Title

PNPLA3 polymorphism influences the association between high-normal TSH level and NASH in euthyroid adults with biopsy-proven NAFLD

Short title: NASH and high-normal TSH levels

Authors’ names

Di-Shuang Hu¹, Sheng-Hao Zhu¹, Wen-Yue Liu², Xiao-Yan Pan², Pei-Wu Zhu³, Yang-Yang Li⁴, Kenneth I. Zheng⁵, Hong-Lei Ma⁵, Jie You⁶, Giovanni Targher⁷, Christopher D. Byrne⁸, Yong-Ping Chen⁵,⁹,¹⁰ and Ming-Hua Zheng⁵,⁹,¹⁰*}

Institution:

¹Department of Gastroenterology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China;
²Department of Endocrinology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China;
³Department of Clinical Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China;
⁴Department of Pathology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China;
⁵NAFLD Research Center, Department of Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China;
⁶Department of Thyroid and Breast Surgery, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China;
⁷Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, University and Azienda Ospedaliera Universitaria Integrata of Verona, Verona, Italy;
Southampton National Institute for Health Research Biomedical Research Centre, University Hospital Southampton, Southampton General Hospital, Southampton, UK;

Institute of Hepatology, Wenzhou Medical University, Wenzhou, China;

Key Laboratory of Diagnosis and Treatment for The Development of Chronic Liver Disease in Zhejiang Province, Wenzhou, China.

*Corresponding author:

Ming-Hua Zheng, MD, PhD

NAFLD Research Center, Department of Hepatology, the First Affiliated Hospital of Wenzhou Medical University; No. 2 Fuxue Lane, Wenzhou 325000, China.

E-mail: zhengmh@wmu.edu.cn; fax: (86) 577-55578522; tel: (86) 577-55579622.

Abbreviations

NAFLD, nonalcoholic fatty liver disease; PNPLA3, patatin-like phospholipase domain-containing protein 3; NASH, nonalcoholic steatohepatitis; CI, confidence interval; HCC, hepatocellular carcinoma; TSH, thyroid stimulating hormone; FT4, free thyroxine; FT3, free triiodothyronine; NAS, NAFLD activity score; ALT, alanine aminotransferase; AST, aspartate aminotransferase; BMI, body mass index; WBC, white blood cells; HDL-C, high-density lipoprotein cholesterol; HOMA-IR, homeostasis model assessment of insulin resistance; LDL-C, low-density lipoprotein cholesterol; OR, odds ratio; SD, standard derivation; GGT, gamma-glutamyl transferase; HSL, hormone sensitive lipase; ATLG, adipose triglyceride lipase; SREBP1c, sterol regulatory element-binding protein1c; SRE, sterol-response element.
Abstract

Aim: We aimed to evaluate the association between serum thyroid stimulating hormone (TSH) levels, within the reference range, and the histological severity of nonalcoholic fatty liver disease (NAFLD), and whether this association was modulated by the patatin-like phospholipase domain-containing 3 (PNPLA3) rs738409 polymorphism.

Materials and Methods: We enrolled 327 euthyroid individuals with biopsy-proven NAFLD, who were subdivided into two groups, i.e., a ‘strict-normal’ TSH group (TSH level 0.4 to 2.5 mIU/l; n=283) and a ‘high-normal’ TSH group (TSH level 2.5 to 5.3 mIU/l with normal thyroid hormones; n=44). Logistic regression analyses were performed to assess the association between TSH status and presence of nonalcoholic steatohepatitis (NASH) after stratifying subjects by PNPLA3 genotypes.

Results: Compared to strict-normal TSH group, patients with high-normal TSH levels were younger and had a greater prevalence of NASH and higher histologic NAFLD activity score. After stratifying by PNPLA3 genotypes, the significant association between high-normal TSH levels and presence of NASH was restricted only to carriers of the PNPLA3 G risk allele and remained significant even after adjustment for potential confounding factors (adjusted-odds ratio 3.279; 95%CI 1.298-8.284; \(p=0.012 \)).

Conclusion: In euthyroid individuals with biopsy-proven NAFLD, we found a significant association between high-normal TSH levels and NASH. After stratifying
by \textit{PNPLA3} rs738409 genotypes, this association was observed only among carriers of the \textit{PNPLA3} G risk allele.

\textbf{Keywords:} PNPLA3, NASH, TSH, euthyroidism

\textbf{Introduction}

Nonalcoholic fatty liver disease (NAFLD) is a highly prevalent disease affecting up to 25\%-30\% of the world’s adult population.[1, 2] NAFLD is regarded as a complex disease trait such that interactions between the environment and a susceptible genetic background induce disease phenotypic expression and influence disease outcome. Multiple genome-wide association studies have clearly identified the I148M patatin-like phospholipase domain-containing protein 3 (\textit{PNPLA3}) variant as the most common genetic determinant of the presence and severity of NAFLD.[3-6]

It is known that the development and progression of NAFLD usually occur in the presence of profound derangements of glucose and lipid metabolism, and dysregulation of energy homeostasis. Thyroid hormones are critical regulators of energy homeostasis and exert prominent direct effects on lipid and glucose metabolism.[7] Currently, observational studies have reported that overt or subclinical hypothyroidism is significantly associated with the presence and severity of NAFLD.[8-10] There is also some experimental evidence suggesting that increasing levels of thyroid-stimulating hormone (TSH) \textit{per se} may induce liver fat accumulation and the underlying mechanism is thought to involve TSH-induced liver fat accumulation principally mediated by the hepatic TSH receptor increasing hepatic
sterol regulatory element-binding protein1c (SREBP-1c) activity via activation of the cAMP/PKA/PPARα pathway.[11]

An updated meta-analysis of fifteen observational studies involving ~44,000 subjects has recently confirmed the existence of a significant association between primary hypothyroidism (defined either by the history of levothyroxine replacement therapy or by the presence of subclinical and overt hypothyroidism) and the risk of having NAFLD. This risk tended to increase across the different definitions used for diagnosing hypothyroidism (use of levothyroxine replacement therapy > overt hypothyroidism > subclinical hypothyroidism), and seemed to further increase with increased severity of NAFLD.[12] Furthermore, some epidemiological evidence is also emerging to suggest that increasing levels of TSH, within the normal reference range, are also associated with an increased prevalence of NASH and advanced fibrosis in euthyroid individuals with biopsy-proven NAFLD.[13, 14]

It is currently not known as to whether any association between increasing TSH levels (within the reference range) and NASH is affected by the PNPLA3 rs738409 polymorphism, which is the key genetic variant associated with increased susceptibility to NASH.[3-5]

Therefore, in a large sample of euthyroid subjects with biopsy-confirmed NAFLD, the major aims of our cross-sectional study were: a) to assess the association between serum TSH levels within the euthyroid range and the histological severity of NASH; and b) to examine whether this association was modulated by the patatin-like phospholipase domain-containing 3 (PNPLA3) rs738409 polymorphism.
Materials and methods

Study population

In this study, all participants were recruited at the First Affiliated Hospital of Wenzhou Medical University from a well-characterized cohort of adult individuals (namely the Prospective Epidemic Research Specifically of NASH [PERSONS] cohort), who attended our Liver clinic for suspected NAFLD from December 2016 to July 2019.[15] From an initial sample of 966 adult individuals with suspected NAFLD (based on imaging techniques and/or elevated serum liver enzyme levels), we subsequently excluded 639 subjects for the following reasons: (1) positivity for serum markers of viral hepatitis A (n=2), hepatitis B (n=184), hepatitis C (n=8) or hepatitis E (n=2); (2) alcohol consumption in excess of 140 g per week for men and 70 g per week for women (n=108); (3) drug-induced hepatitis (n=3), autoimmune hepatitis (n=17) or liver cancers (n=8); (4) thyroid cancers (n=18) or history of other active extra-hepatic cancers (n=8); (5) abnormal thyroid function tests (overt or subclinical hypothyroidism or hyperthyroidism) or use of levothyroxine replacement therapy (n=17); (6) hepatic steatosis <5% on liver histology (n=39); (7) refuse liver biopsy (n=26); and (8) missing biochemical data, including PNPLA3 genotyping (n=206).

As a consequence of the above-mentioned exclusion criteria (as shown in Figure 1), 327 (257 men and 70 women) euthyroid individuals with biopsy-proven NAFLD were included in the final statistical analysis for the present study.

The research protocol was approved by the ethics committee of the First Affiliated Hospital of Wenzhou Medical University. The protocol conformed to the ethical
guidelines of the 1975 Declaration of Helsinki. Written informed consent was obtained from each participant included in the study.

Liver histology

The detailed methodology for liver biopsies has been described previously.[15] A single experienced liver pathologist examined all liver biopsies. Briefly, NAFLD was defined as steatosis grade >5% and definite NASH was diagnosed with score ≥1 for each of the three histological components of steatosis, inflammation and hepatocellular ballooning while NAFLD activity score (NAS) ≥ 5 was diagnosed according to the NASH-Clinical Research Network classification.[16] Significant fibrosis was defined as liver fibrosis ≥ F2 on histology, while advanced fibrosis was defined by liver fibrosis ≥ F3 according to the Brunt’s histologic criteria.[17]

Analysis of the PNPLA3 rs738409 polymorphism

The methods used for analysis in blood samples of the *PNPLA3* rs738409 polymorphism have been described elsewhere.[18] Locus-specific PCR and detection primers were designed using Assay Design Suite v3.1. MALDI-TOF mass spectrometry was used to detect allele type following DNA amplification by multiplex PCR.

Clinical, laboratory data and thyroid function testing

In brief, data collection for anthropometric measurements, BMI, blood pressure (BP) were conducted by standardized methods.[18] Hypertension was defined as BP ≥ 140/90 mmHg or drug treatment. Diabetes was defined by a fasting glucose concentration ≥ 126 mg/dl (≥ 7 mmol/l) or hemoglobin A1c (HbA1c) ≥ 6.5% (≥ 48
mmol/mol) or use of anti-hyperglycemic drugs. Hyperlipidemia was defined as total cholesterol ≥ 6.2 mmol/l, LDL-cholesterol ≥ 4.1 mmol/l or triglycerides ≥ 2.2 mmol/l or use of any lipid-lowering agents.

Blood routine parameters, including hemoglobin, platelets, white blood cells (WBC), and biomarkers such as serum albumin, HbA1c, fasting glucose, fasting C-peptide, fasting insulin, total cholesterol, low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), triglyceride, liver enzymes [i.e. gamma-glutamyl transferase (GGT), alanine aminotransferase (ALT), aspartate aminotransferase (AST)] and uric acid levels were centrally analyzed by an automated analyzer (Abbott AxSYM, Park, IL). The homeostatic model assessment of insulin resistance (HOMA-IR) was calculated using the following formula: HOMA-IR score = [fasting insulin (μIU/ml) × fasting glucose concentration (mmol/l)]/22.5. Serum levels of thyroid-stimulating hormone (TSH, reference range in our laboratory: 0.4-5.3 mIU/l), free triiodothyronine (FT3, reference range: 3.3-6.5 pmol/l) and free thyroxine (FT4, reference range: 7.6-16.0 pmol/l) were analyzed in our central Laboratory on a fully automated UniCel Dxl 800 Access 2 analyzer (Beckman Coulter, California, USA) using microparticle chemiluminescent assays.

Statistical analysis
Statistical data analysis was performed by using the SPSS Version 25.0. Data for continuous variables were expressed as means ± SD or as percentages for categorical variables. Among the euthyroid patients with histologically-proven NAFLD, 283 patients with TSH between 0.4 to 2.5 mIU/l were assigned to the strict-normal TSH group, while the remaining 44 euthyroid patients with TSH between 2.5 to 5.3 mIU/l
were assigned to the high-normal TSH group. We adopted this lower limit of normality for TSH level, i.e. 2.5 mIU/l, according to the 2003 National Academy of Clinical Biochemistry guidelines.[19, 20] The Student’s t-test, the Welsh's t-test (or unequal variances t-test) and the Fisher’s exact test (for categorical variables) were used to compare statistical differences in clinical, biochemical and liver histology characteristics of NAFLD patients grouped according to either serum TSH levels (‘strict-normal’ group vs. ‘high-normal’ group) or PNPLA3 rs738409 genotypes (CC vs. GC/GG genotypes combined). Univariable and multivariable logistic regression analyses were performed to test the association between TSH status and risk of having definite NASH after stratifying subjects by PNPLA3 rs738409 genotypes. Statistical significance was considered at $p<0.05$ (two-tailed).

Results

Baseline characteristics of patients stratified by NASH status

We studied 327 euthyroid adults with histologically proven NAFLD, in whom the mean age was 41.8 years and the mean BMI was 26.8 kg/m². By study design, patients with overt or subclinical hypothyroidism or hyperthyroidism and those treated with levothyroxine replacement therapy were excluded from the study. After stratifying these euthyroid patients by the presence of NASH on histology (supplementary Table 1), patients with NASH (n=117) had higher serum TSH levels (1.9±0.8 vs. 1.6±0.7 mIU/l, $p=0.003$) than those belonging to the non-NASH group (n=210). In addition, patients with NASH were more likely to be younger, more centrally obese, and to have dyslipidemia, greater insulin resistance and higher values of serum uric acid and liver enzymes.
Baseline characteristics of patients stratified by TSH status

As shown in Table 1, compared to the strict-normal TSH group, patients with high-normal TSH levels were more likely to be younger, had a higher prevalence of NASH, had more severe steatosis and a higher total NAS score. They also had higher serum albumin and uric acid levels. No significant differences were found in liver fibrosis stage. In addition, the two patient groups were comparable for all other clinical and biochemical variables, including serum liver enzymes, FT3 and FT4 levels as well as PNPLA3 rs738409 genotypes.

Baseline characteristics of patients stratified by TSH status and PNPLA3 rs738409 genotypes

As shown in Table 2, when patients were simultaneously stratified by TSH status and PNPLA3 rs738409 genotypes, we found that the significant association between high-normal TSH levels and the presence of NASH was restricted only to carriers of the PNPLA3 G risk allele. Indeed, patients carrying the PNPLA3 G risk allele with high-normal TSH levels had a higher total NAS score and an almost two-fold higher prevalence of NASH (65.5% vs. 33.7%) compared with their counterparts with strict-normal TSH levels. Conversely, no significant association was found between high-normal TSH levels and presence of NASH or total NAS score among carriers of the PNPLA3 CC genotype.

High-normal TSH levels and increased risk of having NASH in carriers of the PNPLA3 G risk allele
As shown in Table 3, in univariable logistic regression analysis, there was no significant association between high-normal TSH levels and presence of NASH among carriers of the PNPLA3 CC genotype, whereas this association was statistically significant among patients carrying the PNPLA3 G risk allele (unadjusted-OR, 3.745; 95%CI, 1.652–8.492; \(p = 0.002 \)). Notably, this association remained statistically significant even after adjustment for age, sex, BMI, hypertension, diabetes, dyslipidemia, serum albumin and HOMA-IR score (adjusted-OR 3.279; 95% CI 1.298-8.284; \(p = 0.012 \)). The results remained essentially unchanged even when we adjusted for waist circumference instead of BMI (adjusted-OR 2.966; 95% CI 1.180-7.456; \(p = 0.021 \)).

Discussion

The novel findings of our study are that in euthyroid adults with biopsy-proven NAFLD there is a strong association between high-normal TSH levels and presence of NASH. However, after stratifying by PNPLA3 rs738409 genotypes, this association remained significant only amongst carriers of the PNPLA3 G risk allele even after adjustment for age, sex, obesity, diabetes, HOMA-IR score, dyslipidemia and other potential confounders.

It is well known that thyroid hormones play an important role in regulating body weight, lipid metabolism and insulin sensitivity, and emerging evidence also suggests that thyroid hormone regulation (even in the euthyroid range) may be involved in the development of NAFLD.[21] Gou et al. reported that increased serum TSH levels, irrespective of serum FT3 and FT4 levels, were an important
risk factor for the development and progression of NAFLD.[22] Furthermore, Carulli et al. suggested that high-though-normal TSH values were strongly associated with the presence of NASH[23] in a small series of euthyroid patients, although in another study this result was not confirmed.[24] More recently, in a sample of 425 South Korean adults with histologically-proven NAFLD, Kim et al. reported that NAFLD subjects with subclinical hypothyroidism or low-normal thyroid function had higher proportions of NASH and advanced liver fibrosis compared to those with strict-normal thyroid function. These authors also reported that risks of NASH and advanced fibrosis increased progressively with serum levels of TSH.[13]

To the best of our knowledge, this is the first study to show that the association between high-normal TSH levels and NASH (and total NAS score) markedly varied according to the PNPLA3 rs738409 polymorphism. Although a significant association between TSH levels and liver fibrosis stage was not observed in our study, we found that high-normal TSH levels were strongly and independently associated with NASH only among PNPLA3 GG and CG carriers, but not among those carrying the PNPLA3 CC genotype.

To date, the biological mechanisms underlying the association between high-normal TSH levels and NASH and the possible influence of PNPLA3 polymorphism on this association are poorly understood and remain largely speculative. It is known that triacylglycerol lipase, encoded by the PNPLA3 protein, is a mediator for triacylglycerol hydrolysis in adipocytes.[25] This process of triacylglycerol hydrolysis is mainly controlled by the sterol regulatory element-binding protein1c
Interestingly, one of the functions of the thyroid is to enhance SREBP1c gene expression favoring the cleavage of this enzyme, and then facilitating the binding to the sterol response elements (SREs) in the promoters of target genes.[27] Yan et al. also found that TSH level per se may increase hepatic fat content in a mice model, mainly through the upregulation of SREBP-1c activity.[11] The mechanism underlying TSH-induced hepatic fat accumulation is mainly explained by its role in the activation of the cAMP/PKA/PPARα pathway. The TSH receptor (TSHR) is a trigger for hepatic SREBP-1c activity that ultimately results in increased expression of genes that are implicated in hepatic lipogenesis through decreased AMPK in the cAMP/PKA/PPARα pathway.[11] As mentioned above, the PNPLA3 G allele encoding the I148M variant reduces hydrolase activity of PNPLA3, and increases hepatic fat accumulation; consequently, the PNPLA3 G allele is strongly associated with increased susceptibility to development and progression of NAFLD and hepatocellular carcinoma.[28-30]

It is widely accepted that hormone sensitive lipase and adipose triglyceride lipase (ATGL) are two important rate-limiting enzymes in the lipolysis process.[31] As early as 1969, Birnbaumer et al. confirmed that the receptor TSHR is also expressed in the plasma membrane of rat fat cells,[32] and TSH may promote the differentiation of pre-adipocytes into mature adipocytes.[33] TSH may also directly inhibit the expression of ATGL in mouse mature adipocytes by activating the cAMP/PKA pathway, thereby inhibiting basal lipolysis of triglycerides.[34]

Recent phase 2 randomized placebo-controlled trials also showed that resmetirom (MGL-3196) and VK2809, i.e., new liver-directed, orally active, selective thyroid
hormone receptor β (THR-β) agonists, significantly reduced liver fat content, after 12 weeks and 36 weeks of treatment, in euthyroid patients with biopsy-confirmed NASH.[35, 36]

Taken together, we consider that the findings from experimental and intervention studies provide further support for the results of our study. We have shown that high-normal TSH levels were significantly associated with higher total NAS score, presence of NASH and higher serum ALT levels, but that the proportion of patients with NASH and the histologic grade of steatosis were increased among those patients with high-normal TSH levels who carried the PNPLA3 G risk allele. We suggest that if the promising results of the two recently phase 2 randomized controlled trials using the new selective THR-β agonists (discussed above) are confirmed in future larger trials, our findings may highlight a subgroup of patients with NASH who would benefit most from treatment with selective THR-β agonists (i.e. patients who have high-normal TSH levels and the PNPLA3 G risk allele). That said, we recognize that further mechanistic studies are certainly needed to better understand the complex interconnections among NASH, PNPLA3 polymorphism and high-normal TSH levels.

Our study has some important limitations that should be mentioned. Firstly, the cross-sectional design of the study does not allow establishing causal or temporal relationships between high-normal TSH levels, NASH and the PNPLA3 rs738409 polymorphism, although this limitation is, at least in part, mitigated by the fact that the genetic variant under study is inherited and, therefore, reverse causation does not apply. Secondly, our study includes only a single ethnic group of Chinese individuals. Multiple studies demonstrated that the PNPLA3 rs738409 G allele is more common in
Asian individuals without metabolic syndrome [1, 37] and, therefore, additional studies are required in other ethnic populations to confirm our findings. Finally, the relatively small number of patients with "high-normal” TSH, especially when patients were stratified by the PNPLA3 genetic variant, suggests that larger cohorts of patients with biopsy-proven NAFLD are needed to further confirm our findings.

In conclusion, the results of our study show for the first time that in euthyroid patients with biopsy-confirmed NAFLD there is a significant association between high-normal TSH levels and the presence of NASH. After stratifying by PNPLA3 genotype, this association was observed only among carriers of the PNPLA3 G risk allele and remained significant even after adjusting for age, sex, obesity, diabetes, HOMA-IR score, dyslipidemia and other potential confounding factors.

Funding Sources:

This work was supported by grants from the National Natural Science Foundation of China (81500665), High Level Creative Talents from Department of Public Health in Zhejiang Province, Project of New Century 551 Talent Nurturing in Wenzhou. GT is supported in part by grants from the University School of Medicine of Verona, Verona, Italy. CDB is supported in part by the Southampton NIHR Biomedical Research Centre (IS-BRC-20004), UK.

Author Contributions

Study concept and design: Di-Shuang Hu and Ming-Hua Zheng

Acquisition of data: Di-Shuang Hu, Sheng-Hao Zhu, Xiao-Yan Pan, Hong-Lei Ma, Jie You and Pei-Wu Zhu
Pathology analysis: Yang-Yang Li

Drafting of the manuscript: Di-Shuang Hu, Kenneth I. Zheng

Critical revision: Kenneth I. Zheng, Giovanni Targher, Christopher D. Byrne

Statistical analysis: Di-Shuang Hu, Wen-Yue Liu

Study supervision: Yong-Ping Chen and Ming-Hua Zheng

All authors contributed to the manuscript for important intellectual content and approved the submission.

Declaration of conflicting interests

All authors: nothing to declare.

Acknowledgments

We thank Prof. Ji-Min Liu, a liver pathologist from McMaster University, who conducted quality control of pathology data in Wenzhou cohort.
References

Legend to the Tables

Table 1. Baseline characteristics of euthyroid individuals with biopsy-proven NAFLD stratified by serum TSH status. The Student’s t-test, the Welsh's t-test (for continuous variables) and the Fisher exact test (for categorical variables) were used to compare statistical differences in clinical, biochemical and liver histology characteristics between the groups.

Table 2. Baseline characteristics of euthyroid individuals with NAFLD stratified by both $PNPLA3$ rs738409 genotypes and serum TSH status. The Student’s t-test, the Welsh's t-test and the Fisher exact test were used to compare statistical differences in clinical, biochemical and liver histology characteristics between the groups.

Table 3. Risk of NASH based on TSH status (strict-normal vs. low-normal TSH group), stratified by $PNPLA3$ rs738409 genotypes.

Supplementary Table 1. Baseline characteristics of euthyroid individuals with biopsy-proven NAFLD stratified by presence of NASH.
Figure Legends

Figure 1. Flowchart of the study.