methods.

The EM algorithm, a popular iterative algorithm for Maximum Likelihood estimation

of parameters of interest was initially discussed using simple homogeneous Binomial

and Poisson distributions. For an attempt to explore the role of the validation sample

123
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into the modelling, there were considered models using the positive sample and models

considering both samples (the positive and validation samples). It was shown that,

even when the final estimate using validation does not seem to benefit from having this

other sample, the estimate is significantly better in terms of decreasing the variance and

consequently, the confidence in the obtained result is boosted.

An extension of the Good-Turing estimator using validation information was also intro-

duced and, also in this case, simulation results show a strong difference between using

or not using validation information. In fact, it is clear that even under homogeneity

(which is the case), there is a clear benefit for the estimate accuracy in considering the

validation sample.

Notice that this approach requires basic assumptions to be valid: there is individual

homogeneity and independence among all the members of the population and between

study period occasions for each member. However, these assumptions are unlikely to be

met. Since each individual is unique and there are several factors that imply variability

in the data, individual heterogeneity may play the most important role in the estima-

tion process and cannot be ignored. Two paths were followed in this work to model

heterogeneity while still incorporating the validation sample: finite mixture models and

ratio regression.

These two approaches allow a flexible modelling of data considering heterogeneity; how-

ever, they cannot be compared in theoretical terms starting by the fact that mixture

models were used with the classical discrete Binomial distribution whilst ratio regression

is a continuous approach derived by ratios of frequencies of neighbour counts.

We discussed mixtures of Binomials for the positive and the positive-validation samples.

The maximum number of components was defined taking into account the identifiability

of the model which is closely linked to the number of sampling occasions. The number

of components was chosen by model selection criteria, such as the Akaike Information

Criteria (AIC) and the Bayesian Information Criteria (BIC). The EM algorithm tackled

the conditional likelihood which contains the most part of the information, but using a

profile mixture likelihood is also possible. It could happen that the data suffers from

zero-inflation: a number of non-observed cases much higher than expected. Here, it

is important to highlight that validation is vital in situations of this type. Without
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using validation, as in traditional capture-recapture problems, there is no opportunity

to develop a model which performs well for the hidden part.

The ratio plot works as a diagnostic device for the Binomial distribution. Using the ratio

plot one can infer about the distribution of the positive and the validation samples.

It is also a tool that allows us to identify individual heterogeneity in the data. To

model heterogeneity, a ratio regression approach was investigated through three different

models which incorporate validation information: the single line regression model, the

parallel lines regression model and the separate lines regression model. The last performs

exactly the same as considering the positive sample only. The best model was selected,

once again, using the BIC and the AIC criteria. Zero-inflated models were also discussed

in case the frequency of missing individuals causes a ratio which is lower than expected

by looking at the others obtained by the positive sample. Simulation studies suggest

that the use of the validation sample in this approach brings many advantages for the

modelling. The final estimate is more precise and the bias is meaningly smaller.

Future work includes using the profile mixture likelihood with validation information and

compare the results obtained using the conditional likelihood as well as trying different

distributions on the specific datasets. It would be very interesting to develop other ratio

regression models to include validation.



Appendix A

Supplementary material to the

simulation study in section 4.1.2

This appendix contains the results for θ = 0.20, 0.25 for the simulation study that was

performed to investigate the effect of having a validation sample in capture-recapture

studies under homogeneity in section 4.1.2 of chapter 4. Comments on the procedure

and the results can be found in that section.

• Results for θ = 0.20:

Table A.1: Simulation study: θ = 0.20 results, M = 1000(M = 5000) samples.

N Mean with validation Mean without validation

25 0.1983 (0.1995) 0.1978 (0.1990)
50 0.2000 (0.1993) 0.1994 (0.1998)
100 0.2002 (0.1997) 0.2007 (0.2000)
500 0.2001 (0.1998) 0.2003 (0.1998)
1000 0.19981 (0.2000) 0.1999 (0.2000)
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Table A.2: Simulation study: θ = 0.20 estimated variance, M = 1000(M = 5000)
samples.

N Variance with validation Variance without validation

25 0.0006 (0.0006) 0.0017 (0.0016)
50 0.0005 (0.0004) 0.0009 (0.0009)
100 0.0003 (0.0003) 0.0005 (0.0004)
500 7.5754× 10−05 (8.0636× 10−05) 8.6187× 10−05 (8.7849× 10−05)
1000 4.3079× 10−05 (4.1003× 10−05) 4.6145× 10−05 (4.2691× 10−05)

Table A.3: Ratio (Variance with validation / Variance without validation) for θ =
0.20, M = 1000(M = 5000) samples.

N Ratio of variances

25 0.3664 (0.3726)
50 0.5315 (0.5094)
100 0.6975 (0.6717)
500 0.8789 (0.9179)
1000 0.9336 (0.9604)
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Figure A.1: Simulation study: θ = 0.20. Left panel: mean estimates for θ with
varying N , using validation information (red) or not (blue). The true value is the black

solid line. Right panel: corresponding variance values. M = 1000 samples.



Appendix A. 128

●

●

●

●

●

0 200 400 600 800 1000

0.
19

90
0.

19
94

0.
19

98

Population Size

M
ea

n

●

●

●

●

●

●

●

●

●
●

0 200 400 600 800 1000

0.
00

00
0.

00
05

0.
00

10
0.

00
15

Population Size

V
ar

ia
nc

e

●

●

●

●
●

Figure A.2: Simulation study: θ = 0.20. Left panel: mean estimates for θ with
varying N , using validation information (red) or not (blue). The true value is the black

solid line. Right panel: corresponding variance values. M = 5000 samples.

Table A.4: Simulation study: θ = 0.20 mean estimates for N with (right column)
and without validation information (left column). M = 1000(M = 5000) samples.

N N̂ without using Validation N̂ using Validation

25 25.90 (25.67) 25.41 (25.2449)
50 50.70 (50.66) 50.29 (50.40)
100 100.53 (100.76) 100.45 (100.62)
500 500.07 (500.82) 500.23 (500.81)
1000 999.60 (1000.40) 999.67 (1001.47)

• Results for θ = 0.25:

Table A.5: Simulation study: θ = 0.25 results, M = 1000(M = 5000) samples.

N Mean with validation Mean without validation

25 0.2466 (0.2443) 0.2497 (0.2467)
50 0.2481 (0.2474) 0.2397 (0.2491)
100 0.2487 (0.2486) 0.2499 (0.2496)
500 0.2499 (0.2494) 0.2504 (0.2497)
1000 0.2494 (0.2497) 0.2496 (0.2499)
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Table A.6: Simulation study: θ = 0.25 estimated variance, M = 1000(M = 5000)
samples.

N Variance with validation Variance without validation

25 0.0008 (0.0009) 0.0017 (0.0017)
50 0.0005 (0.0005) 0.0009 (0.0008)
100 0.0003 (0.0003) 0.0004 (0.0004)
500 8.1895× 10−05 (7.9020× 10−05) 8.7128× 10−05 (8.3200× 10−05)
1000 3.7650× 10−05 (3.9175× 10−05) 3.9145× 10−05 (4.0016× 10−05)

Table A.7: Ratio (Variance with validation / Variance without validation) for θ =
0.25, M = 1000(M = 5000) samples.

N Ratio of variances

25 0.4344 (0.5082)
50 0.5710 (0.6256)
100 0.7655 (0.7924)
500 0.9400 (0.9498)
1000 0.9618 (0.9790)
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Figure A.3: Simulation study: θ = 0.25. Left panel: mean estimates for θ with
varying N , using validation information (red) or not (blue). The true value is the black

solid line. Right panel: corresponding variance values. M = 1000 samples.
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Figure A.4: Simulation study: θ = 0.25. Left panel: mean estimates for θ with
varying N , using validation information (red) or not (blue). The true value is the black

solid line. Right panel: corresponding variance values. M = 5000 samples.

Table A.8: Simulation study: θ = 0.25 mean estimates for N with (right column)
and without validation information (left column). M = 1000(M = 5000) samples.

N N̂ without using Validation N̂ using Validation

25 25.29 (25.41) 25.27 (25.41)
50 50.44 (50.41) 50.40 (50.43)
100 100.23 (100.40) 100.34 (100.49)
500 499.84 (500.59) 500.09 (500.84)
1000 1000.82 (1000.25) 1001.02 (1000.53)
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R code for finite mixture models

The code developed for finite mixture models with Binomial kernel was a joint work

with Dr. Antonello Maruotti.

The code to perform a Binomial mixture model with the positive sample as discussed

in chapter 5 follows:

cr.binom <- function(sample ,K=2,m) # define the number of components K

{

if(missing(m))

stop(" Number of maximum recaptures is missing ")

#set.seed(st)

#

# Initialization

#

t.sample <- table(sample )[-1]

weights = matrix(runif((m+1)*K),ncol=K)

weights = weights/apply(weights ,1,sum)

prior <- NULL

lambda <- lambda.sample <- NULL

f.sample.num <- f.sample <- matrix(NA,nrow = m+1,ncol=K)

f <- matrix(NA ,nrow = m+1,ncol=K)

for (k in 1:K)

{

prior[k] <- (sum(t.sample*weights[-1,k]))/( sum(t.sample ))

lambda[k] <- sum(t.sample *(1:m)* weights[-1,k])/sum(t.sample*weights[-1,k])

f.sample.num[,k] <- dbinom (0:m,m,lambda[k]/m)*prior[k]

}

loglike.old <- -Inf

f0 <- 0
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loglike <- 0

dif <- Inf

iter <- 0

#

# E-step

#

while (dif > 10^-4)

{

iter <- iter+1

print(iter)

N <- sum(t.sample )/(1-sum(f.sample.num[1,]))

f0 <- round(N-sum(t.sample ))

#

# M-step

#

for (k in 1:K)

{

lambda[k] <- sum(c(f0,t.sample )*(0:m)* weights[,k])/sum(c(f0,t.sample )* weights[,k])

f.sample.num[,k] <- dbinom (0:m,m,lambda[k]/m)*prior[k]

}

weights <- diag (1/ apply(f.sample.num ,1,sum ))%*%f.sample.num

prior <- apply(matrix(rep(c(f0 ,t.sample),K),ncol=K)*weights ,2,sum)/sum(c(f0,t.sample ))

loglike <- sum(log(apply(f.sample.num[-1,]/(1-sum(f.sample.num[1,])),1,sum))*t.sample)

dif <- (loglike -loglike.old)

print(dif)

print(N)

loglike.old <- loglike

}

return(list(N=N,f0=f0 ,lambda=lambda ,prior=prior ,loglike=loglike ))

}

The code to perform a Binomial mixture model incorporating the validation sample

follows:

cond.like.binom <- function(sample ,validation ,K=2,m)

{

if(missing(m))

stop(" Number of maximum recaptures is missing ")

#set.seed(st)

#

# Initialization

#

t.sample <- table(sample )[-1]

t.validation <- table(validation)
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weights = matrix(runif((m+1)*K),ncol=K) #posterior weights

weights = weights/apply(weights ,1,sum)

prior <- NULL #qs

lambda <- lambda.sample <- lambda.validation <- NULL

f.sample.num <- f.sample <- matrix(NA,nrow = m+1,ncol=K)

f <- f.validation <- matrix(NA ,nrow = m+1,ncol=K)

for (k in 1:K)

{

prior[k] <- (sum(t.sample*weights[-1,k])+ sum(t.validation*weights[,k]))

/(sum(t.sample )+sum(t.validation ))

lambda.sample[k] <- sum(t.sample *(1:m)* weights[-1,k])

/sum(t.sample*weights[-1,k])

lambda.validation[k] <- sum(t.validation *(0:m)* weights[,k])

/sum(t.validation*weights[,k])

lambda[k] <- (lambda.sample[k]*sum(t.sample )+ lambda.validation[k]*sum(t.validation ))

/(sum(t.sample )+sum(t.validation ))

f.sample.num[,k] <- dbinom (0:m,m,lambda[k]/m)*prior[k]

}

loglike.old <- -Inf

f0 <- 0

loglike <- 0

dif <- Inf

iter <- 0

#

# E-step

#

while (dif > 10^-4)

{

iter <- iter+1

print(iter)

N <- sum(t.sample )/(1-sum(f.sample.num[1,]))

f0 <- round(N-sum(t.sample ))

#

# M-step

#

for (k in 1:K)

{

lambda.sample[k] <- sum(c(f0 ,t.sample )*(0:m)* weights[,k])

/sum(c(f0,t.sample )* weights[,k])

lambda.validation[k] <- sum(t.validation *(0:m)* weights[,k])

/sum(t.validation*weights[,k])

lambda[k] <- (lambda.sample[k]*sum(c(f0,t.sample ))+

lambda.validation[k]*sum(t.validation ))/( sum(c(f0 ,t.sample ))+ sum(t.validation ))

#f[,k] <- dbinom (0:m,m,lambda[k]/m)

f.sample.num[,k] <- dbinom (0:m,m,lambda[k]/m)*prior[k]
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#f.sample.den[,k] <- 1-dbinom(0,m,lambda[k]/m)*prior[k]

#f.sample[,k] <- f.sample.num[,k]/f.sample.den[,k]

f.validation[,k] <- dbinom (0:m,m,lambda[k]/m)*prior[k]

}

weights <- diag (1/ apply(f.sample.num ,1,sum ))%*%f.sample.num

prior <- apply(matrix(rep(c(f0 ,t.sample )+t.validation ,K),ncol=K)*weights ,2,sum)

/sum(c(f0,t.sample )+t.validation)

loglike <- sum(log(apply(f.sample.num[-1,]/

(1-sum(f.sample.num[1,])),1,sum ))*t.sample )+sum(log(apply(f.validation ,1,sum))*t.validation)

dif <- (loglike -loglike.old)

print(dif)

print(N)

loglike.old <- loglike

}

return(list(N=N,f0=f0 ,lambda=lambda ,prior=prior ,loglike=loglike ))

}

The results are achieved as in the next example for the Bowel Cancer data:

#Results Bowel Cancer:

positives=c(0,rep(1,37),rep(2,22),rep(3,25), rep(4,29),rep(5,34), rep (6 ,45))

validation=c(rep(0,22),rep(1,8),rep(2,12),rep(3,16),rep(4,21),rep(5,12),rep (6 ,31))

#With Validation:

mod1=cond.like.binom(positives ,validation ,m=6)

#Without Validation:

mod2=cr.binom(positives ,m=6)

The results are shown in detail in section 5.3.
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[17] D. Böhning, M. F. Baksh, R. Lerdsuwansri, and J. Gallagher. Use of the ratio plot in

capture–recapture estimation. Journal of Computational and Graphical Statistics,

22(1):135–155, 2013.
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[22] D. Böhning and D. Schön. Nonparametric maximum likelihood estimation of pop-

ulation size based on the counting distribution. Journal of the Royal Statistical

Society: Series C (Applied Statistics), 54(4):721–737, 2005.

[23] D. Böhning, P. G. van der Heijden, and J. Bunge (editors). Capture-Recapture

Methods for the Social and Medical Sciences. CRC Press, 2018.
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