Dataset for "Incremental Training and Group Convolution Pruning for Runtime DNN Performance Scaling on Heterogeneous Embedded Platforms"
Dataset for "Incremental Training and Group Convolution Pruning for Runtime DNN Performance Scaling on Heterogeneous Embedded Platforms"
Dataset supports: Xun, L., Tran-Thanh, L., Al-Hashimi, B., & Merrett, G. (2019). Incremental Training and Group Convolution Pruning for Runtime DNN Performance Scaling on Heterogeneous Embedded Platforms. In ACM/IEEE Workshop on Machine Learning for CAD 2019 (MLCAD'19).
University of Southampton
Xun, Lei
51a0da82-6979-49a8-8eff-ada011f5aff5
Tran-Thanh, Long
e0666669-d34b-460e-950d-e8b139fab16c
Al-Hashimi, Bashir
0b29c671-a6d2-459c-af68-c4614dce3b5d
Merrett, Geoff
89b3a696-41de-44c3-89aa-b0aa29f54020
Xun, Lei
51a0da82-6979-49a8-8eff-ada011f5aff5
Tran-Thanh, Long
e0666669-d34b-460e-950d-e8b139fab16c
Al-Hashimi, Bashir
0b29c671-a6d2-459c-af68-c4614dce3b5d
Merrett, Geoff
89b3a696-41de-44c3-89aa-b0aa29f54020
Xun, Lei
(2020)
Dataset for "Incremental Training and Group Convolution Pruning for Runtime DNN Performance Scaling on Heterogeneous Embedded Platforms".
University of Southampton
doi:10.5258/SOTON/D1245
[Dataset]
Abstract
Dataset supports: Xun, L., Tran-Thanh, L., Al-Hashimi, B., & Merrett, G. (2019). Incremental Training and Group Convolution Pruning for Runtime DNN Performance Scaling on Heterogeneous Embedded Platforms. In ACM/IEEE Workshop on Machine Learning for CAD 2019 (MLCAD'19).
Spreadsheet
Experimental_data.xlsx
- Dataset
More information
Published date: 14 February 2020
Identifiers
Local EPrints ID: 437753
URI: http://eprints.soton.ac.uk/id/eprint/437753
PURE UUID: ed358079-60d2-425c-9d64-25005bbfb6dc
Catalogue record
Date deposited: 14 Feb 2020 17:30
Last modified: 06 May 2023 01:44
Export record
Altmetrics
Contributors
Creator:
Lei Xun
Contributor:
Long Tran-Thanh
Contributor:
Bashir Al-Hashimi
Contributor:
Geoff Merrett
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.
View more statistics