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Abstract—Harnessing the substantial bandwidth available at
millimeter wave (mmWave) carrier frequencies has proved to
be beneficial to accommodate a large number of users with
increased data rates. However, owing to the high propagation
losses observed at mmWave frequencies, directional transmission
has to be employed. This necessitates efficient beam-alignment
for a successful transmission. Achieving perfect beam-alignment
is however challenging, especially in the scenarios when there is a
rapid movement of vehicles associated with ever-changing traffic
density, which is governed by the topology of roads as well as the
time of the day. Therefore, in this paper, we take the approach
of fingerprint based beam-alignment, where a set of beam pairs
constitute the fingerprint of a given location. Furthermore, given
the time-varying traffic density, we propose a multi-fingerprint
based database for a given location, where the base station (BS)
intelligently adapts the fingerprints with the aid of learning.
Additionally, we propose multi-functional beam transmission
as an application of our proposed design, where the beam-
pairs that satisfy the required received signal strength (RSS)
participate in increasing the spectral efficiency or improving the
end-to-end performance in some other way. Explicitly, the BS
leverages the plurality of beam-pairs to attain both multiplexing
and diversity gains. Furthermore, if the plurality of beam-pairs
is higher than the number of RF chains, the BS may also
employ beam-index modulation to further improve the spectral
efficiency. We demonstrate that having multiple fingerprint-
based beam-alignment provides superior performance than that
of the single fingerprint based beam-alignment. Furthermore,
we show that our learning-aided multiple fingerprint design
provides a better fidelity compared to that of the benchmark
scheme also employing multiple fingerprint but dispensing with
learning. Additionally, our reduced-search based learning-aided
beam-alignment design performs similarly to beam-sweeping
based beam-alignment, even though an exhaustive beam-search
is carried out by the latter. More explicitly, our design is
capable of maintaining the target performance in dense vehicular
environments, while both single fingerprint and line-of-sight
(LOS) based beam-alignment suffer from blockages.

Index Terms—Millimeter Wave, MIMO, Beamforming, Ma-
chine Learning.

I. INTRODUCTION

G IVEN the rapid proliferation of wireless devices and the
increase in the data rate demands of the mobile phone

users, harnessing mmWave frequencies owing to its large
bandwidth constitutes a promising solution for next-generation
wireless communications [1]. However, one of the key chal-
lenges upon using mmWave frequencies is that they suffer
from high propagation losses because of the attenuation due to
atmospheric absorption, foliage density and rain-induced fad-
ing [1]. To mitigate these effects directional transmission has
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to be employed, where the signal is steered in the direction of
the user. To achieve this, a large antenna array can be mounted
on both the BS and mobile station [2], where narrow beams
emanate from the transmit beamforming array. Because of the
narrow beams and high susceptibility of mmWave frequencies
to blockages, aligning the beams of departure and arrival is
challenging. The probability of beam misalignment is even
higher when the environment is continuously changing as in
vehicular environments [3], [4], which maybe attributed to the
ever-changing traffic because of the time-varying movement of
vehicles. The mobility of vehicles is different at different times
of the day [5]. Furthermore, the traffic density is dependent
on the topology of roads [5]. Thus, by considering all the
parameters such as spatial randomness and vehicular speeds,
it was found that the number of vehicles at any time obeys
Poisson distribution with a mean of λ [5], [6]. Therefore, in
this treatise, we model the traffic density by a Poisson process.

Establishing perfect beam-alignment would necessitate the
knowledge of both the angle-of-arrival (AoA) and the angle-
of-departure (AoD). The AoA/AoD may be determined as part
of channel estimation; however, to perform channel estimation
prior to beam-alignment fails to exploit the beamforming
gain, which is vital for reliable communication over mmWave
links. Hence to circumvent this problem, conventionally beam-
alignment is carried out using exhaustive beam sweeping,
where the BS and the mobile station perform beam search
in all beam directions, for all 360◦ × 360◦ beam pairs [7],
[8]. This exhaustive search over all beam pairs would impose
significant overhead because of the search complexity involved
in selecting the desired beam direction. To reduce the full-scale
search involved in the beam sweeping, hierarchical beam-
alignment was conceived in [9]–[11]. More particularly, this
design relies on multi-resolution codebooks that are employed
at different levels. To elaborate further, this technique, which
is reminiscent of the binary search algorithm, first involves
beam search over a low-level codebook associated with wider
beams, then another beam search is followed in the high-level
codebook which is a subset of the wide beam selected in
the lower level [12]. Unfortunately, the hierarchical codebook
based beam-alignment does not reduce the search complexity
significantly [12]. Other work that aims for reducing the
search complexity involves optimization techniques [13], [14].
However, these methods are only beneficial when the objective
function exhibits smoothness. In other words, these techniques
only work well for objective functions which have no local
optimum.

To reduce the overhead and search complexity involved
in the beam-alignment, Nitsche [15] et al. proposed blind
beam steering relying on accurate location information. More
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explicitly, the authors proposed a technique by inferring the
line-of-sight (LOS) direction between the communicating de-
vices. In this method, the legacy frequency of 2.4GHz/5GHz
is used to exploit the channel characteristics. Furthermore, Va
et al. [4] advocated a beam switching strategy by invoking the
classic gradient descent method to maximize the rate under the
assumption that the channel always exhibits a single dominant
LOS path. However, these methods may not be feasible in
practice when the LOS path ceases to exist, which is often
the case during heavy traffic, where the dominant LOS path
is blocked by the obstacles [3].

To circumvent the necessity of LOS paths, Capone et al.
[17] conceived context information based beam-alignment,
where the BS searches in the context information based direc-
tion. This algorithm was then further enhanced with the aid of
sophisticated learning techniques [18]. However, this method
works well only under the premise that omni-directional recep-
tion is employed at the receiver, which makes it impractical
for mmWave communications. Moreover, when the LOS is
blocked, there may be a set of other possible AoAs/AoDs
for steering the beam in the desired location which do not
suffer from blockages under a given vehicular traffic density.
This approach is considered in [16], [19], where the authors
adopt the concept of fingerprint/database from the localization
literature. There is a vast body of literature on fingerprint based
localization techniques [20]–[24], where typically the channel
state information or received signal strength (RSS), which are
referred to as fingerprints, are used at pre-determined locations
for determining the vehicle’s position [20], [21]. To elaborate
further, in this treatise, fingerprints are collected for different
locations and stored in a database. In this context, the beam
pairs (AoA-AoD) are used as a fingerprint to construct the
database for different locations. However, a limiting factor of
this design is that the fingerprints of the database are fixed
for a given location. This is, however, generally not true
in the context of beam-alignment, since the beam pair may
change depending on the traffic density [25]. In other words,
the fingerprint used for a specific traffic density in a given
location may be different for another traffic density in the
same location.

On the other hand, more recently, machine learning aided
wireless transmission has gained attention owing to its more
accurate predictions and superior performance over conven-
tional methods dispensing with learning [26]. The state-of-
the-art designs in localization literature are predominantly
focused on learning [22]–[24]. More particularly, learning
based approaches in localization have been shown to be more
effective in terms of minimizing the location error. Wang et al.
[27] demonstrated experimentally that a CSI-based fingerprint
relying on deep learning achieves better performance than
its counterparts. Capone et al. [18] employed a rudimentary
learning technique for obstacle avoidance aided cell discovery
for beam-alignment. An experimental study on indoor local-
ization conducted by Chen et al. [28] attributed its superior
performance to learning, where the authors invoke a invoke a
convolutional neural network assisted learning scheme.

Motivated by this, in this paper, we employ learning aided
beam-alignment, where the learning is invoked for intelligently

selecting the fingerprints by invoking a feedforward neural
network, namely the softmax linear classifier [29]. In wireless
communication systems, the K-nearest neighbors (KNN), sup-
port vector machines (SVM), and neural networks are widely
used [30]. It is instructive to note that any learning algorithm
involves two phases — the training phase, which is carried
out offline; and the testing phase, which is carried out in
real time. In the KNN algorithm, the training samples are
collected and stored in memory during the offline phase, while
the nearest neighbors for the observed data are computed and
then a decision is made. On the other hand, the SVM relies
on a kernel which is a function of feature sets. However,
the SVM imposes a high computational complexity when the
classifiers are not linearly separable. In contrast to KNN and
SVM, the training weights can be determined in the case of
neural network assisted learning during the training phase.
These weights are then used in real time for prediction or for
the selection of fingerprints. Note that unlike the KNN, this
method does not require any memory storage for the training
samples, since they can be discarded after the training weights
have been determined.

Against this background, Table I contrasts our design to
state-of-the-art. More explicitly, our contributions in this paper
are summarized as follows.

• We propose a multi-fingerprint based database, where
the fingerprints are collected for different traffic den-
sities in a given location. Then, the BS intelligently
chooses the fingerprint based on the traffic density and
location information, where we invoke deep learning
for the selection of the fingerprint. More explicitly, we
invoke a feedforward neural network, namely the softmax
classifier, where the training weights are designed offline
for the selection of the fingerprint. Upon the selection
of the fingerprint, the BS then relays the information of
the fingerprint selected to the mobile station using the
legacy frequency. Thereafter, the BS starts the training
process to select the beam-pair from the fingerprint which
meets the target received signal power. The mobile station
feeds back the index of the beam-pair from the selected
fingerprint if it meets the threshold. This significantly
reduces the search complexity involved.

• We propose a multi-functional beam transmission scheme
as an application example of our proposed design, where
multiple beams that satisfy the target received power
are selected. Then, depending on the mobile station’s
requirement, the BS can leverage the additional beams for
increasing the multiplexing/diversity gains. Furthermore,
if the number of RF chains is lower than the number of
beam pairs available that meets the target receiver power,
the BS then employs beam index modulation to increase
the spectral efficiency.

• We demonstrate by our simulations that having multi-
ple fingerprint-based beam-alignment provides a superior
performance over the single fingerprint based beam-
alignment. Furthermore, we show that our learning-
aided multiple fingerprint design provides better fidelity
than that of the scheme employing multiple fingerprints
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TABLE I. Summary of our design contrasting with state-of-the-art, where 3and the blank correspond to with and without
contributions, respectively .

Themes of Contributions This Paper [16]-2018 [11]-2017 [15]-2015 [13]-2014
Beam-Alignment 3 3 3 3 3
Intelligence 3
Multi-functional Beam Transmission 3
Lower Complexity 3 3
Fidelity 3 3
Fingerprints Based 3 3
Fingerprints Adaptation 3

but dispensing with learning. Additionally, our proposed
learning-aided reduced-complexity beam-alignment de-
sign performs similarly to beam-sweeping based beam-
alignment relying on high-complexity exhaustive beam-
search. More explicitly, our design is capable of maintain-
ing the target RSS in dense vehicular environments, while
both single fingerprint and line-of-sight (LOS) based
beam-alignment suffer from blockages.

The rest of the paper is organized as follows. In Sec-
tion II, we detail the system model of fingerprint based beam-
alignment in mmWave communication, while in Section III we
present our proposed deep learning assisted beam-alignment
relying on multi-fingerprint database design to achieve near-
perfect beam-alignment. Section IV and Section V presents
our simulation results and complexity discussion, followed by
our conclusions in Section VI.

Notations: We use upper case boldface, A, for ma-
trices and lower case boldface, a, for vectors. We use
(.)T , (.)H , ‖.‖F, Tr(.) E(.) for the transpose, Hermitian
transpose, Frobenius norm, trace and expectation operator,
respectively. We adopt A(m,n) to denote the mth row and
nth column of the A, IN is the identity matrix of size N ×N ,
and A � 0 indicate that A is a positive definite matrix.
Finally, we use CN , U , and i.i.d. to represent complex-valued
normal distribution, uniform distribution, and independent and
identical distribution, respectively.

II. SYSTEM MODEL

Let us consider a vehicular scenario, where a BS serves
the vehicles (users) of its cell. The number of vehicles Nv
at any point of time obeys the Poisson distribution with a
mean of λ and variance of λ. Let us also assume that the
serving cell is partitioned into N locations, where the BS
is equipped with the knowledge of the fingerprints (FP) for
each location in its database, as shown in Fig. 1. In this
paper, we define fingerprints as beam-pairs, whose AoA-AoD
values are pre-determined offline. We refer the readers to
[20], [21], [31] for a detailed account on fingerprint based
communication. Fingerprints, i.e. AoA-AoD pairs in our de-
sign, are typically obtained by employing beam-sweeping,
where a high-resolution scanning of beam-pairs is carried out.
However, given the time-varying traffic density, corresponding
to the varying number of vehicles at any point of time, a
single pre-determined fingerprint would not be able to provide
improved performance at a reduced search complexity. This
is because the AoA-AoD pair which provides high received

signal power may be blocked/suppressed by the neighboring
vehicles. Hence a multi-fingerprint based regime is conceived
for different traffic densities at a given location.
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Fig. 1. Fingerprint Based beam-alignment.
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Fig. 2. Hybrid beamforming architecture.

Fig. 1 shows our system model, where the BS is serving a
user in location l1 for a traffic density λk using the fingerprint
FPλk(lj)

1, where the entry f ik,j denote the ith fingerprint
at jth location for traffic density k. Furthermore, owing to
the hardware complexities and power hungry ADCs/DACs at
mmWave frequencies, dedicating an RF chain to each and
every antenna element would become impractical; and em-
ploying analog only beamforming would result in poor angular
resolution and inaccuracies. Therefore, a hybrid beamforming
solution is conceived by the amalgamation of both digital and
analog beamforming [32]–[34]. More explicitly, in a hybrid
beaforming design, the signals are digitally precoded in the
baseband and then phase-shifted in the RF stage by analog
phase shifters [33], [34]. The state-of-the-art hybrid beam-
forming architectures tend to rely either on fully-connected
or on sub-array-connected [2]. In the fully-connected design,
each RF chain is connected to all the phase shifters of the
antenna array as shown in Fig. 2. By contrast, in the sub-
array-connected design, the antenna array is partitioned into

1The location information may be obtained from the global positioning
system (GPS).
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sub-arrays, where each RF chain is connected to only a subset
of the phase shifters [2]. Similarly, in our design, the BS
and the user may employ either fully-connected or sub-array
connected designs for achieving beamforming gains. However,
as design example, we assume that both the BS and the
user employ the fully-connected architecture shown in Fig. 2,
where the signals are precoded digitally using the matrix FBB
in the baseband and then phase-shifted by the analog RF
beamforming matrix FRF.

Let us now consider that the BS (transmitter) is
equipped with Nt transmit antennas and NRF

t chains, while
the user (receiver) is equipped with Nr receive anten-
nas and NRF

r chains. Furthermore, let us assume that
{(f1RF,w1

RF), (f2RF,w2
RF), . . . , (fNRF,wNRF)} are chosen as the

beamforming vectors at the BS and at the user end, respec-
tively, for a traffic density of λ. Then the received signal vector
at the user is given by

y =
√
P tWH

BBWH
RFHFRFFBBs + WH

BBWH
RFn, (1)

where FRF is the transmit beamforming matrix of size Nt ×
NRF
t at the BS, where NRF

t columns are constructed from the
potential AoD set {f1RF . . . f

N
RF}. Similarly, WRF is the receive

beamforming matrix of size Nr ×NRF
r at the user end, where

NRF
r columns are constructed from the potential AoA set
{w1

RF . . .wNRF}. Furthermore, s is the transmitted symbol, n
is the noise vector of identical and independent distributed
entries with distribution CN (0, σ2I), while H is the statistical
mmWave channel model of size Nr ×Nt expressed as

H =

√
NrNt
NcNray

Nc∑
nc=1

Nray∑
nray=1

α
nray
nc ar(φ

nray
nc )aTt (φ

nray
nc ), (2)

while α
nray
nc ∼ CN (0, 1) is a complex-valued Gaussian ran-

dom variable, whose amplitude and phase are Rayleigh and
uniformly distributed, respectively. For a uniform linear array
(ULA) having Nr and Nt antenna elements the response
vectors ar and at are expressed as

ar(φr) =
1√
Nr

[1 ej
2π
λ d cos(φr) . . . ej

2π
λ (Nr−1)d cos(φr)]T , (3)

at(φt) =
1√
Nt

[1 ej
2π
λ d cos(φt) . . . ej

2π
λ (Nt−1)d cos(φt)]T , (4)

where φr and φt are the angles of arrival and departure,
respectively.

In this paper, we consider the received signal strength2

(RSS) [35] as the performance metric to determine the beam-
pair for a successful transmission. Furthermore, for the con-
struction of the fingerprints database, we accounted for the
attenuation and blockage caused by neighboring vehicles in
addition to the path loss experienced by the mmWave carrier.
To achieve this, we have invoked the multiple knife-edge
model recommended by ITU-R [36]. For a given location, each
fingerprint is constructed for each traffic density, by accounting
for the total attenuation caused by the vehicles. The attenuation

2Note that other performance indicators may also be used, such signal-to-
noise ratio (SNR), rate, received signal quality (RSQ).

caused by each vehicles using single knife-edge is given by
[3], [36]

A =

{
6.9 + 20 log10

[√
(v − 1)2 + 1 + v − 0.1

]
,∀v > −0.7

0 Otherwise,
(5)

where v =
√

2h/rf , h is the height of the obstacle from the
line joining the BS and the user, and rf is the Fresnel ellipsoid
radius expressed as

rf =

√
Λdobstacleduser(duser − dobstacle)

duser
,

where Λ is the wavelength, duser is the distance between the
transmitter and user, while dobstacle is the distance between the
transmitter and an obstacle as shown in Fig. 3.

h

dobstacle

duser

Fig. 3. Knife-edge diffraction caused by the vehicle obstacle.

On the other hand, the path loss experienced by the signal
at a distance of d for a transmit and receive antenna gain of
Gt and Gr, respectively, is given by [1]

PL[dB] = PL0 + 10np log

(
d

d0

)
+ Sσs +Gt +Gr, (6)

where d0 is the close-in reference distance, Sσs is the shad-
owing factor, while PL0 is the free-space path loss. Further-
more, for a given wavelength (Λ) the free-space path loss is
expressed as

PL0 = 20 log10

(
4πd0

Λ

)
.

Therefore, the total received power after accounting for both
the path loss and the attenuation caused by a vehicle is

Pr = Pt − PL[dB] −A. (7)

It is instructive to note that (7) is due to large scale fading.
However, considering the small scale fading as well as the
beamforming and combining effects, the net received power
Prnet is expressed as

Prnet = Pr + 10 log10

∥∥(WH
BBWH

RFHFRFFBB
)∥∥2

F , (8)

while the capacity is given by

C = (9)
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log2

(
I + PrZ−1

(
WH

BBWH
RFHFRFFBB

) (
WH

BBWH
RFHFRFFBB

)H)
,

(10)

where Z = σ2
n

(
WH

BBWH
RF

)
(WRFWBB), σ2

n is the noise
variance. The net received power Prnet is observed for the
fingerprint construction. A beam sweeping action is carried
out initially for N locations at discrete traffic densities and
then the specific beam-pairs which achieve the target RSS
are stored in the database. In other words, the AoA-AoD
fingerprint is obtained by conducting a high-resolution beam-
search campaign by accounting for all blockages caused by
obstacles. The fingerprint construction is typically carried out
offline either by computer-generated environment simulations,
or in real time during the BS installation.

In the next section, we discuss multi-fingerprint construction
as well as the learning assisted fingerprint adaptation, followed
by multi-functional beam transmission.

III. PROPOSED DESIGN

In this section, we commence by outlining our multi-
fingerprint based beam-alignment, where we propose multiple
fingerprints for a given location for different traffic densities.
Then, we aim for improving the design by adopting a learning
based approach for fingerprint adaptation followed by a dis-
cussion on the concept of multi-functional beam transmission,
where a plurality of beam-pairs satisfying the RSS threshold
are selected for attaining both multiplexing and diversity gains.
Furthermore, we also propose that if the number of beams are
higher than the number of RF chains, beam index modulation
is employed to attain a high spectral efficiency.

A. Multi-Fingerprint Based Beam-Alignment

Achieving accurate beam-alignment in directional transmis-
sion systems is challenging, especially at mmWave frequencies
because of its high susceptibility to blockages. To circumvent
this problem a fingerprint based beam-alignment technique
may be employed. In broader terms, having accurate fin-
gerprint may be viewed as side-information, which is used
for enhancing the system performance. In our design, the
fingerprint is comprised of a set of possible beam-pairs for
a given location, over which a communication link can be
established. Typically, a fingerprint is constructed for each
location during the BS installation stage by taking the sur-
rounding environment into account, such as buildings, lamp
posts, vehicles, etc. However, the ever-changing vehicular
traffic may strictly limit the performance of the fingerprint.
This is because the direction of the beam or the number
of beam-pairs available is highly dependent on the density
and position of vehicles on the road. In other words, it
depends on the traffic density. Furthermore, the traffic density
is time-varying. For example, the traffic density in the morning
is different from that in the afternoon, or during special
events. This necessitates using multiple fingerprints for a given
location, depending on the traffic density. A typical multi-
fingerprint based database is shown in Table II, where BP2

represents a legitimate angle of departure, say AoD (= 30◦),
whose corresponding angle of arrival pair may be say, AoA

(= 60◦), indexed as beam-pair 2 (AoD-AoA). Similarly, BP10

denotes beam pair 10, whose angles of departure and arrival
may be 110◦ and 270◦, respectively. By generalizing, BPX
denotes the beam pair of any angle of departure paired with
the corresponding angle of arrival, denoted by index X . It is
constructed by calculating the net received power using (7)
for each location at different traffic densities. It is interesting
to note that this multi-fingerprint adaptation is akin to the
classical link-adaptation involving multiple modulation coding
scheme (MCS), bit error ratio (BER) and SNR, where the
transmitter adapts among different schemes to provide high
data rates under given channel conditions while also meeting
the target BER.

TABLE II. An example illustrating multi-fingerprint database

Location Traffic Density Beam-Pairs (BP)
L1 λ1 BP2, BP10, BP23, . . .
L1 λ2 BP320, BP210, BP3, . . .
...

...
...

Lk λ1 BP1, BP9, BP300, . . .
...

...
...

Ln λ3 BP21, BP6, BP250, . . .

This relationship can be represented by a look-up table for
link-adaptation, where depending on the traffic density and
on the location, its corresponding fingerprint is selected. For
example, if the user is at the location L1 and the BS estimates
the traffic density as λ2, then the BS selects the fingerprint
consisting of beams {BP320, BP210, BP3, . . .}. The BS then
shares this information with the user, whereupon the BS
and user invoke training for identifying the best beam-pair
amongst the available beam-pairs of the fingerprint selected.
This significantly reduces the search space involved in the
beam-alignment. To further reduce the search complexity, a
RSS threshold is set, where the user selects the specific beam-
pair whose observed RSS value is higher than the threshold.
Having selected the beam pair, the user relays this information
to the BS, eliminating the search over the successive beam-
pairs. While this procedure is different for transmission over
a plurality of beam-pairs invoked in order to achieve diversity
or spatial multiplexing gains, where the search is continued
until the required number of beam-pairs are found.

However, given the ever-changing nature of the channel
and the non-linearities imposed by the analog-to-digital and
digital-to-analog converters (ADC/DAC) which is even more
pronounced at mmWave frequencies, a look-up table assisted
fingerprint adaptation would be significantly affected, which
we will discuss in the simulation results.

Remark: The fingerprints can be constructed empirically
offline during the network design stage. It is important to
note that the construction of the fingerprints depends on the
topology of the road structure and buildings, which are static
and hence do not change within short time scales – this
may change if a new building is erected. The changes in
the environment are attributed to the ever-changing vehicular
traffic. In other words, in the absence of traffic, the fingerprints
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Fig. 4. Architecture of a neural network.

constructed during the network design stage would hold indef-
initely, unless the area topology changes. However, because
of the time-varying vehicular density, the number of possible
beam-pairs may be subject to change. Therefore, it is possible
to construct the fingerprints for different traffic densities by
allowing the vehicles, to identify the potential beam-pairs
by conducting beam-sweeping during the beam-pair training
phase. This process can be repeated for different vehicular
densities. Furthermore, the number of fingerpints required is
location specific and can be empirically determined.

B. Learning-Aided Multi-Fingerprint Based Beam-Alignment
We have discussed in the previous section that a multi-

fingerprint based beam-alignment would account for beam-
pairs that are capable of handling different traffic densities,
where the BS selects the fingerprint that is pertinent to the
traffic density and location observed. This is carried out relying
on a look-up table. However, while this design enhances the
performance compared to that of a single fingerprint based
beam-alignment, the performance gain may become limited if
the threshold values, such as RSS observed in a fingerprint
at a given location L for a traffic density λ of the look-
up table becomes outdated. In other words, the performance
of a look-up table based fingerprint adaptation may limit
the performance because of the uncertainties mentioned in
Sec. III-A, and hence it becomes extremely challenging to
attain perfect beam-alignment. Therefore, we resort to a
learning-aided multi-fingerprint based beam-alignment. The
rationale for employing learning is to eliminate the dependence
on traffic density threshold values, as enumerated in Table II
during the fingerprint selection. This is because, the values
may become outdated owing to the imperfections in the
channel and impairments in the ADC/DACs.

Therefore, in this paper, we conceive a neural network
based approach for intelligent adaptation between multiple
fingerprints. The rationale for choosing a neural network is its
reduced complexity while providing a superior performance.
The learning approach pursued in this paper relies on two
stages: the training phase and the testing phase. In the training
phase, the weight vectors of the network are computed using

training samples, where the input and output are known.
This is classified as a supervised learning technique, where
the training weights are designed using supervision. It is
instructive to note that the training weights are calculated
offline, hence this calculation does not impose any real time
overhead on the system. A typical neural network is shown in
Fig. 4a.

This network is referred to as a deep neural network if
the number of hidden layers is higher than one, as shown
in Fig. 4a, where the number of hidden layers is two. As seen
in the figure, the training samples are passed to the input layer
and the weights are designed for minimizing the error, which is
the difference between the true and predicted output values. In
Fig. 4a, W1,W2, and W3 are the weights for the input layer,
hidden layer, and output layer, respectively, where W(p, q)
denotes the weight attached between the nodes p and q, while
xi,ui, vi and y1, y2 are the inputs and outputs of the network,
respectively, where i denotes the class. In our design, each
fingerprint corresponds to a class. Furthermore, the output of
each hidden layer is defined by an activation function f(.), also
called a score function, which determines the performance of
the system. The choice of the activation function is dependent
on the analytical tractability, computational complexity and
the type of output signal. On the other hand, to yield better
results, a loss function is introduced which captures the error
(loss) between the predicted outcome and the real outcome in
the training samples.

In our proposed design, the choice of the fingerprint (or
class) is dictated by the output probabilities associated with
each fingerprint. In other words, the fingerprint having a high
probability is selected. Since we deal with the probabilities
at the output, it can be interpreted as a logistic regression
having multiple classes, where each fingerprint constitutes a
class. Hence, an activation (score) function which deals with
the probability is considered, where in our case we use a so-
called softmax function, which we will discuss in detail later in
this section. The resultant neural networks are also sometimes
referred to as softmax neural network [29].

Each layer of Fig. 4a is assigned a score by the activating
function. However, since we deal with the probabilities of spe-
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cific outcomes, the linear weights are translated to probabilities
by a softmax function at the output, as shown in Fig. 4b and
expressed as [29]

fi(z) =
ezi∑
k e

zk
, (11)

where z is the score vector at the layer before the output
probabilities are calculated, which is given by [29]

z = f(xi,W, b) = Wxi + b. (12)

In (12) W is the weight matrix of the layer, b is the bias
vector, while xi is the input of the layer, as shown in Fig. 4b.
As an example, let us consider Fig. 4b, where the softmax
function is applied at the output layer to the scores net1 and
net2, which are calculated using the weight matrix W3 and
bias vector b3. Note that the softmax function is employed
only at the output layer, while for all other layers, only the
scores attained using (12) are calculated as shown in Fig. 4b.

In our paper, the input vector xi is a three-dimensional
vector holding the location, traffic density and RSS values,
while the output represents the probabilities associated with
each fingerprint. In other words, the output takes the form of
[0 . . . , 0, 1, 0, . . . , 0]T , where 1 is the probability associated
with that particular fingerprint.

It is instructive to note that the weight matrices are initially
chosen as random from the distribution N (0, 1), hence the
prediction at the output would be erroneous. Therefore, to
improve the prediction of the fingerprint for a given traffic
density and location, a loss function is introduced which is a
measure of difference between the predicted probability and
the true probability associated with the given class. In other
words, by considering the loss function, the weight matrices
are optimized for ensuring the loss is minimized. More ex-
plicitly, in our design we aim for minimizing the divergence
between the real and predicted probability distributions. This
loss function can also be interpreted as the Kullback-Leibler
divergence between two distributions. Thus, for distributions
p and q it is expressed as [37]

DKL(p‖q) = −
∑
S

p(i) log q(i), (13)

where in our case, p(i) is the probability of the correct class
i, which is p(i) = [0, . . . , 1, . . . , 0], while q is the function in
(11). Upon substituting (11) into (13), we get

DKL(p‖q) = −
∑
S

log
ezi∑
k e

zk
, (14)

where S is the number of training samples.

Additionally, we have the cross-entropy of H(p, q) =
H(p) + DKL(p‖q), where H(p) = 0 holds, since there is no
uncertainty in the correct class. Therefore, this loss function
may also be referred to as cross-entropy loss.

Having defined the cross-entropy loss3, the total loss func-
tion over all classes associated with a regularization penalty
of R(W) is given as [29]

L = − 1

S

∑
s

log
ezi∑
k e

zk
+R(W), (15)

where we have R(W) = λ
2 ‖W‖22 and S is the total number of

training samples. The rationale behind adding a regularization
term in (15) is to ensure that it does not result in over-fitting
[29].

We now aim for minimizing (15) by computing the gradient
with respect to the weight matrix W3 and the bias b3 of
Fig. 4b. To achieve this, we compute the gradient for each class
whose weights are now wi3 and bias bi3, where i represents the
class. Note that zi in (15) is a function of the weight matrix
W3 and bias vector b3. After a series of steps, the gradient
with respect to Wi and bi is given as [29]

∂L

∂wi3
= (fi − δik)x + λwi δik =

{
1, i = k

0, otherwise
(16)

∂L

∂bi3
= fi − δik. (17)

Thus, by employing gradient-descent we arrive at

wi3 = wi3 − α
∂L

∂wi3
, (18)

bi3 = bi3 − α
∂L

∂bi3
, (19)

where α is the step-size. Similarly, weight matrices W1 and
W2, and bias vectors b1 and b2 are obtained by employing the
gradient of the loss function in (16) with the respective matrix
W and vector b. This process is called as error backpropa-
gation [29]. The pseudo-code of the proposed learning-aided
fingerprint based algorithm is presented in Algorithm 1.

It is important to emphasize that the weight matrix W and
bias vector b of the network are computed offline and stored in
memory. This entire process is carried out during the training
phase.

Having discussed the softmax training phase, we now focus
our attention on the real time, the testing phase. During the
initial access the BS communicates with the user by employing
omni-directional transmission using lower frequencies such
as that of LTE, where the BS estimates the location of the
user. The BS also has the information of the number of
users (vehicles) in its cell, which is exploited for estimating

3In our papaer, we employed supervised learning, where the training labels,
i.e., the output samples corresponding to the input samples are known, which
is then used to calculate the loss function. For example, if the loss function
used is the mean-squared error (MSE), then the error between the predicted
output (label) and the actual label (known output during the training) is
computed. This error is then used for desiging the neural network weights. In
our case, since the output is the probability of the fingerprint FP, we invoke
the cross-entropy as the error function instead of the MSE. In other words, the
cross-entropy function quantifies the probabilistic-distance, i.e., the Kullback-
Leibler divergence between the predicted probability of the actual label and
the actual probability associated with that label (Note: since this is a training
sample and is known apriori, the actual probability of that training label is
1.).
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Algorithm 1 Proposed Learning-Aided beam-alignment
Offline:

1: Input: Training samples for all training locations
2: Output: Fingerprint
3: Initialize W1, W2 and W3 as random
4: Compute the output of f(.) using (12) for each layer with

the assigned weights
5: Apply softmax function using (11) to obtain the probabil-

ities for each class
6: Obtain the weight matrices and bias vectors by (18) and

(19)
7: Do error backpropagation
8: Repeat 4-7 until convergence of (16).

Online:
1: Input the location, number of vehicles, Target RSS
2: Apply training weights found during offline phase
3: Output: desired fingerprint

the vehicular density (λ). Furthermore, the user relays the
information of its RSS threshold requirements to the BS. Given
the number of vehicles, the RSS threshold, and the location as
the input parameters, the BS employs the softmax algorithm
with the weights and bias calculated during the training stage.
The algorithm then predicts the probability of each class, i.e.
each fingerprint, and then the BS selects the fingerprint having
the highest probability. After the selection of the fingerprint, it
informs the user about the possible beam-pairs, and conducts
beam-search over these selected beam-pairs. The user then
feeds back the specific beam-pair index which meets its post-
processing RSS threshold. A schematic diagram illustrating
the algorithm is shown in Fig. 5.

Conduct

Report to user about

Report to the BS

Receive

Beam training

beam−pairs

UEeMB (BS)

Location information 

using initial Access

Input: Location
Number of vehicles
RSS Threshold

Apply Weights

Check the RSS

Output:Fingeprint

Acknowledgement 

about the beam−pair + RSS

Fig. 5. The beam-alignment procedure.

In the next section, we present our multi-functional beam-
forming as an application of the proposed design.

C. Application: Multi-functional Beam Transmission

In this section, we propose a multi-functional beam trans-
mission by allowing some tolerance in the beam search com-
plexity. The rationale for employing multi-functional beam
transmission is to increase the spectral efficiency as well as
to enhance the performance. This philosophy works under
the assumption that there exist a plurality of beam-pairs
which satisfy the RSS threshold. As discussed in Sec. III-A
and Sec. III-B, the BS conducts beam-search in the selected
fingerprint, where the user chooses the specific beam-pair
which satisfies the target RSS and feeds back the index of the
beam-pair to the BS using LTE and avoids the beam search
in the successive beam-pairs.

Beam−Pair 4

Beam−Pair 1

eMB(BS) user

Fig. 6. A plurality of beam-pairs selected to attain diver-
sity/multiplexing gains.

By contrast, in the multi-functional beam transmission,
the user chooses several beam-pairs which satisfies the RSS
threshold at the expense of increased search complexity4 as
shown in Fig. 6. Additionally, in this scenario, the beam-pair
search complexity can be reduced by invoking the tabu search
algorithm proposed by Gao et al. [38].

These additional beam-pairs can be leveraged to achieve
diversity and/or multiplexing gains. It is important to empha-
size that the number of beams that can be exploited is limited
by the number of RF chains. Given the eligible beam-pairs
observed, the BS-user pair may also employ link-adaptation
depending on the nature of the channel in each beam. In
other words, depending on the post-processing SNR observed
at the user, the BS may employ diversity or multiplexing.
Explicitly, if the channel is in deep fade, the user may opt
for employing diversity, whilst for multiplexing otherwise.
Furthermore, the BS may also optimize the power allocation
for each beam in conjunction with multiplexing- and diversity-
aided transmission.

On the other hand, if the number of beam-pairs observed
by the user that satisfy the target RSS is higher than the
number of RF chains5, the BS may decide to employ beam-
index modulation6 using the beam-pairs reported by the user

4It is important to emphasize that there may also be a scenario, where
there is no an additional beam-pair despite the increased beam search in the
successive beam-pairs.

5Note that the maximum number of beam-pairs the BS can leverage is
equal to the number of RF chains.

6Beam-index modulation allows us to convey extra implicit information by
inferring at the receiver which specific beam was activated.
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as shown in Fig. 7.
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Fig. 7. Beam index modulation at the BS.

Fig. 7 illustrates the typical beam index modulation em-
ployed at the BS to increase the data rate. Note that here the
number of beam pairs Nb that meets the target RSS is higher
than the number of RF chains NRF

t . This is akin to the spatial
modulation, where the antenna index carries the information.
In contrast to the antenna index in spatial modulation, in this
design, beam index is used for the information conveyance.
Thus the total number of bits that can be transmitted per
second per channel per user is

Number of bits = log2M︸ ︷︷ ︸
M-ary bits

+ log2Nb︸ ︷︷ ︸
number of beam pairs

.

We note that in addition to the beam-pairs selected for the
transmission based on the input signal stream during beam
index modulation, diversity or multiplexing gains may also be
attained by the selected beam-pairs depending on the channel’s
nature in these beam-pairs.

In the next section, we present our simulation results of the
proposed design.

IV. SIMULATION RESULTS

In this section, we present our simulation results for char-
acterizing the performance of the proposed design. More
explicitly, we characterize the performance of the multi-
fingerprint aided beam-alignment scheme relying on learning
and of the benchmark design dispensing with learning. In
our simulations, the number of vehicles at any point of time
follows Poisson distribution ∼ Poisson(λ) having both a mean
and variance of λ. Furthermore, the blockages caused by
vehicles are random obeying the distribution U(0, Nv), where
Nv is the number of vehicles having a Poisson distribution
∼ Poisson(λ). At the time of writing, there is no mathematical
model or distribution for blockage, only empirical models [3].
Hence, we assumed in our simulations that the maximum
number of blockages is equal to the number of vehicles.
Furthermore, from the database on the vehicle dimension [39],
it was found that the height of the vehicles follows normal
distribution with a mean of µh and standard deviation of σh
[3]. Our simulation parameters are summarized in Table III.
On the other hand, for the neural network, we have employed

two hidden layers with 20 nodes each, while the number
of nodes in the input and output layers is 3. Furthermore,
the activation function chosen in each hidden layer is a Tan-
Sigmoid function, while it is the softmax function in the output
layer. In this paper, we have considered multi-fingerprints for
three different traffic densities.

TABLE III. Simulation parameters

Parameters Values
Pt 20 dBm
Nt 32
Nr 8
Gt 10 dBi
Gr 5 dBi
Λ(28 GHz) 0.0107
Number of Vehicles (Nv) Poisson (λ)
Vehicles height [meters] N (150, 8.6)
Blockages rand(0, Nv)
duser, dobstacle rand(.)
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Fig. 8. Distribution of users at four locations.
Fig. 8 shows an example, where a BS is located at the

center of the cell. Furthermore, the cell is partitioned into four
locations, and each location has its own fingerprints for the
different traffic densities. It is important to emphasize that the
number of vehicles in each location is Poisson distributed,
while the distance of the vehicles from the BS in each cell is
uniformly distributed. Observe in Fig. 8 that the BS is serving
two users in Locations 2 and 3, while the vehicles near the
users are treated as obstacles.

Fig. 9 shows the instantaneous RSS values for three finger-
prints, when the number of vehicles is Poisson distributed,
as shown in Fig. 8 having means of 5, 20 and 45. More
explicitly, Fig. 9a depicts the RSS values for the scenarios,
where the difference in the height of the obstacle to the line
joining the transmitter and receiver is such that v of (5) is
less than −0.7, i.e. the vehicular attenuation is zero. In other
words, the attenuation of the signal is purely due to path loss.
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(a) Instantaneous RSS values observed for v < −0.7 for three
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Fig. 9. Instantaneous RSS values observed for v < −0.7 for
three fingerprints at three traffic densities.

However, the fluctuations observed in Fig. 9a are owing to the
fading introduced by the channel, which is captured in (8).

On the other hand, Fig. 9b depicts the RSS values for the
scenario, where the difference in the height of obstacle to the
line joining the transmitter and receiver is such that v of (5)
is greater than −0.7. In other words, the signal experiences
attenuation due to both the vehicles and path loss, which
becomes evident from the plot, where there are points scattered
around having RSS values as low as −125 dB. The physical
meaning of this is that some of the beam-pairs available in the
fingerprints are subjected to blockages because of the vehicular
obstruction. We note that in the absence of these blockages,
Fig. 9b would show similar behavior to Fig. 9a, where both
both Fig. 9a and Fig. 9b are plotted for a non-adaptive system.

To analyze the loss function of the softmax neural network
presented in (15), Fig. 10 shows the cross-entropy of the
network during training versus the number of epochs7. It can

7The network is said to have reached ‘1 Epoch’ when each and every
sample of the data is passed through the network for designing the network
parameters for once. Explicitly, the ‘epoch’ may be loosely defined as the
number of times the dataset is used for designing the parameters.
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Fig. 10. The training and validation curves of the neural
network employed.

be seen from the figure that the network’s best performance
is reached after approximately 60 epochs. Furthermore, it can
be observed from the figure that the validation error is only
slightly higher than the training error, which implies that
the neural network weights designed are indeed capable of
providing a good fit in terms of the mapping between the input
and the output samples. It is instructive to note that Fig. 10
can be used to study how well the neural network parameters
are designed. In other words, if the validation error in Fig. 10
is high, while the training error is low, this implies over-fitting
of the network and hence the regularization parameters may be
adjusted; on the other hand, if both the validation and training
errors are high, this implies under-fitting and hence the number
of neurons (nodes) may be adjusted.
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Fig. 11. Received signal strength (RSS) of the different
schemes against traffic density.

Fig. 11 shows the RSS observed for a system employing
multiple fingerprints both with and without learning, a single
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fingerprint as well as for line-of-sight (LOS)8 propagation.
In this simulation, we have set the target RSS to −82
dBm. It is evident from Fig. 11 that multiple fingerprint
based beam-alignment provides superior performance, while
the performance of single fingerprint based beam-alignment
and of line-of-sight (LOS) falls down precipitously with the
increase of traffic density. This is because with the increase
of traffic density, the probability of LOS blockage becomes
high, hence resulting in low RSS. On the other hand, the
single fingerprint based beam-alignment, which is designed
for a given traffic density9 and uses the same fingerprint
for other traffic densities suffers from blockages, since the
beam-pair suitable to one setting is unsuitable for another.
Furthermore, the desired AoA-AoD pair which is suitable
for that specific setting may be absent from the fingerprint
constructed for another setting. Therefore, the performance
is significantly affected. By contrast, the multiple fingerprint
based design provides better performance; however, it can
be seen that multiple fingerprint based adaptation without
learning is unable to always maintain the target RSS. Instead
it is hovering around it owing to the ever-changing channel
statistics imposed by the changes in the environment. Hence,
employing learning in our multiple fingerprint based design
would intelligently adapt to the time-variant environment so
that it always meets the target RSS, as shown in Fig. 11.
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Fig. 12. Average RSS values over all the beam-pairs in the
fingerprint observed at the user for v < −0.7.

Fig. 12 shows the average RSS values over all the beam-
pairs in the selected fingerprint after adaptation versus the
traffic density. More explicitly, it is a measure of the total
average received power observed within a given fingerprint,
which is the power observed after post-processing, if the
transmit power is equally shared across the beam-pairs in
the fingerprint. The rationale of choosing this metric is to

8In LOS based beam-alignment, the beam is steered in the direction of the
user, which is obtained from location, without account for blockages.

9In our simulation, we have designed the single fingerprint for a traffic
density λ of 5.

study the impact of the average RSS power over all the beam-
pairs when the transmit power in each beam is constant. It
is evident from the figure that the fingerprint selected using
learning performs similarly to perfect beam-alignment, where
an exhaustive beam sweeping is carried out. The physical
significance is that the receiver is able to capture the signal
from all the directions predicted by our learning algorithm. In
other words, the learning accurately predicted the fingerprint
that is comprised of maximum possible number of beam-
pairs for successful link-connection, which is also observed in
the average RSS. On the other hand, the fingerprint selection
dispensing with the learning is significantly affected, as seen in
Fig. 12, due to poor selection of the fingerprint, i.e. when the
fingerprint associated with the wrong beam-pairs is selected.
To elaborate further, the fingerprint that is selected does not
contain the beam-pairs for successful transmission, which
means that the transmit power allotted to these beam-pairs
suffer blockages or experience deep fading10, hence resulting
in low average RSS values at the user. It is important to
emphasize that our proposed design achieves the performance
of perfect beam-alignment at a significantly reduced search
complexity.

Fig. 13 shows the probability distribution function (PDF)
of the fingerprints against the traffic density. It can be seen in
Fig. 13a that as the number of vehicles or as the traffic density
increases, the PDF of fingerprint 1 starts falling gradually,
while fingerprint 2 increases monotonically. Similarly, as the
the traffic density increases further, the PDF of fingerprint
2 falls and the PDF of fingerprint 3 starts to increase. This
implies that the set of beam-pairs in the fingerprint that
provides a successful alignment starts to fall because of the
increase in blockages caused by the increase in traffic density.
Hence, the fingerprint which has the beam-pairs suitable for
that environment is selected for a successful transmission. For
example, when considering the traffic density range between
5-to-20, the PDF of fingerprint 1 falls because, whenever the
set of beams in it is blocked due to the increased density of
vehicles, it selects fingerprint 2 with the aid of the learning
model developed during the training phase, since it provides
alternate beam-pairs for link-connection. Fig. 13b shows the
PDF of the fingerprints, when dispensing with learning. It can
be noticed here that switching from one fingerprint to other
fingerprint is different from that observed in Fig. 13a, as the
switching is decided based solely on the look-up table, which
may be outdated because of the time-varying nature of the
channel.

Fig. 14 shows the average RSS observed in the beam-
pairs chosen from the selected fingerprint at the receiver. It is
important to note the difference between Fig. 14 and Fig. 12,
where the latter is the average RSS observed in all the beam-
pairs of the selected fingerprint. Fig. 14 depicts the RSS for
two values of v, i.e. for different vehicular heights. In this
investigation, we have set the target RSS to −82 dB. It can be
seen that for both cases of v the learning aided design performs

10In this plot, since v < −0.7, the reduced RSS values should be attributed
to only channel fading, as there is no attenuation due to vehicles. Hence the
look-up table based fingerprint selection degrades the performance because
of the channel imperfections as discussed in Sec. III-A.
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(a) Probability distribution function of fingerprints when learning is
employed.
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Fig. 13. Probability distribution function of fingerprints dis-
pensing with learning.

about 1 dB higher than the target RSS. By contrast, the design
relying on look-up table suffers significantly, especially in
the traffic density regions between 10-15 and 30-40. This
performance is akin to that of the conventional link-adaptation
designs.

Fig. 15 shows the rate of our proposed design with learning
and dispensing with learning. It can be seen from Fig. 15 that
the rate of the design dispensing with learning is inferior to
that of the learning-aided beam-alignment, while the design
with learning provides the maximum rate of 2 bpcu regardless
of the vehicular density. This is because the design without
learning relies on the threshold values of the look-up table
which suffers from blockages in the traffic density regions
between 10-15 and 30-40.
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V. COMPLEXITY

In this section, we discuss the complexity of the designs
presented. The conceptually simple beam-sweeping technique,
imposes substantial complexity during the beam-search. Let
us consider a signal departing at an angle θd ∈ (0, 360◦)
from the transmitter, which is being received at an angle
θr ∈ (0, 360◦) by the receiver. Let us also assume that the
half-power beamwidth (HPBW) of the signal ray is β. Then
a beam-sweeping based beam-alignment has to perform an

exhaustive search over
(

360
β

)2
beam-pair combinations. On

the other hand, the fingerprint based beam-alignment imposes
a much lower complexity, since the number of beam-pairs
is significantly reduced. We note that the complexity of the
proposed design predominantly arises in the learning stage,
which is carried out in an offline fashion. In other words, the
weights of Fig. 4b are designed prior to any communication
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between the BS and the user, which then are stored in memory
whose storage complexity11 between two layers of the network
is on the order of O(ninj) + O(nj), where ni and nj are the
number of neurons (or nodes) between the layers i and j,
respectively. More particularly, the complexity in our design
depends on the number of computations it has to perform
while applying the weights in real time. To elaborate further,
let us consider Fig. 4b, and for the sake of simplicity let us
assume that there are ni = nj = n neurons in each hidden
layer, while the input vector xi also has a dimension of n.
Then the total number of computations, i.e. additions and
multiplications, needed for h hidden layers is on the order
of O(hn2). Furthermore, it is important to emphasize that the
complexity of any learning algorithm depends on the input
dimensionality [29], [40] (the input vector xi is referred as
feature set in machine learning), which is however, only three-
dimensional in our design.

VI. CONCLUSIONS

Given the ever-changing traffic density, we proposed a
multi-fingerprint based database that adapts intelligently be-
tween different fingerprints with the aid of learning. Further-
more, as an extension to our proposed design, we presented
an application to enhance the spectral efficiency as well as the
performance by multi-functional beam transmission, where the
beam-pairs that satisfy the required received signal strength
participate in increasing the spectral efficiency. We demon-
strated by our simulations that having a multiple fingerprint-
based beam-alignment provides superior performance over
the single fingerprint based beam-alignment. Furthermore, we
showed that our learning-aided multiple fingerprint design
provides better fidelity than that of the scheme employing mul-
tiple fingerprints but dispensing with learning. Additionally,
our proposed learning-aided beam-alignment design performs
similarly to that of beam-sweeping based beam-alignment
where an exhaustive beam-search is carried out, at a reduced
search complexity. More explicitly, our design is capable of
maintaining the target RSS in dense vehicular environments,
while both single fingerprint and line-of-sight (LOS) based
beam-alignment suffer from blockages.
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