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This thesis is centered in the study of new solutions to Einstein’s equations. A com-
mon property of all new solutions presented in this thesis is that they have a scalar field
condensate, independently of having a horizon or not. A key motivation for studying such
cases is given by the gauge/gravity duality hence our starting point will be asymptotically
AdS spacetimes. However, we will apply some of the intuition gained from this context to
asymptotically flat spacetimes. Within this context, there are two main different parts in
this thesis:

• The study of linear instabilities of charged black holes and the construction of the
endpoint of the instabilities: hairy black holes. Firstly, one considers the linear
problem of scalar field perturbations in order to characterise the unstable region as
well as determining the onset of the instability. This onset is given by a zero-mode
perturbation, hence it is regular in the past and future horizons. This zero-mode
signals the possible existence of a new solution. Secondly, we solve the non-linear
problem using a perturbative expansion and encounter two new solutions in the
system: a soliton, which is a horizonless solution and a hairy black hole which is the
endpoint of the linear instabilities. This study is performed in asymptotically AdS
spacetimes and in asymptotically flat spacetimes with a box at a finite distance with
Dirichlet boundary conditions for the scalar field: the black hole bomb.

• The study of the nonlinear instability of AdS. We present new results in the charac-
tersation of the islands of stability of AdS. In particular we study the dependence of
the nonlinear instability on the commensurability of the frequency spectrum of the
theory by introducing a double trace deformation in AdS. We study these islands
of stability by determining the region of existence of multi-oscillators. In addition,
we use the construction as intuition to postulate the existence in asymptotically flat
spacetimes of an infinite-parameter family of solutions that oscillate on any number of
non-commensurate frequencies. A particular solution within this infinite-parameter
family is the well-known boson star solution which oscillates in one frequency. We
construct numerically two-frequency solutions: double-oscillators.
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Introduction
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This thesis is centered on the study of general relativity with a timelike boundary which
is provided either by the asymptotic behaviour (AdS) or by the presence of a hard box.
The main motivation to study such systems is given by the gauge/gravity duality. In this
Introduction Part we first give an overview of some important aspects of the duality that
help put into context the results in this thesis in Chapter 1.

In Chapter 2 we introduce the specific phenomenological aspects we study related to black
hole and spacetime instabilities: superradiance in section 2.1, near-horizon condensation
instability in section 2.2, nonlinear instability in section 2.3 and in section we discuss about
hairy black holes 2.4 which are the end point of instabilities. Finally, in section 2.5 we give
an outline of the thesis.
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CHAPTER 1

The holographic principle and gauge/gravity duality

The holographic principle was first proposed by Gerard ’t Hooft [5] and later refined into
string theory by Leonard Susskind [6] (also see Thorn [7] and Susskind-Klebanov [8]). The
idea of the holographic principle arose from the works of Bekenstein [9] and Hawking [10]
and the observation that black holes are thermodynamic objects that radiate at temper-
ature proportional to the surface gravity at the horizon and they have an entropy that is
proportional to the area of the horizon

SBH =
AH
4

(1.0.1)

in Planck units. Indeed, consider a volume V with surface area A and entropy larger than
the black hole entropy of the same area. Assume that the energy inside the volume is
smaller than the black hole energy (otherwise gravitational collapse would form a black
hole). Add energy into the volume so that the energy density reaches the value at which
a black hole would form. Due to our assumption, this final configuration has less entropy
than the starting one since S > SBH . But this violates the second law of thermodynamics
and hence ’t Hooft assumed that a black hole is the configuration with the highest entropy
per unit volume in a gravitational system. Since in statistical mechanics entropy is a
counting of the degrees of freedom of the system, one arrives to the conclusion that in a
gravitational system the degrees of freedom are proportional to the area. This is in contrast
with local quantum field theory (with a UV cutoff at the Planck scale) where the number
of degrees of freedom is proportional to the volume. Since in a d-dimensional spacetime

5



6 Chapter 1. The holographic principle and gauge/gravity duality

[A] = Ld−2 and [V ] = Ld−1, the counting of degrees of freedom suggests that a theory of
gravity in d dimensions (bulk) should be dual to a quantum field theory in d−1 dimensions
("living" at the boundary). This is the holographic principle.

This idea was put into firm footing when Maldacena in 1997 [11] published the famous
paper The Large N limit of superconformal field theories and supergravity where he con-
jectured the first specific example of the holographic principle. His proposal conjectured
the equivalence between 10-dimensional Type IIB string theory in AdS5×S5 and N = 4

Super Yang-Mills (SYM) in 4 dimensions with gauge group SU(N), which is a conformal
field theory (CFT).

The two theories are equivalent for any rank of the gauge group N and Yang-Mills coupling
gYM and the equivalence is at the level of partition functions of the two theories [12, 13]

ZQFT = Zstring. (1.0.2)

We will come back to this relation when we describe the dictionary of the duality.

This is the strongest form of the duality. By taking limits to the different parameters
one can arrive to more tractable forms where we can treat string theory perturbatively
or even consider its low energy limit, supergravity; or where the gauge theory becomes
perturbative. Let us first identify the fundamental constants present on both sides and
identify a correspondence between them. On the quantum field theory side there is the
rank of the gauge group N and the coupling constant gYM . It is however more convenient
to work with the rank of the gauge group N and the ’t Hooft coupling λ = g2

YMN . On the
gravity side there is the string coupling gs, the AdS radius L and the string length ls. Notice
that the last two are dimensionful constants hence, one can construct two adimensional
constants that characterize the theory in the bulk. Let us point out without explicitly
showing, that the radius of the S5 in the bulk is precisely given by the AdS radius L [11].

The correspondence, we will see in the following sections, establishes that physical quan-
tities on both sides of the duality can be identified. It is thus crucial to find first an
identification between the parameteres of both sides. These identifications will constitute
the first main ingredients of the holographic dictionary that we will further discuss in the
following sections. The relation between the parameters on both sides is:

gs =
1

4π

λ

N
, λ =

(
L

ls

)4

. (1.0.3)

Notice that one could also use Newton’s constant as a parameter in the bulk through the
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relation

G = 8π6g2
s l

8
s . (1.0.4)

Taking limits on the parameters one can achieve limits of the correspondence where the
theories become perturbative and thus more tractable. Indeed, the correspondence is a
strong-weak duality, hence achieving a perturbative limit of the theory on one side implies
that the theory on the other side is strongly coupled. Indeed, take the large N limit while
holding λ fixed. In this case, by the first equality in equation (1.0.3), the string coupling
becomes perturbative as gs → 0. The theory in the bulk is perturbative string theory. One
can go even further by then taking the large λ limit, i. e. λ→∞ in the second equality in
equation (1.0.3). Then the bulk theory becomes supergravity, since this implies that the
AdS radius is much larger than the string length L� ls. Notice that this limit works the
other way as well. Take the perturbative limit in the quantum field theory side, λ → 0.
The string length becomes large compared to the AdS radius and thus the bulk is described
by string theory and not just supergravity.

After this example, others have been established from different compactifications of string
theory such as D1-D5 system and ABJM [11, 14]. These dualities have been obtained
following the route known as top-down construction. Top-down models are obtained from
low-energy dynamics of brane configurations of string theory or M-theory. It provides with
a specific holographic duality where, in principle, one knows the field content both in the
string theory and gauge theory sides. However, it is quite an involved procedure and one
has little flexibility.

Alternatively one can follow a bottom-up approach. It makes use of the broad concept
of holography. One postulates an asymptotically locally AdS spacetime (AlAdS) with a
set of fields which are dual to a set of operators in the field theory. In this case the dual
theory is not known, but only its operator content, and one studies properties expected
to hold generally in strongly coupled quantum field theories1. Typically, it has been used
to gain insight into QCD and in particular to the quark-gluon plasma that is produced in
experiments at CERN [17]. It is also the general approach used within the gauge/gravity
duality applied to condensed matter [18, 19]. This approach makes use of the AdS/CFT
dictionary which is a map relating the quantum field theory operators and symmetries to
the supergravity fields. Within the bottom-up approach one can also follow the inverse
path. One can postulate operators or correlation functions of general quantum field theories
and infer behaviours of the quantum gravity systems. This path has been followed in
particular for the study of inflation in cosmological models [20, 21].

1This is for example the case for the celebrated shear viscosity to entropy ratio [15, 16].
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Gauge/gravity correspondence is most understood between asymptotically AdS spacetimes
and quantum field theories that flow to a UV fixed point (CFT). This thesis is motivated by
this duality but only discusses the gravity side. Thus in the following we will introduce the
concepts of asymptotically AdS spacetimes as well as the holographic dictionary. The aim
is not to give an exhaustive nor a complete review. There are in the literature numerous
publications reviewing these topics (e.g. [22, 17]).

1.1 Asymptotically AdS spacetimes

The gauge/gravity duality is the main motivation why one studies general relativity in
asymptotically AdS spacetimes. In addition, the gravitational phenomenology is much
richer in AdS spacetimes, as the existence of a timelike boundary allows for fields to scatter-
off infinity leading to new solutions that in asymptotically flat or de Sitter spacetimes do
not exist. It is thus a good laboratory to study properties of gravity.

AdS is a maximally symmetric solution to Einstein’s equations with negative cosmological
constant 2. It solves the equation3

Rµν −
1

2
(R− 2Λ) gµν = 0. (1.1.1)

The metric of global AdS is given by

ds2 = −
(

1 +
r2

L2

)
dt2 +

dr2

1 + r2

L2

+ r2dΩ2
d−2, (1.1.2)

where L is the AdS radius and Λ = (d−2)(d−1)
2L2 is the cosmological constant, and dΩ2

d−2 is
the metric of the sphere Sd−2. One can compactify the radial direction by introducing the
change of coordinate r = L tan2 x and t = Lτ , and the metric becomes

ds2 =
L2

cos2 x

(
−dτ2 + dx2 + sin2 xdΩ2

d−2

)
, (1.1.3)

where x ∈ [0, π/2). In these coordinates we can see that there is a second order pole at
x = π/2.

This leads to the definition of a conformally compact metric: Given a manifold with
boundary M̄ , the boundary given by ∂M and the interior by M ; a metric gab, like for
example (1.1.3), is conformally compact if it has a second order pole in ∂M and there
exists a function r, called defining function, such that the metric ĝab = r2gab extends

2A spacetime is maximally symmetric if and only if it has the maximum number of Killing vector fields
given by d(d+1)

2
in d dimensions.

3In this section we follow closely [23, 24, 25].



1.1. Asymptotically AdS spacetimes 9

smoothly to ∂M and is non-degenerate. The defining function r is such that it is positive
in M , it has a first order pole in ∂M and dr 6= 0 in ∂M .

In fact, the metric gab only defines a conformal class of metrics in ∂M since for a given
defining function r, any function reω, with ω a function with no zeros or poles, is also a
defining function extending the metric gab to ∂M .

We are now ready to define asymptotically locally AdS spacetimes. We say that a manifold
M equipped with metric gab is AlAdS if

• (M, gab) is conformally compact,

• gab satisfies Einstein’s equations with a negative cosmological constant.

In order to compute charges and apply the AdS/CFT dictionary it is useful to introduce
a new set of coordinates known as Fefferman-Graham coordinates. We introduce the new
coordinates z, τ defined as r =

L(z2−1)
2z and τ = Lt. Then the AdS metric (1.1.2) becomes

ds2 =
L2

z2

(
dz2 +

(
−dτ2 + dΩ2

d−2

)
4

− z2

2

(
dτ2 + dΩ2

d−2

))
. (1.1.4)

In this coordinate system the boundary is at z = 0. The structure of this metric is of the
form

ds2 =
L2

z2

(
dz2 + gijdx

idxj
)

(1.1.5)

where xi refers to any coordinate but z.

Any AlAdS metric can always be brought, near the boundary, to the form (1.1.5) with

g = g(0) + zg(1) + zd−1g(d−1) + · · ·+ zd−1h(d−1) log z2 + . . . (1.1.6)

For even d the h(d) term vanishes. We will come back to this form of the metric in section
1.2.

In this thesis we have worked with asymptotically global AdS spacetimes in Chapters 4
and 5 where we have used metric ansatz that asymptote to (1.1.2) and also in Chapter 9
where we have made use of the coordinate system (1.1.3).
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1.2 Holographic dictionary

According to the gauge/gravity correspondence, both the QFT side and the gravity side
describe the same physics. Consequently, both theories should have some identification
between their symmetries and degrees of freedom as well as their dynamics. We present
here some of these identifications that constitute a subset of the dictionary identifying the
correspondence.

1.2.1 Symmetries

The isometry group of AdS spacetime is SO(d − 1, 2). This is more easily seen by the
embedding of AdS in d dimensions to Rd−1,2. The result is a hyperboloid satisfying the
constraint4:

−X2
0 +X2

1 + · · ·+X2
d−1 −X2

d = −L2. (1.2.1)

The group SO(d − 1, 2) is isomorphic to the conformal group in (d − 2, 1) dimensions. It
is also common within the correspondence to work in the Poincaré patch of AdS. In that
case, rather than asymptotically having a sphere, one has a plane and the dual quantum
field theory lives in Rd−2,1. In such case the metric of AdS can be written as

ds2 = − r
2

L2
dt2 +

L2

r2
dr2 +

r2

L2
d~x2. (1.2.2)

The conformal metric at the boundary is then that of Rd−2,1, and we have identified the
isometries of the CFT and those of the normal directions to the radial direction in AdS.
This brings us naturally to the meaning of this radial direction r.

Among the global symmetries in AdS, there is in particular a scaling symmetry whereby
one can make the transformation t→ λt and r → r/λ and ~x→ λ~x in (1.2.2) or t→ λt and
z → λz in (1.1.5) and the metric remains unchanged. This symmetry is to be compared
with the same scaling symmetry in the CFT. One can redefine xµ → λxµ with xµ = (t, ~x).
This induces a rescaling of the energy as E → E/λ. This establishes the correspondence as
a UV/IR duality. Indeed, large energies in the field theory correspond to small z distances
in the bulk, or equivalently large distances r in the bulk. This is a geometrization in the
bulk side of the renormalization group (RG) flow in the field theory . This has led to the

4In order to recover the AdS metric (1.1.2) we can use the transformation X0 = L cosh ρ cos τ and
Xd−1 = L cosh ρ sin τ ; r = sinh ρ and τ = t/L while choosing some polar transformation for the other
Xi = rxi such that the xi parametrise the sphere.
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identification

E ↔ 1/z. (1.2.3)

This is deeper than just a mere identification for it also establishes the correspondence as
a UV/IR duality. Indeed, large energies in the field theory correspond to small z distances
in the bulk, or equivalently large distances r in the bulk.

1.2.2 Field identifications

As commented around (1.1.5) one can always write the asymptotic behaviour of the metric
field in the Fefferman-Graham form (1.1.5)-(1.1.6). The independent fall-offs of the expan-
sion are g(0) and g(d−1). All the terms g(i) with i < d−1 can be determined via a Frobenius
analysis at the boundary of the equations of motion as a function of g(0) whereas the terms
with i > d− 1 by both g(0) and g(d−1).

Both g(0) and g(d−1) have a dual field theory meaning. As implicitly explained in the
discussion about the global symmetries after (1.2.1), g(0) corresponds to the induced metric
in the field theory side. From the g(d−1) term one can read off the 1-point function of the
stress energy tensor in the field theory [26, 27, 28]. In addition, in odd dimensions the
Fefferman-Graham expansion has the logarithmic term h(d−1) in (1.1.5). This term gives
the anomaly present in even dimensions in the computation of the 1-point function in the
field theory side [29].

In the bottom-up approach the minimum ingredients one considers in the bulk Lagrangian
are

S =

∫
ddx
√
g (R− 2Λ) , (1.2.4)

which is also a consistent truncation of supergravity in a top-down approach. This action
only contains gravity fields. We can also have matter fields. In this thesis we have worked
with scalar fields and gauge fields in asymptotically AdS spacetimes and with a bottom-up
approach. We have added the terms

S =

∫
ddx
√
g

(
−1

2
FµνF

µν − 2Dµφ(Dµφ)† +m|φ|2
)
, (1.2.5)

where F = dA with A being a gauge potential, Dµφ = ∇µφ − iqAµφ is the associated
gauge covariant derivative and m is the mass of the charged scalar field φ.

The scalar field has two independent fall-offs ∆± at the boundary. In the Fefferman-
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Graham expansion the asymptotic expression for the scalar field is

φ(x, z)|z→0 = z∆−
(
φ(0)(x) +O(z)

)
+ z∆+

(
φ(d−1)(x) +O(z)

)
. (1.2.6)

where x ≡ xµ refers to all coordinates except z. ∆± are given by the solutions to the
equation

∆ (∆(d− 1) + 1) = m2L2 =⇒ ∆± =
d− 1

2
±
√

(d− 1)2

4
+m2L2. (1.2.7)

Scalar fields are dual to scalar operators. We identify two particular values for the decays:
∆BF = d−1

2 and ∆∗ = d−3
2 . If ∆ ≥ ∆BF then the only normalizable decay is precisely

∆+ which is identified with the 1-point function of the dual operator (vev) and ∆− is
identified with the source. If ∆∗ < ∆ < ∆BF then both modes are normalizable and
∆+ = (d− 1)−∆−.

In general a Dirichlet boundary condition on the scalar consists in fixing the value of φ(0)(x)

whereas one would call a Neumann boundary condition fixing φ(d−1)(x). Both Dirichlet
and Neumann boundary conditions on the scalar field imply no flux of energy across the
timelike boundary [30].

There are two particular bounds on the mass of the scalar field that have an important im-
pact on the discussion of the asymptotic behaviour. These are the Breitenlohner-Freedman
bound m2

BF = −d−1
2L2 [31, 32] and the unitary bound m2

∗ = 1
L2 + m2

BF . Consequently we
distinguish the following three different cases:

• m2
∗ < m2: Normalisability requires we set φ(0)(x) = 0. This will be the case in all

AdS discussions in Part II.

• m2
BF < m2 ≤ m2

∗: Both decays give normalisable solutions. Both Dirichlet and
Neumann boundary conditions as well as mixed boundary conditions give normalis-
able solutions which are related to multitrace deformations of the CFT [33, 34]. The
particular case of Dirichlet boundary condition is known as canonical quantisation
whereas Neumann boundary conditions as alternate quantisation. We will use masses
in this region in Chapter 9.

• m2 < m2
BF : Masses in this region cannot exist in a well-defined quantum field theory

in AdS as the Euclidean on-shell action would not be finite5.

Finally, in the action (1.2.5) we also have a gauge field. We can also write an expansion of
5The case m2 = m2

BF has a double root and a the asymptotic expansion has logarithms. This case is
not considered in this thesis. It was studied in [35, 36].
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the field near the boundary as

Aµ|z→0 = A(0),µ + · · ·+A(d−3),µz
d−3 + zd−3a(d−3) log(z2) + . . . (1.2.8)

with no Az component. In the gauge/gravity correspondence, gauge fields in the bulk
give rise to global symmetries in the boundary field theory. In the particular cases we
have considered, the gauge field in the bulk is a U(1) gauge field leading to a global U(1)

symmetry in the boundary. Fields, such as the scalar field, that are charged under the
local U(1) in the bulk are charged under the global symmetry in the QFT side. The term
A(d−3) gives the 1-point function of the current of the global symmetry whereas the leading
term of the expansion (1.2.8), A(0) corresponds to a source for the current. Throughout
the thesis we have worked in spherical symmetry and we have taken a gauge for the gauge
field such that Aµdxµ = Atdt. In this case the expansion (1.2.8) becomes

At|z→0 = µ+ · · ·+ Jtz
d−3 + . . . (1.2.9)

where µ is the chemical potential and Jt the electric flux which is proportional to the
electric charge, and the log terms appear as in the metric analysis.

Until now we have analysed the asymptotic behaviour of the fields that will be treated in
this thesis (1.2.4)-(1.2.5) and their corresponding dual interpretation. The typical equa-
tions of motion obtained from the action are second order differential equations (see (3.0.6)
and (3.0.7)). Consequently, boundary conditions at the conformal boundary are not enough
to uniquely solve the equations of motion. Additionally, one has to include some boundary
conditions in the interior of the spacetime, also referred to as the IR. In the interior region
of the spacetime one always requires regularity of the fields.

When in the interior region one has a horizon one may specify different regularity bound-
ary conditions. In Lorentzian time in QFT, one may have retarded, advanced and other
types of correlators and this is explicitly seen by the insersion of the iε term in the corre-
lators. It was first postulated in [37] that regularity at the horizon in ingoing Eddington-
Finkelstein coordinates for matter fields will correspond to retarded Green’s functions in
the field theory. However a systematic holographic prescription to deal with the iε in-
sertion in holography was given in [38, 39]. It computes real-time holography, inspired
by the Schwinger-Keldysh formalism in quantum field theory, by patching Euclidean and
Lorentzian asymptotically AdS spacetimes corresponding to imaginary time and real time
in the Schwinger-Keldysh formalism, respectively [40]. In addition, it was shown in [41]
for the case of scalar fields, that using this real-time holographic prescription, the study
of retarded Green’s functions actually corresponds to regularity at the horizon in ingoing
Eddington-Finkelstein coordinates. This is the approach we will follow in Chapter 4 when
we compute quasinormal modes of asymptotically AdS Reissner-Nordström black holes.
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Thus the bulk partition function in (1.0.2) will be a functional of the sources. In the large
N limit and large ’t Hooft coupling, the partition function will become

Zstring[g(0), φ(0), A(0), . . . ] ≈ e−S
SUGRA
on−shell[g(0),φ(0),A(0),... ] (1.2.10)

and we will use Φ(0) to refer to g(0), φ(0), A(0), . . . , the boundary conditions on the field.
The partition function of the field theory depends on the sources and operators

ZCFT = eW [f0,O], (1.2.11)

where W is the generating function of connected n-point diagrams. f0 refers generically
to sources coupled to operators O.

In order to compute n-point functions one subtracts from the action the term
∫

dd−1xf0O.
Then, W = S −

∫
dd−1xf0O, and taking functional derivatives with respect to f0 then

setting f0 = 0, gives the n-point functions:

〈O1 . . .On〉 = (−1)n+1 δnW

δf0(x1) . . . δf0(xn)

∣∣∣
f0=0

(1.2.12)

Thus the correspondence establishes that to compute n-point correlation functions in the
field theory, one can use the supergravity on-shell action since:

SSUGRAon−shell[Φ(0)] ≈ −W [O]. (1.2.13)

Hence we have that

〈O1 . . .On〉 = (−1)n+1 δnSSUGRAon−shell
δΦ0(x1) . . . δΦ0(xn)

∣∣∣
Φ0=0

. (1.2.14)

1.2.3 Holographic renormalization

The previous equation (1.2.13) is a bare equality as both sides suffer from infinite diver-
gences. The field theory typically suffers from UV type divergences whereas the gravity
theory from IR divergences related to the infinite volume of AdS. This is not a striking fact
since as we saw in (1.2.3) the gauge/gravity duality is a UV/IR duality. To covariantly
deal with the IR divergences of the gravity side the method of holographic renormalization
was developed in [27, 28, 42, 43, 24, 44].

The procedure consists in the following parts [24]:
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• Asymptotic solution of the fields which has already been sketched previously in this
section (in general using Fefferman-Graham gauge).

• Regularization of the action. One introduces a cutoff ε > 0 and restricts the integra-
tion of the radial coordinate to z ≥ ε.

• Identification of ε divergent terms in the on-shell action that determine the countert-
erms.

• Inversion of the asymptotic series of the fields to express boundary counterterms as
a function of bulk fields.

• Renormalized action by adding the regularized and counterterm actions and taking
the limit ε→ 0, which is finite.

In this thesis this procedure has been used to compute the 1-point function of the stress
energy tensor from which one can read off the energy of the bulk solutions. Closed expres-
sions in terms of the asymptotic expansions of the fields were given in [27, 24] for Dirichlet
boundary conditions and for scalar and metric fields.
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CHAPTER 2

Black holes and instabilities

In section 1.1 we saw that in asymptotically AdS spacetimes the presence of the timelike
boundary has deep implications for the phenomenology of stationary solutions to Einstein’s
equations. Indeed, whereas different forms of uniqueness and no-hair theorems [45, 46, 47]
vastly restrict the possible types of solutions to Einstein-Maxwell theory in 4-dimensional
asymptotically flat spacetimes and their instabilities [48, 49, 50], in asymptotically AdS
spacetimes there exist more known solutions with matter fields floating outside the horizon.
The easiest way of searching for new solutions is to study stability of already known black
hole solutions. In this thesis we will often use this approach so in this section we review
some known facts on instabilities and associated hairy black holes.

In a linear mode study of a black hole one may encounter zero-modes that connect stable
with unstable modes. These zero-modes have vanishing frequency 1. This implies that both
the future and past horizon are regular and hence a new solution may branch off. Early
examples of asymptotically AdS black holes with scalar hair that branch-off from a zero-
mode are the supercondutor black holes of [18, 19] and the superradiant hairy black holes
of [51, 52, 53]. A linear mode analysis of black holes within the Kerr-Newman-AdS family
has led to the identification of two different mechanisms that lead to the appearance of
unstable modes: superradiance [54, 55] and near-horizon condensation [56]. We will review
them in the following.

1This statement is gauge-dependent and will be made clearer later in the section

17
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The new hairy solutions found have had an important impact within the gauge/gravity
community giving rise to the study of strongly coupled condensed matter systems using
holographic methods [18] coined AdS/CMT. As discussed in the previous section the aim is
to obtain general properties of strongly coupled field theories usually following a bottom-up
approach with only the minimal set of matter fields that contain the necessary ingredients
to study the desired physics.

Going beyond the applications to the gauge gravity correspondence, AdS spacetime intro-
duces an infinite potential on the matter fields that can reflect them back to the interior.
One can thus use intuition from AdS to infer properties of systems in asymptotically flat
spacetimes that also have a similar potential wall. This is the case of enclosing a scalar
field inside a box in an asymptotically flat spacetime as was first envisaged by Press and
Teukolsky [57], or the effect of the mass or other types of interactions for scalar fields
[58, 59, 60].

Finally, unlike Minkowski and de Sitter spacetimes for which nonlinear stability has been
established [61, 62], AdS spacetimes with reflecting boundary conditions have been found
to allow for an arbitrary small fluctuation to lead to the formation of black holes [63]. A
first numerical simulation was performed by Bizon and Rostworowski [64]. We will review
this nonlinear instability and some of its properties in section 2.3, and some new results
related to it in Part III.

In this Chapter we discuss linear instabilites: superradiance in section 2.1 and the near-
horizon condensation in section 2.2; as well as the nonlinear instability in section 2.3. We
discuss about hairy black holes that are the endpoint of the instabilities in section 2.4.

2.1 Superradiance

Superradiance is the amplification of waves during the scattering process with an absorbing
object [30]. In the case of a rotating object it was shown by Zel’dovich [65] that for a
monochromatic wave of frequency ω, the condition for superradiance is 0 < ω < mϕΩ

with mϕ the azimuthal number and Ω the angular velocity of the object. A Kerr black
hole is effectively a rotating perfectly absorbing object, and as such it was shown to induce
superradiance on bosonic waves as long as the condition

0 < ω < mϕΩH (2.1.1)

is satisfied [66, 67], with ΩH the angular velocity at the horizon radius. In the case of
black holes, the existence of an ergoregion is a crucial point for a superradiant scattering.
An ergoregion is the region outside the event horizon and inside the ergosurface where
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negative energy states with respect to an observer at infinity can exist. Consider the
time translation Killing vector kt which is the unique Killing vector that approaches a unit
timelike vector at spatial infinity. Consider also the azimuthal Killing vector kφ. Any linear
combination of the two Killing vectors is also a Killing vector, hence kt and kφ are the two
generators of Killing vectors of axisymmetric black hole spacetimes. The ergosurface is an
infinite redshift surface defined by the locus where gabkat kbt = 0. Outside the ergosruface
gabk

a
t k

b
t < 0 and in the ergoregion gabkat kbt > 0 . An ergosurface always exists in a smooth

stationary axisymmetric black hole spacetime. This can be shown by continuity: at the
horizon of the black hole, r+, the following condition is satisfied

gab
(
kat + ΩHk

a
φ

) (
kbt + ΩHk

b
φ

)
= 0. (2.1.2)

Since te horizon is a null 3-surface that is invariant, this also gives a definition of ΩH . Thus
at the horizon we have that gabkat kbt ≥ 0. Asymptotically one has gabkat kbt = −1. Thus
continuity implies the existence of a surface where gtt = 0.

The existence of a superradiant scattering can be inferred from black hole thermodynamics.
A Kerr black hole with angular momentum J , mass M and angular velocity ΩH obeys the
first law of black hole mechanics

dM = THdS + ΩHdJ (2.1.3)

where TH = κ
2π ≥ 0 is the temperature at the horizon (κ is the surface gravity) and

S = AH
4 is the entropy which is a quarter of the horizon area. The second law of black hole

mechanics establishes that in classical processes, and with matter obeying the null energy
condition, the area of the horizon can only increase thus dS ≥ 0. Hence one has that

THdS =
dM

ω
(ω −mϕΩH) ≥ 0, (2.1.4)

where we have used dJ
dM =

mϕ
ω for a bosonic wave in a stationary axisymmetric spacetime.

We see that when the condition for superradiance (2.1.1) is satisfied, necessarily dM ≤ 0

and the black hole loses energy. Conservation of energy implies that the reflected wave is
amplified −dM ≥ 0.

In the case of Einstein-Maxwell theory, for charged static black holes a similar effect occurs
when the bosonic wave being scattered is also charged. In this case the first law is

dM = THdS + µdQ (2.1.5)

with µ the electrostatic potential and Q the charge of the black hole. Equation (2.1.4)
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becomes for charged black holes 2

THdS =
dM

ω
(ω − qµ) ≥ 0, (2.1.6)

where we used dQ
dM = q

ω for a bosonic field with charge q. The condition for superradiance
in the charged case is

Reω < qµ. (2.1.7)

When the system wave-black hole is confined in a spacetime that has a timelike boundary
with reflecting boundary conditions the process can occur repeatedly leading to an insta-
bility. This is the case in an asymptotic AdS black hole with specified boundary metric
[68, 69, 55, 70, 30] that in the asymptotically AdS cases treated in this thesis will be the
static Einstein Universe

ds2|bdry = −dt2 + dΩ2
d−2. (2.1.8)

The timelike boundary of AdS with reflecting boundary onditions reflects back the scattered
bosonic wave and the energy extraction process occurs repeatedly leading to an instability.
It is also the case when confining the system in a box in an asymptotically flat spacetime.
This system was first envisaged for a rotating black hole by Press and Teukolsky and was
coined black hole bomb [57]. A further case is provided by massive fields, where the mass
acts as a confining potential (although of finite height) as initially proposed in [58, 59].

Explicit mode computations of the onset of the instability as well as numerical computa-
tions of the frequencies are done in Chapter 4 for RN black holes both in asymptotically
AdS and asymptotically flat backgrounds with a box.

2.2 Near-horizon condensation

In 2008, Gubser [56] showed the existence of a new mechanism that can trigger a linear
instability in asymptotically AdS spacetimes involving near extremal black holes and scalar
fields. This instability has been coined the near-horizon scalar condensation instability
and has been a main focus of research in the AdS/CFT community as an application
of this correspondence to condensed matter. As reviewed in previous section 1.2.2, in
asymptotically AdS spacetimes scalar fields can be stable whilst having a negative mass
[31]. There is indeed a bound on how negative this mass can be to still have a unitary

2Note that we can make, as we will typically do in this thesis, the gauge choice A(r+) = 0 where A is
the electromagnetic gauge vector. In this case the criterion for instability reads instead Re(ω) < 0.
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theory [71]: it is the Breitenlöhner Freedman (BF) bound that establishes that theories in
asymptotically AdS spacetimes with scalar fields with masses below

m2
BFL

2 = −(d− 1)2

4
(2.2.1)

do not have positive definite Euclidean action. The key heuristic observation that led to
the discovery of the instability is the fact that extremal black holes develop a near horizon
structure which is of the form of an AdS2 ×M spacetime, with M a manifold that is
usually S2 for static global AdS spacetimes or R2 in the Poincaré patch. AdS2 spacetimes
have a bigger BF bound than higher dimensional AdS spacetimes. Hence while a scalar
field can be stable in the UV (asymptotic AdS boundary) as it has a mass above the BF
bound of the d-dimensional spacetime, it may be unstable in the IR (near the horizon) if
the effective mass of the system as seen by a near horizon AdS2 oberver is below its BF
bound m2L2 < −1/4.

In fact, for charged scalar fields, masses above the AdS2 bound can still lead to instabilities.
In this case, it is the charge, coupling the scalar field to a U(1) gauge field, that induces an
effective mass which is below the AdS2 BF bound. This is the case that will be encountered
in this thesis. Whereas in discussions about the near horizon instability in sections 4.2.4
and 4.3.3 we have kept a generic mass m for the scalar field, the specific examples have
considered massless scalar fields, thus they lie above the AdS2 BF bound.

The above arguments suggesting the existence of a near horizon instability are not restricted
to the original planar RN BH considered originally by Gubser. Actually, such a near horizon
instability is present for any black hole system with asymptotically reflecting boundary
conditions that has an extremal configuration (T = 0) whose near horizon is of the form
AdS2×M [19, 72, 73] 3. It follows that such a near horizon instability should also be present
in the original black hole bomb of Press and Teukolsky although it was not discussed in the
original study [57] (only the superradiant instability was discussed). In section 4.3.3 we
will confirm that these expectations are correct: asymptotically flat RN BHs with a cavity
have the near horizon instability in addition to the superradiant one. In particular we will
compute unstable modes of the system that show that the AdS2 BF bound analysis above
yields quantitative bounds that are sharp and agree with our exact numerical results.

Both superradiance and the near horizon instability are linear mode instabilities, hence
they are in general intimately entangled. However, consider L either the radius of the
box in the black hole bomb case or the radius of AdS. An important observation is that
whereas a perturbative estimate of the superradiant frequencies can be performed for small
black holes (r+ � L), the near-horizon bound is enhanced for large black holes (r+ � L)

3The Kerr geometry is not of this type but rather a fibration over AdS2. We will not deal with this
case in this thesis but the conclusions are similar as shown in [72].
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and suppressed for small ones. This property is the one that best illustrates the different
physical nature of the two instabilities. In this sense both constructions allow for analytic
estimates in very differentiated regions of parameter space. This is best seen, in the case
of the black hole bomb, in figure 4.3.2 and in figure 4.2.1 for the AdS4 case.

2.3 Nonlinear instability

The non-globally hyperbolic structure of AdS is the key feature when determining its
stability. Studying stability properties of AdS is always intrinsically related to the boundary
conditions one imposes at timelike infinity. The most widely used boundary conditions for
asymptotically global AdS spacetimes are motivated by holography and we have already
introduced them in (1.1.4), (1.1.6) and (2.1.8). These boundary conditions have zero flux
hence they prevent fields to escape from the spacetime, but rather confine them inside.
This property will ultimately allow global AdS to be unstable unlike Minkowski and de
Sitter where nonlinear stability has been proved [62, 61]. Howevere, arguments suggesting
that global AdS should be nonlinearly unstable were presented in [63]. In 2011 Bizon
and Rostworowski published a numerical study that gives strong evidence that global
AdS is indeed nonlinearly unstable [64]. They showed through a numerical evolution that
initial data consisting of a Gaussian distributed scalar field would always form a black
hole regardless of the inital energy. In addition they showed how the time for black hole
formation was related with break down of perturbation theory.

The work in [64] restricts to the spherically symmetric sector. Thus it could be reasonable
to expect that the associated nonlinear instability was a fine-tuned process restricted to
spherically symmetric evolutions. More generically, once we allowed spherical symmetry to
be broken, the intuition would suggest that the instability might halt: centrifugal effects
could balance the gravitational collapse into a black hole. However, soon after [64] it was
shown that this naive intuition is not correct: the nonlinear instability is also present
for gravitational perturbations which necessarily break spherical symmetry [74]. Thus
nonlinear instability is expected to be present for general bosonic fields. A key ingredient
for the appearance of the nonlinear instability is that the normal mode frequencies of the
spacetime are commensurable. This occurs when given the spectrum of frequencies {ω}n≥0,
there exist frequencies ωji with i = 1, 2, 3 such that the frequency

ωJ = ωj1 + ωj2 − ωj3 (2.3.1)

also belongs to the spectrum.

Even though there is substantial numerical evidence (as well as perturbative results) that
support that AdS is nonlinearly unstable, there does not exist, up to date, a rigorous
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mathematical proof. Important progress was done, though, in this direction with the proof
of nonlinear instability in the simpler Einstein-Vlasov system [75, 76, 77].

Despite all the evidence in favour of AdS being nonlinearly unstable, there are sets of initial
data that do not lead to black hole formation [78, 79, 80, 81, 82, 83, 84, 85, 86, 87]. These
sets of initial data leading to stable non-collapsing states are said to lie within the islands
of stability [78].

It is by now unclear the frontier between collapsing and non-collapsing initial data, but
evidence shows that both are of non-null measure in the set of initial data, in the sense
that parametrising initial data by ε there is an interval ε ∈ [0, δ] with δ > 0, for which one
can have non-collapsing initial data [87]. A useful perturbative method to study islands of
stability is the two-time formalism (TTF). It was introduced and developed in [83, 88, 89,
90]. The main idea is to introduce a new slow-time dependence τ = ε2t and allow functions
to depend both in t and τ as well as spatial coordinates. This allows for a resummation of
the secular terms that would otherwise signal the break down of perturbation theory. This
type of analysis is known in the mathematical numerical literature as multi-scale methods
in time or homogeneisation in space dimensions.

An example of non-collapsing initial data is the one-mode initial data. In that case the
resummation procedure of perturbation theory outlined in section 9.3 is enough to ensure
that perturbation theory can be applied at any order leading to the constructon of a stable
non-collapsing solution. These solutions are called oscillons for real-valued initial data
and are periodic AAdS solutions. One can also have complex-valued solutions which lead
to boson stars that are constructed in this thesis and are related to superradiance (see
5.4). From the TTF and the numerical studies [83, 88, 89, 90] it is seen that initial data
leading to periodic stable solutions are non-collapsing. Small deviations seem to also be
non-collapsing as there is no transmission to higher modes, but rather the evolution of the
system gets restricted to the first modes in a mode expansion of the solution [85].

Another way of studying islands of stability aside from numerical time simulations and the
TTF, consists in finding numerically, solutions to the equations of motion. This is the path
followed in [87] with the objective of charting the islands of stability. It is also the path
we follow in Chapter 9 where we will vary the boundary conditions of the scalar field at
the boundary of AdS in order to study the dependence of the nonlinear instability on the
commensurability of the frequency spectrum. Indeed, there seems to be enough evidence
suggesting that two-mode-equal-amplitude initial data always collapses to a black hole4.
Thus we will study scalar field asymptotically AdS double-oscillator solutions with bound-
ary conditions that depend on a parameter κ. We will study these solutions as a function
of the value of κ starting from Dirichlet boundary conditions and flowing to Neumann

4See Chapter 9 for details on the precise meaning of two-mode-equal-amplitude.
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boundary conditions. Unsurprisingly, such double-oscillators do not exist for Dirichlet
boundary conditions as this case has been deeply studied in the literature and has been
found to always lead to black hole formation. As the parameter shifts away from Dirichlet
boundary conditions, the region of existence of double-oscillators expands. Interestingly,
we will encounter that the behaviour in the Neumann case (which also has a commensurate
frequency spectrum) is different from the Dirichlet case and thus unexpected.

The construction of double-oscillators to chart islands of stability in asymptotically AdS
spacetime worked as an inspiration to also find double-oscillator solutions in asymptotically
flat spacetime. Indeed, in asymptotically flat spacetime there exist (as in AdS) boson stars
that are compact self-gravitating objects made of a massive complex scalar field. They
were first introduced by Kaub and also Ruffini and Bonazzola in the late 1960’s [91, 92]
(see [93] for a review.). We propose in Chapter 10 and in the publication produced [4]
that boson stars are a particular single-oscillating solution among an infinite parameter
family of multi-oscillating solutions. These are solutions that oscillate in a number of non-
commensurable frequencies and we explicitly compute the double-oscillator family. These
solutions can be found at the perturbative level from the normal modes of boson stars.
Thus double-oscillators are solutions that also expand away from the perturbative regime
to fully nonlinear solutions. We discuss these solutions and some of their properties in
Chapter 10.

2.4 Hairy black holes

The existence of the linear instabilities of sections 2.1 and 2.2 naturally raises the question
of the end-point of those instabilities. The answer depends crucially on the system one is
considering.

Indeed, for the rotating case, finding the properties and endpoint of the instability re-
quires a non-trivial (3+1)-dimensional numerical simulation not yet available. Although
important progress was done in an impressive recent time evolution [94]. Valuable insights
on the possible evolution can be obtained without solving the actual initial value prob-
lem. Indeed, it was found that the zero mode (i.e. onset) of the instability signals the
existence of a new branch of black hole solutions with scalar hair [95, 96, 53, 97] or even
gravitational hair [98]. Per se the existence of these hairy black holes is interesting for two
main reasons: 1) it immediately rules out any attempts of proving no-hair theorems (under
non-restrictive assumptions), and 2) these hairy black holes have a single Killing vector
field that is also the horizon generator, thus showing that the assumptions of Hawking’s
rigidity theorem can be evaded [53, 98, 50]. Of relevance for the initial value problem,
it turns out that, given a mass and angular momentum, these hairy black holes always
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have higher entropy than the Kerr-AdS black hole. This property and the fact that they
are connected to the onset of superradiance suggest that these black holes could be the
endpoint of rotational superradiance. However, this is not the case because all of those
constructed to date have ΩHL > 1 (where L is the AdS radius) and are thus still superradi-
antly unstable [53, 98, 99], this time to superradiant modes with higher azimuthal number
m. This, together with other observations that can be found in the original articles, led the
authors of [53, 98, 100] to conjecture that the superradiant instability might evolve into
one of two possibilities: 1) the endpoint is a singular solution reached in finite time which
implies cosmic censorship violation, or 2) the time evolution develops higher and higher
mϕ structure (with increasing entropy) and the system never settles down. In the latter
case quantum gravity effects would become relevant at some point and cosmic censorship
would also be violated, at least in spirit. In either case, we would have an explicit example
of cosmic censorship violation in four dimensions and in a system that can be formed by
gravitational collapse. This would show that the violation found in [101, 102, 103, 104, 105]
can also occur in a four-dimensional geometry. The time evolution [94] seems to be con-
sistent with this conjectured scenario, yet it needs to be extended to even later times for
stronger confirmation.

In the case of charged superradiance the problem simplifies considerably as one can have
spherical symmetry and thus the numerical evolution simulation is only (1+1) dimensional
[106, 107]. This can be the charged partner of Press-Teukolsky’s system − a Reissner-
Nordström black hole placed inside a box with a complex scalar field [108, 109, 110,
111, 112, 113, 107, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124]− or a Reissner-
Nordström black hole in global AdS [125, 51, 126, 127, 128]. These charged systems are
interesting on their own and because they can provide insights for the endpoint of the ro-
tating superradiant instability.5 In such cases, the endpoint of the superradiant instability
is either known or we have already good hints of what it might be. Indeed, in global AdS,
the time simulations of [106, 131] confirmed that the endpoint of charged superradiance is
one of the hairy black holes of [51, 126, 127, 1]. Similarly, for charged superradiance on
Reissner-Nordström black holes with a mirror, recent time simulations indicate that the
endpoint is again a charged hairy black hole of Einstein-Maxwell theory [107, 117, 118].

For a given energy and charge, the hairy solutions of [51, 125, 126, 128] have higher entropy
than the AdS5 Reissner-Nordström black hole. Therefore, unless the phase diagram of the
theory contains a solution with even higher entropy, these hairy black holes should be the
endpoint of charged superradiance. Unlike the rotating case, this is a robust statement

5In spite of the close connection between the rotating and static-charged superradiant systems there
is also a fundamental distinction. In the latter case, q is fixed once we choose the theory and thus the
associated hairy black holes are not further unstable to superradiance (except if we introduce a second
scalar field with charge q2). On the other hand, the hairy black holes that emerge from the onset of the
rotating superradiant instability have a particular m and are still unstable to superradiant modes with
higher m [129] with timescales that can be extremely large [130].
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since q is fixed once we choose the theory and thus the hairy black holes are not unstable to
superradiance. This is where the charged superradiant system becomes a less interesting
toy-model to discuss the endpoint of rotating superradiance.

Hairy black holes do not only appear as the endpoint of linear instabilities of black holes
arising from a zero mode. Horizonless initial data may also evolve into the formation of
hairy black holes. The nonlinear instability of the previous section 2.3 provides such an ex-
ample: perturbing AdS with a neutral scalar field results in the formation of a Schwarzschild
black hole. However a charged scalar field perturbation with initial data such that the
would-be Reissner-Nordström black hole is unstable should evolve to a stable configura-
tion that has higher entropy, thus it should naturally evolve to a hairy black hole [131].
Similarly initial data in a non-spherically symmetric configuration should evolve into black
resonators and follow the same fate as the superradiant instability in the rotating case [98].

In Part II, in addition to determining the linear instabilities of Reissner-Nordström black
holes, we will construct static charged hairy black holes that are the endpoint of linear and
nonlinear instabilities discussed in previous sections. We will construct these black holes
both in the AdS4 and in the asymptotically flat with a box cases.

2.5 Outline of this thesis

This thesis is divided into two main Parts: Part II dedicated to the study of black hole
instabilities and hairy black holes, and Part III dedicated to multi-oscillator solutions.

Part II is divided into five Chapters. In the first, Chapter 3 we introduce the theory and
the action that will be studied throughout the Part. We describe the symmetries and
give the equations of motion that will be solved in the following Chapters. We study
the linear instabilities of charged black holes in AdS4 and in flat spacetime with a box in
Chapter 4. We give analytical bounds corresponding to superradiance and the near-horizon
condensation instability for both cases. We give numerical onset curves for the instabilities
in the AdS4 case in section 4.2.5. For the case of flat spacetime with a box we provide a
more detailed numerical study of the instabilities and we describe onset curves as well as
frequency curves in section 4.3.4. At the end of the Chapter we describe a non-interacting
model for the construction of hairy black holes that in the following Chapters we confirm
gives the correct leading order thermodynamic quantities.

In the two following Chapters 5 and 6 we solve the nonlinear equations of motion presented
in the setup Chapter 3 for asymptotically AdS4 and asymptotically flat with a box space-
times respectively. In both cases we use a perturbative expansion as well as a matched
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asymptotic expansion in order to solve the equations. In addition, for the boxed case we
use Israel junction conditions to relate the region inside the box with the region outside.
After solving the equations order by order in a perturbative expansion we present the final
thermodynamic quantities in equations (5.5.6) for AdS4 and (6.6.8) for the boxed case. Fi-
nally we study the phase diagram of both cases in the microcanonical ensemble in sections
5.6.2 and 6.7.2 respectively. In the boxed case we also give the Israel stress energy tensor
of the box.

Finally, Chapter 7, the last of this Part, gives a summary of the results obained.

Part III is divided into four Chapters. As in the previous Part, in the first Chapter 8
we introduce the theory as well as the common technical elements that will be used in
the following Chapters. In Chapter 9 we use multi-oscillators to discuss the nonlinear
instability of AdS4 to scalar field perturbations with double-trace deformation boundary
conditions. We study the region of existence of equal-amplitude double-oscillators start-
ing with Dirichlet boundary conditions. Then we introduce the double-trace deformation
resulting in Robin boundary conditions and finally arriving to Neumann boundary condi-
tions. Interestingly, we find unexpected differences between the two commensurate limits
of Dirichlet and Neumann boundary conditions. Thus to further study the multi-oscillating
solutions in the Neumann case, we perform a time evolution simulation in section 9.5.

In Chapter 10 we find multi-oscillator solutions in asymptotically flat spacetime. In partic-
ular we consider the backreactions of the perturbations of asymptotically flat spacetimes
to postulate the existence of an infinite parameter family of multi-oscillator solutions. To
show this construction we compute the family of double-oscillators that merge with the
lowest energy asymptotically flat boson star. We study some of the physical properties
of double-oscillators and in particular we make the observation that for a given energy,
double-oscillators are wider than the corresponding boson star.

Chapter 11, the last of this Part, is presents a summary and discussion of results.

This thesis also has Appendix A where we discuss some of the numerical methods that
have been used to solve the projects in the thesis.



28 Chapter 2. Black holes and instabilities



Part II

Charged superradiance and hairy
black holes

29





31

In this Part we will consider both the linear and nonlinear effects of scalar field perturba-
tions in static backgrounds. We will consider two different types of spacetimes: asymp-
totically AdS4 with cosmological constant Λ = − 3

L2 and asymptotically flat (Λ = 0) with
a box of radius L that encloses the scalar field inside it. Notice the use of L as both the
radius of the box and the characteristic inverse curvature of AdS. We will see that due
to scaling symmetries, in both cases, we can express all dimensionful quantities in units
of L. This part is organised as follows: First in Chapter 3 we will consider the general
setup that is common throughout this part. Then in Chapter 4 we will consider the linear
case of non-backreacting scalar fields and find the scalar field normal and quasinormal
mode spectrum. Finally in Chapters 5 and 6 we will consider the non-linear problems in
asymptotically AdS4 and flat respectively and construct hairy black holes.

This part is mostly contained in the three publications [1], [2] and [3] that are co-authored
with my PhD supervisor Oscar Dias.
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CHAPTER 3

General setup

We consider 4-dimensional Einstein-Maxwell gravity minimally coupled to a charged com-
plex scalar field φ with charge q. The associated action is

S =
1

16πG4

∫
d4x
√
−g
[
R− 2Λ− 1

2
FµνF

µν − 2Dµφ(Dµφ)† + 2V (|φ|)
]
, (3.0.1)

whereR is the Ricci scalar, F = dA withA being a gauge potential andDµφ = ∇µφ−iqAµφ
is the associated gauge covariant derivative and as commented before Λ is the cosmological
constant. We consider a potential V (|φ|) = m2φφ∗, with m being the mass of the scalar
field and fix Newton’s constant as G4 = 1.

We are interested in solitonic and black hole solutions of (3.0.1) that are static and spher-
ically symmetric. We can use reparametrization of the time t and radial coordinates r,
r → r̃(r) and t → t̃ = t + H(t, r) to fix the gauge to be such that the radius of a round
S2 is r and there is no cross term dtdr (this is often called the radial or Schwarzschild
gauge)1. A field ansatz that accommodates the desired symmetries is

ds2 = −f(r)dt2 + g(r)dr2 + r2dΩ2
(2), Aµdxµ = A(r)dt, φ = φ† = φ(r). (3.0.2)

where dΩ2
(2) describes the line element of a unit radius S2 (parametrized by {θ, ψ}, say or

x = cos θ).
1In this gauge, the horizon radius r+, if present, is also a gauge invariant quantity since it is proportional

to the entropy r+ =
√
S/4π.
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Once a static solution is found we can always use a U(1) gauge transformation, ϕ →
ϕ + q χ ,At → At + ∇tχ to rewrite a scalar field φ = |φ|eiϕ in a gauge where the scalar
field oscillates with a frequency ω, φ = |φ|e−iωt. However, since the energy-momentum
tensor of the scalar field only depends on φφ† and ∂φ(∂φ)†, the gravitational and Maxwell
fields are always invariant under the action of the Killing vector field ∂t. In this gauge, the
equations of motion require that A

∣∣
r+

= ω/q.

At this point we have fixed almost all the diffeomorphic and U(1) gauge freedom to simplify
our field ansatz. However, our systems still have two scaling symmetries that we can use
for further simplifications 2. The first scaling symmetry is

{t, r, θ, ψ} → {λ1t, λ1r, θ, ψ}, {f, g, A, φ} → {f, g, A, φ},

{q, L, r+} →
{
q

λ1
, λ1L, λr+

}
,

(3.0.3)

which leaves the equations of motion invariant and rescales the line element and the gauge
field 1-form as ds2 → λ2

1ds2 and Adt → λ1Adt. We use this scaling symmetry to work
with dimensionless coordinates and measure our thermodynamic quantities in units of L
(this amounts to setting L ≡ 1). The second scaling symmetry is

{t, r, θ, ψ} → {λ2t, r, θ, ψ}, {f, g, A, φ} → {λ−2
2 f, g, λ−1

2 A, φ}, {q, L, r+} → {q, L, r+}.
(3.0.4)

We use the scaling symmetry (3.0.4) to require that g approaches 1/f as r → ∞, i.e.
to fix c0 ≡ 1. This choice can also be motivated by the following observation (see e.g.
[19]). In the context of the AdS4/CFT3 duality, AdS4 black holes are dual to thermal
states on the boundary CFT. The choice g = 1

f as r → ∞ fixes the normalization of
the time coordinate with respect to the gravitational redshift normalization of the radial
coordinate to be such that the Hawking temperature of the black hole in the bulk matches
the temperature of the dual CFT on the boundary. Using both symmetries we will make
the following redefinitions:

{t, r, r+,m, q, ω, L} → {TL,RL,R+L,M/L, e/L,Ω/L, 1}. (3.0.5)

Variation of (3.0.1) yields the equations of motion for the fields f, g, A and φ:
2For planar AdS solutions there is a third scaling symmetry that allows to set the Poincaré horizon at

r = r+ ≡ 1 (see e.g. [19]). This is the reason why we can have small and large black holes in global AdS
but not in planar AdS.
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φ′′(R) +
φ′(R)

R

(
1− R2A′(R)2

2f(R)
+ g(R)(1−R2Λ)

)
+ φ(R)g(R)

(
e2A(R)2

f(R)
−M2

)
= 0,

(3.0.6a)

A′′(R) +
A′(R)

R

(
2− e2R2A(R)2φ(R)2g(R)

f(R)
−R2φ′(R)2

)
− 2e2φ(R)2g(R)A(R) = 0,

(3.0.6b)

f ′(R) +
f(R)

R

(
1− g(R)

(
1−R2Λ

)
−R2φ′(R)2

)
+
R

2

(
A′(R)2 − 2e2A(R)2φ(R)2g(R)

)
= 0,

(3.0.6c)

g′(R)− g(R)

R

(
1 +

R2A′(R)2

2f(R)
+R2φ′(R)2

)
+
g(R)2

R

(
1−R2Λ− e2R2A(R)2φ(R)2

f(R)

)
= 0.

(3.0.6d)

We can use (3.0.6c) to get an algebraic relation for g in terms of the other fields and their
first order derivatives:

g(R) =
2f(R)

(
1−R2φ′(R)2

)
+R

(
RA′(R)2 + 2f ′(R)

)
2 (e2R2A(R)2φ(R)2 + f(R) (1−R2Λ))

. (3.0.7)

This algebraic relation can be inserted into (3.0.6a), (3.0.6b) and (3.0.6d) to obtain a
coupled system of three second order ODE’s that constitue the system of independent
equations of motion of the problem we are considering in this part. Onwards, these are
the three equations of motion that we will solve to find the three fields {f,A, φ} (and thus
also g).

When we consider the linear problem we are only interested in the Klein Gordon equa-
tion which is (3.0.6a). However in the previous analysis we have considered a spherically
symmetric scalar field. The reason is that, in order to have a static spherically symmetric
geometry taking into account the scalar field backreaction on it, the scalar field itself must
also be spherically symmetric. This is no longer necessary when we only consider the linear
problem.

The electrovacuum background is time independent and axisymmetric. Therefore, we can
Fourier expand our massive scalar field perturbation along the Killing directions T and ϕ.
This introduces the adimensional frequency Ω = ωL and the azimuthal quantum number
mϕ. Moreover, in a linear mode analysis, we assume a separation ansatz for the radial and
polar angle dependence:

φ(T,R, x, ϕ) = e−iΩT eimϕϕP
mϕ
` (x)ψ(R) , (3.0.8)

where Pmϕ` (x) refers to the Legendre polynomials (` essentially gives the number of zeros
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of the eigenfunction along the polar direction). We thus obtain the following Klein Gordon
equation:

∂R
(
R2f ∂Rψ

)
+

(
R2

f
(Ω + eA)2 − `(`+ 1)

)
ψ = 0, (3.0.9)

where we have considered g(R) = f(R)−1 as justified by the scaling symmetries in (3.0.4).



CHAPTER 4

Linear mode analysis

In this Chapter we compute the frequencies of charged scalar fields in an asymptotically
flat Reissner-Nordström black hole (RN BH) background inside a confining box and in
an asymptoticallly AdS4 RN BH. The box system was first proposed for rotating black
holes by Press and Teukolsky and is known as black hole bomb [57]. Our main goal is to
perform a detailed study of the linear mode instability problem. In particular we find two
analytical expressions for the onset of instabilities in different regions of parameter space
that emerge from the superradiant instability and near horizon condensation instability.
We also compute numerically onset charges and frequencies in a wide range of parameter
space.

4.1 Summary of results

Previous literature already addressed several aspects of the linear mode stability problem
(and even its nonlinear evolution) [108, 109, 110, 111, 112, 113, 107, 114, 115, 116, 117,
118, 119, 120, 106]. The aim is to complement and complete these studies in three main
directions. First, to point out that the system is unstable to superradiance but also to
the near-horizon scalar condensation instability [56, 18, 72] (section 4.3.2). The latter
source of instability seems to have been missed in previous studies of the black hole bomb
mirror system. Essentially, this instability is present because a scalar field can violate the

37
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Breitenlöhner-Freedman [31] bound associated with the AdS2 × S2 near-horizon geometry
of the extremal RN BH configuration1. These two instabilities are typically entangled.
However, there are two limits (which we will identify) where they disentangle and expose
their different nature: in units of L, large RN BH have the near-horizon instability, while
small RN BH are unstable to superradiance.

Built on these considerations, the second main aim is to find the onset surface for instability
and key properties of it. To begin, we find the critical scalar field charge, as a function of
the horizon radius and chemical potential, above which the system is unstable. The exact
identification of this onset surface proves useful, for example, to identify good initial data
for time evolution simulations. Our results are exact and considerably sharpen (and testify)
the analytical bounds necessary for the existence of instability given in [108, 119]. RN BH
are parametrized by two parameters, e.g. the (dimensionless) horizon radius R+ and the
chemical potential µ. The extremality condition µ = µext determines a 1-parameter family
of RN BH that have zero temperature. The onset curve eonset(R+) − to be displayed in
Figs. 4.2.1 and 4.3.2− describes the minimal scalar field electric charge above which nearly-
extremal RN BH are unstable (non-extremal black holes are unstable above even higher
charges eonset(R+, µ) that are also identified). For the box case we also study exhaustively
the frequency spectrum of the instability. In particular, we show that the most unstable
modes are those described by a spherical harmonic with angular quantum number ` = 0, in
agreement with the time domain analysis of [110] (note that the frequency-domain study
of [108] just considered the ` = 1 harmonic).

The third goal is to use the properties of the linear instability problem to infer the ex-
istence and properties of hairy black holes that should bifurcate (in a phase diagram of
solutions of the theory) from the RN family at the onset of the instability (section 4.4).
Without the box, no-hair theorems forbid the existence of regular asymptotically flat soli-
tons and black holes [46, 132, 47, 133, 134, 135]. Essentially, this is because a linearized
scalar field that extends all the way up to asymptotic infinity, when back-reacted on the
gravitoelectric fields, sources terms that diverge logarithmically as the radius grows large
(see [2]). However, this no-hair theorem can be evaded if we confine the scalar field inside a
box. In these conditions it should be possible to have asymptotically flat solutions that are
regular everywhere. Then both cases (box and AdS4) should have a hairy charged soliton
(aka boson star) that is the back-reaction of a normal mode in a box. Assuming this, we
can use a simple non-interacting thermodynamic model [51, 53, 126, 30, 98] to predict the
leading order thermodynamics (in a small mass and charge expansion) of the hairy black
holes. Interestingly, the leading order expansions of RN BH in R+ are equivalent for the
box and AdS4 case, thus the same expressions apply to both cases. This thermodynamic
model assumes that the hairy black hole can be constructed by placing a small RN BH on

1This is the very same instability that ignited the holographic AdS/condensed matter correspondence
programme [56, 18, 72].
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top of the soliton of the theory, subject to the condition that they have the same chemical
potential. The soliton is just a regular horizonless solution with scalar hair that results
from the back-reaction of a scalar field normal mode. Interestingly, this thermodynamic
model does not make use of the equations of motion. Yet, it does yield the correct leading
order thermodynamics of the charged hairy black hole. This will be explicitly confirmed
in Chapters 5 and 6 where we find the charged hairy black holes solving explicitly the
equations of motion.

4.2 Asymptotically AdS4

4.2.1 AdS4 and its normal modes

The simplest asymptotically AdS solution to the equations of motion (3.0.6) is AdS4 itself.
This takes the form

f(R) = g(R)−1 = 1 +R2, A(R) = µ, φ(R) = 0. (4.2.1)

Consider a scalar field with mass m and charge q in an asymptotically AdS4 background
and its Klein Gordon (KG) equation (3.0.9). A Frobenius analysis at the asymptotic
boundary yields the two independent solutions

φ(R) ' σ

R∆−
+ · · ·+ ε

R∆+
+ · · · , with ∆± =

3

2
±
√

9

4
+m2L2 . (4.2.2)

Breitenlöhner and Freedman (BF) found that a scalar field in AdS4 is normalizable, i.e. it
has finite energy, as long as its mass obeys the AdS4 BF bound [31],

m2 ≥ m2
BF ≡ −

9

4

1

L2
. (4.2.3)

When this is the case we can have asymptotically AdS4 solutions that are stable in the
UV region. Notice that when m2L2 < −5/4 both behaviors (σ and ε) are normalisable.
This is the unitarity bound for the scalar field mass. Throughout this chapter we will
consider scalar field masses that are above the unitarity bound. It follows that only the
mode ε/r∆+ with faster fall-off is normalisable (since it has finite canonical energy) and
σ/r∆− is a non-normalisable mode [31, 136]. We thus choose the BC σ = 0. According
to the AdS/CFT dictionary, the boundary CFT is then not sourced and the scalar field
amplitude ε is proportional to the expectation value 〈O〉 of the boundary operator O that
has dimension ∆+ = 3 [71].

In the AdS4 background (4.2.1) and with the boundary condition σ = 0, the only solution
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to the KG equation is

ψ(R) =
εRΞ+−∆+

(R2 + 1)
1
2

Ξ+
2F1

[
1

2
(Ξ+ − eµ− ω) ,

1

2
(Ξ+ + eµ+ ω) ,∆+ −

1

2
;

1

1 +R2

]
, (4.2.4)

where ∆+ is defined in (4.2.2) and Ξ+ = ∆+ + `, ε is an arbitrary amplitude and 2F1 is
the hypergeometric function.

To have a regular solution at the origin, the frequency spectrum must be quantized as2

ωn = Ξ+ + 2n− eµ, (4.2.5)

where the non-negative integer n is the radial overtone that relates to the radial zeros of
ψ(R). Equations (4.2.4) and (4.2.5) give, respectively, the eigenvectors and eigenvalues of
the KG equation (3.0.9) in AdS4. Note however that we can use the U(1) gauge transfor-
mation of the system to choose the gauge potential to be such that, e.g. µ = (Ξ+ + 2n) /e

and the normal mode frequency (i.e. for a given n) vanishes, ωn = 0.

In our current study, we are interested in the case ` = 0 and if m = 0, we have that
Ξ+ = ∆+ = 3. Onwards we choose to work with the solution that has the lowest frequency
(and thus energy), namely we set n = 0. Then, (4.2.5) reads

ω0 = 3− eµ . (4.2.6)

4.2.2 AdS4 – Reissner-Nördstrom black holes

When the scalar field vanishes, global AdS4 – Reissner-Nördstrom black hole (RN-AdS4

BH) is another known solution of (3.0.6). This is a 2-parameter family of solutions, that
we can take to be the horizon radius R+ and the chemical potential µ. It is described by
ansatz (3.0.2) with

f(R) =
1

g(R)
= 1 +R2 − R+

R

[
1 +R2

+ +
µ2

2

(
1− R+

R

)]
,

A(R) = µ

[
1− R+

R

]
,

φ(R) = 0. (4.2.7)

Alternatively, we can parametrize RN-AdS4 with R+ and the temperature T in which case
the chemical potential is given by

µ =
√

2
√

1 + 3R2
+ − 4πR+T . (4.2.8)

2This follows from the Gamma function property Γ[−n] =∞ for n = 0, 1, 2, · · ·
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It follows that regular RN-AdS4 black holes exist if their chemical potential satisfies

µ ≤
√

2
√

1 + 3R2
+. (4.2.9)

When µ = 0 one recovers the AdS4-Schwarzschild solution while the upper bound of
(4.2.9) occurs for the extremal configuration (T = 0) where the entropy is finite but the
temperature vanishes.

The mass, charge, entropy and temperature expressed as a function of R+ and µ are

MRN/L =
R+

2

(
1 +

µ2

2
+R2

+

)
, QRN/L =

1

2
µR+ ,

SRN/L
2 = πR2

+, TRNL =
1

8πR+

(
2− µ2 + 6R2

+

)
. (4.2.10)

In section 4.4, we will find the leading order thermodynamics of hairy black holes assuming
that they can be described as a non-interacting mixture of a soliton and a small RN-
AdS4 BH. To complete that analysis, we will only consider the leading order (in the R+

expansion) thermodynamics. For future reference they are:

MRN/L '
R+

2

(
1 +

µ2

2

)
+O(R3

+), QRN/L =
1

2
µR+ ,

SRN/L
2 = πR2

+, TRNL '
1

8πR+

(
2− µ2

)
+O(R+). (4.2.11)

When perturbed by an infinitesimal scalar field perturbation, global RN-AdS4 BHs can
develop two types of linear instabilities that have different physical nature. One is the
near-horizon scalar condensation instability and the other is the superradiant instability.
The former is already present in planar RN-AdS4 BHs (where it was first found) while the
latter is only present in asymptotically global AdS. The zero mode of these instabilities is
closely connected to the existence of hairy black hole solutions. Therefore, in the following
we discuss the main properties of these two instabilities with some detail.

4.2.3 Superradiant instability of small black holes and matched asymp-
totic expansion method

In the present subsection we consider a massless scalar field and we set ` = 0 and show
that small RN-AdS4 BHs are unstable to the superradiant instability. For that we solve
the KG equation for a massless scalar field perturbation with charge e ≥ 3√

2
,

φ(T,R) = e−iΩTφ(R) (4.2.12)
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around RN-AdS4 in a perturbative expansion in the horizon radius R+. We will find that
the imaginary part of the perturbation frequency Ω is positive, and thus the system is
unstable when µ ≥ 3

e .

To impose smoothness of the perturbations at the horizon boundary it is convenient to
work in ingoing Eddington-Finkelstein coordinate

v = T +

∫
1

f(R)
dR. (4.2.13)

The KG equation cannot be solved analytically at each order. To circumvent this limi-
tation, we consider small black holes, R+ � 1, and use a matched asymptotic expansion
method to solve the resulting KG equation at each order in R+. Namely, we consider two
different regions: the far region, R � R+, and the near region, R � 1 which have an
overlapping region R+ � R � 1 since we are assuming R+ � 1. In the near and far
regions, certain contributions in the KG equation are sub-dominant and can be discarded.
We are left with ODEs with a source term that depends on the previous order solutions
and their derivatives which can be solved analytically. At each order, the near and far
region solutions are matched in the overlapping region. In the following we explicitly show
the method of matched asymptotic expansion which will be used throughout this Part.

Both in the far (superscript out) and in the near (superscript in) regions, we write the
perturbative expansion in R+ of φ(R) and Ω as:

φout(R) =
∑
k≥0

Rk+ φ
out
k (R), φin(R) =

∑
k≥0

Rk+ φ
in
k (R),

Ω =
∑
k≥0

Rk+ Ωk with Ω0 = 3− µe, (4.2.14)

and solve the KG equation order by order. The choice of Ω0 is justified because the
perturbation mode of RN-AdS4 with lowest frequency reduces to the lowest normal mode
of AdS (4.2.6) in the limit R+ → 0. At any order k ≥ 1 we have five parameters to
determine: two integration constants from φoutk (R), two integration constants from φink (R),
and the frequency coefficient Ωk. For our purposes, it is enough to present the results up to
order k = 2: this is the order at which the frequency acquires an imaginary contribution.

Far region analysis:

In the far region, R� R+, the KG equation for φout(R) around the RN-AdS4 BH (4.2.7)
effectively describes linearized perturbations around global AdS. Indeed at each order in
the R+ expansion it reads,

D̄µD̄µφ
out
k = Soutk

(
φoutj<k, ∂φ

out
j<k

)
, (4.2.15)
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where D̄µ = ∇̄µ − ieAµ is the gauge covariant derivative of the global AdS background
ḡ with a gauge potential A = µdt, and the RHS is a source term that depends on the
lower order fields φoutj<k and their derivatives. As justified when discussing (4.2.2), at any
expansion order, in the far region we impose the Dirichlet boundary condition:

φout
∣∣
R→∞ =

ε

R3
+O(1/R5). (4.2.16)

The KG equation (3.0.9) is a linear eigenvalue equation, this implies that given a solution
{φ(R),Ω}, the pair {Kφ(R),Ω} is also a solution with K a constant number. Equation
(4.2.16) tells us that we fix the leading behaviour of the field at the boundary to be ε.
Hence any correction of order O(R+) or higher in our expansion must only contribute in
the behaviour of the scalar field at the boundary as O(1/R5).

At leading order the far region reduces to the AdS case:

φout0 (R) =
3α0R+ α̃0

(
R4 + 6R2 − 3

)
3R (R2 + 1)3/2

e−i(µe−3) arctanR. (4.2.17)

The boundary condition (4.2.16) requires we set α̃0 = 0 and α0 ≡ 1. (4.2.16) and (4.2.17)
fix the amplitude of the scalar field to be ε = −ie−

1
2
iπeµ.

For higher orders, k ≥ 1, the boundary condition (4.2.16) always fixes the two integration
constants αk and α̃k but leaves the frequency coefficient Ωk undetermined. It is fixed by
matching the far region with the near region. The final far region solutions φoutk for k =

0, 1, 2, after imposing the boundary condition (4.2.16) and fixing the frequency coefficients,
are listed in equation (A1) of Appendix A in [1].

Near region analysis:

In the near region R � 1, it is convenient to work with the rescaled variable y = R
R+

.
The reason for this rescaling will become fully clear in the discussion associated to (5.5.3)
and (5.5.4): In the near region the perturbation problem simplifies since, for R+ � 1, the
electric field is weak and the perturbation system reduces to a small perturbation around
the neutral solution. After this rescaling, the KG equation at each order for φin(y) around
RN-AdS4 BH reads

D̄µD̄µφ
in
k = Sink

(
φinj<k, ∂φ

in
j<k

)
, (4.2.18)

where D̄µ is the leading order part of the gauge covariant derivative of the rescaled coordi-
nate in the RN-AdS4 BH3, and the RHS is a source term that depends on the lower order
fields φinj<k and their derivatives. At each order, we solve (4.2.18) subject to the boundary
condition that the solution is regular at the horizon in Eddington-Finkelstein coordinates.

3In (4.2.18), the gauge covariant derivatives D̄µ are covariant derivatives ∇̄µ, since the electric field
makes no contribution at this leading order.
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At leading order the near region solution is

φin0 (y) = β0 −
β̃0

µ2 − 2

[
log(y − 1)− log

(
2y − µ2

)]
, (4.2.19)

and smoothness requires that we set β̃0 = 0.

At any order k ≥ 1, the boundary condition at the horizon always fixes one of the inte-
gration constants, say β̃k, but the other is left undetermined until we do the matching of
the near and far regions. The final near region solutions φink for k = 0, 1, 2, after imposing
the boundary condition and fixing the integration constants, are listed in equation (A2) of
Appendix A in [1].

Matching the near and far region solutions:

At this stage we have two undetermined parameters at each order k ≥ 1: the near region
integration constant βk and the frequency coefficient Ωk. They are fixed by requiring that
the large radius expansion of the near solution φin matches the small radius expansion
of the far solution φout. In these expansions we keep only terms that will not receive
contributions from higher orders.

Let us illustrate this matching at leading order, k = 0. The small R limit of φout0 and the
large R limit of φin0 yield

φout0 (R) ' 1 +O(R),

φin0 (R) = β0. (4.2.20)

Matching requires that we set β0 = 1. A similar matching procedure can be done for higher
orders.

After doing this procedure for the fields up to order R2
+, we find that the frequency coef-

ficients in (4.2.14) are:

Ω0 =3− µe ,

Ω1 =−
4
(
3µ2 − 4µe+ 6

)
3π

,

Ω2 = i (µe− 3)
16

3π
+

1

96

[
µ

(
− 264

(
µ2 + 2

)
e+ 9µ

(
3µ2 + 52

)
+ 224µe2

)
+ 108

]
− 4

27π2

(
45µ2 − 52µe+ 90

) (
3µ2 − 4µe+ 6

)
. (4.2.21)

The property in (4.2.21) to be highlighted is that at order k = 2 the frequency acquires
an imaginary part proportional to µe− 3. This is negative whenever µ ≤ 3

e , which signals
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exponential damping, but it becomes positive for µ > 3
e . The latter case describes the

superradiant instability of RN-AdS4 BHs. Further properties of RN-AdS4 superradiant
modes beyond the perturbative analysis done here can be found in [137, 138].

The above analysis shows that global RN-AdS4 BHs are unstable to superradiance in the
small horizon radius regime, R+ � 1. We can also infer the onset of the instability. Indeed,
in the gauge the computation has been performed, the onset is at Re(Ω) = Im(Ω) = 0.
We conclude that superradiance will occur for charges obeying

e ≥ 3

µ
+

4
(
2− µ2

)
R+

πµ
+

(
µ2 − 2

) (
256− 640µ2 + 9π2

(
µ2 − 10

))
R2

+

32π2µ
+O(R3

+). (4.2.22)

4.2.4 Near horizon scalar condensation instability of large black holes

In section 4.2.1 we considered the asymptotic behaviour of the scalar field, to obtain the
BF bound for the mass of the scalar field. But this analysis is blind to the behaviour of the
scalar field in the interior of the spacetime. In particular, the properties of the scalar field in
the IR region of a particular spacetime might drive the system unstable. This is indeed the
case: as first found in the context of holographic superconductors [56, 18, 19], planar AdS
black holes can be unstable to a near horizon scalar condensation mechanism [56]. The zero
mode of this instability signals a second order phase transition to planar hairy black holes
that are dual to holographic superconductors [18, 19]. It was later understood that the near
horizon scalar condensation instability is quite universal and present for any asymptotically
AdS background that has a black hole with an extremal (zero temperature) configuration
[19, 72] (this includes even some systems with neutral black holes and uncharged scalar
fields)4. The criterion for this instability is the following. Start with a scalar field whose
mass obeys the UV BF bound (4.2.3). When it violates the AdS2 BF bound

m2
BF2

L2 ≡ −1

4
, (4.2.23)

the system, although asymptotically stable, is unstable in its near-horizon region. We might
then expect the system to evolve into a hairy black hole with the same UV asymptotics
but different IR behaviour.

We can work out in more detail the consequences of this instability for our current system,
following the original analysis in [72] and [126]. Global RN-AdS4 BHs described by (3.0.2)
and (4.2.7) have an extremal configuration when the bound (4.2.9) is saturated, µ =
√

2

√
1 + 3

R2
+

L2 . Take the near-horizon limit of this extremal RN-AdS4 BH by introducing

4The asymptoic AdS condition can be dropped if we consider scalar fields trapped by a potential or by
a reflecting box at a finite distance from the black hole as we will show later in section 4.3.
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the new coordinates {τ, ρ̃},

t = L2
AdS2

τ

λ
, r = r+ + λρ̃, (4.2.24)

and lettting λ→ 0. Setting,

LAdS2 ≡
Lr+√
L2 + 6r2

+

(4.2.25)

this procedure yields the solution of (3.0.6),

ds2 = L2
AdS2

(
−ρ̃2dτ2 +

dρ̃2

ρ̃2

)
+ r2

+dΩ2
(2),

Aµdxµ = α ρ̃dt with α ≡ LAdS2

r+

√
r2

+ + L2
AdS2

. (4.2.26)

So, the near-horizon limit of extremal RN-AdS4 is the direct product of AdS2 with a sphere
S2. Applying this near-horizon limit to the KG equation that describes a perturbation
δφ(t, r) = e−iωtR(r) of a scalar field (with mass m and charge q) about the extremal
RN-AdS4 black hole yields

∂ρ̃
(
ρ̃2∂ρ̃R

)
+

(
(ω + q α ρ̃)2

ρ̃2
−m2L2

AdS2

)
R = 0, (4.2.27)

which, not surprisingly, is the KG equation for a scalar field around AdS2 with an electro-
magnetic potential Aτ = α ρ̃. A Taylor expansion of (4.2.27) yields

R
∣∣
ρ̃→∞ ' a ρ̃

−∆̃−+ · · ·++b ρ̃−∆̃+ + · · · , with ∆̃± =
1

2
± 1

2

√
1 +m2

effL
2
AdS2

, (4.2.28)

which dictates the effective mass of the scalar field from the perspective of a near-horizon
observer,

m2
effL

2
AdS2

≡ m2L2
AdS2

− q2 α2

= m2L2
AdS2

− 2e2R2
+

1 + 3R2
+(

1 + 6R2
+

)2 , (4.2.29)

where in the second line we re-introduced the dimensionless quantities R+ = r+/L and
e = qL.

A scalar field with mass (4.2.29) in AdS2 is unstable if it violates the AdS2 BF bound
(4.2.23). It follows that extremal RN-AdS4 BHs are unstable whenever the charge of the
scalar field obeys

e2 ≥
(

1 + 4m2L2 R2
+

1 + 6R2
+

) (
1 + 6R2

+

)2
8R2

+

(
1 + 3R2

+

) . (4.2.30)
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Taking the large R+ expansion, this yields

e2 ≥
(

3

2
+m2L2

)
− m2L2

6

1

R2
+

+

(
1 +

4

3
m2L2

)
1

24R4
+

+O(1/R6
+). (4.2.31)

In the strict limit R+ → ∞, we recover the known result for planar RN-AdS4 BHs, e2 ≥(
3
2 +m2L2

)
[56, 18, 19]. Global RN-AdS4 BHs are unstable for larger values of the scalar

field charge.

In the opposite R+ → 0 limit, an expansion of (4.2.30) yields

e2 ≥ 1

8R2
+

+O(1), (4.2.32)

which indicates that the near-horizon scalar condensation instability is suppressed for small
(global) RN-AdS4 BHs. This is to be contrasted with the superradiant instability bound
(discussed in the previous subsection) which is valid for small black holes.

The near-horizon instability criterion that we have been discussing applies strictly to
extremal black holes. Continuity indicates that this instability should extend to near-
extremal black holes. Thus large, near extremal RN-AdS4 black holes are unstable to
condensation of the scalar field when condition (4.2.30) is satisfied. This statement is
verified numerically in the next subsection.

4.2.5 Onset of linear instabilities

There is a large amount of publications on quasinormal modes in asymptotically AdS
backgrounds, largely due to the fact that according to the gauge/gravity correspondence
quasinormal modes are dual to timescales for thermalisation of the dual thermal quantum
field theory (see section 1.2). However, for self-consistency we compute numerically the
onsets of instability of scalar fields in RN-AdS4 BH. To this end we solve equation (3.0.9)
in the background (4.2.7). The equation has two parameters in addition to the scalar field
charge and mass: the chemical potential µ and the horizon radius R+. We found the onsets
for two different scalar field masses: mL = 0 (left panel of Fig. 4.2.1) and mL = 2 (right
panel of Fig. 4.2.1). For each mass we calculated the onset charges as a function of the
horizon radius for different values of the chemical potential that we choose to have the
form µ = µext(1− 10−x).

The dashed red line is the near-horizon bound (4.2.30). In the left panel the dashed blue
line is the superradiant bound (4.2.22). The numerical curves correspond to values x =

2, 3, 6, 15 from top to bottom. Both bounds are sharp and complement each other very well.
In fact, the near-horizon bound reproduces the curve corresponding to µ = µext(1−10−15)
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Figure 4.2.1: Onset scalar field charge as a function of the horizon radius for chemical
potential µ = µext(1 − 10−x) with x = 2, 3, 6, 15 (from top to bottom on the right). The
left panel corresponds to massless scalar fields, the right panel to masses mL = 2. The red
dashed line is the near-horizon condensation analytic bound (4.2.30). In addition, in the
left panel we have the dashed blue line which is the superradiant bound (4.2.22).

very accurately in most of the displayed region, that is, for not very small horizon radius.
Conveniently, the superradiant bound describes very accurately the small horizon radius
region.

4.3 BH bomb in a Minkowski cavity

4.3.1 Reissner-Nordström black hole bomb system

Another solution, in addition to Minkowski, to the equations of motion (3.0.6) when Λ = 0

is the Reissner-Nordström black hole family of solutions which is a two-parameter family
that we can take to be the horizon radius r+ and the chemical potential µ = A(∞)−A(r+).
In the gauge where A(r+) = 0 this solution is described by

f(r) = 1− r+

r

2 + µ2

2
+
r2

+

r2

µ2

2
, g(r) =

1

f(r)
, A(r) = µ

(
1− r+

r

)
. (4.3.1)

The ADM mass, electric charge, entropy, and temperature of the RN BH are

M =
1

4
(2 + µ2)r+ , Q =

1

2
µ r+ , SH = πr2

+ , TH =
1

8πr+
(2− µ2) . (4.3.2)
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Figure 4.3.1: Region of existence of RN BH inside the box in a phase diagram that plots
the dimensionless ADM mass M/L vs the dimensionless ADM electric charge Q/L. The
lower black line corresponds to extremal RN BHs, and non-extremal RN BHs exist in all
the region above this line. The upper red line describes RN BHs that have horizon radius
equal to the radius of the box, r+ = L. Thus, the RN BHs that can fit inside the box are
those in the shaded area limited by the two lines.

Extremal RN BHs (TH = 0) have µ =
√

2, so RN BHs exist for µ ≤
√

2.

RN BHs are known to be linear mode stable to gravitoelectromagnetic perturbations but
also to scalar field perturbations [139]. However, we will be interested in placing an asymp-
totically flat RN BH inside a box Σ of radius L > r+. In this case, a test scalar field φ
with charge q and mass m can drive the system unstable. In units of the box radius, the
condition that the BH is inside the box constrains the dimensionless horizon radius to be
R+ < 1. In terms of the dimensionless ADM mass and electric charge, RN BHs with
R+ < 1 and 0 ≤ µ ≤

√
2 are those in the shaded region of Fig. 4.3.1. The lower black line

corresponds to extremality (µ =
√

2) and the upper red line has R+ = 1.

We require the scalar field to vanish at the box location Σ and outside it, φ(R ≥ 1) = 0.
This implies we impose the outer boundary condition

φ
∣∣
R=1

= 0 , (4.3.3)

and we define the amplitude of the scalar field to be given by the value of its normal
derivative at the box, φ′ in

∣∣
R=1−

≡ ε.

At the inner boundary, R = R+, the scalar field must be regular in Eddington-Finkelstein
coordinates (which are appropriate to extend the background solution across the horizon).

In section 4.4, we will find the leading order thermodynamics of hairy black holes assuming



50 Chapter 4. Linear mode analysis

that they can be described as a non-interacting mixture of a soliton and a small RN BH.
To complete that analysis, we will only consider the leading order (in the R+ expansion)
thermodynamics of RN black hole. For future reference they are:

MRN/L '
R+

2

(
1 +

µ2

2

)
+O(R3

+), QRN/L =
1

2
µR+ ,

SRN/L
2 = πR2

+, TRNL '
1

8πR+

(
2− µ2

)
+O(R+). (4.3.4)

Notice that they are equivalent to (4.2.11). This is to be expected since taking a small
R+ ≡ r+/L expansion is equivalent to taking a large L expansion keeping r+ fixed and
effectively discarding the effect of the asymptotic region.

4.3.2 Superradiant instability of a boxed RN

As we did in the asymptotically AdS case, we first consider the case where we have a charged
scalar field perturbation confined inside a box Σ in Minkowski space with a constant
Maxwell field. Naturally, this confinement condition, φ(R ≥ 1) = 0, and regularity at the
origin quantize the frequency spectrum of the scalar perturbations.

Using ansatz (3.0.8), we can solve the KG equation (3.0.9) in Minkowski spacetime with
gauge field A = µdT . The most general solution is

ψ(R) =

[
(Ω + eµ)2 −m2

φ

]− 1
4

√
R

[
β1J`+ 1

2

(
R
√

(Ω + eµ)2 −M2
)

+

β2Y`+ 1
2

(
R
√

(Ω + eµ)2 −M2
)]
,

(4.3.5)

where Jν(z) and Yν(z) are the Bessel functions of the first and second kind, respectively,
and β1, β2 are arbitrary constants. We now have to impose the boundary conditions.
Regularity of the solution at the origin, R = 0, requires that we set β2 = 0 to avoid a
divergence of the type R−`−1and the requirement that the scalar field vanish at the box
quanitzes the frequency; see (4.3.3). For ν ∈ R, the Bessel function Jν(z) has an infinite
number of simple zeros that we denote by jν,n, i.e. n ∈ N identifies the particular zero we
look at. The frequency spectrum is given by

Ω`,n =
√
j2
`+ 1

2
,n

+M2 − eµ , n = 1, 2, 3, · · · . (4.3.6)

Onwards we consider the solution with lowest frequency (i.e.with lowest energy) which
amounts to consider the first simple zero i.e. n = 1. For massless scalar field, m = 0 we
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obtain that the frequencies become

Ω0,1 = j 1
2
,1 − eµ = π − eµ . (4.3.7)

Condition (4.3.7) gives the lowest frequency for a scalar field that can fit inside a box in
Minkowski spacetime. If this box is placed instead in a RN black hole background, the
frequency spectrum will change. However, if the black hole is small, R+ � 1, the frequency
can be approximated by a series expansion in R+ with the leading order term being (4.3.7).
Borrowing results from the scalar field in AdS of the previous section and in [51, 1] we
expect that, at higher orders in the R+ expansion, the frequency correction receives an
imaginary contribution. We further expect this imaginary contribution to be proportional
to Ω0,1. Therefore the system should be unstable to superradiance for Ω0,1 < 0 (i.e. for
e ≥ π/µ). In particular, for an extremal RN BH the chemical potential is µ =

√
2. It then

follows that a small extremal RN BH should be unstable to superradiance for scalar field
charges that obey the bound

e ≥ π√
2
∼ 2.221. (4.3.8)

This bound can be expanded in a series expansion in R+ and away from extremality. This
procedure is equivalent to the one done in section 4.2.3 before, where we used a matched
asymptotic expansion to solve the KG equation (3.0.9) in an expansion in R+. Rather
than presenting the procedure again, we display the final results for the frequencies. The
procedure can also be found in the publication [2] which this research produced. In this
case we did the computation up to order R+ since we did a much more thorough numerical
analysis.

Ω0 = π − eµ

Ω1 =

(
µe− 1

2
π
(
µ2 + 2

)) [
γ − Ci(2π) + log(2π)

]
+

1

4
π
(
µ2 + 2

)
,

(4.3.9)

where γ ∼ 0.577216 is Euler’s constant and Ci(x) = −
∫∞
x

cos z
z dz is the cosine integral

function.

Again, the onset of superradiance occurs when Ω = 0, in the gauge we work. We can thus
use the condition Ω0 + Ω1R+ +O

(
Rk+
)

= 0 to find the electric charge of the scalar field,
eonset as a function of the horizon radius and chemical potential, above which the system
is unstable to superradiance. This gives:

eonset =
π

µ
−R+

π

2µ

[
µ2
(
γ + log(2π)− Ci(2π)− 1

2

)
− 1

]
+O

(
R2

+

)
. (4.3.10)

In section 4.3.4 we will solve numerically the linearised KG equation to find the linear
instabilities of a RN BH in a box. With a numerical analysis we will confirm that, in the
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small horizon radius limit and for RN black holes near extremality, the system becomes
unstable if (4.3.8) and (4.3.10) are obeyed. In particular, in Fig. 4.3.2, the green dashed
straight line is given by (4.3.10) when we set the chemical potential to its extreme value,
µ =
√

2.

4.3.3 The origin of the near-horizon instability of RN black holes in a
box

Since a box in asymptotically flat spacetime has reflecting boundary conditions similar
to those of asymptotically AdS spacetime, it is natural to ask whether the near horizon
instability is also present in the setup we are considering. This section is similar to section
4.2.4. We show again in detail the procedure since it is the first time it is applied to
asymptotically flat spacetimes.

To address this question in generic conditions, consider a scalar field with mass m and
charge q (we find it convenient to restore the dimensionful quantities in this discussion).
Stability conditions in flat spacetime require the mass m to be non-negative, m ≥ 0. We
introduce the new coordinates {τ, ρ̃} as in (4.2.24) and take the near horizon limit. At
leading order the metric takes the form

ds2 = L2
AdS2

(
−ρ̃2dτ2 +

dρ̃2

ρ̃2

)
+ r2

+dΩ2
(2),

Aµdxµ = α ρ̃dt with LAdS2 = r+ and α ≡
√

2LAdS2 . (4.3.11)

Thus the near horizon geometry is the direct product of an AdS2 geometry with an S2 just
as in the asymptotically AdS case. This is still a solution of Einstein-Maxwell theory5.

We introduce the new coordinates {τ, ρ̃} into the KG equation (3.0.9) and take the limit
λ→ 0 directly in the equation. To capture the time dependence information, the frequency
ω̃ in the near-horizon geometry is related to ω as:

ω = ω̃
λ

L2
AdS2

. (4.3.12)

which follows from the identification e−iωt ≡ e−iω̃τ .

Then the KG equation in the near horizon limit becomes

∂ρ̃

(
ρ̃2 ∂ρ̃ψ(ρ̃)

)
+

(
(ω̃ + q α ρ̃)2

ρ̃2
−m2L2

AdS2
− `(`+ 1)

)
ψ(ρ̃) = 0. (4.3.13)

5On the other hand the AdS2 orbit space is a solution of 2-dimensional Einstein-AdS theory whose
equation of motion, in the trace reversed form, reads Rij + L−2

AdS2
gij = 0.
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A Taylor expansion of this equation at large ρ̃ yields

ψ
∣∣
ρ̃→∞ ' a ρ̃

−∆̃− + · · ·+ b ρ̃−∆̃+ + · · · , with ∆̃± =
1

2
± 1

2

√
1 + 4m2

effL
2
AdS2

,

(4.3.14)

with an effective mass for the scalar field given by

m2
effL

2
AdS2

≡ m2L2
AdS2

+ `(`+ 1)− q2 α2

= m2L2
AdS2

+ `(`+ 1)− 2q2r2
+. (4.3.15)

A scalar field in AdS2 is unstable if it violates the AdS2 Breitenlöhner-Freedman bound
(4.2.23). Therefore, it is natural to expect that extremal RN BHs confined in a box might
be unstable to scalar condensation when their scalar field charge is large enough, namely
when

q ≥

√
(2`+ 1)2 + 4m2L2

AdS2

2
√

2r+

=

√
(2`+ 1)2 + 4m2r2

+

2
√

2r+

. (4.3.16)

Now we reintroduce the dimensionless quantities R+ = r+/L, e = qL and M = mL. For
large black holes inside the box, a Taylor expansion of (4.3.16) about R+ ∼ 1 yields

e ≥
√

(2`+ 1)2 + 4M2

2
√

2
+

(2`+ 1)2

2
√

2
√

1 + 4(M2 + l(l + 1))
(1−R+) +O

(
(1−R+)2

)
.

(4.3.17)

On the other hand, for small black holes (4.3.16) has the expansion,

e ≥ 2`+ 1

2
√

2

1

R+
+O(R1

+). (4.3.18)

Thus, for small black holes R+ � 1, we see that the near horizon instability is suppressed.
However, near horizon condensation is certainly present for large black holes (when com-
pared with the box radius).

In the next section we will compute numerically the timescales of linear instabilities of a
RN BH in a box. We will find that as the system approaches extremality and R+ → 1,
the instability indeed has a near horizon condensation origin since its onset will be given
by (4.3.16) (see the right panel of Fig. 4.3.2).
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4.3.4 Timescale for superradiant and near-horizon instabilities

In this section we compute numerically the frequencies of a massless scalar field confined
inside a box in a RN background. In particular, we find the scalar field charge above which
linear mode instabilities appear. This problem was already addressed in previous literature
for particular values of the parameters involved in the problem. However, here we want
to complement these available results with sharper statements about the region in phase
space where the solutions are unstable. For example, for a given scalar field mass6 we want
to identify the critical scalar field charge eonset(R+, µ) above which instabilities are present.
More importantly, we want to point out that RN BHs are linearly unstable not only to
the superradiant instability but also to the near-horizon scalar condensation instability.
Previous studies missed the existence of the latter instability. The two instabilities are
usually highly entangled (which justifies why previous numerical studies missed identifying
the existence of the near-horizon instability) but near extremality they disentangle. In this
regime, we can explicitly check that the numerical onset curve eonset(R+, µ) approaches the
analytical expression for superradiance (4.3.8) and the analytical expression (4.3.16) for
the near-horizon instability in the appropriate limits, namely for small and large horizon
radius R+, respectively (see the right panel of Fig. 4.3.2).

Consider the KG equation (3.0.9) in the RN spacetime (3.0.2)-(4.3.1). We restrict to the
most unstable mode which happens to be the one with ` = 0 that preserves the spherical
symmetry. This case was studied in the time domain in [110]. In [2] we also studied the
` = 1 and ` = 2 and confirmed the ` = 0 is more unstable. We do not reproduce those
results here.

The equation has to be solved subject to appropriate boundary conditions. A Taylor ex-
pansion of the KG equation about the horizon yields the two linearly independent solutions:

ψ(R)
∣∣
R→R+

∼ βin(R−R+)
− iΩ

4πTHL + βout(R−R+)
iΩ

4πTHL + · · · . (4.3.19)

Regularity of the perturbation in Eddington-Finkelstein coordinates requires that we choose
the boundary condition βout = 0 (this effectively discards outgoing modes and keeps the
ingoing waves).

On the other hand, a Taylor expansion around the location R = 1 of the box yields:

ψ(R)
∣∣
R→1

∼ ψ0 + ψ1(R− 1) + · · · . (4.3.20)

6For concreteness, in the presentation of our results, we will fix the scalar field mass to zero, but the
computation can be repeated for different masses m. In all cases, the onset curve eonset(R+, µ;m) for the
instability approaches the analytical limiting values (4.3.8) and (4.3.16), see the numerical results in our
publication [2].
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We want the scalar field to vanish at the location of the box so we impose the Dirichlet
boundary condition ψ0 = 0.

In order to solve numerically equation (3.0.9) we introduce the new function p(R) as

ψ(R) = (R−R+)
− iΩ

4πTHL (1−R) p(R). (4.3.21)

In addition, we find it convenient (it yields a Neumann boundary condition at the horizon)
to work with the new radial variable

y =

(
R−R+

1−R+

) 1
2

. (4.3.22)

Coordinate y ranges between y = 0 (R = R+) and y = 1 (R = 1). In terms of the new
function p(y), the boundary conditions read

p′(0) = 0 , p′(1) +

((
µ2 + 2

)
R+ − 4

µ2R+ − 2
− 4iR+Ω

2− µ2

)
p(1) = 0. (4.3.23)

The ODE (3.0.9) and the boundary conditions (4.3.23) yield a quadratic eigenvalue problem
in the frequency Ω, for a given e. Interestingly, if we we want to find the onset of an
instability (which has Ω = 0), it is also a quadratic eigenvalue problem in the electric
scalar field charge e. We will explore both perspectives in our analysis.

For the numerical discretization scheme of y ∈ [0, 1] we use pseudo-spectral methods with
a Chebyshev grid (see details in [50] and Appendix A). We solve for the eigenvalue and
associated eigenfunction using one of two methods. In one method, we make use of the
fact that the equation at hand is a quadratic eigenvalue problem, which can thus be solved
using Mathematica’s built-in routine Eigensystem (see e.g. [52, 50] and section A.2 in
Appendix A for details). The second method is based on an application of the Newton-
Raphson root-finding algorithm, and is detailed in [30, 50] and in section A.3 of Appendix
A.

We can now discuss the results. The system is unstable when the imaginary part of the
frequency Ω = ωL is positive. An indication of the onset of the instability is given when
we encounter what are called the zero-modes which correspond, in our gauge choice, to
Ω = 0: Re Ω = 0 = Im Ω. We find it enlightening to present the results by picking different
values of the chemical potential µ and plotting the dependence of the onset charge eonset as
a function of the horizon radius R+. This plot is shown in the left panel of Fig. 4.3.2. The
curves with the dots describe the onset charge eonset as a function of the horizon radius for
a given choice of chemical potential µ. More concretely, we consider 5 values for µ. We set
µ =
√

2(1− 10−n) and from the top (black curve) to the bottom (red curve) the 5 curves
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Figure 4.3.2: Left panel: Electric charge eonset = Lqonset of the scalar field that signals the
onset of instabilities for RN BHs in a box as a function of the horizon radius R+ = r+/L,
and for 5 constant values of the chemical potential µ =

√
2(1− 10−n) with n = 1, 2, 3, 4, 8

from top (black) to bottom (red). Above these lines, RN BH are unstable as the imaginary
part of the frequency Ω is positive. The magenta diamonds pinpoint three particular RN
BHs: in the right panel of Fig. 4.3.3 we explicitly show that Im Ω changes sign precisely
at e = eonset identified in this figure. Right panel: Similar to left panel but this time we
plot the onset curves (dots) with µ =

√
2(1 − 10−n) with n = 4, 6, 8 to see the approach

to extremality (which occurs when µ =
√

2), and we add the analytical curves (4.3.10)
(dashed green straight line with negative slope) and (4.3.16) (dashed blue curve).

have n = 1, 2, 3, 4, 8.

To further interpret the left panel of Fig. 4.3.2, note that, previously in the literature (first
for a scalar field in a Kerr box [140, 141] and then for a charged scalar field in a RN box
[108, 119]) it was found that, for a given scalar field charge, there is a minimum critical
radius where the mirror can be placed to have an instability. If the mirror is placed below
this critical radius there is no instability, that is to say, would-be unstable modes cannot
fit inside the box. The superradiant condition allows a straightforward interpretation of
this result: in the gauge where the gauge potential vanishes asymptotically, superradiant
modes have a maximum frequency, Re ω̃ < qµ. Superradiant modes thus have a minimum
wavelength and the mirror must be placed at a radius larger than this wavelength if we
want to have unstable modes. Now, in our study we use a scaling symmetry of the system
to fix the mirror at the dimensionless radius R = 1. It follows that the above conclusion
restates as follows: for a given RN BH (i.e. for a given {R+, µ}) unstable modes are present
if and only if the scalar field charge is above a critical value e > eonset(R+, µ). Fig. 4.3.2
precisely displays these critical curves eonset(R+, µ) for selected values of µ. These curves
are exact (for M = 0) and sharpen onset bounds given previously in [108, 119].



4.3. BH bomb in a Minkowski cavity 57

��� ��� ��� ��� ��� ��� ��� ���
�����

�����

�����

�����

�����

�����

�����

�/�

Δ
�
/� � ���

�

������

� � � � � � � �

-����

-����

-����

-����

����

����

� �

��
[ω

]
�

◆◆ ◆

Figure 4.3.3: Left panel: Onset curves in a phase diagram that plots the RN electric
charge Q/L as a function of the mass difference ∆M/L w.r.t. the extremal RN with
same Q/L. The several curves have different constant scalar field charge: eonset = 4
(upper curve) all the way down (in steps of −0.1) to eonset = 2.2 (bottom curve). The
curves in the inset plot correspond to scalar field charges eonset = 1.3 (top) down to
eonset = 1, in steps of −0.1. Right panel: Imaginary part of the dimensionless frequency
Im (ωL) as a function of the dimensionless scalar field charge e = qL at constant chemical
potential µ =

√
2(1 − 10−1) and constant horizon radius: R+ = 0.1 (black), R+ = 0.5

(red) and R+ = 0.9 (blue). The magenta diamonds correspond precisely to the onset
charge e = eonset already identified in Fig. (4.3.2).

In the left panel of Fig. 4.3.2, the lowest numerical (red) curve has µ =
√

2(1−10−8) i.e. it
is extremely close to the extremal RN solution which has µ =

√
2. This curve is particularly

enlightening to understand the underlying physical nature of the unstable modes, and how
the origin of the instability changes as we go from small to large radius black holes (in
units of the mirror radius). For this discussion, in the right panel of 4.3.2 we take the
bottom curve of the left panel with µ =

√
2(1 − 10−8) (as well as as µ =

√
2(1 − 10−4)

and µ =
√

2(1− 10−6)) and we add two analytical curves. The dashed green straight line
with negative slope (starting at R+ = 0 and eonset = π/

√
2 ∼ 2.22) is the superradiant

instability curve (4.3.10), which is valid for small R+. On the other hand, the blue dashed
curve (starting on the right at R+ = 1 and eonset = 1

2
√

2
∼ 0.354) corresponds to the near-

horizon instability curve (4.3.16) with M = 0, eonset = (2
√

2R+)−1. We conclude that as
extremality (µ =

√
2) is reached, the onset curve approaches the critical values predicted

by the analytical expressions (4.3.10) and (4.3.16) (with M = 0 and µ = µext =
√

2). This
is a check of our numerical results. More importantly, it clearly demonstrates one of our
main results: RN BHs in a box are not only afflicted by the superradiant instability (as
studied in previous literature) but also by the near-horizon scalar condensation instability.
For a generic RN BH these two instabilities are entangled but in the RN extremal limit
they disentangle and their different nature unravels: the superradiant instability is present
for small black holes while the near-horizon instability has the opposite behavior (it is
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Figure 4.3.4: The imaginary part (left panel) and real part (right panel) of the frequen-
cies as a function of the chemical potential µ and the horizon radius r+ for e = qL = 3.5.
The dotted green curve is the onset curve with Re(ωL) = 0 and Im(ωL) = 0.

supressed for small black holes as indicated by (4.3.18)).

The information in Fig. 4.3.2 is complemented by Fig. 4.3.3. In the left panel, on the
horizontal axis we have the dimensionless ADM charge Q/L of the RN BH. On the vertical
axis, we have the mass difference ∆M/L = (M −Mext)/L between a RN BH and the
extremal RN BH that has the same electric charge Q/L. Hence extremal RN BHs are
represented by the horizontal line with ∆M = 0. We display several curves in the main
left panel plot. Each curve corresponds to a fixed value for the onset charge eonset (a
horizontal line in Fig. 4.3.2): the top curve starts with eonset = 4 and then we go down in
steps of δeonset = −0.1 to the curve in the bottom that has eonset = 2.2. For each eonset
curve, RN BHs below the onset curve are unstable. We see that, starting from Q = 0, as
Q grows so does the region that is unstable: black holes with larger M/L that are further
away from extremality become unstable. However, for each eonset curve, ∆M/L attains
a maximum around Q/L ∼ 0.2. For larger Q/L, ∆M/L starts decreasing monotonically
and approaches zero as Q/L approaches its maximum value ∼ 0.7, which corresponds to
R+ → 1.

It is often stated that a RN in a Minkowski box resembles a RN in global anti-de Sitter
(AdS) spacetime: reflecting boundary conditions at the timelike boundary of AdS mean
that AdS effectively behaves as a box with AdS radius L (set by the cosmological constant
Λ = −3/L2). Although this statement is generically correct, there are also important
differences between the two systems. Notably, the box in the RN BH is at a finite proper
distance from the horizon, while in AdS the asymptotic timelike boundary is at an infinite
proper distance. This key difference manifests in properties of the instabilities. This is
particularly clear when we compare the behaviour displayed in Fig. 4.3.3 with its AdS
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Figure 4.3.5: Similar to Fig. 4.3.4 but this time for a scalar field charge of e = 1.9. The
dotted green curve is the onset curve with Re(ωL) = 0 and Im(ωL) = 0.

counterpart. In AdS, all onset curves eonset are monotonic: larger Q/L corresponds to
larger ∆M/L (below which the system is unstable) and there is no bound for the electric
charge Q/M (neither for M/L); see [126] for the corresponding plot for RN-AdS5 BHs.
For small RN BHs inside a box, the system behaves similarly to the AdS one only for small
Q/L: initially ∆M/L of the onset curve indeed increases as Q/L grows. However, unlike
in AdS, here the eonset curve has a maximum ∆M/L and, for larger RN charge, Q/L itself
also has a maximum value where ∆M/L→ 0. So above Q/L ∼ 0.2 (say), the box at finite
proper distance induces an effect that differs from the behaviour in AdS. This behaviour
can be understood from Fig. 4.3.1: as we increase the charge Q/L and the mass M/L,
the region of existence of RN BHs inside a box becomes smaller and shrinks to zero as one
approaches Q/L ∼ 0.7. This is not the case in global AdS: unstable RN-AdS BHs exist for
arbitrarly large charge and mass.

Still in the left panel of Fig. 4.3.3, in the inset plot we show similar curves for scalar field
charges eonset = {1.3, 1.2, 1.1, 1} which are all below π√

2
∼ 2.22. We see that for e ≤ π√

2

the onset does not extend to all values of the charge Q/L and mass M/L since these e’s
lie in the region 1

2
√

2
≤ e ≤ π√

2
(see Fig. 4.3.2). Indeed, one can use the bottom curve in

the Fig. 4.3.2, since µ =
√

2(1−10−8) is very near extremality, as a good estimative of the
extremal curve. The curves in the inset plot of the right panel of Fig. 4.3.3 correspond to
horizontal lines in Fig. 4.3.2 with 1

2
√

2
≤ e ≤ π√

2
that start at the extremal curve.

To check independently that the onset curves (surface) in Fig. 4.3.2 indeed signal the
onset of the instability we have computed the quasinormal mode frequencies Ω = ωL:
above the onset surface the imaginary part of Ω becomes positive. For a simple check,
we chose specific values of the horizon radius R+ and chemical potential µ and compute
the imaginary part of the frequency Im Ω as a function of the scalar field charge e = qL.
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Figure 4.3.6: Critical onset charge eonset as a function of the horizon radius R+, and
of the chemical potential µ. For reference, the black dots represent the curve with µ =√

2(1− 10−1) already plotted in the top of the left panel of Fig. 4.3.2.

We show three of these curves in the right panel of Fig. 4.3.3. All these curves have
µ =
√

2(1− 10−1) but different horizon radius, R+ = {0.1, 0.5, 0.9}. These particular RN
BHs correspond to the magenta diamonds pinpointed in the upper curve of the left panel
of Fig. 4.3.2. That is to say, at the value e = eonset identified in the left plot of Fig.
4.3.2 the imaginary part of the frequency becomes zero in Fig. 4.3.3 (magenta dots in each
curve) which is a check to our numerics as these are two independent computations.

For completeness, in Fig. 4.3.4 we fix the scalar field charge e = 3.5 and we show a complete
3D plot of both the imaginary and real parts of the dimensionless frequency Ω = ωL as a
function of the horizon radius R+ and chemical potential µ. The instability is present when
Im Ω > 0. As a non-trivial test of our computations we have checked that the instability
onset curve for eonset = 3.5 in the left panel of Fig. 4.3.3 coincides with the onset curve
in this 3D plot: dotted green curves with Im Ω = 0 and Re Ω = 0. Values of e above
π/
√

2 ∼ 2.221 − see (4.3.10) and Fig. 4.3.2− typically give plots qualitatively similar to
those of Fig. 4.3.4. Namely, the instability is present from R+ = 0 all the way up to a
maximum R+ < 1, as long as we are sufficiently close to extremality.

On the other hand, scalar field charges in the range π/
√

2 < e < 1/(2
√

2) ∼ 0.354 − see
(4.3.10), (4.3.16) and Fig. 4.3.2− give plots qualitatively similar to those in Fig. 4.3.5.
In this figure, we fix e = 1.9 and plot the imaginary and real parts of the frequency as
a function of the horizon radius R+ and chemical potential µ. For this range of e, the
instability is present only in a window of R+ (starting at R+ > 0), and when we are close
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to extremality.

Fig. 4.3.6 complements Fig. 4.3.2 since it shows the evolution of the onset charge eonset
with R+ for a larger range of the chemical potential µ. Namely, for µ ≤

√
2
(
1− 1

61

)
(for larger µ see Fig. 4.3.2). We see that as we move away from extremality and as the
box approaches the horizon, it becomes considerably more difficult to drive the system
unstable. In the sense that a higher e > eonset is required to make the system unstable.

4.4 Non-interacting thermodynamic model for hairy black
holes

In the previous sections we have seen that RN BH both in AdS4 and confined inside a box
are linearly unstable to the superradiant and near-horizon scalar condensation instabilities.
Thus one expects these BHs should evolve to a different configuration that should have
scalar hair floating above the horizon (as shown in [51, 125, 126, 107, 118]). This new
configuration is stable to the original mechanisms that drive RN BH unstable. In the limit
where the amplitude of the scalar hair vanishes, such hairy black hole should merge with
the RN family at the onset of the instability.

On the other hand, a scalar field in AdS4 and inside a box in Minkowski space has its
linear spectrum of frequencies quantized as we saw in (4.2.5) and (4.3.6). Borrowing ideas
from similar AdS and massive systems with confined potentials, it is natural to expect that
such normal modes of the scalar field can be back-reacted to higher order in perturbation
theory (with the expansion parameter being the amplitude of the scalar field). That is
to say, beyond linear order, the scalar field sources the gravitoelectric field but it should
be possible to do so while keeping the solution regular everywhere (in particular, at the
origin) and obeying the boundary conditions. This should then yield a new horizonless
solution of Einstein-Maxwell-scalar theory (with the confinement condition imposed) that
is a boson star oscillating with frequency ω̃ (if we work in a gauge where the scalar field is
complex with time dependence eiω̃t) or, equivalently after a gauge transformation, a static
soliton (with no time dependence and chemical potential µ = ω̃/q).

Again borrowing ideas from similar confined systems, it is also natural to expect that we
can place a standard RN BH on top of this soliton to generate a hairy black hole. This
hairy black hole family whose zero-horizon radius is the soliton of the theory should then
be the same hairy black hole that connects (in a phase diagram of solutions) to the RN
BH family at the onset of the instability discussed above.

Such hairy solitons and black holes would have a charged scalar condensate floating above
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the origin/horizon, with the electromagnetic repulsion balancing the gravitational collapse
of the scalar condensate. For these ideas to be correct, in the case of the hairy black hole,
we further expect that hairy black holes have higher entropy than the RN BH with the
same mass and electric charge (when they coexist).

To prove these ideas correct, we have to solve the Einstein-Maxwell-scalar equations of
motion and find the proposed hairy black hole solutions. We will do this in sections 5 and 6.
However, here we want to derive heuristically the leading order thermodynamic properties
of such hairy solutions using a simple non-interacting thermodynamic model that does not
make use of the equations of motion. This model proved to capture the correct leading
order physics of charged and rotating AdS systems [51, 53, 126, 30, 98, 125, 128].

At leading order, a charged soliton (boson star) is just a normal mode of the ambient
background (whose frequency ω̃ is then corrected as we climb the perturbation expansion
ladder). This is a 1-parameter family of solutions with mass Msol = µQsol + O(Q2)

with µ = ω̃
q (we are interested in the soliton with lowest energy which has µ = 3/e in

the AdS case and µ = π/e in the box case). This soliton further obeys the first law,
dMsol = µdQsol.

The non-interacting thermodynamic model of [51, 53, 126, 30, 98, 125, 128] assumes that
we can place a small RN BH on top of this soliton to get a 2-parameter family of hairy
BHs (the parameters being the mass and the charge). It further assumes that, at leading
order (and certainly only at this order), the system can be considered as a non-interacting
mixture of a soliton and a RN BH at its core in the sense that the mass and the charge of
the hairy BH are given by the direct sum of the mass and charge of the RN BH and the
soliton,

M =Msol +MRN and Q = Qsol +QRN . (4.4.1)

The soliton carries no entropy, so the entropy S of the hairy BH simply reads

S = SRN (MRN ,QRN ) + Ssol(Msol,Qsol) = SRN (M−Msol,Q−Qsol). (4.4.2)

The hairy BH can partition its charge Q and mass M between the RN BH and soliton
components. On physical grounds one expects this distribution to be such that, for fixed
massM and charge Q, the entropy S is maximised, dS = dSRN = 0, while respecting the
first law of thermodynamics dM = THdS + µdQ. The maximisation of the entropy turns
out to imply [126]

µRN = µsol ≡ µ and TRN ≡ TH , (4.4.3)

not surprisingly, the two mixed constituents must be in thermodynamic equilibrium to
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yield a hairy BH.

The mass and charge of the soliton are related by Msol = µQsol, while the mass and
charge of the RN BH are given in (4.2.10) and (4.3.2) (recall that both cases have the
same leading terms in an expansion in R+) . Using these relations together with the non-
interacting relation (4.4.1) and equilibrium conditions (4.4.3), we can express the leading
order thermodynamic quantities of the hairy black hole (and of its two constituents) in
terms of its massM, charge Q and chemical potential µ:

R+ =
4

2− µ2
(M− µQ) +O

(
M2,Q2,MQ

)
,

TL =

(
2− µ2

)2
32π(M− µQ)

+O
(
M2,Q2,MQ

)
,

S/L2 =
16π

(2− µ2)2 (M− µQ)2 +O
(
M3,Q3,M2Q,MQ2

)
;

MRN =

(
2 + µ2

)
2− µ2

(M− µQ) +O
(
M2,Q2,MQ

)
,

Msol =
µ
(
2 + µ2

)
Q− 2µ2M

2− µ2
+O

(
M2,Q2,MQ

)
,

QRN =
2µ

2− µ2
(M− µQ) +O

(
M2,Q2,MQ

)
,

Qsol =

(
2 + µ2

)
Q− 2µM

2− µ2
+O

(
M2,Q2,MQ

)
.

(4.4.4)

The domain of existence of the hairy black hole can be inferred from this analysis. In one
extremum, the soliton constituent is absent and all the mass and charge of the hairy BH is
carried by the RN component. This describes the hairy BH that merges with the RN BH
at the zero-mode of its linear instability. On the opposite extremum configuration, the RN
BH constituent is absent and the soliton component carries all the mass and charge of the
solution. This is the zero-radius or zero-entropy limit of the hairy black hole. It follows
that the hairy black hole mass must be within these two boundaries:

µQ+O(Q2) ≤M ≤ µ2 + 2

2µ
Q+O(Q2). (4.4.5)

Equating the two extrema configurations, yields an interval of existence for the chemical
potential:

µ ≤ µ2 + 2

2µ
⇒ µ ≤

√
2 =⇒ e ≥ ω0√

2
, (4.4.6)

where in the last relation we used that for the ground state solution the leading order
potential is µ = ω̃/e = ω0/e+O(R+) and ω0 = 3 or π for the AdS and box case respectively.
The lower bound for e in (4.4.6) is precisely the leading term in (4.2.22) and (4.3.10) when
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we set the chemical potential to its extreme value, µ =
√

2 +O(R2
+).

The above leading order thermodynamic analysis must be considered with a few grains of
salt. Indeed, first note that a theory can have hairy black holes that do not have a zero-
radius limit, i.e. a solitonic limit (see e.g. [126]). Second, there is no reason why the non-
interacting mixture assumption (4.4.1) should hold, even at leading order. Nevertheless,
in Chapters 5 and 6, we will solve the equations of motion to find the hairy BHs and
we will confirm that the thermodynamic model indeed captures the correct leading order
thermodynamics (4.4.4)-(4.4.6) of the system.

A final important observation is in order for the boxed case. To keep the scalar field of the
asymptotically flat hairy black hole confined inside the box (φ(R ≥ 1) = 0), the latter must
have a certain Lanczos-Darmois-Israel surface stress tensor [142, 143, 144, 145]. That is to
say, the induced gravitoelectric fields are continuous at the thin layer surface that confines
the scalar hair but the extrinsic curvature is discontinuous. The above thermodynamic
model is completely blind to this information. It is too simple for that; yet it yields
the correct leading thermodynamics. In Chapter 6, we will emphasize the importance
of using the Brown-York quasilocal formalism [146] to appropriately discuss hairy black
holes contained inside a box, for the difference between the Brown-York tensor outside
and inside the box surface layer yields precisely the Lanczos-Darmois-Israel surface stress
tensor [142, 143, 144, 145] that describes the energy-momentum content of the box [146].



CHAPTER 5

Small hairy black holes in AdS4

In this Chapter we construct perturbatively hairy black holes that are the end-point of the
superradiant instability discussed in the previous Chapter. We analyse the microcanonical
ensemble in order to determine the dominating phases.

5.1 Summary of results

The superradiant instability studied in the previous Chapter is present in small AdS-
Reissner-Nordström black holes. This implies that the associated hairy black holes can
be constructed perturbatively around global AdS as a small expansion in the horizon
radius and in the scalar condensate amplitude [51, 125, 126]. In fact, one can construct
perturbatively, in the scalar condensate amplitude, horizonless solutions by considering
the backreaction of the normal modes computed in (4.2.5). These solutions constitute the
solitons 5.4 of the theory and as seen in the non-interacting thermodynamic model of 4.4,
they form at linear level the hair of hairy black holes.

In the case of hairy black holes, the double expansion in the horizon radius and the scalar
field amplitude is not enough to exactly solve the equations of motion of the system (3.0.6).
We make use of a standard matching asymptotic expansion procedure (see e.g. [51, 125,
126, 53, 97] and section 4.2.3) in which one considers a near region r+

L ≤
r
L � 1 and a

65
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far region r � r+ which overlap in the region r+
L �

r
L � 1 if we consider small black

holes, r+L � 1. The resulting thermodynamic quantities of the hairy black hole − energy,
charge, chemical potential, temperature and entropy − are then computed in (5.5.6) and
obey the first law of thermodynamics. Confirming the rationale beyond their construction,
hairy black holes merge with the RN-AdS4 family at the onset of superradiance and their
zero-horizon radius limit is a soliton.

The hairy black holes and solitons of the theory add new competitions in the phase diagram.
It turns out that, as summarized in the phase diagrams of Fig. 5.6.1, in the microcanonical
ensemble hairy black holes are always the dominant thermal phase.

Summarizing our results, the phase diagram of AdS4-Einstein-Maxwell theory with a com-
plex scalar field depends on the window of the dimensionless scalar field charge e that we
consider. There are three cases:

• e2 < 3
2 : in this case RN-AdS4 is stable both against superradiance and the near-

horizon scalar condensation instability. Thus, there are no hairy black hole solutions.
We do have a 1-parameter soliton family.

• 3
2 ≤ e2 ≤ 9

2 : the near horizon instability takes place near extremality for large RN-
AdS4 black holes, i.e. only above a critical mass and charge. Consequently, the
associated large hairy black hole solutions cannot be constructed perturbatively and
would require a full non-linear numerical construction.

• e2 ≥ 9
2 : Small RN-AdS4 black holes are unstable to the superradiant instability and

the associated hairy black holes can be constructed perturbatively for small mass and
charge (see section 5.5). They are a 2-parameter family of solutions that in a phase
diagram span an area bounded by the onset of superradiance (where they merge with
RN-AdS4) and, at their zero-horizon radius limit, the soliton (see Fig. 5.6.1). These
hairy black holes always have higher entropy than the RN-AdS4 black hole in the
window of energy and charge where the two phases co-exist. Interestingly, in the
phase diagram of solutions of the theory, the hairy black holes connect the onset of
the (linear) superradiant instability with the key player − the soliton − of the non-
linear weakly turbulent instability of AdS4. Indeed, at the simplest but fundamental
level, this non-linear instability follows from the appearance of irremovable secular
resonances when two or more solitons are taken as initial data and collide [64, 78, 147].

The Chapter is structured as follows: In section 5.2 we introduce the boundary conditions
for the elliptic problem, and describe how the thermodynamic quantities can be computed
in 5.3. The soliton (boson star) of the theory is constructed perturbatively in section 5.4.
In section 5.5, hairy black hole solutions are constructed perturbatively using a matched
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asymptotic expansion analysis. The thermodynamical and physical properties of the hairy
solutions are analysed in detail in the microcanonical ensemble in section 5.6. The ex-
pressions for the field coefficients that appear in the perturbative expansions of the soliton
construction of section 5.4 and of the hairy black hole of section 5.5 can be found in
Appendix B and C of [1] respectively.

5.2 Boundary conditions

We consider the theory described by (3.0.1) with cosmological constant Λ = − 3
L2 , and

solutions to the theory of the form (3.0.2). The set of equations of motion of the theory
are given in (3.0.6). In this Chapter we are restricting to massless scalar fields.

The most notable solution of (3.0.1) is global AdS4 spacetime: f(R) = g−1(R) = 1 + R2

A(R) = φ(R) = 0. We are interested in solutions that asymptote to this background.

We can rewrite our ansatz and equations of motion in Fefferman-Graham coordinates
(defined such that gzz = 1/z2 and gzb = 0, where z is the radial distance with boundary
at z = 0, and xb = {t, θ, ψ} are the boundary coordinates) [148, 149, 23]. In general an
asymptotically AdS4 spacetime has the following Taylor expansion of the metric around
the holographic boundary z = 0 [27, 29] (and 1.2.3):

ds2 =
1

z2

[
dz2 + gab(z, x)dxadxb

]
,

gab
∣∣
z→0

= g
(0)
ab (x) + · · ·+ z3g

(3)
ab (x) + · · · , with 〈Tab〉 ≡

3

16πG4
g

(3)
ab (5.2.1)

and where g(0)(x) and g(3)(x) are the two integration “constants" of the expansion1; the
first dots include only even powers of z (smaller than 3) and depend only on g(0) (thus
being the same for solutions that asymptote to global AdS4) while the second dots depend
on the two independent terms g(0), g(3). Within the AdS/CFT duality we are (typically)
interested in Dirichlet boundary conditions (BCs) that do not deform the conformal metric
g(0): the dual holographic CFT is formulated on this fixed background (see Chapter 1).
This is the static Einstein Universe Rt × S2, ds2

∂ = −dT 2 + dΩ2
(2). Given this Dirichlet

BC our task is to solve the equations of motion in the bulk, subject to regular BCs at the
horizon or radial origin, to read g(3). Using the holographic renormalization formalism,
this gives us the expectation value of the holographic stress tensor 〈Tab(x)〉 which specifies
and describes the boundary CFT [29, 26, 27]. This Dirichlet BC also ensures that there
is no dissipation of energy at the asymptotic boundary (see Appendix A of [30]). For this
reason these Dirichlet BCs can be denoted as ‘reflecting boundary conditions’ 2.

1Our solutions are static and spherically symmetric so there is no x dependence.
2We can however have other reflecting BCs that preserve the charges but not the static Einstein Universe
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We still need to discuss the asymptotic BCs for the Maxwell and massless scalar fields. A
Taylor expansion of the equations of motion at the conformal boundary yields,

At(R) ' µ+
ρ

R
+ · · ·

φ(R) ' σ

R∆−
+ · · ·+ ε

R∆+
+ · · · , with ∆± =

3

2
± 3

2
, (5.2.2)

where µ and ρ are the chemical potential and charge density, respectively, and ε and σ are
the two arbitrary integration constants describing the decay of the massless scalar field.
Since we are considering massless scalar fields, normalisability implies that σ = 0, see
(4.2.2) and the discussion below.

To summarize, at the asymptotic boundary (R → ∞) we will impose Dirichlet BCs such
that our solutions at large R behave as

f(R) = 1 +R2 +
m0

R
+O(1/R2),

A(R) = µ+
ρ

R
+O(1/R),

φ(R) =
ε

R3
+O(1/R5) (5.2.3)

with the dots representing terms that are a function of m0, µ, ρ, ε.

Consider now the inner boundary of our solution. This is a fictitious boundary since it is
a coordinate singularity at the edge of our integration domain, but it is at a finite proper
distance from other points [50]. In the present study, this can be the origin of the radial
coordinate, R = 0, if we look into a soliton (boson star). Or, it can be a horizon at R = R+

if the solution is a black hole, a condition that is imposed by demanding that f(R+) = 0.
In both cases to find the physical BCs we can Euclideanise the metric with a Wick rotation
and require regularity of the metric and matter fields in Cartesian coordinates, as explained
in detail in the review [50] 3.

For a soliton, a Taylor expansion of the equations of motion at the origin yields,

f(R) = f0 +O
(
R2
)
,

A(R) = a0 +O
(
R2
)
,

φ(R) = φ0 +O
(
R2
)
, (5.2.4)

where {f0, a0, φ0} are arbitrary integration constants and all higher order terms in (5.2.4)
are even powers of R with coefficients fixed in terms of {f0, a0, φ0}. Here we have already
imposed smoothness of the fields at the origin by imposing a defining BC (in the nomen-

conformal boundary.
3For the gauge field, this refers to the gauge invariant field strength tensor F = dA, rather than the

gauge potential A
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clature of [50]). Namely, we set to zero three integration constants (one for each field f , g,
and φ) which are associated to terms that diverge as R→ 0. Following the nomenclature
of [50], if we wish, we can now use this defining BC together with the equations of motion
to impose a derived BC to find the soliton. For example, it follows from (5.2.4) that a good
derived BC is a Neumann BC for the three fields at R = 0 since the derivative of all of
them vanishes.

On the other hand, if the solution is a black hole, a Taylor expansion around its horizon
− defined as the locus f(R+) = 0 − yields

f(R) = f0(R−R+) +O
(
(R−R+)2

)
,

A(R) = a0(R−R+) +O
(
(R−R+)2

)
,

φ(R) = φ0 +O
(
(R−R+)2

)
, (5.2.5)

after imposing defining BCs that set three integration constants to zero (one for each
function) to have smoothness as R → R+. We are left with the remaining three arbi-
trary integration constants {f0, a0, φ0}, and all higher order terms in (5.2.5) are fixed as a
function of {f0, a0, φ0}.

At this stage we can ask how many parameters we need to describe the soliton and hairy
black hole that we want to construct. The theory is fixed once we choose the mass and
charge of the scalar field. At the UV asymptotic boundary we have a total of five free
parameters {c0,m0, µ, ρ, ε} to which we need to add the cosmological radius L and the
horizon radius R+ (if present). As explained previously, we can use the two scaling sym-
metries (3.0.3) and (3.0.4) to fix L and c0. We are left with four UV free parameters
{m0, µ, ρ, ε} and the horizon radius R+. On the other hand, in the IR we have a total
of three free parameters {f0, a0, φ0} (both in the soliton and black hole case). Therefore,
any black hole of the theory is described by 4UV + 1H − 3IR = 2 parameters. The AdS4

−Reissner-Nördstrom black hole is indeed a 2-parameter family of black holes. More im-
portantly, we also find that the hairy black holes we want to construct are described by two
parameters. These are the mass and the electric charge of the black hole. Alternatively
(but equivalently) we can take these to be the horizon radius R+ and the amplitude of
the scalar condensate ε. On the other hand, any soliton of the theory is described by
4UV − 3IR = 1 parameter. This can be the mass of the soliton (which fixes its charge) or,
alternatively, the amplitude of the scalar condensate ε.
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5.3 Conserved and thermodynamic quantities

Once we have solved for the fields {f, g, A, φ} we can read the gauge invariant thermody-
namic quantities that describe hairy black holes or solitons.

To find the energy we use holographic renormalization [29, 26, 27]. Applying the prescrip-
tion to our ansatz with expansion at the boundary given by (5.2.3) the energy is defined
as

M

L
= −m0

2
. (5.3.1)

To define the conserved electric charge, we use Gauss’ law. Consider a 2-sphere S2 at
constant time t and R in the limit R→∞. The electrical charge is

Q = lim
R→∞

1

16π

∫
S2

?F, (5.3.2)

where ?F is the Hodge dual of the field strength. As a function of the asymptotic expansion
parameters defined in (5.2.3) this gives,

Q

L
= −ρ

2
. (5.3.3)

The value of the temperature for a soliton is undefined, and its entropy is zero as it does
not have a horizon. Our black holes have a Killing horizon at R = R+ generated by the
Killing vector field K = ∂t. Their temperature is thus given by its surface gravity over 2π

which yields,

THL =
1

4π

f ′(R)√
f(R)g(R)

∣∣∣
R+

. (5.3.4)

The entropy of the black hole is a quarter of horizon area. In terms of the expansion
parameters introduced in (5.2.5), the temperature and entropy are

TH L =
f0

(
3R2

+ + 1
)

2
√

2π
√
R+

(
3R2

+ + 1
) (
a2

0R+ + 2f0

) ,
S

L2
= πR2

+. (5.3.5)

The chemical potential µ is defined in (5.2.3). It is the difference between the value of the
electromagnetic field at infinity and at the horizon4.

4Recall that we work in the gauge where A
∣∣
r+

= 0. With a gauge transformation, we can instead work

in the gauge A
∣∣
∞ = 0 and the scalar field acquires a harmonic time dependence.
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Stable solutions must satisfy the first law of thermodynamics:

dM = THdS + µdQ, for black holes, (5.3.6)

dM = µdQ, for solitons. (5.3.7)

5.4 Small solitons (boson stars)

In section 4.2.1 we revisited the normal mode frequency spectrum of global AdS4. These
frequencies are quantized according to (4.2.5). A far-reaching property of this spectrum
is that the imaginary part of the frequency vanishes: the associated eingenmodes are not
dissipative. Moving beyond linear order in perturbation theory in the amplitude of the
scalar field, we might then consider the back-reaction of these scalar normal modes on the
gravitational and electromagnetic field. Since the leading order is not radiative we might
suspect that the normal mode can be back-reacted to all orders and yield a boson star, i.e.
a horizonless solution with static electromagnetic and gravitational fields and a complex
scalar field with time dependence e−iωt. We should further expect that the frequency ω
is given at leading order by (4.2.5) but gets corrected as we climb the expansion ladder.
We can further explore the U(1) gauge transformation freedom to rewrite this solution
in a gauge where the frequency vanishes and the scalar field is real. This static solution
is equivalent to the boson star but usually called a soliton. As explained in section 5.2,
this soliton is a 1-parameter family of solutions that we can take to be the asymptotic
amplitude ε of the scalar field as described in (5.2.3).

In this section we construct the ground state soliton − i.e. the soliton with lowest energy
which at leading order is described by the lowest normal mode (4.2.6) − up to fourth order
in ε. At leading order we have A = 3

e dT . To obtain the soliton, we solve perturbatively
the three second order ODEs for {f,A, φ} (3.0.6), subject to the boundary conditions
(5.2.3) and (5.2.4) at the asymptotic boundary and at the origin, respectively. The pair
of integration constants associated to each ODE is fixed by the boundary conditions. We
build up the perturbative solution in a power series expansion of the fields in ε around
global AdS4,

f(R) = 1 +R2 +
∑
n≥1

ε2nf2n(R),

A(R) =
3

e
+
∑
n≥1

ε2nA2n(R),

φ(R) =
ε

(1 +R2)3/2
+
∑
n≥1

ε2n+1φ2n+1(R).

(5.4.1)

When ε = 0 we recover global AdS4 as expected. The O(ε) scalar field and its derivatives
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source the first non-trivial contribution to the electromagnetic and gravitational fields at
order O(ε2). The structure of the equations of motion is then such that the odd (even)
powers of ε never contribute to the electro-gravitational (scalar) fields.

The equations of motion can be solved analytically order by order for arbitrary order but
the expressions for the solutions quickly become quite long. One can find the final (i.e.
after imposing the boundary conditions and thus fixing all integration constants) coefficient
functions f2n(R), A2n(R) and φ2n+1(R) up to order n = 2 in Appendix B of [1]. This order
is enough to extract the relevant physical conclusions of our study.

Using these field expansions we can compute the gauge invariant thermodynamic quantities
discussed in section 5.3. Namely, the mass Msol, charge Qsol and chemical potential µsol
of the ground state soliton up to order O(ε6) are:

Msol/L =
9π

32
ε2 −

3π
(
−301e2 + 60π2

(
e2 − 9

)
+ 2898

)
10240

ε4 +O(ε6),

Qsol/L =
3

32
πe ε2 −

πe
(
−196e2 + 60π2

(
e2 − 9

)
+ 2583

)
10240

ε4 +O(ε6),

µsol =
3

e
+

21
(
e2 − 3

)
32e

ε2 +
ε4

204800 e

[
− 339814e4 + 3159903e2

+ 300π2(92e4 − 834e2 + 2079)− 7714818
]

+O(ε6).

(5.4.2)

As a non-trivial check of our computation, one can check that these quantities satisfy the
first law of thermodynamics for solitons (5.3.7) up to the required order O(ε6).

We postpone the physical discussion of our soliton results (5.4.2) to section 5.6.

5.5 Small hairy black holes

In this section we construct perturbatively the hairy black holes whose leading order ther-
modynamics was discussed in section 4.4.

5.5.1 Setting up the perturbation problem

As explained in section 5.2, the hairy black holes of our theory are a two-parameter family
of solutions that we can take to be the asymptotic scalar amplitude ε and the horizon
radius R+. Thus, their perturbative construction requires that we do a double expansion
of the fields in powers of ε and R+. In order to be able to solve analytically the equations of
motion (3.0.6)-(3.0.7) we must resort to a matched asymptotic expansion, similar to those
done in a similar context in [51, 125, 53, 126, 97] and also in 4.2.3 before. We divide the
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outer domain of communications of our black hole into two regions; a near-region where
r+ ≤ r � L and a far-region where r � r+. Restricting the analysis to small black holes
that have r+/L � 1, the two regions have an overlapping zone, r+ � r � L. In this
overlapping region, we can match the set of independent parameters that are generated by
solving the perturbative equations of motion in each of the two regions.

The chemical potential of the solution should itself have a double expansion in powers of
ε and R+,

µ =
∑
n≥0

ε2n
∑
k≥0

Rkµ2n,k. (5.5.1)

Indeed, recall that the soliton is the back-reaction of a normal mode of AdS to higher orders.
At leading oder the chemical potential of the soliton is related, via a gauge transformation,
to an AdS normal mode frequency. We saw that this is corrected at higher orders. Thus,
we must allow for similar corrections when the horizon is present. We shall construct the
hairy black hole family whose zero-radius limit is the ground state soliton of section 5.4 (so
with lowest energy for a given charge).5

In the far region, R � R+, the hairy black hole can be seen as a small perturbation in
R+ and ε around global AdS. We use the superscript out when referring to far region fields
which have the double expansion:

fout(R) =
∑
n≥0

ε2n
∑
k≥0

Rk+ f
out
2n,k(R), Aout(R) =

∑
n≥0

ε2n
∑
k≥0

Rk+A
out
2n,k(R),

φout(R) =
∑
n≥0

ε2n+1
∑
k≥0

Rk+ φ
out
2n+1,k(R).

(5.5.2)

This expansion already anticipates that odd (even) powers of the scalar condensate do not
correct the fields f,A (φ).

At each order {n, k} the perturbed equations of motion can be solved analytically (with the
help ofMathematica) to find the far fields up to a total of 6 integration constants (recall that
the equations of motion are a system of 3 second order ODEs). In addition, the system also
depends on the chemical potential corrections µ2n,k. The requirement that the far-region
fields obey the asymptotic boundary conditions (5.2.3) typically fixes 4 of the integration
constants (those associated to φout2n+1,k, one associated to fout2n,k and another to Aout2n,k). We
are left with two integration constants and µ2n,k that will be determined by the requirement
that the far fields match the near-region fields in the overlapping region. To prepare the
system for the matching we need to take the small radius R expansion of f (out), A(out), φout

(with the expansion coefficients available at the order under consideration). We find that
these are singular as R → 0, diverging with a power of R+

R . This indicates that the far-
region analysis breaks down at R ∼ R+. This justifies why the far-region analysis is valid

5A similar construction could be done for excited hairy black holes.
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only for R� R+. Also, it follows that in the far-region we can safely do a Taylor expansion
in R � 1 and ε � 1 since the large hierarchy of scales between the solution parameters
and the distance guarantees that they do not compete.

Consider now the near-region, R+ ≤ R� 1. This time the Taylor expansions in R� 1 and
ε� 1 should proceed with some caution since the small parameters can now be of similar
order as the radius R+. This is closely connected with the fact that the far-region solution
breaks down when R/R+ ∼ O(1). This suggests that to proceed with the near-region
analysis we should define new radial, y, and time, τ , coordinates as

y =
R

R+
, τ =

T

R+
. (5.5.3)

The near region now corresponds to 1 ≤ y � R−1
+ . If we further require that R+ � 1

one sees that the near region corresponds to y ≥ 1 � R+ (and y � ε). In particular, we
can now safely do Taylor expansions in R+ � 1 and ε � 1 since the radial coordinate y
and the black hole parameters have a large hierarchy of scales 6. To have further physical
insight it is also instructive to rewrite the RN-AdS4 solution (4.2.7) in the new coordinate
system (5.5.3):

ds2 = R2
+

(
−f(y)dτ2 +

dy2

f(y)
+ y2dΩ2

2

)
, (5.5.4)

f(y) = 1− 1

y
− 1

y

(
1

2
µ2

(
1− 1

y

)
+R2

+

(
1− y3

))
,

Aτ (y) = R+ AT (y) = R+ µ

(
1− 1

y

)
,

φ(y) = 0.

The explicit factor of R+ � 1 in Aτ (y) indicates that in the near region the electric field
is weak and the system can be seen as a small perturbation around the neutral solution.
The same should hold when we add a small scalar condensate to the system. The near
fields of the hairy black hole thus have the double expansion,

f in(y) =
∑
n≥0

ε2n
∑
k≥0

Rk+ f
in
2n,k(y), Ain(y) =

∑
n≥0

ε2n
∑
k≥0

Rk+A
in
2n,k(y),

φin(y) =
∑
n≥0

ε2n+1
∑
k≥0

Rk+ φ
in
2n+1,k(y).

(5.5.5)

At each order {n, k}, we can solve the perturbed equations of motion analytically to find
the near fields up to a total of 6 near region integration constants. Imposing the horizon
boundary conditions (5.2.5) typically fixes 3 of the integration constants (one associated to

6At the heart of the matching expansion procedure, note that a factor of R+ (one of the expansion
parameters) is absorbed in the new coordinates.
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φin2n+1,k, one to f in2n,k and another to Ain2n,k). The 3 leftover near field integration constants
are left undetermined until we match the far and near region fields in the overlapping
region. For the matching, we first need to restore the original coordinates {T,R} and take
the large radius limit of f in(R), Ain(R), φin(R) (with the expansion coefficients available
at the given order). We find that these diverge as a power of R, which shows that the near
region analysis breaks down at R ∼ 1. This explains why the near region analysis is valid
only for R� 1.

In section 4.2.3 we presented an example of how the mathced asymptotic expansion works.
Hence we do not discuss the details of the procedure but rather present the final thermo-
dynamic results obtained from it. In the publication [1] that this research produced one
can find a detailed computation as well as the final results for the metric, gauge and scalar
fields. These functions are in Appendices C.1 and C.2 of [1].

5.5.2 Thermodynamic quantities

In the presentation of our results, we take ε � 1 and R+ � 1 and we assume that
O(ε2) ∼ O(R+). The latter assumption implies that terms with the same (n+k) contribute
equally to the perturbative expansion, i.e. O

(
ε0, R2

+

)
∼ O

(
ε2, R+

)
∼ O

(
ε4, R0

+

)
. We did

the consistent perturbative expansion analysis up to (n+k) = 2, which is sufficient for our
purposes. Extending the perturbative analysis to higher orders is possible, but increasingly
cumbersome.

The fields computed in section 5.5 allow to compute the relevant physical properties of
hairy black holes. The dimensionless mass M , electric charge Q, chemical potential µ,
entropy S, and temperature T are:

M/L =
[( 9

4e2
+

1

2

)
R+ +

6(2e2 − 9)

πe4
R2

+ +O(R3
+)
]

+ ε2
[9π

32
+

9(27π2 − 2(e2 + 9))

128e2
R+

+O(R2
+)
]

+ ε4
[
− 3π(−301e2 + 60π2(e2 − 9) + 2898)

10240
+O(R1

+)
]

+O(ε6),

Q/L =
[ 3

2e
R+ +

2(2e2 − 9)

πe3
R2

+ +O(R3
+)
]

+ ε2
[3πe

32
+

(−38e2 + 81π2 + 90)

128e
R+

+O(R2
+)
]

+ ε4
[
− πe(−196e2 + 60π2(e2 − 9) + 2583)

10240
+O(R1

+)
]

+O(ε6),

µ =
[3

e
+

4(2e2 − 9)

πe3
R+ +

(2e2 − 9)[−256e2 + 9π2(10e2 − 9) + 2688]

32π2e5
R2

+

+O(R3
+)
]

+ ε2
[21(e2 − 3)

32e
+

1

9600πe3

[
75π2(236e4 − 1809e2 + 4212)

− 8(25330e4 − 264861e2 + 685503)R+

]
+O(R2

+)
]

+ ε4
[ 1

204800e

[
− 339814e4

+ 3159903e2 + 300π2(92e4 − 834e2 + 2079)− 7714818
]

+O(R1
+)
]

+O(ε6),
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S/L2 =πR2
+, (5.5.6)

TL =
1

4πR+

{[2e2 − 9

2e2
−

12
(
2e2 − 9

)
πe4

R+ +
1

32π2e6

(
96π2e6 − 540π2e4 + 512e4

+ 2916π2e2 − 13824e2 − 2187π2 + 51840
)
R2

+ +O(R3
+)
]

+ ε2
[
−

3
(
5e2 + 9

)
32e2

− 3R+

6400πe4
(7300π2e4 − 89760e4 − 87750π2e2 + 982992e2 + 289575π2 − 2640816)

+O(R2
+)
]

+ ε4
[ 1

204800e2
(−66600π2e4 + 716782e4 + 653400π2e2 − 6564933e2

− 1761750π2 + 16179426) +O(R1
+)
]

+O(ε6)

}
.

In the next section we discuss physical checks to these quantities and withdraw physical
conclusions.

5.6 Discussion of physical properties

5.6.1 Checking the hairy solutions and their interpretation

The thermodynamic quantities (5.5.6) for the hairy black hole must pass a few checks that
already give valuable information about their physical interpretation.

Firstly, when we set the horizon radius to zero, R+ → 0, we get the thermodynamical
quantities (5.4.2) of the soliton. Recall that the latter was obtained without any matching
asymptotic expansion. This also confirms that the soliton is the zero horizon radius limit
of the hairy black hole. We have assumed this was the case in our construction and the
fact that the computation can be done is consistent with it.

Secondly, when we set the scalar condensate amplitude to zero, ε → 0, we get the ther-
modynamical quantities (4.2.10) of the RN-AdS4 black hole, with a very specific chemical
potential namely,

µ =
3

e
+

4(2e2 − 9)

πe3
R+ +

(2e2 − 9)[−256e2 + 9π2(10e2 − 9) + 2688]

32π2e5
R2

+ +O(R3
+). (5.6.1)

That is, although the RN-AdS4 black hole is a 2-parameter family of solutions, the ε →
0 limit of the hairy black hole gives a particular 1-parameter sub-family of RN-AdS4

parametrized by R+ and chemical potential fixed by (5.6.1). This is precisely the RN-
AdS4 1-parameter family at the onset of the superradiant instability studied in section
4.2.3. To see this is indeed the case start by recalling that in section 4.2.3 we studied
scalar field perturbations with Fourier time dependence φ(T,R) ∼ e−iωTφ(R) and found
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that the frequency is quantized as described in (4.2.14) and (4.2.21). In particular, the
frequency has a positive imaginary part for ω > eµ signalling the superradiant instability.
The onset of the superradiant instability occurs when the imaginary part of the frequency
vanishes and we can work in the U(1) gauge where the real part of the frequency vanishes.
If we impose these superradiant onset conditions on (4.2.21) and solve with respect to the
chemical potential in a series expansion in R+ up to order O

(
R2

+

)
we precisely get (5.6.1).

This is an important check to our computations and, together with the information from
the last paragraph, confirms that hairy black holes are indeed a 2-parameter family of
solutions that spans an area in a phase diagram that has the onset curve of the RN-AdS4

superradiance and the soliton curve as boundaries. At leading order, these are the bound-
aries (4.4.5) predicted by the simple thermodynamical model of section 4.4 and that will
be very clear in the left panel of Fig. 5.6.1 (red and black curves).

The first law of thermodynamics provides the third check. Indeed, we can explicitly verify
that the thermodynamic quantities (5.5.6) do obey the first law (5.3.6) up to order (n+k) =

2. We emphasize this is a fundamental and non-trivial check of our results.

To summarize, we have constructed analytically the hairy black hole within perturbation
theory up to order (n + k) = 2 (and we could extend this construction to higher order).
This was done solving directly the perturbed equations of motion (3.0.6)-(3.0.7) of the
theory as a boundary value problem.

We can confirm that the simple non-interacting thermodynamic model of section 4.4 −
which does not use the equations of motion − yields the correct leading order thermody-
namics, i.e. the leading terms of (5.5.6). First note that at leading order it follows from
(5.5.6) that µ = 3

e . Assuming, as justified above, that O(ε2) ∼ O(R+), the leading order
contributions of the expansion (5.5.6) allow to express analytically R+ and ε in terms of
M and Q,

R+ =
4e(eM − 3Q)

2e2 − 9
+O

(
M2, Q2,MQ

)
,

ε =

√
32 ((2e2 + 9)Q− 6eM)

3πe (2e2 − 9)
+O

(
M2, Q2,MQ

)
,

(5.6.2)

which we insert in the expressions for the other thermodynamic quantities to find that at
leading order in M and Q one has:

µ =
3

e
+O (M,Q) ,

S =
16πe2(Me− 3Q)2

(9− 2e2)2 +O
(
M2, Q2,MQ

)
,

T =

(
9− 2e2

)2
32πe3(Me− 3Q)

+O
(
M2, Q2,MQ

)
.

(5.6.3)
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These quantities do match the result of the non-interacting model (4.4.4). This confirms
that the non-interacting thermodynamic model, in spite of its crude simplicity, is quite
robust and does indeed capture the fundamental leading order properties of the hairy black
hole system at very low cost. This explicit confirmation adds to those done in similar hairy
black hole systems in [51, 125, 53, 126, 30, 98].

A more detailed discussion of the regime of validity of our perturbation theory is also in
order. By construction, it should be valid only for ε � 1 and R+ � 1. On the other
hand, the scalar charge of the hair must obey e & 3√

2
∼ 2.12 to have superradiant hairy

black holes. However, since the black holes are a small expansion around AdS4, e should
not be too large to avoid large back-reactions. This suggests that it is appropriate to
require at most ε . 0.1, R+ . 0.1 and 3√

2
. e . 3, say. Inserting these bounds into the

thermodynamic formulas (4.2.10), (5.4.2), and (5.5.6) we get approximate upper bounds
for the physical charges. For example, for e = 2.5 we should look into masses and charges
that, in AdS units, are themselves below 10−1. However the reader interested on making
a direct comparison between our perturbative results and exact numerical constructions
that emerge from a nonlinear code or from the endpoint of the superradiant time evolution
might require more precise statements. We will have the opportunity to give precise criteria
in the following discussion: see footnote 8.

We have found that the gravitational Higgs model with action (3.0.1) admits several solu-
tions: global AdS4, RN-AdS4 BH, the ground state soliton, the ground state hairy black
hole and an infinite tower of excited solitons and hairy black holes7. For a given elec-
tric charge, the latter excited solutions always have larger energy than the ground state
partners so we do not discuss them further.

Naturally, these thermal phases of the theory compete with each other. This competi-
tion can be framed in one of the three possible ensembles: the microcanonical, canonical
or grand-canonical ensembles. Hairy black holes are the dominant solution in the mi-
crocanonical ensemble as discussed in the next subsection. However, they are never the
dominant solution in the canonical and grand-canonical ensemble, thus we will not discuss
those ensembles here. The discussion of the canonical and grand-canonical phase diagrams
can be found in the publication produced from this research [1] sections VII.C and VII.D.

Recall that the thermodynamic quantities of the RN-AdS4 black hole, (ground state) soliton
and hairy black hole are given in (4.2.10), (5.4.2), and (5.5.6), respectively [150, 151].

Our results are better illustrated with some plots. Recall that the gravitational Higgs
theory with action (3.0.1) is only fully defined once the particular value for the scalar field

7Recall that the ground state solutions have their perturbative root in the lowest normal mode frequency
of global AdS4, and the excited states emerge from the remaining infinite tower of normal mode frequencies.
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charge q = e/L is specified. For definiteness we will choose the particular value e = 2.5 in
our plots.

5.6.2 Phase diagram in the microcanonical ensemble

In the microcanonical ensemble the energyM and electric charge Q of the system are fixed
and the the entropy S is the relevant thermodynamic potential to discuss the competition
between the several thermal phases: the phase with higher entropy is the favoured one
(global AdS4 and the soliton have vanishing entropy).

In Fig. 5.6.1 we display the phase diagram M vs Q of the microcanonical ensemble for
e = 2.5 (our perturbative expressions are valid for smallM,Q). To make the diagram more
clear, in the vertical axis we actually plot the difference between the mass of the solution
and the mass of the extremal RN-AdS4 with the same electric charge, ∆M ≡ M −Mext.
So RN-AdS4 black holes exist in regions I and II where ∆M ≥ 0. The black line with
negative slope describes the soliton. Hairy black holes exist in regions II and III: they
fill the area limited by the soliton curve (where R+ → 0) all the way up to the magenta
line with positive slope (with ε = 0). The latter also describes RN-AdS4 black holes at
the onset of superradiance. So RN-AdS4 black holes below (above) the magenta line are
unstable (stable) to superradiance.

In region II there is no uniqueness since RN-AdS4 and hairy black holes coexist with the
same M and Q. To find the preferred phase in the microcanonical ensemble we must
compare their entropy S. We find that for a given electric charge Q the hairy black hole
always has higher entropy and is thus the favoured solution, whenever they coexist. This
is illustrated with a particular example in the right panel of Fig. 5.6.1 where we fix the
electric charge to be Q/L = 0.01 and plot S vs M (again for e = 2.5). The blue line
describes the RN-AdS4 black hole and extends from arbitrarily large M and S all the way
down to the extremal configuration A. It is stable along this path until it reaches point B
that signals the onset of the superradiant instability (so BA describes unstable RN-AdS4).
At this point B there is a second order phase transition8 to the hairy black hole branch
that extends all the way down to the zero-horizon radius (S = 0) where it meets the soliton
(point C). This dominance of the hairy black hole in the microcanonical ensemble extends
to all values of the electric and scalar charges (again, in the regime where our perturbative
results hold).

8 This provides a further check of our computations. Indeed, note that the first law requires that at a
second order phase transition the slope dS/dM is the same for the two branches since T is the same at
the bifurcation point (and dQ = 0 in the right panel of Fig. 5.6.1). This is clearly the case in our plot.
However, if we start departing from the regime of validity of our perturbation analysis we increasingly
find that the merger is not perfect and the slopes of the two branches no longer match. This is the best
criterion to identify the regime of validity of (5.5.6).
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Figure 5.6.1: Left Panel: Microcanonical ensemble phase diagram ∆M = M −Mext vs
Q for e = 2.5. RN-AdS4 black hole exist in regions I and II, with the magenta line with
positive slope describing the onset curve of superradiant instability. The black line with
negative slope describes the soliton. Hairy black holes exist in between the two above lines,
i.e. in regions II and III (red shaded). Right Panel: Entropy as a function of the mass
at constant value of the charge Q/L = 0.01 and e = 2.5. The unbounded blue line starting
at A (extremality) is the RN-AdS4 black hole and the red line BC is the hairy back hole
branch that ends on the soliton C. The merger point B is the superradiant zero-mode.

Our findings also permit robust conclusions about the endpoint of the superradiant in-
stability of RN-AdS4 BHs. Typically, numerical simulations are done at fixed energy and
charge. Consider starting with a RN-AdS4 that is within the curve AB and thus unstable
to superradiance. By the second law of thermodynamics, the entropy of the system can
only increase. Assuming that there is no other black hole solution in the spectrum of the
theory besides the ones discussed so far, the system must evolve towards the hairy black
hole that has the sameM and Q but higher entropy. The latter can be pinpointed in (5.5.6)
or in Fig. 5.6.1. By construction, this hairy black hole is stable to superradiance and we
have no arguments suggesting that it is unstable to any other mechanism. Of course, our
findings say nothing about how the system actually evolves in time but the endpoint of
the numerical simulation that gives this information can be tested against (5.5.6).9

9Also recall that for
√

3/2 < e < 3/
√

2 there are hairy black holes that emerge from the near-horizon
scalar condensation instability that are not captured by our “superradiant" solutions (5.5.6). But they can
be found as the endpoint of a time evolution simulation or by solving numerically the elliptic system of
equations (3.0.6)-(3.0.7).



CHAPTER 6

Evading no-hair theorems: hairy black holes in a Minkowski box

In this Chapter we solve the system of equations of the Einstein-Maxwell theory with
a charged scalar field enclosed in a cavity. Our main goal is to find the regular and
asymptotically flat charged hairy black hole of the theory that describes the endpoint of
the instabilities presented in Chapter 4. We further analyse the thermodynamic properties
in the microcanonical ensemble of the known solutions and conclude that hairy black holes
are the dominant phase in their region of existence.

6.1 Summary of results

This Chapter is devoted to the study of the phase diagram of static asymptotically flat
(regular) solutions of the Einstein-Maxwell theory with a complex scalar field confined
inside a box. In particular, this can be the phase diagram in the microcanonical ensemble,
where we plot the entropy of the solutions as a function of their mass and electric charge.
We use dimensionless quantities measured in units of the box radius L. A familiar member
of this phase diagram is the Reissner-Nordström black hole (RN BH) placed inside the
cavity. The interior solution of this caged RN BH was already discussed in the seminal
works [152, 153, 154] and, more recently, in [155, 114]. This solution has vanishing scalar
field but is linearly unstable to a scalar field perturbation. At the onset of the instability,
the scalar field perturbation is regular both at the past and future event horizons of the

81
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black hole. Consequently, we might expect that the back-reaction of this linear scalar
perturbation to higher orders in perturbation theory results in a black hole solution that
is regular everywhere and asymptotes to Minkowski spacetime. By continuity, this hairy
black hole solution should extend away from the onset curve. That is to say, in the phase
diagram, the instability onset curve of caged RN BH should also signal a bifurcation to a
new branch of solutions of asymptotically flat hairy black holes. This new family should
exist for a wide range of mass and electric charge. In particular, this should lead to non-
uniqueness of solutions since hairy and caged RN BH should exist with the same mass and
charge.

In the region of mass and charge where they co-exist, hairy black holes have higher (dimen-
sionless) entropy than caged RN BH. Thus, an unstable caged RN BH naturally evolves
in time into the hairy black hole with the same mass and charge while preserving the
second law of thermodynamics. These hairy black holes describe the endpoint of the time
evolution simulations done in [107, 117, 118].

Additionally, hairy black holes that we have been describing have a zero horizon radius
limit where they reduce to a hairy soliton solution. This is a horizonless asymptotically
flat solution with a scalar field confined inside the Minkowski cavity. Again, gravitational
collapse is balanced by the electric repulsion. Under a U(1) gauge transformation this
hairy soliton has a dual boson star description in which the scalar field with frequency ω
has time dependence eiωt. Such a solution exists since it is the back-reaction of a normal
mode that fits inside a Minkowski cavity (however the gravitoelectric fields have no time
dependence since they are sourced by the norm of a complex scalar field).

To construct these hairy solutions we solve the equations of Einstein-Maxwell theory with a
complex scalar field that is forced to be confined inside the box. Ref. [114] already discussed
some thermodynamic properties of the hairy solutions in the grand-canonical ensemble.
However, [114] constructed these solutions numerically and focused their attention on the
description of the solutions only in the interior of the box. We will complement and extend
their analysis in distinct directions. First, we find the hairy solutions analytically within
perturbation theory which will allow to unveil physical aspects of the solution. More
importantly, we will extend the solutions beyond the cavity and construct the full solution
also in the exterior region. This is fundamental to find the energy-momentum of the box,
i.e. the Lanczos-Darmois-Israel surface stress tensor that the cavity must have to yield a
solution that obeys the Israel junction conditions and is thus continuous across the surface
layer [142, 143, 144, 145]. To our best knowledge, this is the first instance where the Israel
surface tensor is discussed in black hole bomb systems.

The discussion of black hole bombs is incomplete and even misleading without analysing
this Israel surface stress tensor. For general cavities, the associated Israel tensor does not
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obey the energy conditions, in particular the weak energy condition. To have a hairy black
hole-mirror system that obeys the energy conditions we have to start with a box in a
Minkowski background that already has a specific energy-momentum content (hence non-
vanishing energy density and pressure) even before we place a soliton or horizon inside it.
We parametrize these quantities with a parameter η that has a non-vanishing value to yield
a physical hairy black hole-mirror system. In view of our findings, it will be interesting to
revisit the time evolutions of [107, 117, 118] to discuss also the surface stress tensor of the
system.

Refs. [113, 115, 116] also discussed hairy black holes and solitons in the context of black
hole bomb setups. However, their hairy solutions do not confine the scalar field inside the
box. Thus this scalar field can leak from the box and extend to the asymptotic region where
it sources logarithmic divergences in the gravitoelectric fields. Consequently, they are not
asymptotically flat. Our solutions are fundamentally distinct since they are asymptotically
flat (and regular everywhere) hairy solutions that evade the no-hair theorems of [46, 132,
47, 133]. The presence of the box and its boundary conditions/surface stress tensor allow
one to find that the RN BH solution is not the only family of asymptotically flat, spherically
symmetric and static (regular) black hole solutions of Einstein-Maxwell theory.

An interesting byproduct of our analysis is that we will conclude that the thermodynamics
and physics of black hole bomb systems is most appropriately discussed in terms of the
Brown-York quasilocal thermodynamic quantities of the system [146]. Recall that the
Israel surface stress tensor can be obtained integrating a Gauss-Codazzi equation along
the normal direction to the surface layer [142, 143, 144, 145, 156]. Equivalently, it can be
obtained by taking the difference of the Brown-York quasilocal energy-momentum tensor
outside and inside the surface layer [146]. These observations are the starting point to
conclude that black hole bombs (and other systems with Israel boundary shells) must obey
a quasilocal version of the first law of thermodynamics. This important property seems
to have been missed in previous discussions of systems with Israel junction conditions.
In particular, we propose that these gauge invariant quantities are relevant quantities to
monitor in time evolution studies of black hole bomb systems.

The plan of the Chapter is as follows. In section 6.2 we discuss the boundary conditions
that supplement the equations of motion in (3.0.6). Special attention is given to the
discussion of the Israel junction conditions and Brown-York quasilocal charges. Hairy
solitons are constructed within perturbation theory in section 6.4. The properties of RN
BH confined in a box are discussed in section 6.5. Perturbation theory and a matched
asymptotic expansion are used to construct the hairy black holes in section 6.6. The
physical properties of the solutions are then discussed in detail in section 6.7. We describe
the thermodynamic properties of the solutions, the Israel surface stress tensor of the system
and analyse the necessary conditions to obey the energy conditions.
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6.2 Boundary conditions

We consider the theory described by (3.0.1) with cosmological constant Λ = 0, and solu-
tions to the theory of the form (3.0.2). The set of equations of motion of the theory are
given in (3.0.6). In this Chapter we are restricting to massless scalar fields.

The most notable solution of (3.0.1) is Minkowski spacetime: f(R) = g−1(R) = 1 A(R) =

φ(R) = 0. We are interested in solutions that asymptote to this background.

In order to have a well-posed boundary value problem we must specify the boundary
conditions in the inner and asymptotic boundaries of our spacetime. Additionally, we need
to impose junction conditions at the timelike hypersurface Σ at R = 1 where the box is
located. We are interested in asymptotically flat solutions with vanishing scalar field at
and outside this box, φ(R ≥ 1) = 0.

The inner boundary can be the origin R = 0 of our coordinate system (for horizonless
solitonic solutions) or a Killing horizon with radius R = R+ defined as the locus f(R+) =

0, when we have a black hole solution. The system is described by three second order
ODE’s which means that there are six arbitrary integration constants when we do a Taylor
expansion around the inner boundary. However, as a Dirichlet boundary condition we
need to set three of these to zero in order to eliminate terms that would diverge at this
boundary [50]. We are thus left with only three constants f0, A0, φ0 (say) such that the
regular fields have the Taylor expansion:

f(0) = f0 +O(R), A(0) = A0 +O(R), φ(0) = φ0 +O(R), (6.2.1)

at the origin of the soliton, or

f(R+) = f0(R−R+) +O((R−R+)2),

A(R+) = A0(R−R+) +O((R−R+)2), φ(R+) = φ0 +O((R−R+)2),
(6.2.2)

at the horizon radius of a black hole solution. Here we made the choice of working in the
gauge where A(R+) = 0.

Consider now the outer boundary of our spacetime, namely the asymptotic infinity. Outside
the box φ = 0 and the equations of motion are solved by the solution: fout(R) = cf −
M0
R + ρ2

2R2 , A
out(R) = cA + ρ

R and gout(R) = cf/f
out(R) (onwards we use the superscript

out to represent fields outside the box). Here, cf ,M0, cA and ρ are arbitrary integration
constants. These are not constrained, i.e. for any value of these constants we have an
asymptotically flat solution. As argued in (3.0.4) we set cf = 1.
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The solution to the equations of motion outside the box is

f(R)
∣∣
R≥1

= 1− M0

R
+

ρ2

2R2
, A(R)

∣∣
R≥1

= cA +
ρ

R
, φ(R)

∣∣
R≥1

= 0 , (6.2.3)

Birkhoff’s theorem for the Einstein-Maxwell theory states that the only static spherically
symmetric asymptotically flat solution is described by the RN BH solution (6.2.3). Note
however that (6.2.3) leaves three free integration constants, M0, cA, ρ, which will be deter-
mined once we have the solution inside the box.

Our solutions are asymptotically flat. Therefore, some of the parameters in (6.2.3) are
related to the ADM conserved charges [157]. The adimensional ADM mass and electric
charge of the system are given by (in units GN ≡ 1):

M/L = lim
R→∞

R2f ′(R)

2
√
f(R)g(R)

=
M0

2
,

Q/L = lim
R→∞

R2A′(R)

2f(R)g(R)
= −ρ

2
.

(6.2.4)

These ADM conserved charges measured at the asymptotic boundary include the contri-
bution from the energy-momentum content of the box that confines the scalar hair. In the
next subsection we discuss the effect of this box in more detail.

6.2.1 Junction conditions at the box surface layer and associated Israel
surface tensor

Our discussion of the boundary conditions at the inner and outer boundaries of our inte-
gration domain is complete. However, the requirement that the scalar field vanishes at the
box Σ located at R = 1 (and outside it) comes with a cost. We will construct our hairy
solutions perturbatively in the amplitude ε of the scalar field. In our perturbation scheme,
we define unambiguously the expansion parameter ε to be such that φout(R ≥ 1) = 0 and,
in the interior of the box, the first derivative of the scalar field is ε at all orders of the
expansion,1

φin
∣∣
R=1

= φout
∣∣
R=1

= 0, φout(R) = 0, φ′ in
∣∣
R=1
≡ ε, (6.2.5)

for R ≤ 1 the scalar field will be forced to have a Taylor expansion of the form φ
∣∣
R=1

=

ε(R − 1) + O(ε(R − 1)2) + O(ε3(R − 1)2). We are forcing a jump in the derivative of
the scalar field normal to the cavity hypersurface. The surface layer Σ must have a scalar

1Another natural choice to fix the perturbation scheme would have been to fix the expansion parameter
to be the value of the scalar field at the horizon (black hole case) or at the origin (soliton case) at all
orders. However, with this choice it would not be so straightforward to show that the zero horizon radius
limit of the hairy black hole is the hairy soliton.
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charge density 4πρφ = −∂RΦ
∣∣
R=1

that sources this jump. The difference between the
scalar field charge contained on a sphere just outside (where it vanishes) and just inside
the surface layer is then

[Qφ] ≡ Qφ
∣∣out
R=1
−Qφ

∣∣in
R=1

= −ε (6.2.6)

which defines unambiguously ε.

Naturally, this forced condition on the scalar field has a further cost: we need to impose
junction conditions at the timelike hypersurface Σ − defined by f(R) = R−1 = 0 and with
outward unit normal nµ = ∂µf/|∂f| (nµnµ = 1) − on the other fields of the system. Ideally,
we would like to have a smooth crossing, i.e. that the gravitational and gauge fields and
their normal derivatives are continuous at Σ. But we are not guaranteed that this can be
done. To discuss this issue further it is good to set some notation. From the perspective
of an observer in the interior region, the cavity surface Σ is parametrically described by
R = 1 and T = T in(τ) = τ such that the induced line element and induced gauge 1-form
of the shell read

ds2|Σin = hinab dξadξb = −f in|R=1dτ2 + dΩ2
2 ,

A|Σin = aina dξa = Ain|R=1dτ , (6.2.7)

where ξa describe coordinates in Σ, hinab is the induced metric in Σ and aina is the induced
gauge potential in Σ. On the other hand, as seen from outside the cavity shell, Σ is
parametrically described by R = 1 and T = T out(τ) = Nτ so that the induced line
element and the induced gauge 1-form are

ds2|Σout = houtab dξadξb = −N2fout|R=1dτ2 + dΩ2
2 ,

A|Σout = aouta dξa = NAout|R=1dτ , (6.2.8)

The reparametrization freedom parameter N will be chosen as follows. We use the scaling
symmetry (3.0.4) in each region to set

f in
∣∣
R=1

= 1 , fout
∣∣
R→∞ = 1 , (6.2.9)

at all orders in ε; note that the second condition repeats the statement just before (6.2.3).
An appropriate choice of the reparametrization freedom parameter N will allow (6.2.9) to
be obeyed.2

The junction conditions required to join smoothly two spacetimes at a timelike hypersurface
Σ were studied by Israel [142, 143, 144, 145] built on previous work of Lanczos and Darmois.
Next, we review these conditions. A solution is smooth at Σ if and only if: 1) the induced

2Note that, in an alternative but equivalent scheme, we could choose to parametrize Σ by R = 1 and
T = T out(τ) = τ and then transfer the reparametrization freedom encoded by N into fout0 and Aout0 . In
this case one would have fout

∣∣
R→∞ 6= 1 instead of (6.2.3), (6.4.3) or (6.6.4).
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metric hab and induced gauge potential aa are continuous (i.e.ds2|Σin = ds2|Σout and
A|Σin = A|Σout), and 2) the extrinsic curvature Kab (essentially the normal derivative
of the induced metric) and the normal derivative of the induced gauge field, faR, are
continuous. If we denote the solution inside (outside) Σ by the superscript in (out), the
Israel junction conditions can be written as

aina
∣∣
R=1

= aouta

∣∣
R=1

, (6.2.10a)

hinab
∣∣
R=1

= houtab

∣∣
R=1

; (6.2.10b)

f inaR
∣∣
R=1

= foutaR

∣∣
R=1

, (6.2.10c)

Kin
ab

∣∣
R=1

= Kout
ab

∣∣
R=1

; (6.2.10d)

where hab = gab − nanb is the induced metric at Σ and Kab = h c
a ∇cnb is the extrinsic

curvature.

If, as it is our case, the exterior curvature condition (6.2.10d) is not satisfied then the
solution is singular at Σ. This is interpreted as due to the presence of a Lanczos-Darmois-
Israel surface stress tensor Sab at the hypersurface layer proportional to the difference of
the extrinsic curvature on both sides of the hypersurface. More concretely, the Lanczos-
Darmois-Israel surface stress tensor induced in Σ is [142, 143, 144, 145]

Sab = − 1

8π

(
[Kab]− [K]hab

)
, (6.2.11)

where K is the trace of the extrinsic curvature and [Kab] ≡ Kout
ab

∣∣
R=1
− Kin

ab

∣∣
R=1

. This
surface tensor is the pull-back of the energy-momentum tensor integrated over a small
region around the hypersurface Σ. It is obtained by integrating the appropriate Gauss-
Codazzi equation [142, 143, 144, 145, 156]. Essentially, (6.2.11) describes the energy-
momentum tensor of the cavity (the “internal structure" of the mirror) that we have to
build to confine the scalar field inside. With our explicit construction of the hairy solutions
of the system we will be able to compute this Lanczos-Darmois-Israel stress tensor. To
our best knowledge, this gives the first explicit description of the box matter content of a
black hole bomb.

Lanczos-Darmois-Israel surface stress tensor obeys the conservation law [142, 143, 144, 145],

DbSab = −Tµνhµanν (6.2.12)

where Da is the covariant derivative w.r.t. the 3-dimensional induced metric hab on Σ, hµa
is the 4-dimensional tensor that projects quantities onto the hypersurface Σ, and Tµν the
energy-momentum tensor of (3.0.1).3 This follows from the definition (6.2.11) and from
the ADM Hamiltonian constraint (from the contracted Gauss-Codazzi equation along the

3For our hairy system, nµTµνhνb = 0. Thus (6.2.12) boils down to DbSab = 0.
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normal to Σ). On the other hand, the ADM momentum constraint, the normal-normal
contracted Gauss-Codazzi equation yields the relation [142, 143, 144, 145]

1

2

(
Kout
ab +Kin

ab

)
Sab = [Tµνn

µnν ] (6.2.13)

where the square brackets again represent the difference between the quantity just outside
and just inside Σ.

In our case the Lanczos-Darmois-Israel surface stress tensor (6.2.11) ensures that the scalar
hair is confined to the interior of the box with radius R = 1. The outward normal to Σ

is n =
√
g dr, the 3-dimensional induced metric on Σ is hab = gab (for a, b = {t, θ, φ}) and

the non-vanishing extrinsic curvature components are

Kt
t = − f ′(R)

2f(R)
√
g(R)

, Ki
j =

1

R
√
g
δij , (6.2.14)

with δij being the Kronecker symbol (i, j = θ, φ). One of the main results of our study will
be that we cannot make the extrinsic curvature (6.2.14) continuous across Σ if we require
that the scalar field vanishes at and outside the box − see (6.2.5) − as is required for the
black hole bomb system.

6.3 Brown-York quasilocal formalism and the Israel surface
stress tensor

The Lanczos-Darmois-Israel surface stress tensor (6.2.11) was originally derived by inte-
grating the Gauss-Codazzi equations along the direction orthogonal to the thin surface
layer [143, 142, 156]. However, it can be equivalently derived using the quasilocal Brown-
York formalism [146]. This derivation further enlightens the physical interpretation of the
tensor [146]. Therefore, here we will highlight some of the key properties of the Brown-York
energy-momentum tensor and its relation with the Lanczos-Darmois-Israel tensor.

The Brown-York surface energy-momentum stress tensor of a R = const timelike hyper-
surface Σ (with unit normal n, induced metric hab and extrinsic curvature Kab) − e.g. our
cavity wall − is given by [146]

Tab = − 1

8π

(
Kab −Khab

)
. (6.3.1)

It follows from the Einstein equation, Gµν = 8πTµν , that the surface energy-momentum
tensor Tab obeys the conservation law DaTab = nµTµνh

ν
b, which in our case reduces simply
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to DaTab = 0 since nµTµνhνb = 0.4

The Brown-York energy, momentum and spatial stress surface densities on Σ are computed
introducing a T = const spacelike hypersurface ΣT with unit normal u (u2 = −1; in
our case u =

√
fdT ) that intersects orthogonally the timelike hypersurface Σ at a 2-

dimensional surface B (in our case a 2-sphere of radius R, B ≡ S2). The statement that
ΣT is orthogonal to Σ means that u · n|Σ = 0. Then the unit normal n in spacetime to
the three-boundary Σ is also the unit normal in ΣT to the two-boundary B. In these
conditions, let σab = gab − nanb + uaub be the induced metric on B, σ be the associated
determinant, and let i, j run over the coordinates of the 2-sphere such that σai is the 3-
dimensional tensor that projects quantities onto B. Then the Brown-York surface energy
density ρ̃, surface momentum density j̃i and spatial stress surface densities p̃ij are

ρ̃ ≡ uaubT ab = −T TT , (6.3.2a)

j̃i ≡ −σiaubT ab, (6.3.2b)

p̃ij ≡ σiaσjbT ab. (6.3.2c)

To these expressions, we must still apply the appropriate reference background (denoted
by the subscript 0) subtraction procedure detailed in [146]. For example, the physical
energy surface density is ρ = ρ̃− ρ̃0 and similarly for the other quantities. In our case the
reference background for this subtraction procedure is Minkowski spacetime. Once this is
done we find that, for our system, the Brown-York surface charge densities on a 2-sphere
with radius R are:

ρL =
1

4π

1

R

(
1− 1
√
g

)
, (6.3.3a)

ji = 0, (6.3.3b)

pij/L =
R2

8π

(
f ′

2f
√
g

+
1

R
√
g
− 1

R

)
σij . (6.3.3c)

The Brown-York quasilocal mass contained inside a 2-sphere with radius R = 1 is then
(GN ≡ 1)

M/L =

∫
B
d2x
√
σρ

= R

(
1− 1
√
g

) ∣∣∣
R=1

. (6.3.4)

Note that, as required for a good definition of quasilocal mass, when we send the S2 radius
to infinity, R → ∞, the Bown-York mass (6.3.4) reduces to the ADM mass (6.2.4). This

4The quantities Da and hνb were already defined below (6.2.13). After (6.3.5) it will be clear that
(6.2.11) follows from (6.3.1).
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is explicitly checked using (3.0.7) and (6.2.3).

As highlighted in [146], by construction, the Lanczos-Darmois-Israel surface energy tensor
Sab (6.2.11) of the thin shell Σ (with R = 1 in our case) is given by the difference between
the Brown-York surface tensor just outside and inside the surface layer

Sab ≡ [Tab] = Tab
∣∣out
R=1
− Tab

∣∣in
R=1

, (6.3.5)

The Brown-York quasilocal charge inside a 2-sphere with radius R = 1 follows from Gauss’s
law evaluated at the spherical boundary,

Q/L|R→1 =
1

8π

∫
Σ
?F

=
√
g(R)

R2A′(R)

2g(R)f(R)

∣∣∣
R=1

. (6.3.6)

To complete the thermodynamic description of our solutions we still need to define the
chemical potential, temperature and entropy. The chemical potential is defined as the
difference between the gauge potential at the box and at the horizon,

µ = A(1)−A(R+). (6.3.7)

Finally the temperature and the entropy are defined from the surface gravity at the horizon
and from the horizon area:

THL = lim
R→R+

f ′(R)

4π
√
f(R)g(R)

, S/L2 = πR2
+. (6.3.8)

The quasilocal mass and electric charge must satisfy a quasilocal form of the first law of
thermodynamics:

dM = TH dS + µdQ, for black holes, (6.3.9)

dM = µdQ, for solitons. (6.3.10)

We will use these relations as a non-trivial check of our solutions.
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6.4 Small solitons (boson stars) confined in a box

Consider a box Σ placed at r = L (i.e.R = 1) in a Minkowski background with a constant
gauge field A = A0 dT . We can now consider adding a scalar field φ(R) to get an asymp-
totically flat hairy soliton that is regular at the origin and vanishes at and outside the
box, φ(R ≥ 1) = 0. Here, we will construct this solution perturbatively in the amplitude
ε of the scalar field. In our pertubation scheme, we choose unambiguously our expansion
parameter to be ε ≡ φ′(R = 1) at all expansion orders in ε (there are no corrections to
φ′(R = 1) at order ε2 or higher). Also, we find the energy-momentum content that the
thin shell Σ must have to yield a physical setup that obeys the energy conditions.

Not all perturbations fit inside the box. Those that do so are the normal modes of the
system and have their dimensionless frequency Ωp ≡ ωpL quantized as

Ω`,p =
√
j2
`+ 1

2
,p

+M2 −A0e (6.4.1)

as described in Chapter 4. Here, M and e are the dimensionless mass and charge of the
scalar field, respectively, and ` and p are the angular and radial quantum numbers that give
the number of nodes of the normal mode along the polar and radial directions, respectively.
Finally, j`+ 1

2
,p is the location of the zeros of the Bessel function Jν(z), for ν = `+ 1

2 ∈ R.
We work in a gauge where the scalar field is static: its quantized frequency vanishes at
the expense of fixing an appropriate chemical potential A0 for the background field. In
these conditions, the ground state solution (with lowest energy, p = 1) for a spherically
symmetric (` = 0) massless scalar field is described by Ω0,1 = j 1

2
,1 − A0e = π − A0e. In

the static gauge, the background gauge field is given by A0 = π
e . This is the case we

will describe in detail. Solutions with different parameters `, p,M can be constructed in a
similar way.

We can now ask whether we can back-react this normal mode solution to higher orders
in perturbation theory (i.e. to higher orders in the amplitude ε) and eventually at full
non-linear order. This question has a positive answer if we can keep the solution with
the desired asymptotics regular at the origin at all orders. If so, the theory admits a
soliton solution. Naturally, as the order of the expansion grows beyond linear order, the
non-linearities of the field equations imply that the scalar field sources corrections on the
gravitational and electric field. Therefore, not only φ but also f and A have an expansion
in the amplitude ε. Furthermore, note that although the scalar field vanishes outside the
box at all perturbation orders, the gravitational and electric fields outside the box will be
corrected at each order as a consequence of requiring the induced fields to be continuous at
the box. In addition, these Israel junction conditions will determine the energy-momentum
tensor that the box at R = 1 must have to be able to accommodate such a solution. The
purpose of this section is to construct perturbatively this soliton.
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In the conditions just described, the fields of the soliton solution have the expansion

f (R)(R) =
∑
n≥0

ε2nf
(R)
2n (R),

A(R)(R) =
∑
n≥0

ε2nA
(R)
2n (R),

φ(R)(R) =
∑
n≥0

ε2n+1φ
(R)
2n+1(R),

(6.4.2)

where the superscript (R) indicates whether we are considering the region inside ((R)=in)
or outside ((R)=out) the box located at R = 1. We use the scaling symmetry (3.0.4) in each
region to impose (6.2.9) at all orders in ε, i.e.

f in
∣∣
R=1

= 1 , fout
∣∣
R→∞ = 1 . (6.4.3)

In the interior region, as described in (6.2.7), the cavity surface Σ is parametrically de-
scribed by R = 1 and T = T in(τ) = τ such that the induced line element of the shell reads
ds2|Σin = −f in|(R=1)dτ

2 + dΩ2
2 and the induced gauge 1-form is A|Σin = Ain|(R=1)dτ . At

leading order (n = 0) we have a scalar field perturbation around the Minkowski back-
ground (f in0 = 1) with a constant gauge potential Ain0 = a0. The most general solution
of the associated Klein-Gordon equation is φ(R) = R−1

(
β1e
−iea0R + β2e

iea0R
)
. To avoid

a divergence 1/R at the origin we must choose β2 = −β1. At the box, the condition
φ(R = 1) = 0 − see (6.2.5) − requires Ain0 = a0 = pπe for p = 1, 2, 3, · · · and we focus on
the p = 1 case. This will give the ground state soliton with lowest energy, i.e. the soliton
that corresponds to the back-reaction of the spherically symmetric (` = 0) normal mode of
Minkowski in a box with the lowest frequency. Finally, (6.2.5) implies that β1 = −i/(2π).
In these conditions, the regular fields inside the box read

f in0 = 1, Ain0 =
π

e
, φin1 (R) = −sin(πR)

πR
. (6.4.4)

As discussed in (6.2.8), when seen from outside, the cavity shell Σ is parametrically de-
scribed by R = 1 and T = T out(τ) = Nτ so that the induced line element is ds2|Σout =

−N2fout|(R=1)dτ
2+dΩ2

2 and the induced gauge 1-form is A|Σout = NAout|(R=1)dτ . Solving
the equations of motion outside the box at leading order yields:

fout0 (R) = Cf0
2 −

η

R
+

(CA0
1 )2

2R2
, Aout0 (R) =

CA0
1

R
+ CA0

2 . (6.4.5)

The boundary conditions (6.2.3), i.e.(6.4.3), imply that Cf0
2 = 1. On the other hand the
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junction conditions (6.2.10a)-(6.2.10c) at the box,

f in0 (1) dτ2 = N2fout0 (1) dτ2 ⇔ 1 = N2

(
1− η +

(CA0
1 )2

2

)
,

Ain0 (1) dτ = NAout0 (1) dτ ⇔ π

e
= N

(
CA0

2 − C
A0
1

)
,

Ain ′0 (1) dτdR = NAout ′0 (1) dτdR ⇔ 0 = CA0
1 N .

(6.4.6)

fix three other integration constants (including the reparametrization factor):

CA0
1 = 0, CA0

2 =
π

e

1

N
, N =

1√
1− η

. (6.4.7)

The integration constant η is undetermined. It characterizes the energy-momentum content
of the box as discussed below. Altogether the solution at leading order (n = 0) is

f in0 (R) = 1 , Ain0 (R) =
π

e
, φin1 (R) = −sin(πR)

πR
;

fout0 (R) = 1− η

R
, Aout0 (R) =

π

e

√
1− η , φout1 (R) = 0 ;

N =
1√

1− η
.

(6.4.8)

In these conditions, the leading order n = 0 Lanczos-Darmois-Israel surface stress tensor
(6.2.11) has the non-vanishing components

Stt = − 1

4π

(
1−

√
1− η

)
+O(ε2) , Sii =

(
1− 1

2η

8π
√

1− η
− 1

)
+O(ε2) , (6.4.9)

where i = 2, 3 runs over the S2 coordinates, and O(ε2) reminds us that this tensor will
receive corrections at order n = 1. The reader will observe that we have not imposed
the final Israel junction condition (6.2.10d). We could do it and thus fix the leftover
integration constant η to vanish to have a continuous extrinsic curvature across Σ and
thus a vanishing Lanczos-Darmois-Israel tensor (6.4.9) at zeroth order in the expansion.
Had we chosen to do so, at leading order the surface layer Σ would have no energy density
neither pressure. Thus, it would just split the spacetime into interior and exterior regions
that are both described by the Minkowski solution (with a constant gauge field) with the
interior region also containing a linear scalar field that, at order n = 0, has not yet back-
reacted on the gravitoelectric fields neither on the box surface stress tensor. However, we
will not fix η: we will not require the extrinsic curvature to be continuous at leading order
n = 0. The reason being that at order n = 1 we will find that the Lanczos-Darmois-Israel
surface stress tensor gets negative contributions proportional to ε2 that would violate all
the energy conditions! (Indeed see the final result (6.4.12).) So to have a physical box
that confines the scalar field inside it in the conditions (6.2.5), we must choose a box
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that at leading order n = 0 has a non-vanishing Lanczos-Darmois-Israel surface tensor
(6.4.9). The associated positive energy density and pressure will be able to accommodate
the higher order negative contributions and allow the energy conditions to be obeyed. In
these conditions, if 0 < η ≤ 1 the ADMmass is non-vanishing: the surface layer has energy-
momentum surface tensor described by (6.4.9) (η) which has an associated mass that can
be read asymptotically. Therefore, the interior solution is Minkowski spacetime with a
linear scalar field and the exterior solution is described by the Schwarzschild geometry
with ADM mass proportional to η.5 The hairy solitons are thus a 2-parameter family of
solutions described by the expansion parameter ε and by the energy density of the cavity
(that also fixes uniquely its pressure). Note that we are choosing the simplest physical box
that can confine the scalar field: it has no surface electric charge density. If we wish, this
cavity can also have an electric charge density in which case the exterior solution would
be described by the RN BH geometry (the hairy solitons would be a 3-parameter family
of solutions).

This completes the analysis up to O(ε1). A similar procedure can be used to extend
the construction of the soliton to higher orders (n > 0) in ε. In principle, we should be
able to choose the integration constants at each order such that the solution is regular
(6.2.1) and asymptotically flat (6.2.3) as well as satisfying the Israel junction conditions
(6.2.10a)-(6.2.10c). To present the results (6.4.10) below we have completed this exercise
and determined the fields f,A, φ up to order O(ε5) but we do not present the auxiliary
computations because they are not further enlightening. One can find the explicit compu-
tations at order n = 1 in the publication [3].

Once we have obtained the fields f,A, φ up to order O(ε5) we can compute the (gauge
invariant) Brown-York quasilocal thermodynamic quantities at Σin (defined in subsection
6.3) for the soliton up to O(ε6)6. As the soliton has no horizon, the entropy is zero and
the temperature is undefined. On the other hand, the Brown-York quasilocal mass (6.3.4),
quasilocal charge (6.3.6) and chemical potential µ ≡ Ain

∣∣
R=1

are given by

M/L = ε2 1

2
+ ε4 15π2 − 6e2 − 16π [2 Si(2π)− Si(4π)]

24π2
+O(ε6),

Q/L = ε2 e

2π
+ ε4 e

8π4

[
−
(
8π2 − e2

)
[2 Si(2π)− Si(4π)] + 4π

(
e2 − 2π2

) ]
+O(ε6),

µ =
π

e
+ ε2

(
8π2 − 3e2

)
[2 Si(2π)− Si(4π)] + 3π

(
2e2 − 3π2

)
6π2e

+O(ε4). (6.4.10)

As a non-trivial check of our computations, these thermodynamic quantities satisfy the
quasilocal version of the first law of thermodynamics (6.3.10), dM = µ dQ. At leading

5Actually, apart from the presence of scalar field that motivates here the need for an Israel surface layer,
this setup is the textbook example of a Lanczos-Darmois-Israel static thin shell separating Minkowski
spacetime in the interior from the Schwarzschild geometry in the exterior: see e.g. section 3.10 of Poisson’s
textbook (with rotation a = 0) [158].

6Note that f,A, φ up to order O(ε6) determines the chemical potential up to order O(ε4).
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order, µ = π/e ≡ Ω̃/e, which corresponds to the lowest normal mode frequency Ω̃ = ω̃L =

π that can fit inside the spherical box Σ [2].

The ADM mass and the charge measured by an asymptotic observer include the contri-
bution associated to the energy-momentum tensor of the box Σ and thus they depend on
the constant η that characterizes the matter content of the box; see discussion associated
to (6.4.9). They are given by

M/L =
η

2
+ ε4 (1− η)e2

4π2
+O(ε6), (6.4.11)

Q/L = ε2 e
√

1− η
2π

+ ε4 e
√

1− η
8π4

(
10π3 − 4πe2 −

(
8π2 − e2

)
[2 Si(2π)− Si(4π)]

)
+O(ε6) .

The Lanczos-Darmois-Israel surface energy-momentum tensor (6.2.11) at Σ has non-vanishing
components given by:

Stt =
1

8π

[
2
(
−1 +

√
1− η

)
+ ε2 + ε4

(
5

4
− e2

2π2
− 4 [2 Si(2π)− Si(4π)]

3π

)
+O

(
ε6
) ]
,

Sxx = Sφφ =
1

8π

[(
1− 1

2η√
1− η

− 1

)
− ε2

2
+
ε4

8

(
1 +

2e2

π2

(
1−

√
1− η

))
+O

(
ε6
) ]
.

(6.4.12)

In section 6.7.1 we further discuss the physical interpretation of this energy-momentum
tensor.

Finally note that under a gauge transformation we can move to a frame where the scalar
field is complex, φ = |φ|e−iωt, and it oscillates in time with a frequency ω. In this case the
solitonic solution is often called a boson star.

6.5 Reissner-Nordström black hole confined in a box

In section 6.6 we shall construct perturbatively an asymptotically flat hairy black hole
solution whose scalar field is confined inside a cavity. In the absence of a horizon radius
and scalar field, this cavity has no charge density but it has an energy density and pressure
described by the Israel surface tensor (6.4.9), parametrized by the constant η. In the limit
where the horizon radius vanishes, our hairy solution reduces to the hairy soliton found
in section 6.4. On the other hand, when the scalar field is absent, the hairy black hole
of section 6.6 reduces to a solution that describes a RN BH with horizon inside the Israel
cavity. In this section we describe the gravitational and electric field of this solution. The
interior solution and aspects of the thermodynamic properties of this solution (mainly in
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the grand-canonical ensemble) were already discussed in the seminal works [152, 153, 154]
and, more recently, in [155, 114]. Here, for completeness, we also describe the fields in the
region exterior to the box. For small energy and charge, the hairy black hole of section 6.6
can be seen as the solution that emerges from placing the small caged RN black hole of
this section on top of the caged hairy soliton of section 6.4.

Consider first the region R ≤ 1 inside the cavity located at R = 1. The general solution
to the equations of motion (3.0.6) with the scalar field set to zero is given by:

f in(R) = Bf
2 −

Bf
1

R
+

(BA
1 )2

2R2
, Ain(R) = BA

2 −
BA

1

R
. (6.5.1)

Boundary conditions at the horizon (6.2.2) fix two integration constants, BA
1 = BA

2 R+

and Bf
1 = R+

(
1
2(Bf

2 )2 +Bf
2

)
. At the box location, we use the scaling symmetry (3.0.4)

to require f in(1) = 1. We also introduce the chemical potential (6.3.7) as it appears in
the quasilocal first law (6.3.9): µ = Ain(1) − Ain(R+). These two conditions fix the two
remaining constants as BA

2 = µ
1−R+

and Bf
2 = 2−R+(2−µ2)

2(1−R+)2 . Altogether, the fields of a RN
BH whose horizon is confined inside a box located at R = 1 are:

f in(R) =
2−R+(2− µ2)

2(1−R+)2
−
R+

[
µ2(1 +R+) + 2(1−R+)

]
2R(1−R+)2

+
µ2R2

+

2R2(1−R+)2
,

Ain(R) =
µ

1−R+

(
1− R+

R

)
, gin(R) =

2−R+(2− µ2)

2(1−R+)2

1

f in(R)
.

(6.5.2)

Consider now the solution outside the box, R ≥ 1. The most general solution reads

fout(R) = Cf2 −
Cf1
R

+
(CA1 )2

2R2
, Aout(R) = CA2 −

CA1
R
. (6.5.3)

We use the scaling symmetry (3.0.4) to set fout|R→∞ = 1 which fixes Cf2 = 1. To fix the
remaining integration constants we apply the Israel junction conditions (6.2.10a)-(6.2.10c)
across the timelike hypersurface Σ. Moreover, we use the parametrizations (6.2.7)-(6.2.8)
for the surface layer Σ.

We want to confine the horizon radius of the RN BH inside the ‘same cavity’ that cages
the hairy soliton of the previous section. By this statement we mean that the Israel
surface tensor of the caged RN (and of our hairy solutions) reduces to the Israel surface
tensor (6.4.9) when R+ → 0 (and/or ε → 0). This requires that we use exactly the same
reparametrization factor N = (1− η)−1/2 that was found in (6.4.8) and which describes

the Israel surface tensor (6.4.9) of our box. This fixes Cf1 =
η[2(1−R+)2−µ2R2

+]+µ2R2
+

2(1−R+)2 , CA1 =
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µR+

√
1−η

1−R+
, and CA2 = µ

√
1−η

1−R+
. The final solution outside the surface layer reads

fout(R) = 1− 1

R

η
[
2(1−R+)2 − µ2R2

+

]
+ µ2R2

+

2(1−R+)2
+

1

R2

(1− η)µ2R2
+

2(1−R+)2
,

Aout(R) =
µ
√

1− η
1−R+

(
1− R+

R

)
, gout(R) =

1

fout(R)
.

(6.5.4)

where η is the parameter that describes the Israel surface tensor (6.4.9) of our box (even
before we place a scalar field or horizon inside it). In particular, if we set R+ = 0, (6.5.2)
and (6.5.4) reduce to (6.4.8) with φ = 0. That is to say, the zero horizon radius limit of
the caged RN BH solution (6.5.2) and (6.5.4) describes the same solution as the zero scalar
field limit of the soliton (6.4.8). This common solution simply describes a surface layer
cavity, placed in Minkowski space, with Israel surface tensor (6.4.9).7 In these conditions,
the cavity is the same and it will be consistent to place the small caged RN black hole of
this section at the center of the caged hairy soliton of the previous section, as we do in
section 6.6.

With the interior solution (6.5.2), we can use the quasilocal formalism presented in section
6.3 to compute the quasilocal thermodynamic quantities of a caged RN black hole as a
function of the horizon radius and the chemical potential:

THL =
2− µ2

4πR+

√
2
√

2− (2− µ2)R+

, S/L2 = πR2
+.

M/L = 1− (1−R+)
√

2√
2− (2− µ2)R+

, Q/L =
µR+√

2
√

2− (2− µ2)R+

.

(6.5.5)

Notice that extremal black holes have chemical potential µ =
√

2, hence RN BH inside
a box exist in the region of parameters µ ∈ [0,

√
2] and R+ ∈]0, 1[. These quasilocal

thermodynamic quantities obey the quasilocal first law (6.3.9). We will further discuss the
quasilocal thermodynamic properties of the caged RN BH in section 6.7.2.

As an aside note, observe that a small horizon radius expansion of the RN quasilocal
thermodynamics (6.5.5) yields, at leading order,

THL =
1

8πR+
(2− µ2) +O(R+), SH/L

2 = πR2
+ ,

M/L =
R+(2 + µ2)

4
+O(R2

+), Q/L =
µR+

2
+O(R2

+). (6.5.6)

7That is, when we set R+ = 0 one gets f in(R) = 1, Aint (R) = µ and fout(R) = 1 − η/R, Aoutt (R) =

µ
√

1− η. Note that the time reparametrization factor N = (1− η)−1/2 guarantees that fout|R→∞ = 1.
This setup (with µ = 0) is the textbook example of a Lanczos-Darmois-Israel static thin shell separating
Minkowski spacetime in the interior from the Schwarzschild geometry in the exterior with η being propor-
tional to the mass of the shell as measured by an asymptotic observer: see e.g. section 3.10 of [158] (with
rotation a = 0).
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These leading order quantities coincide with the familiar ADM thermodynamic quantities
of a RN black hole in the absence of a cavity. This is to be expected since taking the limit
R+ ≡ r+

L → 0 implies r+ � L which is the same as taking the limit L → ∞ where the
box is transported to the asymptotic region. In this limit we should indeed recover the
ADM quantities of a RN black hole. Making contact with section 4.4 , note that the non-
interacting thermodynamic model (which only captures the leading order thermodynamics
of the system) makes use of this property.

For completeness, from (6.2.4) and the asymptotic behaviour of (6.5.4), we can also read
the ADM mass and charge of the caged RN black hole system,

M/L =
η

2
+R2

+

µ2(1− η)

4(1−R+)2
, Q/L =

µR+

√
(1− η)

2(1−R+)
. (6.5.7)

6.6 Small hairy black holes confined in a box

In section 6.4 we found that our theory (3.0.1) has hairy soliton solutions in addition
to the caged RN BH solutions of section 6.5. In these conditions, as argued in section
4.4, the theory should admit a third solution − a hairy black hole − that in the small
energy/charge limit can be thought of as placing a small caged RN BH on top of a hairy
soliton. Following this intuition, the leading order thermodynamics of these hairy black
holes has been computed (without solving the equations of motion) in section 4.4 using a
simple thermodynamic model that assumes that the hairy black hole is a non-interacting
mixture of two constituents: the soliton and the caged RN black hole. The two solutions
can indeed be ‘merged’ to yield a hairy black hole as long as the two components are in
thermodynamic equilibrium and have the same chemical potential (4.4.3).

On the other hand, there is yet another argument in favour of the existence of hairy black
hole solutions. It is well established that RN black holes are unstable to the superradiant
and near-horizon scalar condensation instabilities [108, 109, 110, 111, 112, 113, 107, 114,
115, 117, 118, 119, 120, 2]. It is then natural to expect that if we take such an unstable RN
black hole as initial data, the system should time evolve towards a new solution that has
scalar hair floating above the horizon, with the electric repulsion balancing the gravitational
collapse. If so, this hairy black hole should have higher entropy (for a given mass and
charge) than the initial system. These hairy black holes should then be the endpoint of
the superradiant instability of a RN black hole in a box. A time evolution study done
recently confirmed that a RN BH perturbed with a scalar field indeed evolves towards a
hairy black hole [108, 110, 107, 117, 118].

In this section, we solve the equations of motion of (3.0.6) perturbatively to construct
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these static hairy black holes. We will confirm that, at least for small mass and charge,
the intuition of the previous paragraphs is correct. Our hairy black holes should therefore
be the endpoint of the superradiant instability of a RN BH in a box.

6.6.1 Setting up the perturbation problem

Asymptotically flat hairy black holes of the Einstein-Maxwell theory confined inside a box
must solve the equations of motion (3.0.6), subject to boundary conditions (6.2.2), (6.2.3)
and Israel junction conditions (6.2.10a)-(6.2.10c). We construct them perturbatively and
find analytical expressions for the fields. The hairy black holes of our theory are a two-
parameter family of solutions that we can take to be the asymptotic scalar amplitude ε
defined as the derivative of the scalar field at the R = 1 box − see (6.2.5) − and the
horizon radius R+. Therefore, the perturbative construction requires a double expansion
of the fields in powers of ε and R+

8. To be able to solve analytically the equations of
motion, we do a matched asymptotic expansion, similar to those done in a similar context
in AdS backgrounds in [51, 125, 128, 53, 126, 97] and used in Chapters 4 and 5. An explicit
example of implementation of the method is done in 4.2.3. However, here we also need to
impose the junction conditions at the mirror located at r = L (R = 1). As for the soliton
case, the box location divides the spacetime into the inside (in; r ≤ L) and outside (out,
r ≥ L) regions and we use the Israel junction conditions to match the fields of these two
regions at the box hypersurface r = L (R = 1). But, this time, we further divide the inside
region (in; r ≤ L) into two sub-domains: the near region r+ ≤ r � L (in−near) and the
far region where r+ � r < L (in−far). Considering small black holes that have r+/L� 1,
the near and far regions inside the box have an overlapping zone, r+ � r � L. In this
overlapping region, we can match the set of independent parameters that are generated by
solving the perturbative equations of motion in each of the near and far regions.

We can start our perturbative construction. First note that the chemical potential of the
hairy black hole should itself have a double expansion in powers of ε and R+,

µ =
∑
n≥0

ε2n
∑
k≥0

Rk+µ2n,k. (6.6.1)

We also justified this in 5.5.1. We shall construct the hairy black hole family whose zero-
radius limit is the ground state soliton of section 6.4 (so with lowest energy for a given
charge).9 In our analysis we take ε� 1 and R+ � 1 and we assume that O(ε2) ∼ O(R+).
It follows that terms with same (n+ k) contribute equally to the perturbative expansion,
e.g. O

(
ε0, R2

+

)
∼ O

(
ε2, R+

)
∼ O

(
ε4, R0

+

)
.

8If one wanted to go beyond the perturbative expansion, one should solve numerically the set of equa-
tions (3.0.6).

9A similar construction can be done for the excited hairy black holes.
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Outside the box, R ≥ 1, the black hole can be considered to be a small perturbation in ε
and R+ of Minkowski spacetime and the scalar field is required to vanish. In addition to
(6.6.1), the fields in this region (we use the superscript out to refer to this zone) have the
double expansion

fout(R) =
∑
n≥0

ε2n
∑
k≥0

Rk+ f
out
2n,k(R), Aout(R) =

∑
n≥0

ε2n
∑
k≥0

Rk+A
out
2n,k(R),

φout(R) = 0 ,

(6.6.2)

where we took into account that odd powers of ε do not give corrections of the fields f, A.

In the far region inside the box, R+ � R < 1, the fields of the hairy black hole still
have a similar double expansion but this time the scalar field is also present (we use the
superscript in−far to refer to this domain):

f in−far(R) =
∑
n≥0

ε2n
∑
k≥0

Rk+ f
in−far
2n,k (R), Ain−far(R) =

∑
n≥0

ε2n
∑
k≥0

Rk+A
in−far
2n,k (R),

φin−far(R) =
∑
n≥0

ε2n+1
∑
k≥0

Rk+ φ
in−far
2n+1,k (R).

(6.6.3)

By construction, our hairy black hole solution has a smooth R+ → 0 limit where it reduces
to the hairy soliton constructed in the previous section. To make this limit straightforward,
we use the scaling symmetry (3.0.4) in each region to require that

f in−far
∣∣
R=1

= 1 , fout
∣∣
R→∞ = 1 , (6.6.4)

which is equivalent to (6.4.3).

The outside fields (denoted collectively by Qout) must obey the boundary conditions (6.2.3)
and these outside fields further have to be matched with the inside-far region fields Qin−far

at the timelike hypersurface Σ using the parametrizations (6.2.7)-(6.2.8) and the Israel
junction conditions (6.2.10a)-(6.2.10c). In particular, we are constructing our hairy black
hole by placing the caged RN BH of section 6.5 on top of the soliton of section 6.4. Both
of these constituents are confined inside the same cavity. This means that we use exactly
the same reparametrization factor N = (1− η)−1/2 that was found in (6.4.8) and that
describes the Israel surface tensor (6.4.9) of our box.10

More concretely, we solve the equations at each order {n, k} analytically (with the help of
10Recall that η essentially describes the energy-momentum tensor of the box we choose to start with,

even before it receives corrections proportional to the scalar field amplitude ε and horizon radius R+. We
cannot set it to zero or else the energy conditions are not obeyed, as discussed below (6.4.9) and in (6.4.12).
Our caged RN BHs and hairy solutions have a Israel surface stress tensor that reduces to (6.4.9) when
R+ → 0 and/or ε→ 0
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Mathematica) and find the out (in-far) fields up to a total of 4 (6) integration constants.
The boundary conditions (6.2.3) for the metric fix some constant(s). The Israel junction
conditions at the box (6.2.10a)-(6.2.10c) fix extra integration constants. We are left with
a few integration constants and a chemical potential coefficient of (6.6.1), to be fixed by
the matching with the inside-near region, as described next.

We take the small radius R limit of the inside-far fields, Qin−far(R)
∣∣
R�1

in order to
prepare these fields to be matched with the inside-near region fields (collectively denoted
by Qin−near) to be discussed below. The fields Qin−far turn out to be divergent when
R → 0 as R+

R . This gives an indication that the solutions do not hold for R ∼ R+, which
is reasonable as we can no longer consider the black hole to be a small perturbation of the
Minkowski spacetime at this scale. This justifies why the far-region analysis inside the box
is valid only for R� R+. Also, it follows that in the far-region we can safely do a Taylor
expansion in R+ � 1 and ε � 1 since the large hierarchy of scales between the solution
parameters R+, ε and R guarantees that they do not compete.

Consider finally the inside-near region, R+ ≤ R� 1. Here, Taylor expansions in R+ � 1

and ε � 1 should be done with some caution since these small parameters can now be
of similar order as R. This is closely connected with the fact that the inside-far region
solution above breaks down when R/R+ ∼ O(1). This suggests that to proceed with the
inside-near region analysis we should first introduce new radial, y, and time, τ , coordinates
as

y =
R

R+
, τ =

T

R+
. (6.6.5)

In this new frame, the inside-near region corresponds to 1 ≤ y � R−1
+ . If we further require

that R+ � 1 (as is necessarily the case in our perturbative expansion) one concludes that
the inside-near region corresponds to R+ � 1 ≤ y (and y � ε). In particular, Taylor
expansions in R+ � 1 and ε� 1 can now be safely done since the radial coordinate y and
the black hole parameters R+, ε have a large hierarchy of scales11. Further physical insight
is gained if we rewrite the caged RN solution (6.5.2) in the new coordinate system (6.6.5):

ds2 = R2
+

(
− f(y)dτ2 + g(y)dy2 + y2dΩ2

2

)
, (6.6.6)

f(y) =

(
1− 1

y

)
2−

(
2− µ2

)
R+ − µ2

y

2(1−R+)2
,

Aτ (y) = R+ AT (y) = R+
µ

1−R+

(
1− 1

y

)
.

The explicit factor of R+ � 1 in Aτ (y) shows that in the inside-near region the electric
field is weak. Thus, at leading order, the gauge field is suppressed in the equations of

11A key step for the success of the matching expansion procedure is that a factor of R+ (one of the
expansion parameters) is absorbed in the new coordinates (6.6.5).
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motion and the system is to be seen as a small perturbation around the neutral solution.
The same holds when we add a small scalar condensate to the system. The near fields
of the hairy black hole thus have the double expansion (we use the superscript in−near to
refer to this region):

f in−near(y) =
∑
n≥0

ε2n
∑
k≥0

Rk+ f
in−near
2n,k (y), Ain−near(y) =

∑
n≥0

ε2n
∑
k≥0

Rk+A
in−near
2n,k (y),

φin−near(y) =
∑
n≥0

ε2n+1
∑
k≥0

Rk+ φ
in−near
2n+1,k (y).

(6.6.7)

In these conditions we can now solve analytically the equations of motion (3.0.6)-(3.0.7)
for Qin−near(y). One has to consider these equations with the change of variables (6.6.5)
at each order in {n, k}. As the set of equations is a system of 3 ODEs for f, A and φ at
each order we have a total of 6 integration constants to be fixed. Three are determined
by the boundary conditions at the horizon (6.2.1) (one for each field) and the other three
constants are fixed by the matching with the inside-far region solution in the overlapping
region R+ � R � 1. For this matching, we restore the coordinates {T, R} and consider
the large radius expansion of the inside-near fields, Qin−near(R)

∣∣
R�1

(with the expansion
coefficients available at the given order). We find that these diverge as a power of R, which
shows that the near region analysis breaks down at R ∼ 1. This explains why the near
region analysis is valid only for R � 1. We can then match the two regions in powers of
ε, R+ and R to fix the three integrations constants that were not yet determined.

In the end of the day, after imposing boundary, junction and matching conditions at each
order, we are left only with a free parameter that characterizes the energy-momentum
content of the box.

Examples of the matching asymptotic expansion procedure can be found in the literature
[51, 125, 128, 53, 126, 97, 50, 1] as well as in section 4.2.3. Specific examples for this
particular setup can be found in the publication [3].

6.6.2 Thermodynamic quantities

With the perturbation expansion presented in the previous subsection and using the
matched asymptotic expansion we have found the scalar, gauge and gravitational fields
perturbatively. We can now insert these fields into the expressions for the quasilocal ther-
modynamics of subsection 6.3 to compute the thermodynamic quantities of the hairy BH.
In the perturbation expansion we have assumed that O(ε2) ∼ O(R+). This assumption
implies that terms with the same (n+k) contribute equally to the perturbative expansion,
e.g. O

(
ε0, R2

+

)
∼ O

(
ε2, R+

)
∼ O

(
ε4, R0

+

)
. We did this consistent perturbative expansion
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up to the order necessary to get the thermodynamic quantities that verify the first law of
thermodynamics up to order (n + k) = 2. This is enough to get our main result best
summarized later in Fig. 6.7.1.

Using (6.2.4), the dimensionless quasilocal energy M, quasilocal charge Q, chemical po-
tential µ, temperature T and entropy of the small hairy black holes are given by:

M/L =

[
R+

4

(
π2

e2
+ 2

)
+

R2
+

32e4

(
π4
(

8[Ci(2π)− γ − ln(2π)] + 5
)

+ 4
(
e2 + π2

)
e2

)

+O(R3
+)

]
+ ε2

[
1

2
+

R+

12πe2

(
9π3
[
γ − Ci(2π)− 2 + ln(2π)

]
+
(
8π2 − 3e2

)
[
2Si(2π)− Si(4π)

])
+O(R2

+)

]
+ ε4

[
15π2 − 6e2 + 16π

[
Si(4π)− 2Si(2π)

]
24π2

+O(R+)

]
+O(ε6)

Q/L =

[
πR+

2e
+
R2

+

8e3

(
π3
(

2[Ci(2π)− γ − ln(2π)] + 1
)

+ 2πe2

)
+O(R3

+)

]
+ ε2

[
e

2π

+
R+

12π2e

(
12π3

(
γ − Ci(2π) + ln(2π)− 7

4

)
+
(
8π2 − 3e2

) [
2Si(2π)− Si(4π)

])

+O(R2
+)

]
−

[
ε4 e

((
8π2 − e2

)
(2Si(2π)− Si(4π)) + 4πe2 − 8π3

)
8π4

+O(R+)

]
+O(ε6), (6.6.8)

µ =

[
π

e
−R+

π3

2e3

(
γ − Ci(2π)− 1 + ln(2π)

)
+O(R2

+)

]

+ ε2

[
8π2 − 3e2

6π2e

(
2Si(2π)− Si(4π)

)
+
e

π
− 3π

2e
+O(R+)

]
+O(ε4),

TL =
1

4πR+

{[
1− π2

2e2
+
R+

8e4

(
4π4
(
γ − Ci(2π) + ln(2π)− 3

4

)
+ 4

(
e2 − π2

)
e2

)

+O(R2
+)

]
+ ε2

[
3e2 − 8π2

6πe2

(
2Si(2π)− Si(4π)

)
− π2

2e2

(
γ − Ci(2π)− 4

+ ln(2π)
)
− 1 +O(R+)

]
+O(ε4)

}
,

S/L2 =πR2
+.

Recall that Ci(x) = −
∫∞
x

cos z
z dz and Si(x) =

∫ x
0

sin z
z dz are the cosine and sine integral

functions, respectively, and γ ∼ 0.577216 is Euler’s constant.
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As an important check of the computations, notice that these thermodynamic quantities
satisfy the quasilocal form of the first law of thermodynamics (6.3.9). Moreover, when
R+ = 0, (6.6.8) reduces to the soliton thermodynamics (6.4.10) and, when ε = 0, (6.6.8)
yields the caged RN black hole thermodynamics (6.5.5) (once we insert µ in (6.6.8) into
(6.5.5) and take a series expansion up to O(R2

+)).

From these thermodynamic quantities (6.6.8), we can confirm that the simple non-interacting
thermodynamic model presented in section 4.4 − which does not use the equations of mo-
tion− captures the correct leading order thermodynamics. First note that, at leading order,
it follows from (6.6.8) that µ = π

e . Assuming, as justified above, that O(ε2) ∼ O(R+), the
leading order contributions of the expansion (6.6.8) allow to express analytically R+ and
ε in terms ofM and Q,

R+ =
4e(eM− πQ)

2e2 − π2
+O

(
M2,Q2,MQ

)
,

ε2 =
2π
(
2e2Q− 2πeM+ π2Q

)
2e3 − π2e

+O
(
M2,Q2,MQ

)
, (6.6.9)

which we insert in the expressions for the other thermodynamic quantities to find that at
leading order inM and Q one has:

µ =
π

e
+O (M,Q) ,

S/L2 =
16πe2(eM− πQ)2

(π2 − 2e2)2 +O
(
M2,Q2,MQ

)
,

TL =

(
π2 − 2e2

)2
32πe3(eM− πQ)

+O
(
M2,Q2,MQ

)
.

(6.6.10)

These quantities (6.6.10) match the result of the non-interacting model presented in equa-
tion (4.4.4). Thus the non-interacting thermodynamic model does indeed capture the lead-
ing order properties of this hairy black hole system at very low cost. This explicit confirma-
tion adds to those done in similar hairy black hole systems in [51, 125, 128, 53, 126, 30, 98]
and 5.5.2 and realize in simple terms the idea that we can place a small black hole, without
hair, of the theory at the core of its hairy soliton to get the hairy black hole of the theory.

For completeness, note that an asymptotic observer measures the ADM mass and ADM
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charge of the hairy black hole to be:12

M/L =

[
η

2
+R2

+

π2(1− η)

4e2
+O(R3

+)

]
+ ε2

(
R+

1− η
2

+O(R2
+)

)
+ ε4

(
e2(1− η)

4π2
+O(R+)

)
+O(ε6), (6.6.11)

Q/L =

[
R+

√
1− η π

2e
+R2

+

π
√

1− η
4e3

(
2e2 + π2

[
1− γ + Ci(2π)− ln(2π)

])
+O(R3

+)

]

+ ε2

[
e
√

1− η
2π

+R+

(√
1− η

24π2e

(
6πe2 + 3π3

[
8γ − 10Ci(2π)− 11 + 8 ln(2π)

]
+ (16π2 − 6e2)

[
2Si(2π)− Si(4π)

])
+

√
1− η
e
C1

)
+O(R2

+)

]
+ ε4

[
e
√

1− η
8π4( (

e2 − 8π2
) [

2Si(2π)− Si(4π)
]
− 4πe2 + 10π3

)
+O(R+)

]
+O(ε6).

Finally, the Lanczos-Darmois-Israel surface energy-momentum tensor (6.2.11) at the sur-
face layer Σ has non-vanishing components given by:

Stt =
1

8π

{[
− 2

(
1−

√
1− η

)
+R+

(
1 +

π2

2e2

)
+R2

+

(
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4e2
+

π4

16e4

(
5− 8

[
γ−

Ci(2π) + ln(2π)
]))

+O(R3
+)

]
+ ε2

[
1 +R+

(
8π2 − 3e2

6πe2

[
2Si(2π)− Si(4π)

]
+

3π2

2e2

(
γ − Ci(2π) + ln(2π)− 2

))
+O(R2

+)

]
+ ε4

[
5

4
− e2

2π2
−

4
[
2Si(2π)− Si(4π)

]
3π

]
+

O
(
ε6
)}

, (6.6.12)

Sxx = Sφφ =
1

8π

{[
2
(
1−
√

1− η
)
− η

2
√

1− η
−R2
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((
π2 − 2e2

)2
32e4

+
π2

8e2

√
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)
+O(R3

+)

]
+

ε2

2

[
− 1 +R+

(
1−

√
1− η

)
+O(R2

+)

]
+
ε4

8

[
1 +

2e2

π2

(
1−

√
1− η

)]
+O

(
ε6
)}

.

When R+ = 0 this reduces to (6.4.12), as it should.
12The constant C1 in the expression for Q is given by:

C1 =
1

8
π

[
2iπ

(
G3,1

2,3

(
−2iπ

∣∣∣∣ −1, 1
−1, 0, 0

)
−G3,1

2,3

(
2iπ

∣∣∣∣ −1, 1
−1, 0, 0

))
−G3,1

2,3

(
−2iπ

∣∣∣∣ 0, 2
0, 0, 1

)

−G3,1
2,3

(
2iπ

∣∣∣∣ 0, 2
0, 0, 1

)]
' −0.0177191, where Gmn

p q

(
x

∣∣∣∣ a1, . . . , ap
b1, . . . , bq

)
is the MeijerG function.

These ADM quantities should obey a first law of thermodynamics that includes a term that accounts for
the thermodynamic contribution of the Israel surface layer.
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6.7 Discussion of physical properties

6.7.1 Israel surface stress tensor and energy conditions

Scalar fields confined inside a box were already studied in the literature: 1) at the linear
level [108, 109, 110, 111, 112, 119, 120, 121, 122, 123, 124], 2) as a nonlinear elliptic prob-
lem (although without having flat asymptotics [113, 115, 116] or without discussing the
exterior solution [114]), and 3) as an initial-value problem [107, 117, 118]. However, to
the best of our knowledge, the properties of the “internal structure" of the cavity that is
necessary to confine the scalar field were never analysed. It was never discussed whether
the energy-momentum content of the mirror necessary to confine the scalar field is phys-
ically acceptable and, if so, what are its properties. Now that we have the regular and
asymptotically flat hairy solitons and hairy black holes of the theory we can analyse the
Lanczos-Darmois-Israel surface stress tensor (6.2.11) and address these questions. At the
frontline, we have to ask whether it does obey or not the energy conditions.

As pointed out before, in our construction we have imposed the Israel junction conditions on
the gravitoelectric fields at the surface layer Σ. We decided to impose that the component
of the electric field orthogonal to Σ is continuous across σ hence the surface has no electric
charge density, which motivated our choice. With these conditions on Σ the system is
left with a free parameter. Essentially we have a 1-parameter family of solutions, that is
labeled by the parameter η, that differ on the energy-momentum content of the surface
layer Σ or, equivalently, on the total mass of the solution. η determines the mass of the
shell and thus of the hairy solution (as can be checked inspecting the mass formulas in
(6.4.11) and (6.6.11)). Different choices of η dictate a distinct extrinsic curvature jump at
Σ and consequently a different Lanczos-Darmois-Israel surface stress tensor.

In (6.4.12) and (6.6.12) we have computed the three non-vanishing components of the tensor
Sab for the soliton and hairy black hole, respectively. As a consequence of the conserva-
tion law for the Brown-York stress tensor (see subsection 6.3), the Lanczos-Darmois-Israel
surface tensor is also conserved, DaSab = 0, as we can explicitly check. Further note that
the zero horizon radius limit of the hairy black hole is the soliton and thus that (6.6.12)
reduces to (6.4.12) when we set R+ → 0.

The Lanczos-Darmois-Israel surface tensor can be written in the perfect fluid form, S(a)(b) =

Eu(a)u(b) + P(h(a)(b) + u(a)u(b)), with u = f−1/2∂t and local energy density E = [ρ] and
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pressure P = [p] given by13

E = −Stt , P = Sxx = Sφφ, (6.7.1)

with Stt, Sxx, S
φ
φ defined in (6.4.12) and (6.6.12) for the soliton and hairy black hole re-

spectively.

Physical surface layers must have a stress tensor (an energy density and pressure) that
obeys the energy conditions. Different versions of these energy conditions read (i = 1, 2)

[159]:

Weak energy condition: E ≥ 0 ∧ E + Pi ≥ 0 ; (6.7.2)

Strong energy condition: E + Pi ≥ 0 ∧ E +

2∑
i=1

Pi ≥ 0 ; (6.7.3)

Null energy condition: E + Pi ≥ 0 ; (6.7.4)

Dominant energy condition: E + |Pi| ≥ 0 , (6.7.5)

Set R+ = 0 and ε = 0 in (6.6.12) and (6.7.1). A physical surface layer with 0 < η ≤ 1 has an
energy density and pressure and associated jump in the extrinsic curvature. Solutions with
these parameters split the spacetime into an interior region that is Minkowski spacetime
and an exterior region which is described by the Schwarzschild geometry with ADM mass
proportional to η, M = ηL/2. If we choose η = 0, the surface layer is absent.

Now, consider the hairy solitons whose surface layer Σ has stress tensor (6.4.12), i.e. let
ε 6= 0 but R+ = 0 in (6.6.12) and (6.7.1). An inspection of these quantities quickly
concludes that for η = 0, none of the energy conditions (6.7.2) is obeyed. As discussed
already below (6.4.9), we must have η 6= 0 to guarantee that they (or a relevant subset
of them) are obeyed. Actually, we can find the minimum shell parameter η, as a power
expansion in ε, above which (with η < 1) the energy conditions (or a select subset of them)
are obeyed. Consider now the hairy black hole with ε 6= 0 and R+ 6= 0 in (6.6.12) and
(6.7.1). There is still a minimum shell parameter η, which we can express as a double
power expansion in ε and R+, above which (with η < 1) the energy conditions (or a select
subset of them) are obeyed. To conclude this discussion on the energy conditions, as an
important byproduct of our study, we have found the energy-momentum content that a

13These densities can also be computed following a different, but equivalent, route (see e.g. [159]).
Introduce the orthogonal tetrad on Σ, e(0) = f−1/2∂t, e(k) = r−1ê(k), (k = 1, 2), such that huve u

(a) e
v

(b) =

η(a)(b) with η(a)(b) = diag{−1, 1, 1} being the 3-dimensional Minkowski metric and ê(k) iê
(k)

j = σij . The
components of the Lanczos-Darmois-Israel energy-momentum tensor (6.2.11) (at Σ) in the tetrad frame
are then S(a)(b) = e

u

(a) e
v

(b) Suv and one has S(a)(b)e
(b) = λ e(a) which is an eigenvalue equation. That

is, λ = {−E ,Pi} are the eigenvalues (with E the energy density and Pi the two principal pressures) and
e(a) are the associated unit eigenvectors (principal directions). In particular, e(0) is the 3-velocity of a box
observer in her local rest frame.
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mirror must have to confine a hairy soliton or hairy black hole inside of it.

6.7.2 Phase diagram of asymptotically flat solutions in a box

Einstein-Maxwell theory with a complex scalar field (with a given scalar field mass and
electric charge) is described by action (3.0.1). The only asymptotically flat solutions of this
theory are Minkowski spacetime and the Reissner-Nordström black hole family of solutions,
which have a vanishing scalar field. However, if we introduce a reflecting box that confines
the scalar field, we have found that the theory admits several regular asymptotically flat
solutions. These are the caged RN BH (section 6.5), the ground state soliton (section 6.4),
the ground state hairy black hole (section 6.6) and an infinite tower of excited solitons
and hairy black holes14. For a given scalar field electric charge, the latter excited solutions
always have larger energy than the ground state solutions so we do not discuss them further.

It is natural to expect that the thermal phases of the theory compete with each other.
It is thus important to display the several solutions of the theory in a phase diagram of
(regular) asymptotically flat boxed solutions. For example, it is important to display the
region of existence of each of these solutions in a mass-charge phase diagram as well as to
present a microcanonical phase diagram in which we plot the entropy of the solutions as a
function of their mass and electric charge.15

We find appropriate to work with the Brown-York quasilocal mass M and charge Q.
Essentially, this is because these quasilocal quantities are independent of the parameter η
that describes the energy-momentum content of the shell that confines the scalar field.16

The quasilocal thermodynamics of the (ground state) soliton, caged RN black hole, and
hairy black hole are given in (6.4.10), (6.5.5) and (6.6.8), respectively (for vanishing scalar
field mass m = 0).

The left panel of Fig. 6.7.1 shows the region of existence of caged RN black holes, (ground
state) solitons and (ground state) hairy BHs for a scalar field charge e ≡ qL = 3.517. The
diagram is qualitatively similar for other values of e that are above the superradiant bound

14Recall that the ground state solutions have their perturbative root in the lowest normal mode frequency
of Minkowski spacetime, and the excited states emerge from the remaining infinite tower of normal mode
frequencies.

15RN black holes caged inside a box were discussed in the grand-canonical ensemble in [154]. Moreover,
[114] constructed numerically the hairy solutions of the system and discussed them in the grand-canonical
ensemble. At least for small charges where our perturbative analysis is valid, hairy black holes can be the
dominant thermal phase only in the microcanonical ensemble so we restrict our discussion to this ensemble.

16Essentially, these different solutions differ from each other in the interior region and the energy-
momentum content of this region is best captured by the quasilocal thermodynamics. Further recall that
these quasilocal quantities obey the quasilocal first law of thermodynamics (6.3.9) and (6.3.10), which we
used to check our final results.

17In Chapter 4 we have also picked the value qL = 3.5 to display the quasinormal modes of RN in a box
and characterize the regions of instability. For consistency we have kept the same value in this discussion.
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i.e. e > π√
2
. The horizontal axis scans the dimensionless quasilocal charge Q/L while the

vertical axis plots the difference ∆M≡M−Mext between the dimensionless quasilocal
mass M/L of a given solution and the mass Mext of the extremal caged RN BH that
has the same electric charge. So, the extremal caged RN BH family is represented by the
horizontal blue line with ∆M = 0. RN BHs exist above the blue line, in regions I and
II. In region II, RN BHs are unstable, with the magenta line separating regions I and II
describing the onset of superradiance. The black line (with negative slope) describes the
hairy soliton branch. Hairy black holes exist in regions II and III. That is, they merge with
the RN BH family at the onset of superradiance − described by (6.6.8) with ε = 0 − and
extend all the way down to the soliton line − described by (6.6.8) with R+ = 0. In region
II we have non-uniqueness of solutions for a given quasilocal mass and charge.
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Figure 6.7.1: Left Panel: Region of existence of solutions. We plot the quasilocal mass
difference ∆M =M−Mext (between a given solution and the extremal caged RN BH
with the same charge Q) as a function of the quasilocal electric Q for e = qL = 3.5. Caged
RN black holes exist in regions I and II. The magenta line with positive slope splitting these
two regions describes the onset curve of the superradiant instability (RN BHs are unstable
in region II). The black line with negative slope describes the soliton family. Hairy black
holes exist in between these two lines, i.e. in regions II and III (red shaded area). Right
Panel: Phase diagram in the microcanonical ensemble i.e. adimensional entropy S/L2 as
a function of the adimensional quasilocal mass M/L at constant value of the quasilocal
charge Q/L = 0.005 and e = 3.5. The blue line starting at A (extremality) is the RN black
hole and the red line BC is the hairy back hole branch that ends at the soliton C. The
merger point B (superradiant instability onset) signals a second order phase transition.

In the right panel of Fig. 6.7.1 we plot the dimensionless entropy S/L2 as a function of the
quasilocal massM/L for a fixed quasilocal charge Q/L = 0.005, again for qL = 3.5. This
phase diagram is qualitatively similar for other (small values) Q/L and qL. The caged RN
BH branch (blue curve) exists for large mass and charge and extends all the way down to
point A. This point A represents the extremal RN configuration with T = 0 but finite
entropy (it corresponds to the point with Q/L = 0.005 in the blue horizontal line of the left
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panel). Point B signals the onset of superradiance: caged RN BHs between point B and A
are unstable. The onset of superradiance (point B) signals a second order phase transition
to the branch of hairy black holes (which is stable to superradiance) and extends from
point B towards point C (that has vanishing entropy). The latter, is the limit R+ → 0 of
the hairy BH family and describes the hairy soliton with Q/L = 0.005. The former (point
B) describes the hairy BH branch in the limit ε→ 0 where it merges with the RN family.

In the microcanonical ensemble the energy M and the charge Q are held fixed and the
relevant thermodynamic potential is the entropy S. The thermal phase that has the highest
entropy for a given mass and charge is the dominant phase in this ensemble (recall that
the soliton and Minkowski spacetime in a box have vanishing entropy as they do not have
a horizon). Therefore, from the right panel of Fig. 6.7.1 we conclude that hairy BHs are
the favoured thermal phase in the microcanonical ensemble. In particular, this is true in
the region of phase space where they coexist with caged RN black holes. This dominance
extends to all other values of the electric charge Q/L (where our perturbative analysis
holds) and e = qL. Thus hairy black holes are the dominant phase in the microcanonical
ensemble in their region of existence (regions II and III in the left panel of Fig. 6.7.1).
These hairy black holes are stable to superradiance and we do not have any arguments
suggesting they are unstable to any other mechanism within the theory described by the
action (3.0.1).

The regime of validity of our perturbative computations can be inferred from the right
panel plot of Fig. 6.7.1. Indeed, recall that the (quasilocal) first law of thermodynamics
requires that at a second order phase transition the slope dS/dM is the same for the two
branches of solutions that merge (since T is the same at the bifurcation point and dQ = 0

in the right panel of Fig. 6.7.1). This is clearly the case in our plot. However, if we start
departing from the regime of validity of our perturbative analysis we increasingly find that
the merger is not perfect and the slopes of the two branches no longer match. We find
that this is the best criteria to identify the regime of validity of our thermodynamic results
(6.6.8). With this criteria we can quantify the regime of validity. Typically, by construction,
our perturbative results are valid for ε� 1 and R+ � 1. Moreover, the scalar field charge
cannot be too large to avoid large back reactions. Altogether, we restrict ourselves to
ε . 0.1, R+ . 0.1 and π√

2
≤ e . 4, where π√

2
is the superradiant bound 4.3.10. With

these bounds into consideration we find that for a scalar field charge e = 3.5 the mass and
the charge must be below . 0.07 and . 0.05, respectively.

Our findings allow for a solid expectation about the endpoint of the superradiant instability
of RN BHs caged in a box in asymptotically flat backgrounds. Consider the time evolution
of a caged RN BH in the segment AB which is perturbed by a charged scalar field. As
caged RN BHs in this region are unstable to superradiance, they should evolve to another
black hole solution that is stable to this mechanism. The second law of thermodynamics
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implies that the entropy can only increase. Then we should expect the unstable RN BH
to evolve to the hairy black hole solution we have constructed.
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CHAPTER 7

Discussion

This Part has been focused in the study of charged systems in asymptotically AdS4 and
asymptotically flat with a box spacetimes. Firstly, in Chapter 4, we have identified the
regions in parameter space that render RN BHs unstable. We have used analytical as well
as numerical results. Analytically we have been able to find, in a perturbative expansion
about the horizon radius, frequencies and, in particular for the AdS case, we have obtained
the leading order imaginary part that signals the onset of the instability.

For both cases we have identified the onset of instabilities for large black holes using the
heuristic methods first used to find the near horizon condensation instability. Of particular
interest, this instability is present in the asymptotically flat boxed case which had not
been identified in previous literature. It follows that the near-horizon scalar condensation
instability should co-exist with the superradiant instability also in the original Kerr black
hole bomb system of Press and Teukolsky [57]. The onset of the frequencies is a zero-mode
and thus opens the possibility of finding a new stable solution that branches off RN BHs
at the onset.

The linear mode analytical study has been completed with a numerical analysis. The AdS
system has been studied in more depth before, hence we have simply identified the onsets
of the instabilities in section 4.2.5. The curves signalling the onsets are valuable to identify
initial Cauchy data for the numerical evolution systems.

113



114 Chapter 7. Discussion

We have performed a more thorough numerical analysis for the boxed case since the most
unstable mode ` = 0 had only been studied in the time domain. We have characterised in
detail not only the onset curves but also the frequencies, identifying the regions that are
most unstable. In figure 4.3.2 we have identified the onset charge as a function of the radius
for different chemical potentials and showed the approach to the analytical values obtained
in sections 4.3.2 and 4.3.3. We emphasize that the bound deduced from the near-horizon
condensation instability is sharp and had not been identified before for this system.

We pointed out that, in a phase diagram of static solutions of the theory, the onset curve
also signals the bifurcation point to a new family of solutions that describe charged hairy
black holes with scalar hair floating above the horizon. Hence any nonlinear construction
of such hairy solutions can also be tested using the linear onset results: the onset curve
must be a boundary for the two dimensional surface where hairy black holes exist. Without
using the equations of motion, we can predict the leading order thermodynamics of these
charged hairy black holes. For that, we used a non-interacting thermodynamic model that
assumes that, at leading order in perturbation theory, the hairy black hole can be seen as
a small RN BH placed at the core of the soliton of the theory, whose linear term is the
normal modes, as long as these two constituents are in thermodynamic equilibrium (if they
have the same chemical potential).

After analysing the linear problem of scalar perturbations in RN backgrounds, and identi-
fying the unstable regions in parameter space, we have constructed the hairy black holes
that are the endpoint of the instabilities in Chapters 5 and 6 . This involves solving a
set of three coupled nonlinear ODE’s. Thus we have used a perturbative expansion in the
horizon radius and the amplitude of the scalar field to linearise the equations and solve
them order by order in perturbation theory. In addition we have used a matched asymp-
totic expansion method to solve the equations. We have done this procedure consistently
in order to identify the thermodynamic quantities (equations (5.5.6) and (6.6.8) for AdS4

and asymptotically flat with a box cases respectively) until satisfying the first law at third
order in perturbation theory: O(ε4), O(ε2R+), O(R2

+), each included. The asymptotically
AdS case adds to similar studies done previously [51, 126] in five dimensions.

These systems also admit regular horizonless solutions known as solitons. They can be
found perturbatively from the backreaction of the normal modes. Using the U(1) gauge
freedom of the systems these solitons can be turned into periodic solutions known as boson
stars.

From the thermodynamic quantities we have been able to analyse the microcanonical
ensemble and confirm that hairy black holes have more entropy for a given mass and charge
than any other solution in the theory and thus can be the endpoint of the instabilities.
The microcanonical phase diagrams for the boxed (figure 6.7.1) and AdS (figure 5.6.1)
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cases are very similar. Notice, though, that in order to analyse the phase diagram in the
boxed case we have used the Brown-York quasilocal formalism. This approach has allowed
us to identify the black hole quasilocal thermodynamic quantities without any explicit
dependence on the box matter content.

Finally, to completely solve the boxed case, we have obtained the Israel energy-momentum
tensor of the box. From its result and from the energy conditions one can determine the
content that the box must initially have in order to sustain the pressure exerted by the
system. The fact that a black hole bomb system in the presence of a box requires an Israel
stress tensor and the associated properties are matters that were not considered in the
previous studies of black hole bomb systems.
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Part III

Multi-oscillators
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In this Part we study nonlinear horizonless pseudo-periodic solutions to Einstein’s equa-
tions with a scalar field. These solutions are coined multi-oscillators. A particular case of
multi-oscillator is the boson star which was studied in the previous Part and which can be
see as a single-oscillator within the family of multi-oscillators. These solutions have been
studied in AdS [87] in the context of the non-linear instability (see 2.3). In particular, the
study of these multi-oscillators can be used to map the islands of stability in AdS that
were discussed in the Introduction.

As a byproduct of the study we will find a new family of solutions in asymptotically flat
spacetimes. Indeed, as in AdS, there also exist asymptotically flat boson stars [91, 92].
In Chapter 10 we will use the same construction used to find multi-oscillators in AdS
to backreact the perturbations of the boson star and thus find asymptotically flat multi-
oscillators.

Since the methods used throughout this Part are very similar, we will first present the
general setup which is common throughout this Part in Chapter 8.

This part is mostly contained in the publication [4] co-authored with Matthew Choptuik
and Benson Way and in a forecoming paper co-authored with Benson Way.
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CHAPTER 8

General setup

In this part we consider 4-dimensional Einstein gravity minimally coupled to a complex
scalar field ϕ . The associated action is

S =
1

16πG4

∫
d4x
√
−g
[
R− 2Λ− 2∂µϕ(∂µϕ)† + 2V (|ϕ|)

]
, (8.0.1)

where R is the Ricci scalar, Λ is the cosmological constant and the potential V (|ϕ|) =

m2ϕϕ∗, with m the mass of the scalar field. We fix Newton’s constant as G4 = 1. In
the asymptotically AdS cases we take Λ = (d−1)(d−2)

L2 while in the asymptotically flat cases
Λ = 0.

We will consider spherically symmetric solutions to the equations of motion derived from
the action (8.0.1). However, depending on the problem we solve, we will use a different
gauge to write the metric and thus we will explicitly show it in each case.

Technically, the construction of multi-oscillators is made simpler if we write the associate
scalar field in a particular form: A complex scalar field can always be written in the form

ϕ(t, r) = eiω1t (ϕr + iϕi) , (8.0.2)

where both ϕr and ϕi are real functions of the radial coordinate r and the time coordinate
t.
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Multi-oscillators are characterised by the number of non-commensurate frequencies in
which the solutions oscillate. Thus a single-oscillator is characterised by one frequency
ω1, a double oscillator by two frequencies ω1, ω2 and in general a multi-oscillator by k

frequencies ωk. A quasiperiodic function f on k frequencies has a spectral expansion

f(t, r) =
∑

n1,...,nk

An1,...,nk(r)ein1ω1t+...+inkωkt , (8.0.3)

which contains the same spectral information as

f(t1, . . . , tk, r) =
∑

n1,...,nk

An1,...,nk(r)ein1ω1t1+...+inkωktk , (8.0.4)

and whose derivatives are equivalent if ∂t → ∂t1 + . . . + ∂tk . But note that the functions
themselves are not equivalent under t→ t1 + . . .+tk, so to have an equivalence between the
two descriptions, the equations of motion must be independent of t, except for appearances
of the derivative ∂t and the functions f . This is the case of the equations we will encounter
in this Part.

Multi-oscillators can therefore be found by setting ∂t → ∂t1 + . . .+ ∂tk in the equations of
motion, promoting the functions fi(t, r)→ fi(t1, . . . , tk, r), and demanding each coordinate
ti to be periodic on frequency ωi. In general, the result of this process defines a boundary
value problem on k + 1 coordinates which can be solved numerically.

We have somewhat simplified this process in our ansatz by placing one of the frequencies
ω1 into an overall phase - see (8.0.2) - thus removing the time dependence on t1. Single-
oscillators can therefore be found setting ϕi = 0 and removing any time dependence in the
functions, leading to a set of ODEs in r. Double oscillators can be found by allowing the
ϕr,i to be independent of t1 and periodic on the coordinate t2 with frequency ω2, leading
to a a PDE in t2 and r.

The method just explained allows to find double-oscillators as a boundary value problem
in two coordinates: t2 which has period ω2 and r. We use this method for our construction
in Chapter 9 and Chapter 10.
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New islands of stability with double-trace deformations

This Chapter is focused in the study of the nonlinear instability of AdS. We will study
the impact of changing the boundary conditions of the scalar field in asymptotically AdS
backgrounds by introducing a double-trace deformation. As a motivation for the Chapter
we will first present an analytic perturbative computation, similar to the ones done in [64],
that hints at the existence of the nonlinear instability.

9.1 Summary

The first evidence suggesting that global AdS spacetime with reflecting boundary con-
ditions may allow arbitrarily small energy excitations to form black holes was presented
in [63]. The first phenomenological evidence was presented in [64] where it was shown
through a numerical evolution that initial data consisting of a Gaussian distributed scalar
field would always form a black hole regardless of the inital energy. In addition this publica-
tion also presented a perturbative analysis motivating the collapse on the commensurability
of the frequency spectrum and establishing a relation between the time of collapse and the
break down of perturbation theory. It was also shown that one-mode initial data does not
have a break down in the perturbative construction, but one can rather solve perturbatively
the equations leading to the formation of a horizonless periodic solution.
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Soon after, it was realised that small deviations of one-mode initial data do not collapse
either, leading to non-collapsing initial data forming a set called islands of stability [78].
There does not exist an exhaustive proof clearly establishing which initial data may lead
to instability and which not, thus the study of existence and width of these islands of
stability remains an open problem with important implications for the nonlinear instabil-
ity of AdS and its interpretation within the field theory dual provided by the AdS/CFT
correspondence [11, 13, 12].

In this Chapter we study islands of stability in asymptotically AdS spacetime in four di-
mensions when a scalar field perturbation with a double-trace deformation is introduced
[33]. For concreteness, the massive scalar field will have a mass m2L2 = −2, which lies
between the BF bound m2

BFL
2 = −9/4 and the unitary bound m2

∗L
2 = −5/4 (see section

1.2.2). We will introdue a double-trace deformation and asymptotic Robin boundary con-
ditions for the scalar field parametrised by κ. We use κ to quantify the deviation of the
asymptotic boundary condition from the Dirichlet boundary condition, which is resonant.
More concretely, let t be the time measured by an observer at the boundary of AdS and x
a radial coordinate with support in [0, π/2]; the asymptotic behaviour of the scalar field is

ϕ(t, x)|x→π
2

= ϕ1(t) + ϕ2(t)
(
x− π

2

)
+O

(
x− π

2

)2
. (9.1.1)

We will consider for the scalar field, double-trace boundary conditions of the form

sin
(π

2
κ
)
ϕ1 (t)− cos

(π
2
κ
)
ϕ2 (t) = 0, (9.1.2)

with 0 ≤ κ ≤ 1. Thus κ = 1 corresponds to Dirichlet boundary conditions and κ = 0 to
Neumann boundary conditions.

There is by now, substantial evidence that two-mode-equal-amplitude 1 initial data always
leads to collapse, and thus lies outside the islands of stability [78, 160, 80, 79, 85, 83, 82,
81, 84, 86, 87].

Taking the two previous considerations into account, we will consider two-mode-equal-
amplitude initial data with double-trace deformation. A linear study of the system allows
to find the trascendental equation (9.3.4) that normal mode frequencies obey as a function
of κ. In particular, we recover the commensurate cases of Dirichlet (κ = 1) and Neumann
(κ = 0) boundary conditions.

We follow [87] to determine the regions of non-collapsing initial data. We construct solu-
tions to the full nonlinear equations that do not collapse on any timescale. That is, we
will find double-oscillator solutions which are periodic in two frequencies and that at the
perturbative level are the backreactions of two normal modes. These double-oscillators do

1In the following sections we will give a precise meaning of this two-mode-equal-amplitude concept.
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not exist for Dirichlet boundary conditions as was shown in [87]. However, since for κ < 1

the spectrum of frequencies is non-commensurable, one can resum perturbation theory and
thus these solutions exist, at least for small enough energies. Our first objective is to find
the region of existence of double-oscillators as a function of the non-commensurability of
the spectum.

However,in the Neumann bounday condition case we will encounter that the results are not
as expected, as we find double-oscillator solutions that appear to exist for arbitrarily small
energy even though the spectrum of energies is commensurable. Thus the second part of
our study is to confirm the existence of such solutions in a time evolution simulation. We
give as initial data the double-oscillator solutions and we allow the system to evolve for a
long period of time (an order of magnitude larger than expected time for collapse). We will
confirm that, indeed, in the Neumann case, equal-amplitude multi-oscillators exist. This
will also show that the structure of solutions and of the instability of asymptotically AdS
spacetime may be less universal than expected.

9.2 Setup

In Part II we showed that we can use scaling symmetries in order to express all dimensionful
quantities in units of L. This effectively sets L = 1 and this is the approach we follow in
this Chapter. Our ansatz is given by

ds2 =
1

cos2 x

(
−fδ2dt2 +

dx2

f
+ sin2 x dΩ2

)
, (9.2.1)

ϕ(t, x) = eiω1 t cosx (ϕr + ϕi) . (9.2.2)

We recall that we set the mass of the scalar field to be m2 = −2. We require all fields
to be regular in the spacetime. In addition to the double-trace boundary conditions for
the scalar field considered in equation (9.1.2), we require the metric fields to asymptote to
AdS, and in particular we choose the gauge where

δ
(
t,
π

2

)
= 1, f

(
t,
π

2

)
= 1. (9.2.3)

To solve numerically the equations of motion we introduce the new functions fi, i ∈
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{1, 2, 3, 4}:

δ = 1− cos2 x f1,

f = 1 + sin2 x cos2 x
(
cosxf2(t, x) + ϕ2

i + ϕ2
r

)
,

ϕr = f3,

ϕi = f4.

(9.2.4)

With these considerations the Hamiltonian constraint equation defines a conserved quantity
E

E = f̄2

(
t,
π

2

)
+ tan

(π
2
κ
)(

f̄3

(
t,
π

2

)
+ f̄4

(
t,
π

2

))
. (9.2.5)

In the boundary value problem we obtain solutions over a full period. Thus the bar specifies
that we take the mean to compute E and use its standard deviation as a numerical check.
In the time evolution setup, we compute the energy at each time, thus the mean is no
longer needed.

The equations of motion in our setup consist of two of Einstein’s equations and two real
Klein Gordon equations (one for each field ϕr and ϕi). In addition, Einstein’s equations
also include the constraint equation that we use in our numerical setups as a further
consistency check.

9.3 Perturbative analysis

Before solving the equations of motion numerically we analyse perturbatively the equations.
The Klein Gordon equation in an AdS background is a Sturm-Liouville problem with
operator L:

∂t,tϕ+ Lϕ = 0, L =
−1

tan2 x
∂x
(
tan2 x∂x

)
. (9.3.1)

The operator thus defines a scalar product in
(
0, π2

)
:

(f, g) :=

∫ π
2

0
f g tan2 xdx. (9.3.2)

The Klein Gordon equation admits the following regular solutions:

ên(t, x) = Cn e
iωnt sinc (ωn x)

sinc (x)
, (9.3.3)
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where the constants are chosen so that (ên, êm) = δn,m and with sinc(x) = sinx
x for x 6= 0

and sinc(0) = 1. The eigenfunctions {ên}n form a basis in the Hilbert space. Imposing the
boundary conditions (9.1.2) to the scalar field (9.3.3), the frequencies are quantized. The
frequencies ωn are the solutions to the equation:

sin
(π

2
κ
)

sin
(π

2
ωn

)
− ωn cos

(π
2
κ
)

cos
(π

2
ωn

)
= 0. (9.3.4)

Notice that a Dirichlet boundary condition corresponds to κ = 1 and the frequencies are
given by ωn = 2, 4, 6 . . . κ = 0 corresponds to Neumann boundary conditions and the
frequencies are given by ωn = 1, 3, 5 . . . Hence both cases have a spectrum of frequencies
that is commensurate.

Interestingly, one can check that starting with the Dirichlet boundary condition corre-
sponding to ωn = 2n one can continuously decrease κ and connect to the frequency at
the Neumann bound with ωn = 2n + 1. Thus the frequency at the Neumann bound
ω0 = 1 is not connected to the Dirichlet case but rather a new frequency appears when
κ ≤ 2

π tan−1
(

2
π

)
.

To proceed to the next order in a perturbative expansion we focus on the Dirichlet case
for which the basis and frequency spectrum is

ên(x) =
4n sinc(2nx)√
π sinc(x)

, ωn = 2n; n ∈ N. (9.3.5)

We use as initial data what is known as two-mode-equal-ampliude initial data first used
in [64] as the simplest nonlinearly unstable model2. The general solution to the equation
(9.3.1) is given by

ϕ(t, x) =
∑
n≥0

an cos(ωnt+ βn)ên(x), (9.3.6)

with an and βn determined by the initial conditions.

We are ready to define the problem we will solve perturbatively and in particular define
the expansion parameter ε. We will solve the time evolution system with initial data of
the form

ϕr(t, x) = ε (ê1(x) + cos ((ω2 − ω1)t) ê2(x)) , ϕi(t, x) = ε (sin ((ω2 − ω1)t) ê2(x)) .

(9.3.7)

Notice that this initial condition can also be written in the simpler form

ϕ = ε cos(x)
(
eiω1tê1(x) + eiω2tê2(x)

)
. (9.3.8)

2We will show, while performing this perturbative computation, why the one-mode initial data is stable.
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We have chosen the form (9.3.7) for consistency with the numerical computation as ex-
plained in the previous Chapter 8. Two-mode-equal-amplitude has now a precise meaning
since both Fourier and normal modes are orthonormalised. Thus one mode is formed of a
Fourier mode and a normal mode. The initial data (9.3.8) has two such modes and their
amplitude is essentially given by ε.

Now we proceed to solve the Einstein-Klein Gordon system of equations perturbatively in
ε. We will use an expansion of the fields as

f(t, x) = 1 +
∑
i≥1

ε2if2i(t, x), δ(t, x) = 1 +
∑
i≥1

ε2iδ2i(t, x),

ϕ(t, x) =
∑
i≥0

ε2i+1ϕ2i+1(t, x),
(9.3.9)

where ϕ1 is given by (9.3.8). The resulting solutions should be parameterised by the
parameter ε. Since our initial data is parametrised by the frequency, backreaction will also
introduce corrections to the frequencies and thus they also have an expansion described
by:

ω1 = 2 +
∑
i≥1

ε2iω1,2i, ω2 = 4 +
∑
i≥1

ε2iω2,2i. (9.3.10)

The coefficients at second order can be solved exactly yielding

δ2(t, x) =
8(−10x+ 2 sin(2x) + sin(6x)) cos2(x) cot(x)

π
− 128 cos(2t) sin2(x) cos4(x)

π
,

f2(r) = −64 cos(2t) cos(2x) cos4(x)

π
− 16(4 cos(2x) + 6 cos(4x) + 13) cos4(x)

3π
. (9.3.11)

At third order the Klein-Gordon equation takes the form

∂t,tϕ
r − 2ω1ϕ

i
3 − Lϕϕr3 = Sr(t, x), (9.3.12)

with Sr(t, x) a source that depends on the fields ϕ1, f2 and δ2 and their derivatives. The
field ϕi3 obeys a similar equation with the changes ϕi3 ↔ ϕr3, Sr(t, x) → Si(t, x) and
ω1 → −ω1.

We solve these equations by projecting onto the Fourier sine and cosine basis. Due to
possible ressonances, we choose an ansatz for the scalar fields at third order of the form:

ϕr3(t, x) =
∑

n=0,2,4,6

(cos(nt)ϕcn(x) + t (sin(nt)ϕstn(x))) , (9.3.13)

and similarly but in a sine basis for ϕi3.
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We are left with a finite number of ordinary differential equations for the fields ϕcn(x),
ϕstn(x) and the corresponding ones for ϕi3. Once these equations are solved analytically
we encounter the final solution at third order in perturbation theory. Terms increasing
linearly in time (secular terms) appear in the solutions. We can use the correction to
frequencies at second order, ω1,2 and ω2,2, in order to cancel some of the secular terms. In
particular we obtain

ω1,2 = −248

3π
, ω2,2 = −184

π
. (9.3.14)

However, there is a further secular term that cannot be removed and is of the form:

176t cos(6t) sin(6x) csc(x)

3π3/2
(9.3.15)

for ϕr3 and the same but with sin(6t) rather than cos(6t) for ϕi3.

This term cannot be avoided in our construction and grows in time, thus signalling a break
down of perturbation theory when tε3 ∼ ε i.e. when t ∼ 1

ε2
. The expression of the source

terms in (??) is useful because it helps to identify the reason for the appearance of secular
terms: in the source terms there appear solutions to the homogeneous piece of equation
(??). It is natural that the two modes that form the initial data appear but the coefficients
ω1,2 and ω2,2 can be set to cancel them. This is no longer the case for other modes, whose
solution to the homogeneous equation will appear but the resulting secular term will not
get cancelled. From the trigonometric structure in the time coordinate one can infer that
if there exists a tetrad (j1, j2, j3, j4) such that

aj1 6= 0, aj2 6= 0, aj3 6= 0, aj4 6= 0, ∆ωJ ≡ ωj2 + ωj3 − ωj1 − ωj4 = 0, (9.3.16)

then secular terms that cannot be cancelled will appear and the spectrum will be resonant .

9.4 Nonlinear numerical analysis of the boundary value prob-
lem

In order to solve at full nonlinear level the equations as a boundary value problem we
use the procedure explained in Chapter 8. We fix the projection onto two normal modes
merging at the perturbative level with (9.3.7). Thus our solutions are periodic in two
different frequencies. Because the ω1 periodicity is not manifest in the functions- thanks
to the global phase eiω1 t of the ansatz and hence the fields depend on ω2−ω1- we can find
the desired solutions by treating t as a periodic coordinate with period ω2. The symmetries
in the functions along t allow us to use a half Fourier grid. Thus without loss of generality
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we use the following expansions

fi(t2, x) =
∑
k

f
(k)
i (x) cos(kω2t2) i ∈ {1, 2, 3, } ,

f4(t2, x) =
∑
k

f
(k)
4 (x) sin(kω2t2) (9.4.1)

where f (k)
n indicates the k-th Fourier coefficient for the function fn. In the radial direction

we have also used pseudospectral collocation methods with Legendre polynomials.

We consider two-mode-equal-amplitude solutions to the system of Einstein’s and Klein
Gordon’s equations. In particular we consider the amplitude induced by the scalar product
(9.3.2). Let fi (with i = 3 or 4) be a solution to the system of equations, we will require
that these solutions obey the following properties:

(f
(1)
3 , ê1) = (f

(1)
3 , ê2) = (f

(1)
4 , ê1) = ε. (9.4.2)

Notice that this two-mode-equal-amplitude definition is the same that we used in the
perturbative analysis of the previous section. When the solution ê0 exists we will also
consider the case with n = 0 and n = 1. However, we use subscripts 1 and 2 to refer in
general to the two modes. The equations of motion are solved as a boundary value problem
using a Newton-Raphson method.

For Dirichlet boundary conditions (κ = 1) numerical time evolution evidence as well as
the perturbative analysis of the previous section suggests that two-mode-equal-amplitude
initial data is collapsing. We thus expect that we will not encounter the two-mode-equal-
amplitude multi-oscillators when considering Dirichlet boundary conditions. Decreasing
the value of κ and thus moving away from the resonant case we expect these solutions
to exist. In addition we would expect them to exist for larger values of the amplitude ε
the further we move from the resonant case. The perturbative analysis of the previous
section may suggest that the quantity

√
∆ωJ is a reasonable qualitative estimate for the

existence of multi-oscillator solutions. We display the quantity
√

∆ωJ for the case ji = i

for i between 1 and 4 in Fig. 9.4.1.

In Fig. 9.4.2 we display the maximum value of E , defined in (9.2.5), for which we have
obtained multi-oscillator solutions with two-mode-equal-amplitude determined by (9.4.2)
as a function of the parameter κ that characterises the double-trace deformation. The
behaviour of the curve near the Dircihlet case (κ = 1) is in agreement with expectations:
the maximum energy is zero at precisely κ = 1 and increases as we vary the value of κ
and thus move away from the resonant case. However the result in the Neumann side is
unexpected. The maximum energy flattens at an energy around 0.24. This is in agreement
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Figure 9.4.1: Value of
√

∆ωJ as a function of κ. κ = 0 is the Neumann boundary condition
on the scalar field and κ = 1 a Dirichlet boundary condition. In both these cases, ∆ωJ = 0
and the spectrum is fully resonant.

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.05

0.10

0.15

0.20

0.25

κ

ℰ

Figure 9.4.2: Maximum value of the energy for which we have encountered multi-oscillators
as a function of κ.

with the maximum value of the amplitude ε that flattens at 0.06.

For Neumann boundary conditions the spectrum of frequencies is commensurable and the
perturbative construction of double-oscillators breaks down at order ε3 as we have shown
in the previous section. Thus to understand the nature of the multi-oscillator solutions
that we have obtained we show Fig. 9.4.3. Using normal modes (9.3.3) as a basis, we
project our multi-oscillator solutions onto the basis. The largest coefficients are then given
by ε which are the two modes with amplitude ε, see equation (9.4.2). At nonlinear level
the projection onto other modes is no longer zero. In particular the largest coefficient other
than ε coincides with the projection onto the normal mode ê3. In Fig. 9.4.3 we display
the maximum amplitude for which the projection onto ê3 is less than 10% the projection
onto ê1. We constructed multi-oscillators such that in the perturbative limit ε → 0 they
reduce to a superposition of the normal modes ê1 and ê2. From this figure it is clear that
the region for which this assumption is more or less valid qualitatively resembles the curve
in Fig. 9.4.1. Thus the multi-oscillators in the Neumann case are solutions that are not
close to double-oscillators with just two excited normal modes but rather a larger amount
of modes are also excited.
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Figure 9.4.3: Maximum value of the energy for which we have encountered multi-oscillators
with a ratio of the amplitudes of the projections to ê1 and ê3 smaller than 10% as a function
of κ.

9.5 Time evolution problem

The results from the previous section point at the existence of islands of stability for
Neumann boundary conditions that do not have a counterpart in the Dirichlet case. Indeed,
islands of stability have been encountered with initial data that is close to an existing
solitonic solution. In fact, in [87] the authors charted islands of stability by changing
the ratio of the two leading amplitudes in non-equal-amplitude double-oscillators in the
Dirichlet case. In the present case, however, we are encountering solutions that are not at
all close to any known solitonic solution but rather resemble multi-oscillating solutions.

In order to confirm the existence of these new islands of stability, we performed a time
evolution simulation. As initial data we provided the multi-oscillating solutions at time
t = 0 and let them evolve. Our objective is to confirm the existence of non-collapsing
initial-data that involves more than one dominating mode. We performed the study for
different values of ε. In the following we consider the study with ε = 0.06 which corresponds
to energy E = 0.24.

The break down of the validity of perturbation theory typically occurs at times of order
t ∼ ε−2 [64]. We thus let our code evolve until time t = ε−3 ≈ 4630. As in the boundary
value problem, we controlled our numerics through energy conservation and the constraint
equation. Both the constraint equation and energy conservation were verified to order
10−10.

The multi-oscillator solutions oscillate in two frequencies. Thus the gauge invariant quan-
tity ϕϕ∗ should be periodic as the product cancels one of the frequencies. We thus plot
the quantity ϕϕ∗ at the boundary as a function of time in Fig. 9.5.1. The panel above
corresponds to the first 50 seconds of the simulation, whereas the panel below to the last 50
seconds. Clearly, the solutions are non-collapsing but rather remain periodic throughout
the time of simulation.
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Figure 9.5.1: ϕϕ∗ at the boundary x = π/2 as a function of time for initial data consisting
of a multi-oscillator with two main amplitudes ε = 0.06. Top: The first 50 seconds of the
simulation. Bottom: The last 50 seconds of the simulation.
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CHAPTER 10

Asymptotically flat multioscillators

In this Chapter we present the construction of asymptotically flat multi-oscillators that,
in a phase diagram of solutions, merge with an asymptotically flat boson star. This is
the first construction of such objects and it appeared in the preprint [4]. The immediate
precedents are [161] which hinted at the existence of such objects in a numerical time
simulation and similar constructions in asymptotically AdS spacetimes such as those of
the previous Chapter.

10.1 Introduction

Boson stars are compact self-gravitating objects made of a massive complex scalar field.
They were first introduced by Kaub and also Ruffini and Bonazzola in the late 1960’s
[91, 92]. (See [93] for a review.) Besides their intrinsic interest as self-gravitating solitonic
solutions in general relativity, they are used in models of gravitational collapse, dark matter,
and as gravitationally compact objects. Part of their utility stems from the fact that
complex scalar fields do not suffer from issues like shocks and discontinuities that affect
fluid dynamics. Thus, relative to neutron stars, for example, boson stars are easier to treat
computationally, but still remain useful probes of strong field gravity.

The recent success of the gravitational wave observatories LIGO and VIRGO [162, 163]
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has led to a growing interest in the merger dynamics of exotic compact objects like boson
stars. It is important, therefore, to identify the generic configuration of these compact
objects that forms from some dynamical process. In contrast to black holes, there are
no uniqueness theorems for boson stars. Indeed, numerical simulations that do not form
black holes or disperse to infinity appear to either leave a stable boson star or approach
some oscillating solution [164, 165, 161, 166]. Are these oscillating solutions transient or do
they remain indefinitely? If they are long-lasting, how large is the space of such oscillating
solutions?

We propose that such oscillating solutions constitute an infinite dimensional family. This
family includes the usual boson star family, as well as an infinite-parameter space of configu-
rations that oscillate indefinitely on any number of frequencies. By analogy with similar so-
lutions found in anti-deSitter space [51, 74, 79, 167, 86, 87], we call these ‘multi-oscillators’.
We will explicitly construct such configurations with two oscillations (double-oscillators),
but our methods can in principle be used for including more oscillations.

We mention that in [161] strong numerical evidence was presented for the existence of
solutions to the Einstein-Klein Gordon system with more than one scalar field. In that case
a time evolution with initial data composed of a complex scalar field with the imaginary
part phase-shifted was performed and it was found that the system approached a solution
that was called a phase-shifted boson star . Such solutions should lie within the family of
multi-oscillators.

10.2 Boson star and its perturbations

We begin reviewing the phase space and stability of boson stars[168, 169, 170, 171, 172,
173, 174, 175, 176, 164, 165, 161, 166]. For concreteness, we consider the theory of a
complex scalar ϕ with mass µ, minimally coupled to gravity. Boson stars are derived from
an ansatz for the scalar field of the form ϕ = eiω1tψ(r) for some real function ψ with time
coordinate t, and radial coordinate r. That is, the complex scalar is spherically symmetric
and has periodic time dependence with frequency ω1. This time dependence only appears
as an overall phase, so the equations of motion are independent of t and reduce to a
set of ordinary differential equations (ODEs) in r. Solutions to these equations can be
parametrised by the frequency ω1. Since there is only one periodic oscillation, boson stars
are single-oscillators in the multi-oscillator family.

Fig. 10.2.1 shows the energy of boson stars versus the frequency ω1. We see that there is a
maximum energy that divides the solution into two branches. Solutions on the right branch
(from arbitrarily small energies up to the maximum energy) are stable, while solutions on
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Figure 10.2.1: Left : Energy of boson stars versus their frequency. The red dot with zero
energy marks Minkowski space. The vertical dashed line separates the solutions into the
stable branch (right) and the unstable (left). Right : Perturbative frequencies of the stable
boson star branch. The zero-frequency at ω1/µ ≈ 0.853 agrees with the maximum energy
in the left panel.

the left branch are unstable.

The spectrum of linear perturbations of solutions on the stable branch consists of an infinite
number of normal modes. The lowest normal mode frequency, which we call ω2, is shown
as a function of ω1 in the right panel of Fig. 10.2.1. The point where ω2 vanishes (with
ω1 ∼ 0.85) coincides with the boson star with maximum energy. That is, at this point, ω2

corresponds to the zero mode that marks the onset of instability of boson stars.

We will demonstrate that a linear normal mode perturbation of a boson star can in fact be
extended to a new nonlinear solution. Nonlinear corrections will modify the perturbative
frequency ω2, so this new solution can be parametrised by ω1 and ω2. This solution
oscillates on both of those frequencies: a double-oscillator. But the same process can be
applied using higher modes than ω2, as well as any combination of those modes. This
generates a family of solutions that oscillate on any number of frequencies ωi: a multi-
oscillator.

10.3 Numerical Construction

The numerical construction for these double-oscillators was generically explained in the
Chapter 8. So in this section we will present the details that are particular to this problem.

We use the metric and scalar field ansatz

ds2 = −δ fdt2 +
dr2

f
+ r2dΩ2, (10.3.1a)

ϕ = eiω1t (ϕr + iϕi) . (10.3.1b)
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We use the coordinate ρ given by r = rs
ρ
√

2−ρ2

1−ρ2 so that the domain ρ ∈ (0, 1) is compact.
Here, rs is a scaling parameter that can be chosen freely without affecting the physical
solution. For convenience, we set

δ = 1−
(
1− ρ2

)
f1,

f = 1− ρ2
(
2− ρ2

) (
1− ρ2

)
f2,

ϕr =
(
1− ρ2

)2
f3,

ϕi =
(
1− ρ2

)2
f4,

(10.3.2)

and take fi, i = {1, 2, 3, 4} to be real functions of t and ρ. The equations of motion contain
two first-order spatial constraints for f1 and f2, and the two second-order Klein-Gordon
equations for the scalar fields f3 and f4. There is also a first-order temporal constraint
equation that we do not solve directly, and use as a measure of numerical accuracy. Note
that since ω1 only appears as an overall phase, the time dependence of the equations of
motion lies only in the functions fi and the derivative ∂t.

The required boundary conditions are regularity at the origin ρ = 0 (r = 0) and asymptotic
flatness at infinity ρ→ 1 (r →∞). One can also supply initial data for f3 and f4 and their
time derivatives at a fixed time, say t = 0 and solve this system as an initial value problem.
For our purposes, however, we wish to find solutions with some specified quasiperiodic
behaviour in time. That is, we seek solutions that oscillate with some superposition of
periods. We will therefore require additional boundary conditions on t.

Without loss of generality, we can choose the time Fourier series of f1, f2, and f3 to be
cosine series, and f4 to be a sine series.

fi(t2, ρ) =
∑
k

f̂
(k)
i (ρ) cos(kω2t2) i ∈ {1, 2, 3, } ,

f4(t2, ρ) =
∑
k

f̂
(k)
4 (ρ) sin(kω2t2) (10.3.3)

We introduce the Fourier coefficients

ε1 = f̂
(0)
3 (0), ε2 = f̂

(1)
4 (0), (10.3.4)

which essentially measure the amplitudes of the corresponding fields f3 and f4 at the origin.
We find ε2 to be more convenient than ω2 as a parameter since at ε2 = 0 one recovers the
boson star. We can therefore treat ε2 as a measure of our deformation from the boson star
solution. Thus we use the parameters {ω1, ε2} to move numerically in phase space. We
take rsµ = 5/

√
ε1 as a convenient choice of scaling parameter rs.

The main features we extract from our numerical calculation are the frequencies ω1 and
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Figure 10.4.1: Change in frequency ω2 with respect to the normal mode of the boson star
as a function of ω1.

ω2, as well as the energy E and the mass aspect function M :

E

µ
=
rs
2
f̄2(1),

M(ρ)

µ
=
rsρ

3
(
2− ρ2

)3/2
2

f̄2(ρ). (10.3.5)

Notice that the mass aspect function tends to the energy as ρ → 1. Additionally, since
the solutions are periodic in time, we compute these quantities by taking the average over
a period in t2 (which we express using a bar, as in f̄2) at a fixed radius ρ. Though we’ve
taken E to be an average over a period of t2, energy conservation actually guarantees that
f2(t2, 1) is constant. We can therefore use the standard deviation of f2(t2, 1) as a check on
numerics.

We solve the double-oscillator equations numerically using Fourier spectral methods in t2,
and fourth order finite differences in ρ. We use a Newton-Raphson method with the boson
star solutions as initial estimates. For our numerical algorithm, we used 31 gridpoints
in the time direction and 71 in the radial direction. For data shown here, the temporal
constraint and the standard deviation of f2(t2, 1) over a period are smaller than 10−6.

10.4 Results

As we have mentioned earlier, solutions with small ε2 are well-approximated by linear per-
turbation theory about boson stars, where ω2 is the perturbative normal mode frequency,
which have already been shown in Fig. 10.2.1.

In Fig. 10.4.1, we show how ω2 changes from the perturbative boson star value (∆ω2 =

ω2 − ω(BS)
2 ) as ε2 is increased. Depending on ω1, ω2 may either increase or decrease from

its perturbative value. Around ω1 ∼ 0.952 there appears to be a divergence in this figure,
which arises as a result of a degeneracy of normal modes.
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Figure 10.4.2: Difference in principal frequency ∆ω1 ≡ ω1 − ω(BS)
1 as a function of the

energy. Top: larger range of energies, in particular the line with ε2 = 0.0005 goes from
frequencies ω1 = 0.997 to ω1 = 0.875. Bottom: Zoom into the region of larger energies
where we have obtained solutions for larger values of ε2.

We mention that a similar divergence has been observed in toroidal perturbations of black
branes [177]. In the black brane, this divergence is a consequence of a particular align-
ment of perturbations. The usual perturbations are ill-defined at this divergence, and are
replaced by a special and distinct set of perturbations with different symmetry proper-
ties. In the present double-oscillator case, there may likewise be a special double-oscillator
generated by a distinct set of perturbations, but such a solution would not be generic.

Despite this feature of a divergence, we conclude from this figure that the secondary fre-
quency ω2 does not typically differ too far from the perturbative value. This could be
anticipated from the fact that corrections to the frequency ω2 occur at higher orders in
perturbation theory.

We now compare various quantities between boson stars and multi-oscillators at fixed
energy. We normalize the energy with respect to the maximum energy of the boson star
shown in Fig. 10.2.1 using E/E(BS)

max . We note that all of the solutions we have found satisfy
E/E

(BS)
max ≤ 1. It is conceivable that some multi-oscillators may have higher energy than

the maximum boson star energy, but these would most likely exist close to the critical
frequency ω1 = 0.853, where finding such solutions is numerically challenging.

In Fig. 10.4.2 we plot the relative difference between the multi-oscillator primary frequency
and the frequency of the boson star ∆ω1/ω

(BS)
1 ≡ ω1/ω

(BS)
1 − 1 as a function of the energy.

As was seen for ω2, we find that ω1 can either decrease or increase from the boson star
solution with the same energy, but the difference tends to remain small.

To compare the size of boson stars and double-oscillators, we consider the quantity r99,
which is the spherical radius at which the mass aspect function is 99% of the total energy
[166]. (We take the usual spherical radius r as defined just below the ansatz (10.3.1) rather
than the coordinate ρ.) In Fig. 10.4.3, we again plot a relative radius ∆r99 = r99/r

(BS)
99 − 1

as a function of energy. We see from this figure that double-oscillators are larger and



10.4. Results 141

○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○
○○

○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○
○

○

○

○

○○○○○○○○○○○○○○○○○○○○○
○○○○○○

○
○

○

○

○

○

○○○○○
○○

○
○

0.2 0.4 0.6 0.8 1.0

0.0

0.5

1.0

1.5

2.0

E/Emax(BS)

Δ
r 9
9
/r
99(B
S)

ϵ2=0.0005

ϵ2=0.005

ϵ2=0.01

ϵ2=0.06

○○○○○○○○○○○○○○○○○○○○○○○
○

○
○

○

○

○

○

○

○

○

○

○

○

○

○

0.95 0.96 0.97 0.98 0.99 1.00

0.00

0.02

0.04

0.06

0.08

0.10

0.12

E/Emax(BS)

Δ
r 9
9
/r
99(B
S)

ϵ2=0.0005

ϵ2=0.06

ϵ2=0.1

ϵ2=0.13

Figure 10.4.3: Position at which the mass aspect function is 99% of the total energy, as
a function of the energy. Comparison is made relative to the boson star with the same
energy. Top: larger range of energies, in particular the line with ε2 = 0.0005 goes from
frequencies ω1 = 0.997 to ω1 = 0.875. Bottom: Zoom into the region of larger energies.

less dense objects than boson stars with the same energy. Among the solutions we have
obtained, we find double-oscillators with a radius up to 200% larger than that of the boson
star with the same energy.
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CHAPTER 11

Discussion

This Part has been focused in the study of multi-oscillator solutions which are horizonless
quasiperiodic solutions that oscillate in two or more non-commensurate frequencies. The
main technical point we have used to construct these multi-oscillators was given in the gen-
eral setup of Chapter 8. We made the observation that these solutions can be constructed
by solving a boundary value problem. In this setup we promote the unknown functions
from a dependence on time and radial direction to a dependence on each period and time
direction (8.0.4).

In Chapter 9 we have studied the existence of double-oscillator solutions in asymptotically
AdS spacetimes with scalar fields of mass m2 = −2 when introducing a double-trace
deformation. We have parametrised the double-trace boundary condition with κ that
enables to move away from the resonant case of Dirichlet boundary conditions (κ = 1) to
Neumann boundary conditions (κ = 0) which also has a commensurate spectrum.

Our results indicate that the study of islands of stability for scalar fields with Dirichlet
boundary conditions may not be as universal as one would expect, and indeed we have
encountered the existence of islands of stability with Neumann boundary conditions that
do not have a counterpart with Dirichlet boundary conditions.

To further confirm the appearance of such islands of stability, we have performed a time
evolution simulation. As initial data we have considered the multi-oscillating solutions
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found in the boundary value problem. We have allowed the code to run for an order of
magnitude longer than the expected time of collapse and confirmed that the multi-oscillator
solutions remained during all the time of simulation.

The results we have presented for the multi-oscillators, both in the boundary value problem
and in the time evolution, fixed the amplitude of the projection of the solutions onto
the normal modes ê1 and ê2. We have also studied the lowest excited solutions that for
κ ≤ 2

π tan−1
(

2
π

)
are ê0 and ê1. We have observed that the qualitative results in both cases

are equivalent.

The existence of multi-oscillating solutions in the Neumann case that do not have a coun-
terpart in the Dirichlet case, immediately raise the question of the basin of attraction that
these multi-oscillator solutions have to different initial data. One should notice that the
family of multi-oscillators is an infinite parameter family in the frequencies, thus there
should be a big degeneracy of possible end-state multi-oscillating solutions for different
types of initial data.

Inspired by the construction of multi-oscillators in AdS and the fact that in asymptotically
flat spacetimes there exist boson stars that have perturbations with real frequencies, we
have found asymptotically flat multi-oscillators in Chapter 10.

We have shown that boson stars are only a special case of the more general double-oscillator
solutions, which we propose are part of an infinite-parameter family of multi-oscillator
solutions. The construction comes primarily from extending normal modes of a boson
star to fully backreacted configurations. Our construction is general and can be used,
in principle, to obtain any multi-oscillator solution with more frequencies. We are also
unconstrained by the specific matter content we have considered. So long as there are
solitonic configurations with perturbative normal modes, our methods can be used to
construct multi-oscillating extensions to them.

While we have not studied the stability of double-oscillators, the apparent stability of
boson stars implies that nearby multi-oscillator solutions should also be stable.

We note that there are unstable boson stars as well, whose scalar field has additional
nodes in the radial direction. Their linear perturbations include at least one unstable
growing mode, along with an infinite number of stable normal modes. Any of these normal
modes can be extended to multi-oscillator solutions. When such multi-oscillators are still
near the boson star and well approximated by perturbation theory, they should inherit
the instability of the boson star. However, their instability remains unclear when the
backreaction is much stronger.

Among the properties analysed, we have found that, for a given energy, the primary fre-
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quency of double-oscillators remains close to boson stars, but their size can differ signif-
icantly. We expect this difference in size to be a distinguishing feature of these compact
objects. In particular, the late merger dynamics of multi-oscillators might be noticeably
different from those of boson stars which could have a signature in the gravitational waves
emitted [178, 179].
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CHAPTER A

Numerical methods

A.1 Collocation methods

Collocation methods consist in splitting the domain where we want to solve a differential
equation or perform an integraton into N+1 gridpoints xi. This procedure of discretisation
allows to transform the continuous differential or integral operators into matrix operators.
Then the task of solving differential equations reduces to finding the values of the unknown
functions fj in all points xi. One expects that as the number of gridpoints increases
and thus the space h between contiguous points decreases, the function will be better
approximated between xi and xi+1. We consider two different types of collocation methods
in this thesis: finite differences and pseudospectral methods.

A.1.1 Finite differences

In addition to the number of gridpoints one specifies the order q of the finite difference
method. Then one can interpolate the function between points with a polynomial of order
q in order to take derivatives. Effectively this translates into using a specific number of
contiguous gridpoints in order to calculate the n-th derivative of a function. Clearly there
is a restriction in the order of the derivative: n < q. In the present thesis I have used
central fourth order finite differences. Important properties of the finite difference method
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are:

• The grid using N points between x− and x+ is distributed uniformly in the domain.

• To compute the derivative at a point, one needs the value of the function in the two
previous and two latter points, that is, the value at 5 points in the grid, including
the point itself. The derivative at a point i is approximated as:

f ′(xi) =
f(xi−2)− 8f(xi−1) + 8f(xi+1)− f(xi+2)

12h
+O(h4). (A.1.1)

• The derivatives of boundary points may cause more trouble since there is a lack of
points in one of the directions. There are two ways to solve the issue.

1. When the function is known to be even or odd at the boundary it is best to use
this property to construct a mirror grid at the other side of the boundary and
compute derivatives with the scheme in (A.1.1).

2. For a general function one can use, for the points i = 1 and i = 2 at boundary
x− and i = N and i = N − 1 at boundary x+, the scheme:

f ′(x1) =
−25f(x1) + 48f(x2)− 36f(x3) + 16f(x4)− 3f(x5)

12h
+O(h4),

f ′(x2) =
−3f(x1)− 10f(x2) + 18f(x3)− 6f(x4) + f(x5)

12h
+O(h4), (A.1.2)

f ′(xN−1) =
3f(xN ) + 10f(xN−1)− 18f(xN−2) + 6f(xN−3)− f(xN−4)

12h
+O(h4).

f ′(xN ) =
25f(xN )− 48f(xN−1) + 36f(xN−2)− 16f(xN−3) + 3f(xN−4)

12h
+O(h4),

• Higher order derivatives f (n) can be computed applying the same scheme to f (n−1).

• Definite integration can be performed using the scheme:

F (x1) = 0,

F (x2) =
h

24
(9f(x1) + 19f(x2)− 5f(x3) + f(x4)) ,

F (xi) =
h

24
(−f(xi−2) + 13f(xi−1) + 13f(xi)− f(xi+1)) ,

F (xN ) =
h

24
(f(xN−3)− 5f(xN−2) + 19f(xN−1) + 9f(xN )) .

(A.1.3)

and the total definite integral is given by
∑N

i=1 F (xi).
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In finite differences one obtains sparse matrices and polynomial convergence. This is to be
contrasted with pseudospectral methods for which differentiation matrices are dense but
have exponential convergence for smooth analytic functions.

We have used finite differences to discretise the radial part in Chapter 10. The reason being
that despite the function is smooth, it is not analytic when r →∞. In fact the behaviour
of the scalar field as r →∞ is φ(r)→ e−αr. Spectral methods converge exponentially with
analytic functions but non-analyticity may spoil the convergence, hence our decision.

A.1.2 Pseudospectral methods

Pseudostpectral methods use all points in the grid in order to compute a derivative at
point xi. This yields dense matrices but exponential convergence. The result is that when
both finite differentiation and pseudospectral methods can be used, the latter are more
efficient.

In order to work with pseudospectral methods one introduces a basis of functions ek that
are dense in the Hilbert space where one is performing the calculations. Then the unknown
functions have the form:

fj =
∑
k≥0

ajkej , (A.1.4)

where ajk are coefficients. For analytic functions, spectral theorems guarantee that one
can truncate the sum at a finite integer N with exponential convergence with respect to
N − 1 for the numerical function obtained:

fj =

N∑
k=0

ajkej +O(e−N ). (A.1.5)

Pseudospectral methods have the property that one computes the values of the unknown
function at the specified gridpoints as opposed to other spectral methods where one does
not interpolate in a grid but rather compute directly coefficients of basis functions such
as the ajk. In the thesis I have used three different sets of basis functions depending on
the particularities of the specific problem in hand. These are: Fourier decomposition,
Chebyshev polynomials and Legendre polynomials. In the following I present each basis
and its properties separately and comment when it is better to use each of them.
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A.1.2.1 Fourier Basis

This method uses the Fourier series that uses trigonometric functions as basis. It is most
suited for periodic functions, where one can use either a cosine or a sine expansion. The
gridpoints are evenly distributed in the interval (0, 2π]. I have used this method to expand
the time dependence of the multioscillators in Chapters 9 and 10. Given the particular
symmetries of the problems, the functions where either even or odd and hence could be
expanded either in a cosine or a sine series. The first and second order differentiation
matrices (D(1), D(2)) for each case are:

(
D(1)

)
i,i

= ±(−1)i+j

2
csc
(
α+
ij

)
,
(
D(1)

)
i,0

= 0,(
D(1)

)
i,j

=
(−1)i+j

2

(
csc
(
α−ij

)
± csc

(
α+
ij

))
,(

D(2)
)
i,i

= −(2N + 1)1 − 1

12
,(

D(2)
)
i,j

=
(−1)i+j+1

2

(
cot
(
α−ij

)
csc
(
α−ij

)
± cot

(
α+
ij

)
csc
(
α+
ij

))
(A.1.6)

with α±ij = π(i±j)
2N+1 , and with the positive sign for the cosine expansion and negative sign

for the sine expansion.

A.1.2.2 Chebyshev polynomials

Interpolation with higher order polynomials may not work on evenly distributed points due
to the Runge phenomenon that leads to large oscillations of the interpolated function near
the edges. This is a good reason to introduce the Chebyshev grid (also the Legendre as we
will see below) whose collocation points are distributed according to the function ρ(x) ∼

1
2π
√
x−x2

. The collocation points are distributed according to the Chebyshev polynomials:

xj =
x− + x+

2
+
x− − x+

2
cos

(
(j − 1)π

N

)
, j = 1, . . . , N + 1. (A.1.7)

The differentiation matrix for Chebyshev pseudospectral methods is:

(
D(1)

)
i,i

=
N+1∑

k=1,k 6=i

1

xi − xk
,
(
D1
)
i,j

=
ai

aj(xi − xj)
,

D(q) =
(
D(1)

)q
.

(A.1.8)

In this thesis Chebyshev pseudospectral methods have been used in the numerical parts of
Part II, as well as an independent numerical test for the results of Chapter 10.
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A.1.2.3 Legendre polynomials

Like Chebyshev pseudospectral methods, Legendre’s collocation points are not evenly dis-
tributed but rather located in the zeros of the function

h(x) =
(N + 1)(xPN (x)− PN+1(x))

1− x2
, (A.1.9)

where PN (x) is the Legendre polynomial of order N . The differentiation matrix is given
by (

D(1)
)

1,1
= − N(N + 1)

2(x+ − x−)
,
(
D(1)

)
N+1,N+1

= − N(N + 1)

2(x+ − x−)
,
(
D(1)

)
i,i

= 0

(
D1
)
ij

=
2

x+ − x−
PN (xi)

PN (xj)(xi − xj)
, (A.1.10)

D(q) =
(
D(1)

)q
.

Legendre pseudospectral methods have been used in Chapter 9. The reason is that one
needs to project the function into a basis of normal modes of AdS given by solving the
Sturm-Liouville problem (9.3.1). The projection is done by taking the scalar product
(9.3.2). The problem is solved numerically using spectral methods and hence one expects
to have exponential convergence. Integration using spectral methods can be done using
Gauss quadrature.

Consider the integral

F =

∫ x+

x−

f(x)dx. (A.1.11)

Given a basis of polynomials (such as Legendre or Chebyshev) an analytic function in an
interval (x−, x+) can be approximated knowing the functions in the N gridpoints (f(xi))
by a polynomial of degree N as in (A.1.4) where ej will be the j-th polynomial of the
basis. We can use this polynomial to integrate a function over the interval. The integral
of the polynomial is in general exactly known and thus the error in the computation only
comes from the error of approximating a function by a polynomial which has exponential
convergence in pseudospectral methods.

Since the points in the grid are not evenly distributed, the measure of the integral dx has
to be modified to account for the weight (ωi) of each point (notice that one can either talk
about the measure in the continuous case or weights for the discretisation). The integral
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(A.1.11) can thus be approximated by

F =
∑
i≥0

ωif(xi). (A.1.12)

The measure for Chebyshev decomposition is 1√
1−x2

which is not smooth precisely at
points x = ±1 which are the extremes of the domain of the Chebyshev polynomials. In
spectral methods all points in the grid matter for the computation of each point and thus
this measure can spoil the exponential accuracy of spectral methods. The measure for
Legendre polynomials is 1 and hence one can preserve spectral accuracy when integrating.

The expression for the weights at position i for Gauss quadrature using Legendre polyno-
mials is:

ωi =
2

N(N + 1)PN (x)2
. (A.1.13)

A.1.3 Boundary conditions

In general one may have mixed type boundary conditions that include a relation between
the values of the function and its derivatives at the boundary. For derivatives one can take
the corresponding row of the differentiation matrix: D1 or DN+1 for the boundaries x−
and x+ respectively. The value of the function can only appear in the diagonal. The final
expression for the boundary conditions is (for simplicity we only consider a second order
differential equation so that boundary conditions involve only first derivatives):

C1 (DN )1,1;;N+1 + C2 (IN+1)1,1;;N+1 = 0, at x−,

C1 (DN )N+1,1;;N+1 + C2 (IN+1)N+1,1;;N+1 = 0, at x+,
(A.1.14)

where (DN )1,1;;N+1 is the first row of the matrix DN and IN+1 the identity matrix of
dimension N + 1.

A.1.4 PDE’s

To solve PDE’s, we use a tensor product grid. In Part III we have solved PDE’s with
dependence on the time and radial coordinate. Since the time coordinate is periodic we
have used Fourier decomposition whereas for the radial coordinate we have used finite
differences in Chapter 10 and Legendre polynomials in Chapter 9. A function depending
on time and space is discretised in both directions giving the discrete matrix f → fI with
I standing for the grid of points time× space. One can then use co-lexicographic ordering
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to map the function fI to the matrix fij as

I = (i− 1)Nx + j, (i, j) =

(
ceil

[
I

Nx

]
, (I − 1)modNx + 1

)
(A.1.15)

with Nx the number of grid points in the radial direction and Nt in the time direction.

The function fij then takes the vector form

f10

...
f1N

f20

...
fnN


, (A.1.16)

and the following matrix form for the derivatives matrices:

∂x1 → D
(x1)
N ⊗ I(x2)

N ⊗ · · · ⊗ I(xn)
N , (A.1.17)

with IN the identity matrix of size N .

A.2 Solving quadratic eigenvalue problems

In general a solution φ(t, ~x) to any equation (can be Klein-Gordon equation, but also
Einstein, Maxwell, Dirac equations) defined in a stationary background can be Fourier
decomposed:

φ(t, ~x) = e−iωtφ(~x). (A.2.1)

If the initial equation is a second order linear differential equation, the resulting equation
after using this decomposition will necessarily have the form:[

H0(~x)−H1(~x)ω −H2(~x)ω2
]
φ(~x) = 0, B

(1)
0 (~x1)−B(1)

1 (~x1)ω = 0, (A.2.2)

B
(2)
0 (~x2)−B(2)

1 (~x2)ω = 0 (A.2.3)

where Hi, B
(k)
j are differential operators of order i and j respectively, and the B’s refer to

the boundary conditions. Now we can introduce the eigenfunction Q(~x) = (ωφ(~x), φ(~x))
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in order to write the equation in the form of the usual eigenvalue problem:[(
−H1 H0

1 0

)
− ω

(
H2 0

0 1

)]
Q(x) = 0. (A.2.4)

Notice that the equation from the first line is (A.2.2) and the second equation is ωφ(~x)−
ωφ(~x) = 0 which is an identity.

One can now use the discretisation procedure explained in A.1 to write the system of
equations in a matrix form and solve the generalised eigenvalue problem

AQ = ωBQ. (A.2.5)

This method is valid in order to solve eigenvalue linear differential equations that are
quadratic in the eigenvalue. In general the first eigenvalues and eigenvectors of the discrete
problem (A.2.5) are approximated with high accuracy depending on N , but higher ones
are not well resolved by the grid. This is natural since one expects to have more ripples,
separated by one wavelength for eigenvectors of higher eigenvalues. When the wavelength
becomes of the order of the distance between points in the grid, the function cannot be
well resolved.

In this method one obtains many spurious solutions. These are eigenvalues and eigenvectors
of the matrix that do not correspond to solutions of the differential equation. In general
when one varies N , these spurious solutions change whereas the correct solutions remain
unchanged.

A.3 Newton-Raphson algorithm

We present a general overview of the Newton-Raphson method to find solutions to differ-
ential equations and in the end of the section we will apply the method to the eigenvalue
problem.

Consider a set of differential equations written in generic form as F [~x, ~f ] = 0 with ~x the
coordinate variables and ~f the M functions, and the dependence of F on ~f also includes
its derivatives. Consider guess functions ~f (1) and expand the equation around them to
linear order:

F [~x, ~f ] = F [~x, ~f (1)] +

M∑
j=1

δF

δfj
[~x, ~f (1)]δfj +O(δf2) (A.3.1)
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with δfj = fj − f (1)
j . If the set of functions ~f (1) are close enough to a solution, then we

have that F [~x, ~f ] = 0 and

M∑
j=1

δF

δfj
[~x, ~f (1)]δfj = −F [~x, ~f (1)]. (A.3.2)

The above equation is a linear equation that can be discretised and solved as a common
problem AX = b. The solution to this system is ~δf , that we can use to approach the
solution:

~f (2) = ~f (1) + ~δf. (A.3.3)

The procedure can be repeated now with f (2) until achieving the desired convergence error
ε given by |~f (n) − ~f (n+1)|L∞ < ε.

The speed of convergence of the method is quadratic. To see this, consider the function f
and apply the Newton Raphson method to find a root of f starting with the guess x(1):

f(x) = f(x(1)) + f ′(x(1))(x− x(1)) + ((x− x(1))2). (A.3.4)

The new solution is

x(2) = x(1) − f(x(1))

f ′(x(1))
. (A.3.5)

Now consider a real root x of the function f , and the error after the n-th iteration εn =

x− xn. Taylor expanding around xn:

f(xn + εn) = f(xn) + εnf
′(xn) +

ε2n
2
f ′′(xn) +O(ε3n) = 0. (A.3.6)

We apply the Newton Raphson method again to the function f :

εn+1 = xs − xn+1 = xs −
(
xn −

f(xn)

f ′(xn)

)
= −ε

2
n

2
f ′′(xn) +O(ε3n) (A.3.7)

Which shows that the convergence is quadratic.

The main drawback of the Newton-Raphson method is the initial guess solution wich is
usually called seed. If the seed is not carefully chosen, the error may grow unboundedly, or
enter an infinite cycle. Also, if more than one solution exists, as in an eigenvalue problem
with an infinite number of eigenvalues, each solution has its basin of attraction. If the seed
is not chosen close enough to the desired solution, it may fall in the basin of attraction of
a different solution. Hence the algorithm would converge but not to the desired solution.
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Different approaches may be taken to give a proper seed. If one is looking for a solution
that is continuously connected through some parameters to a known solution, then a good
strategy is to start with the known solution and solve the equations along the flow of the
parameters. In the particular case of searching for eigenvalues and eigenvectors, a good
strategy is to use the method described in A.2 to obtain a good guess that one uses as
seed, and then hunt for the desired accuracy with the Newton-Raphson method.

The Newton-Raphson method, in general, is useful for non-linear equations, as it first
linearises them. If the equation is linear, then one can readily iterate. The general eigen-
value problem (A.2.2) is a linear differential equation but it is quadratic in the eigenvalue.
The Newton-Raphson method applied to this case consists in considering a seed formed
of a vector with the eigenvector and the eigenvalue, linearise the equation and iterate as
explained previously. Consider, then the equation (A.2.2) written in the form:

H(x, ω)φ(x) = 0, (A.3.8)

where the differential operator H includes all Hi from (A.2.2). Then the structure of the
problem is:(

H(x, ω(n)) ∂H
∂ω (x, ω(n))φ(n)

∂N
∂φ (φ(n)) 0

)(
δφ(n)

δω(n)

)
= −

(
H(x, ω(n))φ(n)

N(φ(n))

)
, (A.3.9)

where N(φ(n)) is a normalisation condition that one can choose conveniently, for example
by demanding that the value of the eigenvector at the left boundary is 1. This is already
a discrete condition:

N(f) = (0, . . . , 0, fN ). (A.3.10)

The term ∂H
∂ω (x, ω(n)) will give for the case (A.2.2)

−H1(~x)− 2H2ω
(n)(~x). (A.3.11)

Finally, notice that the first row and column in the LHS of (A.3.9) is the operator itself.
This is a consequence of the differential equation being linear.
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