Dataset for "Incremental Training and Group Convolution Pruning for Runtime DNN Performance Scaling on Heterogeneous Embedded Platforms"
Dataset for "Incremental Training and Group Convolution Pruning for Runtime DNN Performance Scaling on Heterogeneous Embedded Platforms"
  Dataset supports: Xun, L., Tran-Thanh, L., Al-Hashimi, B., & Merrett, G. (2019). Incremental Training and Group Convolution Pruning for Runtime DNN Performance Scaling on Heterogeneous Embedded Platforms. In ACM/IEEE Workshop on Machine Learning for CAD 2019 (MLCAD'19).
  
  
    University of Southampton
   
  
    
      Xun, Lei
      
        51a0da82-6979-49a8-8eff-ada011f5aff5
      
     
  
    
      Tran-Thanh, Long
      
        e0666669-d34b-460e-950d-e8b139fab16c
      
     
  
    
      Al-Hashimi, Bashir
      
        0b29c671-a6d2-459c-af68-c4614dce3b5d
      
     
  
    
      Merrett, Geoff
      
        89b3a696-41de-44c3-89aa-b0aa29f54020
      
     
  
  
   
  
  
    
    
  
  
    
      Xun, Lei
      
        51a0da82-6979-49a8-8eff-ada011f5aff5
      
     
  
    
      Tran-Thanh, Long
      
        e0666669-d34b-460e-950d-e8b139fab16c
      
     
  
    
      Al-Hashimi, Bashir
      
        0b29c671-a6d2-459c-af68-c4614dce3b5d
      
     
  
    
      Merrett, Geoff
      
        89b3a696-41de-44c3-89aa-b0aa29f54020
      
     
  
       
    
 
  
    
      
  
  Xun, Lei
  
  
  
   
    (2020)
  
  
  
    
    Dataset for "Incremental Training and Group Convolution Pruning for Runtime DNN Performance Scaling on Heterogeneous Embedded Platforms".
  
    
  
  
  
  
   University of Southampton 
  doi:10.5258/SOTON/D1245
  [Dataset] 
  
  
   
  
    
    
      
        
          Abstract
          Dataset supports: Xun, L., Tran-Thanh, L., Al-Hashimi, B., & Merrett, G. (2019). Incremental Training and Group Convolution Pruning for Runtime DNN Performance Scaling on Heterogeneous Embedded Platforms. In ACM/IEEE Workshop on Machine Learning for CAD 2019 (MLCAD'19).
         
      
      
        
          
            
  
    Spreadsheet
 Experimental_data.xlsx
     - Dataset
   
  
  
    
  
 
          
            
          
            
           
            
           
        
          
        
        
       
    
   
  
  
  More information
  
    
      Published date: 14 February 2020
 
    
  
  
    
  
    
  
    
  
    
  
    
  
    
  
    
  
    
  
  
        Identifiers
        Local EPrints ID: 437753
        URI: http://eprints.soton.ac.uk/id/eprint/437753
        
          
        
        
        
        
          PURE UUID: ed358079-60d2-425c-9d64-25005bbfb6dc
        
  
    
        
          
            
          
        
    
        
          
            
              
            
          
        
    
        
          
            
          
        
    
        
          
            
              
            
          
        
    
  
  Catalogue record
  Date deposited: 14 Feb 2020 17:30
  Last modified: 06 May 2023 01:44
  Export record
  
  
   Altmetrics
   
   
  
 
 
  
    
    
      Contributors
      
          
          Creator:
          
            
              
              
                Lei Xun
              
              
            
            
          
        
      
          
          Contributor:
          
            
              
              
                Long Tran-Thanh
              
              
                
              
            
            
          
         
      
          
          Contributor:
          
            
              
              
                Bashir Al-Hashimi
              
              
            
            
          
        
      
          
          Contributor:
          
            
              
              
                Geoff Merrett
              
              
                
              
            
            
          
         
      
      
      
    
  
   
  
    Download statistics
    
      Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.
      
      View more statistics