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Abstract
There is an extensive body of literature linking ADHD to overweight and obesity. Research indicates that impulsivity
features of ADHD account for a degree of this overlap. The neural and polygenic correlates of this association have not been
thoroughly examined. In participants of the IMAGEN study, we found that impulsivity symptoms and body mass index
(BMI) were associated (r= 0.10, n= 874, p= 0.014 FWE corrected), as were their respective polygenic risk scores (PRS)
(r= 0.17, n= 874, p= 6.5 × 10−6 FWE corrected). We then examined whether the phenotypes of impulsivity and BMI, and
the PRS scores of ADHD and BMI, shared common associations with whole-brain grey matter and the Monetary Incentive
Delay fMRI task, which associates with reward-related impulsivity. A sparse partial least squared analysis (sPLS) revealed a
shared neural substrate that associated with both the phenotypes and PRS scores. In a last step, we conducted a bias corrected
bootstrapped mediation analysis with the neural substrate score from the sPLS as the mediator. The ADHD PRS associated
with impulsivity symptoms (b= 0.006, 90% CIs= 0.001, 0.019) and BMI (b= 0.009, 90% CIs= 0.001, 0.025) via the
neuroimaging substrate. The BMI PRS associated with BMI (b= 0.014, 95% CIs= 0.003, 0.033) and impulsivity symptoms
(b= 0.009, 90% CIs= 0.001, 0.025) via the neuroimaging substrate. A common neural substrate may (in part) underpin
shared genetic liability for ADHD and BMI and the manifestation of their (observable) phenotypic association.

Introduction

Attention deficit hyperactivity disorder (ADHD) is a neu-
rodevelopmental disorder with a typical onset during
childhood, but also shows mixed patterns of continuity and
remittance, along with an adulthood onset [1]. Previous

studies indicate an association between adult ADHD and
being overweight and, in extremis, obesity [2, 3]—condi-
tions which are relatively common and have marked long-
term health effects [4, 5]. Research has identified factors
contributing to the comorbidity between ADHD and obe-
sity, including fetal programming, psychosocial stress, and
factors directly related to energy balance, reduced physical
exercise and sleep patterns alterations [6]. The bulk of
current research has focused on how neuropsychological
impairments (e.g., impulsivity) associated with ADHD may
increase dysregulated and excessive eating [2, 3]. Impor-
tantly, neural and genetic liabilities may be important
components underlying the phenotypic association between
ADHD and overweight/obesity [6].

With regard to neural correlates, a recent ADHD ENIGMA
mega-analysis [7] reported smaller subcortical volumes for
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ADHD (n= 20,183) compared to controls (n= 35,191) in the
accumbens, amygdala, caudate nucleus, hippocampus and
putamen. Importantly, some of these brain areas are involved
in inhibitory control and reward-related pathways [7]. Neu-
roimaging studies in individuals who are overweight or obese
have identified similar regions implicated in inhibitory control
and reward-related pathways [8], including the amygdala,
hippocampus and prefrontal cortex as well sensory areas
(precentral gyrus) that could relate to food cues [9]. Genome
wide association studies (GWAS) have identified suscept-
ibility loci for ADHD [10] and obesity [11]. A polygenic risk
score (PRS) – a cumulative genetic risk profile from across
the genome – derived from the ADHD GWAS [10] showed
associations with obesity-related indices of body mass index
(BMI [12]), waist-to-hip ratio, childhood obesity, HDL cho-
lesterol and Type 2 diabetes. Another study [13] using the
ADHD PRS reported positive associations with BMI,
depression and substance use, with an inverse relationship
with numeric reasoning, suggesting genetic overlap with
neurocognitive performance (see also [14]). Indeed, with
regard to neurology, loci from the ADHD GWAS [10] have
been associated with both ADHD risk and lower intracranial
volume, as well as the amygdala, caudate nucleus and puta-
men [15].

PRS approaches have been applied to brain imaging
studies. Although this has yet to be done with ADHD and
obesity simultaneously, a PRS based on the recent ADHD
GWAS [10] associated with smaller caudate volume [16].
The use of PRS in schizophrenia has been associated with
abnormalities in both brain structure [17] and function [18].
With regard to structure, Neilson et al. [17] reported an
association with bilateral frontal gyrification, which is a
hypothesized neural endophenotype of schizophrenia [19].

These findings suggest that a better understanding of the
relationship between ADHD and overweight/obesity may
be gained by using an approach that incorporates both
genetic and neural variation. We used the rich dataset of the
ongoing IMAGEN study, comprising impulsivity symp-
toms, BMI, genome-wide loci and whole brain structural
and functional neuroimaging measures at age 19. Firstly, we
aimed to examine associations between PRS scores and
phenotypes for ADHD and BMI, to assess genetic and
phenotypic relationships between these traits. Secondly, we
aimed to assess the associations between the PRS scores for
ADHD and BMI, whole-brain structural variation, as well
as a functional neuroimaging measure that assesses reward-
related impulsivity. We were also interested in examining
the degree to which the PRS scores of ADHD and BMI
associated with the phenotypic measurements of impulsivity
symptoms and BMI via the identified neural imaging sub-
strate (a mediational model). We had no a priori hypotheses
about associations between the PRS scores and brain
regions; we ran the analyses in an exploratory manner.

Methods

Participants

We conducted all analyses on individuals drawn from the
IMAGEN study (www.imagen-europe.com), a large-scale
imaging genetic study aimed at identifying genetic, neu-
roimaging, and behavioural bases of individual variability
in psychiatric disorders. Genetic data was derived
from blood samples collected at the age of 14, while
clinical, physical and neuroimaging data analysed in the
present study were collected at the age of 19. Psytools
software (Delosis Ltd, London, UK) was used to conduct
the behavioural characterization via its internet-based
platform. The assessment battery of questionnaires and
cognitive tasks was self-administered both in participants’
homes and at the neuroimaging facilities. The study was
approved by local ethics research committees at each
site. Written informed consent was obtained from all
participants as well as from their legal guardians.
Measures.

Impulsivity symptoms at age 19 were assessed
using self-reported scores taken from the well-validated
Barratt Impulsivity Scale (BIS) [20]. The BIS is a ques-
tionnaire that is widely used to assess trait-impulsivity
in a variety of studies including ADHD [21], neuroima-
ging [22], personality [23], over-eating [24] and in rela-
tion to genetic influence and criminal behaviours [25].
At the time the study was conducted, the IMAGEN
consortium had BIS data for 1319 individuals at
19 years-old.

Body mass index (BMI)

BMI at age 19 was derived from height and weight
measurements. Height was measured using a standard
protocol to the last complete centimeter, weight was
measured to the nearest 100 g. BMI was calculated as
weight (kg)/height(m2). BMI values were recorded for
1347 subjects at the time the study was conducted. We
excluded 114 participants who either were underweight
(BMI < 18.5) extremely overweight (BMI > 50).

Genetic data

After quality control, 1982 cases were included in
our sample totalling 506,932 SNPs available for PRS.
Population stratification was controlled for in all
analyses via the use of the first eight principal
components of the genetic data, which were used as
covariates. Full details on acquisition and initial proces-
sing are given in the supplementary materials of this
paper.
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MRI data

In this investigation, we used voxel-based morphometry
measures of grey matter derived from T1 weighted MRI
acquisitions and activation maps derived from the Monetary
Incentive Delay (MID) task, to examine neural responses to
reward anticipation and reward outcome. Full details on the
MRI acquisitions [26] pre-processing [27] and confounds
used in the analysis are given in the supplementary mate-
rials of this paper.

A Task Based fMRI Acquisition of the Monetary Incen-
tive Delay (MID) task was used to examine neural
responses to reward anticipation and reward outcome [28].
The task consisted of 66 10-s trials. In each trial, partici-
pants were presented with one of three cue shapes (cue, 250
ms) denoting whether a target (white square) would sub-
sequently appear on the left or right side of the screen and
whether 0, 2 or 10 points could be won in that trial. After a
variable delay (4000–4500 ms) of fixation on a white
crosshair, participants were instructed to respond with left/
right button-press as soon as the target appeared. Feedback
on whether and how many points were won during the trial
was presented for 1450 ms after the response. Using a
tracking algorithm, task difficulty (i.e., target duration var-
ied between 100 and 300 ms) was individually adjusted
such that each participant successfully responded on ~66%
of trials. Based on prior research suggesting reliable asso-
ciations between ADHD symptoms and fMRI blood-
oxygen-level dependent (BOLD) responses measured dur-
ing reward anticipation, the current study used the contrast
‘anticipation of high-win vs anticipation of no-win’.

Statistical analyses

The analyses proceeded in three steps (code used in statis-
tical analyses is available upon request). In Step 1, PRS
scores were created for ADHD and BMI and we examined
associations between the scores and phenotypic measures.
We also calculated associations between the ADHD and
BMI PRS scores themselves, in order to investigate a
potential genetic comorbidity between ADHD and BMI.

To derive the ADHD PRS, summary statistics were
downloaded from the Psychiatric Genomics Consortium
(http://www.med.unc.edu/pgc/results-and-downloads;
20,183 cases and 35,191 controls, all European descent).
To calculate the BMI PRS, GWAS summary statistics
from 339,224 European descents were downloaded from
the GIANT Consortium (http://portals.broadinstitute.org/
collaboration/giant/index.php). Deriving a PRS necessi-
tates the use of a significance threshold for inclusion of
SNPs in the calculation of the score (e.g., all SNPs
associated at p < 0.05). In investigations where the
researcher is only interested in the relation between the

score and the phenotype, it is possible to vary that
threshold, and select that which results in the highest
variance explained between the PRS and the phenotype
[29, 30]. However, in the present investigation, we were
also interested in both the PRS scores themselves, and in
their relation to functional and structural neuroimaging
measures. In this case, varying the threshold for SNP
inclusion in the PRS scores for ADHD and BMI,
respectively, can lead to overfitting on the phenotype of
interest [30]. Given the nature of our research question,
which involves multiple phenotypes and multiple brain
markers, this overfitting could lead to circularity problems
in further analyses [31]. Using multiple PRS scores also
poses a problem with multiple comparisons: if several
PRS scores are calculated on the same phenotype, a cor-
rection must be carried out over these tests to ensure
significance [30]. We therefore chose to use a nominal
threshold of p= 0.05 for the inclusion of SNPs in the
calculation of the score. This approach avoids both
overfitting and multiple testing. All genetic data proces-
sing and analyses were performed using the R package
PRSice [15] and PLINK [17]. In order to minimise the
statistical assumptions necessary for valid inference, all
significance levels reported here were ascertained using
permutation testing. As we are explicitly looking for
comorbidities between different data types, and the sPLS
analysis only identifies positive associations, all sig-
nificance tests were one-sided.

In Step 2, we investigated whether ADHD and BMI
share a common underlying neural substrate. We used a
sparse formulation of partial least squares (sPLS) for this
purpose [18, 19]. This method is designed to establish
associations between multiple sets of variables by finding
the weighted sum of variables in each set, which correlate
maximally with the weighted sum of variables that are
connected via a path diagram (see Supplementary Fig-
ure S1). We used five-fold cross-validation to quantify the
strength and significance of the associations of individual
PRS scores and phenotypes, with the VBM and MID
measures they were connected to via the path diagram [32].

Although PLS methods are very powerful, results can be
difficult to interpret, as all variables contribute to associa-
tions between data-views. This is particularly problematic
with neuroimaging data, which is high dimensional. It would
be useful to know which neuroimaging features were asso-
ciated with PRS scores and phenotypes of impulsivity and
BMI. For this reason, we used a method that induces sparsity
by setting some PLS weights to zero through the application
of an L1 penalty, applied under resampling [33, 34].
Through this approach, one can identify weighted sets of
brain regions that are associated with the PRS scores and
phenotypes. This set of brain regions may therefore be
considered as an endophenotype for ADHD and BMI. We
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used a resampling procedure to ensure that the PLS approach
only retained features that were robustly associated with
phenotypes and genetic measures [33]. Significance was
ascribed using a permutation testing procedure. A detailed
description of the exact analysis approach used is detailed in
the Supplementary Materials. In all analyses, we controlled
for genetic population stratification (i.e., the 8 principle
components), gender, imaging site, age and total intracranial
volume. Many association tests were carried out in this
investigation. We corrected for multiple comparisons using
the Holm-Bonferroni method [35].

In Step 3, we examined the degree to which the set of
brain regions identified by sPLS may act as an intermediary
endophenotype between the PRS scores and the impulsivity
and BMI phenotypes. In other words, we examined if the
brain regions could help explain (or mediate) the observable
association between ADHD and BMI genetic vulnerabilities
and the impulsivity and BMI phenotypes. The mediation (or
indirect) pathways were defined by the product term of the
pathways of interest (e.g., PRS to brain BY brain to phe-
notype). There were four overall possible effects: 1) ADHD
PRS → brain regions → impulsivity symptoms; 2) ADHD
PRS → brain regions → BMI; 3) BMI PRS →brain regions
→ BMI; and 4) BMI PRS →brain regions → impulsivity.
Because standard errors underlying mediation pathways
(i.e., the product terms) are known to be skewed, we boot-
strapped all indirect effects 10,000 times with bias corrected
(90% and 95%) confidence intervals. The mediation path-
ways reported here are based on the bootstrapped variability
around the product of non-standardized path coefficient
estimates (i.e., b). Mediation pathways were programmed in
Laavan [36] in the statistical package R [37].

Results

Step 1: PRS scores for ADHD and BMI

At the time the study was conducted, n= 874 subjects had
complete genetic and phenotypic data. The BMI PRS score
was significantly associated with BMI (r= 0.23, n= 874, p
= 2.2 × 10−11 FWE corrected) and the PRS score for
ADHD was significantly associated with impulsivity
symptoms (r= 0.10, n= 874, p= 0.014 FWE corrected).
We also note that impulsivity symptoms were associated
with BMI (r= 0.10, n= 874, p= 0.014 FWE corrected),
and that the PRS scores for ADHD and BMI were sig-
nificantly cross-correlated (r= 0.17, n= 874, p= 6.5 × 10
−6, FWE corrected). Of interest, using Steiger’s test for
dependent correlations [38], we found that the correlation
between the PRS scores of ADHD and BMI was higher (p
= 0.036 FWE corrected) than the correlation between the
phenotypic measures of impulsivity and BMI.

Step 2: the shared neural correlates of the PRS
scores of ADHD and BMI

Of the 874 subjects who had both complete genetic and
phenotypic data, 604 had both T1 and fMRI data that passed
QC. Using sPLS, we found that both the ADHD and BMI
phenotypes, and their respective polygenic risk scores, are
significantly associated with a common neural substrate,
constructed from T1 and fMRI data, which we term the
‘neural endophenotype’. The PRS for BMI was associated
with the neural endophenotype at r= 0.12, n= 604, p=
9.5 × 10−3, FWE corrected, whilst the ADHD PRS was
significant at r= 0.087, n= 604, p= 0.036 FWE corrected.
ADHD and BMI phenotypes were also associated with this
set of brain regions, with ADHD associated at r= 0.091, n
= 604, p= 0.035 FWE corrected, and BMI associated at r
= 0.15, n= 604, p= 9.0 × 10−4 FWE corrected respec-
tively. These correlations are summarized in a matrix and
path diagram in Fig. 1.

The neural endophenotype is made up of grey matter
regions and regions of activation derived from the MID
task. Grey matter regions contributing to this neural endo-
phenotype were located bilaterally in the cerebellum,
amygdala, hippocampus, para-hippocampus and orbital
frontal cortex, which all present bilaterally. There was also a
largely left lateralised grey matter cluster in the infer-
otemporal cortex. sPLS weights in each of these brain
regions were negative, implying an inverse association
between PRS scores/phenotypes and grey matter. Neural
endophenotype clusters that came up in the MID task were
largely left lateralised and included the fusiform gyrus and
para-hippocampus, postcentral and parietal inferior, calcar-
ine and occipital superior and frontal superior medial cortex.
These results are displayed in Fig. 2. sPLS weights in each
of these brain regions were positive, implying a positive
association between the MID contrast map and the PRS/
phenotype scores. The full set of VBM and MID clusters
identified and localised in the sPLS analysis are tabulated in
Supplementary Tables S1 and S2.

Step 3: Neural endophenotype as a mediator in the
link between PRS scores and ADHD and BMI

In Step 3, we saved the neuroimaging factor score from the
sPLS and conducted the multivariate bias corrected boot-
strapped mediation analyses. The four mediation pathways
were observed, albeit at a 90% CIs for ADHD and 95% CIs
BMI, suggesting that the neural endophenotype may act as
an intermediary variable in the link between the PRS scores
and the impulsivity and BMI phenotypes. These four
mediation pathways were: 1) ADHD PRS → neuroimaging
score → impulsivity (b= 0.006, 90% CIs= 0.001, 0.019);
ADHD PRS → neuroimaging score → BMI (b= 0.009,
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90% CIs= 0.001, 0.023); 3) BMI PRS → neuroimaging
score → BMI (b= 0.014, 95% CIs= 0.003, 0.033); and 4)
BMI PRS → neuroimaging score → impulsivity (b= 0.009,
95% CIs= 0.001, 0.025).

Discussion

This study set out to examine if there are shared genetic and
neural correlates of the ADHD (impulsivity) and BMI [39]
phenotypes. Our results support previous ADHD-related
research in showing an association between these two phe-
notypes [3]. Further analyses showed that the PRS scores for
ADHD and BMI were correlated with each other and with
grey matter across the brain and contrast maps derived from
fMRI scans conducted during the MID task. Importantly,
these neuroimaging measures also associated with the phe-
notypes of impulsivity and BMI. These results extend present
knowledge of the biological underpinnings of the association
between ADHD and BMI in three main ways.

Firstly, using previously established genome-wide evi-
dence, and a multi-modal whole-brain approach, this study
showed that the PRS scores and phenotypes of ADHD and
BMI simultaneously associated with decreases in grey matter
in similar brain areas as reported by the case-control ADHD
ENIGMA mega-analysis [7] as well as certain case-control
designs of obesity [9]. These areas include the cerebellum,
amygdala, hippocampus, orbitofrontal and inferotemporal

cortex. The functions of these brain areas underscore the
importance of impairments in cognitive and behavioural
control and impulsivity in both ADHD and BMI. For
example, the fronto-cerebellar networks have been implicated
in impairments of cognitive control (e.g., over-riding impul-
ses) in both ADHD and obesity [40, 41]; the ability to con-
sider future consequences/adjust behaviours [41]; and the
inhibition of eating behaviour [42]. Likewise, the amygdala
and hippocampus have been associated with impulsivity
symptoms in ADHD [43] as well as weight gain and over-
eating behaviours such as continuing to eat even when sated
[44–47]. Finally, the orbital frontal cortex has been linked to
impairments in cognitive and attentional control in ADHD
[48], but also potentially to selection and consumption of
calorie-rich foods [49] and sensitized reactivity to (food-
related) reward [50]. The second set of findings relate to the
reward anticipation fMRI task. There was an increased BOLD
response for the posterior visual and association areas, post-
central, cerebellum and frontal medial cortex. This was con-
sistent with previous findings from both the MID task and
other fMRI paradigms used to assess reward processes. With
regard to the MID task, our findings converged with previous
research that reported abnormalities in frontal-parietal and
cerebellar-parietal networks [51, 52]. Supporting other reward
processing studies, we identified increased BOLD response in
the cerebellum and postcentral gyri [47, 53], in addition to
reward areas in the medial frontal regions [54, 55]. Impor-
tantly, both the MID-related results and previously mentioned

Fig. 1 a The panel on the left shows the path diagram illustrating
associations between the different biological and phenotypic measures
used in this investigation. Associations that are statistically significant
are marked with an asterisk. b The panel on the right shows correlation
values between the different biological and phenotypic measures

investigated in this study, the lower triangular matrix shows correlation
values between the various biological measures, whilst the upper tri-
angular matrix shows the FWE-corrected significance levels of these
associations

Do ADHD-impulsivity and BMI have shared polygenic and neural correlates?



grey matter results showed abnormalities in visual processing
areas (i.e., inferotemporal and association cortices for grey
matter and posterior visual and association cortices for the

MID task). These abnormalities may be implicated in visual
attention biases to reward-related cues (e.g., food or reward)
in both obesity and ADHD [37–39].

Fig. 2 a The scatter plots in
panel (a) of the figure show
relations between neuroimaging
and ADHD and BMI PRS
scores. b The brain regions in
panel (b) of the figure illustrate
the VBM and MID regions that
are associated with ADHD and
BMI PRS scores, and their
associated phenotypes. c The
scatter plots in panel (c) of the
figure show relations between
neuroimaging and ADHD and
BMI phenotypes
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Third, we examined a multivariate mediation model. Here,
the associations between the ADHD and BMI PRS scores and
the impulsivity and BMI phenotypes were partially carried by
the brain areas identified by sPLS. We therefore suggest that
these brain areas (structural+ functional) may act as a neural
endophenotype [56] between the genetic liabilities of ADHD
and obesity and the manifestation of their (observable) phe-
notypic association. By definition neurobiological endophe-
notypes mark genetic vulnerability but are also independent of
disease state [57]. Our suggestion of a neural endophenotype
is consistent with the idea that a limited number of neural
systems may engender risk for a range comorbid psychiatric
syndromes [56]. As such, this hypothesized neural endophe-
notype might extend as vulnerability for known comorbidities
of ADHD and BMI, such as substance use and addiction [58]
and depression [59, 60], to name a few.

How might the results of the present study bear on future
research? Are there (potential) clinical implications? It is
important to note that our findings of genetic influence on
ADHD and BMI are non-deterministic and can be context
dependent [61]. Indeed, Barcellos et al. [57], taking advantage
of a natural experiment, showed that an additional year of
compulsory schooling in the UK benefitted individuals with
higher genetic risk for obesity, reducing the gap in unhealthy
body size in the top and bottom terciles of genetic risk of
obesity from 20 to 6 percentage points. This is an interesting
result when it is considered that certain interventions targeting
ADHD can result in weight reduction and, potentially, vice-
versa. Although findings are mixed, studies on Methylphe-
nidate show that a reduction in ADHD symptoms can
associate with decreased BMI, especially for overweight/
obese adolescents [3, 62]. Methylphenidate has also been
proposed as a treatment for obesity [63, 64]. Future research
should examine if individuals at high genetic risk for both
ADHD and BMI will especially benefit from interventions
tailored for one—or both—of these conditions.

Our findings should be considered in light of a number of
limitations. Firstly, our models were statistically driven—
although theoretically informed. The models are therefore
dependent on the properties of the measures included. While
our sPLS model identified simultaneous association between
the PRS scores, the two neuroimaging modalities and the
phenotypic measurements of ADHD and BMI, this does not
mean that this model—or the study variables contained within
it—is the best (or only) solution. Secondly, it is also important
to note that PRS and neural correlates only explain a small
proportion of the liability for many psychiatric difficulties and
other traits. Thirdly, the current findings differ from reward
anticipation in case-control ADHD designs [65, 66] and for
clinical remission [67]. Relatedly, it will be of interest to
replicate the present results in clinical samples, for ADHD
and BMI separately, across different age groups, and across
different ethnic groups. Fourth, in the mediation analyses, the

ADHD-related pathway had larger bias corrected CIs (90%)
compared to the BMI-related pathway (95%). There are at
least two reasons for these different CIs. The GWAS dis-
covery sample for ADHD (n= 46,350) is smaller than BMI
(n= 339,224), which can affect the relative predictive pow-
er of these PRS scores [68]. In addition, we examined
the ADHD PRS in relation to impulsivity symptoms, which
is less precise than examining the BMI PRS in relation
to BMI.

Conclusion

Our results indicate that ADHD and BMI PRS scores are
significantly correlated, suggesting shared genetic risk
between the traits. In a data-driven model, both the PRS
scores were associated with the phenotypic measures of
ADHD and BMI, as well as shared neural correlates of
impairments in inhibitory control and reward processing.
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