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Skin cancer is the most frequent cancer worldwide and accounts for 1 in every 3 cancers
diagnosed. Skin cancer comprises of melanoma, arising from the melanocytes of the skin
and keratinocyte carcinomas which arise in the keratinocytes and include cutaneous
squamous cell carcinoma (cSCC) and basal cell carcinoma. c¢SCC predominantly affects the
older generation and is one of the most common types of cancer capable of metastasising,
with 5 year survival rates reported as <30%. Although less common, melanoma can affect
all ages and has one of the highest rates of metastasis of any cancer, with 5 year survival
rates as low as 23%, depending on whether or not distant metastasis has occurred. There
are currently very few prognostic markers capable of predicting metastasis in these skin
cancers. Presently in the UK, melanoma is graded according to the American Joint
Committee on Cancer Guidelines (AJCC) whereas cSCCs are categorised as high or low risk
according to the British Association of Dermatologists’ guidelines (BAD). Other staging
systems have been proposed but most of them also rely on histological features such as

differentiation, diameter, depth, site and/or Clark’s level, amongst others.

This study aimed to identify factors within ¢SCC and melanoma which contribute to
metastasis using a mass spectrometry based proteomics approach. A method to extract
protein from formalin fixed paraffin embedded (FFPE) samples was developed and
optimised. Proteins were extracted from 24 FFPE surgically excised primary cSCC (P-NM)
and melanoma (Pmel-NM) tumours which had not metastasised at 5 years post-operatively
and from 24 FFPE surgically excised primary metastatic cSCC (P-M) and melanoma (Pmel-

M) tumours which had metastasised.



A total of 144 and 31 significantly differentially expressed proteins between metastatic and
non-metastatic samples were identified in the cSCC and melanoma groups respectively.
KEGG, gene ontology, weighted gene co-expression network analysis (WGCNA) and
ingenuity pathway analysis (IPA) highlighted several key pathways likely to be involved in
development of metastasis in cSCC and melanoma. Multiple reaction monitoring (MRM) of
two proteins, ANXAS5 and DDOST, verified the original differences in levels of these proteins
in ¢cSCC and also validated these findings in an independent sample cohort. Additionally,
MRM analysis and machine learning revealed that the combination of ANXAS5 and DDOST
levels could correctly predict metastasis better than any guideline in current clinical use,
with an AUC of 0.929, sensitivity and specificity of 88.24% and 94.12% respectively.
However, MRM was technically challenging in the melanoma group and was not able to

verify the original melanoma mass spectroscopy results.

Machine learning and modelling of histological characteristics from c¢SCC samples was
subsequently undertaken to see whether it was possible to improve on current prediction
of prognosis with these readily available parameters. Surprisingly, this produced a
prediction model with an Area Under the Curve (AUC) of 0.997 and a sensitivity and
specificity of 94.1% and 100% respectively. Despite this model not requiring any additional
work over and above that which is already currently reported histologically when cSCCs are
routinely excised in the UK, it was better than the aforementioned ANXA5 and DDOST
model and moreover, than any guideline in clinical use at the present time. Moreover, this

model has the potential to be integrated into a clinical setting with relative ease and speed.

This study has identified a number of factors, including key pathways that likely contribute
to metastasis in ¢SCC and melanoma. In addition, the combination of proteomics, machine
learning and mathematical modelling has identified key prognostic indicators in ¢SCC and
has demonstrated that this approach may have potential to do likewise in many other

cancer types.
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Chapter 1: GENERAL INTRODUCTION

1.1 Structure and function of skin

The skin is the largest human organ and plays a vital role in many homeostatic functions
including temperature regulation and water loss as well as acting as a physical barrier for
protection against the environment (Proksch et al., 2008). The skin is comprised of three
main layers, the subcutaneous tissue, the dermis (inner layer) and the epidermis (outer
layer) (Figure 1.1). The dermis consists mainly of connective tissue such as collagen and
elastin with some cells (fibroblasts, endothelial cells within blood vessels) and structures
such as sweat glands and hair follicles embedded within. The epidermis is a cell rich
structure composed mainly of keratinocytes, but also contains melanocytes and
Langerhans cells. The basal layer comprises undifferentiated keratinocytes which
proliferate and whose daughter cells become more terminally differentiated as they move
to the upper layers of the skin. Above the basal layer is the suprabasal layer, granular cell
layer and the outermost layer which is called the stratum corneum. The stratum corneum

consists of dead keratinocytes which gradually desquamate from the skin surface.

The skin has a relatively high turnover rate of cells, with cells transiting from the basal layer
to the surface of the stratum corneum within 48 days (lizuka, 1995). This high turnover and
rate of proliferation amongst cells of the skin increase their susceptibility to carcinogenesis

development (Ratushny et al., 2012).

Stratum Corneum
Stratum Granulosum

Keratinocyte

Stratum Spinosum —— R : - { “® .
- L? : g
3 ir ‘ > ———————— Langerhans Cell
87\ =~ :
- /‘i“ Melanocyte
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~ ( 1 /fi// N =
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— = 5 \
. / Fibroblast
Dermis

Figure 1:1 Schematic cross-sectional diagram of human skin
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1.2 Skin cancer

Skin cancer is the most common form of cancer worldwide and more frequently affects
lighter pigmented individuals (World Health Organisation, 2016, Gloster and Neal, 2006).
Skin cancer comprises of two main subgroups; melanoma and keratinocyte cancers (KCs,
also known as non-melanoma skin cancer (NMSC)). Cutaneous melanoma arises when
somatic gene mutations occur within the melanocytes in the basal layer of the epidermis.
Within melanoma, there are 4 main histological sub-types, these include superficial
spreading melanoma, nodular melanoma, lentigo maligna melanoma and acral melanoma
(Bataille et al., 1996). Superficial spreading melanoma is the most common type of
melanoma and as the name implies, usually refers to a melanoma which spread out across
the skin. Conversely however, nodular melanomas often grow vertically up and down,
being the second most common type of melanoma. Lentigo maligna melanoma is often
found in older individuals at high sun exposed body sites. These themselves grow from a
benign precancerous legion known as a lentigo maligna. Finally, the rarest form of
melanoma is acral melanoma which is typically found in the palm of hands, soles of feet
and under fingernails of patients. This type of melanoma is more prevalent than other

forms of melanoma in individuals with black or brown skin (Farage et al., 2009).

KCs arise when keratinocytes of the epidermis develop somatic gene mutations and
become cancerous (Armstrong and Kricker, 2001); (Albert and Weinstock, 2003). The two
types of KCs are basal cell carcinoma (BCCs) and cutaneous squamous cell carcinoma
(cSCCs). Although BCCs are very common, they rarely metastasise, unlike melanomas and
cSCCs which can metastasise to other organs (Dinehart and Pollack, 1989, Thompson et al.,

2005).
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Invasive Neoplasm Metastasis
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Figure 1:2 Schematic cross sectional diagram of squamous cell carcinoma (SCC) and

melanoma development.

1.2.1 Incidence

The World Health Organisation (WHO) estimates that 1 in every 3 cancers diagnosed are
skin cancers and that there are 130,000 melanoma and 2-3 million NMSC cases worldwide
with a continual increase each year (World Health Organisation (2016). Skin cancer is one
of the cancers that has increased by more than 50% from 1990 to 2010 (Murray et al., 2012).
However, skin cancer numbers are believed to be greatly underestimated as it has been
suggested that during 2006 in the US alone there were 3.5 million NMSCs in 2.1 million
individuals (Rogers et al., 2010) and 5.4 million total NMSCs in 3.3 million individuals 6 years
later in 2012 (Rogers et al., 2015). In addition, there was over 750,000 NMSC cases in
Australia (Fransen et al., 2012) and an estimated 51,555 cSCC cases in the UK, which is more
than double that of what it was less than a decade ago (Goon et al., 2016). Furthermore,
figures presented at a UK TREND NMSC workshop suggested there was >200,000
keratinocyte carcinoma (KC) cases in the UK during 2015 (Rashbash, 2016).

The GLOBOCAN project, which is part of the International Agency for Research on Cancer,

reports on incidence, mortality and prevalence of major types of cancer for 184 countries
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of the world (GLOBOCAN, 2017). However, like many other cancer epidemiology registers,
GLOBOCAN has not reported on the number of KC cases, mainly because recording of KCs
is poor in many countries (Lomas et al., 2012). Related to this, it is thought that KC incidence
is greatly underestimated because records are either incomplete or simply lacking; this is
particularly the case in Europe, Australia and America, because registries often only include
a patient’s first KC, with subsequent tumours as well as multiple tumours not being counted

individually (Lomas et al., 2012).

GLOBOCAN calculated the number of worldwide melanoma cases in 2008 to be 197,000
(Ferlay et al., 2010) and, given that this was over a decade ago coupled with the rising
incidence rates (C.R.UK, 2015), it is likely that the actual figure today is much higher.
Melanoma is most common in Caucasian populations and those who live in areas of higher
sun exposure are at greater risk. It is for this reason that Australia, New Zealand and the
USA have amongst the highest rates of melanoma in the world (Giblin and Thomas, 2007).
Rates as high as 40-60 per 100,000 a year have been reported in Australia and New Zealand
and 10-15 per 100,000 annually in central Europe (Garbe and Leiter, 2009). Although the
UK does not have as high sun exposure as Australia, wealth and disposable income enables
UK residents to use sun beds and/or to travel abroad to higher sun-exposed areas,
potentially increasing the likelihood of developing melanoma (Giblin and Thomas, 2007,
Godden et al.,, 2010). UK melanoma rates have been increasing for decades and continue
to do so, despite intervention strategies such as public health announcements on avoiding

excess exposure to sunshine (Diffey, 2004).

1.2.2 Economic burden

Due to the inconsistencies in skin cancer records, producing accurate estimations of the
economic burden of skin cancer is inherently difficult (O'Dea, 2000). It has been reported
that the annual economic costs of skin cancer to New Zealand in 2006 was NZ$123.1 million
(£69 million) (O'Dea, 2000). Moreover, it has been estimated that total costs, including
diagnosis, treatment and pathology for KCs in Australia during 2010 were AUS511 million
(£299.5 million), predicted to increase to AUS703 million (£412 million) by 2015 (Fransen
et al.,, 2012). In the USA, the total annual direct and indirect costs associated with skin

cancer (including precancerous lesions) have been estimated at $6.6 billion (£5.1 billion)
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(Bickers et al., 2006). More recently, the economic burden of skin cancer in the USA has
been estimated by the U.S. Department of Health and Human Services to be $8.1 billion
(£6.26 billion) each year, of which $4.8 billion (£3.7 billion) is for KC and $3.3 billion (£2.55

billion) for melanoma (Watson et al., 2014).

A study looking at the economic burden of skin cancer in England estimated the total cost
of melanoma in 2002 at over £138 million (around £75 million direct cost to NHS) and KC
at over £100 million (around £50 million direct cost to NHS) (Morris et al., 2009) with direct
NHS costs expected to rise to £180 million in 2020 (Vallejo-Torres et al., 2014). The study
by Vallejo-Torres et al (2014) used cancer registry data of 8,658 melanomas and 69,840
KCs. This figure of KCs is a lot lower than the >200,000 suggested by Prof Jem Rashbass,
Director of the National Cancer Registration (Rashbash, 2016), therefore it is likely that KC

costs in England and the UK are, and will be, much greater than these estimates.

1.2.3 Risk factors

There are a number of genetic and environmental risk factors which contribute to the
development of skin cancer (Figure 1.3). The main environmental risk factor is exposure to
ultraviolet radiation (UVR) from the sun and/or sun beds (Narayanan et al., 2010). Other
environmental risk factors for skin cancer are smoking (De Hertog et al., 2001), exposure
to arsenic (Yu et al., 2006), radiotherapy (Karagas et al., 1996), immunosuppression (for
example via immunosuppressive drugs) (Alter et al., 2014, Euvrard et al., 2003) and use of
certain medications for various diseases (for example oral steroids (Karagas et al., 2001)
and the use of BRAF inhibitors in melanoma (Su et al., 2012)). In addition to these risk
factors, some studies have suggested that that the use of sunscreen actually increases the
risk of melanoma in latitudes greater than 40° (Gorham et al., 2007). This latter association
may be due to the fact that older sunscreens protected mainly against UVB and thus also
protected against sunburn, which may have resulted in people remaining in the sunshine
for longer and obtaining more UVA exposure. However, fair-skinned people are at greater
risk of skin cancer (see below), therefore the positive association between sunscreen use
and melanoma may simply be due to the fact that fair-skinned people are more likely to

use sunscreens.
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Phenotypic factors resulting from genetic inheritance such as red hair, freckles/fair
complexion and a tendency to sunburn have a 2.4, 2.4 and 1.7 increase risk of developing
melanoma (Thompson et al., 2005). The hair, skin and eye colour in mammals is determined
by the content and composition of melanin pigment in these tissues (Ito and Wakamatsu,
2003). Melanin exists in two forms, the yellow/red pheomelanin and the dark brown/black
eumelanin (Wakamatsu and Ito, 2002) which in different ratios produce the variation in
human hair and skin colour. Although people with darker skin contain similar numbers of
melanocytes to fair skinned individuals, they have higher amounts of melanin, specifically
eumelanin, in their skin (Brenner and Hearing, 2008). Skin pigmentation, due to melanin
content, plays a crucial role in defence against UVR induced DNA damage and many studies
have shown that darker skinned people have more resistance to UVR-induced DNA damage
compared to Caucasians (Tadokoro et al., 2003, Jablonski and Chaplin, 2010, Gallagher et
al., 1995). Although there is little research surrounding the effect different melanin
composition has on metastasis, it has been reported that high amounts of melanin can
reduce the efficacy of radiotherapy (Brozyna et al., 2016) and furthermore that it could be
a potential route for treatment using a 188-rhenium-labeled antibody, targeted to melanin

(Klein et al., 2013, Schweitzer et al., 2007).

An important germline genetic factor which affects the ratio of eumelanin and
pheomelanin in an individual is the melanocortin 1 receptor (MC1R) genotype, which also
affects tanning response and susceptibility to skin cancer (Haddadeen et al.,, 2015,
Robinson and Healy, 2002, Valverde et al., 1995). MCIR gene variants are frequent in the
UK and Ireland (Gerstenblith et al., 2007) and the presence of two variant alleles in an
individual causes red hair and fair skin, whereas a single variant allele results in fair skin
(Raimondi et al, 2008, Flanagan et al., 2000, Healy et al., 2000). Certain
diseases/syndromes can also lead to skin cancer development, for example
oculocutaneous albinism type 2 (where skin melanin is lacking) and xeroderma
pigmentosum (XP, where UV-induced DNA repair is compromised) (Setlow et al., 1969,

Bradford et al., 2011).
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Phenotypic/Genetic Environmental
Skin colour UVR exposure
Hair colour Immunosuppression
Eye colour Radiotherapy
MCI1R gene Drugs (oral steroids, BRAF inhibitors)
Albinism Arsenic ingestion
Xeroderma pigmentosum Cigarette smoking

Figure 1:3. Phenotypic/genetic and environmental risk factors associated with skin
cancer development.

MC1R, Melanocortin 1 receptor

1.2.4 Treatment

The main treatment for skin cancer is surgical excision (Madan et al., 2010). For small
tumours, including BCCs and some c¢SCCs, it is not uncommon for curettage to be
performed, a method also reported to achieve good results (Madan et al., 2010). Other
treatment methods are ablation via CO, laser and cold induced destruction by liquid

nitrogen cryosurgery, however, these are usually done on small tumours.

For cSCCs at low risk of metastasis a 4-5mm excision margin is advocated, whereas for high
risk cSCCs a margin of at least 6mm is preferred (Madan et al., 2010). For SCCs of high risk,
the draining lymph nodes can also be excised to assess for metastasis (Motley et al., 2003).
An alternative mode of excision is via Mohs micrographic surgery whereby the tumour is
removed and the surface of the residual open wound is then removed and stained before
being viewed under a microscope. If tumour cells are seen in the wound skin under
microscopy, further wound tissue is excised and again stained and viewed under
microscopy. This process is repeated until the wound tissue is completely clear of tumour

(at which stage all microscopic tumour has been removed).
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Following surgery, radiotherapy is occasionally used on high risk tumours which, under
histological analysis, have been shown to have small groups of cancer cells away from the
main tumour (i.e. microsatellite tumours) in order to reduce the risk of developing further
metastasis. Treatment for metastatic cSCC is limited and radiotherapy is sometimes used
on metastases which are difficult or impractical to remove (Rong et al., 2015).
Chemotherapy has been used in some cases of metastatic cSCC but has proven to be limited
in its efficacy (Weinberg et al., 2007). A study investigating the ability of retinol and
isotretinoin to reduce new occurrences of skin cancer in 525 participants with a history of
BCC or SCC revealed that using either of these chemotherapeutics had no benefit compared

to a placebo group (Levine et al., 1997).

Similarly, the mainstay of treatment for melanoma is to excise the tumour. It is
recommended that in situ melanomas are excised with a margin of 5mm, or those 22mm
deep with a 2cm margin (Haigh et al., 2003). The British Association for Dermatologists
(BAD) suggest a 1cm margin for those <1mm depth and between 1-2cm for those between
1 and 2mm deep (Marsden et al., 2010). Similar to cSCC, radiotherapy can be used after
excision of high risk tumours with microsatellites present in histology in an attempt to
prevent subsequent metastasis (Garbe et al., 2008). Radiotherapy is also sometimes used
for metastases although mainly for palliative purposes, of which a response rate of 67% for
the irradiated metastasis has been reported (Kirova et al., 1999). Chemotherapy has also
been used for metastatic melanoma, but in recent European consensus-based
interdisciplinary guidelines for diagnosis and treatment of melanoma, it was reported that
adjuvant cytotoxic chemotherapy had no clear therapeutic advantage and suggested that
this type of therapy should no longer be used (Garbe et al., 2016). Related to this, a study
on 1256 patients published in the Lancet found that adjuvant PEGylated interferon a-2b
significantly increases recurrence-free survival rates of patients with melanoma, but did
not increase overall survival rates (Eggermont et al., 2008). By contrast, a systematic review
and meta-analysis found that the use of adjuvant PEGylated interferon a-2b significantly
increases disease free survival as well as the overall survival in melanoma, but noted that
the adverse effects of the treatment could negatively affect quality of life of the patient
(Mocellin et al., 2010). However, over recent years, newer therapies have included
immunotherapy (e.g. anti cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), anti-

Programmed cell death protein 1 (PD1) antibodies) and BRAF inhibitors. Whereas
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Ipilimumab, an anti CTLA-4 antibody has been shown to increase disease free survival of
patients, it is unclear about the effect it has on overall survival (Eggermont et al., 2015,
Garbe et al.,, 2016). Conversely, vemurafenib, a v-Raf murine sarcoma viral oncogene
homolog B (BRAF) enzyme inhibitor has been found to significantly increase overall survival
rates compared with dacarbazine, a systemic chemotherapy reagent (McArthur et al.,
2014). More recently however, combination therapy using dabrafenib and trametinib have
proven effective at treating BRAF mutant melanoma, increasing progression-free survival
from 12% in the dabrafenib monotherapy group to 22% and furthermore increasing median

overall survival from 18.7 to 25.1 months (Long et al., 2017, Long et al., 2015).

1.2.5 Ultraviolet radiation (UVR)

UVR is the most important exogenous factor that contributes to skin cancer development
(Narayanan et al., 2010). There are three main types of UVR; the long wave UVA (315nm-
400nm), the medium wave UVB (280nm-315nm) and the short wave UVC (100nm-280nm)
(El Ghissassi et al., 2009). The amount of UVR that reaches the earth’s surface consists of
approximately 95% UVA and 5% UVB, whereas UVC is blocked by the stratospheric ozone
layer (El Ghissassi et al., 2009, Narayanan et al., 2010). Tanning beds / sunbeds utilising
artificial sunlight to induce suntans emit UVA and UVB to simulate sun exposure (Ting et al.,
2007), and are used by the public to induce a suntan through production of melanin in the
skin (Brenner and Hearing, 2008). It has been reported that individuals who use sun beds
have a three times higher risk of developing melanoma (Chen et al., 1998, Ting et al., 2007)
a 1.5 increase risk of developing BCC and a 2.5 increased risk of developing cSCC (Karagas

et al.,, 2002).

For a long period of time it was believed that UVA was relatively harmless and that UVB
was the main causative for skin cancer, particularly melanoma (Runger and Kappes, 2008,
El Ghissassi et al., 2009, Narayanan et al., 2010). This was accredited to UVB’s ability to
cause more DNA damage, however, it is now recognised that UVA can also cause skin
cancer through DNA mutations and that skin cancers (including cSCC and melanoma) can
be induced by UVA in mice (lkehata et al., 2008, Strickland, 1986, Kelfkens et al., 1991,
Noonan et al., 2012).
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UVR causes direct DNA damage through the formation of cyclobutane pyrimidine dimers
(CPDs), and 6-4 photoproducts (Brash et al., 1991, Balajee et al., 1999). Under normal
circumstances, many of these photoproducts are repaired by nucleotide excision repair
(NER), however, if not repaired they lead to development of DNA mutations, including C to
T or CCto TT substitutions, which can result in skin carcinogenesis (Yokoyama and Mizutani,
2014). In patients who suffer from xeroderma pigmentosum (XP), who have a 10,000x
increased risk of skin cancer (Kraemer et al., 1994), NER is deficient (Setlow et al., 1969)
and therefore multiple DNA mutations arise, leading to skin cancer (Bradford et al., 2011).
In normal skin and in the skin of XP patients, the development of mutations in tumour
suppressor genes or oncogenes can affect the behaviour of the protein encoded by the
gene, resulting in altered cell behaviour and uncontrolled proliferation, thus leading to

tumorigenesis (Kramer et al., 1990, Setlow and Setlow, 1962, Kraemer et al., 1994).

1.2.6 Models of skin cancer

There are currently several different models used to study the development and
progression of skin cancer. These differ according to the type of skin cancer being
investigated. For example, development of melanoma has been observed and investigated
using Xiphophorus fish (also known as swordtail fish) (Setlow et al., 1993), Sinclair swine
(Millikan et al., 1974), horses (Rosengren Pielberg et al., 2008), dogs (Khanna et al., 2006),
the Monodelphis domestica marsupial (also known as the South American Opossum) (Ley,
1984) and various transgenic mice (Kato et al., 1998, Becker et al., 2010). Some of these
models, e.g. Xiphophorus fish, have been useful in trying to identify which wavelengths of
UVR (i.e. UVA as well as UVB) are important in melanomagenesis (Setlow et al., 1993, Nairn
et al., 1996). Furthermore, some of the genetic alterations leading to melanoma
development in humans have also been seen in certain animal models such as cyclin-
dependent kinase Inhibitor 2A (CDKN2A) mutations in Xiphophorus fish (Kazianis et al.,
1999).

Another model, M.domestica, has allowed investigations into the role of pyrimidine dimers
in melanoma. This is because M.domestica has a light activated DNA repair system, capable
of repairing UVR-induced pyrimidine dimers (Ley, 1984) and because it is one of the few

models where melanoma can be induced by UVR. However, all models of melanoma have
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their limitations, for example in M.domestica, melanomas develop in the dermis rather
than in the epidermis and only metastasise rarely (Ley, 2002). Sinclair swine have certain
genetic similarities in their melanocytic tumours to those seen in humans, but the main
difference is that a significant proportion of tumours spontaneously regress in this pig
model (Millikan et al., 1974). Mouse models have become popular in studying melanoma
development due to the ease of housing and ability for transgenic modification; examples
include mice overexpressing Hepatocyte Growth Factor and mice with melanocortin 1
receptor alterations (Wolnicka-Glubisz et al., 2015). Another common animal model used
to study melanoma, due to the ability to genetically manipulate them, is the zebrafish (van
der Weyden et al., 2016). The Angora goat has been presented as a possible model for both
melanoma and cSCC because, in one study, 2.2% and 3.8% of 1731 goats sampled had

developed melanoma and cSCC respectively (Green et al., 1996).

Most animal models of cSCC are mice, including hairless mice which can develop cSCCs in
response to UVR (de Gruijl and Forbes, 1995). Another mouse model is the chemical
carcinogenesis model which involves the use of 9,10-dimethyl-1,2-benzanthracene
(DMBA) and tetradecanoyl-phorbol acetate (TPA) which induces the formation of benign
papillomas that then progress to cSCC (Abel et al., 2009). In this model, HRas, Kras and Tp53
genes are known to be mutated and more recent work suggests that altered expression of
many genes in human cSCC are similarly modified in their expression in ¢SCCs in this model
(Nassar et al., 2015). Furthermore, one study found that genomic drivers of SCC
development could be identified in human and solar ultraviolet radiation-driven hairless
mice (Chitsazzadeh et al., 2016). Although BCC is not a focus of this current thesis, there
are also transgenic mouse models of BCC, particularly those affecting the hedgehog

signalling pathway (Mao et al., 2006).

In addition to animal in vivo models, there are cell line in vitro models for skin cancer. Cell
culture models have the advantage of being relatively cheap and easy to maintain in
comparison to animal models (Beaumont et al., 2013). Furthermore, 2D cell models of
melanoma and cSCC can be used effectively for many assays, including adhesion, migration
and cell communication (Haass et al., 2005). More recently, 3D culture cell models have
been employed; one such model by Commandeur et al (2009) was generated using a

combination of cSCC cell lines, cSCC biopsies and fibroblast cultures to recreate an invasive
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cSCC environment. Despite their limitations, many of the animal and cell models can help
answer questions in specific research areas, and have improved our current understanding

of melanoma and cSCC.

1.2.7 Oxidative stress

Exposure to UVR can cause oxidative stress, producing free radicals, collectively referred to
as reactive oxygen species (ROS) in cells and tissues (Bayr, 2005). Free radicals are any
molecules which possess one or more unpaired free electrons. These electrons can be
passed onto, and consequently excite, nearby molecules potentially breaking bonds and/or
making new bonds between atoms/molecules. ROS are common by-products produced by
normal metabolic processes, typically neutralised by anti-oxidants such as superoxide
dismutase (SOD) (Bickers and Athar, 2006, Bayr, 2005). In the event of a build-up or sudden
increase in ROS, anti-oxidant defence mechanisms can become overwhelmed, resulting in
an excess of free radicals. These free radicals can attack and damage nearby DNA and cause
single and double strand breakages, base modifications such as 8-hydroxyguanine (Cheng
et al., 1992) as well as by inducing cross linking between DNA and proteins (Athar, 2002).
These free radical-induced alterations in DNA can affect tumour suppressor genes or genes
regulating many aspects of cell function, including cell cycle, proliferation, and cell survival,
and can ultimately lead to carcinogenesis (Sander et al., 2004). As well as effects on DNA,

ROS can damage proteins resulting in loss of or gain of function (Bayr, 2005).

Enzymes involved in the detoxification of ROS produced by UVR include SOD and catalase
(Rezvani et al., 2006). However, while catalase is known to protect against UVR-induced
ROS (Rezvani et al., 2006, Rezvani et al., 2007), one study found that keratinocytes
expressing higher levels of catalase had a notable increase in ROS after UVB exposure
compared to those expressing lower levels of catalase, suggesting that catalase may not be
protective under certain cellular and/or environmental conditions (Heck et al., 2003). ROS
are thought to mediate a number of effects of UVR, and it has been reported that UVB
induces cell cycle changes in keratinocytes similar to ROS and that both induce apoptosis
by altering mitochondrial membrane permeability (Bickers and Athar, 2000). Other studies

have found that UVR and ROS can induce a number of similar proteins and transcription
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factors including NF-kB (Reelfs et al., 2004) and mitogen-activated protein kinase (MAPK)
(Kim et al., 2005).

1.2.8 Genetic mutations in skin cancer

Melanoma and cSCC are two of the most highly mutated human malignancies, with
melanoma harbouring around 20 mutations per mega base pair and ¢SCC containing up to
50 mutations per mega base pair (Durinck et al., 2011, Martincorena and Campbell, 2015,
South et al., 2014, Nikolaev et al., 2011). It is thought that only a proportion of these
mutations are needed for the development of cancer. This has led to the driver/passenger
model of mutations in cancer, whereby key “driver” mutations are required for malignancy
and many of the other mutations are “passenger” mutations that do not necessarily
contribute to the development or growth of neoplasia (Greenman et al., 2007). This can be
seen as an example of Darwinian evolution because those cells containing mutations with
the “desirable” characteristics for neoplasia generally proliferate, survive and invade into
surrounding tissue (Martincorena and Campbell, 2015). Examples of genes with driver

mutations in cSCC and melanoma are provided in Table 1.1.

One key driver mutation for many cancers, including melanoma and c¢SCC is the TP53
tumour suppressor gene, encoding the p53 protein which is a major cell cycle regulator
(Benjamin and Ananthaswamy, 2007). p53 is often referred to as the guardian of the
genome because it halts the cell cycle allowing the cell time to repair damaged DNA. A
mutation in the TP53 gene can cause a faulty p53 protein, reducing its ability to halt the
cell cycle and thus allowing proliferation in the presence of DNA damage. It is reported that
between 50-90% of ¢SCCs and around 35% of melanomas contain mutations in the TP53

gene (Brash et al., 1991, Durinck et al., 2011, Leffell, 2000, Sparrow et al., 1995).

Another important signalling pathway known to potentially harbour driver mutations in
cSCC is the NOTCH pathway. It has been reported that 82% of cSCCs have a mutation in
either NOTCH1 or NOTCHZ2 genes (South et al., 2014). NOTCH is a signalling pathway that is
activated in humans by Delta-like and Jagged ligands binding to NOTCH receptors 1, 2, 3 or
4, which causes the release of the NOTCH intracellular domain (D'Souza et al., 2008). The
intracellular domain then travels to the nucleus where it regulates CBF1, Suppressor of

Hairless, Lag-1 (CSL), a transcription factor for NOTCH target genes which are notably
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involved in cell survival and growth (Mozuraitiene et al., 2015). Hyperactivity of NOTCH
signalling can cause upregulation of B-catenin, another transcription factor, heavily
involved in cell survival and proliferation (Moon et al., 2004). Although NOTCH mutations
seem uncommon in melanoma, there is evidence that a C-to-G somatic mutation in the
pre-microRNA, pre-miR-146a/C (leading to pre-miR-146a/G) in melanoma activates NOTCH

signalling and promotes oncogenesis (Forloni et al., 2014) .
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Table 1.1 Examples of genes with driver mutations in cSCC and melanoma

Protein .
Gene/Pathway Effect of mutation References
involved
(Wang et al., 2011, Saridaki
. . et al., 2003, Zhang et al.,
NOTCH NoTe, | Dsruption between balance of growth and | 2016, south et al., 2014, Liet
al., 2015, Pickering et al.,
2014)
Continuous activation of MAPK and PI3/AKT iy el ,2011' SN &
RAS/RAF/MAPK RLASAIRAS, signalling pathways, increased survivabilit el AT, DUillis ssel,
NRAS e PR, 1 Y1 2011, suetal, 2012, Li et al.,
growth and proliferation 2015)
cscc TP53 mutations disable ability to halt cell (South et al., 2014, Durinck
P53 P53 cycle to allow DNA repair, enabling etal., 2011, Li et al., 2015,
uncontrolled proliferation with development Pickering et al., 2014)
of mutations & !
P16 mutations disable ability to inhibit CDK4 (South et al., 2014, Durinck
p16INK4a and CDK®, resulting in less activation of v .
. . . et al, 2011, Li et al., 2015,
(p16) retinoblastoma proteins, thus allowing more Pickering et al., 2014)
CDKN2A progression of cell cycle from G1 to S-phase.
P14 mutations result in an inability to help (South et al., 2014, Durinck
pldarf (pl14) activate p53. Promotes unregulated et al, 2011, Li et al., 2015,
proliferation Pickering et al., 2014)
Loss of function causes activation of PI3/AKT .
pathway. (Often occurs with BRAF). Results (Mozuraitiene et al.,, 2015,
PI3k-AKT PTEN S d vabilit th and Goel et al., 2006, Haluska et
N Increased survivanliity, growth an al., 2006, Shull et al., 2012)
proliferation
. L . . (Mozuraitiene et al., 2015,
RAS/RAF/MAPK BRAF,MAPK, Fontlnuous actlvat.lon of MAPK signalling, Goel et al., 2006, Hodis et al.,
NRAS increased cell survival and growth 2012)
Melanoma CDKA Mutation causes inability for inhibition by (Hodis et al., 2012,
P16, leading to cell cycle progression Mozuraitiene et al., 2015)
P16 mutations disable ability to inhibit CDK4 (Mozuraitiene et al., 2015
p16INK4a and CDK®, resulting in less activation of Hodis et al, 2012 ’ ’
CDKN2a (p16) retinoblastoma proteins, thus allowing more odls et al,
progression from G1 to S-phase.
P14 mutations results in an inability to help (Mozuraitiene et al,, 2015,
pldarf (p14) activate p53. Promotes unregulated Hodis et al,, 2012)
proliferation v
Wnt/B-catenin CTNNB1, Causes aberrant activation of wnt signalling, (Mozuraitiene et al., 2015,
APC, ICAT leading to increase in cell proliferation Reifenberger et al., 2002)
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The RAS signalling pathway is strongly associated with cell growth, differentiation and
survival and mutations in this pathway are found in 20%-25% of human cancers (Downward,
2003). RAS genes are mutated in ~3-30% of cSCCs (South et al., 2014, Su et al., 2012), which
is a much lower frequency than mutations in TP53, NOTCH1 and NOTCH2 in these tumours
(South et al., 2014). Conversely, the BRAF gene which encodes for another member of the
RAS signalling pathway is found to be mutated in ~60% - 70% of superficial spreading
melanomas (Haluska et al., 2006). A single mutation at codon 600, where a valine residue
is substituted for a glutamate (V600E), accounts for roughly 50% of total BRAF mutations
in melanoma (Su et al., 2012). Whereas BRAF inhibitors, which target the oncogenic BRAF
protein resulting from this mutation, are beneficial in melanoma, many patients can
develop cSCCs as an adverse effect of this therapy in a process referred to as paradoxical
MAPK activation (Gibney et al., 2013). Furthermore, in contrast to the lower level of RAS
mutations in sporadic cSCC, approximately 60% of cSCCs arising secondary to vemurafenib

(a BRAF inhibitor) have RAS mutations (Su et al., 2012).

Amongst the many other mutations that have been identified in ¢cSCC and melanoma, those
in CDNK2A and phosphatase and tensin homolog (PTEN) are also considered as driver
mutations. For instance, somatic CDKN2A mutations can be found in 28% of cSCCs (South
et al., 2014) whereas germline mutations in this gene are seen in melanoma patients with
a strong family history of this cancer (Harland et al., 2014). In addition, between 10 and 30%
of all melanomas have a loss of function in the PTEN tumour suppresser gene, resulting in
phosphatidylinositol-4,5-bisphosphate 3-kinase/protein kinase B (PI3K/AKT) pathway
activation; it is worth noting that mutation in PTEN are often found in conjunction with

BRAF mutations (Davies et al., 2008, Haluska et al., 2006).

1.2.9 Proteins in skin cancer

Genes are segments of DNA which encode for proteins. The first step of protein synthesis
is transcription and involves RNA polymerase reading a gene and creating a complimentary
mRNA strand from the gene exons. Once the mRNA has been created, it exits the nucleus
and travels to the ribosome where a small ribosomal subunit binds and moves along it until
it reaches a sequence of three bases, known as a codon, which encodes a “start” signal.

After the start signal, tRNA molecules which consist of an anti-codon (a complementary
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codon to that found on the mRNA) and a specific amino acid, begin to bind to the mRNA.
As more and more tRNA molecules are added, the amino acid chain gets longer, until a stop
codon is reached, which signals for the ribosome to release the finished polypeptide chain.
The amino acid sequence then undergoes folding to become a protein. Protein folding is
dependent on a number of factors but usually results in a structure which is the most
thermodynamically stable in its current environment (Dobson et al., 1998). Due to the
immense number of possible structures one polypeptide can form it is also reasonable that
folding favours those structures that are most efficient, that is those which require the least

amount of energy to create (Dobson, 2003).

Synonymous mutations are genetic mutations which do not alter translated amino acid
sequence. Although sometimes referred to as silent mutations, synonymous mutations can
have effect on post translational modifications and splicing effecting downstream function
or even cellular location and abundance. Non-synonymous mutations, however, are
mutations which alter the amino acid sequence as the codon encodes a different amino
acid when transcribed and translated. Changes in the amino acid sequence can result in
issues with stability and the way the protein is folded (Lorch et al., 1999) which can
subsequently lead to altered function (Yamada et al., 2006) as well as unintended protein-

protein interactions (Jones et al., 2007).

1.2.10  The immune system involvement in skin cancer

It has been known that UVR has significant immunosuppressive effects since the 1970’s
when Margaret Kripke showed that skin tumours transplanted to un-irradiated mice
resulted in rejection of the transplanted cancer whereas tumour rejection failed to occur
in mice irradiated with UVR (Kripke, 1974, Kripke, 1977). Similar results have been reported
by other groups (Sluyter and Halliday, 2001) and immune suppression resulting from UVR
is evident in humans in other types of studies (O'Dell et al., 1980). The exact reasons for
this UVR-induced immunosuppression are not fully understood. There is some evidence
that UVR damages Langerhans cells, which are specialised antigen presenting cells in the
skin, promoting apoptosis of these cells (Aberer et al.,, 1981). In addition, UVR causes
Langerhans cells to migrate to the local lymph nodes where they induce production of T

regulatory cells (Tregs), thus dampening immune responses (Schwarz et al., 2010).
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Furthermore, keratinocytes release the immunosuppressive cytokine interleukin-10 (IL-10)
after UVR exposure (Nishigori et al., 1996) and inhibit tumour antigen presentation by
epidermal antigen presenting cells (Beissert et al., 1995) resulting in a reduced immune

response against the tumour.

A role for a weakened immune system in cSCC development can be seen clearly in
immunosuppressed individuals following organ transplantation, with some studies
suggesting that the incidence of c¢SCC is 50-250 fold higher in transplant recipients
compared to the general public (Alter et al., 2014, Euvrard et al., 2003). The reduction in
immunosurveilance is believed to result in approximately 5%, 10-27% and 40-60% of renal
transplant recipients developing NMSC within 2, 10 and 20 years following transplantation
respectively (Ulrich et al., 2008). Although other malignancies have been reported to
following organ transplantation, skin cancers account for the majority of malignancies in
this group, with cSCC and BCC accounting for 90% of the tumours (Euvrard et al., 2003). An
increased risk of melanoma in transplant recipients, by a factor of 1.6-3.4 in Europe and 2-
4 in Australia, has also been noted (Euvrard et al, 2003). Furthermore,
immunocompromised individuals are at significant risk of metastases from skin cancer

(Martinez et al., 2003).

1.2.11 Metastatic skin cancer

The act of metastasis has been summarised into 8 major steps; 1-detachment from primary
tumour, 2-invasion into surrounding tissue, 3-invasion into a vessel, 4-circulation in vessels
(lymphatic or haematogenous), 5-stasis within the vessel, 6-extravasation, 7-invasion into
new tissue and 8-finally proliferation (Brodland and Zitelli, 1992). Of the common skin

malignancies, ¢cSCC and melanoma are the two cancers most capable of metastasis.

1.2.11.1 Metastasis in cutaneous Squamous Cell Carcinoma (cSCC)

The mortality rate of cSCCs and melanoma vary depending on a number of factors but both
have poor clinical outcomes after metastases have developed. The occurrence of
metastasis for cSCC is approximately 4% (Brantsch et al., 2008) to 9.9% (Weinberg et al.,
2007). In one study, it was found that 81.5% of ¢cSCC metastases involved regional lymph

nodes, 3.7% involved distal nodes and 14.8% involved distant metastases (Dinehart and
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Pollack, 1989). It has been reported that common sites of distant metastases are the lungs,

brain, liver, skin and bone (Figure 1.4) (Weinberg et al., 2007).

Local metastasis Distant metastasis

Brain

S l‘*\ N
O 2 - €
‘xffo/ ’//," Z \\«’\ @
7

M
-
§ 7 Liver

Figure 1:4 Local and distant cutaneous Squamous Cell Carcinoma (cSCC) metastases

Lymphatic vessel

Metastasis occurs by invasion into the dermis and subsequently into the lymphatic system,
followed by metastatic deposition in local lymph node. Distant cSCC metastasis in brain,
lungs, liver and bone may occur via haematogenous spread from the lymph node or from
the primary cancer. cSCC cells are represented by the pale cells in the boxes on the left of
the figure whereas the black areas represent metastatic deposits in distant organs on the

right side of the figure.

Specific characteristics have been known to increase the risk of SCC metastasis in affected
patients (Madan et al., 2010, Motley et al., 2003, Weinberg et al., 2007, Thompson et al.,
2016, Veness, 2006). The site of the primary SCC has a major effect on the risk of developing
metastasis. It has been reported that between 11 and 16% of SCC of the lip progress to
metastasise (Rowe et al., 1992, Frierson and Cooper, 1986), which has been more recently

confirmed in a systematic review and meta-analysis on risk factors for SCC metastasis in
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which both lip and ear had a risk ratio of 2.28 and 2.33 in developing metastasis,
respectively (Thompson et al., 2016). In addition to the site of the tumour, the size of the
cSCC also plays a critical role in potential to metastasise; this effect of size is seen both in
relation to diameter and depth of the c¢SCC. For example, cSCCs larger than 2cm
metastasise in 30% - 42% of cases (Alam and Ratner, 2001, Rowe et al., 1992), whereas
cSCCs exceeding 6mm in depth have been reported to metastasise in 16% of patients
(Brantsch et al., 2008) with another study reporting that all ¢<SCCs >6mm in depth
metastasised (Stein and Tahan, 1994). In the systematic review by Thompson et al (2016),
depth of tumour invasion (i.e. Breslow thickness) and invasion into subcutaneous fat were
found to have the highest associated risk of both recurrence and metastasis of cSCC.
Studies have found that patients with perineural invasion by the primary cSCC are more
likely to suffer from nodal metastasis than those that don’t have perineural invasion
(Cherpelis et al., 2002). One large study found that patients diagnosed with perineural
invasion were 20% more likely to develop regional metastasis and 11.7% more likely to
develop distant metastases (Goepfert et al., 1984). This positive association between
perineural invasion and metastases was also confirmed in the recent systematic

review/meta-analysis (Thompson et al., 2016).

The differentiation status of the primary ¢SCC is also a factor influencing development of
metastases (Motley et al., 2002). In the early part of the twentieth century, Broders
designed a staging system for SCC, using stages 1 — 4, to categorise how differentiated
tumours were (Broders, 1921). In Broders’ system, stages 1-3 consist of a ratio of
differentiated cells to undifferentiated cells of 3:1, 1:1 and 1:3 respectively, whereas stage
4 consists of no differentiated cells. It has been found that ¢cSCCs with stage 2 or higher
have a greatly increased risk of metastasis (Breuninger et al., 1990) with one study
reporting that 92% of lip SCCs that metastasised were grade 4 (Frierson and Cooper, 1986).
The rate of metastasis from poorly differentiated cSCCs is reported to be as high as triple
the rates of well differentiated tumours (Weinberg et al., 2007). Poor differentiation is also

associated with a higher disease-specific death rate (Thompson et al., 2016).

In addition to site, size, perineural invasion and differentiation, other factors which
influence the metastasis rate of ¢SCC include immunosuppression (e.g. in organ transplant

recipients as highlighted earlier) (Euvrard et al., 2003, Martinez et al., 2003, Ulrich et al.,
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2008) and differences in treatment (e.g. type of surgery, radiotherapy etc.)(Karagas et al.,

1996, Brantsch et al., 2008).

1.2.11.2 Metastasis in melanoma

While the incidence of melanoma is lower than that of ¢SCC, the rate of metastasis is higher
and has a poor prognosis associated with it (Balch, 1992, Manola et al., 2000). Metastases
in melanoma is dependent on a multitude of factors, one of which is depth of invasion,
which is recorded as Breslow thickness (Breslow, 1970) and Clark’s level (Thompson et al.,
2005). Breslow thickness is simply the depth of the melanoma in mm but is well known to
have a positive correlation with metastasis and indeed a worse prognosis (Breslow, 1979,
Cornish et al., 2009). Clark’s level is defined as the layer of skin that the tumour invades
into (Clark et al., 1969). Although similar to Breslow depth in terms of reporting the
thickness of the tumour, it takes into consideration the thickness of skin at different body
sites (some being thicker than others) as all skin has an epidermis, dermis and

subcutaneous tissue. A figure representing Clark’s level and Breslow depth can be seen in

Figure 1:5.
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Figure 1:5: A Diagram of Clark’s level and Breslow thickness
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A large study containing 3,001 patients with primary cutaneous melanoma reported that
466 (15.5%) progressed to metastatic melanoma (Meier et al., 2002). Of the 466 patients
with metastatic melanoma, 21.7% developed satellite/in-transit metastases, 50.2%
developed regional lymph node metastases, 28.1% developed distant metastases, with
51.5% of the satellite/in-transit metastases and 59% regional lymph node metastases
subsequently developing into distant metastases (Meier et al., 2002). In the same study,
57.3% of the overall patients who developed distant metastases died (Meier et al., 2002).
In a separate study of 1,521 patients with American Joint Committee on Cancer (AJCC)
stage IV melanoma, a median survival time of 7.5 months was reported, which equated to
an estimated 5 year survival rate of 6% (Barth et al., 1995). In that study, patients could be
split into 3 prognostic groups based on site of metastasis, namely (i) nodal, cutaneous or
gastrointestinal metastasis with a median survival of 12.5 months, (5 year survival rate of
14%), (ii) pulmonary metastasis with a median survival of 8.3 months (5 year survival rate
of 4%) or (iii) liver, brain or bone metastasis with a mean survival time of 4.4 months
(estimated 5 year survival rate of 3%) (Barth et al., 1995). In addition, one of the earlier
melanoma meta-analysis of 15,000 patients with local melanoma and 2,116 with nodal
metastasis highlighted ulceration of the primary tumour as an important prognostic marker,
also noting that there was a positive correlation between ulceration and thickness (Balch,
1992). Recently, the American Society for Cancer Immunology (ASCO) has reported that
melanoma involving nodal metastasis has a 5-year survival rate of 64% (depending on the
number of nodes affected) and that melanoma involving distant metastasis has a 5-year
survival rate of about 23% (ASCO). It is also known that the location of the melanoma plays
an important role in prognosis, for instance an early study found that melanoma on the
scalp had a worse prognosis than melanoma on the face or neck and that melanoma on the

hand had a poorer prognoses than melanoma on the arms and legs (Balch, 1992).

Clinical parameters are vital in giving accurate prognostic information but with the
advancement in technology / instruments and methodology, laboratory prognostic
markers, more commonly referred to as biomarkers, are becoming more and more
important in determining risk and prognosis (Manola et al., 2000). There are many studies
that have looked for melanoma specific protein biomarkers (Ugurel et al., 2009, Griewank,

2016, Gogas et al., 2009).
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There are two main types of biomarkers, these are diagnostic biomarkers and prognostic
markers. Presently, it is common practise to carry out immunohistochemical staining on
sections of tumours to first diagnose patients and to additionally aid in prognosis. Markers
in use today are premelanosome protein (PMEL), Melanogenesis Associated Transcription
Factor (MITF), S100 proteins family members (Weinstein et al., 2014), melanoma cell
adhesion molecule (MCAM), P116 and matrix metalloproteinase-2 (MMP2) which may also
offer some limited predictive information in relation to clinical outcome (Gould Rothberg
et al., 2009). This number of known biomarkers is not as high when looking at differences
between primary tumours which will metastasise and those which will not. Nonetheless, a
large systematic review and meta-analysis on tissue biomarkers for prognosis of melanoma
revealed a number of markers associated with development of metastasis in melanoma
(Gould Rothberg et al., 2009). These include Bcl-2 expression (Vlaykova et al., 2002), MCAM,
MMP and tissue plasminogen activator which were all significantly different in melanomas
which subsequently metastasised. Furthermore, the meta-analysis reported that although
chemokine receptors C-X-C chemokine receptor type 1 (CXCR1), C-X-C chemokine receptor
type 2 (CXCR2), C-X-C chemokine receptor type 3(CXCR3), C-X-C chemokine receptor type
4 (CXCR4), C-C chemokine receptor type 5 (CCR5), C-C chemokine receptor type 7 (CCR7)
and C-C chemokine receptor type 10 (CCR10) have been associated with metastasis in
melanoma, only CXCR4 is significantly associated with poorer prognosis (Scala et al., 2005,

Gould Rothberg et al., 2009).

There have been several studies which have looked at markers in serum which suggest that
cutaneous melanoma has metastasised. For example, increased expression of YKL-40
protein in patients with metastatic melanoma is associated with poorer prognosis (Schmidt
et al.,, 2006). Another marker which has been investigated as a potential indicator of
melanoma metastases is tyrosinase mRNA, but a meta-analysis has suggested that this
offers limited potential as a biomarker (Tsao et al., 2001). Similarly, serum lactate
dehydrogenase (LDH) and S100B levels are not sufficiently robust for use as biomarkers,
despite being associated with poor prognosis in AJCC stage IllI/IV melanoma patients
(Bougnoux and Solassol, 2013). A proteomic study utilising mass spectrometry was able to
discriminate between clinical stages of melanoma in >80% of cases and suggested that
proteomic profiling may become a valuable tool in identifying high risk melanomas (Mian

et al., 2005). Several studies have utilised mass spectrometry (MS) based proteomics to
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identify serum biomarkers for metastasis in melanoma. It has been reported that
vitronectin and demcidin are potent serum biomarkers of survival in metastatic melanoma
(Ortega-Martinez et al., 2016). Another MS proteomic study found that co-expression of
MDA-9 and GRP78 are also good serum biomarkers indicative of lymph node metastasis
(Guan et al, 2015). Furthermore, Regucalcin (RGN), Syntaxin-7 (STX7),
methylenetetrahydrofolate dehydrogenase 1-like (MTHFD1L) have also been associated
with different progression states of melanoma with high levels identified in recurring

tumours and high Breslow’s thickness (Bystrom et al., 2017).

There have been improvements in the systemic treatment of metastatic cutaneous
melanoma, however, survival rates of patients with metastatic melanoma still remain poor
(Garbe et al., 2011). In addition, there has been no major advance in the treatment of
metastatic cSCC over recent years, however, a recent phase I/1l trial using anti-PD1 therapy
suggests that this may offer some hope for metastatic cSCC (Migden et al., 2018). In most
cases of cutaneous melanoma and cSCC, the presence of metastasis generally results in
disease related mortality. Thus, there is a need to discover new biomarkers which could be
used for prognostic prediction of the future development of metastases from melanoma
and cSCC at the time of excision of the primary tumour. Advances in this area of research
could lead to better clinical management of patients, e.g. identifying those who require
long term follow-up and potentially permitting earlier treatment with systemic anti-cancer
therapies, as well as providing insight into key pathways which could be targets for
development of novel treatments. Due to its incredible sensitivity, one of the methods at
the forefront of biomarker discovery (and the focus of this thesis) is mass spectrometry

based proteomics.

1.3 Proteomics

Proteomics is a diverse field encompassing the analysis of proteins within biological
samples. It entails the process of identifying and quantifying proteins in a given sample and
has a variety of methodologies dedicated to it. One method with exceptional sensitivity
and accuracy at the forefront of proteomic research is mass spectrometry (MS) based

proteomics (Aebersold and Mann, 2003).
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Although many mass spectrometry systems differ in their setup, they largely consist of an
ion source, a mass analyser to determine the mass to charge ratio (m/z) of the ionised
analyte and a detector to establish the number of ions at each m/z value (Aebersold and

Mann, 2003).

1.3.1 lon source

Mass spectrometry measures ions in the gaseous phase, therefore the role of the ion
source is to generate the ions that can then be introduced into the mass spectrometer in
the gaseous phase. Different techniques can be used to ionise samples; two of the main
methods used in proteomics are desorption ionisation and spray ionisation, of which the
two most commonly employed methods are matrix assisted laser desorption ionisation
(MALDI) and electrospray ionisation (ESI), respectively (Cole, 2011). MALDI requires the
analyte being measured to be embedded into a low molecular weight matrix, which is
sensitive to UV. A UV laser is then used to excite the matrix, which absorbs energy and
passes it to nearby analytes, ionising them and liberating them from the matrix into the
gaseous phase. MALDI is generally good for simple peptide mixtures and can allow specific
ionisation for targeted and directed proteomics (Karas and Hillenkamp, 1988). Conversely,
ESI is performed on samples in solution by applying a high voltage to create an aerosol
spray. As the charged spray of droplets travel to the cone entrance of the mass
spectrometer, they evaporate until the maximum amount of charge each droplet can hold
is reached, this is known as their Rayleigh limit. At this point, the electrostatic repulsion of
positive charges in a “size-decreasing” droplet becomes stronger than the surface tension
of the water droplet itself, causing Coulomb fission whereby the droplet explodes into
many smaller droplets, with less ions in each. This process continues until one analyte ion
is present (Cole, 2011, Ho et al., 2003), (Figure 1.5). As ESI is carried out on samples in
solution, it is often coupled with a liquid chromatography system (LC), enabling

multidimensional fractionation prior to ionisation (Fenn et al., 1989).
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Figure 1:6 Diagram of electrospray ionisation (ESI).

Analytes in solution are forced through a capillary with a high voltage, creating a Taylor
cone where charged droplets containing analytes are released. Charged droplets
evaporate until their Rayleigh limit is reached and Coulombic fission takes place, causing a
release of smaller droplets, each with less analytes within. These smaller droplets keep
undergoing evaporation and Coulombic explosions until eventually charged ion analytes

are liberated, where they enter the mass spectrometer through the cone

1.3.2 Mass analyser

There are four basic types of mass analysers used in mass spectrometry based proteomics;
these are: - ion trap (including Orbitrap), quadrupole, time of flight (TOF) and Fourier
transform ion cyclotron resonance (FTICR) analysers. Variants of each of these exists, as
well as hybrids and systems which combine their usage in tandem (Aebersold and Mann,
2003). lon trap and FTICR utilize m/z resonance frequency to separate and analyse ions,
whereas quadrupoles use m/z stability and TOF analysers use flight time to separate ions

(Yates et al., 2009).

lon trap mass analysers vary in their design but essentially “trap” ions using their m/z
properties before using a detector to measure the number of ions present. They are
reasonably cheap, sensitive and durable and as a result are frequently seen in mass
spectrometry based proteomic studies. Their disadvantage however is their low mass
accuracy due to the finite number of ions that can be held before charge disturbs their

spacing and ultimately their mass measurement (Aebersold and Mann, 2003). FTICR
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analysers use similar principals to the ion trap in respect to trapping ions and holding them
before analysis using their m/z. FTICRs can actually be correctly referred to as a Penning
ion trap as it utilizes a high vacuum and strong magnetic fields to achieve a similar result.
FTICR analysers have good sensitivity, accuracy, resolution and dynamic range but are

expensive and require experience and training in their use (Aebersold and Mann, 2003).

Quadrupoles also utilise ion m/z to select their ions and analyse them. Quadrupoles consist
of four rods connected together electrically in which two opposing rods share a direct
current (DC) and the remaining two opposing rods share an alternating current (AC). A radio
frequency voltage originating from the AC rods is emitted along with an offset DC voltage
from the DC rods. These opposing voltages influence the path of passing ions in relation to
their m/z value. lons which have an unstable (critical) m/z value don’t acquire a stable
trajectory as they are repelled and attracted to each rod unevenly, causing them to either
hit an electrode or exit the quadruple structure. Those that have m/z values which oscillate
between the DC and radio frequency voltages evenly have a stable trajectory and make it
through the quadrupole to a connected detector (Miller and Denton, 1986) (Figure 1.6).
These radio frequency and DC voltages can be manipulated to allow only certain m/z values
to pass through the quadrupole at any one time. This means precursor ions can be
specifically selected and often fragmented before detection to obtain MS/MS spectra.
Quadrupoles are simple, easy and cheap to produce and as a result are often used in

proteomic mass spectrometry.
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Figure 1:7 Diagram of a quadrupole mass analyser.

Two opposing DC and AC electrode rods create a radio frequency that guides ions of a
certain mass to charge ratio through on a stable trajectory. Those with mass to charge
ratios in the unstable, critical range have an unstable trajectory and do not make it through

the quadrupole

TOF analysers determine the m/z value by measuring the time it takes for an ion to get
from one point to another through a vacuum. lons are accelerated through an electric field
at a known strength toward a detector. The time it takes for an ion to reach the detector
depends on the velocity of the ion, which is dependent on the weight of the ion (as heavier
ones will move slower than smaller ones) and the charge of the ion as it receives more or
less kinetic energy from the initial acceleration (Domon and Aebersold, 2006, Guilhaus et
al., 1997). The time it takes the ion to travel from the starting point to the detector can be

used to calculate the m/z value with exceptional resolution and accuracy.

1.3.3 Detector

The final part of the mass spectrometer is the detector. As ions hit or pass by the detector,
it measures the charge induced or the current produced, respectively. This charge or
current excites an electron in the detector, which is then recorded on a computer. As ions
are typically in very low abundance in mass spectrometry, the numbers of electrons excited
in the detector are similarly low as a result of this. For this reason, many detectors use an
electron multiplier where one excited electron can stimulate multiple other electrons
which can subsequently stimulate additional electrons, thus amplifying the signal which

can then be read on a computer and converted to a mass spectrum.
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1.34 Tandem mass spectrometry

Early proteomics methods involving mass spectrometry (MS) had one level of
measurement whereby analytes in a sample are measured at the state in which they were
introduced into the mass spectrometer (i.e. peptides), giving an MS spectra. In tandem
mass spectrometry (which the majority of mass spectrometers are nowadays), analytes are
measured in a first scan as afore mentioned, but subsequent to this, analyte ions are
fragmented (giving fragment ions) and also measured, giving MS/MS spectra. This enables
the user to determine what the constituents of a precursor ion (i.e. peptides) are, aiding in
protein identification (McLafferty, 1981). Fragmentation of ions can be performed in a
variety of ways, the most common of which in proteomic studies is through collision-
induced dissociation (CID). CID is achieved when an inert gas such as argon, helium or
nitrogen is accelerated, giving them kinetic energy, towards the target ion. When the inert
gas collides with the ion, some of the energy is transferred to the ion causing bonds to
break, resulting in smaller fragments of the initial ion (Mitchell Wells and McLuckey, 2005).

These fragment ions are then detected and produce MS/MS spectra.

1.35 Data acquisition

During the mass spectrometry process there are two main types of acquisition modes; data
dependant acquisition (DDA) and data independent acquisition (DIA). During DDA
experiments, precursor ions are measured in an initial scan, giving an MS spectra and then
subjected to fragmentation to acquire MS/MS spectra. Once an ion is analysed, it can be
dynamically excluded from future scans to ensure that lower abundant peptides are also
measured (Peng and Gygi, 2001). The issue with this type of acquisition is that it favours
those ions with the highest abundance, so low abundance ions can be missed. Up to 84%
of proteins in a complex protein mixture can remain unsampled for this reason (Egertson
et al., 2013). In addition to this, because the selectivity is random there can be up to 30%
variability between replicates of the same sample (Egertson et al., 2013). However, it has
been found that because of this randomness, replicates of the same sample have the ability

to identify additional (including lower abundance) ions (Liu et al., 2004).
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A more recent type of acquisition mode is DIA which, in brief, fragments all ions to obtain
MS/MS spectra for the whole sample. There are currently a few ways of doing this, one of
which is named MSE, created by the Waters corporation. MSE does this by performing a full
scan at low energy and then quickly switching to a high energy state and fragmenting all
ions (Doerr, 2015, Shliaha et al., 2013). As this method fragments everything, it produces a
vast array of MS/MS data with no clear indication of what the parent ions are to each
fragment ion. It is for this reason that MSE uses extra hardware, known as traveling wave
ion mobility separation, within the mass spectrometer to produce more information about
ions to correctly assign them to parent molecules. Traveling wave ion mobility separation
separates ions by their size and shape, meaning that those with the same m/z value can be
separated, thus giving more parameters to enable better identification when searching
huge MS/MS data against databases (Shliaha et al., 2013). Due to the complex data output
from DIA and specifically MSE, specialised pieces of software are needed to decipher
MS/MS spectra, one such program also created by the Water Corporation is Protein Lynx
Global Server (PLGS). PLGS works by gathering data on MS and MS/MS spectra and
identifying a single matched protein, after which all associated peptides and fragments are
removed from the search; the process is then repeated for the next peptide and

subsequent peptides (Shliaha et al., 2013).

1.3.6 Qualitative and quantitative proteomics

The type of data acquisition mode is largely dependent on the output desired, be it
qualitative or quantitative. Qualitative proteomics aims to identify the proteins present in
a sample with no quantitation. DDA experiments are often better in this scenario as when
they detect a peptide of a certain m/z, they exclude it from future selection to enable better
coverage of the sample, in an attempt to discover all peptides in a sample. The issue with
this type of acquisition is that quantification cannot be achieved as the number of peptides
identified is not proportional to the true amount of peptide in a sample. It is for this reason
that DDA experiments are optimal for qualitative experiments but lack the ability to

perform absolute quantitative experiments.
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DIA detects a peptide each time it is encountered and so is proportional to the amount
within the sample. This can be taken one step further to achieve absolute quantification by
spiking in a known amount of peptide into each sample (internal standard) as a reference
and calculating the amount of an unknown peptide against it using the Hi3 method (Silva
et al., 2006). The Hi3 method uses the three most intense tryptic peptide ions from an
internal standard to create a universal signal response factor which in turn is compared to
the three most intense tryptic peptides of each protein identified to gain quantification of
the identified proteins (Doneanu et al., 2012). Using DIA in this manor is a useful approach
for quantitative biomarker discovery. However, due to the assumption that the amount of
known peptide spiked into a sample and detection of the total amount of the known
peptide using DIA are accurate, which in some cases may not be entirely correct, validation
using a more specific form of quantitation is beneficial; this often comes in the form of

targeted proteomics.

1.3.6.1 Targeted and untargeted proteomics

Untargeted proteomics is the method of acquiring proteomic data without targeting
specific proteins. It is often carried out for biomarker discovery as it is not limited to looking
at specific proteins of interest but as a means to identify all proteins in a sample. Targeted
proteomics however is an approach that is used to measure specific proteins (in a sample)
which have usually been determined by previous biomarker discovery methods. The main
type of targeted proteomics is selective reaction monitoring (SRM)/multiple reaction
monitoring (MRM) (Lange et al., 2008). The basic principle of MRM is to select peptides
from a protein of interest and have an isotopically heavy labelled version of each of these
peptides synthesised. Then, using a known amount of heavy labelled peptide in a sample,
it is possible for one to calculate the true concentration of the native peptide (and thus the
native protein) in the sample. As MRM is a targeted approach it benefits from higher
sensitivity than non-targeted approaches, because the instrument is set to detect and

fragment only those ions of specific m/z’s dependant on the peptide being investigated.
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1.3.7 Data analysis

MS spectra obtained from mass spectrometry must be processed and analysed to establish
which m/z values belong to which peptides and therefore what proteins were present in
the original sample. In the early days of mass spectrometry this was usually done through
peptide mass fingerprinting, which is where the MS peak value is compared to theoretical
mass values that could be obtained from known proteins being cleaved by the specific
proteases (e.g. trypsin). In that early period of mass spectrometry, genomic databases were
much smaller than they are currently and, as such, just three or four peptide matches were
needed to correctly identify a protein. Nowadays however, databases are huge and ever
growing and therefore the criteria for correct protein identification has become more
stringent, meaning that more peptide matches and more coverage of the protein sequence
are needed in order to have confidence in identifying the correct protein (Baldwin, 2004).
By using CID MS/MS data, current search engines and algorithms can match real fragments
in MS/MS data to a database of hypothetical fragments which could be obtained from
protease cleavage from all known/hypothetical peptides. This approach enables an extra
dimension of sequence coverage and specificity to protein matches, thus increasing the
chances of correct protein matching and increasing confidence in the results generated by
this process (Baldwin, 2004). However, the more attempts searches make at matching a
fragment to a database sequence, the higher the probability of getting a false “match” by
random chance. To counteract this, most search engines use a factor known as false
discovery rate (FDR) whereby the data is also searched against a dummy database of either
random or reversed genomic sequences; those fragments that match readily with the
decoy database can be excluded at a pre-set threshold, increasing the confidence in

peptide and protein matches that are genuine (Choi and Nesvizhskii, 2008).

1.3.8 Fractionation

Proteomic mass spectrometry is frequently used for complex protein/peptide mixtures,
therefore samples are fractionated to produce several, less complex sample fractions prior
to introduction into the mass spectrometer. Most fractionation techniques utilise

characteristics specific to peptides such as their size, their isoelectric point, hydrophobicity
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and polarity to separate protein/peptide mixtures. Two of the most frequently employed

fractionation methods are gel fractionation and liquid chromatography (LC).

Polyacrylamide gel electrophoresis (PAGE) is a common technique used throughout
biological sciences whereby samples are separated as a result of different speeds of
movement through a polyacrylamide gel. Gel electrophoresis can be done in one dimension
and two dimensions. In 1D gels, proteins are separated according to their size by being
pulled through the polyacrylamide gel by electric current, with smaller proteins travelling
further in the gel than larger proteins. In 2D gel electrophoresis, proteins are first separated
by their isoelectric points by increasing pH through a polyacrylamide gel and the proteins
are then separated according to their size using gel electrophoresis in the same way that
they are separated in 1D gels (Hames, 1998). Once the proteins have been separated,
specific bands and areas of interest can be dissected out and subjected to proteomic

analysis, reducing the complexity of the input sample for proteomics.

Another method of fractionating complex samples is through liquid chromatography. There
are various different types of liquid chromatography methods that can be used to separate
proteins by their characteristics, these include anion exchange, cation exchange,
hydrophobicity and polarity. Liquid chromatography consists of two main components, a
stationary phase, most commonly an immobilised particle on the lining of a column, and a
mobile phase, the liquid containing analytes which passes by the stationary phase. Anion
exchange and cation exchange utilise charge of the analyte whereby negatively charged
and positively charged analytes, respectively, are adsorbed to stationary phase (Niessen,
2006). The most common type of LC used in mass spectrometry is reverse phase
chromatography as it couples well with ESI and is easy to achieve. Reverse phase
chromatography utilises a hydrophobic stationary phase, often a silica molecule with a
carbon chain (C18) attached. As hydrophobic analytes in the mobile phase pass by the
stationary phase, they are adsorbed to the column and are then later eluted by a gradual
increase in an organic solvent, causing peptides to elute off gradually, essentially
fractionating the sample. Reverse phase chromatography can be repeated in tandem to
achieve even better fractionation whereby the first column is at high pH and the second is
at low pH (Yang et al., 2012). In this process, the analytes bind to the first high pH column

and are eluted off in “slugs” through a stepwise increment in organic buffer. Each
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incremental aliquot released from the high pH column is then further separated on a low
pH column using a gradual increase around the concentration used to elute from the first
column. For example, the first aliquot from the high pH column will be eluted off at 11%
acetonitrile, the analytes released by this process are them captured on a second low pH
column where a gradient of 9% to 13% acetonitrile is used, and thus separating that “slug”

more.

1.3.9 Proteomics in cancer

Proteomics encompasses a wide variety of techniques, ranging from simple western blots
to complex targeted mass spectrometry based proteomics. Before the usage of mass
spectrometers in proteomics in the late 20" century, laboratories wishing to identify
protein biomarkers would use a more directed single hypothesis approach which
investigated one or a few proteins of interest in the relevant tissue/sample. Nowadays,
many proteomics studies, especially for biomarker discovery, work on more general
hypotheses (e.g. many proteins may be different) and their results are frequently
hypothesis generating. Typically, mass spectrometry based proteomics identifies a number
of biomarkers, which can then be validated using more targeted methods, such as MRM

mass spectrometry.

Mass spectrometry based proteomics has led the way in protein biomarker discovery in
recent decades (Srinivas et al., 2002). Many biomarker discoveries can be attributed to
mass spectrometry based proteomics and techniques are constantly being adapted and
improved (Sallam, 2015). The past few decades has seen an increase in serum biomarker
discovery (Jacobs et al., 2005) in the hope of identifying markers that can be tested easily
in serum and provide early diagnosis of disease. Much of the tissue-based proteomics
focuses on fresh tissue because the fresher the tissue, generally the more intact the
proteins are and therefore the better the results are. Nonetheless, advances in
methodology has led to several proteomics studies investigating preserved tissue, including
tissue preserved with formalin fixation (Appendix 1). It is recognised that samples that have
been preserved can be problematic for downstream mass spectrometry analysis, due to
protein destruction, protein modifications and/or the presence of certain “contaminating”

reagents leading to reduced protein yield and accuracy.

34



Chapter 1

1.4 Formalin fixed paraffin embedded proteomic studies

Many cancers identified in clinical practice are excised for diagnostic and/or therapeutic
purposes. In most cases, the excised tumour is formalin fixed and then paraffin embedded
(FFPE) so that it becomes ready for tissue sections to be cut with a microtome and
histologically stained to confirm the diagnosis and assess any known characteristics that
aid accurate prognosis. As this method of tissue processing is generally standard
throughout the NHS and globally, there is a huge bank of FFPE samples available for use in
clinical research studies. Coupled with detailed clinical notes and clinical outcome, these

FFPE samples represent a useful biorepository of samples (Wisniewski, 2013).

Unfortunately, formalin fixation causes multiple cross-linking between proteins, limiting
their analysis using standard proteomic protocols. Many research studies have attempted
to perform proteomics on FFPE samples by using various methods to extract and prepare
the proteins/peptides for MS (appendix 1). The total number of publications relating to
“FFPE” and “Proteomics” has increased 54 fold since the first 4 publications in 2005 (Figure
1.7). Appendix 1 is a table of a large proportion of published proteomic studies aimed at

testing different methods for the use of FFPE samples in proteomics.
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Figure 1:8: PubMed publications using key words “FFPE” and “Proteomics”. Search
carried out in early 2018.

FFPE, formalin fixed paraffin embedded
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The highest number of proteins identified in a novel FFPE proteomic methodology study in
appendix 1, was 9,437 (Bateman et al., 2011). This method, like many others, utilised a FFPE
protein extraction kit, specifically “Liquid Tissue”. Many other studies have used this kit,
albeit with slight modifications, but have achieved lower protein IDs. For instance, the
highest number of protein IDs achieved by Naidoo et al (2012) was 1,504, Takadate et al
(2013) 1,229, Byrum et al (2011) 888, Kawamura et al (2010) 449 and several other studies
achieved less than this. The second and third highest protein yield were both from
Wisniewski et al (2013, 2011) attaining 8,481 and 5985 IDs respectively, utilising their filter
aided separation (FASP)-strong anion exchange (SAX) protocol. Wisniewski et al, amongst
many others, utilised heat induced antigen retrieval, similar to the method used in
immunohistochemistry to reveal antigen binding sites (Yamashita and Katsumata, 2017).
Using heat in the presence of water and a reducing agent, for instant dithiothreitol (DTT),
facilitates the hydrolysis of cross-linked bonds, thus freeing covalently bound proteins and
peptides. Selected methods also attempt to utilise pressure to achieve antigen retrieval,
however studies using this approach are less common and are generally less successful. An
issue which has been focused on in numerous methods within studies is solubility (or lack
of solubiliy, which varies between the types of tissue used in different studies) of proteins
because if the sample is insoluble, the processes of reducing, alkylating and especially
digestion, becomes inefficient. SDS, glycerol, polyetheleneglycol and a few other
substances have been used with a degree of success. However, the use of these reagents
is unfavourable as subsequent steps are required to ensure the complete removal of them
because they often contaminate LC systems and saturate signals leading to poor MS spectra.
Several studies have utilised RapiGest (Waters, Massachusetts), a surfactant that increases
solubility of proteins and peptides as well as catalysing digestion, while the resultant

solution remains suitable for analysis by LC-MS (Yu et al., 2003).

Although the studies in appendix 1 are ranked according to protein yield, it cannot be
accredited solely to the methodology used, the type of tissue used as well as
instrumentation play a pivotal role in the number of protein IDs. Of the different types of
tissue employed, colon, liver, renal and brain were the most widely used. Protein yield
seems to be indiscriminate of tissue types used as there is no clear tissue achieving more
protein yields. However, because it is a fairly new technique, the number of studies to asses

this is limited and as such no firm conclusions can be made. In addition to tissue type, it
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seems that the LC-MS system used is fairly independent of protein yield also, but this could

be due to the majority of studies utilising very similar, if not identical system set-ups.

Of the studies listed in Appendix 1, five papers used skin-based tissues, three on ¢SCC (Azimi
et al., 2016, Foll et al., 2017, Azimi et al., 2019), and two on melanoma (Byrum et al., 2011,
Byrum et al., 2013). All three papers investigating cSCC used RapiGest in their protocol as
well as heat-induced antigen retrieval. Furthermore, both melanoma studies also utilised
heat-induced antigen retrieval but with different buffers and reagents. 3 out of 5 of these
experiments used RP-HPLC-Orbitrap setups. Due to the sensitivity and resolution of
orbitraps, they are much better at achieving higher numbers of protein identifications.
However, they are not well suited to perform true absolute quantification and as such often

rely on targeted quantification methods, making biomarkers discovery less possible.

1.5 Bioinformatics

The vast quantity of data that proteomic studies generate requires a number of different
analysis techniques to utilise all data available. Analysing biological data with the use of
computational power, or informatics, is widely referred to as bioinformatics and can entail

a host of different methods.

Bioinformatics encompasses a number of different analysis techniques, including classical
statistics, pathway analysis, machine learning and modelling and topological data analysis.
Classical statistics generally comprises of parametric and non-parametric comparative tests
such as T test or Mann Whitney-U test respectively. These tests are used to calculate
whether there is a difference between two groups (or multiple groups in the case of ANOVA
and Kruskal Wallis) by determining whether a null hypothesis is true or false through
calculation of a P-value and whether the P-value is below a pre-defined threshold (usually

P<0.05) (Wasserstein and Lazar, 2016).

Pathway analysis is a generic term for bioinformatics tools that aim to establish which
pathways are likely to be involved in a biological process based on how many of the
identified proteins or expressed genes involved in that pathway are increased or decreased
in the biological samples being investigated. It is inclusive of, but not limited to, gene

ontology analysis, protein-protein interactions and KEGG pathway analysis (Khatri et al.,
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2012). Gene ontology analysis uses inputted protein or gene IDs to establish which areas
of biological processes, molecular functions and components of a user defined background
are over or under-represented (Khatri and Draghici, 2005). The differences identified are
then given scores dependant on the measuring metric used (often a Z score), which can
then be interpreted to identify important groups of proteins in a given set of gene/protein
IDs. KEGG is an acronym for “Kyoto Encyclopaedia of Genes and Genomes” and includes
three features; the genes database, the pathway database and the ligand database. The
genes and pathway database can be used collectively by the input of several genes of
interest to aid in predicting pathway enrichment (defined in their pathway database)

(Kanehisa and Goto, 2000).

III

The term “model” can mean different things dependant on the discipline and context it is
used. In terms of biological systems, it is generally used to refer to an organism that holds
potential to investigate a disease or organism of interest with the intent to learn about the
disease or another organism from that organism (Fields and Johnston, 2005). A
mathematical model is any system utilising mathematical theories and language to
calculate an unknown output. Modelling in computational biology combines these two
definitions so that biological data is used to create a mathematical model using machine
learning techniques. This is mainly done by one of two methods, either through supervised
or non-supervised learning. Supervised learning is the creating of models using biological
data with known outcome. Using the known outcome in supervised learning strategies
enables algorithms to assess what features of the biological data can be used to predict the
outcome on future data, where the outcome is unknown. This is known as predictive
modelling and has many computational methods designed for/attributed to it, including
generalised linear modelling (GLM), support vector modelling (SVM), decision trees (a full
list of machine learning algorithms used in this thesis can be seen in Appendix 4). Each of
these modelling techniques has its own benefits. A common way of assessing and
visualising the output of data from these models is by using receiver operating
characteristics (ROC) curve and the area under the curve (AUC). ROC curves investigate the
true positive and true negative rates of a given model and the AUC can be used as a metric
to compare models (Larranaga et al., 2006). Non-supervised learning is the creating of
models using only biological data, without the input of outcome. This method requires the

chosen algorithm to infer a function that exploits hidden correlations in the data. There are
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several types of models which utilise non-supervised learning, including neural networks
and topological data analysis. Topological data analysis is the process of analysing data
using topology, which is the mathematical study of continuous space and shape.
Application of topological data analysis to biological data allows investigators to look at the
“space and shape of the biological data” to try to identify information in the data that

classical statistics may overlook, such as the presence of different subgroups.

Proteomics offers great potential to examine for biomarkers which indicate whether
metastases will develop from a primary cancer which has been recently excised. ¢SCC and
melanoma are two important types of skin cancer which can metastasise and for which

there are limited biomarkers available to assist with determining prognosis.

1.6 Hypothesis

The hypothesis for this project on ¢SCC and melanoma is that there is a significant
difference in the protein profile between primary skin tumours that, despite excision of the
primary cancer, have gone on to metastasise and primary skin tumours which have not

metastasised by 5 years following excision of the neoplasm.

1.7 Aims

The aims of this PhD project are:

e To perform proteomic analysis on FFPE cSCC samples, and separately on FFPE
melanoma samples, in order to examine for differences between primary tumours
which metastasised and primary tumours which had not metastasised after excision

of the primary tumour.

e To use the proteomics data to identifying key pathways and processes involved in

metastasis of skin cancer.

e To validated discovery proteomics using multiple reaction monitoring on selected

proteins.
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e To use predictive modelling and machine learning to try to develop a model capable
of predicting metastasis using protein biomarkers in cases where successful

validation with MRM has been conducted.

e To develop a mathematical model which uses clinical and/or histological data from

¢SCC to predict metastasis.
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Chapter 2: MATERIALS AND METHODS

2.1 Tissue samples

Tissue blocks were identified and obtained from the Histopathology Department,
University Hospitals Southampton NHS Foundation Trust. Primary metastatic (P-M)
tumours were selected on the criteria that they had metastasised, confirmed by histological
evidence of metastasis in the Histopathology Department. Primary non-metastatic (P-NM)
tumours were selected based on the fact that the patient had been seen in the
Dermatology Centre, University Hospitals Southampton NHS Foundation Trust at least 5
years after their tumour excision and there was no documented evidence of metastases at
that stage. The research was approved by the South Central Hampshire B National Research

Ethics Service Committee (reference number 07/H0504/187).

2.2 Haematoxylin and Eosin staining (H&E)

dum tissue sections were cut wusing a microtome and mounted on 3-
aminopropyltriethoxysilane (APES) coated slides. Slides were deparaffinised in two washes
of xylene, each for 5 minutes and then rehydrated in 100% ethanol for 10 minutes and 70%
ethanol for 5 minutes followed by 3 minutes in distilled water. Slides were then stained
with Mayer’s Haematoxylin (MHS32 - Sigma) for one minute and then washed in running
tap water for five minutes. Next, sections were stained in eosin (E4009 - Sigma) for one
minute and again, washed in running tap water before being dehydrated in 70% ethanol
for five minutes and 100% ethanol for 10 minutes. Sections were cleared through two
washes of xylene (X/0250/17 - Fischer), each for five minutes, before cover slips were

mounted, using DPX (06522 - Sigma).

2.3 Immunohistochemistry (IHC)

4um tissue sections were cut with a microtome, deparaffinised and rehydrated, then
endogenous peroxidase was inhibited by incubating slides with 0.5% hydrogen peroxide
(H1009 - Sigma) in methanol for 10 minutes. Slides were washed with TBS three times, each

for two minutes. Citrate buffer heat antigen retrieval was carried out by boiling slides in a
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microwave at medium-high power for 25 minutes in 10mM citric acid monohydrate
(C/6200/53 - Fisher), pH 6. Sections were then washed under running tap water for three
minutes before being washed with TBS three times, each for two minutes. Avidin and biotin
(SP-2001 - Vector) were applied separately to the slides for 20 minutes each, with three
TBS washes, each two minutes, after the avidin and again after the biotin. Slides were then
immersed in culture medium containing 20% FBS and 1% BSA in Dulbecco’s Modified Eagle
Medium (DMEM) for 20 minutes. Slides were incubated with primary antibody in culture
medium overnight at 4°C. Langerhan’s cells were immunostained using an anti-CD1a
monoclonal antibody (M3571, clone 010 - Dako) at a dilution of 1:50. B cells were
immunostained using an anti-CD20 monoclonal antibody (M0755, clone L26 - Dako) at a
dilution of 1:100. After overnight incubation, slides were washed with TBS for five minutes
each, then anti-mouse, biotin conjugated, secondary antibody (315-066-045-JIR) used at a
dilution of 1:400 in TBS was added to the slides and left to incubate for one hour at room
temperature. Slides were then washed three times in TBS, each for five minutes, before
applying 3,3’-Diaminobenzidine (DAB) chromogen (K3468 - Dako) for five minutes. Slides
were immediately washed with TBS and then rinsed under running cold tap water for three
minutes. Slides were then counterstained with Mayer’s haematoxylin (MHS32 - Sigma) for
1.5 minutes. Once counterstained, slides were washed in cold running tap water for four
minutes before being dehydrated for five minutes in 70% ethanol, 10 minutes in 100%
ethanol, followed by two subsequent washes in xylene, each for five minutes. DPX was then

used to mount coverslips on slides.

Whole slides were imaged using an Olympus DotSlide at 20x magnification. Representative
high power fields of view (at 20x) were then captured and used for analysis. Five fields of
view were selected for CD1a stained sections and 10 fields of view for CD20 stained sections;
this higher number of fields of view were taken for CD20 because staining was often
concentrated in certain areas of the tissue, and therefore 10 fields of view enabled a more

representative analysis.
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24 Image analysis

Image analysis was conducted using either Image J (Jensen, 2013) or TMarker (Schuffler et
al., 2013). Image J was used to count and calculate the percentage of immunopositive cells
in the tissue on the immunohistochemistry (IHC) stained slides. This was achieved by
separating the red, green, blue filters and altering the intensity to show only blue
(haematoxylin) and brown (DAB) staining. Images were then converted to pixels and
automatically counted to obtain the number of cells in each group. TMarker is a piece of
software designed for the counting of IHC staining and is somewhat similar to Image J, but
TMarker automates a lot of the process, allowing batch analysis of images. Within the fields
of view, all immunopositive and relevant immunonegative cells were counted, in order to

obtain the percentage of cells which were immunopositive.

2.5 Tissue microdissection

FFPE tissue samples were cut with a microtome, mounted, deparaffinised and rehydrated.
10ul of tissue lysis buffer was added to the slides and then the tumour and immune
infiltrate were microdisected away from the surrounding skin tissue using a sterile
hypodermic needle, and then placed into an microcentrifuge tube. The entire tumour and
adjacent immune infiltrate were removed together into the microcentrifuge tube because
it was considered that both these components were likely to be important in determining

metastatic spread (Figure 2.1).
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Pre-microdissection Outlined Post-microdissection

Figure 2:1 Example of microdissection of cutaneous Squamous Cell Carcinoma (cSCC) for
proteomic analysis.

Left images are tissue sections of cSCC samples before microdissection. Middle images
are after the tumour and relevant peritumoral immune infiltrate has been microdissected
from the surrounding skin using a sterile hypodermic needle. Right images are after the
microdissected tumour and relevant peritumoral immune infiltrate has been removed

from the glass slide into an microcentrifuge tube.

2.6 Protein extraction from Formalin Fixed Paraffin Embedded (FFPE)

samples

A range of approaches were evaluated whilst optimising the method for protein extraction
but the method used for the proteomic analysis of cSCCs in this project was adapted from
the technique described by Nirmalan et al (2011). Three 10um sections of each tissue
sample were cut with a microtome, deparaffinised and rehydrated before being counter
stained in Mayer’s haematoxylin. Slides were subsequently washed under running water
for 3 minutes and then microdissected into microcentrifuge tubes containing 100ul lysis
buffer, consisting of 0.2% RapiGest SF (186001861 - Waters), 50mM ammonium
bicarbonate (09830 - Sigma) and 5mM DTT (D9779 — Sigma). Samples were then kept on
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ice whilst being transferred from Dermatopharmacology to the Centre for Proteomic
Research where the remainder of the protein extraction was performed. Samples were
boiled in a heatblock for 30 minutes at 105°C; during boiling, the microcentrifuge tubes
were weighted shut to avoid evaporation and periodically tapped to keep the liquid at the
bottom of the tubes. The samples in the microcentrifuge tubes were subsequently cooled
onice for five minutes, briefly vortexed and then put into a heatblock at 80°C for two hours.
After heating, samples were cooled on ice and reduced through the addition of 5mM
dithioerythritol (DTE) (D8255 - Sigma) in 100ul molecular grade water for 30 minutes at
60°C. Samples were then alkylated through the addition of 15mM iodacetamide (16125 -
Sigma) in 200l molecular grade water for 30 minutes at room temperature in the dark.
Samples were subsequently digested by addition of 1ug trypsin (V5111 - Promega) (which
cleaves at Lysine or Arginine) in 2ul molecular grade water and left at 37°C overnight to
facilitate digestion. After digestion, 0.5% triflouracetic acid (TFA) (91700 - Sigma) was
added to the microcentrifuge tubes for 30 minutes at 37°C to enable the hydrolysis of the
RapiGest SF surfactant. Samples were then centrifuged at 15,000xg for 15 minutes to pellet
insoluble material and precipitate. Supernatant containing the tryptic peptides were
transferred to a new microcentrifuge tube and then lyophilised in vacuum using an
Eppendorf Concentrator-5301 before being reconstituted in 106ul of 200mM ammonium

formate.

2.7 Direct detect spectrometry for measurement of peptide

concentration

Peptide concentration was measured using a direct detect spectrometer (Merck) according
to the manufacturer’s recommendations. Briefly, 2ul of control (200mM ammonium
formate) was spotted onto the control segment of the direct detect membrane card. Three
x 2ul of sample were then spotted onto the three sample segments on the direct detect
membrane. A laser emitting infrared light is then pointed at each sample/control position
and absorbance against wavenumber (cm) is measured. This is used by the software to

calculate the number of amine bonds and the total protein/peptide concentration.
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2.8 C18 peptide clean up

During the protein extraction step, samples are often exposed to various salts and other
reagents to aid in solubilising and digesting protein. Using a reverse phase separation by
running the sample through a C18 column, it is possible to remove a lot of this
contaminating matter, which otherwise could interfere with downstream mass
spectrometry analysis. This process is standard in most proteomic laboratories and has
very little risk associated with it. The only potential risk is that some peptides don’t adhere
to the C18 column and as such are lost as they flow straight through. However, if this were
to happen, it would not likely change the results as LC systems coupled to mass
spectrometers use reverse phase to separate samples and therefore such peptides would
be lost anyway. Samples were desalted prior to MS analysis using an Empore™ C18 plate
(Sigma, 66875-U). Before C18 clean up, samples were acidified, either by lyophilising and
reconstituting in C18 wash buffer, consisting of 0.5% acetic acid in water, or by adding 0.2l
100% TFA. The C18 plate was equilibrated with 100ul methanol and centrifuged at 250xg
until the methanol had passed through the filter. A further 50ul methanol was then added
to wells and allowed to drip through the filter, after which the sample solutions were added
to the wells and centrifuged at 250xg for 10 minutes in order for the samples to bind to the
membrane in their respective wells. The wells were then washed with 200ul wash buffer
and centrifuged at 250xg and the filtrate discarded. This wash and centrifugation step was
repeated, and the collection plate emptied again. After the 2™ wash, the collection plate
was removed and a new sterile collection plate was used for collection of the “cleaned up”
peptide samples. 150l elution buffer (consisting of 80% acetonitrile, 0.5% acetic acid in
water) was added to the wells and centrifuged for 10 minutes until all the solution had
passed through the membrane and into the collection plate. This solution in the collection
plates contained the cleaned-up peptides, which were now ready for introduction into the

LC/MS system.
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2.9 Mass spectrometry

2.9.1 Discovery proteomics with LC/MS®
29.1.1 1 dimensional liquid chromatography (1D)

Prior to introduction to the LC system, 3.75ug of sample was lyophilised and reconstituted
in 6l of the buffer A (0.1% formic acid in water), specific to that method. 1D reverse phase
liquid chromatography was performed using a nanoAcquity UPLC system (Waters) whereby
peptides were injected and trapped onto a Symmetry C18 180um x 20mm trap column
(Waters, 186006527) and washed for 5 minutes in buffer A. Peptides were separated on a
75um 1.D x 250mm, 1.7um particle size C18 analytical column (Waters, 186007474) using
flow rate of 300nl/min and a linear gradient of 1 to 50% organic buffer B (with buffer A),
(buffer A = 0.1% formic acid in water, buffer B = 0.1% formic acid in acetonitrile) over 150
minutes with a wash at 60% buffer B (with buffer A) at the end. The separation was
performed on the LC system, coupled to the mass spectrometer (in a set-up known as
“online separation”) and sprayed directly into the nanospray source of a Waters G2-S
Synapt HDMS mass spectrometer operating in MS® mode with ion mobility enabled
(HDMSE). Alternating low (5v) and high (20v-40v) collision energy scans were enabled in ion
mobility mode and data was acquired between 50 to 2000 m/z. Glu-fibrinopeptide, (m/z =
785.8426) was used as an internal calibration standard known as “lock-mass”. Three blank
runs were performed between each sample to ensure no carry over between samples
occurred. Samples were randomly batched into groups of 12 and calibrations were
performed at the beginning of each batch. At the start, middle and end of each batch an
enolase standard was used to assess the performance of the machine in terms of resolution,
peak width and sensitivity. Before starting each batch, the system was operated using 50%

buffer A, 50% buffer B for several hours, in addition to 3 blanks, to ensure a clean column.
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2.9.1.2 2 dimensional liquid chromatography (2D)

Online 2D reverse phase liquid chromatography was also performed using a nanoAcquity
UPLC system (Waters), injected into a 5ul loop but then first adsorbed to a high pH column
(XBridge, BEH130 C18 5um 300x50 nano — 186003682). The first column was then eluted
into 6 fractions, using 6 different compositions (11.1%, 14.5%, 17.4%, 20.8%, 45% and 65%)
of buffer B. After each fraction, the eluted sample was trapped onto a low pH column,
where it was subsequently eluted via a buffer B gradient directly into the nano spray source
of the mass spectrometer (as stated in the 1D LC/MS® method). The high pH pump was set
at a constant flow rate of 1ul/min and had a buffer A composition of 20mM ammonium

formate in water.

2.9.2 Mass spectrometry quantification

Throughout the discovery phase, the method of absolute quantification was used during
LC/MS whereby 100fmol of digested enolase standard (Waters) was spiked into samples
prior to LC/MS. As MS® fragments all ions, using the Hi3 approach whereby the top three
tryptic peptides of an internal standard (enolase) are correlated to the three most
abundant tryptic peptides of each protein ID, absolute quantification can be achieved (Silva

et al., 2006).

2.9.3 Targeted mass spectrometry

To confirm the results that were found in the discovery phase of this project, the same
samples were subjected to targeted mass spectrometry in the form of multiple reaction
monitoring (MRM). Furthermore, validation on previously untested samples was also
carried out using MRM analysis. MRM utilises the targeted quantification strategy to
accurately measure the amounts of specific peptides in a sample. Using the
chromatography and mass spectra from the SCC discovery proteomics, a spectral library

was created in Skyline.
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29.3.1 Creation of spectral library

Discovery proteomic chromatograms and accompanying spectra were imported into
skyline to create a spectral library. Mass spectra were searched against a protein/peptide
database (in this case the human proteome) to score spectra to peptides. The result was a
spectral library that consisted of tens of thousands of spectra which are associated with
peptides. Spectral libraries were used to identify unique peptides for each protein of

interest.

2.9.3.2 Multiple reaction monitoring (MRM)

The unique peptides identified from spectral libraries were synthesised to incorporate a >6
Dalton shift by isotopic labelling of one of the amino acids (33 Cs*°N4 or 3Cs*°N2) (Cambridge

Research Biochemicals).

A two-fold dilution series of each heavy peptide from 400fmol down to 0.78fmol was
created in buffer A to form a calibration curve. 1ug of peptides extracted from SCC samples
was spiked into each dilution to serve as a background matrix. Dilution series were
performed using the 1D LC/MS method previously mentioned, however, instead of MS¢, a
targeted acquisition method was applied. Transition ions (that is ions that are created
during the fragmentation process of precursor ions in the mass spectrometer) were
selected from the spectral library created from the discovery proteomics. A targeted
method was created for each peptide, using the transition ions identified in Skyline. In
doing this, the mass spectrometer focusses on the light (native) and heavy (synthesised)
peptides in a run. Performing a dilution series gave a calibration curve which could later be
used to determine the amount of heavy and subsequently light (native) peptides in a

sample.

After the calibration curves had been created, the samples used in the discovery phase
were examined using the MRM method containing 100fmol of each heavy peptide. Results
were imported into Skyline for analysis. Using the slope of the calibration curves, skyline
calculates the actual amount of heavy peptide present in each sample as well as the ratio
between heavy and light peptides. The amount of light peptide is then calculated by

dividing the calculated heavy amount by the ratio of light to heavy. In addition to the
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discovery set, MRM was also carried out on a validation set of samples which were

previously untested.

294 Data processing

Five minutes of extracted ion chromatogram was inputted into threshold inspector (Waters)
to determine correct high and low collisional energy thresholds to filter out as much noise
as possible and allow the highest number of peptide identifications. Once established for
each batch, thresholds were set and samples were processed using Waters Protein Lynx
Global Server (PLGS) ver 3.0.3. The 6 fractions that 2D LC produced were all processed
individually and then subsequently merged in PLGS. Processed files were then searched
against the human UniProt — SwissProt protein database (November 2016). During
searching, using PLGS, a workflow was set to allow only those peptides which acquired 3 or
more ions, proteins identified from 1 or more peptides and proteins that had 7 matched
products for identification. PLGS Primary digest reagent was set to trypsin and 1 missed
cleavages were allowed. Peptides can often become modified during the extraction process
through oxidation and deamidation. It is therefore necessary to add these modification to
a variable modifications list so that if they are indeed modified, they still get identified.
Variable modifier reagents were deamidation of asparagine and glutamine along with
oxidation of methionine. It has also been found that methylol groups (hydroxymethylation)
of cysteine is often present in FFPE tissue (Metz et al., 2004) and therefore was also
included as a variable modification. Fixed modifier reagents were carbamidomethylation

of cysteine residues.

2.10 Data pre-processing and Statistical analysis

A matrix consisting of sample ID in rows and protein identifications, with abundancy values,
in columns was created. This matrix was then imported into Inferno, an R package created

for analysis of proteomic data.
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2.10.1 Missing values

Many ‘omics studies results contain missing values due to various reasons. There have been
several methods developed to attempt to counter this, some of which rely on creating
random numbers within standard deviations and some more elaborate that attempt to
encompass all available data to create and impute numbers. However, due to the
complexity of imputing data and allowing consideration for why data was originally missing
(too low to detect, not present, or by random chance wasn’t sampled), it has been
suggested that ultimately, no imputation results in higher statistical power and confidence
(Bantscheff et al., 2012, Webb-Robertson et al., 2015). Nonetheless it is impractical to use
protein IDs which only have one value and therefore a threshold is still required. It has been
reported that up to 50% of data is missing in 2D gel electrophoresis proteomics and that
this has no effect on statistical analysis (except on correlational studies) (Jung et al., 2005).
Furthermore, in an FFPE proteomic study looking at cSCC, the authors used only protein
data which appeared in 50% or more of samples (Foll et al., 2017). The current study
therefore allowed up to 49% missing values per protein ID, any protein which appeared in
less than 50% of samples was not included in statistical analysis, thus ensuring results in

which one can have high confidence in the analysed data.

2.10.2 Normalisation

Although the technique of absolute quantification allows direct comparison between
samples, normalisation of data is first required to ensure an equal comparison. In this study,
a total protein concentration normalisation strategy was carried out. This was performed
by calculating the median of the values within a sample and dividing each value by this
median. Median rather than mean was chosen because proteomics data often has a ‘floor
effect’ whereby values are only given above a certain abundance (dependant on how
sensitive the machine is), therefore creating a non-normal distribution (Figure 2.2).
Histograms were created for all samples to assess the Gaussian distribution of normalised

data using Inferno, manually setting the bins to 25.
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2.10.3 Histograms of p-values

The non-parametric Mann Whitney U test for significance was used to test differences
between the primary metastatic (P-M) and primary non-metastatic (P-NM) groups.
Statistical advice (by Research, Design and Methodology, University of Southampton)
recommended plotting all p-values obtained in a histogram to assess the confidence and

false positive rate. This was performed using Prism software.

High l

Frequency

Low .
Abundance High

Figure 2:1: ‘Floor effect’ often produced by proteomic data.
Much of proteomic data suffers from the ‘floor effect’” whereby the lower values are at

higher abundance due to instrumentation measurement limitations

2.11 Bioinformatics

As proteomic results yield a lot of data, many different bioinformatics approaches are
required to fully interrogate the data. Most of the bioinformatics analysis was carried out

using R unless otherwise stated.

2.11.1 Time to metastasis plots

Time to metastasis plots were created using clinical data where time zero is the date of
excision and time is the number of days until metastasis was identified (up to a five year

period) where a binary operator was used, i.e did metastasis occur, yes/no. Where

52



Chapter 2

metastasis was present at the day of excision (i.e through nodal biopsies or CT scan), time
to metastasis is 0. As P-NM samples never metastasised (during the 5 year period which
was the criteria for P-NM samples), they had a set time of 1,825. Plots were created using

the survminer and survival packages in R.

2.11.2 Volcano plots

Volcano plots were plotted within R using log10 p-values and log2 fold changes. Log10 p-
values were calculated from p-values obtained using the Mann Whitney U test for
significance comparing P-M and P-NM abundancies for individual proteins. Log2 fold
change values were calculated by subtracting the specific protein value medians between
P-M and P-NM, and then log2 transforming these data. Coordinates that had p-values
greater than 0.05 and log2 fold changes less than 1 were coloured red. Coordinates that
had p-values greater than 0.05 and log2 fold changes greater than 1 were coloured black.
Coordinates that had p-values less than 0.05 and log2 fold changes less than 1 were
coloured orange. Coordinates that had p-values less than 0.05 and log2 fold changes
greater than 1 were coloured green. Coordinates that had p-values less than 0.01 and log2
fold changes greater than 0.5 were coloured blue. Coordinates that had p-values less than

0.001 were coloured pink. Coordinates were labelled using Uniprot accession numbers

2.11.3 Search tool for the retrieval of interacting genes/proteins (STRING) analysis

Interactions between genes/proteins were assessed using STRING analysis (Szklarczyk et
al., 2015). Significantly differentially expressed proteins (p<0.05) between P-M and P-NM
were inputted into STRING analysis software. A medium confidence score of 0.4 was set as
an allowance parameter for associations, as suggested by the software. Individual proteins
were mapped as nodes with lines representing a contribution to a shared function; thicker
lines indicate a stronger confidence in the interaction. KEGG pathway analysis was then

mapped on top of these created structures to identify significantly enriched areas.
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2114 Gene ontology analysis

Gene ontology analysis was carried out using GoGorilla gene enrichment analysis (Eden et
al., 2009), whereby the list of significantly differentially expressed proteins were imported
into this software programme. A two unranked list of genes approach was used, with the
human Uniprot-SwissProt database set as the background proteome. Output was shown in
reduced and visualised gene ontology (REViGO) format (Supek et al., 2011). The REVIGO R

script for generating treemaps was downloaded and adapted.

2.11.5 Weighted gene co-expression network analysis (WGCNA)

Weighted gene co-expression network analysis (WGCNA) was carried out on the proteomic
data using the WGCNA package in R. The mean connectivity and scale free independence
of the data was assessed to identify a suitable soft threshold to use when creating the
similarity and adjacency matrix. A soft threshold is a value used to power the correlations
between genes to highlight more significant connections and reduce noise. A topological
overlap matrix (TOM) was created and used to carry out hierarchical clustering and module
identification. Modules were then correlated to clinical/histopathological traits in addition
to analysis through KEGG pathway enrichment. A brief overview of the pre-processing steps

involved in WGCNA can be seen in Figure 2.3.
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Figure 2:3: Overview of weighted gene co-expression network analysis
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2.11.6  Topological data analysis

Topological data analysis (TDA) is an alternative approach to exploring data by looking at
the shape of the data as opposed to direct comparisons. To create a topological structure,
sample proteomes are correlated to other sample proteomes using any one of a number
of algorithms (i.e. regression, hamming, etc) and then clustered in accordance to their
similarities. Ayasdi is a machine intelligence software that allows topological modelling of
large datasets. Differentiation, depth and diameter of samples (recorded during tumour
excision) were used to generate a topological structure in Ayasdi, using a hamming metric
and neighbourhood lenses. Gain and resolution was set at 35 and 5.5 respectively.
Outcome was then mapped on top of the structure created from differentiation, depth and

diameter.

Normalised proteomic abundancy data with a 50% missing value threshold was used to
generate a topological structure in Ayasdi. This was repeated for 1D data and 2D data.
Subsequent structures were mapped for outcome, differentiation, depth and diameter.
Outcome revealed separate P-M and P-NM groups within the structure. These groups were
analysed using Kolmogorov-Smirnov test for significance to identify proteins that differed

in the P-M and P-NM groups.

2.11.7 Predictive modelling

Predictive modelling was carried out using the statistical programming language R.
Packages caret, caret ensemble, pROC and doParallel were used in the production of
predictive models. Data was split into training and test sets with models trained on the
training set using 10 fold cross validation repeated 3 times. The model was then used to
predict the outcome in the test set. A full list of the algorithms used in this thesis can be

found in Appendix 4.
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Chapter 3: Proteomic characterisation of cutaneous

squamous cell carcinomas (cSCC)

3.1 Introduction

Cancer results from the dysplastic growth of mutated cells that form tumours which
subsequently invade into surrounding tissue (Hanahan and Weinberg, 2000). In healthy
cells, transcription and translation are meticulously maintained to ensure homeostasis
within the cell and to aid in its ability to uphold its functions. DNA damage and mutations,
as occurs in the early stages of cancer development, can cause alterations in protein
expression as well as alterations in protein functions, both of which can have critical effects
on the cell (Hanahan and Weinberg, 2011). Dysregulation in protein abundancies within a
cell can lead to dysplastic behaviour and an inability to perform its intended function (Le
Quesne et al., 2010). This abnormality in protein expression can contribute to the
development and progression of cancer (Hanahan and Weinberg, 2000, Hanahan and
Weinberg, 2011). Cancerous cells possess the ability to rapidly proliferate and invade, but
in the early stages of cancer development they usually lack the ability to metastasise. This
ability comes through clonal evolution within the tumour whereby additional genetic
alterations and selective pressures cause genetically diverse subclonal populations to form
(Greaves and Maley, 2012). Cells from some of these genetically diverse subpopulations
can then spread to other organs via the lymphatics or blood vessels and form metastases

(Brodland and Zitelli, 1992, Greaves and Maley, 2012).

Although many studies have been performed on the genetics of ¢SCC development (Li et
al., 2015, Pickering et al., 2014, South et al., 2014, Durinck et al., 2011) few studies have
looked at identifying differentially expressed proteins in ¢SCC (Dang et al., 2006). The vast
numbers of mutations in ¢SCC (i.e. approximately 50 mutations per megabase) (South et
al., 2014) means that it may be challenging to identify genetic markers predictive of the
development of ¢SCC metastases. However, the fact that genes “instruct” cells how to
behave, whereas proteins “carry out” those instructions, it is possible that it may be easier
to find markers which predict cSCC metastases using proteomics. One proteomics study

that used FFPE cSCC samples identified a number of proteins differentially expressed in
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¢SCC compared to normal skin; these included tenascin, vinculin, calmodulin like protein 5,
IQGAP1 and transgelin (Azimi et al., 2016). However, this study by Azimi et al (2016) was
limited in its sample size and it did not investigate the relation to metastasis. Very recently
however, a larger study by the same group (Azimi et al., 2019) did investigate the relation
between precancerous legions and cancer by examining Bowen’s disease, actinic keratosis
and cSCC. Nonetheless, again, they do not investigate cSCC metastasis or relate their

findings to it.

Determining what proteins are involved in the progression from the primary cancer to
metastatic cancer is vital for identifying patient prognosis. At present, cSCC patients are
separated into high and low risk categories according to the size, depth, differentiation,
and site of the tumour, whether the tumour shows perineural or perivascular invasion, and
the immunocompetence of the patient. The identification of protein biomarkers which are
involved in cSCC metastasis would lead to a better ability to identify those patients likely to

develop metastases from cSCC and might also lead to improved treatment strategies.

Mass spectrometry based proteomics is at the forefront of biomarker discovery (Reymond
and Schlegel, 2007) and has been used in the investigation of breast (Gast et al., 2009),
colon (Ward et al., 2006), pancreatic (Koopmann et al., 2004) cancers and indeed many
more. Studies have identified the potential to undertake mass spectrometry based
proteomics in FFPE tissues (see table in Appendix 1), which opened up opportunities to
undertake cancer studies on FFPE samples. This current study aimed to identify biomarkers
relevant to metastasis in ¢SCC using a proteomic approach by looking for differentially
expressed proteins between primary cSCC which subsequently metastasised (P-Ms) and

primary cSCCs which had not metastasised at 5 years after excision (P-NMs).

3.2 Materials and Methods

A total of 89 samples were used for this part of the study, consisting of 44 P-M samples (24
P-M samples for proteomics) and 45 P-NM samples (24 P-NM samples for proteomics).
Immunohistochemical staining and proteomic analysis was performed to identify factors

within cSCC that contribute to metastasis
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3.2.1 Immunohistochemistry and image analysis

P-M and P-NM samples were immunohistochemically stained according to methods
outlined in chapter 2.3. Briefly, sections were cut using a microtome before
deparaffinization and rehydration in xylene and ethanol, respectively. Sections were then
subjected to heat induced antigen retrieval and blocked, probed with a primary antibody
before being washed and probed with a secondary antibody. Images of sections were taken
on an Olympus DotSlide microscope. Imagel) and a software developed for quantifying IHC
(TMarker) were compared to assess which is more effective for future quantification, of
which the superior one was used for all future IHC analysis (full materials and methods

outlined in chapter 2.4).

3.2.2 Proteomic analysis of cutaneous Squamous Cell Carcinoma (cSCC) samples

Two cSCC samples with undetermined outcome (P-M or P-NM) were used when optimising
the protein extraction method. The best performing method was used for protein
extraction of 24 P-M samples and 24 P-NM samples of which full materials and methods
can be found in chapter 2.6. Samples were quantified using a Direct Detect infrared
spectrometer outlined in chapter 2.7 and cleaned up using a C18 reverse phase technique
(full material and methods can be found in chapter 2.8). Samples were then analysed using
a Waters Synapt G2-Si high resolution mass spectrometer using the methods described in

chapter 2.9.

3.23 Bioinformatics and data analysis

Protein concentrations were normalised as described in chapter 2.10.2. Statistical analysis
was performed on the results by comparing P-M data to P-NM data. Whole proteome
analysis was carried out through the use of volcano plots (methods in chapter 2.11.1),
topological data analysis (methods in chapter 2.11.5) and predictive modelling (methods in
chapter 2.11.6). Significantly differentially expressed proteins were further analysed using
STRING, gene ontology and WGCNA as outlined in chapters; 2.11.2, 2.11.3, 2.11.4,

respectively.

“Time to metastasis” plots were created using R and the packages survminer and survival.

Time to metastasis was deduced from patient records where the start point was the day of
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excision of the tumour except in cases where the patient presented with metastases. If
metastasis was present from initial presentation then time to metastasis was 0. P-NM
samples were set a consistent time to metastasis at 1,825 days (5 years), which was the
cut-off used to define P-NM samples. High and low expression was defined as either above

or below the median, respectively. P values were obtained by log-rank test.
3.3 Results

331 Clinical and histological characterisation of samples used for

immunohistochemistry

44 primary metastatic (P-M) and 45 primary non-metastatic (P-NM) tumours were used in
the IHC staining of cSCC. A summary of the samples used can be seen in Table 3.1. Briefly,
there were more samples from male patients, P-M tumours were more poorly
differentiated than P-NM tumours, and P-M tumours consisted of more samples reporting
perivascular invasion, perineural invasion and/or in immunosuppressed subjects. The
average depth and diameter were larger in P-M than P-NM samples. Information on

geographic ancestry was not collected and therefore was not available
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Table 3.1: A table showing clinical and histological details of cutaneous Squamous Cell

Carcinoma (cSCC) samples used for immunohistochemistry staining.

P-M P-NM
number of Samples 44 45
33 32
Male (75%) (71.11%)
Female 11 13
(25%) (28.89%)
Well differentiated . 14
(2.27%) (31.11%)
. . 13 27
Moderately differentiated (29.55%) (60%)
Poorly differentiated 30 4
(68.18%) (8.89%)
Perivascular invasion 9 !
(20.45%) (2.22%)
Perineural invasion 9 2
(20.45%) (4.44%)
Immunosuppressed / 3
(15.91%) (6.67%)
Avg tumour depth (mm) 7.70+5.34 430+2.79
Avg Tumour diameter
(mm) 29.35+31.39 12.00 + 8.27

P-M, Primary metastatic. P-NM, Primary non-metastatic.
Initially, several cSCCs were stained with H&E to help gain histological experience, using
microscopy, in recognising the relevant parts of cSCC samples. This included recognition of
the tumour cells and the peritumoral immune infiltrate and being able to distinguish these
from the surrounding normal skin tissue (Figure 3.1). This skill was important for
subsequent analysis of immunohistochemical staining and for the acquisition of the

relevant cSCC tissue for proteomic analysis.
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Tumour and immune infiltrate

Tumour Immune Infiltrate

Figure 3:1: Haematoxylin and eosin staining of SCCs which allows identification of the

tumour and peritumoural immune infiltrate

3.3.2 Image analysis and quantification of CD20+ cells in cutaneous Squamous Cell

Carcinoma (cSCC)

Previously in Dermatopharmacology, P-M and P-NM c¢SCCs were immunostained for CD8
and FOXP3, and it was found that lower numbers of CD8+ cells and higher numbers of
FOXP3+ cells (i.e. regulatory T cells) were present in P-Ms than in P-NMs. This previous
work was carried out using Imagel to aid in counting and analysis of images. However,
TMarker is an alternative image analysis programme which enables batch analysis and so
speeds up image processing time dramatically as well as removing some observatory bias.
Following immunohistochemical staining of 20 cSCCs, quantification by TMarker and
Image) were compared, and TMarker seemed superior to Imagel in relation to the values
obtained by manual counting of immunopositive cells, achieving; 0.87, 0.99 and 0.99 R
values in total number of cells, number of immunopositive cells and percentage of cells
which were immunopositive, respectively (Figure 3.2). Therefore, TMarker was used in this
project for the counting of cells in P-M and P-NM tissue sections which had undergone

immunohistochemical staining.
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Figure 3:2: Comparison between TMarker and Imagel in relation to manual counting.

20 high power field (20x magnification) images from 20 c¢SCCs that had been
immunostained for CD20 were counted using TMarker and ImageJ software and compared
to manual counting (R values). The results suggest that TMarker is an appropriate software
for counting the immunopositive cells and total cells in ¢cSCC sections which have

undergone immunohistochemistry.

3.3.3 CD20+ and CD1a+ cells in P-M and P-NM cutaneous squamous cell carcinoma

(¢SCC)

P-M and P-NM c¢SCCs were immunostained separately with anti-CD20 and anti-CD1a
antibodies to calculate the percentages of B cells and Langerhans cells respectively in these
samples. Previous work in Dermatopharmacology investigating CD8+ and FOXP3+ cells in
cSCCs had quantified the numbers of immunopositive cells in 5 high power fields (HPFs),
however, in the current project CD20+ cells were concentrated in certain areas of the
peritumoral infiltrate, whereas CD1a+ cells were scattered throughout the tumour and

peritumoral infiltrate. For this reason, in order to obtain a representative analysis of CD20+,

63



Chapter 3

and separately CD1a+, cells in P-M and P-NM ¢SCCs, quantitation of immunopositive cells

was conducted on 10 HPFs for CD20 and on 5 HPFs for CD1a.

There was no significant difference in the percentage of CD20+ cells between the P-Ms and

the P-NMs (P=0.1238, Mann-Whitney U). The P-M group was found to show a median of

7.42% of peritumoural cells staining CD20+ (IQR=1.603 to 21.55, n=44) and the P-NM group

showed a median of 15.32% of peritumoural cells staining CD20+ (IQR=3.28 to 26.76, n=45)
(Figure 3.3).

Percentage immune infiltrate CD20+

Figure 3:3: immunohisochemical staining of P-M and P-NM tumours for CD20.

P-M and P-NM tumours were immunostained for CD20+ cells, and quantification of
staining was calculated using TMarker (10 high power fields of view at 20x magnification
for each tumour). A. Graph showing results of CD20+% staining of peritumoural cells r (P-
NM, n=44; P-M, n=45; P=0.1238). Each dot represents single tumour. Error bars show
interquartile range with median plotted on them. A Mann-Whitney U test was performed

for statistical significance B. Representative image of CD20+ staining in P-M group.

Immunohistochemical staining demonstrated CD1a expression within (intratumoural) and
adjacent to the malignant keratinocytes (peritumoural) and therefore both were quantified
independently. P-NM and P-M had a median of 2.26% (IQR=0.865 to 3.43, n=45) and
0.645% (IQR= 0.1025 to 1.583, n=44) CD1a+ cells intratumorally respectively (P = 0.0003,
Mann Whitney U test). Medians of 0.4400% (IQR= 0.220 to 0.9050, n= 45) and 0.16%
(IQR=0.04 to 0.6725, n=44) of CD1a+ cells were present peritumorally in P-NM and P-M
respectively (P=0.0045, Mann-Whitney U test) (Figure 3.4).
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o- p=0.0003

Intratumoural percentage CD1a+ cells

Peritumoural percentage CD1a+ cells

Figure 3:4: Immunohistochemical staining of P-M and P-NM tumours for CD1a

P-M and P-NM were stained using an anti-CD1a antibody. Positive immunostaining in
images was quantified using TMarker (5 high power fields of view at 20x magnification for
each tumour). A. Graph displaying percentage of intratumoural CD1a+ cells (P-NM, n=45;
P-M, n=44; P=0.0003). B and C. Representative images of intratumoural CD1a+ staining in
P-NMs and P-Ms respectively. D. Graph displaying percentage of peritumoural CD1a+ cells
(P-NM, n=45; P-M, n=44; P=0.0045). E and F. Representative images of peritumoural
CD1a+ staining in P-NMs and P-Ms respectively. In A and D, each dot represents single
tumour, and error bars show interquartile range with median plotted on. A Mann-Whitney
U test was performed for statistical significance. Results are shown as percentage of total

number of immune cells which stained positive for CD1a.
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334 Association of CD20+ cells and CD1a+ with time to metastasis in cutaneous

Squamous Cell Carcinoma (cSCC)

A “time to metastasis” plot was developed to determine if there is a relationship between
the numbers of CD20+ and/or CD1a+ cells and the time taken for a cSCC to metastasise.
Higher amounts of CD20 were significantly associated with less chance of metastasis
(p=0.027, Log-rank test) Figure 3.5.
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Figure 3:5: The effect CD20 expression has on time to metastasis
“Time to metastasis” plots were created using date of excision as start time. CD20 high
and low expression was determined by above or below the median, respectively. P value

obtained by Log-rank test.

Furthermore, higher levels of intratumor CD1a staining was significantly associated with a
decreased risk of developing cancer (p=0.011). However, there was no association between

CD1a+ peri tumoural cells and time to metastasis (p=0.17) Figure 3.6.
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Figure 3:6: The effect CD1a expression within and around the tumour has on time to
metastasis.

“Time to metastasis” plots were created using date of excision as start time. CD1a
expression was determined as high or low according to the value being above or below

the median, respectively. P value obtained by Log-rank test.

3.3.5 Optimisation of tissue sample preparation and fractionation technique for

subsequent proteomic investigation.

The next aim of the project was to determine whether proteins could be successfully
extracted and fractionated from the cSCC samples. The extraction and processing of
proteins from ¢SCCs proved difficult as a result of the formalin fixation of these FFPE
samples. For this reason, different techniques were tested in combination with
fractionation methods to establish the most suitable approach (Figure 3.7). Two different
fractionation techniques were tested on pre-digested cell lines; strong anion exchange (SAX)
(Wisniewski, 2013) and online 2D fractionation (Figure 3.7). SAX performed poorly and
identified fewer than 1,000 unique proteins. 2D fractionation produced higher protein
yields (2,000 proteins) than SAX, with protein numbers similar to those often achieved
from pre-digested cell lines by other researchers in the Centre for Proteomics, University
of Southampton and was therefore considered superior to SAX. Although only two
fractionation methods were used, a variety of extraction methods were assessed. Based on
studies by Wisniewski (Wisniewski, 2013, Wisniewski et al., 2011), a filter aided separation

protocol (FASP) was attempted. FASP was tested in conjunction with SAX fractionation and
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varied widely in terms of protein IDs and was therefore considered not adequately
reproducible. The FASP/2D method was tested on frozen and FFPE cSCC samples as well as
on fresh and frozen normal skin. The data indicate that this method was more suitable for
FFPE protein extraction. Furthermore, the FASP/2D method achieved higher protein yields
from ¢SCC than from normal skin. Nonetheless, although this method produced protein
yields higher than 1,000 proteins, its variability was very large and therefore was not
considered reliable. The FASP/2D technique was also tested utilising different boiling times

but these changes seemed detrimental and did not improve protein yield.

The final method tested was one based on Nirmalan et al. (2011) which utilised RapiGest
surfactant, coupled to 2D fractionation. This method produced consistent results, resulting
in a median of 772 protein identifications. In addition to yielding higher and more
reproducible protein ID numbers, the RapiGest method was superior to others as it was
much cheaper, faster and easier to undertake. Furthermore, FASP and SAX methods
resulted in a large amount of insoluble material being discarded, whereas the RapiGest

method produced minimal insoluble material.
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Figure 3:7: Varying combinations of extracting and fractionating samples were tested to
identify a suitable methodology

Two cSCC samples with undetermined clinical outcome, in addition to matched skin
samples, were used to optimise the protein extraction method from FFPE tissue. Cell lines
(HaCaT and Hela) which had not been fixed in formalin nor paraffin embedded were used
for comparison purposes. Analysis was conducted using a nano aquity UPLC system
(Waters) and a Waters Synapt G2-si high resolution mass spectrometer. 2D fractionation
gave a higher number of protein IDs than SAX in cell lines. FASP methods gave varying
results in conjunction with both SAX and 2D fractionation in ¢cSCC and skin samples. SAX,

Strong anion exchange. FASP, Filter aided separation protocol.

3.3.6 Verification of RapiGest method

MS technical repeats (i.e. 3 experiments using the same protein extraction sample) and
biological repeats from the same sample (i.e. 3 independent protein extractions using the
RapiGest method from the same tissue samples) were carried out to examine the
reproducibility. Two SCC samples were used and named A and B. Al, A2, A3 and B1, B2, B3
refer to independent days of extraction, where Ala/A2a/A3a, Alb/A2b/A3b and

A3a/A3b/A3c are reference to triplicate repeats within an independent extraction. The
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results of the three RapiGest/2D experiments in Figure 3.7 were compared to assess the

technical reproducibility of the MS method. Figure 3.8 shows a Venn diagram visualising

the proteins’ IDs that were shared between the three experiments. 48.2% of the protein

IDs identified were similar in all three cases and 66.2% of protein IDs identified were

detected in at least 2 experiments. A coefficient of correlation analysis of the protein ID

abundancies between experiments produced high r values (r>0.85), indicating good

reproducibility between samples.

A3a
=)

Log of A3a and A3c
1—_To.9163]

A3a
=)

Log A3a and A3b

I R o

Log of A3b and A3c
i

A3b
o

A3c 14

Figure 3:8: Investigating the technical reproducibility of the RapiGest method.

Protein identifications from the three MS experiments which used RapiGest extraction

(data points from Figure 3.7) were analysed for reproducibility. Identical protein IDs were

found in 48.2% of cases when comparing all 3 experiments and 66.2% of cases when

comparing 2 of the 3 experiments. Coefficient of correlation analysis of protein

abundancies revealed high similarity in protein IDs between all 3 experiments, and thus

reproducibility of this method.
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In the biological repeat experiment, 46% of proteins identified were shared between all 3
replicates in samples Al-3 and 65.6% of protein IDs were found in at least 2 replicates
(Figure 3.9). 46.9% of protein IDs in samples B1-3 were shared between all 3 replicates and

65.7% of IDs were found in at least 2 replicates.

The coefficient of correlation analysis of protein ID abundancies between Al1-3 and B1-3
reveal high r values, suggesting the data obtained from RapiGest extraction was of high

similarity, further highlighting the reproducibility of the method.

The number of IDs achieved in biological repeats (median A = 870, median B =788) was
consistent with what has been achieved during the earlier optimisation experiments (722).
These data combined indicate that the RapiGest method achieved high protein yield

consistently, with good protein ID coverage between biological and technical repeats.
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Figure 3:9: Investigating the reproducibility between RapiGest biological repeats.
Protein extraction of cSCC samples A and B was conducted three separate times each.
Protein IDs were expressed in a Venn diagram. Identical protein IDs were noted in 46%
and 46.9% of cases in A and B respectively following MS of all three extracted samples and
almost 2/3rds of the protein IDs were identical following MS of 2 extracted samples.
Coefficient of correlation of protein abundancies between the three repeats was analysed
and displayed high positive correlation. A, biological replicates of cSCC “A”. B, biological
replicates of ¢SCC “B”.
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Initial experiments using the RapiGest method utilised three histological sections of FFPE
tissue at 10um. It was investigated whether using more sections would increase the protein
ID vield, however, it was found that increasing the number of sections to 10 had a
detrimental effect on the protein yields (median = 389 protein identifications). After these
analyses, it was concluded that the RapiGest method on three histological tissue sections
from ¢SCC was reproducible and achieved high protein identification yields, therefore

proteomic analysis of P-M and P-NM ¢SCCs was commenced.

3.3.7 Clinical and histological characteristics of discovery proteomic samples

A total of 48 samples were used for the discovery proteomics consisting of 24 P-Ms and 24
P-NMs. The clinical and histological characteristics of these samples can be seen in Table
3.2. There was an equal ratio of males: females between P-M and P-NM samples. There
were similar numbers of moderately differentiated samples in the P-M and P-NM groups,
however, there were a greater number of well differentiated cSCCs in the P-NM than the
P-M group as well as a larger number of poorly differentiated samples in the P-M than in
the P-NM group. There were slightly more ¢SCCs that had perivascular and perineural
invasion in the P-Ms, and more immunosuppressed patients in this group. P-M samples
were, on average, deeper (in terms of depth of invasion of the tumour) and larger than P-

NM samples.
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Table 3.2: Clinical and histological details of cSCC samples used for discovery proteomics.

P-M ¢SCCs P-NM ¢SCCs
Number of samples 24 24
18 18
Mal
ate (75%) (75%)
6 6
Fi I
emaie (25%) (25%)
, . 1 8
Well differentiated (4.17%) (33.33%)
Moderately differentiated 1 14
y (45.83%) (58.33%)
Poorly differentiated 12 2
y (50%) (8.33%)
Perivascular invasion 3 0
(12.5%) (0%)
Perineural invasion 4 2
16.67%) (8.33%)
Immunosuppressed 2 0
pp (8.33%) (0%)
Average tumour depth (mm) 6.94 +4.01 3.88+2.08
Average tumour diameter
(mm) 27.04 £14.70 12.82+7.77
3.3.8 Protein extraction quantification

After extraction and digestion of proteins from P-M and P-NM samples, peptides were
quantified using the direct detect spectrometer from Merck using the method outline sin
Chapter 2. The results of this quantification can be seen in Table 3.3. The mean total protein

extracted was 144.05ug in the P-M group and 84.55ug in the P-NM group.
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Table 3.3: Concentrations and total amounts of proteins extracted from P-M and P-NM

¢SCCs.
P-M ¢SCCs P-NM ¢SCCs
sample ID Concentration Total peptide sample ID Concentration Total peptide
(g/pl) (ug) (pg/ul) (1g)
P-M1 1.198 119.8 P-NM2 2.489 248.9
P-M2 0.703 70.3 P-NM5 1.349 134.9
P-M3 1.450 145.0 P-NM6 0.860 86.0
P-M4 3.103 310.3 P-NM11 0.226 22.6
P-M5 0.866 86.6 P-NM13 0.527 52.7
P-M7 1.894 189.4 P-NM16 0.366 36.6
P-M10 1.155 115.5 P-NM20 0.539 53.9
P-M11 1.516 151.6 P-NM22 1.433 143.3
P-M13 2.328 232.8 P-NM25 2.155 215.5
P-M14 1.700 170.0 P-NM28 2.005 200.5
P-M15 2.144 214.4 P-NM29 0.810 81.0
P-M16 0.870 87.0 P-NM31 2.970 297.0
P-M22 1.059 105.9 P-NM32 0.426 42.6
P-M25 2.273 227.3 P-NM35 0.951 95.1
P-M26 0.915 91.5 P-NM38 1.196 119.6
P-M27 0.537 53.7 P-NM39 1.594 159.4
P-M28 0.617 61.7 P-NM40 0.831 83.1
P-M39 0.421 42.1 P-NM41 0.705 70.5
P-M41 1.705 170.5 P-NM42 2.181 218.1
P-M43 2.317 231.7 P-NM43 0.478 47.8
P-M45 1.431 143.1 P-NM46 0.465 46.5
P-M47 2.054 205.4 P-NM47 0.576 57.6
P-M48 0.441 44.1 P-NM48 0.731 73.1
P-M49 1.725 172.5 P-NM51 2.102 210.2

3.3.9 Protein ID yields from 1D and 2D fractionation

The above described RapiGest method utilised 2D liquid chromatography separation,
however, much research undertaken in the Centre for Proteomics, University of
Southampton utilises 1D separation for other proteomic studies. As this method was well
established in our laboratory, it was decided to use both 1D and 2D liquid chromatography
separation as two independent methods to research and investigate biomarkers of
metastasis in ¢SCC. All MS was therefore carried out utilising the RapiGest protein

extraction method with 1D fractionation and, separately, 2D fractionation.

The numbers of proteins identified in each sample was similar using 1D and 2D

fractionation, with 2D identifying marginally more protein IDs in each sample (Figure 3.10).
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The highest number of protein IDs achieved was 960 and the lowest 58. The majority of
samples identified between 400 and 600 proteins with a mean of 614 IDs in the P-M group

and a mean of 509 in the P-NM group.
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Figure 3:10: Number of protein IDs in all samples using 1D and 2D fractionation.
3.75ug of protein from each sample was subjected to LCMS and mass spectra were

processed into protein IDs using Protein Lynx Global Server (PLGS).

The number of unique proteins identified in all samples was 2,986 following 1D and 2,848
following 2D LC fractionation (total 4,018 combining 1D and 2D). 45% of proteins (1,817 of
4,018) were identical following 1D and 2D LC (Figure 3.11).

1D 2D

1169 1817 1032

2986 2848

Figure 3:11: Number of unique proteins identified by MS following 1D and 2D LC
fractionation.
Total number of unique proteins identified in all P-M and P-NM samples using MS

following 1D and 2D LC.
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3.3.10 Establishing the distribution of the mass spectrometry protein results

To establish the best statistical analysis test for the data, histograms of each ¢SCC sample
were created to determine if the data was parametric or non-parametric (Appendix 2).
Alike other proteomics studies, the data suffered from the floor effect because the
instrument can only detect down to a certain abundance of protein (Figure 3.12). Log10
transformation often results in a more normal distribution of data (because the scale is
reduced), nonetheless, with the data Log10 transformed, there were still several samples
that had a non-normal distribution (Appendix 2). As non-parametric tests are more
conservative, it was decided that the non-parametric Mann Whitney U test for significance
with non-logl10 transformed data would be used to determine significantly differentially

expressed proteins between P-Ms and P-NMs.
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Figure 3:12: Histograms of

distribution.

Binned values

proteomic quantification data revealed a non-normal

Protein abundancies of each sample were plotted in histograms using the R package

“Inferno”, to analyse the normality of the distribution to determine whether parametric

or non-parametric statistics should be used. Abundancy data in samples were ‘binned’ (i.e.

separated into a series of intervals) and plotted against frequency to create histograms

(yellow bars). Data was also log10 transformed and plotted as histograms. The majority of

the data is normally distributed but some of the data is not and therefore a conservative

non-parametric test was used (all histograms Appendix 2)
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3.3.11 Investigating confidence in significantly differentially expressed proteins

Statistical analysis of ‘omics data can be difficult because hundreds, and even thousands,
of comparisons between variables creates a very high chance of false positives (Franceschi

et al,, 2013).

One way to assess the false discovery rate is to plot all p-values obtained through statistical
analysis into a histogram (Figure 3.13). A normal distribution of p-values is indicated by a
higher frequency of p-values closer to 0, with a sharp decline down to 0.5, followed by a

level frequency thereafter.

p-values obtained through comparison of protein abundancies between P-M and P-NM
tumours were plotted in a histogram. This revealed a trend that would be expected of data
with a low false positive rate and true significant differences. As previously stated, ‘omics
data also often suffers from missing values. To accommodate for this, multiple amounts of
missing data were analysed and it was found that the higher the allowance of missing data
in the analyses, the less confidence there was in the data in terms of false positive rate.
Allowing a missing value percentage of 50 produced a high confidence p-value histogram

in addition to maintaining high n numbers.
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unique proteins between P-M and P-NM cSCCs.

p-values obtained through comparing P-M and P-NM protein abundancies (allowing four
different percentages of missing values) using Mann Whitney U test were plotted as
histograms. The higher the amount of missing data, the less confidence there was in the

data. 50% missing data displayed an appropriate balance between confidence in the data

and number of significant results.
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3.3.12 Differentially expressed proteins

There was a total of 79 significantly differentially expressed proteins identified between
the P-M and P-NM groups in the 1D data and 98 in the 2D data (P<0.05). 33 of these were
identified in the data obtained both following 1D, and separately, 2D fractionation,
equating to a total of 144 significantly differentially expressed proteins (P<0.05) identified

in the combination of 1D and 2D data (Figure 3.14).

1D 2D

46 33 65

79 98

Figure 3:14 : Venn diagram displaying the number of significantly differentially
expressed proteins identified in 1D and 2D data.

p-values were obtained through Man Whitney U test for significance of differential
expression of proteins between the P-M and P-NM groups. 79 proteins were differentially
expressed following 1D and 98 following 2D LC (P<0.05). 33 (22.9%) proteins were found
to be differentially expressed in both the 1D and 2D data.

3.3.13 Volcano plots

In addition to whether proteins are significantly differentially expressed, the fold change in
expression between P-M and P-NM is also important. One method to compare the p-values

and fold changes of protein abundancies is to visualise them in the form of a volcano plot.
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Figure 3:15: Volcano plot of 1D data highlights proteins of interest.

Protein p-values were obtained through comparing protein abundancies in P-M and P-NM
tumours using the Mann Whitney U test. Fold change was calculated by subtracting the
mean of the protein abundancies in the P-NM group from the P-M group. p-values were
log10 transformed and fold change was log2 transformed to generate the volcano plot of
the data. Red points indicate non-significant p-value (P>0.05) and fold change <1 log2.
Black points indicate non-significant p-value (P>0.05) but fold change >1 log2. Orange
points indicate significant p-value (P<0.05) and fold change <1 log2. Green points indicate
significant p-value (P<0.05) and fold change >1 log2. Blue points indicate a higher
significant p-values (P<0.01) with fold change >0.5 log2. Purple points represent points
with highest significance (P<0.001). Labels are Uniprot protein accession numbers.

Volcano plot created in R.
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Figure 3:16: Volcano plot of 2D data highlights proteins of interest.

P-values of differential protein expression between P-M and P-NMs were obtained using

Mann Whitney U test for significance. Fold changes were calculated by determining the

differences between mean expressions of proteins in P-NM to P-M tumours. P-values were

log10 transformed and fold changes were log2 transformed for the purpose of producing

the volcano plot. Red points indicate non-significant p-value (P>0.05) and fold change <1

log2. Black points indicate non-significant p-value (P>0.05) but fold change >1 log2. Orange

points indicate significant p-value (P<0.05) and fold change <1 log2. Green points indicate

significant p-value (P<0.05) and fold change >1 log2. Blue points indicate a higher

significant p-values (P<0.01) with fold change >0.5 log2. Purple points represent points

with highest significance (P<0.001). Labels are Uniprot protein accession numbers.

Volcano plot created in R.
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The volcano plot of the 1D data shows that 124 proteins (30.32%) were down regulated (<0
fold change) and 285 proteins (69.68%) were upregulated (>0 fold change) between the P-
M and the P-NM groups. The plot also highlights a number of potential biomarkers suitable
for further investigation (Figure 3.15), including 29 proteins which were significantly
differentially expressed (P<0.05) with a “significant” fold change (dependant on threshold).
Protein accession numbers (and their corresponding gene IDs) of these potential
biomarkers are P61158 (ACTR3), P50991 (CCT4), P07237 (P4HB), P50454 (SERPINH1),
Q15582 (TGFBI), P15880 (RPS2) , Q9NSB2 (KRT84), P35900 (KRT20), Q9H299 (SH3BGRL3),
QINV66 (TYW1), Q15019 (SEPT2), P09382 (LGALS1), Q15063 (POSTN), P29692 (EEF1D),
P35908 (KRT2), and Q6KB66 (KRT80) (full list in Table 3.4). Several blue data point accession

numbers clustered in the top right of the volcano plot correspond to ribosomal proteins.

In the 2D volcano plot, 139 proteins (29.57%) were down regulated (<0 fold change) and
331 proteins (70.43%) were upregulated (>0 fold change). Exploring the data from this
volcano plot revealed 22 proteins that were significantly differentially expressed (P<0.05)
with a “significant fold” change (Figure 3.16) including several that have been highlighted
in the 1D plot. Accession numbers (and corresponding gene IDs) of potential biomarkers in
the 2D volcano plot are P25398 (RPS12), P61981 (YWHAG), Q15582 (TGFBI), P06396 (GSN),
PO8758 (ANXA5), P02751 (FN1), P31949 (S100A11), P22626 (HNRNPA2B1), P24821 (TNC),
P29401 (TKT), P40121 (CAPG), Q15063 (POSTN), P35908 (KRT2), P12110 (COL6A2), PO8779
(KRT16) and P62937 (PPIA) (full list in Table 3.5). Similarly to the 1D volcano plot, several

of the blue data point’s accession numbers in the 2D plot represent ribosomal proteins.

3.3.14 Significantly differentially expressed proteins and their respective fold changes

The significantly differentially expressed proteins in the proteomic profiling results,
following 1D LC, and their respective fold changes between P-M and P-NM groups can be
seen in Table 3.4. Actin related protein 3 (ACTR3), T-complex protein 1 subunit delta (CCT4),
Protein disulphide-isomerase (P4HB), Serpin H1, TGFB induced protein (TGFBI) and 40S
ribosomal protein S2 (RPS2) all have high significance (P<0.001). Of the differentially
expressed proteins presented in Table 3.4, the fold change ranges from the most
downregulated protein, KRT2 (-1.47336 log2 fold change) to the most upregulated protein,
KRT20 (1.661553 log2 fold change).
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Table 3.4: A table of significantly differentially expressed proteins with fold change

between P-Ms and P-NMs during MS following 1D fractionation.

Uniprot ID

P61158
P50991
P07237
P50454
Q15582
P15880
P62081
Q15019
P09382
P13010
Q15063
P29692
Q9H299
P62857
P08238
P12111
P60709
P23246
P08133
043707
Q9NV66
P51884
P62277
QI9NSB2
P60660
P22626
P61978
P35222
Q14697
P07437
P08758
P04844
P24821
P11142
Q9NZT1
P62805
P59998
P36578
P16403

log2 Fold

Gene ID Change

ACTR3 0.961506898
CCT4 1.30927292
P4HB 0.733735226
SERPINH1 1.317776969
TGFBI 0.928341791
RPS2 0.535540549
RPS7 0.577872021
SEPT2 0.699315588
LGALS1 0.966564061
XRCC5 0.831577845
POSTN 1.032788051
EEF1D 0.535534134
SH3BGRL3 -0.761111358
RPS28 0.594810883
HSP90AB1 0.696523855
COL6A3 0.6616087
ACTB 0.331314871
SFPQ 0.58683941
ANXA6 0.457416134
ACTN4 0.39691863
TYW1 -1.134978807
LUM 0.80396623
RPS13 0.589690303
KRT84 1.438285492
MYL6 0.565832754
HNRNPA2B1 0.662690619
HNRNPK 0.454874485
CTNNB1 0.721477453
GANAB 0.746390079
TUBB 0.426709653
ANXAS5 0.441600309
RPN2 0.554418246
TNC 0.929523896
HSPA8 0.383725658
CALML5 -0.901133441
HIST1H 0.312532197
ARPC4 0.466567609
RPL4 0.402361344
HIST1H1C 0.79468494

p-value

5.21E-06
0.000178
0.000197
0.000362
0.000667
0.000977
0.001138
0.00159
0.001659
0.003321
0.003898
0.004054
0.004194
0.004916
0.005466
0.00553
0.00553
0.005641
0.00585
0.005863
0.005908
0.007435
0.007468
0.007721
0.007811
0.008254
0.008254
0.008257
0.0099
0.009969
0.010052
0.010152
0.011412
0.012193
0.012585
0.013583
0.013831
0.014564
0.014741

P19338
P39656
000571
P46783
P35908
P62937
P26038
P50990
Q99623
P04259
P62140
P13796
P50395
P21810
P02675
P35900
P04792
P10599
Q07065
P29401
P09651
P52597
Q9HCY8
P13639
P35580
P07741
Q02878
000148
P46940
Q6KB66
P12109
P60866
075369
P15088
P07900
P16144
P62318
P30044
P42224

(Continued)

NCL
DDOST
DDX3X
RPS10
KRT2
PPIA
MSN
CCT8
PHB2
KRT6B
PPP1CB
LCP1
GDI2
BGN
FGB
KRT20
HSPB1
TXN
CKAP4
TKT
HNRNPA1
HNRNPF
S100A14
EEF2
MYH10
APRT
RPL6
DDX39A
IQGAP1
KRT80
COL6A1
RPS20
FLNB
CPA3
HSP90AA1
ITGB4
SNRPD3
PRDX5
STAT1

0.570498 0.015221
0.686281 0.015341
0.55198 0.015599
0.533801 0.015599
-1.47336 0.016373
0.522324 0.01663
0.372223 0.018779
0.643611 0.018874
0.626632 0.019505
-0.43177 0.021146
0.582665 0.021844
0.626618 0.023763
0.417755 0.024282
-0.73761 0.024587
0.662066 0.025039
1.661553 0.025217
0.43912 0.025692
0.578065 0.025747
0.620822 0.025817
0.465121 0.026105
0.119659 0.026825
0.450961 0.027294
-0.51908 0.029751
0.36846 0.030267
1.153696 0.030978
0.406844 0.031729
0.365138 0.033587
0.408352 0.03601
0.379869 0.036832
-1.22693 0.039027
0.461111 0.039192
0.312545 0.039198
0.524255 0.044172
-0.49888 0.044723
0.424161 0.046572
0.791541 0.047448
0.484703 0.047584
0.661837 0.047683
0.882976 0.048652

p-values were obtained through Mann Whitney U test for significance between P-Ms and P-NMs. Fold change

calculated from mean of protein abundancies between each group. Green shading indicates proteins which

were significantly differentially expressed in both the 1D and 2D data.
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Table 3.5: Details of proteins that were significantly differentially expressed between P-

Ms and P-NM groups in the MS data following 2D LC.

Uniprot ID Gene ID ?::nzld p-value (Continued)

P25398 RPS12 0.899331 1.08E-04 Q14697 GANAB 0.481031 0.018922
P61981 YWHAG 0.529794 0.000145 P27824 CANX 0.5971 0.019724
Q15582 TGFBI 1.116691 0.000187 P16615 ATP2A2 -0.62138 0.019818
P06396 GSN 0.609908 0.000655 P02675 FGB 0.694736 0.019933
P02751 FN1 0.883513 0.00098 Q9NZT1 CALML5 -0.80848 0.021169
P08758 ANXAS5 0.463055 0.001 P04264 KRT1 -0.81594 0.021718
Q15063 POSTN 0.981432 0.001047 P35908 KRT2 -1.24764 0.021718
P31949 S100A11 1.220557 0.001104 P62249 RPS16 0.365977 0.021847
P08779 KRT16 -0.64341 0.001175 P50990 CCT8 0.569868 0.022002
P63000 RAC1 0.475662 0.001428 Q96FW1 OTuB1 0.406082 0.022399
P22626 I:NRNPAZB 0.723681 0.001739 P30044 PRDX5 0.683793 0.022719
P02545 LMNA 0.436365 0.002937 P26038 MSN 0.494652 0.02298
P36957 DLST 0.541366 0.002971 P63104 YWHAZ 0.323326 0.02298
P18206 VCL 0.391585 0.003743 P20700 LMNB1 0.676225 0.024282
P62277 RPS13 0.479793 0.003863 P05141 SLC25A5 0.823864 0.025666
P29401 TKT 0.521632 0.004185 Q562R1 ACTBL2 0.495019 0.026073
P46782 RPS5 0.62297 0.004337 P13796 LCP1 0.685076 0.026452
P12110 COL6A2 1.202369 0.004823 P01871 IGHM -0.88295 0.026604
P40121 CAPG 0.6193 0.006275 P35555 FBN1 0.508086 0.027037
Q99497 PARK7 0.521044 0.006502 P48668 KRT6C -0.71584 0.027113
P23246 SFPQ 0.643473 0.007564 P02538 KRT6A -0.34777 0.027147
P62937 PPIA 0.53968 0.007713 P37802 TAGLN2 0.455563 0.027434
P04179 SOD2 0.762658 0.007975 P60866 RPS20 0.319156 0.027496
P08123 COL1A2 0.450851 0.00823 P39656 DDOST 0.541621 0.029103
P08238 HSP90OAB1 0.497668 0.00823 P01011 SERPINA3 0.490469 0.030512
P61978 HNRNPK 0.536419 0.008247 P29508 SERPINB3 -0.66772 0.030512
P62158 CALM 0.477913 0.008814 Q99715 COL12A1 0.722631 0.032952
P24821 TNC 0.850068 0.009468 P00338 LDHA 0.298966 0.033683
Q07960 ARHGAP1 0.559179 0.010409 043390 HNRNPR 0.430315 0.034032
P07437 TUBB 0.471989 0.010616 P01009 SERPINA1 0.554795 0.034206
P62314 SNRPD1 0.592314 0.010933 P62081 RPS7 0.363127 0.034206
P60174 TPI1 0.556856 0.012021 Q02388 COL7A1 -0.88471 0.034513
P31146 CORO1A 0.759081 0.012238 P11021 HSPA5 0.377159 0.035508
P68104 EEF1A1 0.283546 0.012781 P07195 LDHB 0.6105 0.036002
P09525 ANXA4 0.553413 0.01287 Q05707 COL14A1 0.650654 0.03669
P04259 KRT6B -0.52402 0.013583 P55795 HNRNPH2 -0.60532 0.038253
P08670 VIM 0.454294 0.013583 000299 CLICc1 0.539654 0.039171
P14625 HSP9O0B1 0.59337 0.013831 P21333 FLNA 0.267202 0.039408
P02671 FGA 0.62589 0.014133 P0O0558 PGK1 0.485908 0.041488
P60660 MYL6 0.436868 0.014429 P62899 RPL31 0.458861 0.042321
Q03252 LMNB2 0.590182 0.014685 P30041 PRDX6 0.877492 0.042339
Q99878 HIST1H2A) 0.407634 0.014719 P07900 HSP90AA1 0.419973 0.042481
P29590 PML 0.628868 0.014724 P51884 LUM 0.532743 0.042486
P23396 RPS3 0.399818 0.015319 P19338 NCL 0.366465 0.043658
Q99623 PHB2 0.67447 0.016553 P62805 HIST4H 0.265299 0.043658
P07237 P4HB 0.631181 0.017242 Q71U19 H2AFV 0.546786 0.044845
P12111 COL6A3 0.501978 0.017242 P62269 RPS18 0.250738 0.045023
P27482 CALML3 -0.51899 0.018889 P30101 PDIA3 0.421946 0.045921
P50395 GDI2 0.444733 0.018889 P27816 MAP4 0.496461 0.046927

Significance was calculated using Mann Whitney U test. Fold change was calculated from the ratio of the mean expression
of the protein in the P-M group relative to the P-NM group and log 2 transforming the data. Green shading indicates

proteins that were significantly differentially expressed in both the 1D and 2D data.
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Similarly to the 1D results, the fold changes seen within the differentially expressed
proteins following 2D proteomic experiments vary greatly (Table 3.5). 40S ribosomal
protein S12 (RPS12), protein 14-3-3 gamma (YWHAG), TGFB induced protein (TGFBI),
gelsolin (GSN) fibronectin (FN1) and annexin A5 (ANXAS5) are all highly differentially
expressed (P<0.001). The most downregulated protein is KRT2 (-1.24764) and the highest
upregulated protein is S100A11 (1.220557).

Many of the significantly differentially expressed proteins identified in the 1D data (Table
3.4) can also be seen in 2D data (Table 3.5) (highlighted in green). Example of these are
TGFB induced protein (TGFBI), periostin (POSTN), heat shock protein 90-beta (HSP90AB1),
calmodulin-like protein 5 (CALML5), collagen alpha-3(VI) chain (COL6A3), fibrinogen beta
chain (FGB), lumican (LUM), nucleolin (NCL) and tenascin (TNC). Although the p-values for
comparison of many of these proteins between P-M and P-NM cSCCs vary between the 1D

and 2D data, their fold change is relatively consistent between both sets of data.

Some examples of significantly differentially expressed proteins from the 1D data can be
seen in Figure 3.17. Of the proteins in this figure, the lowest number of samples that
detected a specific protein was 15 and the highest was 24 (all of them). The median
abundancies of these proteins varies, ranging from the lowest, SEPT2 (0.4352ng), to the
highest, COL6A3 (75.22ng). All of the proteins presented in Figure 3.17 express an increase

in abundancy in P-M samples compared to P-NM samples.
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Figure 3:17: Examples of significantly differentially expressed proteins from 1D
proteomic profiling experiments.

Protein abundancies from P-M samples were compared to P-NM samples using Mann
Whitney U test for significance and plotted using Prism. Median +/- interquartile range

shown.

Examples of significantly differentially expressed proteins from the 2D data can be seen in
Figure 3.18. The lowest number of samples where the protein was identified is 17 and the
highest number of ¢SCCs in which the protein was detected is 24. The lowest median
abundancy is S100A11 (0.2615ng) and the highest is POSTN (15.51ng). Similarly to the 1D
data (Figure 3.17), all of the proteins in Figure 3.18 are upregulated in P-Ms compared to
P-NMs.
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Figure 3:18: Examples of significantly differentially expressed

proteomic profiling experiments.
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proteins from 2D

Protein abundancies were compared between P-M and P-NM samples using Mann

Whitney U test for significance. Median +/- interquartile range shown here.

a role in metastases of cSCC.
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Search tool for the retrieval of interacting genes/proteins (STRING) analysis

STRING is a database of known and predicted protein-protein interactions, gathering its
information from various sources including experimental data, computational modelling
and text mining. The data from the MS experiments following 1D and 2D separation was

analysed using STRING to generate a structure of protein interactions that are likely to play

The structure created using STRING for 1D can be seen in Figure 3.19. Nodes represent

proteins and the lines connecting the nodes indicate an interaction between these
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proteins, which may include physical interaction (e.g. direct binding), signalling pathways,
or common biological effects. The density of each individual line in the structure
corresponds to the confidence of the interaction between nodes. Within the structure
produced from the 1D proteomic profiling data, many proteins are interacting. For
example, 98 interactions would be expected by chance from the 77 proteins analysed, but
the created structure resulted in 246 interactions which therefore suggests the inputted
proteins are acting in a combined manner to promote metastasis. The structure showed
clusters of interacting proteins, which included ribosomal proteins, extracellular proteins

and proteins involved in protein folding.
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Figure 3:19: STRING structure of significantly differentially expressed proteins from the
1D data.

Significantly differentially expressed proteins identified from Mann-Whitney U test
between P-M and P-NMs were analysed using STRING software to create a structure of
known interactions. A medium confidence score of 0.4 was allowed for interaction
certainty. Nodes represent proteins and lines represent known interactions between
proteins. The thicker the line, the higher confidence in the interaction data. Total number

of nodes is 77. Total number of interactions is 246.
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After this STRING structure was created, other areas of interest such as KEGG pathway
enrichment could be mapped onto this. KEGG pathway analysis identifies proteins involved
in biological systems through a manually curated database. Proteins are scored through
well published algorithms (Franceschini et al., 2013, Von Mering et al., 2003, Szklarczyk et
al., 2015) and resulting p-values are corrected for false discovery rate (FDR). Figure 3.20
utilises the same structure produced in Figure 3.19, mapping on significantly enriched
KEGG pathways by highlighting nodes red if they are involved. Ribosomal proteins were
identified as being the most significantly enriched KEGG pathway with an adjusted p-value
of 0.00000792. Focal adhesion was significantly enriched, obtaining an adjusted p-value of
0.00000968, in addition to protein processing in the endoplasmic reticulum (P=0.000165)
and regulation of cytoskeleton (P=0.000959).

92



Chapter 3

Ribosome — P=7.92E-06 Proteoglycans in cancer — P=0.00104

] ]

Figure 3:20: STRING structure with significantly enriched KEGG pathways from 1D data.
KEGG pathway analysis was carried out within STRING software to give FDR adjusted p-
values of enriched pathways. Proteins involved are highlighted in red. Green highlighted
text indicates KEGG pathway enriched in both the 1D and 2D data. ER, endoplasmic

reticulum.
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The STRING structure for the 2D data can be seen in Figure 3.21. Similar to the 1D results,
the amount of interactions expected (128) was far less than actually observed (340) from
the 94 proteins input into the software and this therefore suggests that these proteins are
interacting in a manner which is greater than that expected to be seen by chance.
Furthermore, similar clusters are seen in the KEGG analyses of the STRING structures of the
2D and the 1D data, such as ribosomal proteins, and proteins involved in the extracellular

matrix and protein folding.
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Figure 3:21: STRING structure of significantly differentially expressed proteins from the
2D data.

This structure was created in STRING using the differentially expressed proteins between
P-M and P-NMs found in the 2D data. A medium allowance of 0.4 was set for similarity.
The total number of nodes was 94. The expected number of interactions was 128, the

actual number of interactions was 340.
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Protein processing in ER — P= 1.68E-05 Focal adhesion— P= 0.000243

Figure 3:22: KEGG pathway enrichment of 2D STRING structure.

STRING software was used to map KEGG pathway involvement within the STRING
structure from the 2D data to give an FDR adjusted p-value. Proteins involved in pathways
are indicated in red. Green highlighted text indicates KEGG pathway enrichment in the

STRING structures from both the 1D and 2D data. ER, endoplasmic reticulum.
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KEGG pathway enrichment analysis of the STRING structure from the 2D data revealed
several enriched pathways (Figure 3.22). The highest enriched KEGG pathway was protein
processing in the endoplasmic reticulum with an adjusted p-value of 0.0000168. The
ribosome pathway was enriched with a p-value of 0.0000192, in addition to PI3K-AKt
signalling (P= 0.0000391) and protein digestion and absorption (P=0.000175).

Five of the KEGG pathways identified were enriched in both 1D and 2D proteomic profiling
data. Ribosomal pathway was the most enriched in the 1D data and the 2™ most enriched
in the 2D data. Protein processing in the endoplasmic reticulum was the highest enriched
in the 2D data and the 3" most enriched in the 1D data. Focal adhesion was highly enriched
in both the 1D and 2D data, along with PI3K-AKt signalling and antigen

processing/presentation.

3.3.16  Gene ontology analysis

Results were further analysed with GoGorilla gene ontology analysis which comprises a
database of all known genes, classified according to cell biological processes, cell molecular
functions and cellular component (Ashburner et al., 2000). The results obtained from gene
ontology enrichment analysis in GoGorilla from significantly differentially expressed
proteins (between P-Ms and P-NMs) is too large to display graphically. REViIGO (i.e. reduce,
visualise gene ontology) was subsequently employed as it condenses the results from gene
ontology enrichment analyses, such as Go Gorilla, into simpler graphics for visualisation as
seen in Figure 3.23. Modified R code was used to create a REVIGO tree map for
differentially expressed proteins in the 1D data, with the proportion of the size of individual
squares and rectangles, and thus the area coverage, in the figure indicating the amount of
enrichment of the relevant biological process, molecular function and/or cellular

component.
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1D Biological Processes

1D Molecular Function
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1D Cellular component

Figure 3:23: REViGO gene ontology analysis of significantly differentially expressed
proteins in the 1D data.

Significantly differentially expressed proteins in the 1D data were inputted into GoGorilla
gene ontology software. Gene ontology terms were then inputted into REViGO to reduce
redundancies. The area of each component in the figure is representative of its

enrichment.

Using the differentially expressed proteins from the 1D data, several areas of gene ontology
were found to be highly enriched. The largest, and therefore the highest, enriched area
within biological processes was ‘mRNA metabolism’, followed by ‘regulated exocytosis’.
‘Extracellular matrix organisation’, ‘response to unfolded proteins’ and ‘cell activation
involved immune response’ were also areas of enrichment within the significantly
differentially expressed proteins from the 1D data. Within the molecular function gene
ontology area, the largest proportion of enrichment is in ‘telomeric DNA binding’. Second
to telomeric DNA binding are several other areas of enrichment, sharing similar
proportions, including ‘cell adhesion’, ‘structural molecular activity’, ‘cadherin binding’,

‘protein binding’ and several other ontologies involved in various aspects of binding.
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‘Secretory granule lumen’, ‘extracellular matrix (ECM)’ and ‘intracellular ribonucleoprotein
complex’ were all areas of enrichment within the cellular component area of gene

ontology.

2D Biological Processes
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2D Cellular Component

Figure 3:24: REViGO gene ontology analysis of significantly differentially expressed
proteins in the 2D data.

Significantly differentially expressed proteins from the 2D data were subjected to gene
ontology analysis using GoGorilla. Gene ontology terms and p-values were reduced of
redundancies (keeping most enriched terms) by REVIGO and presented in tree map
format, with the size of each area representative of the amount of enrichment of this

process, function and/or component.

Using the differentially expressed proteins identified in the 2D data, the highest area of
enrichment in biological processes was ‘regulated exocytosis’ and ‘cell activation involved
in immune response’ (Figure 3.24). ‘Extracellular matrix organisation’ and ‘viral
transcription’ was also highly enriched in the biological process area. ‘mRNA binding’ and
‘structural molecule activity’ was highly enriched in molecular function gene ontology areas
in addition to various other binding ontologies. Within the cellular component area,
‘extracellular matrix’ and ‘secretory granule lumen’ are highly enriched. ‘Membrane bound
organelle’, ‘cytosolic small ribosomal subunit’ and ‘vesicle’ gene ontologies were also

enriched.
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‘Regulated exocytosis’ and ‘cell activation involved in immune response’ were both highly
enriched biological processes in the REViGO results from both the 1D and 2D data. Within
molecular function, many binding ontologies were enriched in both the 1D and 2D data.
‘Extracellular matrix’ and ‘secretory granule lumen’ gene ontologies were highly enriched

within cellular component in both the 1D and 2D data.

3.3.17 Ingenuity pathway analysis

In addition to STRING/KEGG pathway enrichment analysis and GO/REViGO, ingenuity
pathway analysis (IPA) was performed on all of the 1D and 2D proteomic data as well as on
the significantly differentially expressed proteins from the 1D and 2D data (Figure 3.25).
The results were combined into one graph and ranked by the sum of the Log10 P-values for
each data set. A —log10 P-value cutoff of >5 (P< 0.00001) was employed on the sum of the
—log10 P-values for each pathway. IPA revealed a number of significantly enriched
pathways, the most significant being ‘EIF2 signalling’. Some data sets had insufficient data
to report an activation state (Zscore), for instance ‘EIF2 signalling’ in the significantly
differentially expressed proteins data sets following 1D and 2D fractionation. There were
several immune related pathways which were significantly enriched, including ’leukocyte
extravasation signalling’, ‘FC receptor-mediated phagocytosis in macrophages and
monocytes’, ‘production of nitric oxide and ROS in macrophages’ and ‘CD28 signalling in T
helper cells’. Furthermore, there were a number of significantly enriched pathways
associated with integrin signalling and intracellular signalling pathways, including ‘ILK
signalling’, ‘integrin signalling’, ‘PI3K/AKT signalling’ and ‘ERK/MAPK signalling’. Several
Rac/Rho signalling pathways were also identified, including ‘RhoGDI signalling’, ‘RhoA
signalling’ and ‘signalling by Rho family GTPases’ and ‘Rac signalling’. Furthermore,
‘signalling by Rho family GTPases’ was amongst the most activated pathways (mean Z score
= 2.377). Conversely, RhoGDI was one of the few pathways identified as inhibited (mean Z
score =-1.741).

A unique function of IPA is to identify upstream regulators based on the data provided. The
four data sets used for pathway analysis were also used for this function (Figure 3.26). It
was predicted that a number of upstream regulators were significantly enriched, several of

which were immune related, including TCR (mean Z score = 2.125), IgG (mean Z score = -
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3.769), IL15 (mean Z score = 3.024), IL6 (mean Z score = 2.556), IL1a (mean Z score = 2.498)
and TGFB1 (mean Z score = 3.029); some of these were associated with a positive Z score
whereas others had a negative Z score. MicroRNA 122, and more specifically miRNA-122-
5p, were also denoted by a negative Z score, thus predicted to be inhibited. Several other

noteworthy predicted upstream regulators were EGFR, TP63, PI3K, CTNNB1 and CD44.
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3.3.18  Weighted gene co-expression network analysis

Weighted gene co-expression network analysis (WGCNA) is a bioinformatics approach
which aims to highlight groups of genes (or proteins) which are heavily correlated (either
positively or negatively) with each other. Several pre-processing steps are required before
such a network can be derived (Figure 2.3). Correlated proteins were clustered into a total
of 6 modules and subjected to pathway analysis (Figure 3.27) and correlated to
clinical/histological characteristics (Figure 3.28). The ‘turquoise’ module had the greatest
number of significantly enriched pathways and protein complexes with the most
significantly being neutrophil degranulation. Other noteworthy significant results in the
‘turquoise’ module are protein processing in the ER, platelet degranulation and IL-12 family
signalling. The ‘blue’ module had the second most number of pathway enrichments,
including; ribosome, peptide chain elongation, and selenocysteine synthesis. The ‘yellow’
modaule had significant enrichment in neutrophil degranulation and keratinization. Module-
trait analysis identified several relationships between protein modules and
clinical/histological characteristics. The ‘brown’ module correlated positively with CD1
intratumoural stain (r=0.32, P=0.03). The ‘blue’ module was positively correlated with
metastasis (r=0.29, P=0.04) and inversely with CD1a intratumoural stain (r=-0.29, P=0.04).
The ‘turquoise’ module heavily correlated positively with both Clarks level (r=0.49,
P=0.0004) and inversely with CDla peritumoural stains (r=-0.5, P=0.0003). The ‘yellow’
module had an inverse correlation with differentiation (r=-0.39, P=0.006) and CD20 (r=-

0.33, P=0.02).
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Rihosome
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Biological pathways (Reactome)
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Apoptosis

Glycolysis

Interleukin-12 family signaling
Peptide chain elongation
Neutrophil degranulation
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Post-translational protein phosphorylation
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CORUM:126
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CORUM:306
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KEGG:05134
KEGG:01230
KEGG :05130
KEGG:05132
KEGG :04530

term ID

R-HSA-114608
R-HSA-109581
R-HSA-70171
R-HSA-447115
R-HSA-156902
R-HSA-6798695
R-HSA-192823
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R-HSA-6805567
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R-HSA-8957275
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Figure 3:27: Protein complex and pathway analysis of WGCNA modules.
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Modules identified by WGCNA were subjected to KEGG and Reactome pathway analysis in

addition to overlay of the CORUM database. Strong hierarchical filtering was employed to

reduce the number of terms and ease interpretation. Only results with P<0.001 are shown.
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Figure 3:28: Module-trait analysis of WCGNA.

WGCNA modules were correlated to clinical and histological characteristics using Pearson
correlation to identify relationships. In each cell, the upper value is the correlation
coefficient (r) and the lower value is the P-value. ME, module eigengene; CD1al, CD1a

intratumoural stain; CD1aP, CD1a peritumoural stain.

3.3.19 Topological data analysis (TDA)

Topological data analysis is a higher dimensional analysis strategy aimed at identifying
patterns in data and represents an alternative way of exploring data sets in addition to
classical statistical analysis. Using the non-parametric Kolmogorov-Smirnov (KS) test for
significance and various metrics (e.g. hamming, regression) for clustering, it enables an
alternative method of investigating large data sets. Structures are generated using 2 or
more variables, allowing colour mapping to reveal location of variables within sample
nodes. Nodes can consist of one or more samples, depending on the similarity between

them.

Currently, prognosis of ¢SCCs regarding whether or not they will metastasise is typically
calculated by a number of factors, including differentiation, diameter and depth. For this
reason, diameter, depth and differentiation of samples were inputted into Ayasdi to create
a topological model structure to assess how these factors relate to outcome (Figure 3.29).
Colour mapping of outcome onto the structure from the diameter, depth and
differentiation revealed groups of blue (P-NMs) and groups of red (P-Ms) with some
intermediate groups of yellow and green indicating nodes with both P-Ms and P-NMs

within them.
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Figure 3:29: Topological model of cSCC differentiation, diameter and depth against
subsequent development of metastases.

A topological model was created from samples’ diameter, depth and differentiation
values. A hamming metric was used with two neighbourhood lenses; resolution 40, gain
7.5. Differentiation was categorised into 1 (well differentiated) 2, (moderately
differentiated) and 3 (poorly differentiated). Outcome (i.e. subsequently metastasised or
did not metastasise) was colour mapped onto the resulting structure. Blue indicates P-

NMs, red indicates PMs and yellow and green represent a combination of P-NMs and PMs.

To determine if the same separation of P-NMs and P-Ms could be obtained using proteomic
abundancy data, a structure using just the identified proteins and their abundancies was
created in Ayasdi (Figure 3.30). Protein data from both 1D and 2D separation experiments
were capable of producing topological structures that separated P-NMs (blue) from P-Ms
(red). Intermediate groups (yellow) containing both P-Ms and P-NMs could be found

interlinking blue and red nodes.
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Figure 3:30: Topological model of 1D and 2D protein data against subsequent
development of metastases.

Using proteomic data from 1D and 2D LC experiments, a topological model was created in
Ayasdi using a hamming metric with two neighbourhood lenses. Lens resolution = 40, gain
= 7.5 for 1D data. Lens resolution = 33, gain = 7 for 2D data. Outcome (i.e. subsequently
metastasised or did not metastasise) was colour mapped on top of the structure. Blue
represents P-NMs, red represents P-Ms and yellows indicate nodes containing both P-Ms
and P-NMs. Protein data from 1D and 2D data resulted in topological structures which

largely separated the P-M and P-NM groups.
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To determine if protein driven topological structures have a correlation with
differentiation, depth or diameter, the structures created in Figure 3.30 were colour
mapped accordingly (Figure 3.31). Colour mapping of differentiation on the 1D and 2D
protein data topological structures revealed some equivocal separation of the clinical
groups. Depth and diameter in Figure 3.31 show less pronounce groups than differentiation
but nonetheless show a general increase in higher values towards the P-M outcome section

(shown in Figure 3.30).

1D 2D
Differentiation *.= - . ° ° | Y e
Depth L s e o ., . .
Diameter -* .. . - - ’ A S SRR
Low values High values
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Figure 3:31: Topological structures of 1D and 2D protein data in relation to
differentiation, depth and diameter of the cSCCs.

The topological structures for the 1D and 2D protein data were colour mapped for
differentiation, depth and diameter of the cSCCs. Blue and green represent lower values,
red and orange represent higher values (i.e. Larger in diameter or depth and less
differentiated). Colour mapping revealed some clustering of poor, medium and well
differentiated nodes, whereas the structures related to diameter and depth revealed
several loose clusters of nodes. Higher values of differentiation were seen in P-M outcome

regions identified in Figure 3.30.
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Creating a structure that can differentiate between P-M and P-NM clinical outcome from
the samples’ proteomes (Figure 3.30) enables the comparison between the groups to
establish driving variables that could be of importance in the transition between P-NMs
and P-Ms. A comparison of exclusively P-NM nodes (completely blue nodes) was compared
to exclusively P-M nodes (completely red nodes) from the topological structure from the
1D data in Figure 3.30. In doing so, a number of variables were seen to drive the different
groups with 40 of these variables being significant (Table 3.6). 80% of significant differences
(32 variables) were identified in previously performed analyses. The 8 newly identified
differences between the groups consisted of 6 proteins and 2 clinical parameters. The
clinical parameters found to drive the differences between the groups were diameter (P=
0.00808) and differentiation (P= 0.04685). The 6 newly identified significant proteins were
ACTN3 (P= 0.0984), SFN (P= 0.0239), OTUB1 (P= 0.0335), RPL18 (P= 0.0355), NAGK (P=
0.0397) and KRT74 (P=0.0443).

P-M and P-NM groups from the TDA structure of the 2D data in Figure 3.30 were compared
using Kolmogorov-Smirnov test for significance and revealed 59 variables significantly
different between the two groups (Table 3.7). 80% of these (47 variables) had been
previously identified in preceding analyses. Of the 12 newly identified variables, 2 were
clinical parameters (diameter and differentiation of the cSCCs) and the remaining 10 were
proteins. The 10 newly identified significantly different proteins were HSPB1 (P= 0.0054),
UQCRC1 (P= 0.0197), APOE (P=0.0236), DMKN (P= 0.0236), APRT (P= 0.0250), SARNP (P=
0.0298), KRT14 (P= 0.03349), IGKV3-20 (P= 0.03968), COL1A1 (P= 0.04435) and USP5 (P=
0.04435). 15% of all significantly different variables identified were found in both TDA
analyses of the 1D and 2D data.
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Table 3.6: Group analysis for TDA structure of 1D data comparing P-M and P-NM groups.

Variable Gene ID p-value KS Score

Outcome (metastasis) N/A 2.55E-09 1
P61158 ACTR3 3.19336E-05 0.816176471
P13010 XRCC5 0.001163116 0.769230769
P50991 CCT4 0.001702508 0.75
P07237 P4HB 0.001702508 0.595959596
Q9NSB2 KRT84 0.002467246 0.703296703
P50454 SERPINH1 0.003800385 0.588235294
P08133 ANXA6 0.003800385 0.582352941
P15880 RPS2 0.006610785 0.555882353
Q15019 SEPT2 0.008082509 0.637362637
P35222 CTNNB1 0.008082509 0.607142857
Diameter of cSCC N/A 0.008082509 0.528947368
000571 DDX3X 0.009223018 0.55
Q08043 ACTN3 0.009846365 0.615384615
Q02878 RPL6 0.012739434 0.539473684
043707 ACTN4 0.013573266 0.498746867
Q14697 GANAB 0.016377393 0.529411765
P62081 RPS7 0.017421443 0.50140056
P29692 EEF1D 0.018524639 0.516447368
Q6KB66 KRT80 0.02358712 0.634920635
P31947 SFN 0.02358712 0.476315789
P62857 RPS28 0.026551868 0.482954545
Q9NZT1 CALML5 0.026551868 0.482352941
P62277 RPS13 0.028154288 0.56043956
Q15063 POSTN 0.028154288 0.473684211
P62318 SNRPD3 0.031617112 0.623931624
P52597 HNRNPF 0.033485006 0.549450549
Q96FW1 OTuUB1 0.033485006 0.549450549
P08758 ANXAS 0.033485006 0.45112782
QI9NV66 TYW1 0.035449065 0.659090909
Q07020 RPL18 0.035449065 0.461111111
Q9uJ70 NAGK 0.03968188 0.573426573
P50395 GDI2 0.03968188 0.456582633
P36578 RPL4 0.041959012 0.566666667
P30044 PRDX5 0.041959012 0.456140351
P62140 PPP1CB 0.044349062 0.575757576
P16403 HIST1H1C 0.044349062 0.538461538
Q7RTS7 KRT74 0.044349062 0.538461538
P24821 TNC 0.044349062 0.470588235
Differentiation of cSCC | N/A 0.046856493 0.428229665
P15088 CPA3 0.049485877 0.504807692

Blue nodes (P-NM) and red nodes (P-M) from the topological structure for the 1D data in Figure 3.30 were compared using
Kolmogorov-Smirnov’s test. Orange shading in the table indicates proteins already identified in previous analyses. Blue

text indicates variables found in analysis of TDA structures for both 1D and 2D data comparing P-Ms and P-NMs.
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Table 3.7: Significantly different variables between P-M and P-NM groups in 2D TDA.

Variable Gene ID p-value KS Score

Outcome (metastasis) N/A 2.09E-10 1
Diameter of ¢cSCC N/A 0.000920998 0.590909091
Q15063 POSTN 0.000995911 0.633053221
P08779 KRT16 0.001256214 0.564393939
P61981 YWHAG 0.001977241 0.571428571
P06396 GSN 0.003067621 0.535714286
P25398 RPS12 0.003295976 0.709090909
P31949 S100A11 0.003539914 0.60130719
P50395 GDI2 0.004691266 0.528138528
P04792 HSPB1 0.005387613 0.507575758
P02751 FN1 0.005770175 0.513457557
Q15582 TGFBI 0.007071711 0.523923445
P02545 LMNA 0.010507637 0.477272727
Q99878 HIST1H2A) 0.014455892 0.466403162
P22626 HNRNPA2B1 0.014455892 0.462121212
P02675 FGB 0.015389755 0.464426877
P18206 VCL 0.016377393 0.476190476
P51884 LUM 0.016377393 0.476190476
P16615 ATP2A2 0.017421443 0.492105263
Q96FW1 OTuB1 0.019689815 0.529411765
P31930 UQCRC1 0.019689815 0.65
P04179 SOD2 0.019689815 0.567307692
P08758 ANXAS5 0.02091991 0.443181818
P02649 APOE 0.02358712 0.522556391
Q6E0U4 DMKN 0.02358712 0.578947368
P48668 KRT6C 0.02358712 0.45
P07741 APRT 0.025030636 0.45021645
P02538 KRT6A 0.028154288 0.428030303
P62158 Calm1 0.028154288 0.43452381
P27816 MAP4 0.028154288 0.454761905
P63000 RAC1 0.028154288 0.454761905
P01871 IGHM 0.029841473 0.625
P82979 SARNP 0.029841473 0.554945055
P40121 CAPG 0.029841473 0.441558442
P11021 HSPA5 0.031617112 0.424242424
P35908 KRT2 0.031617112 0.424242424
P62314 SNRPD1 0.033485006 0.507936508
P02533 KRT14 0.033485006 0.420454545
P29401 TKT 0.033485006 0.45
043390 HNRNPR 0.033485006 0.430641822
P46782 RPS5 0.035449065 0.543956044
P14625 HSP90B1 0.035449065 0.420948617
Q07960 ARHGAP1 0.035449065 0.510121457
P60660 MYL6 0.03968188 0.412878788
Differentiation of cSCC N/A 0.03968188 0.412878788
P12111 COL6A3 0.03968188 0.412878788
P09525 ANXA4 0.03968188 0.422360248
P60174 TPI1 0.03968188 0.412878788
P01623 IGKV3-20 0.03968188 0.504201681
Q562R1 ACTBL2 0.041959012 0.492063492
P36957 DLST 0.041959012 0.444444444
Q14697 GANAB 0.041959012 0.428571429
P62937 PPIA 0.041959012 0.409090909
P02452 COL1A1 0.044349062 0.40530303
P08123 COL1A2 0.044349062 0.40530303
P45974 USP5 0.044349062 0.575757576
P12110 COL6A2 0.046856493 0.401515152
P68104 EEF1A1 0.046856493 0.401515152
P24821 TNC 0.049485877 0.409090909
P62277 RPS13 0.049485877 0.436507937

Blue nodes (P-NM) were compared to red nodes (P-M) from the topological structure for the 2D data in Figure 3.30 using
Kolmogorov-Smirnov’s test to investigate driving variables. Orange shading in the table indicates proteins previously
identified in prior analyses. Blue text indicates variables identified in analysis of TDA structures for both 1D and 2D data

comparing P-Ms and P-NMs.
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3.4 Discussion

This study aimed to identify biomarkers of metastasis in cSCC using FFPE samples. The initial
direction of the study focused on IHC staining of P-M and P-NM samples to look at certain
immunological parameters which might have relevance to development of cSCC

metastases while also becoming familiar with histological parameters of ¢SCC.

It has previously been reported that there are higher numbers of tumour associated B cells
in primary melanomas that did not metastasise than in those that did metastasise and that
a higher number of tumour associated B cells is associated with significantly better overall
survival in cutaneous melanoma (Garg et al., 2016). In this study, we stained for B cells to
answer the question of whether this difference could also be seen in ¢SCC in addition to
gaining experience in skin histology which would ultimately aid in microdissection for
proteomics. However, this current study found no difference in CD20+ cell numbers
between P-M and P-NM in ¢SCCs (Figure 3:3), although, higher numbers of CD20+ cells was
associated with a longer time to metastasis (Figure 3:5). Staining for CD1a, a Langerhans
cell marker, revealed there were significantly more Langerhans cells in P-NM than P-M
tumours (Figure 3:4). Furthermore, a significant relationship was found between
intratumoral CD1a cells and time to metastasis (Figure 3:6). It is unclear whether this is a
causal association, i.e. whether the tumour has gone on to metastasise because there are
less Langerhans cells in the primary cancer, or whether the reduced numbers of Langerhans
cells are an epiphenomenon of tumours that metastasise. Langerhans cells are a specialised
type of dendritic cell residing in the epidermis (Merad et al., 2002). Much of the published
research in the literature on Langerhans cells and cSCC has investigated Langerhans cells
contribution to ¢SCC development from normal skin (Lewis et al., 2015, Schwarz et al.,

2010), rather than on Langerhans cells contribution to metastasis.

Langerhans cells can promote T cell activation (Fujita et al., 2012) and it has been reported
that there are more CD8+ cytotoxic T cells in P-NMs than P-Ms (Lai et al., 2015, Lai et al.,
2016). It is possible that the increase in Langerhans cells in P-NMs may promote T cell
activity, hindering carcinogenesis progression and therefore preventing it from
metastasising, but it is not clear whether this would occur via antigen presentation to CD4+
T cells by MHC class Il or via cross-presentation to CD8+ T cells. However, it has been

reported that murine epidermis lacking Langerhans cells developed carcinogenesis less
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readily than those with Langerhans cells intact, suggesting a pro-oncogenic role for
Langerhans cells (Lewis et al., 2015). One could argue that the latter observation is not
relevant to UVR-induced skin cancer because that study used chemical carcinogenesis and
it is known that Langerhans cells metabolise 7,12-dimethylbenz[alanthracene (DMBA) to
the carcinogen DMBA-trans-3,4-diol (Modi et al., 2012). In the current study, the fewer
Langerhans cells in P-M may be due to the malignant keratinocytes causing a reduction in
the number of Langerhans cells in the tumour, or possibly the tumour not being seen as
“threatening” by the immune system, or due to an increased migration of Langerhans cells
to lymph nodes in an attempt to activate an immune response to a more aggressive cSCC.
Related to this, it is known that Langerhans cells can induce Tregs in some circumstances
(Seneschal et al., 2012, Gomez de Aguero et al., 2012); for example UVR damaged
Langerhans cells have been reported to migrate to lymph nodes and activate T regulatory
cells, a mechanism which may promote tumorigenesis (Schwarz et al., 2010). In P-M ¢SCCs,
it is possible that migration of Langerhans cells to the lymph nodes might result in the
increase in T regulatory cells that has been reported in P-Ms previously (Lai et al., 2015, Lai
et al., 2016) thus resulting in a dampened immune response and allowing the tumour to
grow and metastasise. Furthermore, ingenuity pathway analysis revealed upstream
regulator, TGBF1, a protein which is in part, responsible for Treg cell’s suppressive function

(Wu et al., 2016), as significantly activated in the P-M group (Figure 3:25).

Extracting proteins from FFPE samples is a complex technique, with no optimal protocol
established to date (Appendix 1). The current study found that using a combination of 2D
online fractionation and an extraction method using RapiGest surfactant gave a high
protein vyield, consistently producing better yields than many results in the current
literature (Appendix 1). Furthermore, analysis of this method revealed that almost half of
the proteins identified were found in all three repeats and that the protein abundancies
were very similar between samples, suggesting good reproducibility. 1D fractionation is an
established method in our laboratory for other types of proteomics and therefore it was
decided to undertake both 1D and 2D fractionation as independent methodologies,
producing two separate sets of results for c¢cSCCs. Over 4,000 unique proteins were
identified in this study, which is one of the highest proteome coverages achieved from
proteomics studies using FFPE samples (Appendix 1). Furthermore, this study has achieved

the highest number of protein IDs compared to any other proteomic studies on FFPE cSCCs
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in the published literature, including the most recent studies by Azimi et al (Azimi et al.,
2016, Azimi et al., 2019)and Foll et al (Foll et al., 2017) which achieved 1,310, 3574, and

2,102 protein IDs, respectively.

To establish which statistical analysis to carry out to compare the P-M and P-NM groups,
the proteomics data had to be assessed to see whether it had a normal (Gaussian)
distribution. As previously stated, proteomics data suffers from the inability to detect
proteins below certain concentrations and therefore it can suffer from the “floor effect”.
The floor effect (also referred to as the basement effect) occurs when data cannot be
recorded below a certain level and thus the distribution of data is skewed because the true
lowest values may not be present (Karp and Lilley, 2007). Therefore, a conservative non-
parametric approach was used for statistical analysis of the proteomics data in this current
study. Similarly to other ‘omics’ studies, significance testing large data sets has a probability
of producing false positives. In smaller data sets, family-wise error rates through tests such
as Bonferroni, are usually applied. However, doing this in large data sets can cause false
negatives as criteria become more stringent with every variable measured (Noble, 2009).
Statistical advice (from Research Design and Methodology, University of Southampton)
suggested that plotting all p-values, obtained through statistical analysis, into a histogram
which would clarify whether the data was enriched in true significant results (higher in the
P<0.05 region) or whether it represented a set of significant p-values which were due to
chance alone (where the histogram of p-values would be expected to look flat). Different
percentages of missing values were considered during the analysis, but a missing value of
50% was chosen in order to include the highest numbers of samples per protein yet still
have confidence in the results. The option to impute missing values was considered, but it
is known that not imputing data results in higher statistical power and confidence
(Bantscheff et al., 2012, Webb-Robertson et al., 2015), therefore no imputation was carried

out.

Proteomic quantification data produced through 1D and 2D fractionation was explored in
a variety of ways. Although a number of driver genetic mutations are known to exist in
¢SCC, many of the proteins encoded by these genes (including NOTCH1, NOTCH2, p53,
HRAS, NRAS, BRAF, PI3K (South et al., 2014, Pickering et al., 2014, Li et al., 2015) did not

appear in the data in the current study. Some proteins such as CDKN2A, Kras and others
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encoded by mutated genes reported in the South et al (2014), Pickering et al (2014) and Li
et al (2015) publications appeared but in very few samples. However, the effects of the
mutations are more likely to alter function than abundance of the mutated protein.
Admittedly, IHC studies on cSCC have identified elevated levels of nuclear p53 in cSCCs
(Missero and Antonini, 2014) but the use of FFPE samples in the proteomics is likely to have
resulted in preferential enrichment of cytosolic proteins rather than those in the nucleus
and/or membranes. Support for this comes from the use of the software programme,
Panther, in the present study which indicated that approximately 10% - 15% of the proteins
identified by mass spectrometry following 1D and 2D separation were attributed to a

nuclear or membrane location.

In order to identify proteins relevant to cSCC metastasis, multiple analyses were
performed; these included classical statistics (Mann Whitney U test), String analysis/KEGG
pathway enrichment, Gene ontology analysis, IPA, WGCNA and TDA. These analyses aimed
to explore the data in different perspectives in order to provide a comprehensive view of
the differences between P-M and P-NM cSCCs and to ultimately identify important
pathways and proteins involved in the development of metastases from this cancer. In view
of the vast numbers of differentially expressed proteins in P-Ms and P-NMs, it is not
possible to discuss each individual protein in detail, but some of these proteins reoccur in
several different types of analyses, suggesting that they play a role in driving metastasis.
For example, Tenascin C (TNC) was identified in almost all of the analyses, including its
involvement in multiple KEGG pathways, having a statistically significant difference in its
levels between P-Ms and P-NMs, and being a driver between P-M and P-NM groups in the
TDA. Tenascins are large extracellular glycoproteins involved in various cell functions
including adhesion, signalling, proliferation and migration (Pas et al., 2006). TNC is elevated
in several cancers including brain (McLendon et al., 2000), breast (loachim et al., 2002),
cervical (Buyukbayram and Arslan, 2002), gastro-intestinal (Gazzaniga et al., 2005), head
and neck (Atula et al., 2003), and melanoma (llmonen et al., 2004) and there is evidence
that it may be involved in metastases of cancers from breast (Oskarsson et al., 2011) and
colorectal origins (Gulubova and Vlaykova, 2006). Another protein found in most of the
above analyses is glucosidase-a neutral AB (GANAB), an enzyme involved in cleaving

glycoproteins. Interestingly, GANAB has been reported to show reduced expression in head
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and neck cancers (Chiu et al., 2014), but there has been little research on this protein in

other cancers.

Some proteins identified, such as transketolase (TKT), Rab GDP dissociation inhibitor 2
(GDI2), lumican (LUM), periostin (POSTN) and fibrinogen beta chain (FGB) were found to
be significantly differentially expressed in multiple analyses but were not seen in the KEGG
pathway analysis. Nonetheless, many of these proteins have been recognised as involved
in cancer development. For example, TKT is a cellular enzyme involved in metabolism and
has been reported to counteract oxidative stress and promote liver cancer development
(Xu et al., 2016). GDI2 has been reported as a metastasis suppressor in bladder cancer by
inhibiting Rho GTPases in the cytoplasm (Moissoglu et al., 2009). In this current study,
however, we found an increase in both GDI2 and RAC1 (a Rho GTPase) in P-Ms and,
moreover, it has been reported previously that GDI2 promoted epithelial-mesenchymal
transition (which is relevant for metastasis (Kalluri and Weinberg, 2009)) through RAC1
mediated NF-kB activation (Cho et al., 2014). LUM, an extracellular matrix protein has been
reported as a potential biomarker in cisplatin-resistant head and neck cancer (Yamano et
al.,, 2010) and POSTN is an extracellular protein recognised as a promoter of epithelial-
mesenchymal transition and has been reported in several cancers, promoting metastasis

(Morra and Moch, 2011).

Many ribosomal proteins were identified as being differentially expressed, particularly
ribosomal protein 13 (RPS13) which was identified in almost all analyses. RPS13 has been
found in other cancers, for instance in gastric cancer (Guo et al., 2011) and in addition to
RPS13, other ribosomal proteins such as RPS7, RPS20, RPS2, RPS28, RPL4, RPL6 and RPS10
were also found to be significantly different between P-Ms and P-NMs in many analyses
performed in the present study. Cancerous cells proliferate rapidly and as a result require
increased protein synthesis (White-Gilbertson et al., 2009), but it is not clear whether the
increase in ribosomal proteins in P-Ms is causally contributing to development of

metastasis or whether this increase is simply a result of a more aggressive type of cancer.

STRING/KEGG pathway analysis and gene ontology analysis identifies “areas of interest”
based on significantly differentially expressed proteins. STRING analysis in the current
study revealed clusters of interacting proteins, and mapping KEGG pathways on top of this

structure revealed several pathways significantly enriched between P-Ms and P-NMs. One
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such “pathway”, involving multiple proteins, was extracellular matrix receptor interactions
(Figure 3:22). In addition, gene ontology analysis identified enrichment in extracellular
matrix and extracellular matrix organisation (Figure 3:23, Figure 3:24). These findings
suggest a strong involvement of extracellular matrix interactions in development of ¢SCC
metastasis. The extracellular matrix is a complex network of proteins secreted by cells of a
specific tissue (Venning et al., 2015). For metastasis to occur, a cancerous cell must
separate from the primary tumour and invade adjacent tissue (Brodland and Zitelli, 1992).
This is dependent on the composition of the extracellular matrix (ECM) and the ability of
the cell to invade and migrate within this. Several proteins have been identified in this study
as promoters of cancer cell migration in the ECM, including POSTN (Siriwardena et al., 2006,
Michaylira et al., 2010), TNC (Venning et al., 2015) and ANXAS (Peng et al., 2016, Ding et
al., 2017). Furthermore, promotion of epithelial-mesenchymal transition of cells through
interactions with ECM proteins has been reported, including several identified in this
current study; examples are POSTN (Morra and Moch, 2011), GDI2 (Cho et al., 2014) and
TNC (Nagaharu et al., 2011).

Additional to these findings, this current study identified an enrichment in focal adhesion
in gene ontology (Figure 3:23, Figure 3:24) and KEGG pathway analysis (Figure 3:20, Figure
3:22), involving multiple highly significantly differentially expressed proteins (e.g. TNC, FN1,
RAC1, VCL and multiple collagens). Focal adhesion is the formation of large assemblies
between the proteins in the extracellular matrix and the integrins on the cell surface, and
the resulting cell-matrix adhesions can have an effect on cell adhesion, migration and
intracellular signalling (Nagano et al., 2012). IPA revealed significant activation of integrin
signalling in P-Ms compared to P-NM (Figure 3:25). A number of integrins have been
identified, as have their ligands, in the published literature, many of which were seen to
differ in amount between P-Ms and P-NMs in this current study (e.g. TNC, FN1, POSTN, VCL
and various collagens). Integrins are transmembrane proteins which can alter intracellular
signalling, and have been reported to be involved in ¢SCC tumorigenesis and metastasis
(and have been reviewed in a number of papers, e.g. (Eke and Cordes, 2015, Duperret and
Ridky, 2013, Janes and Watt, 2006). A study investigating pancreatic cancer identified
periostin (POSTN) as a ligand for a6 B4 integrin complex, resulting in an activation of PI3K-

AKt signalling (Baril et al., 2006). Furthermore, TGFB has also been reported to induce
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expression and intracellular localisation of EGFR (increased expression seen in Figure 3:25)

which in turn activates the PI3K-Akt signalling pathway (Wendt et al., 2010).

In this current study, PI3K-AKt signalling was found to be significantly enriched through
KEGG pathway analysis (Figure 3:20, Figure 3:22) and IPA (Figure 3:25, Figure 3:26). PI3K-
AKt signalling plays a major role in cellular function, regulating proliferation, growth and
survival, and when dysregulated is well known to play an important role in cancer (Osaki et
al., 2004, Danielsen et al., 2015) and development of metastasis (Yao et al., 2017, Li et al.,
2017). The data in the current study also suggests an upregulation of ILK signalling in P-Ms
(Figure 3:25), a pathway which has been reported to act with PI3K-Akt signalling to
promote epithelial-mesenchymal transition (EMT), an important process in tumorigenesis
and metastasis (Li et al., 2014). Many of the proteins identified in PI3K-AKt signalling in this
current study were also involved in focal adhesion and/or extracellular matrix receptor
interactions. These data collectively suggest an interaction between ECM, focal adhesion

and PI13K-AKt signalling.

Another significantly enriched area involving the ECM comprised exosomes, exocytosis and
extracellular signalling seen in GO analysis (Figure 3:23, Figure 3:24) and IPA (Figure 3:25).
Exocytosis is the process of ejecting molecules from the cell via vesicle fusion with the
plasma membrane. A role for ANXAS has been reported in exocytosis and membrane repair
(Bouter et al., 2011), as has the calcium ion binding protein CALMLS5 (albeit in neurones)
(Burgoyne and Clague, 2003), with both of these proteins found in the present study to be
significantly differentially expressed between P-Ms and P-NMs. Furthermore, it has been
suggested that primary tumours can secrete factors (through exocytosis) to transform
distant sites into pre-metastatic niches (Kaplan et al., 2005), through effect on extracellular
signalling. Exosomes secreted from primary tumours have received a lot of recent attention
due to their ability to prime these pre-metastatic niches for metastatic spread (Costa-Silva

et al., 2015, Hoshino et al., 2015, Peinado et al., 2011).

WGCNA is a tool used to identify groups of heavily correlated genes in a dataset and relate
them to clinical characteristics or identify pathway enrichment within them. Six modules of
heavily correlated proteins were identified in this study, and these were arbitrarily labelled
with a colour. The only module which was correlated (either positively or negatively) with

metastasis was the blue one. This blue module expressed enrichment in many pathways
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including various ribosomal activities and translation. Cancerous cells undergo rapid
proliferation and therefore require timely protein synthesis and, generally, more
aggressive tumours proliferate faster than less aggressive tumours. The blue module and
its enrichment in protein processing and folding, seen in this current study, are therefore
of no surprise. Furthermore, proliferation requires nucleotide binding and therefore the
enrichment seen in these areas is also to be expected. The yellow module displayed
enrichment in keratinisation and is understandably positively correlated to differentiation.
The turquoise module showed significant pathway enrichment and was positively

correlated to Clarks and CD1a peritumoural staining.

Another analytical tool for the exploration of large data sets being used in ‘omics’ studies
is topological data analysis (Bigler et al., 2016). Using 3 current major prognostic markers
of ¢SCC (differentiation, depth and diameter), a TDA structure was generated in the current
study that largely distinguished outcome between most samples into P-Ms and P-NMs. This
in itself suggests that TDA is a useful method to distinguish between P-M and P-NM
tumours using certain histological characteristics. The proteomic data in the current study
generated a TDA structure that largely distinguished between P-Ms and P-NMs. This, taken
in conjunction with the earlier analysis of the proteomic data, suggests that TDA might be
useful as an approach to identify a useful prognostic marker to distinguish between primary
cSCC lesions which will and those which won’t go on to metastasise. It is unclear at the
present time whether a whole proteomic TDA or a targeted assay comprising of several
proteins would produce a better prognostic marker, however, each approach will require

further investigation and validation on a larger sample size.

To date, this is one of the largest mass spectrometry based proteomics studies on cSCC.
Furthermore, it is one of the largest mass spectrometry based proteomic studies carried
out on FFPE samples. More importantly, this study identified a number of potential

biomarkers for metastasis in cSCC in addition to identifying several key pathways involved.
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Chapter 4: Verification and validation of cutaneous
squamous cell carcinoma protein biomarkers using targeted

mass spectrometry and machine learning

4.1 Introduction

Multiple reaction monitoring (MRM) is a targeted proteomic approach which utilises
isotopically labelled peptides by the incorporation of heavy isotopes, to accurately
determine the concentration of the native counterpart in a sample. Depending on the
preciousness of the tissue samples and the number of samples, it is common to create a
reference calibration curve of increasing amounts of heavy peptides to avoid the need to
create a calibration curve within each sample. Typically, a sample is ‘spiked” with a known
concentration of heavy labelled peptide which is then ionised, usually by ESI. lons are then
separated in an initial mass analyser (often a quadrupole) to only allow the heavy and
native peptides of interest to pass through. lons are then fragmented using collision-
induced dissociation and the resulting products, known as transitions, are detected with a
final mass analyser (Picotti and Aebersold, 2012). Using the known amount of heavy
peptide and the ratio of heavy to light peptide, it is possible to calculate the concentration

of the light (i.e. native) peptide (Figure 4.1).

The development of an MRM experiment requires prior information of the target to be
measured, usually inferred from previous data acquired. Peptides specific to proteins are
usually identified from a discovery experiment or can be selected based upon previously
acquired proteomic data from the Proteomics IDEntification (PRIDE) database (Vizcaino et
al., 2016). However, peptides identified using PRIDE must first be validated in one’s tissue
samples to ensure that the peptides are indeed present (and in sufficient quantities to be
able to be measured). Alternatively, it is possible to create an archive of spectra from
previous experiments, where peptides identified have corresponding spectra in a library
known as a “spectral library”. This library can then be used to identify unique proteins,
peptides and fragment ions (transition ions) within the samples measured. Skyline is a
software designed to aid in the development, implementation and analysis of MRM

experiments. Skyline is capable of creating a spectral library from previous data and can
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identify unique peptides to specific proteins (MacLean et al., 2010, Liebler and Zimmerman,
2013). In addition to choosing unique peptides, it is important to pick unique fragments
(transition ions) for each peptide. This is because MRM, as the name implies, looks at
multiple targets, therefore it is imperative that two or more fragments with the same mass

are not selected, otherwise the measurement of these ions will give inaccurate results.
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Figure 4:1: Flow diagram of multiple reaction monitoring.

Top; A calibration curve of heavy labelled peptide is created: Samples are ionised and
heavy labelled peptides are then isolated in a mass analyser. Peptides are fragmented in a
CID cell, then precursors and transitions are measured. The peak area and known
concentration are plotted to give a calibration curve. Bottom; Samples are spiked with
heavy labelled peptides of interest and then ionised: Peptides of interest are isolated and
these peptides are fragmented in the CID cell. A mass analyser measures the amount of
heavy and light ions of interest. The peak area of heavy peptide is plotted on a calibration
curve to find it’s true concentration. The concentration of the heavy peptide is divided by
the ratio of the heavy to light peptides to calculate the concentration of the light peptide.

CID, collisional induced dissociation.

MRM has been used in a wide array of disciplines (Liebler and Zimmerman, 2013), including
animal husbandry (Kusebauch et al., 2018) and meat authentication (Watson et al., 2015)
but is most notably used in systems biology (Elschenbroich and Kislinger, 2011) and

biomarker discovery/validation (Picotti and Aebersold, 2012). In terms of systems biology,
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examples where MRM has been used include elucidation of the beta-catenin signalling
pathway (Chen et al., 2010) in addition to measuring a network of growth proteins from
S.cerevisiae (Picotti et al., 2009). Biomarker discovery and validation using MRM has led to
candidate biomarkers for ovarian cancer (Wang et al., 2017), colorectal cancer (Kume et
al., 2014), oral cancer (Chen et al., 2017b) and prostate cancer (Yocum et al., 2010) amongst

others.

As MRM produces an absolute quantification measurement, it is possible to do classical
statistical analysis on the results, in addition to more elaborate interrogation. An
increasingly attractive area in medicine and biomarker discovery is predictive modelling.
Predictive modelling is the technique of using machine learning on known data to predict
unknown data. Machine learning has been used in a variety of fields, including, but not
limited to, diabetes (Kavakiotis et al., 2017), depression (Dipnall et al., 2016) ageing (Fabris
et al., 2017) and cancer (Hornbrook et al., 2017, Lynch et al., 2017, Yu et al., 2016, Gupta
et al., 2014).

4.2 Methods

A total of 101 samples were used in this chapter, consisting of 22 P-M samples (of the 24
P-M samples used in discovery) and 22 P-NM samples (of the 24 P-NM samples used in

discovery) for verification and 28 P-M and 29 P-NM samples for validation.

4.2.1 Selecting suitable proteins for verification and validation

Our laboratory had already carried out some previous work on transketolase (TKT) and
therefore had some isotopically labelled heavy peptides of this protein. As TKT was
identified as significantly differentially expressed in both 1D data and 2D data, it was
decided to take forward for verification and validation. A list of all combinations of proteins
that were significantly differentially expressed in both 1D data and 2D data, where one
protein was always TKT, was created. For example, the first row of the list would be TKT,
protein 2, protein 3, followed by the second row which would be TKT, protein 2, protein 4,

and so on.
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1D data and 2D data were both, separately, split into a training data set (67% of all data)
whereby a glm model (using each combination of proteins as predictors) was trained
through 5-fold cross validation repeated 3 times and allowing an automatic tune length of
5. The remaining 33% of data was used as a test set to test the final models produced from
the training stage. The 1D and 2D AUCs of each model from the different combinations of
proteins were summed to rank models and identify which proteins could best predict

metastasis in the discovery cSCC proteomic data.

4.2.2 Using targeted proteomics to verify and validate original findings

A spectral library of the discovery proteomics data was created as outlined in chapter
2.9.3.1. Targeted proteomics was carried out as described in chapter 2.9.3.2. Briefly,
isotopically heavy labelled peptides were initially analysed using a Synapt G2-Si high
resolution mass spectrometer, to assess their suitability as MRM targets. A serial halving
dilution of each peptide was then analysed in a background cSCC peptide matrix to

determine calibration data.

100fmol of each isotopically heavy labelled peptide was spiked into 22 P-M samples (of the
24 P-M discovery samples) and 22 P-NM samples (of the 24 P-NM discovery samples) and
analysed on a Synapt G2-si mass spectrometer. Calibration data achieved in the initial
analysis of heavy labelled peptides was used to calculate the true amount of each heavy
labelled peptide in each sample. Using the light: heavy ratio, it was then possible to

calculate the amount of native peptide in each sample.

4.2.3 Time to metastasis plot

R and the packages survminer and survival were used to create “time to metastasis” plots.
Time “0” was determined as the date of excision and counted in days until metastasis
occurred or in occasions where metastasis was present at excision, time of metastasis was
also defined at 0. In instances where metastasis was not present (i.e. P-NMs), time to
metastasis was set at 5 years (1,825 days), which was the cut off for the P-NM criteria. High
and low expression was defined as either above or below the median, respectively. P values

were obtained by log-rank test.
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424 Predictive modelling on verification and validation data

Verification and validation MRM data was pooled together (to total 101 samples) and split
into training (67%) and test sets (33%). Various algorithms were used to create models on
the training set, whereby the predictors were the MRM peptide data. Models were created
using 10 fold cross validation repeated 3 times. Models were compared to assess

conformity and correlation to select best models for stacking.

The final model was tested on the test data to produce a ROC curve. Current guidelines
were used on the data to acquire a sensitivity and specificity which was then plotted on the
ROC curve. Sensitivities and specificities were also taken from the Roscher et al (Roscher et

al., 2018) paper.
4.3 Results

43.1 Selecting suitable proteins for Multiple Reaction Monitoring (MRM) analysis

Machine learning on the discovery proteomic data was performed to identify which
proteins had the best power to predict metastasis. As previously mentioned, our laboratory
had access to transketolase (TKT) heavy labelled peptides and, as a result, all models were
created to incorporate TKT (uniprot ID: P29401), the other 2 markers being one of every
combination of proteins that were significantly differentially expressed between P-M and
P-NM in both the 1D and 2D data. The top model consisted of P29401 (TKT), P39656
(Dolichyl-diphosphooligosaccharide--protein glycosyltransferase 48 kDa subunit, DDOST)
and P08758 (Annexin A5, ANXA5) (Table 4:1). An AUC of the ROC curve of 0.9 and 0.938

was produced on 1D and 2D data, respectively.
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Table 4.1: Top 10 protein combination models produced to classify samples as P-M or P-

NM.
Markerl Marker2 Marker3 1D 1D ROC 1D ROC 2D 2D ROC 2D ROC SUM 1D
ROC  Sensitivity  Specificity = ROC  Sensitivity ~ Specificity =~ & 2D ROC
AUC AUC AUCs
P29401 P39656 P08758 0.9 1 0.667 0.938 1 0.75 1.838
P29401 P51884 Q9NZT1 | 0.889 1 0.667 0.767 1 0.6 1.656
P29401 Q15582 P08758 | 0.875 0.75 1 0.778 1 0.5 1.653
P29401 P51884 P08758 | 0.813 0.75 1 0.833 1 0.6 1.646
P29401 P50990 P08758 | 0.933 0.833 1 0.7 0.5 1 1.633
P29401 P39656 P51884 0.88 0.8 1 0.75 0.5 1 1.63
P29401 P62937 P08758 | 0.939 1 0.714 0.667 0.429 1 1.605
P29401 P07237 P51884 | 0.905 0.857 1 0.7 0.833 0.6 1.605
P29401 Q15063 P62277 0.85 0.6 1 0.75 0.857 0.75 1.6
P29401 P08758 Q9NZT1 | 0.857 0.833 0.857 0.738 0.429 1 1.595

ROC, receiver operating characteristic. AUC, area under curve.
Identifiers are Uniprot IDs

4.3.2 Selecting suitable peptides for Multiple Reaction Monitoring (MRM) proteins

Once the biomarker candidates of interest had been selected, they were matched against
the Skyline spectral library (created from proteomics data produced in the discovery phase)
to assess their suitability to be used for MRM analysis. Skyline was also used to identify
unique peptides for DDOST and ANXA5 which had multiple, high intensity transition ions
(Figure 4.2). The three heavy labelled TKT peptides we had in our laboratory were matched
against the spectral library where it was highlighted that only 1 of the 3 were detected in
the discovery data and so could not possibly be correctly referenced (as the ms/ms spectra
is unknown). Nonetheless, the remaining 7 peptides were present in the discovery data
with high spectral counts (number of spectra per peptide) and at high intensities, indicating
they would be good MRM candidates. Table 4.2 is a table of the unique peptides selected
for each protein with their m/z and the most suitable transition ions. Therefore the 6
peptides for DDOST and ANXA5 were synthesised with heavy isotopes incorporated into

their structure.
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Figure 4:2: Unique peptides of candidate biomarkers showed several transition ions
identified in spectral library.

Three Unique peptides for both DDOST and ANXAS5 were identified and compared to the
spectral library created from the discovery proteomic data. Each peptide displayed a
number of transition ions found in the spectral library and at high intensities. As work on
TKT had been carried out previously in our lab, we used the heavy labelled peptides
already purchased. 1 of these 3 peptides was identified in the cSCC spectral library with

good transition ions, the remaining 2 were not.
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Table 4.2. The unique peptides selected for each protein of interest with their m/z and

transition ions

PROTEIN  PEPTIDE M/ZAT  TRANSITIONIONS  MODIFIED PEPTIDE M/ZAT  TRANSITION IONS
CHARGE SEQUENCE CHARGE 2
2
648.3199, 535.2358, e 15 656.3341, 543.25,
TKT IIALDGDTK 4732662 "o IIALDGDTK([*3Ce, 5No] 4772733
1055.6208, e 15 1065.629, 853.4766,
TLVLLDNLNVR 6353799 o\ icas 6153573 THVLLDNLNVRI®Co #Ni 640384
637.3556, 395.2289, e 15 645.3698, 403.2431,
DDOST | GFELTFK 4212268 0,700 GFELTFK[*3Ce, No] 4252335 ST oo,
872.5352, 759.4512, e 15 882.5435, 769.4595,
SSLNPILFR 523.8033 400 151100 SSLNPILFR[VCe BNa] 5288074 e oo 1851272
1376.7268, 1386.7350,
1132.6572, e 15 1142.6655,
GLGTDEESILTLLTSR 8529543  ooo" oo “con 41 e GLGTDEESILTLLTSRINCs, *Na]  857.9585 o e o™ ) oo
476.2827 486.2910
ANXAS 807.4723, 964.3883, 817.4806, 704.3965,
FITIFGTR 477.774  593.3406, 480.2565,  FITIFGTR[*Cs, *Na] 482.7781  603.3488, 490.2648,
333.1881 343.1964
890.5094, 777.4254, 900.5177, 787.4336,
SEIDLFNIR 553.7957  662.3984,549.3144,  SEIDLFNIR[3Cs, Na] 558.7998  672.4067, 559.3226,
175.1190 185.1272

TKT, Transketolase. DDOST, Dolichyl-diphosphooligosaccharide--protein glycosyltransferase 48 kDa subunit.
ANXAS5, Annexin A5. m/z, mass to charge ratio

4.3.3 Predictive power of DDOST and ANXA5

As DDOST and ANXAS were selected by creating a predictive model in conjunction with TKT
and it was unclear whether there would be sufficient data from TKT to contribute to such
a model, DDOST and ANXAS were assessed for their predictive power alone (Figure 4.3).
Using discovery proteomic data of DDOST and ANXAS5, a number of different algorithms
were used to build predictive models, including glm (Nelder and Wedderburn, 1972), knn
(Cover and Hart, 1967), svm (Vapnik and Chervonenkis, 1974), nb (Duba and Hart, 1973),
c5.0 (Breiman et al., 1984), rf (Breiman, 1999), bagging (Breiman, 1996) and cart (Steinberg,
2009). A full list of the algorithms used in this thesis can be found in Appendix 4. Models
were trained on DDOST and ANXAS discovery proteomic data using 5 fold cross validation

repeated 3 times.

The glm algorithm produced a model with the highest ROC score and therefore this was
explored further. 1D and 2D proteomic data were trained and tuned using the glm
algorithm (Figure 4.4) and an average AUC (area under the curve) of 0.82 was obtained
from and AUC of 0.84 on 2D proteomic data and 0.80 on 1D proteomic data. These models
suggest that DDOST and ANXA5 would have potential predictive power without

incorporating TKT into the prediction.
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Figure 4:3: Demonstrating the predictive ability of DDOST and ANXA without TKT.

To establish whether a predictive model could be produced if the MRM on TKT didn’t

produce useful data, a number of different, simple, machine learning algorithms were

trained using 5 fold cross-validation repeated 3 times on DDOST and ANXAS5 discovery

proteomic data. It was evident that, in the absence of TKT data, DDOST and ANXA5 still

have significant potential to predict outcome. Box and whiskers depict resampling

performance range. Dots report median, boxes give interquartile range and whiskers give

range. Hollow points depict outliers. Glm, generalised linear model. Knn, K’'s nearest

neighbour. SVM, support vector machine. Nb, Naive Bayes. Rf, Random forest. Cart,

classification and regression trees.
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Figure 4:4: DDOST and ANXA5 have an average AUC of 0.82 when trained using 5 fold
cross validation repeated 3 times on DDOST and ANXADS discovery proteomic data.

glm was identified as a potentially suitable algorithm so it was trained and tuned on 1D
(blue) and 2D (green) DDOST and ANXAS5 discovery proteomic data to reveal a model

capable of categorising P-M and P-NM samples. AUC, area under the curve

4.3.4 MRM peptide calibration curves

Heavy labelled peptides were initially analysed on a synapt G2-Si high resolution mass
spectrometer in targeted acquisition mode at a concentration of 100fmol to assess the
chromatography of each peptide. Chromatograms and accompanying mass spectra were
imported into Skyline for analysis (Figure 4.5). Chromatography demonstrated good
intensities and good peak widths/shapes of precursor ions and associated transitions ions.
The chromatograms of all of the peptides were within the predicted retention time window
apart from Peptide 1, ANXA5, which was earlier than predicted. Nonetheless, it was the
only peak of significant intensity where the precursors and transition ions matched and was

therefore selected as the peptide peak.
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Figure 4:5: MRM chromatography of the selected heavy peptides.

Each of the seven peptides produced clear chromatographic peaks, with matching peaks

corresponding to MRM transitions. Intensities were sufficient for reliable measurements

to allow quantification of the heavy peptide and to correlate it with the original amount

loaded heavy peptid. Peptide 1 for ANXAS5 was not observed in the predicted retention

time window (blue shading) but was confirmed via its corresponding transition ions.

Once quantification of heavy peptides had been established by assessing chromatography,

calibration curves for each heavy labelled peptide were produced to enable later

determination of the native peptide concentration in unknown samples. A two fold dilution

series from 200fmol down to 0.78125fmol of each heavy peptide was used for the MRM

experiments, with 1ug of ¢SCC peptide background matrix added to each sample as an

internal standard. Peak areas of TKT followed the expected linear trend of the dilution

series and the standard cSCC background matrix appeared consistent (Figure 4:6).
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Figure 4:6: Calibration of TKT heavy peptide 1 for MRM

Calibration data of the heavy labelled TKT peptide was created using MRM on a twofold
dilution of heavy peptide amounts from 200fmol to 0.78125fmol (blue). 1ug of cSCC
peptide background matrix was used as internal standard (red). Peptide sequence and

m/z shown for both light (red) and heavy, (blue) peptides.

A similar dilution calibration curve was produced for DDOST (Figure 4.7) and ANXAS (Figure
4.8) peptides. Each peptide had a linear trend, as was to be expected of a dilution series.

The internal standard was also fairly consistent between peptides.
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Figure 4:7: Calibration of DDOST heavy peptides 1,2 and 3 for MRM.

Calibration data of the heavy labelled DDOST peptide was created using MRM on a
twofold dilution of heavy peptide amounts from 200fmol to 0.78125fmol (blue). 1ug of
cSCC peptide background matrix was used as internal standard (red). Peptide sequence

and m/z shown for both light (red) and heavy, (blue) peptides.
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Figure 4:8: ANXAS peptide calibration data from MRM of ANXA5 heavy peptides 1, 2
and 3.

Calibration data of the heavy labelled ANXAS peptide was created using MRM on a two
fold dilution of heavy peptide amounts from 200fmol to 0.78125fmol (blue). 1ug of cSCC
peptide background matrix was used as internal standard (red). Peptide sequence and

m/z shown for both light (red) and heavy, (blue) peptides.

A linear regression of the MRM results of each heavy peptide compared with the sample
amount of each heavy peptide was performed to obtain a slope and an R? value. The R?
value is also known as the coefficient of determination and is an indication of how
predictive one variable is on the other, in this case, how much the peak area can predict
the analyte concentration of the heavy peptide. The slope can later be used to calculate
the analyte concentration in a sample, when the peak area of the light and heavy peptides
of that sample has been obtained using MRM. All of the selected heavy peptides had an R?
value above 0.9, indicating a good ability to quantify analyte concentration using MRM. TKT

had an R% of 0.9827 (Figure 4.9) and each of the three peptides for DDOST had R? values of
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0.9773, 0.9288, and 0.9814 (Figure 4.10) and for ANXA5 had R? values of 0.9245, 0.9916,
and 0.9355, (Figure 4.11).
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Slope: 4.6668E+3
1 R-Squared = 0.9827
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Figure 4:9: Linear regression of TKT peak area of MRM peptide to inputted analyte
concentration.
MRM heavy peptide data was imported into Skyline to acquire peak areas for each
concentration and a linear regression model fitted between MRM peak area and analyte

concentration.
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Figure 4:10: Linear regression of DDOST peak area of MRM peptides to inputted analyte
concentrations.

Dilution calibration curve was imported into Skyline to acquire peak areas for each
concentration and a linear regression model fitted between MRM peak area and analyte

concentration.
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Figure 4:11: Linear regression of ANXA5 peak area of MRM peptides to inputted analyte
concentration.

Dilution calibration curve was imported into Skyline to acquire peak areas for each
concentration and a linear regression model fitted between MRM peak area and analyte

concentration.

4.3.5 Verification of protein biomarkers from discovery proteomics

After the production of suitable calibration data for each MRM peptide, each discovery
proteomic sample was investigated using MRM, with the addition of 100fmol heavy
peptide. Results were imported into Skyline and corresponding peaks identified and
selected. The peak area of the heavy peptide was used with the linear regression from the
calibration data to calculate the “corrected” amount of heavy labelled peptide in each
sample. Using the corrected amount of heavy peptide and dividing it by the ratio of light
(native) to heavy, the amount of native peptide in the sample could be accurately
guantified. There was no significant difference of the TKT peptide measured between P-M
and P-NM (Figure 4.12). However, the MRM results indicated that there was significantly
more DDOST in the P-M than P-NM samples, consistent with what had been previously
identified in the discovery proteomics (Figure 4.13). Furthermore, there was also
significantly more ANXAS in the P-M than P-NM cSCCs, which was also similar to that
observed in the discovery proteomics (Figure 4.14). An average for each of the proteins,
DDOST and ANXAS, were calculated used the mean of their three respective peptides. Both

of these means were significantly different between P-M and P-NM.
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Figure 4:12: MRM verification of TKT.
Concentration of the TKT native peptide was determined by dividing the corrected
concentration of the heavy peptide by the ratio of heavy:light peptide peaks (as per figure

4.1). Mann-Whitney U test for significance. Error bars are the median with interquartile

range
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Figure 4:13: MRM verification of DDOST peptides and overall protein.

Concentration of native peptide was determined by dividing the calculated concentration
of the heavy peptide by the ratio of heavy:light peptide peaks. An average of all 3 peptides
was calculated using the mean. Mann-Whitney U test for significance. Error bars are

median with interquartile range
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Figure 4:14: MRM verification of ANXAS5 peptides and overall protein.

Concentration of native peptide was determined by dividing the calculated concentration
of the heavy peptide by the ratio of heavy:light peptide peaks. An average of all 3 peptides
was calculated using the mean. Mann-Whitney U test for significance. Error bars are

median with interquartile range

4.35.1 Histological verification of L-Plastin

Although MRM successfully verified the discovery findings, we chose to investigate
whether these findings could also be validated via a third, independent method,
immunohistochemistry. L-plastin is a protein found in 68% of carcinomas and 53% of solid
tumours (Lin et al., 1993) and is also known to have an important role in the activation of
T-cells (Wabnitz et al., 2007). For these reasons, it was hypothesised there would be more
L-plastin+ cells in the P-M group than the P-NM group. To investigate this,
immunohisochemical staining for L-Plastin was carried out on the discovery proteomic
samples (Figure 4.15). L-Plastin+ cells were identified predominantly in the stroma of the
cSCCs with few L-Plastin+ cells in the tumour islands. Consistent with the result of the
discovery proteomics, there was significantly more L-Plastin+ cells in P-M samples

compared to P-NM ¢SCCs (P=0.0136).
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Figure 4:15: Immunohistochemical staining of L-Plastin in P-M and P-NM samples.

Slides were subjected to standard IHC protocols and stained using a rabbit monoclonal
antibody to L-Plastin. Representative images of L-Plastin stain are shown on the right side
of the figure, where top panel is P-M and bottom panel is P-NM. P values obtained through

Mann Whitney U test for significance.

4.3.6 Machine learning on Multiple Reaction Monitoring (MRM) verification data

Using the data from the MRM performed on the cSCCs above (henceforth referred to as
the “MRM peptide verification data”), different machine learning algorithms were trained
using 5 fold cross validation repeated 3 times. The peptide MRM data (Figure 4.16) and
“protein” MRM data (mean of peptides) (Figure 4.17) was trained on 13 different machine
learning algorithms. The results from these algorithms suggested that although the MRM
data for DDOST and ANXA5 have some predictive power, there wasn’t an obvious model
that outperforms the others; in fact most of the models appear to be relatively weak
learners, scoring <0.8 AUC. To further validate the above findings, it was decided upon to
carry out DDOST and ANXA5 MRM analysis on a previously unseen separate sample cohort

of cSCCs.
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Figure 4:16: MRM peptide verification data for DDOST and ANXA5 were subjected to
several different machine learning algorithms to assess the predictive power of the data.
5 fold cross validation repeated 3 times was carried out on all MRM peptide verification
data. Error bars are confidence intervals. Nb, Naive Bayes. SVM, support vector machine.
Knn, K’s nearest neighbour. Glm, generalised linear model. Xgb, extreme gradient
boosting. Rf, random forest. Lda, linear discriminant analysis. Cart, classification and

regression trees.
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Figure 4:17: MRM protein verification data for DDOST and ANXA5 were subjected to

several different machine learning algorithms to assess the predictive power of the data.

5 fold cross validation repeated 3 times was carried out on all MRM peptide averages (the

“protein” data). Error bars are confidence intervals. Nb, Naive Bayes. SVM, support vector

machine. Knn, K’s nearest neighbour. GIm, generalised linear model. Xgb, extreme

gradient boosting. Rf, random forest. Lda linear discriminant analysis. Cart, classification

and regression trees.

4.3.7

Validation of DDOST and ANXAS results on new set of cutaneous Squamous

Cell Carcinoma (cSCC) samples

A new set of cSCCs were selected and processed for proteomic analysis according to the

same criteria as the discovery samples. A table of clinical characterisations of the samples

used for validation can be found in Table 4:2. Briefly, there was 28 P-M samples and 29 P-

NM samples, each with a similar male to female ratio. There were more, well differentiated

tumours in the P-NM group and more, poorly differentiated tumours in the P-M group, as

was to be expected. P-M samples were also typically larger in diameter and depth,

compared to P-NM samples.

143



Chapter 4

Table 4.3: Clinical and histological details of ¢cSCC samples used for validation MRM

analysis.
P-M P-NM
Number of Samples 28 29
21 20
Male (75.00%) (68.96%)
Female / 9
(25.00%) (31.03%)
Well differentiated 0 1
(0.00%) (37.93%)
. . 8 12
Moderately differentiated (28.57%) (41.38%)
Poorly differentiated 20 6
(71.43%) (20.69%)
Perivascular invasion > 1
(17.86%) (3.45%)
Perineural invasion 6 .
(21.43%) (3.45%)
Immunosuppressed 4 >
(14.29%) (17.24%)
Mean Tumour depth (mm) 8.54+7.19 4,45 +2.93
Mean Tumour diameter
(mm) 32.91+38.85*  13.33+8.19

P-M, Primary metastatic. P-NM, Primary non-metastatic.
*outlier with 210mm diameter included

MRM was carried out in the same manner as for the earlier verification MRM analysis.
Calibration data that were created for the verification MRM experiments were also used in
the validation cohort of samples to calculate the “corrected” amount of heavy peptide in
the ¢SCC samples and subsequently the amount of the native peptide of interest. Similar
to the results of the discovery proteomics and the verification MRM experiments, there
was significantly more DDOST (Figure 4.18) and ANXAS (Figure 4.19) in the P-M than in the

P-NM samples.
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Figure 4:18: MRM Validation of DDOST peptides and overall protein.

Concentration of native peptide was determined by dividing the calculated concentration

of the heavy peptide by the ratio of heavy:light peptide peaks on MRM. An average of all

3 peptides was calculated using the mean. Mann-Whitney U test for significance. Error

bars are median with interquartile range
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Figure 4:19: MRM validation of ANXA5 peptides and overall protein.

Concentration of native peptide was determined by dividing the calculated concentration
of the heavy peptide by the ratio of heavy:light peptide peaks on MRM. An average of all
3 peptides was calculated using the mean. Mann-Whitney U test for significance. Error

bars are median with interquartile range

4.3.8 DDOST and ANXAb5’s effect on time to metastasis

The MRM data from all the cSCC samples (discovery/verification groups and validation
groups) along with the number of days until metastasis occurred, from the initial
presentation in the dermatology clinic, were used to create a Kaplin-Meier survival plot.
Where patients had metastasis at the time of their presentation to the dermatology clinic,
time to metastasis was recorded as O days. Expression of DDOST and ANXA5 was
categorised as either high or low depending on whether it was above or below the median,
respectively. There was a significant positive association between high DDOST expression
and a quicker time to metastasis (Figure 4.20). There was also a significant positive

association between high ANXAS expression and a quicker time to metastasis (Figure 4.21).
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Furthermore, high expression of both DDOST and ANXA5, combined, was significantly

Chapter 4

associated with a shorter time to metastasis (Figure 4.22).
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Figure 4:20: The effect MRM DDOST data has on time to metastasis.

Time to metastasis was deduced from the number of days between the initial dermatology

clinic attendance and the identification of metastasis. High and low expression was defined

as above or below the median as per Figure 4:18. P value obtained through Log Rank test.
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Figure 4:21: The effect MRM ANXADS data has on time to metastasis.

Time to metastasis was determined from the number of days between the initial
dermatology clinic attendance and the identification of metastasis. High and low
expression was defined as above or below the median from Figure 4:19. P value obtained

through Log Rank test.
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Figure 4:22: The effect combined high expression of MRM DDOST and ANXAS data has
on time to metastasis.

High expression denotes samples that had high DDOST and high ANXAS5 expression
(defined as above the median value for each of these proteins). Time to metastasis was
deduced from number of days between the initial dermatology clinic attendance and the

identification of metastasis. P value calculated using Log Rank test.

4.3.9 Machine learning on all Multiple Reaction Monitoring (MRM) data

It was decided that the peptide MRM data would be more suitable for modelling than the
protein MRM data as this is a simplification of the original (peptide) data. For instance, the
proteins MRM data is derived from the peptide data, and so by using the “raw” peptide
data, hidden trends should be maintained, whereas if the averaged protein data was used,
these might become less prominent. All MRM samples (from the verification and validation
data) were pooled together, totalling 50 P-M samples and 51 P-NM samples. For machine
learning and to build a predictive model which could later be tested, these samples were
randomly split into training (67%) and testing (33%) cohorts. Models were trained using 10
fold cross validation repeated 3 times. 13 widely varying machine learning algorithms were
trained on the training cohort (Figure 4.23). None of the tested models appeared
significantly better than the others. Furthermore, it appeared that similar to the verification
MRM, all of the tested models were relatively weak learners, highlighted by their relatively

low AUC scores.
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Figure 4:23: Applying different machine learning algorithms to the MRM data from the
combined verification and validation samples.

All peptide MRM data was split into training (67%) and testing (33%) cohorts. Different
algorithms were trained on the training set using 10 fold cross validation repeated 3 times.
Error bars are confidence intervals. Nb, Naive Bayes. Xgb, extreme gradient boosting. Gbm,
gradient boosting model. Rf, random forest. Svym, Support vector machine. Knn, K’s

nearest neighbour. Lda, linear discriminant analsysis, glm, generalised linear model.

“Ensemble modelling” is the approach of taking several weak learners and using them
together to create a strong, top level learner. Stacked ensemble modelling is a type of
ensemble modelling and is the process of creating several weak learners which attempt to
solve a problem and using a meta-learner on these models’ predictions to solve the same
problem better. For a stacked model to work, there needs to be little conformity between
model predictions as if there is conformity amongst models, the correlated predictions will
inherently be weighted more by the meta-learner. With this is mind, a correlation matrix
of predictions produced by the models tested was generated (Figure 4.24). A high
correlation is hard to define, but typically any pairwise correlation over 0.75 is probably too
correlated for a stacked model. Using the correlation matrix, it was identified that gimnet,
knn, adaboost, xgbDART and gbm did not seem overly correlated but still had good AUCs

suggesting each of the models are correctly classifying different samples.
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Figure 4:24: Testing for correlation of the mathematical models applied to the MRM
data.

Predictions from models were correlated and visualised in a correlation matrix to assess
their conformity. A group of mathematical models of the MRM data which exhibit low
correlation is desirable for generation of a stacked ensemble model, because a meta-level
learner applied to multiple uncorrelated models can learn from each model and correctly
classify samples where models disagree. Nb, glmnet, knn, adaboost, xgbDART and gbm
show minimal correlation and thus these models displayed suitability for stacking. Nb,
Naive Bayes. Xgb, extreme gradient boosting. Gbm, gradient boosting model. Rf, random
forest. Svm, Support vector machine. Knn, K’s nearest neighbour. Lda, linear discriminant

analysis, glm, generalised linear model. Blue crosses indicate correlation above 0.75.

A typical meta-learner is either a decision tree or neural network as it is able to identify
complex patterns in simple data, i.e. predictions from weaker learners. For this reason, an
extreme gradient boosted tree algorithm was used. This in itself is a type of ensembling
called boosting whereby weak learners are sequentially applied to a dataset and learn after
each iteration with the weight of each learner depending on its accuracy. An overview of

the stacked ensemble model produced can be seen in Figure 4.25.
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Figure 4:25: Overview of stacked model used to predict metastasis in cSCC from DDOST
and ANXA5 MRM data.

Selected models, based on their High ROC score and low correlation to other models, were
trained on the DDOST and ANXA5 MRM data from the training group of cSCCs (67%) using
10 fold cross validation repeated 3 times. Predictions from each model were then
submitted to a top level meta-classifier which was also trained using 10 fold cross
validation repeated 3 times. The final top level model was then used to predict the

likelihood of metastases in the testing data set of cSCCs (33%).

The stacked ensemble model produced a ROC curve with an AUC of 0.929 (confidence
interval 0.8277 — 1) (Figure 4.26). This suggested that the model is better at predicting
likelihood of metastases from primary c¢SCC than any other clinical scoring systems
currently in use, including the British Association of Dermatologists (BAD) and American
Joint Committee on Cancer (AJCC) scoring systems. An optimal threshold in the ROC curve
generated by the model would give rise to a sensitivity of 88.24% and a specificity of
94.12%, or if sensitivity were to be favoured, a sensitivity of 94.12% and a specificity of

82.36%.
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Figure 4:26: The final predictive model using DDOST and ANXA5 MRM data.

The stacked ensemble model was tested on the test set of data and a corresponding ROC
curve produced. Evaluation of current clinical scoring systems in use that determine high
and low risk of metastasis were applied to the cSCC samples used for MRM (red points). A
study by Roscher et al assessed current clinical scoring systems and reported their
sensitivities and specificities (blue points). AUC confidence interval = 0.8277 - 1. BAD,
British Association of Dermatologists. EDF, European Dermatology Forum. BWH, Brigham
Women's Hospital. AJCC, American Joint Committee on Cancer. UICC, Union for

International Cancer Control. AUC, area under the curve.

4.4 Discussion

The aim of this chapter was to identify potentially important proteins from the discovery
proteomic data generated in chapter 3 and validate those findings as well as assess their
potential as prognostic biomarkers. From the discovery proteomics, there was a total of
133 potential biomarkers, however when reduced to the number of significantly
differentially expressed proteins in both the 1D and 2D data, this number reduced to 33.
Nonetheless, it is still challenging to explore this many proteins in depth (e.g. using MRM)

and assess their prognostic value.
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MRM was chosen as the most practical and viable option to verify the results of the
discovery proteomics. Although other assays can be performed on peptides such as peptide
ELISAs and western blots, these could be very expensive because antibodies would need to
be raised against specific sequences of peptides identified in the initial proteomics.
Furthermore, there is a risk of variable specificity because certain domains of peptide
sequences might be homologous to other similar proteins. MRM is a specific and sensitive
targeted MS approach capable of accurately quantifying peptides in a sample. As our
laboratory had previously done MRM work on TKT (a protein identified as significantly
differentially expressed in both 1D and 2D discovery proteomics), it was decided to use this

protein, with 2 others for the MRM analysis.

Logistic regression was carried out on each combination of proteins, where the number in
each combination was 3, one of which was always TKT. This machine learning gave rise to
hundreds of models, of which the one with the highest ROC AUC in both the 1D and 2D
data was TKT, DDOST and ANXAS. Unfortunately, it was later discovered that of the three
peptides our laboratory currently had for TKT, only one was present in our cSCC discovery
proteomics spectral library, meaning that the others had not been identified in the
discovery proteomics. This resulted in just one peptide for TKT, which was likely to be of
value, and which subsequently revealed no significant difference in TKT between P-M and
P-NM. Typically, it is suggested to have 3 or more transitions (fragmentations) per peptide
and have 3 or more peptides per protein to generate an accurate representation of the
true abundance of a protein. Therefore, the results from a single TKE peptide meant that it
could not be concluded with any confidence whether there was or was not more TKT in P-
M than P-NM cSCCs, and thus TKT was omitted from future analysis. Nonetheless, all 6
peptides for DDOST and ANXAS (3 for each) could be detected in the spectral library and

what’s more with a high spectral count and high intensity.

In light of this, DDOST and ANXA5 were employed for MRM verification/validation and
modelling, without TKT. ANXAS is a protein commonly used in flow cytometry to identify
apoptotic cells as it gets localised to the outer membrane during this process. It is also
known to have anticoagulative properties and may indeed be partly responsible for several
placenta-mediated pregnancy complications (Aranda et al., 2018, Rogenhofer et al., 2018).

moreover, it has been suggested that ANXAS5 may be a suitable prognostic marker for other
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types of cancers, including colorectal cancer (Xue et al., 2009, Sun et al., 2017) , renal cell
carcinoma (Tang et al., 2017) and liver cancer (Peng et al., 2016). The mode of action of
ANXAS in promoting development of metastases is not fully understood, but it has been
proposed that the increase in ANXA5S associated with poorer prognosis could be due to
activation of the PI3K/Akt/mTOR signalling pathway (Tang et al., 2017), or could be partially
attributed to ANXA5’s effect on integrin signalling (Sun et al., 2018). It has been found that
knockdown of ANXAS leads to suppressed expression of various molecules in the integrin
signalling pathway, which can have an anti-progressive effect on tumours (Sun et al., 2018,

Janes and Watt, 2006).

There is limited research surrounding DDOST and any role it may play in cancer. Its typical
cellular function is to catalyse the transfer of high mannose oligosaccharides to asparagine
residues on newly formed polypeptides (Roboti and High, 2012). Nonetheless, one study
found that there was higher average expression of DDOST in positive metastatic lymph
nodes (1.29) compared to negative lymph nodes (0.4) in gastric cancer (Hasegawa et al.,
2002). The human protein atlas also recognises DDOST as an unfavourable marker in renal
cancer, liver cancer, and head and neck cancer but a favourable marker in endometrial
cancer (Human Protein Atlas, 2018). The mechanisms by which DDOST could enable
metastasis is unknown but may involve glycosylation and the impact this has on cancer
progression (Pinho and Reis, 2015). DDOST has several aliases, including OST-48
(oligosaccharide transferase-4) and AGE-R1 (advanced glycosylation end products -
receptor 1). AGE’s are proteins or lipids which have been glycated, potentially altering their
function (Baraka-Vidot et al., 2015), and were first identified in their role in degenerative
diseases such as diabetes (Yamamoto and Sugimoto, 2016), chronic kidney disease (Clarke
et al., 2016) and Alzheimer’s disease (Drenth et al., 2017). AGE’s are a ligand for DDOST and
upon binding have been associated with a pro-inflammatory effect (Byun et al., 2017).
Another significantly different protein identified in this study which has been found to have

a pro-inflammatory effect is L-plastin.

As previously stated, L-plastin has been reported to be expressed in 68% of carcinomas and
53% of other solid tumours of nonepithelial origin (Lin et al., 1993). Furthermore, it has
been identified to be important in the activation of T-cells (Wabnitz et al., 2007). Given that

previous studies have identified higher numbers of T-cells in P-M samples compared to P-
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NM samples and specifically higher T-Reg cells in P-M compared to P-NM (Lai et al., 2016,
Lai et al., 2015), it was decided to immunohistochemically stain for L-plastin to identify if
there is also more L-plastin in P-M samples compared to P-NM samples. This study found
this to be significantly true (p=0.0136) and therefore it is possible that L-plastin is activating
T-cells and potentially T-Reg cells, in a pro-oncogenic fashion. Simultaneously, in Chapter 3
of this thesis, PI3K-Akt signalling was identified as a potential key pathway involved in the
metastasis of cSCC. In light of this, it has been identified that PI3K-Akt signalling promotes

prostate cancer metastasis via upregulating L-plastin (Chen et al., 2017a).

Using modelling, DDOST and ANXA5 showed predictive prognostic value in the discovery
proteomic data, and verification/validation MRM found more DDOST and ANXAS5 in P-M
than P-NM cSCCs. A previous study by Azimi et al (Azimi et al., 2016), used FFPE cSCC
samples to identify biomarkers of cSCC by comparing normal skin to ¢cSCC, but they did not
identify ANXAS5 or DDOST in their list of significantly differentially expressed proteins.
Moreover a very recent study by the same group, investigating proteomic differences
between Bowen'’s disease, actinic keratosis and cSCC FFPE samples did not identify ANXA5

or DDOST (Azimi et al., 2019).

There are currently no widely used protein prognostic biomarkers for metastasis from
primary ¢SCC used in the clinic today. This current study identified significantly more
DDOST and ANXAS in P-M samples than P-NM samples in three separate phases; discovery,
verification on the same discovery samples using a targeted approach and finally validation
in a previously unseen separate sample cohort. Using verification and validation MRM data,
there was a total of 101 samples, each with 6 accurate peptide measurements, i.e. 3 for
DDOST and 3 for ANXAS. With the size of this sample set and the accurate nature of the
measurements of DDOST and ANXAD, it was decided to create a machine learning model
of the data to identify to what extent these proteins could predict metastasis in cSCC. Each
of the models produced were relatively weak learners and so a stacked ensemble approach

was taken.

There are three main types of ensemble modelling; bagging, boosting and stacking.
Typically, bagging is used to decrease variance, boosting used to reduce biasing and
stacking employed to generally improve predictions. The resulting stacked model produced

an AUC of 0.929 (Cl = 0.8277 - 1), with an optimal accuracy of 91.18% (sensitivity = 88.24%,
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specificity = 94.12%). Moreover, the model out performed every current clinical scoring
system at every threshold (every edge of the ROC curve) in both sensitivity and specificity.
In addition, high DDOST and ANXAS each showed a positive association with a quicker time
to metastasis from the primary ¢SCC and their combined high expression has a positive,
highly significant association with a quicker time to metastasis. This highlights that not only
are these two proteins good indicators of future metastasis but that they seem to be
associated with how long it takes for cSCC to metastasise. In conclusion, this study verified
and validated findings outlined in chapter 3 in addition to identifying the prognostic

predictive potential of two key proteins; DDOST and ANXAS.
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Chapter 5: Proteomic characterisation of Melanoma skin

tumours

5.1 Introduction

Melanoma arises when melanocytes acquire genetic mutations and become cancerous.
Melanocytes are pigment producing cells, typically residing in the skin but can be found in
other areas of the body such as the uvea (Shain et al., 2019). Cutaneous melanoma rates in
the UK have increased by 175% in males between 1993-1995 and 2013-2015 and 95% in
females during the same period (Cancer Research UK, 2018). Melanoma accounts for 5%
of all cancer in the UK population and is the 5" most common type of cancer, excluding
NMSCs (Cancer Research UK). Melanoma is the 5™ leading cancer in males and the 7t
leading cancer in females in the USA (not including NMSCs) (Siegel et al., 2013). It has been
reported that on average, an individual suffering from melanoma could lose 20.4 years of
potential life, almost 4 years more than that of all other malignant cancers where the

potential loss of life has been estimated 16.6 years (Ekwueme et al., 2011).

Melanoma diagnosis is typically carried out through visual examination by a healthcare
professional, usually a dermatologist or a doctor with a special interest in dermatology. In
addition to histological confirmation on the excised lesion, immunohistochemical staining
is used to support the diagnosis. Several histological stains have been identified as markers
which help to identify melanoma, these include S-100, HMB45, melan-A/MARTI and MITF
(Kashani-Sabet, 2014). More recently however, a type of artificial intelligence known as a
deep convolutional neural network (CNN) was employed to diagnose malignant melanoma
clinically from a library of almost 130,000 images. The resulting model was able to predict

malignant melanoma with as much accuracy as human experts (Esteva et al., 2017).

Although the use of CNN allows for early diagnosis and subsequently faster treatment, it is
still inevitable that some of these primary tumours may go on to metastasise. It is believed
that one third of melanoma patients will experience recurrence (Soong et al., 1998),
whether it be local, nodal or distant. Despite the capability of melanoma to spread to any

organ, the most frequent sites of distant metastasis are the liver, bone and brain and the 5
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year survival rate for metastatic melanoma is <15% (Tas, 2012). Furthermore, it has been
identified that the site of recurrence has a significant effect on the mortality rate, with

those experiencing metastasis to visceral sites being at the greatest risk (Soong et al., 1998).

Due to the high mortality rate associated with metastatic melanoma, it is crucial to identify
prognostic markers for melanoma and indeed markers for metastasis as well. LDH has been
described as “an independent and highly significant predictor of survival outcome among
patients with stage IV [melanoma]” (Balch et al., 2009). Despite its use in the clinic, studies
have criticised its ability to predict prognosis due to its low sensitivity and specificity
(Bougnoux and Solassol, 2013). Several other biomarkers have been proposed as potential
prognostic markers; these have included, but are not limited to, CXCR1, CXCR2, CXCR3,
CXCR4, CCR5, CCR7 and CCR10. However, studies have suggested that out of this list, only
CXCR4 has enough prognostic data to be appropriately used as a prognostic marker for
melanoma (Scala et al.,, 2005, Gould Rothberg et al., 2009). Furthermore, a study
investigating the efficacy of several suggested prognostics marker for melanoma (BRAF,
MMP2, P27, Dicer, Fow7 and Tip60) found that although BRAF and MMP2 are strong
prognostic markers for stage 1 and stage 2 melanoma respectively, there are very few
prognostic markers useful for late stage AJCC melanomas and metastatic melanoma (Cheng

et al.,, 2015).

A proteomics study which utilised raw mass spectra of 205 serum samples from 101 AJCC
stage 1 melanomas and 104 AJCC stage 4 melanoma was able to correctly predict the stage
over 80% of the time (Mian et al., 2005). More recently however, proteomic studies have
begun to look at FFPE tissue due to the abundance of available samples and the amount of
complimentary clinical data which comes with them. A study on melanoma FFPE identified
171 proteins which varied between benign nevi, primary melanoma and metastatic
melanomas. Despite this being the largest proteomic FFPE melanoma study to date, it
focuses on the differences between different lesions (i.e. benign nevi and melanoma) and

melanomas at notably different stages (primary and metastatic) (Byrum et al., 2013).

In this chapter, primary melanomas which subsequently metastasised and primary
melanomas which did not metastasise were subjected to proteomic analysis to identify
protein biomarkers of metastasis. It is vital to identify markers of metastasis in patients

who have not gone on to metastasise yet in an attempt to identify factors which might
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allow clinicians to prevent the development of metastases. Furthermore, it is crucial to
identify whether a tumour is likely to metastasise after excision because melanoma is
frequently excised with no evidence of metastasis at that stage yet metastases present at

a later date.

5.2 Methods

A total of 48 samples were used in this chapter, consisting of 24 Pmel-M samples and 24
Pmel-NM samples. These samples were stratified for Breslow depth to ensure there was
no significant bias in the sample cohort. The optimised method developed in chapter 3 was

used for the discovery phase in this chapter.

5.2.1 Proteomic analysis of melanoma samples

Full materials and methods of the discovery proteomics methods can be found in chapter
2.6. Samples were quantified using a Direct Detect infrared spectrometer outlined in
chapter 2.7 and cleaned up using a C18 reverse phase technique (full material and methods
can be found in chapter 2.8). Samples were then analysed using a Waters Synapt G2-Si high

resolution mass spectrometer using the methods described in chapter 2.9.

5.2.2 Bioinformatics and data analysis

Chapter 2.10.2 describes the way in which protein concentrations were normalised.
Statistical analysis was performed on the results by comparing Pmel-M data to Pmel-NM
data. Whole proteome analysis was carried out through the use of volcano plots as
described in chapter 2.11.1 and topological data analysis as outlined in chapter 2.11.5.
Significantly differentially expressed proteins were further analysed using STRING, gene

ontology and WGCNA as outlined in chapters; 2.11.2, 2.11.3, 2.11.4, respectively.

5.2.3 Targeted mass spectrometry of melanoma

Only one protein, Keratin 9, was identified as significantly differentially expressed between
Pmel-M and Pmel-NM and so was selected as one of the three proteins to progress to
targeted mass spectrometry. Our laboratory had already performed a targeted analysis of

GSN in another experiment and as such we had isotopically heavy labelled peptides for this
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protein, therefore it too was selected for MRM analysis. The final protein selected was

based off of the discovery data and biological relevance.

A spectral library of the discovery proteomics data was created as outlined in chapter
2.9.3.1. Targeted proteomics was carried out as described in chapter 2.9.3.2. Briefly,
isotopically heavy labelled peptides were initially analysed using a Synapt G2-Si high
resolution mass spectrometer, to assess their suitability as MRM targets. A serial halving
dilution of each peptide was then analysed in a background melanoma peptide matrix to

determine calibration data.

100fmol of each isotopically heavy labelled peptide was spiked into 24 Pmel-M samples
and 24 Pmel-NM samples and analysed on a Synapt G2-si mass spectrometer. Calibration
data achieved in initial analysis of heavy labelled peptides was used to calculate the true
amount of each heavy labelled peptide in each sample. Using the light: heavy ratio, it was

then possible to calculate the amount of native peptide in each sample.

5.3 Results

The proteomic discovery method used in this chapter has been described in chapter 2 and
was also carried out in chapter 3. To ensure the same methodology was suitable for the
melanoma portion of this project, bioreplicate experiments of melanoma were undertaken
and the reproducibility assessed (Figure 5.1). A coefficient or correlation was determined
by correlating every protein abundancy in one sample to each other sample, which gives
an r value where the closer the number to 1, the better the correlation. An acceptable r
value is dependent on many things, but an r value of > 0.8 is generally acceptable; in
comparison of the bioreplicate experiments, the r values obtained were 0.7933, 0.7938 and
0.8224. Furthermore, 47.8% of the proteins identified were identified in at least 2 of the 3

bioreplicates.
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Figure 5:1: investigating the technical reproducibility of the RapiGest method in
melanoma.

Proteins from melanoma sample “A” was extracted and quantified with mass
spectrometry in triplicate. 28.5% of all the unique proteins in three experiments were
identified in all experiments. 47.8% of the unique proteins were identified in two or more

experiments. There was a high positive correlation of all proteins between experiments.

5.3.1 Clinical characteristics of melanoma samples

Similar to chapter 3, 24 Pmel-M and 24 Pmel-NM were used in the discovery proteomics
(Table 5:1). Briefly, there were slightly more males than females in the Pmel-M group and
slightly more females in the Pmel-NM group. The majority of melanomas were classified as
superficial spreading in both groups. The majority of samples had a reported Clark’s levels
of IV. As Breslow thickness is a known indicator of prognosis and risk of metastasis, we
decided to stratify for Breslow thickness, and as such, there was no significant difference
in this parameter between the Pmel-M and Pmel-NM groups. Similar to chapter 3,

information on geographic ancestry was not collected and therefore was not available.
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Table 5.1: A Table of clinical characteristics of melanoma samples used for discovery

proteomics

Pmel-M Pmel-NM
Number of Samples 24 24
Male 14 9
(58.33%) (37.5%)
Female 10 15
(41.67%) (62.5%)
Superficial spreading 17 20
(70.83%) (83.33%)
Nodular 6 4
(25%) (16.67%)
Desmoplastic 1 0
(4.17%) (0%)
Pigmentation - High 6 4
(25%) (16.67%)
Pigmentation - Moderate 7 7
(29.17%) (29.17%)
Pigmentation -Low 4 7
(16.67%) (29.17%)
Clark's Level V 2 0
(8.33%) (0%)
Clark's Level IV 16 15
(66.67%) (62.5%)
Clark's Level < 111 6 9
(25%) (37.5%)
Breslow thickness (mm) 2.76 £1.63 2.08+1.46

Pmel-M, Primary tumours which metastasised. Pmel-NM, Primary tumours which did not metastasise.
pigmentation could not be acquired for all as several FFPE blocks were returns to histopathology either by
request or because too little tissue was left for research

5.3.2

Protein quantitation and identification

Following extraction and digestion of proteins from the melanomas, peptide quantification

was carried out to ensure later loading onto the mass spectrometer was standardised

(Table 5:2). There was a wide variety in the total yield of peptides from each sample,

ranging from 18.3ug to 217.5ug. The median total peptide concentration was 76.6ug in the

Pmel-M group and 55.9ug in the Pmel-NM group.
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Table 5.2: Quantification of total peptide concentration using DirectDetect

Sample

Pmel-M1
Pmel-M2
Pmel-M3
Pmel-M4
Pmel-M5
Pmel-M6
Pmel-M7
Pmel-M8
Pmel-M9
Pmel-M10
Pmel-M11
Pmel-M15
Pmel-M16
Pmel-M17
Pmel-M18
Pmel-M20
Pmel-M21
Pmel-M22
Pmel-M24
Pmel-M26
Pmel-M27
Pmel-M28
Pmel-M29
Pmel-M30

Metastatic

mg/ml

protein
0.814

0.183
0.991
1.298
1.365

0.23
0.661
0.361
0.312
0.683
1.238
0.277

0.76

0.75

0.47
0.905
2.175
0.903
1.615
0.807
1.439

0.47

0.67
0.772

Total

peptide (pg)
81.4

18.3
99.1
129.8
136.5
23
66.1
36.1
31.2
68.3
123.8
27.7
76

75

47
90.5
217.5
90.3
161.5
80.7
143.9
47

67
77.2

Non-Metastatic

Sample

Pmel-NM1
Pmel-NM2
Pmel-NM4
Pmel-NM7
Pmel-NM11
Pmel-NM13
Pmel-NM14
Pmel-NM16
Pmel-NM17
Pmel-NM20
Pmel-N21
Pmel-NM22
Pmel-NM23
Pmel-NM24
Pmel-NM25
Pmel-NM26
Pmel-NM30
Pmel-NM31
Pmel-NM32
Pmel-NM33
Pmel-NM34
Pmel-NM35
Pmel-NM36
Pmel-NM37

mg/ml

Chapter 5

protein peptide (pg)

0.475
0.405
0.519
0.645
0.358
0.338
1.269
0.506
0.394
0.529
0.682
0.597
0.589
0.631
0.404

0.66
0.358
0.413
0.613
0.428
1.535

1.23
1.723
0.845

47.5
40.5
51.9
64.5
35.8
33.8
126.9
50.6
394
52.9
68.2
59.7
58.9
63.1
40.4
66
35.8
41.3
61.3
42.8
153.5
123
172.3
84.5

Pmel-M, Primary tumours which metastasised. Pmel-NM, Primary tumours which did not metastasise.

The total number of protein IDs per sample varied, both between Pmel-M and Pmel-NM

and between the 1D and 2D LC separation experiments (Figure 5.2). Less proteins were

identified in samples separated by 2D compared to those separate by 1D, and fewer

proteins were identified in Pmel-NM than in Pmel-M cases. The number of IDs ranged from

114 to 1,111 and the mean number of IDs was 435 with a standard deviation of 188.
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1000 |
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Number of unique proteins

1D
2D

NM24 4
NM25 4

Figure 5:2: Numbers of unique proteins identified using 1D, and separately 2D,
fractionation prior to MS.
3.75ug of protein per melanoma sample was analysed using mass spectrometry and the

results were processed in the Protein Lynx Global Server to identify individual proteins.

NM26
NM30
NM31
NM32
NM33
NM34
NM35
NM36

A total of 3,447 unique proteins were identified from all 48 melanoma samples, which

consisted of 2,750 IDs in samples separate by 1D and 2,259 IDs in samples separate by 2D.

45.32% of proteins were identified in the results from both 1D and 2D which equated to a

total of 1,562 IDs.

ID  »p

1188 1562 697

2750 2258

Figure 5:3: Number of unique proteins identified from 1D and 2D fractionation

The total number of proteins identified following 1D fractionation of the 48 melanoma
samples (which included 24 Pmel-M and 24 Pmel-NM) was 2750, and following 2D
separation was 2259. 45.32% of proteins were identified in both 1D and 2D fractionation

methods
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As described in chapter 3, proteomic data often suffers from the “floor effect” as the limitations of
instruments causes a bottom level below which proteins cannot be detected. For this reason, it was
suggested non-parametric tests were used to statistically analyse the data. Alternatively, log
transforming the data can sometimes result in a Gaussian distribution and thus create a suitable
dataset for parametric tests. Log transforming this data from the melanoma samples resulted in a
mixture of normally and non-normally distributed samples (Figure 5.4, Appendix 3). For this
reason, a conservative approach was taken and non-parametric tests were used to analyse the data

(unless otherwise stated).

167



Chapter 5

X18 X18 X18 X18

/ £81/ £
e h o 4
LEE (D .1 Al 5o 3z
%o \ o] 4 N A~ i
. v \
a8 oo a8 n.g
; e oL . 3 ———r
© 0 10 20 20 < 10 00 10 = 20 10 00 10
X27 X27 X27
[e] o g
z8 R zo o &°]
£8 3 £g
2 \ 2o 2o e
2.1 g° 2 297
& 8\ | Sl I | < 8 & gl
© 0 4 s 120 2 4 0 1 2 e 80 2 4 0 1 2
X6 X6 X6 X6
; 4N - 1 7 £
£21 £ £2h £, N
> s o |\ s o] / s o \ ®o N
+ - e ] 3 N e
= &g £a £g ) 2l o
-_ b= 7 - v T P - - b=To — o "I ~
a 0 20 40 € 80 4 0 1 2 0 5 10 15 20 45 05 05
O
Re) Y14 Y14 Y14 Y14
o | . N R 300
a s\ 23 } 28 $3] ‘
a \ ] T o o J
s \ S 2 s s 1 q
e 8 e o a8 a0 |
3 =3 = - — b= o ¥ Y ¥
©0 20 4 eo 10 00 10 2 4 0 1
Y24 Y24 Y24 Y24
58 \ 5,: Ve £01lh gq &
= \ o % d =] Ay ‘°O
@ \ @ o @ o \ H 4 N
F- \ F-] . P £ Ay o
2 5 \ [ 2 5 \ 8 v '{ 0
=] oo -] e o
®o 20 4 e 40 00 10 © 0 10 20 20 40 50 15 05 05 15
Y33 Y33 Y33 Y33
® | o) £ Y A\
23 i: ~ H 1 i
o \ o F-3 \ o
[RPRE | ) ° Z ° \ e !
<8 * e o a8 [— -l ©9 Zcd
© 0 20 40 €0 80 4 0 1 2 © 05 15 25 125 45 05 05 15

Binned values

Figure 5:4: Histograms of proteomics data from the melanoma samples.

Histograms of proteins abundancies were created using Inferno. As the sensitivity of the
MS instrument is finite, a “floor effect” can be seen on the raw data and therefore the data
was logl0 transformed to assess the distribution. A mixture of normal and non-normal
distributions can be seen in the logl0 transformed data; for this reason, a conservative
approach was taken and subsequent analysis used non-parametric tests. Histograms of all

melanoma samples can be found in Appendix 3.
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5.3.3 Significantly differentially expressed proteins

A combined total of 31 significantly differentially expressed proteins (P<0.05) were
identified between Pmel-M and Pmel-NM melanomas in the 1D and 2D data, (Figure 5.5).
16 significantly differentially expressed proteins were identified between the Pmel-M and
Pmel-NM tumours in the 1D data and 16 significantly differentially expressed proteins
identified between Pmel-M and Pmel-NM tumours in the 2D data. One protein was
identified as significantly differentially expressed between Pmel-M and Pmel-NM

melanomas in both the 1D and 2D data; this protein was keratin 9 (KRT9).

2D 1D

15 1 15

16 16

Figure 5:5: Numbers of proteins that were differentially expressed between Pmel-M and
Pmel-NM melanomas in the 1D and the 2D data

A total of 16 proteins were identified as significantly differentially expressed between
Pmel-M and Pmel-NM in the 1D data and also in the 2D data, however, only one protein
was identified as significantly differentially expressed between Pmel-M and Pmel-NM in

both the 1D and the 2D data. P<0.05, Man Whitney U test for significance.

A volcano plot of each data set (1D and 2D) of the melanoma samples was created. The
volcano plot for the 1D data highlighted proteins P01860 (IGHG3), Q9H6N6 (MYH16),
Q92817 (EVPL) and Q7KZF4 (SND1) by their low P value and high fold changes. Volcano plot
for the 2D data highlighted proteins Q8N1N4 (KRT78), Q14240 (WIF4A2), P19012 (KRT15),
P35527 (KRT9), P40926 (MDH2) and Q8NBS9 (TXNDC5) with a low P value and high fold

changes.
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Figure 5:6: Volcano plot of 1D data highlights proteins of interest.

P-values obtained from Pmel-M vs Pmel-NM using Mann Whitney U test and subsequently
log10 transformed for visualisation in volcano plots. Fold changes (FC) were acquired by
subtracting mean quantification of Pmel-M from Pmel-NM and were then log2
transformed to generate the graph. Red points indicate non-significant p-value (p>0.05)
and fold change (<1 log2). Black points indicate non-significant p-value (p>0.05) but
significant fold change (>1 log2). Orange points indicate significant p-value (p<0.05) but
not significant fold change (<1 log2). Green points indicate significant fold change (>1 log2)

and significant p-value (p<0.05). Labels are Uniprot protein accession numbers.

170



Chapter 5

* P>0.05 & FC<1
< 4 * P>0.05 & FC>1
P<0.05 & FC<1
P<0.05 & FC>1
* P<0.01&FC>05
* P<0.001
QBN1N4
2 T R
)
S
©
>
=
=] Q14240
8 o™ e S
: QSNBSS
P198385%7 ! i_ Pa0s28
— . . * e [ * et
. o o0, e o .
. .o'...- o o
d e, s :.“o.". . .
IR AR L y
: e we § \® W el 0
i . -4 e ® ‘e
o 4 9?&#’;' .
I I I T I T |
3 2 -1 0 1 2 3

log2FoldChange

Figure 5:7: Volcano plot of 2D data highlights proteins of interest.

P-values obtained from Pmel-M vs Pmel-NM using Mann Whitney U test and subsequently

log10 transformed for visualisation in volcano plots. Fold changes (FC) were acquired by

subtracting mean quantification of Pmel-M from Pmel-NM and were then log2

transformed to generate the graph. Red points indicate non-significant p-value (p>0.05)

and fold change (<1 log2). Black points indicate non-significant p-value (p>0.05) but

significant fold change (>1 log2). Orange points indicate significant p-value (p<0.05) but

not significant fold change (<1 log2). Green points indicate significant fold change (>1 log2)

and significant p-value (p<0.05). Labels are Uniprot protein accession numbers.

There were two proteins with P values below 0.001 for differential expression between

Pmel-M and Pmel-NM melanomas; these were actin gamma 1 (ACTG1) and keratin type Il

cytoskeletal 78 (KRT78) in the 1D and 2D data, respectively. There was a range in the fold

changes for the same comparison of the proteins in the 1D data with the lowest being -

0.252 and the highest being +1.802 (Table 5:3). Similarly, there was a wide range of fold

changes between Pmel-M and Pmel-NM melanomas in the 2D data with the lowest being

+0.097 and the highest being +1.461 (Table 5:4). The one protein identified as significantly
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differential expressed between the Pmel-M and Pmel-NM groups in both 1D and 2D, was
KRT9, which is indicated by the green shading in Tables 5.3 and 5.4.

Table 5.3: List of significantly differentially expressed proteins between Pmel-M and

Pmel-NM in the 1D data and their respective fold changes and P values

Ilgﬂp rot GeneID  Protein Name log2FoldChange P value
P63261 | ACTG1 Actin Gamma 1 0.338013 4.82E-03
P01860 | IGHG3 Immunoglobulin Heavy Constant Gamma 3 1.802058 0.009022
P25786 | PSMA1 Proteasome Subunit Alpha 1 0.788837 0.010045
Q9H6N6 | MYH16 myosin heavy chain 16 -1.02722 0.019726
P35527 | KRT9 Keratin 9 -0.61257 0.02913
P62491 | RABlla Ras-related protein Rab-11A 0.382207 0.030177
P13639 | EEF2 Eukaryotic elongation factor 2 0.457982 0.030267
Q92817 | EVPL Envoplakin 1.057036  0.03326
P30086 | PEB1 Periplasmic amino acid-binding protein -0.25176 0.035189
P68104 | EEF1A1 Eukaryotic translation elongation factor 1 al 0.386652 0.035508
P62805 | HISTH4 Histone H4 0.284845 0.035508
P46776 | RPL27A Ribosomal Protein L27a 0.496393 0.037992
P35579 | MYH9 Myosin-9 0.375744 0.039408
Q15063 | POSTN Periostin 0.493123 0.041138
Q7KZF4 | SND1 Staphylococcal nuclease domain containing 1 1.356476 0.041184
Q7L7L0 | HIST3H2A | Histone H2A type 3 0.414143 0.041316

p-values were obtained through Mann Whitney U test for significance between Pmell-Ms and Pmel-NMs. Fold change was
calculated from the mean of protein abundancies between each group. Green shading indicates single significantly

differentially expressed protein in both the 1D and 2D data
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Table 5.4: List of significantly differentially expressed proteins between Pmel-M and

Pmel-NM in the 2D data and their respective fold changes and P values

UniprotID  Gene ID Protein Name log2FoldChange P value
Q8N1N4 KRT78 Keratin 78 -0.76589  8.25E-04
Q14240 EIFAA2 | Eukaryotic Translation Initiation Factor 4A2 -1.02262 0.007681
P01859 IGHG2 | Immunoglobulin Heavy Constant Gamma 2 -0.74507 0.013166
Q15019 SEPT2 Septin 2 -0.15355  0.01868
Q8NBS9 TXNDCS | hioredoxin Domain Containing 5 1.461222 0.021754
P20700 LMNB1 | Lamin B1 0.695982 0.021874
P62249 RPS16 Ribosomal Protein S16 0.370449 0.024652
P05023 ATP1A1 | ATPase Na+/K+ Transporting Subunit Alpha 1 0.497553 0.026246
P19012 KRT15 Keratin 15 -1.206 0.028958
P35527 KRT9 Keratin 9 -1.04325 0.029021
P16070 CD44 Cluster of Differentiation 44 0.140834 0.030051
P40926 MDH2 | Malate Dehydrogenase 2 1.063803 0.030735
Q16555 DPYSL2 | Dihydropyrimidinase-related protein 2 -0.25623 0.034954
075083 WDR1 WD Repeat Domain 1 0.613523 0.035621
P06396 GSN Gelsolin 0.155568 0.039034
P23528 CFL1 Cofilin 1 0.096728 0.046927

p-values were obtained through Mann Whitney U test for significance between Pmel-Ms and Pmel-NMs. Fold change
calculated from mean of protein abundancies between each group. Green shading indicates significantly differentially
expressed protein in both the 1D and 2D data.

Examples of significantly differentially expressed proteins between Pmel-M and Pmel-NM
groups from the 1D data can be seen in Figure 5.8. The median abundancy of proteins
varied a lot with the lowest being 0.37ng of PSMAL1 in the Pmel-NM group to the highest
being 20.72ng of ACTG1lin the Pmel-M group.

Examples of significantly differentially expressed proteins from the 2D data can be seen in
Figure 5:9. The lowest median abundancy of a protein was 0.109ng of KRT78 in the Pmel-
M group and the highest was 2.086ng of LMNB1in the Pmel-M group.
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Figure 5:8: Examples of significantly differentially expressed proteins between Pmel-M

P values obtained through Mann Whitney U test for significance. Median with interquartile
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Figure 5:9: Examples of significantly differentially expressed proteins between Pmel-M
and Pmel-NM melanomas in 2D proteomic data
P values obtained through Mann Whitney U test for significance. Median with interquartile

range shown.

5.34 Search tool for the retrieval of interacting genes/proteins (STRING) analysis

STRING analysis was used to create a network from the significantly differentially expressed
proteins between Pmel-M and Pmel-NM identified in the 1D data (Figure 5:10) and 2D data
(Figure 5:11). Significantly differentially expressed proteins from the 1D data produced a
structure with 13 edges. A network with this many proteins would be expected to have 3
edges by chance alone and thus the network is significantly enriched in interactions
(P=0.000004) and suggests that these proteins are likely to be connected in determining
biological aspects of melanoma metastasis. Reactome pathway overlay highlighted several
proteins involved in the MAPK pathway, including BRAF and RAF. Furthermore, Reactome

enrichment displayed a strong coverage of an innate immune response.
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Figure 5:10: STRING analysis of significantly differentiated proteins between Pmel-M and
Pmel-NM from the 1D data

Significantly differentiated proteins between Pmel-M and Pmel-NM from 1D discovery
proteomics were analysed using STRING. A medium confidence score of 0.4 was allowed
in the structure creation as recommended by the software manufacturers. Thickness of
lines (edges) indicates confidence in association between two proteins. Total number of
nodes is 14. Total number of edges is 13. The Reactome pathway enrichment has been

overlaid onto the STRING structure. FDR, False discovery rate.

Significantly differentially expressed proteins between Pmel-M and Pmel-NM from the 2D
datayielded a structure with 8 edges. From a similar set of proteins and a network of similar
size, only one edge would be expected by chance and the network is therefore enriched in
interactions (P= 0.000106), again suggesting that the proteins in the network are at least in
part biologically connected to melanoma metastases. Amongst other pathways, Reactome
enrichment was identified in the immune system. There was also enrichment in JAK-STAT
signalling after IL12 stimulation, a cytokine secreted by antigen presenting cells (Dorman

and Holland, 2000).
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Figure 5:11: STRING analysis of significantly differentiated proteins between Pmel-M and
Pmel-NM from the 2D data

Significantly differentiated proteins between Pmel-M and Pmel-NM from 2D discovery
proteomics were inputted into STRING. A medium confidence score of 0.4 was allowed in
the structure creation. Thickness of lines (edges) indicates confidence in association
between two proteins. Total number of nodes is 15. Total number of edges is 8. The
Reactome pathway enrichment has been overlaid onto the STRING structure. FDR, False

discovery rate.

5.3.5 Gene ontology analysis

Gene ontology analysis of significantly differentially expressed proteins between Pmel-M
and Pmel-NM from 1D proteomic data were reduced and visualised using ReViGO and this
highlighted several enriched gene ontology terms (Figure 5:12). This included “cadherin
binding”, “cell adhesion molecule binding” and “cell-cell adhesion”. Further enrichment in
“protein metabolic processes”, “cellular response to growth factor stimulus” and

“phagocytosis” was observed, in addition to “vesicle” and “extracellular region part”.
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1D Biological Processes

1D Molecular Function
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1D Cellular component

Figure 5:12: Gene ontology analysis of significantly expressed proteins between Pmel-M

and Pmel-NM in 1D data.
Significantly differentially expressed proteins were inputted into GoGorilla and reduced
using ReViGO. The area of each of the rectangles or boxes is representative of the amount

of enrichment of that gene ontology term.

Gene ontology analysis of significantly differentially expressed proteins between Pmel-M
and Pmel-NM in the 2D data also revealed several area of enrichment (Figure 5:13). Similar
to the 1D data, there appeared to be enrichment in binding including, “cytoskeletal binding”
and “skeletal protein binding”. Indeed, several areas related to cytoskeletal polymerisation

and organisation. There was also enrichment in “extracellular exosome”, “vesicle” and

“focal adhesion”.
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2D Biological Processes

2D Molecular Function
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2D Cellular Component

Figure 5:13: Gene ontology analysis of significantly differentially expressed proteins
between Pmel-M and Pmel-NM in the 2D data.

Significantly differentially expressed proteins were analysed for GO enrichment using
GoGorilla and reduced using REViIGO. The area of each of the rectangles or boxes is

representative of the amount of the enrichment of that gene ontology term.

5.3.6 Ingenuity pathway analysis

Ingenuity pathway analysis of significantly differentially expressed proteins in both the 1D
and 2D melanoma proteomic data revealed no strong enrichment of pathways, therefore
only whole 1D and 2D melanoma proteomic data was used. This 1D and 2D proteomic data
revealed a number of significantly enriched pathways (Figure 5:14). As was the case in
chapter 3, a combined p value cut off of <0.00001 (>5 log10 p value) was employed. EIF2
signalling was the most enriched pathway in both the 1D and 2D data, and was predicted
to be activated in both cases. Multiple Rho signalling pathways were enriched in these data,
however some were predicted to be activated, such as “RhoA signalling” and “signalling by

Rho family GTPases”, whereas some were predicted to be inhibited, such as “RhoGDI
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signalling” and “regulation of actin-based motility by Rho”. “Integrin signalling” and
“integrin-linked kinase (ILK) signalling” were both predicted to be activated. In addition,
there was enrichment in several immune related pathways, including “acute phase
response signalling”, “leukocyte extravasation signalling”, “granzyme B signalling” and “Fc
receptor mediated phagocytosis in macrophages and monocytes”. IPA is also able to
predict upstream regulators based on the proteomic data provided, therefore this was also
explored (Figure 5:15). The most significant upstream regulator identified in the 1D
melanoma proteomic data was PCGEM1 and in the 2D proteomic data was IL15. The most
inhibited upstream regulator was miR-122-5p and most activated was either IL15 or HIF1A.
Several of the upstream regulators were only detected in one dataset (i.e. the 1D or 2D

melanoma proteomic dataset), including PCGEM1, HSP90B1, CUL4B, SYVN1, SPDEF,
EOMES, ERK1/2 and EGLN.
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5.3.7 Weighted gene co-expression network analysis

The number of clinical and histological characteristics our laboratory had available for the
melanoma samples were much less than that for cSCC in Chapter 3, and therefore this
limited the number of results provided in the weighted gene co-expression network
analysis. After pre-processing and network creation, there were 4 modules of proteins
identified (Figure 5:16). No module correlated significantly with development of
metastasis. The only characteristics which significantly correlated with protein modules
were Clark’s level and Breslow thickness. The brown, blue and turquoise modules
correlated positively with Clark’s level, of which the turquoise module gave the highest and
most significant correlation. The brown, blue and turquoise modules also correlated
positively with Breslow thickness. Blue and turquoise modules both positively correlated

significantly with Breslow thickness at a high level of significance.

1
0.19 -0.21 019 0.099 0.13
MEyellow (0.2) (0.2) (0.2) (0.5) (0.4) [
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Figure 5:16: Module-trait correlation analysis, using WGCNA.

Proteomic data from the melanomas was used to create a network and identify modules
of correlated clusters. Correlation values are from Pearson’s correlation. In each box, the
upper values are correlations and lower values in parentheses are p values. ME, module

eigengene.

The modules identified from WGCNA can be input into various pathway analysis tools to
better understand why proteins are correlated and what effect it might have on biological
systems. The blue module displayed an enrichment in various protein production related
pathways including ribosomal, translation and elongation pathways. Interestingly, the blue

module was also enriched for the Reactome pathway “regulation of expression of SLITs and
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ROBOs”. The majority of enrichment within the turquoise module related to MAPK
signalling, specifically BRAF. These included enrichment in “signalling by high-kinase activity
BRAF mutants”, “paradoxical activation of RAF signalling by kinase inactive BRAF2,
“signalling by moderate kinase activity BRAF mutants”, “MAP2K and MAPK activation”,
“p130cas linkage to MAPK signalling for integrins”, and “signalling by BRAF and RAF
fusions”. Indeed, the turquoise module also expressed enrichment in various integrin
related pathways, including those already mentioned relating to MAPK activation in
addition to “focal adhesion” and “ECM-receptor interaction”. Although there was some
enrichment in the brown and yellow modules, there was little of great significance and

coverage.
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Figure 5:17: WGCNA module pathway analysis of the melanoma proteomic data.
Modules identified in WGCNA were subjected to pathway analysis and CORUM database
alignment. Strong hierarchical filtering was employed to reduce the number of terms and

optimise interpretation, therefore only results with P<0.001 are shown.
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5.3.8 Topological Data analysis

Similar to WGCNA, TDA is a type of unsupervised machine learning which uses all the data
available, in this case proteomic data, to establish trends and correlate sample proteomes.
Whole sample proteomes from the 1D and 2D melanoma proteomic data were inputted
into Ayasdi workbench to create representative TDA structures (Figure 5:18). Both the
Pmel-M and the Pmel-NM groups appeared to have high homology between nodes as there
was relatively high interconnectivity between them. Nonetheless, the interconnectivity
between nodes of the Pmel-M group was very high and therefore suggested that the Pmel-
M samples were, by and large, very similar. Although proteomic data was able to effectively
separate Pmel-M from Pmel-NM samples using TDA, there appeared to be different
subgroups within the Pmel-NM group. This potential for a subgroup within the Pmel-M
group was seen more clearly in the 2D data compared to the 1D data but was visible in both
sets of data. Due to this, it was decided to recreate the structures but with the intention of
driving these groups to separate to allow comparison between them (Figure 5:19). Driving
the separation of these groups revealed several proteins which, if these subgroups of Pmel-
M and Pmel-NM are correct (i.e. exist in biological terms), might be “driving proteins” (i.e.
proteins which are likely causative in generating the biological subgroups). Splitting the
groups in the 1D data produced four obvious groups, two for Pmel-M and two for Pmel-
NM. There were 3 and 15 driving proteins within the Pmel-NM tumours and within the
Pmel-M tumours respectively. Several driving proteins were identified as different between
M1 and NM1/NM2, which is to be expected as these are essentially subgroups of Pmel-M
vs Pmel-NM. Surprisingly, however, M2 vs NM1/NM2 only highlighted a few driving
proteins that differed between them. Conversely, the 2D melanoma proteomic data
produced only one Pmel-M group and one Pmel-NM group along with one mixed group
which couldn’t be defined as completely Pmel-M or Pmel-NM. An interesting driver factor
identified between the mixed group and the NM group was age. A table of all driving factors

can be seen in Table 5:5.
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Figure 5:18: Topological structures created from 1D and 2D melanoma proteomic data.
A hamming metric and two neighbourhood lenses were used in Ayasdi to create
topological structures. Outcome was colour mapped on top of these structures toillustrate
how the structure relates to outcome. Blue nodes represent Pmel-NM, red represents

Pmel-M and yellow indicate nodes containing both Pmel-NM and Pmel-M.
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1D Melanoma Data ®

4 driving proteins and

7 driving proteins and outcome

outcome

M2

21 driving proteins and
outcome

2 driving proteins and
outcome

15 driving proteins

2D Melanoma Data

5 driving proteins and
outcome

2 driving proteins and
age

cutcome and bredow
Figure 5:19: Driving separation of TDA identified melanoma sub-groups.

Groups were driven apart by modifying resolution and gain of the neighbourhood lenses
until separation was achieved. Kolmogorov Smirnov test of fitness was used to determine
potential driver proteins (P<0.05). Upper topological structure generated from1D data,

lower topological structure from 2D data.
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Table 5.5: Proteins identified as possible driver proteins in TDA subgroups of melanoma

1D
M1vs NM1 M1vs NM2 M2 vs NM2 M2 vs NM1 M1vs M2 NM1vs NM2
Factor P-value |Factor P-value [Factor P-value |Factor P-value |Factor  P-value |Factor P-value
Outcome 0.008|Outcome 0.004|Outcome 4.12E-04|Outcome 0.001|P02790 0.004|P42224 0.035
P62917 0.035(P26373 0.012(P37837 0.035(P02647 0.022(P15153 0.012|P25786 0.047
P62269 0.035(Q15365 0.022(P21333 0.044|P42224 0.030{000299 0.030|Q7KZF4 0.047
Q14764 0.035|Q9Y490 0.022 P61313 0.047(P22314 0.032
043175 0.035(P17987 0.025 P31948 0.047(P00338 0.032
Q15063 0.044(P37802 0.035 P23381 0.065(P16403 0.032
P42224 0.047|P62269 0.035 P02768 0.032
P09382 0.047(P11940 0.035 P26373 0.033
P68104 0.038 P37837 0.033
Q8NBS9 0.038 P02647 0.035
P62805 0.038 P17987 0.035
P63261 0.038 P12956 0.038
P13639 0.038 P04899 0.040
P02790 0.044 Q07065 0.044
P25786 0.047 Q9BVC6 0.047
P49189 0.047
000299 0.047
P46776 0.047
Q7L7L0 0.047
P17931 0.047
P26641 0.047
P23246 0.047
2D
M vs Mixed Mixed vs NM Mvs NM
Factor  P-value [Factor  P-value [Factor P-value
Outcome 8.24E-06|P50995 0.013|Outcome 5.08E-05
Q8N1N4 0.008({000299 0.030{043390 0.014
Q13813 0.010|Age 0.042|000299 0.017
P17931 0.021(P19012 0.049|P50995 0.019
P19012 0.027 P61978 0.021
P41219 0.033 Breslow 0.035

5.3.9 MRM analysis

The number of proteins that were identified as differentially expressed between Pmel-M
and Pmel-NM was much lower than that seen as differentially expressed between P-M
¢SCCs and P-NM ¢SCCs, however, similar to the ¢SCC portion of this project, MRM was
employed to see whether it would validate the discovery proteomic results of the
melanoma data. As KRT9 was the only significantly differentially expressed protein to
appear in both the 1D and 2D discovery proteomics of the melanomas, it seemed suitable
to try to verify this by MRM. As our laboratory already had GSN heavy labelled peptides,
GSN was also chosen for MRM verification. The prospect of doing machine learning to

identify a third target differentially expressed protein in the melanomas was considered,
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but decided against because the main reason for doing it on the ¢SCC data was to reduce
the number of options from which to choose proteins for MRM verification / validation in
that project. In the case of melanoma, there were fewer options, and so LMNB1 was chosen
as the third candidate due to its high fold change, low p value, novelty and credibility in

terms of likely biological influence.

5.3.9.1 Selecting suitable peptides from proteins of interest for Multiple Reaction

Monitoring (MRM) analysis

To identify suitable unique peptides for the proteins of interest, the data were imported
into skyline and matched to a melanoma spectral library created from the melanoma
proteomic discovery data (Figure 5:20). All 3 of the GSN peptides held in our laboratory
were identified in the melanoma spectral library. Peptides for KRT9 and LMNB1 were
selected based on being unique to their respective proteins and having a high spectral
count with transitions (fragment ions) at a relatively high intensity. Examples of the spectral
library matches for these peptides, including their transitions, are shown in figure 5.20. The
final peptides selected, along with their m/z and suitable transitions can be seen in Table

5.6.

192



Chapter 5

GSN KRT9 LMNB1

Melanoma Spectral Library - EPGLQIWF ~~ 1 anoma Spectral Library- SGGGGGGGLGSGGSIR Melanoma Spectral Library - AGGPTTPLSPTR,
L | 1200 7000 "
i 1 - 10 ¥6 (rank 1)
y4 (rank 7 frank 1)
q, 1000 6000 e 9
-c o0 5000 _ 3
g7
'-' > £ g 4000 2.
E T s
s =0k B} (rank 3) H -
0 = £ 3000 z
4
m 400 -Hrznki.n.j 5 7 2000 E N
rafk 7) L1 1
o J f : i \l | "L : , 0 ' . |
500 1000 1500 2000 2500 500 1000 1500 2000 2500 500 1000 1500 2000 2500
miz miz miz
Melanoma Spectral Library - AVEVLPK elanoma Spectral Library - FSSSSGYGGGSSR Melanoma Spectral Library - LVEVDSGR,
(o] &0 45 G 1) 5000 1600
N V6 (rank 1)
1400
Q 50 4000
-5 1200
40
- — 3000 3 1000
= i £ . 2
Q. E 0 E ¥6 (rank 5 'E 300
: £ 2000 E s
o . 1000 4 “o
200
0 . . ‘ . ‘ . . . ,
500 1000 1500 2000 2500 1000 500 2000 2500 1000 1500 2000 2500
miz miz miz
m Melanoma SpectralLibrary - TGAQELLR Melanoma Spectral Library - LASYLDK : Melanoma Spectral Library - IQELEDLLAK
3000 14 1300
7 1 B (rank 1)
Q 7000 12 46 trank 1600
£ irark ) 1400
t 6000 4 (rank 3) 10 ¥5 (ranf 20
& 1200
L 5000 H
- £ £ 38 2 o I
2 4000 2 H
Q g % g Jy2ydimnk3) g 800
= 3000 4 o =
Q e Sk by £ . &0
a. ZUUU¥ | L 400 I —
1000 471 “ L g 2 Tk ‘ : o0 L .finm
0 i-ll‘lsn | ‘ . . . , o 1l ' b + | 0 i |FII‘\ . .
500 1000 1500 2000 2500 500 1000 1500 2000 2500 500 1000 1500 2000 2500
miz miz miz

Figure 5:20: Spectral library matching of GSN, KRT9 and LMNB1 in the melanoma
samples

The three GSN peptides already present in our laboratory appeared in the melanoma
spectral library, however, peptide two displayed only one viable transition ion and thus
highlighted a potential weakness of this peptide. 3 peptides for each KRT9 and LMNB1
were selected based on their spectral count (i.e. the number of the discovery melanoma
samples they appeared in) and the intensities of the transition ions. Peptide sequence

given at the top of each spectra.
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Table 5.6: The unique peptides selected for each protein of interest with their m/z and

transition ions

PROTEIN  PEPTIDE M/ZAT  TRANSITION IONS MODIFIED PEPTIDE SEQUENCE ~ M/ZAT  TRANSITION IONS
CHARGE CHARGE
2 2
772.4464, 602.3409, e 15 782.4547, 612.3492,
EPGLQIWR 499.7754 474.2823, 175.1190 EPGLQIWR[*3Cs, °Ng 504.7787 484.2906, 185.1272
GSN AVEVLPK 3782367  585.3606 AVEVLPK[13Cs, 5Ny 382.2438 593.3748
786.4468, 729.4254, T 796.4551, 739.4336,
TGAQELLR 4442509 (oo oey 530.3207  TOAQELLRICs, 1Ny 9255 oo oee sanaaye
974.5014, 917.4799, e 1 984.5097, 927.4882,
SGGGGGGGLGSGGSIR  616.8025 oo icor (n'yayc'  SGGGGGGGLGSGGSIR[NCs *Nu 6218067 ooy 00 o
1088.4603, 1098.4686,
KRT9 FSSSSGYGGGSSR 618.268  1001.4283, FSSSSGYGGGSSR[1Cs, 5Nq) 623.2721  1011.4365,
827.3642,740.3322 837.3725, 750.3405
696.3563, 625.3192, e 15 704.3705, 633.3334,
LASYLDK 4052238 0 0 ey 1397 LASYLDKINCe BNy 409.2309 100”200 270153
872.4863, 771.4359, e s 882.4919, 781.4442,
AGGPTTPLSPTR 5778118 00" ces agoosia  AGGPTTPLSPTRIZCs N 582816 conioce 470.0507
662.3104, 533.2678, e s 672.3187, 543.2761,
LMNB1 LVEVDSGR 437.7351 434.1994, 319.1724 LVEVDSGR[*3Cs, °Ngj 442.7392 444.2077, 329.1807
930.5142, 801.4716, e s 938.5284, 809.4858,
IQELEDLLAK 586.3321 oo are 247 1400  |QELEDLLAKIECs, Ny 5903392 o018 242149
5.3.9.2 MRM peptide calibration curves

Peptides were synthesised and isotopically heavy labelled by Cambridge Research

Biochemicals. Each peptide was subsequently tested on a Synapt G2-Si mass spectrometer

at a concentration of 100fmol to establish their suitability (Figure 5:21). Peptide 3 of KRT9

proved inadequate as a corresponding peak could not be reliably selected. Peptides 1 and

2 for proteins KRT9 and LMNB1 were found outside of their predicted retention time

window (blue shading), however, these were the only logical peaks in the chromatogram

and thus these peptides were included in the subsequent MRM experiments. Nonetheless,

peptide 1 of KRT9 and peptide 2 of GSN had slightly un-uniformed peaks (tailing on either

side) but were included (with some caution) in the subsequent MRM investigations.

194



Chapter 5

Intensity

Peptide 1

s =ac i ;/i i ®

o s b '

. H H [\ 5o

Peptide2 ¢~ P A
': 1000 ‘/ \_.3 i

iy

e

Peptide3

Retention time

Figure 5:21: Chromatography of MRM peptides

100fmol of each peptide was investigated on a Synapt G2-Si mass spectrometer in targeted
acquisition mode and results imported into skyline. Peptide 3 of KRT9 produced unreliable
peaks which would have led to future confusion over the correct peak in tumour samples
and was therefore omitted from future experiments. Peaks from peptides 1 and 2 from
KRT9 and LMNB1 were found outside of the predicted retention time window (depicted
as shaded area in above graphs) but these appeared to be the only logical peaks and these
peptides were therefore included in subsequent experiments on melanoma. The peak
shape of peptide 1, KRT9 appeared suboptimal (i.e. non-gaussian) but this peptide was
used in subsequent MRM experiments on melanoma samples in order to have more than
one peptide for KRT9 in those investigations. Peptide 2, GSN peak was also imperfect as it
showed tailing with some transitions not having distinct peaks, but was used with caution

in subsequent melanoma MRM experiments.

Once suitability of the relevant peptides had been established as above, calibration curves
of each peptide were created to enable calculation of the amount of heavy and

subsequently the corresponding light peptides, in each melanoma sample. Each calibration
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curve for GSN peptides produced an R? value above 0.9 and suggested a good linear trend

for comparison of added amount of heavy peptide in the sample with the MS estimated

amount of heavy peptide in the sample (Figure 5:22). However, the light peptide

(background melanoma matrix), used as an internal melanoma standard, was detected at

a very low intensity.
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Figure 5:22: MRM calibration curves for GSN.
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Calibration data of the heavy labelled GSN peptides was created using MRM on a twofold

dilution series of the amount of relevant heavy peptide. 1pug of melanoma peptide sample

was used as a background matrix (red).

Calibration curves for peptides 1 and 2 of KRT9 also produced R? values above 0.9 with an

acceptable linear trend for MS estimated amount versus added amount of heavy peptide

(Figure 5:23). Although the internal melanoma standard was present at a constant

concentration, it appeared as though it might be increasingly detected as the amount of

heavy labelled peptide increased.
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Figure 5:23: Calibration curves for KRT9
Calibration data of heavy labelled peptides for KRT was created using MRM on a twofold
dilution series of the amount of relevant KRT9 heavy peptide. 1ug of melanoma peptide

sample was used as internal standard (red).

Calibration curves for peptides 1 and 3 of LMNB1 produced R? values above 0.9, however
peptide 2 did not and therefore could not accurately determine the true amount of heavy

peptide in a sample and, subsequently, the level of the native peptide within a sample

(Figure 5:24).
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Figure 5:24: Calibration curves for LMNB1
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5.3.9.3 Verification

Following the production of the heavy peptide calibration curves as above, each melanoma

sample was investigated with MRM with the addition of 100fmol of each heavy labelled

peptide. The calibration curve was then used to determine the corrected concentration of

heavy peptide in a sample which was subsequently used, with the heavy to light ratio, to

find out the amount of light peptide in each sample. However, MRM analysis of the Pmel-

M and Pmel-NM samples demonstrated no significant difference in the amount of any of

these peptides between the Pmel-M and Pmel-NM groups.
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Figure 5:25: MRM verification data between Pmel-M and Pmel-NM.

PMel-NM

Each melanoma sample was investigated with the addition of 100fmol of the relevant

heavy labelled peptide. The “true” heavy peptide concentration was calculated using the

previously determined calibration curves for the heavy peptides. The true heavy

concentration was then used with the heavy:light ratio to calculate the concentration and

amount of the light peptide in the sample. The averages (Avg) of the peptides for the

different proteins were calculated using the mean. Error bars are interquartile range with

median plotted on. Mann Whitney U test for significance.
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5.3.10 ¢SCC-melanoma proteome comparison

As cSCC and melanoma arise from the same tissue, albeit from different cells within skin,
comparing the discovery proteomic data from the experiments in this thesis might provide
some insight into the similarities and differences between these two malignancies in
relation to the development of metastases from this tissue. One simple method of doing
this is to compare the proteomes of the primary samples which subsequently metastasised
(P-M ¢SCCs and Pmel-Ms), primary samples which did not metastasise (P-NM ¢SCCs and
Pmel-NMs) and the significantly differentially expressed proteins that differed between the
P-M cSCCs and P-NM cSCCs and between the Pmel-Ms and Pmel-NMs. There were fewer
melanoma proteins in every comparison against cSCC. For example, there were 265 P-M
cSCC specific proteins, 370 shared proteins between P-M and Pmel-Ms, and 55 Pmel-M
specific proteins. Likewise, 190 ¢SCC specific proteins were found in P-NM ¢SCC samples,
316 shared between P-NM cSCCs and Pmel-NMs, and 73 Pmel-NM specific proteins.
Interestingly, the large majority of proteins were identified in both the primary tumours
(cSCC and melanoma) which subsequently metastasised and the primary tumours (cSCC
and melanoma) which did not metastasise. However, only 136 proteins were specific to
tumours which metastasised and 25 proteins specific to tumours which did not
metastasise. Comparison of the entire SCC proteomic data compared to the entire
melanoma proteomic data revealed a number of unique IDs found only in one set of
samples (cSCC or melanoma). Furthermore, in cases where the analysis was restricted to
proteins present in at least 50% of the samples, 210 of these proteins were found only in
SCC and 57 were found exclusively in melanoma. There were 8 proteins identified as being
significantly differentially expressed between primary tumours which metastasised and
primary tumours which had not metastasised in both melanoma and cSCC; these included

EEF2, SEPT2, POSTN, HISTH4, EEF1A1, GSN, RSP16 and LMNB1.
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1. Total unique proteins 2. Unique proteins 3. SCC and melanoma
Samples
SC SCC
C Melanoma Melanoma Mets Non-Mets

1753 2264 1182 210 332 57 136 554 25

4. Metastatic samples 5. non-metastatic samples 6. Sig. dif. expressed proteins
SCC Melanoma SCC Melanoma SCC
Melanoma
265 370 55 190 316 73 135 8 2
7. 1D Melanoma 2D Melanoma
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Figure 5:26: Comparison of the cSCC and melanoma discovery proteomics data.

¢SCC and melanoma discovery proteomic data, generated by LC-MS, were compared to
identify similarities and differences between these two tumours. Venn diagrams were
created in R using package “Venndiagram”. 1. Total number of unique proteins identified
in SCC and melanoma were compared using no missing value filter (as is the case for all
other analyses which utilised a 50% missing value filter, where each protein was identified
in at least 50% of samples). 2. Unique protein IDs (from proteins which appeared in at least
50% of samples) from SCC and melanoma were compared. 3. IDs from both SCC and
melanoma primary tumours which had subsequently metastasised were compared to IDs
from both SCC and melanoma primary tumours which had not metastasised. 4. IDs from
SCC primary tumours which subsequently metastasised were compared to IDs from

melanoma primary tumours which subsequently metastasised. 5. IDs from SCC primary
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tumours which had not metastasised were compared to IDs from melanoma primary
tumours which had not metastasised. 6. Significantly differentially expressed proteins
between P-M and P-NM in SCC were compared to significantly differentially express
proteins between Pmel-M and Pmel-NM in melanoma. 7. Breakdown of 6, comparing
significantly differentially expressed proteins identified in 1D and 2D data from SCC and

melanoma.

5.4 Discussion

The aim of this chapter was to identify potential prognostic markers for subsequent
development metastasis in primary melanoma. There are currently very few prognostic
biomarkers available that can complement staging systems of melanoma or are helpful
when used on their own (Weiss et al., 2015). Many other studies have aspired to identify
prognostic biomarkers in melanoma, including some which used FFPE melanoma samples
(Byrum et al., 2011, Byrum et al., 2013), however, a lot of these studies focussed on
differences between primary melanomas and metastatic deposits from this cancer. In the
current study, we set out to identify prognostic markers from primary tumours which had
metastasised and primary tumours which had not metastasised. Furthermore, as Breslow
depth is a known prognostic marker, samples were stratified for this feature in order to
ensure there was no significant difference between the Breslow thicknesses of the Pmel-M

and Pmel-NM groups.

Although identical methods were used for the proteomic investigations of cSCCs and
melanomas, Figure 5:26 highlights that there were fewer proteins identified in melanoma
samples compared to cSCC samples. Indeed, although melanoma and ¢SCC are skin cancers,
throughout this project the proteomic analysis of melanoma samples proved more
challenging than that for cSCCs. Fewer proteins were identified in melanoma, and a lower
number of these were significantly differentially expressed between primary tumours
which metastasised and primary tumours which had not metastasised. Moreover, MRM
analysis failed to validate the initial discovery findings in melanoma, in part due to
difficulties faced in the MRM method development and seemingly low native peptide
concentration. It is possible that the difficulties encountered with the melanoma samples
could have arisen from the melanin present within these melanomas. Melanins are

polymers produced in a process known as melanogenesis, where the amino acid tyrosine
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is oxidised and undergoes a series of changes to become predominantly either eumelanin
or pheomelanin (Prota, 2000). Furthermore, melanin is renowned for its “sticky” properties
and ability to bind to other substances, including proteins (Mani et al., 2001). In fact, it has
been reported that melanoproteins (melanin bound to proteins) are better scavengers of
UV-induced free radicals (Pascutti and Ito, 1992) and thus melanin may have a biological
need to bind to proteins. Furthermore, the pH environment surrounding melanin has been
found to have an important effect on its binding capabilities and, indeed, more acidic
environments induce more melanin polymerisation in addition to a stronger bond between
melanin and other proteins/peptides and the formation of potential melanin bridges
between proteins (Mani et al., 2001). Much of the protein extraction protocol used for LC-
MS is carried out in an acidic environment and moreover, most of the LC separation is
carried out in acidic conditions. It is therefore possible that the protein extraction from the
melanoma samples released high concentrations of melanin (e.g. as a result of lysis of
melanosomes), which subsequently bound to free proteins (or peptides after digestion)
and modified their mass. Furthermore, melanin is made from the amino acid tyrosine,
which has an amine group, and dopaquinone in the melanin synthetic pathway also
contains tyrosine’s amine group. This may have encouraged binding of melanin precursors
to proteins and/or peptides during the extraction of proteins from the melanoma samples
because protein/protein cross-linkages can be formed between nucleophilic groups of
amino acids, and it is likely that similar cross linkages can form between proteins/peptides
and melanin (and its precursors), thus modifying the mass of the protein in question

(Hoffman et al., 2015).

In addition to acidic environments producing more polymerisation of melanin and
melanoproteins, alkaline environments can allow auto-oxidation which can also induce
polymerisation (Mani et al., 2001). It is therefore possible that the higher pH used in the
2D LC separation resulted in more polymerisation of melanin and possibly promoted
additional melanin polymer/protein binding. This extra alkaline step in the 2D fractionation
process could account for the fewer protein IDs seen in the 2D melanoma data than in the
1D melanoma data, as seen in Figure 5:3. Melanins have also been reported to bind to
chromatographic columns, thus degrading LC/MS performance, resulting in studies

attempting to remove melanin from samples containing melanosomes (Chi et al., 2006).
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Another possibility for the difficulties encountered with attempting to identify proteins
associated with subsequent development of metastases in the melanoma proteomics
could be due to the presence of subgroups within Pmel-M and Pmel-NM tumours, as
suggested in the TDA analysis. It is possible that within the sample cohort, these subgroups
might have differed in their mechanisms of developing metastasis and therefore the power
to identify significant differences was low because more samples would have been needed
in each of the subgroups. Whereas the melanoma samples used in this project have not
been investigated genetically, these different subgroups might possess different
pathogenic genotypes such as that of a BRAF mutant (Haluska et al., 2006), CDKN2A mutant
(Harland et al., 2014) or PTEN mutant (Davies et al., 2008).

The modules identified in the WGCNA could also be explained by different subgroups and
could also potentially clarify why there was no correlation with propensity to metastasise.
For example, it is possible that modules of correlated proteins, specifically blue and
turquoise, represent different genotypes which could explain the BRAF/MAPK enrichment

seen in the turquoise module.

Despite the possibility of subgroups within the melanoma groups, 31 proteins were
identified as significantly differentially expressed between Pmel-M and Pmel-NM. STRING
analysis and subsequent pathway analysis of these proteins revealed an enrichment in
immune response. It is well known that immunosuppressed individuals have an increased
risk of developing melanoma (Euvrard et al., 2003) and indeed an increased risk of
metastasis (Martinez et al., 2003). The 1D proteomic data also highlighted enrichment in
several MAPK pathways in the melanomas. It has been reported that BRAF mutations
appear in ~60-70% of melanomas (Haluska et al., 2006) and BRAF mutations are associated
with a higher risk of metastasis (Adler et al., 2017). These proteomic data are consistent
with this, which in turn supports the biological relevance of the results presented in the

discovery proteomics part of this project.

Cytoskeletal remodelling and motility appeared to be highlighted in several pathway
enrichment analysis tools including GO and IPA. Significant activation of remodelling of
adherens junctions, actin cytoskeleton signalling and enrichment in actin polymerisation
and cytoskeletal organisation was noted. These are likely to be relevant to the biology of

the melanomas in this project, because as cancers progress, they often lose polarity
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resulting in growth and invasion of the cancer into surrounding tissue as a result of
alterations in actin polymerisation, cytoskeletal reorganisation and adherens junctions
(Gandalovicova et al., 2016). An activation of many Rho related pathways including
regulation of actin-based motility, RhoA signalling and signalling by Rho GTPases was
observed. A dysregulation of Rho signalling is known to have an effect on cell polarity and
thus, in this instance could be promoting progression by increasing invasiveness

(Ellenbroek and Collard, 2007).

IPA upstream analysis also predicted a number of proteins which it inferred were either
activated or inhibited. IPA indicated a strong activation of IL15 in the 1D and 2D melanoma
proteomic data, but as highlighted in the results, there was no strong enrichment of
pathways in the significantly differentially expressed proteins in Pmel-M compared to
Pmel-NM. Higher levels of IL-15 have been associated with less metastasis than IL-15
knockouts in breast and melanoma cell lines (Gillgrass et al., 2014) and with a better
immune response in melanoma. There were several other noteworthy predicted upstream
regulators, including EGFR which is known to have an important role in many cancers, but
is also believed to play a possible role in vemurafenib (BRAF inhibitor) resistance (Gross et
al., 2015). Furthermore, the most inhibited regulator was miR-122, which conversely in

other studies have been found to be increased in metastatic cancers (Fan et al., 2018).

The MRM experiments failed to verify the results which suggested that KRT9, GSN and
LMNB1 were associated with development of melanoma metastases in the discovery
proteomics. The decision to investigate KRT9 as an MRM verification target was a simple
choice because KRT9 was the only significantly different protein present in both the 1D and
2D melanoma data. Likewise, the decision to investigate GSN further was based on the fact
that our laboratory already had the heavy labelled GSN peptides. The criteria for selecting
the final target was more challenging. The graph for LMNB1 in the discovery proteomics
(Figure 5:9) looked promising as there appeared to be a good split between Pmel-M and
Pmel-NM in addition to having a relatively high fold change. Furthermore, LMNB1 appeared
to be relatively high in abundance, which reduces the risk of instrument sensitivity
becoming a limiting factor. Another factor involved in choosing LMNB1 was that there was
little research on this area and thus there was an element of novelty to investigating this

further.

205



Chapter 5

As previously mentioned, MRM analysis throughout the melanoma verification process
proved more difficult than compared to cSCCs. The reason for this is unclear but, as
mentioned above, it is possible that the high concentrations of melanin might have affected
the results of the heavy and native peptides alike, resulting in unreliable results. Indeed,
several of the chromatograms for the heavy labelled peptides were inconsistent, in
addition to being present at low intensities. It would have been possible to increase the
concentration of the heavy peptides in order to increase the intensity of the peaks, but the
fact that 100fmol of peptide were of low intensities suggests that the problem was
associated with the peptides themselves, or the cells / tissue that the peptides resided in.
Furthermore, the intensities of the native peptides in the melanoma sample seen in the
calibration experiments were extremely low, suggesting again that something in the tissue
or preparation of the mixture was responsible for the reduced number of ions detected for
those specific masses of peptides / proteins. All samples were kept at -20°C until their use
in the discovery proteomics and MRM experiments, whereupon they were kept at 4°C in
order to avoid repeated freeze/thaw cycles. It is possible that during this 4°C period some
degradation of proteins / peptides occurred, or that there was sufficient time for
melanoproteins to form, resulting in differences in mass, thus lowering the intensity of the

peptides on the MRM chromatograms.

Nonetheless, no significant difference between Pmel-M and Pmel-NM for any of the
targeted peptides was detected by MRM. Although the proteins could not be validated
using MRM, other proteins from the list of differentially expressed proteins in the
melanoma discovery proteomics could be investigated, and/or the MRM for the three
investigated proteins (GSN, KRT9, LMNB1) could be optimised to a greater extent and
repeated. Alternatively, a different methodology could be used to verify and subsequently
validate some of the discovery proteomic data. Another possibility might be to cleave any
melanoproteins in the samples and filter out melanin (Chi et al., 2006) to optimise the MRM
experiments. Despite the MRM data being inconclusive, it should be noted that the
proteomic discovery data yielded many results that would have been expected (as
highlighted in the results and discussion of this chapter) in addition to novel areas of

interest such as potential subgroups with the Pmel-M and Pmel-NM groups of melanoma.
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Chapter 6: Modelling Clinical  Characteristics  of

cutaneous Squamous Cell Carcinoma (cSCC)

6.1 Introduction

Modelling of proteomics data provided interesting results in the earlier chapters in this
thesis, and in view of having gained experience in machine learning and the lack of an
optimal clinical staging system for ¢SCC, the work in this chapter aimed to determine
whether it was possible to use modelling of clinical and/or histological parameters of cSCC
(as this data is routinely available in clinical practice) to better predict prognosis in cSCC.
Current clinical staging systems for cSCC vary greatly in their criteria for high/low risk or
aggressive/non-aggressive cSCCs (Stratigos et al., 2015, Farasat et al., 2011, Lydiatt et al.,
2017, Motley et al., 2003). A systematic review and meta-analysis of risk factors for ¢SCC
has highlighted many factors which contribute to the development and progression of cSCC
(Thompson et al., 2016). These factors which relate to the primary tumour include a
Breslow thickness of >2mm, Clarks level 5, perineural invasion, diameter >20mm, site (e.g.
temple, ear, lip) and poor differentiation status. Furthermore, many of these risk factors
were also noted when the authors reported risk factors for development of cSCC metastasis

(Thompson et al., 2016).

The British Association of Dermatologists (BAD) guidelines for evaluation of ¢cSCCs have
limitations of being very sensitivity but rather unspecific. The BAD defines a low risk SCC as
a tumour which appears on a sun-exposed site (excluding ear or lip), has a diameter of less
than 20mm, is less than 4mm in depth, has a Clarks level below 5 and is well differentiated
(Motley et al., 2003). The European Dermatology Forum (EDF) guidelines also suggest that
any tumour with moderate or poor differentiation is of high risk, but state that depth of
less than 6mm is low risk (compared to 4mm in the BAD guidelines) (Stratigos et al., 2015).
The American Joint Committee on Cancer (AJCC) 7t edition use similar characteristics
except that they classify poorly differentiated (rather than including moderately
differentiated) tumours as high risk; furthermore, they state a tumour of 2mm thickness or

Clarks level 24 is high risk (Karia et al., 2014). Guidelines are constantly adapting in an
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attempt to improve their efficacy and, as such, the new AJCC (8t) edition was modified so

that any tumour >6mm or Clarks level 5 are classified as high risk (Sood et al., 2019).

Other staging systems for c¢SCC have also been proposed; these include the Brigham and
Women’s Hospital (BWH) (Karia et al., 2014), Brueninger et al system (Breuninger et al.,
2012) and the Union for International Cancer Control (UICC) (Fang, 2017), each with their
own criteria. Although different institutions use different staging systems for c¢SCC, it is
clear that a global and improved cSCC staging system is desperately needed, especially one
that has a good sensitivity and specificity. Currently, the AJCC 8t version has arguably the
best system, producing a sensitivity and specificity of 72.5% and 74.6% respectively
(Roscher et al., 2018). Based on the limitations of the current staging systems, it was
envisioned that the generation of a staging system which employed clinical and/or
histological parameters, through machine learning and modelling of relevant clinical and
histological parameters, would be extremely helpful because it could be employed in

practise and utilised in a clinical setting with ease and, moreover, relatively quickly.

6.2 Methods

Clinical features of the ¢SCC samples used in this thesis were subjected to predictive

modelling to assess their power to successfully predict which samples are metastatic.

6.2.1 Predictive modelling

As described in chapter 2, predictive modelling was carried out using the statistical
programming language R with machine learning packages; caret, caret ensemble, pROCand
doParallel for multithread, parallel processing. Clinical and histological data from c¢SCC
samples used for the earlier proteomics studies were combined into one large dataset,
totalling 101 samples. This dataset was then randomly (but consistently for each
subsequent modelling approach) split into training (67%) and test (33%) sets. Machine
learning was then carried out using 10-fold cross validation repeated 3 times for each
model. When creating stacked models, base learners were assessed for their correlation to
identify a suitable set of models. Stacked models were also trained using 10 fold cross
validation repeated 3 times. A full list of the algorithms used in this thesis can be found in

Appendix 4.
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6.3 Results

6.3.1 Initial modelling

Selecting which algorithm to use, or which algorithms to use in the case of a stacked
ensemble model, is not an obvious choice because there is not one specific algorithm which
has been identified as the optimal one when applying modelling to a clinical problem. Much
of the selection process is based on a process of trial and error, and gaining experience in
identifying which models perform best with the relevant data. For binomial classification
problems, which this is (has metastatised or has not metastatised), a first point of call is
usually logistic regression due to its simplicity, speed and understandability. Therefore, a
generalised linear model (glm) approach was taken as an initial starting point to generate
a model which could potentially predict likelihood of development of metastases in

patients with primary cSCC.
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Figure 6:1: A glm model with clinical and histological characteristics of cSCC as predictor
variables produced a model with an AUC of 0.813.

A glm model, using ¢SCC histological parameters (differentiation, diameter, Clarks level,
depth, perivascular invasion, perineural invasion and site of tumour) and clinical
parameters (age, sex of the patient) as predictive variables. The model was trained using
10-fold cross validation repeated 3 times on a training set (67%) and tested on a test set

(33%).
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6.3.2 Feature selection

A glm model was created for cSCC, using histological parameters (differentiation,
diameter, depth, Clarks level, perivascular invasion, perineural invasion and site of the
primary tumour) and clinical parameters (age and sex of the patient) to predict which
samples were P-M and P-NM (figure 6.1). The ROC curve of this glm model produced an
AUC of 0.813 with a 95% confidence interval of 0.680-0.946 (DelLong) and an optimal
sensitivity and specificity of 94.1% and 70.6%, respectively. Understanding the
characteristics used as predictors, and thus identifying those which add most value to the
model, requires evaluation to assess the usefulness (i.e. the predictive power) of each one
of the characteristics. Therefore, this was undertaken for the parameters that had been

used in the initial glm model.
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Figure 6:2: The individual predictive power of each variable in identifying the likelihood
of development of metastases from primary c¢SCCs.

Using 10-fold cross validation repeated 3 times, a glm model was created for each clinical
characteristic to help identify useful predictors. Models were trained on 67% of the data

and tested on 33% of the data.
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To determine the individual predictive power of each characteristic in the initial model, a
glm model of each one was created (Figure 6:2). Diameter was the best individual predictor
with an AUC of 0.95 and differentiation and depth were second and third respectively, with
AUCs of 0.877 and 0.848. Perivascular invasion and site of tumour were only slightly better
than that observed by chance alone, whereas sex (gender) of the patient was actually
worse than simply using chance alone. It is important to note that this highlights the
individual predictive power of the characteristic whereas, in truth, many of these
characteristics will be more powerful when used in combination due to the true biological
connections between them, i.e. the fact that more aggressive tumours are likely to exhibit

several features that associate with being aggressive.

Furthermore, the diameter, differentiation and depth (henceforth dubbed the 3 D’s) of an
SCC have been recognised for many years to influence clinical outcome in cSCC as well as
in other cancers such as melanoma, and therefore these factors represent a good set of
variables to use as predictors. A glm model was therefore created, using diameter, depth

and differentiation as the predictors (Figure 6:3).
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Figure 6:3: A glm prediction model using diameter, differentiation and depth produces a
model with an AUC of 0.983.

10-fold cross validation repeated 3 times was employed when creating the glm model
using differentiation, diameter and depth as predictive variables. The model was trained

on 67% of the ¢SCC samples and tested on 33% of the samples.
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A glm model using the 3 D’s produced an AUC of 0.983 with a 95% confidence interval of
0.9506-1 (DeLong). The optimal threshold produced a sensitivity of 94.1% and a specificity
of 94.1%. This alone is a good model and warrants the application of this model to a larger
sample cohort to validate it further in a larger set of patients. However, this model still
produced several misclassifications in the 101 ¢SCCs in this study, which if extrapolated to
the general population could result in many patients being misclassified and therefore

incorrectly treated worldwide if the model was employed in clinical practice.

Although the model was trained using repeated cross validation, there was still a risk of
overfitting which may not have been detected here due to an inherent bias secondary to
the greater number of poorly differentiated tumours in the P-M group compared to the P-
NM group. For this reason, it was decided to try different algorithms and, indeed, ensemble
algorithms in an attempt to reduce the likelihood of overfitting because many algorithms
have built-in defence strategies to avoid this. For this reason, glmnet was henceforth used
in place of glm because glmnet uses regularisation to reduce the chance of overfitting.
Regularisation is a function in mathematical models which constrains certain components
in the data and reduces the impact attributable to these parameters (i.e. by reducing
coefficients of features towards zero) thus decreasing the potential for overfitting.
Furthermore, although depth performed better as an individual predictor of metastasis
(Figure 6:2), it was found that with differentiation and diameter, Clark’s level and depth
performed equally well. In addition, the use of Clark’s level attempts to account for
different thicknesses of the dermis at different skin sites. Therefore, Clark’s level was
selected in place of depth in subsequent models. These models were generalised linear
model with convex penalties (glmnet), linear discriminant analysis (Ida), extreme gradient
boositing: dropouts meet multiple additive regression trees (xgbDART), neural network
(nnet), naive bayes (nb), C5.0, gradient boosted machines (gbm), support vector model
radial (svmRadial), regularised random forest (RRF), adaptive boosting (adaboost), treebag,

K’s nearest neighbour (knn) and recursive partitioning and regression trees (rpart).
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6.3.3 Algorithm selection
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Figure 6:4: Testing multiple machine learning algorithms

Multiple different machine learning algorithms were 10fold cross validated on a training
set of data (67% of total 101 cSCCs) and then tested on the remaining 33% of the data.
Predictive variables; diameter, differentiation and Clark’s level were used. Error bars

indicate the variance amongst models within cross validation.

Many of the models tested, produced high ROC scores (Figure 6:4). However, as expected,
no single model was perfect and each model misclassified different samples in terms of
predicting outcome. Stacked ensemble modelling, as previously used in chapter 4 of this
thesis, is an excellent way to get good coverage of correct classifications and often
increases the possibility of “catching” hard to classify samples so that the resulting model

is more accurate.

It is reasonable, but incorrect, to assume that the more mathematical models used, the
better the final prediction model will be. In fact, the importance and benefits of combining
models lies within the use of those models which corroborate appropriately each other’s
prediction, specifically in those cases which are classified as positive results (in this case,
metastasis). Nonetheless, a stacked model of all the above tested algorithms was created
(Figure 6:5). This stacked model proved worse than the use of glm by itself, supporting the

notion that too many algorithms can be detrimental.
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Figure 6:5: Using multiple machine learning algorithms to predict development of
metastases from cSCC.

Using the 13 different algorithms outlined in Figure 6:4, a model was trained using 10fold
cross validation on 67% of the cSCC data and tested on the remaining 33% of the data. The

predictors which were used were differentiation, diameter and Clark’s level.

6.3.4 Stacked ensemble modelling

To successfully combine models for a stacked ensemble model, it is important to make sure
that there isn’t too high a correlation between the models, because this could result in
excessive weighting for incorrectly classified samples. Similar to the model produced for
the MRM data in chapter 4, a correlation matrix of all the tested models was created to

help select suitable algorithms (Figure 6:6).
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Figure 6:6: Correlation matrix between different model classifications.

Chapter 6

The predictions of the 13 models shown in Figure 6:4 were correlated to each other. In

general, pairwise correlations >0.75 are considered too correlated for use in a stacked

model.

Although the correlation matrix provides useful information when deciding which models

to try in conjunction with each other, there is no ideal way of choosing the most

complimentary models and the best method for picking which models to use remains trial

and error. Therefore, through trial and error, gimnet, xgbDART, nnet and RRF were found

to be a good combination of algorithms. Each of these individual algorithms produced high

ROC scores and a range of sensitivities and specificities (Figure 6:7 and Figure 6:8).

Furthermore, each of these models expressed little correlation (positive or negative) to one

another, suggesting their suitability for stacking (Figure 6:9).
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Figure 6:7: investigating the predictive power of glmnet, xgbDART, nnet and RRF

algorithms previously identified.

Each of the models were trained on 67% of the ¢SCC samples using 10fold cross validation

repeated 3 times, and tested on 33% of the cSCC samples. Diameter, differentiation and

Clark’s level used as predictors. Error bars indicate the variance amongst models within

the cross validation.
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Figure 6:8: ROC curves of giment, xgbhDART, nnet and RRF as individual models to predict

development of metastases from primary c¢SCCs.

Diameter, differentiation and Clark’s level were used as predictors when training each

model on 67% of 101 cSCC samples using 10fold cross validation repeated 3 times. Models

were then tested on the remaining 33% of the c¢SCC samples.
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Figure 6:9: There is relatively low correlation between the individual models (also called
base level learners) nnet, xgbDART, gimnet and RRF in the prediction of metastases from
primary cSCCs.

Predictions of each model, trained on 67% of data using 10 fold cross validation repeated
3 times, were correlated to each other. As each model performed quite well, some

correlation was to be expected.
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Figure 6:10: ROC curve analysis of the stacked ensemble model produced an AUC of
0.997.

A stacked ensemble model using glmnet, xgbDART, nnet and RRF as base learners was
trained on 67% of the data using10 fold cross validation repeated 3 times. Predictions were
then submitted to a top level Meta learner, xgbTree, to stack the model and test on the

remaining 33% of data.
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The nnet, xgbDART, glmnet and RRF prediction models were therefore combined to
generate a stacked ensemble model. This stacked ensemble model produced an AUC of
0.997 (Figure 6:10) with a 95% confidence interval of 0.9883-1 (DelLong). This resulted in
an optimal threshold providing a sensitivity of 94.1% and specificity of 100%. If sensitivity
were favoured over the optimal threshold, one could obtain a sensitivity of 100% and a
specificity of 88.2%. This model was compared to the prediction of metastases using clinical
scoring systems on the same data, and compared to the data published by Roscher et al
(2018) as previously depicted in Figure 4:26. The result suggested that this stacked
ensemble model was better at predicting development of metastases from primary cSCCs

than any current cSCC scoring system in use today.

6.4 Discussion

The original model produced (Figure 6:1) when using cSCC histological parameters
(differentiation, diameter, Clarks level, depth, perivascular invasion, perineural invasion
and site of tumour) and clinical parameters (age, sex of the patient) as predictors of
development of metastases from cSCC achieved a relatively good AUC value and, as such,
highlighted the well-recognised potential of each of these variables to predict clinical
outcome in cSCC. Nonetheless, using features which are loosely related to the classification
state (for example in this case, sex of patient) in conjunction with strong features which
actually hold predictive potential, will result in a weaker model because those loose
features decrease the effect of the important ones (Bastanlar and Ozuysal, 2014). It is for
this reason that understanding the data and carefully selecting biologically relevant
features (or at least those which have strong predictive power in a given input data) is
critical. Furthermore, features (predictive variables) which are strongly correlated with
other features can lead to unnecessary bias and so should be avoided. For these reasons,
the number of features in subsequent models was limited to three from the initial nine that
were used originally. Diameter and differentiation are two histological parameters that are
always recorded when excising a ¢SCC and are known to be important risk factors of
metastasis. This coupled with the fact that, individually, they were the best performers out
of all the other parameters when used in separate models, supported their use as features
in the later models. Many of the guidelines in use today use differentiation state as a factor

when establishing high/low risk of metastases and, furthermore, often classify cSCCs with
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poor differentiation or poor and moderate differentiation as high risk (Motley et al., 2003,
Stratigos et al., 2015). The issue with this, however, is that there are some moderate
differentiated cSCCs with no other high risk features thus, for example, they are lower risk
than those tumours which are moderately differentiated and show evidence of perineural

invasion, and so using differentiation alone could readily misclassify cSCCs inappropriately.

Although depth was the second best performing individual feature for predicting
metastases, it was reasoned that Clark’s level is essentially a simplification of depth in
relation to skin site because different skin sites have different thicknesses of the dermis
between the epidermis and the subcutaneous tissue (Losquadro, 2017). Of course, site also
plays an important role in metastasis because different areas of the body have more or less
vascularity and lymphatic channels (amongst other things) (Nedelec et al., 2016). However,
in order to include site in the models, the training data set would have needed to be
extremely large so as to ensure that overfitting did not occur. Furthermore, the WGCNA
analysis of ¢SCC in chapter 3 also revealed a module (turquoise) which not only expressed
a positive correlation with Clark’s level but also displayed enrichment in multiple pathways
involved in metastasis. Therefore, it was considered that Clark’s level as a feature would
give the algorithm a combined appreciation of depth and site as well as the more complex
biological involvement between these (because they are correlated). Indeed, the
combination of diameter, differentiation and Clark’s level in a glm model produced an
excellent model with a high ROC AUC. Nonetheless, this was the result of using just one
(relatively simple) model and it was considered that perhaps an ensemble model (orindeed

another more complex model) might generate a ROC curve with a higher AUC.

There is no defined rule for which model or algorithm best suits which data; this largely still
relies on experience and on trial and error (Bastanlar and Ozuysal, 2014). Several different
algorithms were tested individually in this chapter but then a process of trial and error was
used to select the combination of models used for stacking. Each of the individual
algorithms employed has its strengths, for instance, glm is a common algorithm used for
binomial classification problems and its universality makes it a preferred first choice.
xgbDART is a powerful algorithm as, being a boosting algorithm, it can learn from all the
data provided in a sequential manner and specifically xgbDART uses randomisation to

reduce the chance of overfitting. Boosting algorithms are good at identifying and ignoring
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noise in the data, which if this current study were to be performed on an even bigger cohort
in the future, could significantly reduce overfitting and increase the overall accuracy of the
model. Nnet is a powerful machine learning algorithm which is very good at identifying
patterns within data. Given that diameter, differentiation and Clark’s level are all likely to
be biologically connected, and so probably influence each other in certain ways, nnet may
be able to identify patterns in this data that would be hard to identify without machine
learning. RRF is a random forest algorithm which utilises regularisation to reduce the
chance of overfitting. The use of regularisation here is important because random forest
models can have a tendency to overfit especially when they have a huge amount of trees,
each with multiple branches and nodes. Regularisation works by shrinking the coefficient
estimates towards zero which, in turn, produces a simpler model, less capable of overfitting.
Although xgbDART and RRF are both decision tree based, they provide different coverage
(Figure 6:9), as xgbDART uses mostly very small decision trees to learn sequentially from
the last, whereas RRF creates one big “forest” of trees which results in one model that has
learnt from all the data as a whole. The resulting stacking model, which used gimnet,
xgbDART, nnet and RRF in combination, gave a ROC curve with a very high AUC and
outperformed all current guidelines/clinical scoring systems in use currently. In addition,
this ensemble model gave a ROC curve with a better AUC than that of the model derived
from MRM data outlined in chapter 4. Admittedly, the mass spectrometry-based
proteomics in chapters 3 and 4 gave better insight into the biology of cSCC, but the work in
the current chapter shows, perhaps surprisingly, that a fresh look (i.e. mathematical
modelling) at old systems (i.e. simple histological parameters) can sometimes have the
potential to predict clinical outcome to a better extent than novel observations with “omics”

approaches.
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Chapter 7: General Discussion

The title and aim of this thesis were to identify factors within skin cancer that contribute to
the development of metastasis. This was accomplished using a mass spectrometry-based
proteomic approach on ¢SCC and melanoma primary tumours which had metastasised and
primary tumours which had not metastasised within a minimum of 5 years since excision
of the primary cancer. This alone highlights a way in which this study is fairly unique
because most other studies investigate for factors within primary tumours and their
subsequent metastases or for differences between the primary and metastatic tumours
(Corbo et al., 2017). The use of primary tumours which metastasised and primary tumours
which did not metastasise means that these two groups are likely to be more similar than
when comparing primary with metastatic tumours. Therefore, less differences in the
proteins identified were expected between the groups but it was likely that any such
differences would be of interest as a potential driving influence of the development of

metastasis.

Although both melanoma and ¢SCC arise in the skin, they obviously arise from different cell
types and, as such, the proteomic profiles and possible contributing factors to development
of metastasis were expected to differ between them. The total number of proteins
identified in the ¢SCC samples was 4,018 (Figure 3:11) whereas the total number of
proteins identified in the melanomas was 3,447 (Figure 5:3). We believe this to be the
highest number of unique proteins (and indeed proteome coverage) from any ¢SCC or
melanoma FFPE proteomic study, for example the number of proteins identified in a
previous melanoma study was 1,528 (Byrum et al., 2013) and in ¢SCC was 2,120 (Foll et al.,
2017). More recently, a proteomics study of actinic keratoses, Bowen’s disease and cSCCs,
published in the Journal of Investigative Dermatology, identified 3574 proteins across 93
samples of actinic keratosis, Bowen’s disease and ¢SCC (Azimi et al., 2019). The number of
IDs in this thesis are also on par with cell line proteomics investigations on ¢SCC and
melanoma (Konstantakou et al., 2017, Paulitschke et al., 2015). The reason for the lower
number of proteins identified in the melanoma samples in this thesis was hypothesised to
be a result of melanin binding to proteins. For example, it was likely that the higher amount
of melanin found in melanomas could bind to proteins in the tumour either during formalin

fixation or during the subsequent protein extraction process prior to the LC-MS (Hoffman
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et al., 2015). Despite attempts to isolate pure proteins without melanin during the protein
extraction, this may have been impossible because melanin is frequently bound to protein
in vivo (Mani et al., 2001) and may in fact have a biological disposition to do so (Pascutti

and Ito, 1992); (Sharma et al., 2002).

A total of 144 proteins and 31 proteins were identified as being significantly differentially
expressed between P-M and P-NM c¢SCCs (Figure 3:14) and between Pmel-M and Pmel-NM
melanomas (Figure 5:5), respectively. The 144 proteins identified in cSCC gave insight into
the possible factors contributing to the development of metastasis in cSCC. It is well
established that the immune system plays a key role in cSCC development and progression
(Rangwala and Tsai, 2011). This is predominantly shown though the effect of
immunosuppression, where the risk of developing skin cancer can increase 50-250 fold in
immunosuppressed individuals (Alter et al., 2014, Euvrard et al., 2003) and the risk of
metastasis is also raised in this patient group (Martinez et al., 2003). Ingenuity pathway
analysis revealed significant activation of the TCR in P-M compared to P-NM (Figure 3:26)
suggesting that there was significantly more activation of T cells in P-M than in P-NM
tumours. Although more T cell activation in P-M samples may seem counter-intuitive, it has
been found that P-M samples have increased numbers of T-reg lymphocytes (Lai et al., 2016,
Lai et al., 2015), so it is possible that part of the observed TCR activation might be due to
activation of higher number of Tregs, which in turn would suppress the immune system
and allow the cancer to metastasise. Furthermore, IPA also highlighted activation of TGFB1
in P-M samples, which might support the hypothesis that the increase in TCR activation is
related to Treg immunosuppression, because TGFB1 is, at least in part, responsible for Treg

suppressive function (Wu et al., 2016).

Immunosuppression from Treg cells would facilitate an environment suitable for cancer
progression but does not necessarily explain how the cancer itself progresses and
metastasises. The bioinformatic analysis of the mass spectrometry results in this thesis
identified an enrichment in several connected biological pathways which eluded to possible
systems involved in the development of cSCC metastasis. Simultaneously, gene ontology
analysis (Figure 3:23, Figure 3:24), KEGG enrichment analysis (Figure 3:20, Figure 3:22) and
IPA (Figure 3:25) revealed significantly more extracellular matrix/focal adhesion and

integrin signalling in P-M compared to P-NM. It is known that extracellular stimuli can

222



Chapter 7

promote PI3K-Akt signalling (Thorpe et al., 2015), which in turn is known to promote cancer
progression (Yao et al., 2017, Li et al., 2017) and indeed, there was evidence of enrichment
and activation of the PI3K-Akt signalling in P-M compared to P-NM (Figure 3:20, Figure 3:22,
Figure 3:25, Figure 3:26). Furthermore, activation of PI3K-Akt signalling and ERK (which was
also seen in the IPA in this chapter 4) has been found to promote metastasis in
oropharyngeal SCC as it induces resistance to anoikis (Zeng et al., 2002), a kind of
programmed cell death specific to epithelial cells which lose polarity and separate from
their normal environment. The IPA (Figure 3:25) and gene ontology results also suggested
significantly more exocytosis in P-M samples compared to P-NM samples. One possible
explanation for this is that P-M samples are priming distant sites into pre-metastatic niches,

ready for metastasis (Costa-Silva et al., 2015, Hoshino et al., 2015, Peinado et al., 2011).

The 31 significantly differentially expressed proteins identified in the melanoma samples
also indicated an immune system involvement because significant enrichment in this was
identified in KEGG analysis (Figure 5:10, Figure 5:11) and IPA (Figure 5:14), albeit less so
than that seen in the ¢SCC analysis. KEGG pathway analysis also revealed a significant
enrichment in “signalling by BRAF and RAF fusions” (Figure 5:10), which supports findings
that over-activation of BRAF (usually through mutations) can contribute to melanoma
metastasis (Adler et al., 2017). IPA and gene ontology analysis also indicated enrichment
of cytoskeletal remodelling through remodelling of adheren junction, actin cytoskeleton
and actin polymerisation/cytoskeletal organisation and activated Rho signalling pathways
in Pmel-M compared to Pmel-NM. As many cancer progress, they often lose their polarity
which can promote metastasis (Rejon et al., 2016, Halaoui and McCaffrey, 2015,
Gandalovicova et al., 2016), with evidence that reduced polarity could be caused by
dysregulation of Rho signalling (Ellenbroek and Collard, 2007) which leads to cytoskeletal

rearrangements, increasing invasive potential (van de Merbel et al., 2018).

Although 31 differentially expressed proteins were identified between the Pmel-M and
Pmel_NM groups, TDA revealed that there could be molecular subgroups within the Pmel-
M and Pmel-NM groups. It is possible that these subgroups represented clusters of samples
with known mutations in genes such as BRAF, CDKN2A or PTEN. It is also possible that
these subgroups represent, until now, unidentified clusters of melanoma samples based

on alterations within tumour proteomes independently of mutations in the
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aforementioned genes. To determine which of these is correct, future studies could benefit
from increasing the sample numbers, undertaking proteomic investigations as were
performed in this thesis, and conducting targeted sequencing analysis to look for known
driver gene mutations in each sample. Furthermore, future studies could benefit from
stratifying melanoma cohorts into their known subgroups, i.e. superficial spreading
melanoma, lentigo maligna melanoma, nodular melanoma and acral melanoma. Stratifying
for these known subgroups could enable investigation into the molecular biology
underpinning each but perhaps moreover, could identify if the molecular phenotypes
identified here, correspond to these sub-groups or if indeed they are independent

molecular phenotypes.

Interestingly, only one protein was identified in both the 1D and 2D data from the
melanoma proteomics; this was Keratin 9. Keratin 9 is almost exclusively found in the
suprabasal layers of palmoplantar epidermis (Fuchs-Telem et al., 2013) and therefore
identifying this protein in melanoma samples from various different body sites was
interesting. Unfortunately, this difference in expression could not be verified using MRM,
and so future studies could investigate this further and, if confirmed, could investigate how
this keratin might influence melanomas to promote metastasis. A brief comparison of
melanoma and c¢SCC proteomics was performed (Figure 5:26), however, the results were
only discussed in minor detail as careful consideration was given to the fact that the
melanoma proteomic data was not verified. Nonetheless, if future studies could verify the
validity of the melanoma data in this thesis, interesting analyses could proceed from the

differences in the metastases-related proteomes between cSCCs and melanoma.

Although MRM was unable to verify the findings of the preceding mass spectrometry-based
proteomic in this tumour, MRM proved successful in verifying the results of the discovery
proteomics in cSCCs (Figure 4:13, Figure 4:14) as well as validating this on a completely
new sample cohort (Figure 4:18, Figure 4:19). Furthermore, additional verification was
performed through IHC staining of L-plastin (Figure 4:15). Selecting ANXA5 and DDOST for
MRM verification was done by machine learning and modelling of the discovery proteomic
cSCC data. Machine learning involves the use of an algorithm to identify trends in data and
then apply them to unknown cases (Bastanlar and Ozuysal, 2014). Machine learning and

artificial intelligence have been used in biological sciences and medicine to create
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diagnostic and prognostic tests (Lao et al., 2017) as well as in predictive analysis to calculate
the chance of drug; resistance, suitability and even identify targets (Korotcov et al., 2017).
It has also been used in image analysis (Erickson et al.,, 2017) and has proved to be
invaluable when combined with medical professional inputs (Wang et al., 2016) and has

even proved more accurate in some cases (Esteva et al., 2017).

Nonetheless, employing machine learning and modelling on the MRM ¢SCC data produced
a model capable of predicting metastasis with an optimal accuracy of 91.18% (sensitivity =
88.24%, specificity = 94.12%). Moreover, the ROC curve of that model produced an AUC of
0.929 and performed better at predicting development of ¢SCC metastases than clinical
scoring systems in current use. Although this doesn’t necessarily mean that ANXA5 or
DDOST are contributing to metastasis directly, it does suggest that these proteins are either
influencers or are influenced by the metastatic process. ANXAS has been found to promote
metastasis in several types of cancer (Xue et al., 2009, Sun et al., 2017, Tang et al., 2017),
however, little is known about DDOSTs role in cancer progression. It could be beneficial for
future studies to identify, whether ANXA5 and DDOST are causally involved in the
development of metastases from cSCCs. This could be done by assessing cellular location
of these proteins as well as ablating the expression of their respective genes in the relevant
cell types to determine the effect this has on the metastatic potential of cSCC samples. The
identification of ANXAS5 and DDOST as biomarkers of ¢SCC metastasis could also lead to
potential new treatment options for patients with cSCCs that are likely to metastasise in

order to prevent the development of future metastases.

Despite the predictive power of the ANXA5 and DDOST proteins, the final chapter in this
thesis showed that using diameter, differentiation and Clark’s level of invasion of the
primary cSCC in a machine learning approach produced a prediction model with a ROC AUC
of 0.997. At an optimal threshold (that is one that produces the highest sensitivity and
specificity summed), a sensitivity of 94.1% and specificity of 100% could be achieved giving
a summed sensitivity and specificity of 194.1% (out of 200%). Currently, according to a
study by Roscher et al (2018), the systems outlined by Breuninger et al (2012) and the
Brigham’s and Women'’s hospital (Karia et al., 2014) have the best predictive ability with a
summed sensitivity and specificity of 153.2% and 155.3 (each out of 200%), respectively.

Admittedly, Roscher et al investigated 184 c¢SCC samples and we only studied 101 cSCC
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samples; nonetheless, the model presented in chapter 6 is better than the current

guidelines/scoring systems used to predict the development of metastasis from c¢SCCs.

This latter model is potentially very easy to test further and, if confirmed, to subsequently
employ in a clinical setting because, theoretically, a software with the built in coefficients
of each feature could be created. A pathologist could then input the differentiation,
diameter and Clark’s level of a ¢SCC section and obtain a more accurate high/low risk of
metastasis for the individual patient. Such a system could result in optimal patient care and
ensure that ¢SCC patients are followed up appropriately. Furthermore, employing such a
system could save the NHS time and money through avoiding unnecessary follow up
appointments as well as potentially identifying metastatic spread at an earlier stage in

those requiring follow-up following excision of the primary cSCC.

In conclusion, this thesis has identified multiple factors within skin cancer that contribute
to metastasis. Proteomic and subsequent bioinformatics analysis of ¢cSCC and melanoma
samples highlighted several key pathways likely to be involved in the metastatic process.
Verification and validation of cSCC proteomics using MRM confirmed these results and
moreover revealed that two proteins, ANXA5 and DDOST could accurately predict
metastasis in cSCC, therefore, making them biomarkers for metastasis in ¢SCC. It was also
identified that a model, produced using only differentiation, diameter and Clark’s level is
more accurate at predicting development of metastasis from primary cSCCs than that used
in any current clinical scoring system, and that, following further confirmation, this latter

model could be integrated into current clinical practice with relative ease.

226



References

References

THPA DDOST [Online]. The Human Protein Atlas. Available:
https://www.proteinatlas.org/ENSG00000244038-DDOST/pathology [Accessed 31/12/18
2018].

AARNISALO, A. A., GREEN, K. M., O'MALLEY, J., MAKARY, C., ADAMS, J., MERCHANT, S. N. & EVANS,
J. E. 2010. A method for MS(E) differential proteomic analysis of archival formalin-fixed
celloidin-embedded human inner ear tissue. Hear Res, 270, 15-20.

ABEL, E. L., ANGEL, J. M., KIGUCHI, K. & DIGIOVANN]I, J. 2009. Multi-stage chemical carcinogenesis
in mouse skin: fundamentals and applications. Nat Protoc, 4, 1350-62.

ABERER, W., SCHULER, G., STINGL, G., HONIGSMANN, H. & WOLFF, K. 1981. Ultraviolet light
depletes surface markers of Langerhans cells. J Invest Dermatol, 76, 202-10.

ADDIS, M. F., TANCA, A., PAGNOZZI, D., CROBU, S., FANCIULLI, G., COSSU-ROCCA, P. & UZZAU, S.
2009. Generation of high-quality protein extracts from formalin-fixed, paraffin-embedded
tissues. Proteomics, 9, 3815-23.

ADLER, N. R., WOLFE, R., KELLY, J. W., HAYDON, A., MCARTHUR, G. A.,, MCLEAN, C. A. & MAR, V. J.
2017. Tumour mutation status and sites of metastasis in patients with cutaneous
melanoma. Br J Cancer, 117, 1026-1035.

AEBERSOLD, R. & MANN, M. 2003. Mass spectrometry-based proteomics. Nature, 422, 198-207.
ALAM, M. & RATNER, D. 2001. Cutaneous squamous-cell carcinoma. N Engl J Med, 344, 975-83.
ALBERT, M. R. & WEINSTOCK, M. A. 2003. Keratinocyte carcinoma. CA Cancer J Clin, 53, 292-302.

ALKHAS, A., HOOD, B. L., OLIVER, K., TENG, P. N., OLIVER, J., MITCHELL, D., HAMILTON, C. A,,
MAXWELL, G. L. & CONRADS, T. P. 2011. Standardization of a sample preparation and
analytical workflow for proteomics of archival endometrial cancer tissue. J Proteome Res,
10, 5264-71.

ALTER, M., SATZGER, I., SCHREM, H., KALTENBORN, A., KAPP, A. & GUTZMER, R. 2014. Non-
melanoma skin cancer is reduced after switch of immunosuppression to mTOR-inhibitors
in organ transplant recipients. J Dtsch Dermatol Ges, 12, 480-8.

ARANDA, F., UDRY, S., PERES WINGEYER, S., AMSHOFF, L. C., BOGDANOVA, N., WIEACKER, P.,
LATINO, J. O., MARKOFF, A. & DE LARRANAGA, G. 2018. Maternal carriers of the ANXA5 M2
haplotype are exposed to a greater risk for placenta-mediated pregnancy complications. J
Assist Reprod Genet, 35, 921-928.

ARMSTRONG, B. K. & KRICKER, A. 2001. The epidemiology of UV induced skin cancer. J Photochem
Photobiol B, 63, 8-18.

ASCO. Melanoma: Statistics [Online]. ASCO. Available: https://www.cancer.net/cancer-
types/melanoma/statistics [Accessed 24,/09/19].

ASHBURNER, M., BALL, C. A., BLAKE, J. A., BOTSTEIN, D., BUTLER, H., CHERRY, J. M., DAVIS, A. P,
DOLINSKI, K., DWIGHT, S. S., EPPIG, J. T., HARRIS, M. A., HILL, D. P., ISSEL-TARVER, L.,
KASARSKIS, A., LEWIS, S., MATESE, J. C., RICHARDSON, J. E., RINGWALD, M., RUBIN, G. M.
& SHERLOCK, G. 2000. Gene ontology: tool for the unification of biology. The Gene Ontology
Consortium. Nat Genet, 25, 25-9.

227



References

ATHAR, M. 2002. Oxidative stress and experimental carcinogenesis. Indian J Exp Biol, 40, 656-67.

ATULA, T., HEDSTROM, J., FINNE, P., LEIVO, |., MARKKANEN-LEPPANEN, M. & HAGLUND, C. 2003.
Tenascin-C expression and its prognostic significance in oral and pharyngeal squamous cell
carcinoma. Anticancer Res, 23, 3051-6.

AZIMI, A., KAUFMAN, K. L., ALI, M., KOSSARD, S. & FERNANDEZ-PENAS, P. 2016. In Silico Analysis
Validates Proteomic Findings of Formalin-fixed Paraffin Embedded Cutaneous Squamous
Cell Carcinoma Tissue. Cancer Genomics Proteomics, 13, 453-465.

AZIMI, A., YANG, P., ALI, M., HOWARD, V., MANN, G. J., KAUFMAN, K. L. & FERNANDEZ-PENAS, P.
2019. Data independent acquisition proteomic analysis can discriminate between actinic
keratosis, Bowen's disease and cutaneous squamous cell carcinoma. J Invest Dermatol.

AZIMZADEH, O., BARJAKTAROVIC, Z., AUBELE, M., CALZADA-WACK, J., SARIOGLU, H., ATKINSON, M.
J. & TAPIO, S. 2010. Formalin-fixed paraffin-embedded (FFPE) proteome analysis using gel-
free and gel-based proteomics. J Proteome Res, 9, 4710-20.

AZIMZADEH, O., SCHERTHAN, H., YENTRAPALLI, R., BARJAKTAROVIC, Z., UEFFING, M., CONRAD, M.,
NEFF, F., CALZADA-WACK, J., AUBELE, M., BUSKE, C., ATKINSON, M. J., HAUCK, S. M. &
TAPIO, S. 2012. Label-free protein profiling of formalin-fixed paraffin-embedded (FFPE)
heart tissue reveals immediate mitochondrial impairment after ionising radiation. J
Proteomics, 75, 2384-95.

BALAJEE, A.S., MAY, A. & BOHR, V. A. 1999. DNA repair of pyrimidine dimers and 6-4 photoproducts
in the ribosomal DNA. Nucleic Acids Res, 27, 2511-20.

BALCH, C. M. 1992. Cutaneous melanoma: prognosis and treatment results worldwide. Semin Surg
Oncol, 8, 400-14.

BALCH, C. M., GERSHENWALD, J. E., SOONG, S. J., THOMPSON, J. F., ATKINS, M. B., BYRD, D. R.,
BUZAID, A. C., COCHRAN, A. J., COIT, D. G., DING, S., EGGERMONT, A. M., FLAHERTY, K. T.,
GIMOTTY, P. A., KIRKWOOD, J. M., MCMASTERS, K. M., MIHM, M. C,, JR.,, MORTON, D. L.,
ROSS, M. I, SOBER, A. J. & SONDAK, V. K. 2009. Final version of 2009 AJCC melanoma
staging and classification. J Clin Oncol, 27, 6199-206.

BALDWIN, M. A. 2004. Protein identification by mass spectrometry - Issues to be considered.
Molecular & Cellular Proteomics, 3, 1-9.

BANTSCHEFF, M., LEMEER, S., SAVITSKI, M. M. & KUSTER, B. 2012. Quantitative mass spectrometry
in proteomics: critical review update from 2007 to the present. Anal Bioanal Chem, 404,
939-65.

BARAKA-VIDOT, J., PLANESSE, C., MEILHAC, O., MILITELLO, V., VAN DEN ELSEN, J., BOURDON, E. &
RONDEAU, P. 2015. Glycation alters ligand binding, enzymatic, and pharmacological
properties of human albumin. Biochemistry, 54, 3051-62.

BARIL, P., GANGESWARAN, R., MAHON, P. C., CAULEE, K., KOCHER, H. M., HARADA, T., ZHU, M.,
KALTHOFF, H., CRNOGORAC-JURCEVIC, T. & LEMOINE, N. R. 2006. Periostin promotes
invasiveness and resistance of pancreatic cancer cells to hypoxia-induced cell death: role of
the [betal4 integrin and the P13k pathway. Oncogene, 26, 2082-2094.

BARTH, A., WANEK, L. A. & MORTON, D. L. 1995. Prognostic factors in 1,521 melanoma patients
with distant metastases. J Am Coll Surg, 181, 193-201.

228



References

BASTANLAR, Y. & OZUYSAL, M. 2014. Introduction to machine learning. Methods Mol Biol, 1107,
105-28.

BATAILLE, V., BISHOP, J. A., SASIENI, P., SWERDLOW, A. J., PINNEY, E., GRIFFITHS, K. & CUZICK, J.
1996. Risk of cutaneous melanoma in relation to the numbers, types and sites of naevi: a
case-control study. British Journal of Cancer, 73, 1605-1611.

BATEMAN, N. W., SUN, M., BHARGAVA, R., HOOD, B. L., DARFLER, M. M., KOVATICH, A. J., HOOKE,
J. A, KRIZMAN, D. B. & CONRADS, T. P. 2011. Differential proteomic analysis of late-stage
and recurrent breast cancer from formalin-fixed paraffin-embedded tissues. J Proteome
Res, 10, 1323-32.

BAYR, H. 2005. Reactive oxygen species. Critical care medicine, 33, S498-S501.

BEAUMONT, K. A.,, MOHANA-KUMARAN, N. & HAASS, N. K. 2013. Modeling Melanoma In Vitro and
In Vivo. Healthcare (Basel), 2, 27-46.

BECKER, J. C., HOUBEN, R., SCHRAMA, D., VOIGT, H., UGUREL, S. & REISFELD, R. A. 2010. Mouse
models for melanoma: a personal perspective. Exp Dermatol, 19, 157-64.

BEISSERT, S., HOSOI, J., GRABBE, S., ASAHINA, A. & GRANSTEIN, R. D. 1995. IL-10 inhibits tumor
antigen presentation by epidermal antigen-presenting cells. J Immunol, 154, 1280-6.

BELL, L. N., SAXENA, R., MATTAR, S. G., YOU, J.,, WANG, M. & CHALASANI, N. 2011. Utility of
formalin-fixed, paraffin-embedded liver biopsy specimens for global proteomic analysis in
nonalcoholic steatohepatitis. Proteomics Clin Appl, 5, 397-404.

BENJAMIN, C. L. & ANANTHASWAMY, H. N. 2007. P53 and the pathogenesis of skin cancer.
Toxicology and Applied Pharmacology, 224, 241-248.

BENNIKE, T. B., KASTANIEGAARD, K., PADURARIU, S., GAIHEDE, M., BIRKELUND, S., ANDERSEN, V.
& STENSBALLE, A. 2016. Comparing the proteome of snap frozen, RNAlater preserved,
and formalin-fixed paraffin-embedded human tissue samples. EuPA Open Proteomics, 10,
9-18.

BICKERS, D. R. & ATHAR, M. 2000. Novel approaches to chemoprevention of skin cancer. J Dermatol,
27, 691-5.

BICKERS, D. R. & ATHAR, M. 2006. Oxidative stress in the pathogenesis of skin disease. J Invest
Dermatol, 126, 2565-75.

BICKERS, D. R., LIM, H. W., MARGOLIS, D., WEINSTOCK, M. A.,, GOODMAN, C., FAULKNER, E., GOULD,
C., GEMMEN, E., DALL, T., AMERICAN ACADEMY OF DERMATOLOGY, A. & SOCIETY FOR
INVESTIGATIVE, D. 2006. The burden of skin diseases: 2004 a joint project of the American
Academy of Dermatology Association and the Society for Investigative Dermatology. J Am
Acad Dermatol, 55, 490-500.

BIGLER, J., BOEDIGHEIMER, M., SCHOFIELD, J. P. R., SKIPP, P. J., CORFIELD, J., ROWE, A., SOUSA, A.
R., TIMOUR, M., TWEHUES, L., HU, X., ROBERTS, G., WELCHER, A. A., YU, W., LEFAUDEUX,
D., DE MEULDER, B., AUFFRAY, C., CHUNG, K. F., ADCOCK, I. M., STERK, P. J., DJUKANOVIC,
R., PLATFORM, U.B.S.G.W. . F. T. U.-B. P. I., PATIENT REPRESENTATIVES FROM THE ETHICS,
B. & SAFETY MANAGEMENT, B. 2016. A Severe Asthma Disease Signature from Gene
Expression Profiling of Peripheral Blood from U-BIOPRED Cohorts. Am J Respir Crit Care Med.

BOUGNOUX, A. C. & SOLASSOL, J. 2013. The contribution of proteomics to the identification of
biomarkers for cutaneous malignant melanoma. Clin Biochem, 46, 518-23.

229



References

BOUTER, A., GOUNOU, C., BERAT, R., TAN, S., GALLOIS, B., GRANIER, T., D'ESTAINTOT, B. L., POSCHL,
E., BRACHVOGEL, B. & BRISSON, A. R. 2011. Annexin-A5 assembled into two-dimensional
arrays promotes cell membrane repair. Nat Commun, 2, 270.

BRADFORD, P. T., GOLDSTEIN, A. M., TAMURA, D., KHAN, S. G., UEDA, T., BOYLE, J., OH, K. S., IMOTO,
K., INUI, H., MORIWAKI, S., EMMERT, S., PIKE, K. M., RAZIUDDIN, A., PLONA, T. M.,
DIGIOVANNA, J. J., TUCKER, M. A. & KRAEMER, K. H. 2011. Cancer and neurologic
degeneration in xeroderma pigmentosum: long term follow-up characterises the role of
DNA repair. J Med Genet, 48, 168-76.

BRANTSCH, K. D., MEISNER, C., SCHONFISCH, B., TRILLING, B., WEHNER-CAROLI, J., ROCKEN, M. &
BREUNINGER, H. 2008. Analysis of risk factors determining prognosis of cutaneous
squamous-cell carcinoma: a prospective study. Lancet Oncol, 9, 713-20.

BRASH, D. E., RUDOLPH, J. A., SIMON, J. A, LIN, A., MCKENNA, G. J., BADEN, H. P., HALPERIN, A. J.
& PONTEN, J. 1991. A role for sunlight in skin cancer: UV-induced p53 mutations in
squamous cell carcinoma. Proc Natl Acad Sci U S A, 88, 10124-8.

BREIMAN, L. 1996. Bagging predictors. Machine Learning, 24, 123-140.

BREIMAN, L. 1997. Arcing the edge. Technical Report 486, Statistics Department, University of
California at ....

BREIMAN, L. 1999. 1 RANDOM FORESTS--RANDOM FEATURES.

BREIMAN, L., FRIEDMAN, J. H., OLSHEN, R. A. & STONE, C. J. 1984. Classification and regression trees.
Belmont, CA: Wadsworth. International Group, 432, 151-166.

BRENNER, M. & HEARING, V. J. 2008. The protective role of melanin against UV damage in human
skin. Photochem Photobiol, 84, 539-49.

BRESLOW, A. 1970. Thickness, cross-sectional areas and depth of invasion in the prognosis of
cutaneous melanoma. Ann Surg, 172, 902-8.

BRESLOW, A. 1979. Prognostic Factors in the Treatment of Cutaneous Melanoma. Journal of
Cutaneous Pathology, 6, 208-212.

BREUNINGER, H., BLACK, B. & RASSNER, G. 1990. Microstaging of squamous cell carcinomas. Am J
Clin Pathol, 94, 624-7.

BREUNINGER, H., BRANTSCH, K., EIGENTLER, T. & HAFNER, H. M. 2012. Comparison and evaluation
of the current staging of cutaneous carcinomas. J Dtsch Dermatol Ges, 10, 579-86.

BRODERS, A. C. 1921. Squamous-Cell Epithelioma of the Skin: A Study of 256 Cases. Ann Surg, 73,
141-60.

BRODLAND, D. G. & ZITELLI, J. A. 1992. Mechanisms of metastasis. / Am Acad Dermatol, 27, 1-8.

BROECKX, V., BOONEN, K., PRINGELS, L., SAGAERT, X., PRENEN, H., LANDUYT, B., SCHOOFS, L. &
MAES, E. 2016. Comparison of multiple protein extraction buffers for GeLC-MS/MS
proteomic analysis of liver and colon formalin-fixed, paraffin-embedded tissues. Mol
Biosyst, 12, 553-65.

BRONSERT, P., WEISSER, J., BINIOSSEK, M. L., KUEHS, M., MAYER, B., DRENDEL, V., TIMME, S.,
SHAHINIAN, H., KUSTERS, S., WELLNER, U. F., LASSMANN, S., WERNER, M. & SCHILLING, O.
2014. Impact of routinely employed procedures for tissue processing on the proteomic
analysis of formalin-fixed paraffin-embedded tissue. Proteomics Clin Appl, 8, 796-804.

230



References

BROZYNA, A. A., JOZWICKI, W., ROSZKOWSKI, K., FILIPIAK, J. & SLOMINSKI, A. T. 2016. Melanin
content in melanoma metastases affects the outcome of radiotherapy. Oncotarget, 7,
17844-17853.

BURGOYNE, R. D. & CLAGUE, M. J. 2003. Calcium and calmodulin in membrane fusion. Biochim
Biophys Acta, 1641, 137-43.

BUYUKBAYRAM, H. & ARSLAN, A. 2002. Value of tenascin-C content and association with
clinicopathological parameters in uterine cervical lesions. Int J Cancer, 100, 719-22.

BYRUM, S., AVARITT, N. L., MACKINTOSH, S. G., MUNKBERG, J. M., BADGWELL, B. D., CHEUNG, W.
L. & TACKETT, A. J. 2011. A quantitative proteomic analysis of FFPE melanoma. J Cutan
Pathol, 38, 933-6.

BYRUM, S. D., LARSON, S. K., AVARITT, N. L., MORELAND, L. E., MACKINTOSH, S. G., CHEUNG, W. L.
& TACKETT, A. J. 2013. Quantitative Proteomics Identifies Activation of Hallmark Pathways
of Cancer in Patient Melanoma. J Proteomics Bioinform, 6, 43-50.

BYSTROM, S., FREDOLINI, C., EDQVIST, P. H., NYAIESH, E. N., DROBIN, K., UHLEN, M., BERGQVIST,
M., PONTEN, F. & SCHWENK, J. M. 2017. Affinity Proteomics Exploration of Melanoma
Identifies Proteins in Serum with Associations to T-Stage and Recurrence. Trans/ Oncol, 10,
385-395.

BYUN, K., YOO, Y., SON, M., LEE, J., JEONG, G. B., PARK, Y. M., SALEKDEH, G. H. & LEE, B. 2017.
Advanced glycation end-products produced systemically and by macrophages: A common
contributor to inflammation and degenerative diseases. Pharmacol Ther, 177, 44-55.

C.R.UK. 2015. Skin Cancer Incidence Statistics [Online]. Available:
http://www.who.int/uv/fag/skincancer/en/index1.html [Accessed 09/03/2016 2015].

CANCER RESEARCH UK, M. I. S.

CHEN, C., CAIl, Q., HE, W., LAM, T. B., LIN, J., ZHAO, Y., CHEN, X., GU, P., HUANG, H., XUE, M., LIU,
H., SU, F., HUANG, J., ZHENG, J. & LIN, T. 2017a. AP4 modulated by the PI3K/AKT pathway
promotes prostate cancer proliferation and metastasis of prostate cancer via upregulating
L-plastin. Cell Death Dis, 8, e3060.

CHEN, T. & GUESTRIN, C. 2016. Xgboost: A scalable tree boosting system. 785-794.

CHEN, Y., GRUIDL, M., REMILY-WOOD, E., LIU, R. Z., ESCHRICH, S., LLOYD, M., NASIR, A., BUI, M. M.,
HUANG, E., SHIBATA, D., YEATMAN, T. & KOOMEN, J. M. 2010. Quantification of beta-
catenin signaling components in colon cancer cell lines, tissue sections, and microdissected
tumor cells using reaction monitoring mass spectrometry. J Proteome Res, 9, 4215-27.

CHEN, Y. T., CHEN, H. W., WU, C. F.,, CHU, L. J., CHIANG, W. F., WU, C. C,, YU, J. S., TSAI, C. H., LIANG,
K. H., CHANG, Y. S., WU, M. & OU YANG, W. T. 2017b. Development of a Multiplexed Liquid
Chromatography Multiple-Reaction-Monitoring Mass Spectrometry (LC-MRM/MS) Method
for Evaluation of Salivary Proteins as Oral Cancer Biomarkers. Mol Cell Proteomics, 16, 799-
811.

CHEN, Y. T., DUBROW, R., ZHENG, T. Z., BARNHILL, R. L., FINE, J. & BERWICK, M. 1998. Sunlamp use
and the risk of cutaneous malignant melanoma: a population-based case-control study in
Connecticut, USA. International Journal of Epidemiology, 27, 758-765.

231



References

CHENG, K. C., CAHILL, D. S., KASAI, H., NISHIMURA, S. & LOEB, L. A. 1992. 8-Hydroxyguanine, an
abundant form of oxidative DNA damage, causes G----T and A----C substitutions. J Biol Chem,
267, 166-72.

CHENG, Y., LU, J,, CHEN, G., ARDEKANI, G. S., ROTTE, A., MARTINKA, M., XU, X., MCELWEE, K. J.,
ZHANG, G. & ZHOU, Y. 2015. Stage-specific prognostic biomarkers in melanoma.
Oncotarget, 6, 4180-9.

CHERPELIS, B. S., MARCUSEN, C. & LANG, P. G. 2002. Prognostic factors for metastasis in squamous
cell carcinoma of the skin. Dermatol Surg, 28, 268-73.

CHI, A., VALENCIA, J. C., HU, Z. Z., WATABE, H., YAMAGUCHI, H., MANGINI, N. J., HUANG, H.,
CANFIELD, V. A., CHENG, K. C., YANG, F., ABE, R., YAMAGISHI, S., SHABANOWITZ, J.,
HEARING, V. J., WU, C., APPELLA, E. & HUNT, D. F. 2006. Proteomic and bioinformatic
characterization of the biogenesis and function of melanosomes. J Proteome Res, 5, 3135-
44,

CHITSAZZADEH, V., COARFA, C., DRUMMOND, J. A.,, NGUYEN, T., JOSEPH, A., CHILUKURI, S.,
CHARPIOT, E., ADELMANN, C. H., CHING, G., NGUYEN, T. N., NICHOLAS, C., THOMAS, V. D.,
MIGDEN, M., MACFARLANE, D., THOMPSON, E., SHEN, J., TAKATA, Y., MCNIECE, K.,
POLANSKY, M. A., ABBAS, H. A., RAJAPAKSHE, K., GOWER, A., SPIRA, A., COVINGTON, K. R.,
XIAO, W., GUNARATNE, P., PICKERING, C., FREDERICK, M., MYERS, J. N., SHEN, L., YAO, H.,
SU, X., RAPINI, R. P., WHEELER, D. A., HAWK, E. T., FLORES, E. R. & TSAI, K. Y. 2016. Cross-
species identification of genomic drivers of squamous cell carcinoma development across
preneoplastic intermediates. Nat Commun, 7, 12601.

CHIU, C.-C., LI, H.-F., CHEN, Y.-J. & CHEN, A.-J. 2014. Abstract 3067: Differential proteomic
profilingidentifies HNSCCinvasion genes: GANAB is negative regulator in HNSCC invasion.
Cancer Research, 70, 3067.

CHO, H. J.,, PARK, S. M., KIM, I. K., NAM, I. K., BAEK, K. E., IM, M. J., YOO, J. M., PARK, S. H., RYU, K.
J.,, HAN, H. T., KIM, H. J,, HONG, S. C,, KIM, K. D., PAK, Y., KIM, J. W., LEE, C. W. & YOO, J.
2014. RhoGDI2 promotes epithelial-mesenchymal transition via induction of Snail in gastric
cancer cells. Oncotarget, 5, 1554-64.

CHOI, H. & NESVIZHSKII, A. I. 2008. False discovery rates and related statistical concepts in mass
spectrometry-based proteomics. J Proteome Res, 7, 47-50.

CLARK, W. H., FROM, L., BERNARDINO, E. A. & MIHM, M. C. 1969. The Histogenesis and Biologic
Behavior of Primary Human Malignant Melanomas of the Skin. Cancer Research, 29, 705.

CLARKE, R. E., DORDEVIC, A. L., TAN, S. M., RYAN, L. & COUGHLAN, M. T. 2016. Dietary Advanced
Glycation End Products and Risk Factors for Chronic Disease: A Systematic Review of
Randomised Controlled Trials. Nutrients, 8, 125.

COHEN, P., WEST, S. G. & AIKEN, L. S. 2014. Applied multiple regression/correlation analysis for the
behavioral sciences, Psychology Press.

COLE, R. B. 2011. Electrospray and MALDI mass spectrometry: fundamentals, instrumentation,
practicalities, and biological applications, John Wiley & Sons.

COMMANDEUR, S., DE GRUIIL, F. R., WILLEMZE, R., TENSEN, C. P. & EL GHALBZOURI, A. 2009. An in
vitro three-dimensional model of primary human cutaneous squamous cell carcinoma. Exp
Dermatol, 18, 849-56.

232



References

CORBO, C., CEVENINI, A. & SALVATORE, F. 2017. Biomarker discovery by proteomics-based
approaches for early detection and personalized medicine in colorectal cancer. Proteomics
Clin Appl, 11, 1600072.

CORNISH, D., HOLTERHUES, C., VAN DE POLL-FRANSE, L. V., COEBERGH, J. W. & NIJSTEN, T. 2009. A
systematic review of health-related quality of life in cutaneous melanoma. Annals of
Oncology, 20, vi51-vi58.

COSTA-SILVA, B., AIELLO, N. M., OCEAN, A. J., SINGH, S., ZHANG, H., THAKUR, B. K., BECKER, A.,
HOSHINO, A., MARK, M. T., MOLINA, H., XIANG, J., ZHANG, T., THEILEN, T. M., GARCIA-
SANTOS, G., WILLIAMS, C., ARARSO, Y., HUANG, Y., RODRIGUES, G., SHEN, T. L., LABORI, K.
J., LOTHE, I. M., KURE, E. H., HERNANDEZ, J., DOUSSOT, A., EBBESEN, S. H., GRANDGENETT,
P. M., HOLLINGSWORTH, M. A., JAIN, M., MALLYA, K., BATRA, S. K., JARNAGIN, W. R.,
SCHWARTZ, R. E., MATEI, ., PEINADO, H., STANGER, B. Z., BROMBERG, J. & LYDEN, D. 2015.
Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver. Nat Cell
Biol, 17, 816-26.

COVER, T. M. & HART, P. 1967. Nearest neighbor pattern classification. IEEE transactions on
information theory, 13, 21-27.

CRAVEN, R. A., CAIRNS, D. A., ZOUGMAN, A., HARNDEN, P., SELBY, P. J. & BANKS, R. E. 2013.
Proteomic analysis of formalin-fixed paraffin-embedded renal tissue samples by label-free
MS: assessment of overall technical variability and the impact of block age. Proteomics Clin
Appl, 7, 273-82.

D'SOUZA, B., MIYAMOTO, A. & WEINMASTER, G. 2008. The many facets of Notch ligands. Oncogene,
27,5148-67.

DANG, C., GOTTSCHLING, M., MANNING, K., O'CURRAIN, E., SCHNEIDER, S., STERRY, W.,
STOCKFLETH, E. & NINDL, I. 2006. Identification of dysregulated genes in cutaneous
squamous cell carcinoma. Oncol Rep, 16, 513-9.

DANIELSEN, S. A., EIDE, P. W., NESBAKKEN, A., GUREN, T., LEITHE, E. & LOTHE, R. A. 2015. Portrait
of the PI3K/AKT pathway in colorectal cancer. Biochim Biophys Acta, 1855, 104-21.

DAVIES, M. A., STEMKE-HALE, K., TELLEZ, C., CALDERONE, T. L., DENG, W., PRIETO, V. G., LAZAR, A.
J., GERSHENWALD, J. E. & MILLS, G. B. 2008. A novel AKT3 mutation in melanoma tumours
and cell lines. Br J Cancer, 99, 1265-8.

DE GRUIJL, F. R. & FORBES, P. D. 1995. UV-induced skin cancer in a hairless mouse model. Bioessays,
17, 651-60.

DE HERTOG, S. A, WENSVEEN, C. A., BASTIAENS, M. T., KIELICH, C. J.,, BERKHOUT, M. J,,
WESTENDORP, R. G., VERMEER, B. J., BOUWES BAVINCK, J. N. & LEIDEN SKIN CANCER, S.
2001. Relation between smoking and skin cancer. J Clin Oncol, 19, 231-8.

DIFFEY, B. L. 2004. The future incidence of cutaneous melanoma within the UK. BrJ Dermatol, 151,
868-72.

DINEHART, S. M. & POLLACK, S. V. 1989. Metastases from squamous cell carcinoma of the skin and
lip. An analysis of twenty-seven cases. J Am Acad Dermatol, 21, 241-8.

DING, X. M., LI, J. X., WANG, K., WU, Z.S., YAO, A. H., JIAO, C. Y., QIAN, J. J.,, BAI, D.S. & LI, X. C. 2017.
Effects of silencing annexin A5 on proliferation and invasion of human cholangiocarcinoma
cell line. Eur Rev Med Pharmacol Sci, 21, 1477-1488.

233



References

DIPNALL, J. F., PASCO, J. A., BERK, M., WILLIAMS, L. J., DODD, S., JACKA, F. N. & MEYER, D. 2016.
Fusing Data Mining, Machine Learning and Traditional Statistics to Detect Biomarkers
Associated with Depression. PLoS One, 11, e0148195.

DOBSON, C. M. 2003. Protein folding and misfolding. Nature, 426, 884-90.

DOBSON, C. M., SALI, A. & KARPLUS, M. 1998. Protein Folding: A Perspective from Theory and
Experiment. Angewandte Chemie International Edition, 37, 868-893.

DOERR, A. 2015. DIA mass spectrometry. Nature Methods, 12, 35-35.
DOMON, B. & AEBERSOLD, R. 2006. Mass spectrometry and protein analysis. Science, 312, 212-7.

DONADIO, E., GIUSTI, L., CETANI, F., DA VALLE, Y., CIREGIA, F., GIANNACCINI, G., PARDI, E.,
SAPONARO, F., TORREGROSSA, L., BASOLO, F., MARCOCCI, C. & LUCACCHINI, A. 2011.
Evaluation of formalin-fixed paraffin-embedded tissues in the proteomic analysis of
parathyroid glands. Proteome Sci, 9, 29.

DONEANU, C. E., XENOPOULOS, A., FADGEN, K., MURPHY, J., SKILTON, S. J., PRENTICE, H., STAPELS,
M. & CHEN, W. 2012. Analysis of host-cell proteins in biotherapeutic proteins by
comprehensive online two-dimensional liquid chromatography/mass spectrometry. MAbs,
4,24-44,

DORMAN, S. E. & HOLLAND, S. M. 2000. Interferon-gamma and interleukin-12 pathway defects and
human disease. Cytokine Growth Factor Rev, 11, 321-33.

DOWNWARD, J. 2003. Targeting RAS signalling pathways in cancer therapy. Nat Rev Cancer, 3, 11-
22.

DRENTH, H., ZUIDEMA, S. U., KRIJNEN, W. P., BAUTMANS, I., VAN DER SCHANS, C. & HOBBELEN, H.
2017. Advanced Glycation End-Products Are Associated With the Presence and Severity of
Paratonia in Early Stage Alzheimer Disease. J Am Med Dir Assoc, 18, 636 €7-636 el12.

DRUMMOND, E. S., NAYAK, S., UEBERHEIDE, B. & WISNIEWSKI, T. 2015. Proteomic analysis of
neurons microdissected from formalin-fixed, paraffin-embedded Alzheimer's disease brain
tissue. Sci Rep, 5, 15456.

DUBA, R. O. & HART, P. E. 1973. Pattern Classification and Scene Analysis Wiley. New York.

DUPERRET, E. K. & RIDKY, T. W. 2013. Focal adhesion complex proteins in epidermis and squamous
cell carcinoma. Cell Cycle, 12, 3272-3285.

DURINCK, S., HO, C., WANG, N. J., LIAO, W., JAKKULA, L. R., COLLISSON, E. A., PONS, J., CHAN, S. W,,
LAM, E. T., CHU, C., PARK, K., HONG, S. W., HUR, J. S., HUH, N., NEUHAUS, |. M., YU, S. S.,
GREKIN, R. C., MAURO, T. M., CLEAVER, J. E., KWOK, P. Y., LEBOIT, P. E., GETZ, G., CIBULSKIS,
K., ASTER, J. C., HUANG, H., PURDOM, E., LI, J., BOLUND, L., ARRON, S. T., GRAY, J. W.,
SPELLMAN, P.T. & CHO, R. J. 2011. Temporal dissection of tumorigenesis in primary cancers.
Cancer Discov, 1, 137-43.

EDEN, E., NAVON, R., STEINFELD, I., LIPSON, D. & YAKHINI, Z. 2009. GOirilla: a tool for discovery and
visualization of enriched GO terms in ranked gene lists. BMC Bioinformatics, 10, 48.

EGERTSON, J. D., KUEHN, A., MERRIHEW, G. E., BATEMAN, N. W., MACLEAN, B. X., TING, Y. S,,
CANTERBURY, J. D., MARSH, D. M., KELLMANN, M., ZABROUSKOV, V., WU, C. C. & MACCOSS,
M. J. 2013. Multiplexed MS/MS for improved data-independent acquisition. Nat Methods,
10, 744-6.

234



References

EGGERMONT, A. M., SUCIU, S., SANTINAMI, M., TESTORI, A., KRUIT, W. H., MARSDEN, J., PUNT, C.
J., SALES, F., GORE, M., MACKIE, R., KUSIC, Z., DUMMER, R., HAUSCHILD, A., MUSAT, E.,
SPATZ, A., KEILHOLZ, U. & GROUP, E. M. 2008. Adjuvant therapy with pegylated interferon
alfa-2b versus observation alone in resected stage Ill melanoma: final results of EORTC
18991, a randomised phase lll trial. Lancet, 372, 117-26.

EGGERMONT, A. M. M., CHIARION-SILENI, V., GROB, J.-J., DUMMER, R., WOLCHOK, J. D., SCHMIDT,
H., HAMID, O., ROBERT, C., ASCIERTO, P. A., RICHARDS, J. M., LEBBE, C., FERRARESI, V.,
SMYLIE, M., WEBER, J. S., MAIO, M., KONTO, C., HOQS, A., DE PRIL, V., GURUNATH, R. K.,
DE SCHAETZEN, G., SUCIU, S. & TESTORI, A. 2015. Adjuvant ipilimumab versus placebo after
complete resection of high-risk stage Ill melanoma (EORTC 18071): a randomised, double-
blind, phase 3 trial. The Lancet Oncology, 16, 522-530.

EKE, I. & CORDES, N. 2015. Focal adhesion signaling and therapy resistance in cancer. Semin Cancer
Biol, 31, 65-75.

EKWUEME, D. U., GUY, G. P,, JR,, LI, C,, RIM, S. H., PARELKAR, P. & CHEN, S. C. 2011. The health
burden and economic costs of cutaneous melanoma mortality by race/ethnicity-United
States, 2000 to 2006. J Am Acad Dermatol, 65, S133-43.

EL GHISSASSI, F., BAAN, R., STRAIF, K., GROSSE, Y., SECRETAN, B., BOUVARD, V., BENBRAHIM-
TALLAA, L., GUHA, N., FREEMAN, C., GALICHET, L., COGLIANO, V. & GROUP, W. H. O. I. A. F.
R. O. C. M. W. 2009. A review of human carcinogens--part D: radiation. Lancet Oncol, 10,
751-2.

ELLENBROEK, S. I. & COLLARD, J. G. 2007. Rho GTPases: functions and association with cancer. Clin
Exp Metastasis, 24, 657-72.

ELSCHENBROICH, S. & KISLINGER, T. 2011. Targeted proteomics by selected reaction monitoring
mass spectrometry: applications to systems biology and biomarker discovery. Mol Biosyst,
7,292-303.

ERICKSON, B. J., KORFIATIS, P., AKKUS, Z. & KLINE, T. L. 2017. Machine Learning for Medical Imaging.
Radiographics, 37, 505-515.

ESTEVA, A., KUPREL, B., NOVOA, R. A, KO, J., SWETTER, S. M., BLAU, H. M. & THRUN, S. 2017.
Dermatologist-level classification of skin cancer with deep neural networks. Nature, 542,
115-118.

EUVRARD, S., KANITAKIS, J. & CLAUDY, A. 2003. Skin cancers after organ transplantation. N Engl J
Med, 348, 1681-91.

FABRIS, F., MAGALHAES, J. P. & FREITAS, A. A. 2017. A review of supervised machine learning
applied to ageing research. Biogerontology, 18, 171-188.

FAN, Y., MA, X,, LI, H., GAOQ, Y., HUANG, Q., ZHANG, Y., BAQ, X., DU, Q., LUO, G., LIU, K., MENG, Q.,
ZHAOQ, C. & ZHANG, X. 2018. miR-122 promotes metastasis of clear-cell renal cell carcinoma
by downregulating Dicer. Int J Cancer, 142, 547-560.

FANG, W. 2017. Interpretation of 2017 National Comprehensive Cancer Network (NCCN) guidelines
for the diagnosis and treatment of esophageal squamous cell carcinoma through the new
TNM staging of esophageal carcinoma (eighth edition) by the Union for International
Cancer Control (UICC) and the American Cancer Commission (AJCC). Zhonghua Wei Chang
Wai Ke Za Zhi, 20, 1122-1126.

235



References

FARAGE, M. A., MILLER, K. W. & MAIBACH, H. I. 2009. Textbook of aging skin, Springer Science &
Business Media.

FARASAT, S., YU, S. S., NEEL, V. A., NEHAL, K. S., LARDARO, T., MIHM, M. C., BYRD, D. R., BALCH, C.
M., CALIFANO, J. A., CHUANG, A. Y., SHARFMAN, W. H., SHAH, J. P., NGHIEM, P., OTLEY, C.
C., TUFARO, A. P., JOHNSON, T. M., SOBER, A. J. & LIEGEOIS, N. J. 2011. A new American
Joint Committee on Cancer staging system for cutaneous squamous cell carcinoma:
creation and rationale for inclusion of tumor (T) characteristics. J Am Acad Dermatol, 64,
1051-9.

FENN, J. B., MANN, M., MENG, C. K., WONG, S. F. & WHITEHOUSE, C. M. 1989. Electrospray
ionization for mass spectrometry of large biomolecules. Science, 246, 64-71.

FERLAY, J., SHIN, H. R., BRAY, F., FORMAN, D., MATHERS, C. & PARKIN, D. M. 2010. Estimates of
worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer, 127, 2893-917.

FIELDS, S. & JOHNSTON, M. 2005. Cell biology. Whither model organism research? Science, 307,
1885-6.

FLANAGAN, N., HEALY, E., RAY, A., PHILIPS, S., TODD, C., JACKSON, I. J., BIRCH-MACHIN, M. A. &
REES, J. L. 2000. Pleiotropic effects of the melanocortin 1 receptor (MC1R) gene on human
pigmentation. Hum Mol Genet, 9, 2531-7.

FOLL, M. C., FAHRNER, M., GRETZMEIER, C., THOMA, K., BINIOSSEK, M. L., KIRITSI, D., MEISS, F.,
SCHILLING, 0., NYSTROM, A. & KERN, J. S. 2017. Identification of tissue damage,
extracellular matrix remodeling and bacterial challenge as common mechanisms associated
with high-risk cutaneous squamous cell carcinomas. Matrix Biol.

FORLONI, M., DOGRA, S. K., DONG, Y., CONTE, D., JR., OU, J., ZHU, L. J., DENG, A., MAHALINGAM,
M., GREEN, M. R. & WAJAPEYEE, N. 2014. miR-146a promotes the initiation and progression
of melanoma by activating Notch signaling. Elife, 3, e01460.

FOWLER, C. B., WAYBRIGHT, T. J.,, VEENSTRA, T. D., O'LEARY, T. J. & MASON, J. T. 2012. Pressure-
assisted protein extraction: a novel method for recovering proteins from archival tissue for
proteomic analysis. J Proteome Res, 11, 2602-8.

FRANCESCHI, P., GIORDAN, M. & WEHRENS, R. 2013. Multiple comparisons in mass-spectrometry-
based -omics technologies. Trac-Trends in Analytical Chemistry, 50, 11-21.

FRANCESCHINI, A., SZKLARCZYK, D., FRANKILD, S., KUHN, M., SIMONOVIC, M., ROTH, A., LIN, J.,
MINGUEZ, P., BORK, P., VON MERING, C. & JENSEN, L. J. 2013. STRING v9.1: protein-protein
interaction networks, with increased coverage and integration. Nucleic Acids Res, 41, D808-
15.

FRANSEN, M., KARAHALIOS, A., SHARMA, N., ENGLISH, D. R., GILES, G. G. & SINCLAIR, R. D. 2012.
Non-melanoma skin cancer in Australia. Med J Aust, 197, 565-8.

FRIERSON, H. F., JR. & COOPER, P. H. 1986. Prognostic factors in squamous cell carcinoma of the
lower lip. Hum Pathol, 17, 346-54.

FU, Z., YAN, K., ROSENBERG, A,, JIN, Z., CRAIN, B., ATHAS, G., HEIDE, R. S., HOWARD, T., EVERETT, A.
D., HERRINGTON, D. & VAN EYK, J. E. 2013. Improved protein extraction and protein
identification from archival formalin-fixed paraffin-embedded human aortas. Proteomics
Clin Appl, 7, 217-24.

236



References

FUCHS-TELEM, D., PADALON-BRAUCH, G., SARIG, O. & SPRECHER, E. 2013. Epidermolytic
palmoplantar keratoderma caused by activation of a cryptic splice site in KRT9. Clin Exp
Dermatol, 38, 189-92: quiz 192.

FUJITA, H., SUAREZ-FARINAS, M., MITSUI, H., GONZALEZ, J., BLUTH, M. J., ZHANG, S., FELSEN, D.,
KRUEGER, J. G. & CARUCCI, J. A. 2012. Langerhans cells from human cutaneous squamous
cell carcinoma induce strong type 1 immunity. J Invest Dermatol, 132, 1645-55.

GALLAGHER, R. P., HILL, G. B., BAIDIK, C. D., COLDMAN, A. J.,, FINCHAM, S., MCLEAN, D. I. &
THRELFALL, W. J. 1995. Sunlight exposure, pigmentation factors, and risk of nonmelanocytic
skin cancer. Il. Squamous cell carcinoma. Arch Dermatol, 131, 164-9.

GAMEZ-POZO, A., SANCHEZ-NAVARRO, |., CALVO, E., DIAZ, E., MIGUEL-MARTIN, M., LOPEZ, R.,
AGULLO, T., CAMAFEITA, E., ESPINOSA, E., LOPEZ, J. A., NISTAL, M. & VARA, J. A. 2011.
Protein phosphorylation analysis in archival clinical cancer samples by shotgun and
targeted proteomics approaches. Mol Biosyst, 7, 2368-74.

GANDALOVICOVA, A., VOMASTEK, T., ROSEL, D. & BRABEK, J. 2016. Cell polarity signaling in the
plasticity of cancer cell invasiveness. Oncotarget, 7, 25022-49.

GARBE, C., EIGENTLER, T. K., KEILHOLZ, U., HAUSCHILD, A. & KIRKWOQD, J. M. 2011. Systematic
review of medical treatment in melanoma: current status and future prospects. Oncologist,
16, 5-24.

GARBE, C. & LEITER, U. 2009. Melanoma epidemiology and trends. Clin Dermatol, 27, 3-9.

GARBE, C., PERIS, K., HAUSCHILD, A., SAIAG, P., MIDDLETON, M., BASTHOLT, L., GROB, J. J.,
MALVEHY, J., NEWTON-BISHOP, J., STRATIGOS, A. J., PEHAMBERGER, H., EGGERMONT, A.
M., EUROPEAN DERMATOLOGY, F., EUROPEAN ASSOCIATION OF, D.-O., EUROPEAN
ORGANISATION FOR, R. & TREATMENT OF, C. 2016. Diagnosis and treatment of melanoma.
European consensus-based interdisciplinary guideline - Update 2016. Eur J Cancer, 63, 201-
17.

GARBE, C., TERHEYDEN, P., KEILHOLZ, U., KOLBL, O. & HAUSCHILD, A. 2008. Treatment of melanoma.
Dtsch Arztebl Int, 105, 845-851.

GARG, K., MAURER, M., GRISS, J., BRUGGEN, M. C., WOLF, I. H., WAGNER, C., WILLI, N., MERTZ, K.
D. & WAGNER, S. N. 2016. Tumor-associated B cells in cutaneous primary melanoma and
improved clinical outcome. Hum Pathol, 54, 157-64.

GAST, M. C., SCHELLENS, J. H. & BEIJNEN, J. H. 2009. Clinical proteomics in breast cancer: a review.
Breast Cancer Res Treat, 116, 17-29.

GAZZANIGA, P., NOFRONI, I., GANDINI, O., SILVESTRI, I., FRATI, L., AGLIANO, A. M. & GRADILONE, A.
2005. Tenascin C and epidermal growth factor receptor as markers of circulating tumoral
cells in bladder and colon cancer. Oncol Rep, 14, 1199-202.

GERSTENBLITH, M. R., GOLDSTEIN, A. M., FARGNOLI, M. C., PERIS, K. & LANDI, M. T. 2007.
Comprehensive evaluation of allele frequency differences of MCI1R variants across
populations. Hum Mutat, 28, 495-505.

GIBLIN, A. V. & THOMAS, J. M. 2007. Incidence, mortality and survival in cutaneous melanoma. J
Plast Reconstr Aesthet Surg, 60, 32-40.

237



References

GIBNEY, G. T., MESSINA, J. L., FEDORENKO, I. V., SONDAK, V. K. & SMALLEY, K. S. 2013. Paradoxical
oncogenesis--the long-term effects of BRAF inhibition in melanoma. Nat Rev Clin Oncol, 10,
390-9.

GILLGRASS, A., GILL, N., BABIAN, A. & ASHKAR, A. A. 2014. The absence or overexpression of IL-15
drastically alters breast cancer metastasis via effects on NK cells, CD4 T cells, and
macrophages. J Immunol, 193, 6184-91.

GLOBOCAN. 2017. GLOBOCAN [Online]. Available: http://globocan.iarc.fr/Default.aspx [Accessed)].

GLOSTER, H. M., JR. & NEAL, K. 2006. Skin cancer in skin of color. J Am Acad Dermatol, 55, 741-60;
quiz 761-4.

GODDEN, D., BRENNAN, P. A. & MILNE, J. 2010. Update on melanoma: the present position. Br J
Oral Maxillofac Surg, 48, 575-8.

GOEL, V. K., LAZAR, A. J.,, WARNEKE, C. L., REDSTON, M. S. & HALUSKA, F. G. 2006. Examination of
mutations in BRAF, NRAS, and PTEN in primary cutaneous melanoma. J Invest Dermatol,
126, 154-60.

GOEPFERT, H., DICHTEL, W. J., MEDINA, J. E., LINDBERG, R. D. & LUNA, M. D. 1984. Perineural
invasion in squamous cell skin carcinoma of the head and neck. Am J Surg, 148, 542-7.

GOGAS, H., EGGERMONT, A. M., HAUSCHILD, A., HERSEY, P., MOHR, P., SCHADENDOREF, D., SPATZ,
A. & DUMMER, R. 2009. Biomarkers in melanoma. Ann Oncol, 20 Suppl 6, vi8-13.

GOMEZ DE AGUERO, M., VOCANSON, M., HACINI-RACHINEL, F., TAILLARDET, M., SPARWASSER, T.,
KISSENPFENNIG, A., MALISSEN, B., KAISERLIAN, D. & DUBOIS, B. 2012. Langerhans cells
protect from allergic contact dermatitis in mice by tolerizing CD8(+) T cells and activating
Foxp3(+) regulatory T cells. J Clin Invest, 122, 1700-11.

GOON, P. K., GREENBERG, D. C., IGALI, L. & LEVELL, N. J. 2016. Squamous Cell Carcinoma of the Skin
has More Than Doubled Over the Last Decade in the UK. Acta Derm Venereol, 96, 820-1.

GORHAM, E. D., MOHR, S. B., GARLAND, C. F., CHAPLIN, G. & GARLAND, F. C. 2007. Do sunscreens
increase risk of melanoma in populations residing at higher latitudes? Ann Epidemiol, 17,
956-63.

GOULD ROTHBERG, B. E., BRACKEN, M. B. & RIMM, D. L. 2009. Tissue biomarkers for prognosis in
cutaneous melanoma: a systematic review and meta-analysis. J Nat! Cancer Inst, 101, 452-
74.

GREAVES, M. & MALEY, C. C. 2012. Clonal evolution in cancer. Nature, 481, 306-13.

GREEN, A., NEALE, R., KELLY, R., SMITH, I., ABLETT, E., MEYERS, B. & PARSONS, P. 1996. An animal
model for human melanoma. Photochem Photobiol, 64, 577-80.

GREENMAN, C., STEPHENS, P., SMITH, R., DALGLIESH, G. L., HUNTER, C., BIGNELL, G., DAVIES, H.,
TEAGUE, J., BUTLER, A., STEVENS, C., EDKINS, S., O'MEARA, S., VASTRIK, I., SCHMIDT, E. E.,
AVIS, T., BARTHORPE, S., BHAMRA, G., BUCK, G., CHOUDHURY, B., CLEMENTS, J., COLE, J.,
DICKS, E., FORBES, S., GRAY, K., HALLIDAY, K., HARRISON, R., HILLS, K., HINTON, J.,
JENKINSON, A., JONES, D., MENZIES, A., MIRONENKO, T., PERRY, J., RAINE, K., RICHARDSON,
D., SHEPHERD, R., SMALL, A., TOFTS, C., VARIAN, J., WEBB, T., WEST, S., WIDAA, S., YATES,
A., CAHILL, D. P.,, LOUIS, D. N., GOLDSTRAW, P., NICHOLSON, A. G., BRASSEUR, F.,
LOOIENGA, L., WEBER, B. L., CHIEW, Y. E., DEFAZIO, A., GREAVES, M. F., GREEN, A. R,
CAMPBELL, P., BIRNEY, E., EASTON, D. F., CHENEVIX-TRENCH, G., TAN, M. H., KHOO, S. K.,

238



References

TEH, B.T., YUEN, S. T., LEUNG, S. Y., WOOSTER, R., FUTREAL, P. A. & STRATTON, M. R. 2007.
Patterns of somatic mutation in human cancer genomes. Nature, 446, 153-8.

GRIEWANK, K. G. 2016. Biomarkers in melanoma. Scand J Clin Lab Invest Suppl, 245, S104-12.

GROSS, A., NIEMETZ-RAHN, A., NONNENMACHER, A., TUCHOLSKI, J., KEILHOLZ, U. & FUSI, A. 2015.
Expression and activity of EGFR in human cutaneous melanoma cell lines and influence of
vemurafenib on the EGFR pathway. Target Oncol, 10, 77-84.

GUAN, M., CHEN, X., MA, Y., TANG, L., GUAN, L., REN, X., YU, B., ZHANG, W. & SU, B. 2015. MDA-9
and GRP78 as potential diagnostic biomarkers for early detection of melanoma metastasis.
Tumour Biol, 36, 2973-82.

GUILHAUS, M., MLYNSKI, V. & SELBY, D. 1997. Perfect timing: Time-of-flight mass spectrometry.
Rapid Communications in Mass Spectrometry, 11, 951-962.

GULUBOVA, M. & VLAYKOVA, T. 2006. Immunohistochemical assessment of fibronectin and
tenascin and their integrin receptors alphaSbetal and alpha9betal in gastric and colorectal
cancers with lymph node and liver metastases. Acta Histochem, 108, 25-35.

GUO, T., WANG, W., RUDNICK, P. A., SONG, T, LI, J., ZHUANG, Z., WEIL, R. J., DEVOE, D. L., LEE, C. S.
& BALGLEY, B. M. 2007. Proteome analysis of microdissected formalin-fixed and paraffin-
embedded tissue specimens. J Histochem Cytochem, 55, 763-72.

GUOQ, X., SHI, Y., GOU, Y, LI, J., HAN, S., ZHANG, Y., HUO, J., NING, X., SUN, L., CHEN, Y., SUN, S. &
FAN, D. 2011. Human ribosomal protein S13 promotes gastric cancer growth through
down-regulating p27(Kip1). J Cell Mol Med, 15, 296-306.

GUPTA, S., TRAN, T., LUO, W., PHUNG, D., KENNEDY, R. L., BROAD, A., CAMPBELL, D., KIPP, D., SINGH
M., KHASRAW, M., MATHESON, L., ASHLEY, D. M. & VENKATESH, S. 2014. Machine-learning
prediction of cancer survival: a retrospective study using electronic administrative records
and a cancer registry. BMJ Open, 4, e004007.

’

HAASS, N. K., SMALLEY, K. S., LI, L. & HERLYN, M. 2005. Adhesion, migration and communication in
melanocytes and melanoma. Pigment Cell Res, 18, 150-9.

HADDADEEN, C., LAI, C., CHO, S. Y. & HEALY, E. 2015. Variants of the melanocortin-1 receptor: do
they matter clinically? Exp Dermatol, 24, 5-9.

HAIGH, P. I, DIFRONZO, L. A. & MCCREADY, D. R. 2003. Optimal excision margins for primary
cutaneous melanoma: a systematic review and meta-analysis. Can J Surg, 46, 419-26.

HALAOUI, R. & MCCAFFREY, L. 2015. Rewiring cell polarity signaling in cancer. Oncogene, 34, 939-
50.

HALUSKA, F. G., TSAO, H., WU, H., HALUSKA, F. S., LAZAR, A. & GOEL, V. 2006. Genetic alterations
in signaling pathways in melanoma. Clin Cancer Res, 12, 2301s-2307s.

HAMES, B. D. 1998. Gel electrophoresis of proteins: a practical approach, OUP Oxford.

HAMMER, E., ERNST, F. D., THIELE, A., KARANAM, N. K., KUJATH, C., EVERT, M., VOLKER, U. &
BARTHLEN, W. 2014. Kidney protein profiling of Wilms' tumor patients by analysis of
formalin-fixed paraffin-embedded tissue samples. Clin Chim Acta, 433, 235-41.

HANAHAN, D. & WEINBERG, R. A. 2000. The Hallmarks of Cancer. Cell, 100, 57-70.

HANAHAN, D. & WEINBERG, R. A. 2011. Hallmarks of cancer: the next generation. Cell, 144, 646-74.

239



References

HARLAND, M., CUST, A. E., BADENAS, C., CHANG, Y. M., HOLLAND, E. A., AGUILERA, P., AITKEN, J. F.,
ARMSTRONG, B. K., BARRETT, J. H., CARRERA, C., CHAN, M., GASCOYNE, J., GILES, G. G.,
AGHA-HAMILTON, C., HOPPER, J. L., JENKINS, M. A., KANETSKY, P. A., KEFFORD, R. F., KOLM,
I., LOWERY, J., MALVEHY, J., OGBAH, Z., PUIG-BUTILLE, J. A., ORIHUELA-SEGALES, J.,
RANDERSON-MOOR, J. A., SCHMID, H., TAYLOR, C. F., WHITAKER, L., BISHOP, D. T., MANN,
G. J.,, NEWTON-BISHOP, J. A. & PUIG, S. 2014. Prevalence and predictors of germline
CDKN2A mutations for melanoma cases from Australia, Spain and the United Kingdom.
Hered Cancer Clin Pract, 12, 20.

HASEGAWA, S., FURUKAWA, Y., LI, M., SATOH, S., KATO, T., WATANABE, T., KATAGIRI, T., TSUNODA,
T., YAMAOKA, Y. & NAKAMURA, Y. 2002. Genome-wide analysis of gene expression in
intestinal-type gastric cancers using a complementary DNA microarray representing 23,040
genes. Cancer Res, 62, 7012-7.

HEALY, E., FLANNAGAN, N., RAY, A., TODD, C., JACKSON, I. J., MATTHEWS, J. N., BIRCH-MACHIN, M.
A. & REES, J. L. 2000. Melanocortin-1-receptor gene and sun sensitivity in individuals
without red hair. Lancet, 355, 1072-3.

HECK, D. E., VETRANO, A. M., MARIANO, T. M. & LASKIN, J. D. 2003. UVB light stimulates production
of reactive oxygen species: unexpected role for catalase. J Biol Chem, 278, 22432-6.

HO, C. S., LAM, C. W., CHAN, M. H., CHEUNG, R. C., LAW, L. K., LIT, L. C,, NG, K. F., SUEN, M. W. &
TAI, H. L. 2003. Electrospray ionisation mass spectrometry: principles and clinical
applications. Clin Biochem Rev, 24, 3-12.

HODIS, E., WATSON, I. R., KRYUKOV, G. V., AROLD, S. T., IMIELINSKI, M., THEURILLAT, J. P.,
NICKERSON, E., AUCLAIR, D., LI, L., PLACE, C., DICARA, D., RAMOS, A. H., LAWRENCE, M. S,,
CIBULSKIS, K., SIVACHENKO, A., VOET, D., SAKSENA, G., STRANSKY, N., ONOFRIO, R. C,,
WINCKLER, W., ARDLIE, K., WAGLE, N., WARGO, J., CHONG, K., MORTON, D. L., STEMKE-
HALE, K., CHEN, G., NOBLE, M., MEYERSON, M., LADBURY, J. E., DAVIES, M. A,
GERSHENWALD, J. E., WAGNER, S. N., HOON, D. S., SCHADENDORF, D., LANDER, E. S.,
GABRIEL, S. B., GETZ, G., GARRAWAY, L. A. & CHIN, L. 2012. A landscape of driver mutations
in melanoma. Cell, 150, 251-63.

HOFFMAN, E. A., FREY, B. L., SMITH, L. M. & AUBLE, D. T. 2015. Formaldehyde crosslinking: a tool
for the study of chromatin complexes. J Biol Chem, 290, 26404-11.

HORNBROOK, M. C., GOSHEN, R., CHOMAN, E., O'KEEFFE-ROSETTI, M., KINAR, Y., LILES, E. G. & RUST,
K. C.2017. Early Colorectal Cancer Detected by Machine Learning Model Using Gender, Age,
and Complete Blood Count Data. Dig Dis Sci, 62, 2719-2727.

HOSHINO, A., COSTA-SILVA, B., SHEN, T. L., RODRIGUES, G., HASHIMOTO, A., TESIC MARK, M.,
MOLINA, H., KOHSAKA, S., DI GIANNATALE, A., CEDER, S., SINGH, S., WILLIAMS, C., SOPLOP,
N., URYU, K., PHARMER, L., KING, T., BOJMAR, L., DAVIES, A. E., ARARSO, Y., ZHANG, T.,
ZHANG, H., HERNANDEZ, J., WEISS, J. M., DUMONT-COLE, V. D., KRAMER, K., WEXLER, L. H.,
NARENDRAN, A., SCHWARTZ, G. K., HEALEY, J. H., SANDSTROM, P., LABORI, K. J., KURE, E.
H., GRANDGENETT, P. M., HOLLINGSWORTH, M. A., DE SOUSA, M., KAUR, S., JAIN, M.,
MALLYA, K., BATRA, S. K., JARNAGIN, W. R., BRADY, M. S., FODSTAD, O., MULLER, V.,
PANTEL, K., MINN, A. J., BISSELL, M. J., GARCIA, B. A., KANG, Y., RAJASEKHAR, V. K., GHAJAR,
C. M., MATEI, I., PEINADO, H., BROMBERG, J. & LYDEN, D. 2015. Tumour exosome integrins
determine organotropic metastasis. Nature, 527, 329-35.

IIZUKA, H. 1995. Epidermal Architecture That Depends on Turnover Time. Journal of Dermatological
Science, 10, 220-223.

240



References

IKEHATA, H., KAWAI K FAU - KOMURA, J.-I., KOMURA J FAU - SAKATSUME, K., SAKATSUME K FAU -
WANG, L., WANG L FAU - IMAI, M., IMAI M FAU - HIGASHI, S., HIGASHI S FAU - NIKAIDO, O.,
NIKAIDO O FAU - YAMAMOTO, K., YAMAMOTO K FAU - HIEDA, K., HIEDA K FAU -
WATANABE, M., WATANABE M FAU - KASAI, H., KASAI H FAU - ONO, T. & ONO, T. 2008.
UVA1 genotoxicity is mediated not by oxidative damage but by cyclobutane pyrimidine
dimers in normal mouse skin.

ILMONEN, S., JAHKOLA, T., TURUNEN, J. P.,, MUHONEN, T. & ASKO-SELJAVAARA, S. 2004. Tenascin-
Cin primary malignant melanoma of the skin. Histopathology, 45, 405-11.

IOACHIM, E., CHARCHANTI, A., BRIASOULIS, E., KARAVASILIS, V., TSANOU, H., ARVANITIS, D. L.,
AGNANTIS, N. J. & PAVLIDIS, N. 2002. Immunohistochemical expression of extracellular
matrix components tenascin, fibronectin, collagen type IV and laminin in breast cancer:
their prognostic value and role in tumour invasion and progression. Eur J Cancer, 38, 2362-
70.

ITO, S. & WAKAMATSU, K. 2003. Quantitative analysis of eumelanin and pheomelanin in humans,
mice, and other animals: a comparative review. Pigment Cell Res, 16, 523-31.

JABLONSKI, N. G. & CHAPLIN, G. 2010. Human skin pigmentation as an adaptation to UV radiation.
Proceedings of the National Academy of Sciences of the United States of America, 107,
8962-8968.

JACOBS, J. M., ADKINS, J. N., QIAN, W. J,, LIU, T., SHEN, Y., CAMP, D. G., 2ND & SMITH, R. D. 2005.
Utilizing human blood plasma for proteomic biomarker discovery. J Proteome Res, 4, 1073-
85.

JAIN, M. R,, LI, Q,, LIU, T., RINAGGIO, J., KETKAR, A., TOURNIER, V., MADURA, K., ELKABES, S. & LI,
H. 2012. Proteomic identification of immunoproteasome accumulation in formalin-fixed
rodent spinal cords with experimental autoimmune encephalomyelitis. J Proteome Res, 11,
1791-803.

JAIN, M. R, LIU, T., HU, J., DARFLER, M., FITZZHUGH, V., RINAGGIO, J. & LI, H. 2008. Quantitative
Proteomic Analysis of Formalin Fixed Paraffin Embedded Oral HPV Lesions from HIV
Patients. Open Proteomics J, 1, 40-45.

JANES, S. M. & WATT, F. M. 2006. New roles for integrins in squamous-cell carcinoma. Nat Rev
Cancer, 6, 175-83.

JENSEN, E. C. 2013. Quantitative analysis of histological staining and fluorescence using Imagel.
Anat Rec (Hoboken), 296, 378-81.

JIANG, X., JIANG, X., FENG, S., TIAN, R., YE, M. & ZOU, H. 2007. Development of efficient protein
extraction methods for shotgun proteome analysis of formalin-fixed tissues. J Proteome Res,
6, 1038-47.

JONES, R., RUAS, M., GREGORY, F., MOULIN, S., DELIA, D., MANOUKIAN, S., ROWE, J., BROOKES, S.
& PETERS, G. 2007. A CDKN2A mutation in familial melanoma that abrogates binding of
p16INK4a to CDK4 but not CDK6. Cancer Res, 67,9134-41.

JUNG, K., GANNOUN, A., SITEK, B., MEYER, H. E., STUHLER, K. & URFER, W. 2005. Analysis of dynamic
protein expression data. RevStat-Statistical Journal, 3,99-111.

KALLURI, R. & WEINBERG, R. A. 2009. The basics of epithelial-mesenchymal transition. J Clin Invest,
119, 1420-8.

241



References

KANEHISA, M. & GOTO, S. 2000. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids
Res, 28, 27-30.

KAPLAN, R. N., RIBA, R. D., ZACHAROULIS, S., BRAMLEY, A. H., VINCENT, L., COSTA, C., MACDONALD,
D. D., JIN, D. K., SHIDO, K., KERNS, S. A., ZHU, Z., HICKLIN, D., WU, Y., PORT, J. L., ALTORKI,
N., PORT, E. R., RUGGERO, D., SHMELKOV, S. V., JENSEN, K. K., RAFII, S. & LYDEN, D. 2005.
VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic
niche. Nature, 438, 820-7.

KARAGAS, M. R., CUSHING, G. L., JR., GREENBERG, E. R., MOTT, L. A., SPENCER, S. K. & NIERENBERG,
D. W. 2001. Non-melanoma skin cancers and glucocorticoid therapy. Br J Cancer, 85, 683-
6.

KARAGAS, M. R., MCDONALD, J. A., GREENBERG, E. R., STUKEL, T. A., WEISS, J. E., BARON, J. A. &
STEVENS, M. M. 1996. Risk of basal cell and squamous cell skin cancers after ionizing
radiation therapy. For The Skin Cancer Prevention Study Group. J Nat/ Cancer Inst, 88, 1848-
53.

KARAGAS, M. R., STANNARD, V. A., MOTT, L. A., SLATTERY, M. J., SPENCER, S. K. & WEINSTOCK, M.
A. 2002. Use of tanning devices and risk of basal cell and squamous cell skin cancers. Journal
of the National Cancer Institute, 94, 224-226.

KARAS, M. & HILLENKAMP, F. 1988. Laser desorption ionization of proteins with molecular masses
exceeding 10,000 daltons. Anal Chem, 60, 2299-301.

KARIA, P. S., JAMBUSARIA-PAHLAJANI, A., HARRINGTON, D. P., MURPHY, G. F., QURESHI, A. A. &
SCHMULTS, C. D. 2014. Evaluation of American Joint Committee on Cancer, International
Union Against Cancer, and Brigham and Women's Hospital tumor staging for cutaneous
squamous cell carcinoma. J Clin Oncol, 32, 327-34.

KARP, N. A. & LILLEY, K. S. 2007. Design and analysis issues in quantitative proteomics studies.
Proteomics, 7 Suppl 1, 42-50.

KASHANI-SABET, M. 2014. Molecular markers in melanoma. Br J Dermatol, 170, 31-5.

KATO, M., TAKAHASHI, M., AKHAND, A. A,, LIU, W., DAI, Y., SHIMIZU, S., IWAMOTO, T., SUZUKI, H.
& NAKASHIMA, |. 1998. Transgenic mouse model for skin malignant melanoma. Oncogene,
17, 1885-8.

KAVAKIOTIS, I., TSAVE, O., SALIFOGLOU, A., MAGLAVERAS, N., VLAHAVAS, |. & CHOUVARDA, |. 2017.
Machine Learning and Data Mining Methods in Diabetes Research. Comput Struct
Biotechnol J, 15, 104-116.

KAWAMURA, T., NOMURA, M., TOJO, H., FUIJII, K., HAMASAKI, H., MIKAMI, S., BANDO, Y., KATO, H.
& NISHIMURA, T. 2010. Proteomic analysis of laser-microdissected paraffin-embedded
tissues: (1) Stage-related protein candidates upon non-metastatic lung adenocarcinoma. J
Proteomics, 73, 1089-99.

KAZIANIS, S., MORIZOT, D. C., COLETTA, L. D., JOHNSTON, D. A., WOOLCOCK, B., VIELKIND, J. R. &
NAIRN, R. S. 1999. Comparative structure and characterization of a CDKN2 gene in a
Xiphophorus fish melanoma model. Oncogene, 18, 5088-99.

KELFKENS, G., DE GRUIJL, F. R. & VAN DER LEUN, J. C. 1991. Tumorigenesis by short-wave ultraviolet
A: papillomas versus squamous cell carcinomas. Carcinogenesis, 12, 1377-82.

242



References

KHANNA, C., LINDBLAD-TOH, K., VAIL, D., LONDON, C., BERGMAN, P., BARBER, L., BREEN, M.,
KITCHELL, B., MCNEIL, E., MODIANO, J. F., NIEMI, S., COMSTOCK, K. E., OSTRANDER, E.,
WESTMORELAND, S. & WITHROW, S. 2006. The dog as a cancer model. Nature
Biotechnology, 24, 1065-1066.

KHATRI, P. & DRAGHICI, S. 2005. Ontological analysis of gene expression data: current tools,
limitations, and open problems. Bioinformatics, 21, 3587-95.

KHATRI, P., SIROTA, M. & BUTTE, A. J. 2012. Ten years of pathway analysis: current approaches and
outstanding challenges. PLoS Comput Biol, 8, e1002375.

KIM, A. L., LABASI, J. M., ZHU, Y., TANG, X., MCCLURE, K., GABEL, C. A., ATHAR, M. & BICKERS, D. R.
2005. Role of p38 MAPK in UVB-induced inflammatory responses in the skin of SKH-1
hairless mice. J Invest Dermatol, 124, 1318-25.

KIROVA, Y. M., CHEN, J., RABARIJAONA, L. I., PIEDBOIS, Y. & LE BOURGEOIS, J. P. 1999. Radiotherapy
as palliative treatment for metastatic melanoma. Melanoma Res, 9, 611-3.

KLEIN, M., LOTEM, M., PERETZ, T., ZWAS, S. T., MIZRACHI, S., LIBERMAN, Y., CHISIN, R., SCHACHTER,
J., RON, I. G., IOSILEVSKY, G., KENNEDY, J. A., REVSKAYA, E., DE KATER, A. W., BANAGA, E.,
KLUTZARITZ, V., FRIEDMANN, N., GALUN, E., DENARDO, G. L., DENARDO, S. J., CASADEVALL,
A., DADACHOVA, E. & THORNTON, G. B. 2013. Safety and Efficacy of 188-Rhenium-Labeled
Antibody to Melanin in Patients with Metastatic Melanoma. Journal of Skin Cancer, 2013,
8.

KOJIMA, K., BOWERSOCK, G. J., KOJIMA, C., KLUG, C. A., GRIZZLE, W. E. & MOBLEY, J. A. 2012.
Validation of a robust proteomic analysis carried out on formalin-fixed paraffin-embedded
tissues of the pancreas obtained from mouse and human. Proteomics, 12, 3393-402.

KONSTANTAKOQOU, E. G., VELENTZAS, A. D.,, ANAGNOSTOPOULGQS, A. K., LITOU, Z. I., KONSTANDI, O.
A., GIANNOPOULOU, A. F., ANASTASIADOU, E., VOUTSINAS, G. E., TSANGARIS, G. T. &
STRAVOPODIS, D. J. 2017. Deep-proteome mapping of WM-266-4 human metastatic
melanoma cells: From oncogenic addiction to druggable targets. PLoS One, 12, e0171512.

KOOPMANN, J., ZHANG, Z., WHITE, N., ROSENZWEIG, J., FEDARKO, N., JAGANNATH, S., CANTO, M.
I, YEO, C. J.,, CHAN, D. W. & GOGGINS, M. 2004. Serum diagnosis of pancreatic
adenocarcinoma using surface-enhanced laser desorption and ionization mass
spectrometry. Clinical Cancer Research, 10, 860-868.

KOROTCOV, A., TKACHENKO, V., RUSSO, D. P. & EKINS, S. 2017. Comparison of Deep Learning With
Multiple Machine Learning Methods and Metrics Using Diverse Drug Discovery Data Sets.
Mol Pharm, 14, 4462-4475.

KRAEMER, K. H., LEE, M. M., ANDREWS, A. D. & LAMBERT, W. C. 1994. The role of sunlight and DNA
repair in melanoma and nonmelanoma skin cancer. The xeroderma pigmentosum paradigm.
Arch Dermatol, 130, 1018-21.

KRAMER, M., STEIN, B., MAI, S., KUNZ, E., KONIG, H., LOFERER, H., GRUNICKE, H. H., PONTA, H.,
HERRLICH, P. & RAHMSDORF, H. J. 1990. Radiation-induced activation of transcription
factors in mammalian cells. Radiat Environ Biophys, 29, 303-13.

KRIPKE, M. L. 1974. Antigenicity of murine skin tumors induced by ultraviolet light. J Nat/ Cancer
Inst, 53, 1333-6.

KRIPKE, M. L. 1977. Latency, histology, and antigenicity of tumors induced by ultraviolet light in
three inbred mouse strains. Cancer Res, 37, 1395-400.

243



References

KUME, H., MURAOKA, S., KUGA, T., ADACH], J., NARUMI, R., WATANABE, S., KUWANO, M., KODERA,
Y., MATSUSHITA, K., FUKUOKA, J., MASUDA, T., ISHIHAMA, Y., MATSUBARA, H., NOMURA,
F. & TOMONAGA, T. 2014. Discovery of colorectal cancer biomarker candidates by
membrane proteomic analysis and subsequent verification using selected reaction
monitoring (SRM) and tissue microarray (TMA) analysis. Mol Cell Proteomics, 13, 1471-84.

KUSEBAUCH, U., HERNANDEZ-CASTELLANO, L. E., BISLEV, S. L., MORITZ, R. L., RONTVED, C. M. &
BENDIXEN, E. 2018. Selected reaction monitoring mass spectrometry of mastitis milk
reveals pathogen-specific regulation of bovine host response proteins. J Dairy Sci, 101,
6532-6541.

LAI, C., AUGUST, S., ALBIBAS, A., BEHAR, R., CHO, S. Y., POLAK, M. E., THEAKER, J., MACLEOD, A.S.,
FRENCH, R. R., GLENNIE, M. J., AL-SHAMKHANI, A. & HEALY, E. 2016. OX40+ Regulatory T
Cells in Cutaneous Squamous Cell Carcinoma Suppress Effector T-Cell Responses and
Associate with Metastatic Potential. Clin Cancer Res, 22, 4236-48.

LAI, C., AUGUST, S., BEHAR, R., POLAK, M., ARDERN-JONES, M., THEAKER, J., AL-SHAMKHANI, A. &
HEALY, E. 2015. Characteristics of immunosuppressive regulatory T cells in cutaneous
squamous cell carcinomas and role in metastasis. Lancet, 385 Suppl 1, S59.

LANGE, V., PICOTTI, P., DOMON, B. & AEBERSOLD, R. 2008. Selected reaction monitoring for
guantitative proteomics: a tutorial. Mol Syst Biol, 4, 222.

LAO, J., CHEN, Y., LI, Z.C, LI, Q., ZHANG, J., LIU, J. & ZHAI, G. 2017. A Deep Learning-Based Radiomics
Model for Prediction of Survival in Glioblastoma Multiforme. Sci Rep, 7, 10353.

LARRANAGA, P., CALVO, B., SANTANA, R., BIELZA, C., GALDIANO, J., INZA, 1., LOZANO, J. A,
ARMANANZAS, R., SANTAFE, G., PEREZ, A. & ROBLES, V. 2006. Machine learning in
bioinformatics. Brief Bioinform, 7, 86-112.

LE QUESNE, J. P., SPRIGGS, K. A., BUSHELL, M. & WILLIS, A. E. 2010. Dysregulation of protein
synthesis and disease. J Pathol, 220, 140-51.

LEFFELL, D. J. 2000. The scientific basis of skin cancer. J Am Acad Dermatol, 42, 18-22.

LEVINE, N., MOON, T. E., CARTMEL, B., BANGERT, J. L., RODNEY, S., DONG, Q., PENG, Y. M. &
ALBERTS, D. S. 1997. Trial of retinol and isotretinoin in skin cancer prevention: a randomized,
double-blind, controlled trial. Southwest Skin Cancer Prevention Study Group. Cancer
Epidemiol Biomarkers Prev, 6, 957-61.

LEWIS, J. M., BURGLER, C. D., FREUDZON, M., GOLUBETS, K., GIBSON, J. F., FILLER, R. B. & GIRARDI,
M. 2015. Langerhans Cells Facilitate UVB-Induced Epidermal Carcinogenesis. J Invest
Dermatol, 135, 2824-33.

LEY, R. D. 1984. Photorepair of pyrimidine dimers in the epidermis of the marsupial Monodelphis
domestica. Photochem Photobiol, 40, 141-3.

LEY, R. D. 2002. Animal models of ultraviolet radiation (UVR)-induced cutaneous melanoma.
Frontiers in bioscience : a journal and virtual library, 7, d1531-4.

LI, B., XU, W. W., LAM, A. K. Y., WANG, Y., HU, H. F., GUAN, X. Y., QIN, Y. R., SAREMI, N., TSAO, S.
W., HE, Q. Y. & CHEUNG, A. L. M. 2017. Significance of PI3K/AKT signaling pathway in
metastasis of esophageal squamous cell carcinoma and its potential as a target for anti-
metastasis therapy. Oncotarget, 8, 38755-38766.

244



References

LI, L., PAN, X. Y., SHU, J., JIANG, R., ZHOU, Y. J. & CHEN, J. X. 2014. Ribonuclease inhibitor up-
regulation inhibits the growth and induces apoptosis in murine melanoma cells through
repression of angiogenin and ILK/PI3K/AKT signaling pathway. Biochimie, 103, 89-100.

LI, Y.Y., HANNA, G.J., LAGA, A. C., HADDAD, R. |., LORCH, J. H. & HAMMERMAN, P. S. 2015. Genomic
analysis of metastatic cutaneous squamous cell carcinoma. Clin Cancer Res, 21, 1447-56.

LIEBLER, D. C. & ZIMMERMAN, L. J. 2013. Targeted quantitation of proteins by mass spectrometry.
Biochemistry, 52, 3797-806.

LIN, C.S., PARK, T., CHEN, Z. P. & LEAVITT, J. 1993. Human plastin genes. Comparative gene structure,
chromosome location, and differential expression in normal and neoplastic cells. J Biol
Chem, 268, 2781-92.

LIU, H., SADYGOV, R. G. & YATES, J. R., 3RD 2004. A model for random sampling and estimation of
relative protein abundance in shotgun proteomics. Anal Chem, 76, 4193-201.

LOMAS, A., LEONARDI-BEE, J. & BATH-HEXTALL, F. 2012. A systematic review of worldwide
incidence of nonmelanoma skin cancer. Br J Dermatol, 166, 1069-80.

LONG, G. V., FLAHERTY, K. T., STROYAKOVSKIY, D., GOGAS, H., LEVCHENKO, E., DE BRAUD, F,,
LARKIN, J., GARBE, C., JOUARY, T., HAUSCHILD, A., CHIARION-SILENI, V., LEBBE, C.,
MANDALA, M., MILLWARD, M., ARANCE, A., BONDARENKO, I., HAANEN, J., HANSSON, J.,
UTIKAL, J., FERRARESI, V., MOHR, P., PROBACHAI, V., SCHADENDORF, D., NATHAN, P.,
ROBERT, C., RIBAS, A., DAVIES, M. A., LANE, S. R., LEGOS, J. J., MOOKERIEE, B. & GROB, J. J.
2017. Dabrafenib plus trametinib versus dabrafenib monotherapy in patients with
metastatic BRAF V600E/K-mutant melanoma: long-term survival and safety analysis of a
phase 3 study. Ann Oncol, 28, 1631-1639.

LONG, G. V., STROYAKOVSKIY, D., GOGAS, H., LEVCHENKO, E., DE BRAUD, F., LARKIN, J., GARBE, C,,
JOUARY, T., HAUSCHILD, A., GROB, J. J., CHIARION-SILENI, V., LEBBE, C., MANDALA, M.,
MILLWARD, M., ARANCE, A., BONDARENKO, I., HAANEN, J. B., HANSSON, J., UTIKAL, J.,
FERRARESI, V., KOVALENKO, N., MOHR, P., PROBACHAI, V., SCHADENDOREF, D., NATHAN, P.,
ROBERT, C., RIBAS, A.,, DEMARINI, D. J., IRANI, J. G.,, SWANN, S., LEGOS, J. J,, JIN, F.,
MOOKERIJEE, B. & FLAHERTY, K. 2015. Dabrafenib and trametinib versus dabrafenib and
placebo for Val600 BRAF-mutant melanoma: a multicentre, double-blind, phase 3
randomised controlled trial. Lancet, 386, 444-51.

LORCH, M., MASON, J. M., CLARKE, A. R. & PARKER, M. J. 1999. Effects of core mutations on the
folding of a beta-sheet protein: implications for backbone organization in the I-state.
Biochemistry, 38, 1377-85.

LOSQUADRO, W. D. 2017. Anatomy of the Skin and the Pathogenesis of Nonmelanoma Skin Cancer.
Facial Plast Surg Clin North Am, 25, 283-289.

LYDIATT, W. M., PATEL, S. G., O'SULLIVAN, B., BRANDWEIN, M. S., RIDGE, J. A., MIGLIACCI, J. C,,
LOOMIS, A. M. & SHAH, J. P. 2017. Head and Neck cancers-major changes in the American
Joint Committee on cancer eighth edition cancer staging manual. CA Cancer J Clin, 67, 122-
137.

LYNCH, C. M., ABDOLLAHI, B., FUQUA, J. D., DE CARLO, A. R., BARTHOLOMAI, J. A., BALGEMANN, R.
N., VAN BERKEL, V. H. & FRIEBOES, H. B. 2017. Prediction of lung cancer patient survival via
supervised machine learning classification techniques. Int J Med Inform, 108, 1-8.

MACLEAN, B., TOMAZELA, D. M., SHULMAN, N., CHAMBERS, M., FINNEY, G. L., FREWEN, B., KERN,
R., TABB, D. L., LIEBLER, D. C. & MACCOSS, M. J. 2010. Skyline: an open source document

245



References

editor for creating and analyzing targeted proteomics experiments. Bioinformatics, 26, 966-
8.

MADAN, V., LEAR, J. T. & SZEIMIES, R. M. 2010. Non-melanoma skin cancer. Lancet, 375, 673-85.

MAES, E., BROECKX, V., MERTENS, I., SAGAERT, X., PRENEN, H., LANDUYT, B. & SCHOOFS, L. 2013.
Analysis of the formalin-fixed paraffin-embedded tissue proteome: pitfalls, challenges, and
future prospectives. Amino Acids, 45, 205-18.

MANI, 1., SHARMA, V., TAMBOLI, I. & RAMAN, G. 2001. Interaction of Melanin with Proteins - The
Importance of an Acidic Intramelanosomal pH. Pigment Cell Research, 14, 170-179.

MANOLA, J., ATKINS, M., IBRAHIM, J. & KIRKWOOD, J. 2000. Prognostic factors in metastatic
melanoma: a pooled analysis of Eastern Cooperative Oncology Group trials. J Clin Oncol, 18,
3782-93.

MAO, J., LIGON, K. L., RAKHLIN, E. Y., THAYER, S. P., BRONSON, R. T., ROWITCH, D. & MCMAHON, A.
P. 2006. A novel somatic mouse model to survey tumorigenic potential applied to the
Hedgehog pathway. Cancer Res, 66, 10171-8.

MARSDEN, J. R., NEWTON-BISHOP, J. A., BURROWS, L., COOK, M., CORRIE, P. G., COX, N. H., GORE,
M. E., LORIGAN, P., MACKIE, R., NATHAN, P., PEACH, H., POWELL, B., WALKER, C. & BRITISH
ASSOCIATION OF DERMATOLOGISTS CLINICAL STANDARDS, U. 2010. Revised U.K.
guidelines for the management of cutaneous melanoma 2010. Br J Dermatol, 163, 238-56.

MARTINCORENA, |. & CAMPBELL, P. J. 2015. Somatic mutation in cancer and normal cells. Science,
349, 1483-9.

MARTINEZ, J. C., OTLEY, C. C., STASKO, T., EUVRARD, S., BROWN, C., SCHANBACHER, C. F., WEAVER,
A. L. & TRANSPLANT-SKIN CANCER, C. 2003. Defining the clinical course of metastatic skin
cancer in organ transplant recipients: a multicenter collaborative study. Arch Dermatol, 139,
301-6.

MCARTHUR, G. A., CHAPMAN, P. B., ROBERT, C., LARKIN, J., HAANEN, J. B., DUMMER, R., RIBAS, A.,
HOGG, D., HAMID, O., ASCIERTO, P. A., GARBE, C., TESTORI, A., MAIO, M., LORIGAN, P.,
LEBBE, C., JOUARY, T., SCHADENDOREF, D., O'DAY, S. J., KIRKWOOD, J. M., EGGERMONT, A.
M., DRENO, B., SOSMAN, J. A., FLAHERTY, K. T., YIN, M., CARO, ., CHENG, S., TRUNZER, K.
& HAUSCHILD, A. 2014. Safety and efficacy of vemurafenib in BRAFV600E and BRAFV600K
mutation-positive melanoma (BRIM-3): extended follow-up of a phase 3, randomised,
open-label study. The Lancet Oncology, 15, 323-332.

MCCULLOCH, W. S. & PITTS, W. 1943. A logical calculus of the ideas immanent in nervous activity.
The bulletin of mathematical biophysics, 5, 115-133.

MCLAFFERTY, F. W. 1981. Tandem mass spectrometry. Science, 214, 280-287.

MCLENDON, R. E., WIKSTRAND, C. J., MATTHEWS, M. R., AL-BARADEI, R., BIGNER, S. H. & BIGNER,
D. D. 2000. Glioma-associated antigen expression in oligodendroglial neoplasms. Tenascin
and epidermal growth factor receptor. J Histochem Cytochem, 48, 1103-10.

MEIER, F., WILL, S., ELLWANGER, U., SCHLAGENHAUFF, B., SCHITTEK, B., RASSNER, G. & GARBE, C.
2002. Metastatic pathways and time courses in the orderly progression of cutaneous
melanoma. Br J Dermatol, 147, 62-70.

246



References

MERAD, M., MANZ, M. G., KARSUNKY, H., WAGERS, A., PETERS, W., CHARO, I., WEISSMAN, I. L.,
CYSTER, J. G. & ENGLEMAN, E. G. 2002. Langerhans cells renew in the skin throughout life
under steady-state conditions. Nat Immunol, 3, 1135-41.

METZ, B., KERSTEN, G. F., HOOGERHOUT, P., BRUGGHE, H. F., TIMMERMANS, H. A., DE JONG, A,
MEIRING, H., TEN HOVE, J., HENNINK, W. E., CROMMELIN, D. J. & JISKOOT, W. 2004.
Identification of formaldehyde-induced modifications in proteins: reactions with model
peptides. J Biol Chem, 279, 6235-43.

MIAN, S., UGUREL, S., PARKINSON, E., SCHLENZKA, 1., DRYDEN, I., LANCASHIRE, L., BALL, G,,
CREASER, C., REES, R. & SCHADENDORF, D. 2005. Serum proteomic fingerprinting
discriminates between clinical stages and predicts disease progression in melanoma
patients. J Clin Oncol, 23, 5088-93.

MICHAYLIRA, C. Z., WONG, G. S., MILLER, C. G., GUTIERREZ, C. M., NAKAGAWA, H., HAMMOND, R.,
KLEIN-SZANTO, A. J., LEE, J. S., KIM, S. B., HERLYN, M., DIEHL, J. A., GIMOTTY, P. & RUSTGI,
A. K. 2010. Periostin, a cell adhesion molecule, facilitates invasion in the tumor
microenvironment and annotates a novel tumor-invasive signature in esophageal cancer.
Cancer Res, 70, 5281-92.

MIGDEN, M. R., RISCHIN, D., SCHMULTS, C. D., GUMINSKI, A., HAUSCHILD, A., LEWIS, K. D., CHUNG,
C. H., HERNANDEZ-AYA, L., LIM, A. M., CHANG, A. L. S., RABINOWITS, G., THAI, A. A., DUNN,
L. A., HUGHES, B. G. M., KHUSHALANI, N. I., MODI, B., SCHADENDORF, D., GAO, B., SEEBACH,
F., LI, S., LI, J., MATHIAS, M., BOOTH, J., MOHAN, K., STANKEVICH, E., BABIKER, H. M., BRANA,
I., GIL-MARTIN, M., HOMSI, J., JOHNSON, M. L., MORENO, V., NIU, J., OWONIKOKO, T. K.,
PAPADOPOULOS, K. P., YANCOPOULOS, G. D., LOWY, I. & FURY, M. G. 2018. PD-1 Blockade
with Cemiplimab in Advanced Cutaneous Squamous-Cell Carcinoma. N Engl J Med, 379,
341-351.

MILLER, P. E. & DENTON, M. B. 1986. The Quadrupole Mass Filter - Basic Operating Concepts.
Journal of Chemical Education, 63, 617-622.

MILLIKAN, L. E., BOYLON, J. L., HOOK, R. R. & MANNING, P. J. 1974. Melanoma in Sinclair swine: a
new animal model. J Invest Dermatol, 62, 20-30.

MISSERO, C. & ANTONINI, D. 2014. Crosstalk among p53 family members in cutaneous carcinoma.
Exp Dermatol, 23, 143-6.

MITCHELL WELLS, J. & MCLUCKEY, S. A. 2005. Collision - Induced Dissociation (CID) of Peptides and
Proteins. Methods in Enzymology. Academic Press.

MOCELLIN, S., PASQUALI, S., ROSSI, C. R. & NITTI, D. 2010. Interferon alpha adjuvant therapy in
patients with high-risk melanoma: a systematic review and meta-analysis. J Nat/ Cancer Inst,
102, 493-501.

MODI, B. G., NEUSTADTER, J., BINDA, E., LEWIS, J., FILLER, R. B., ROBERTS, S. J., KWONG, B. Y., REDDY,
S., OVERTON, J. D., GALAN, A., TIGELAAR, R., CAl, L., FU, P., SHLOMCHIK, M., KAPLAN, D. H.,
HAYDAY, A. & GIRARDI, M. 2012. Langerhans cells facilitate epithelial DNA damage and
squamous cell carcinoma. Science, 335, 104-8.

MOISSOGLU, K., MCROBERTS, K. S., MEIER, J. A., THEODORESCU, D. & SCHWARTZ, M. A. 2009. Rho
GDP dissociation inhibitor 2 suppresses metastasis via unconventional regulation of
RhoGTPases. Cancer Res, 69, 2838-44.

MOON, R. T., KOHN, A. D., DE FERRARI, G. V. & KAYKAS, A. 2004. WNT and beta-catenin signalling:
diseases and therapies. Nat Rev Genet, 5, 691-701.

247



References

MORRA, L. & MOCH, H. 2011. Periostin expression and epithelial-mesenchymal transition in cancer:
a review and an update. Virchows Arch, 459, 465-75.

MORRIS, S., COX, B. & BOSANQUET, N. 2009. Cost of skin cancer in England. Eur J Health Econ, 10,
267-73.

MOTLEY, R., KERSEY, P., LAWRENCE, C., BRITISH ASSOCIATION OF, D. & BRITISH ASSOCIATION OF
PLASTIC, S. 2003. Multiprofessional guidelines for the management of the patient with
primary cutaneous squamous cell carcinoma. Br J Plast Surg, 56, 85-91.

MOTLEY, R., KERSEY, P., LAWRENCE, C., BRITISH ASSOCIATION OF, D., BRITISH ASSOCIATION OF
PLASTIC, S. & ROYAL COLLEGE OF RADIOLOGISTS, F. O. C. 0. 2002. Multiprofessional

guidelines for the management of the patient with primary cutaneous squamous cell
carcinoma. Br J Dermatol, 146, 18-25.

MOZURAITIENE, J., BIELSKIENE, K., ATKOCIUS, V. & LABEIKYTE, D. 2015. Molecular alterations in

signal pathways of melanoma and new personalized treatment strategies: Targeting of
Notch. Medicina-Lithuania, 51, 133-145.

MURRAY, C. J., VOS, T., LOZANO, R., NAGHAVI, M., FLAXMAN, A. D., MICHAUD, C., EZZATI, M.,
SHIBUYA, K., SALOMON, J. A., ABDALLA, S., ABOYANS, V., ABRAHAM, J., ACKERMAN, I.,
AGGARWAL, R., AHN, S. Y., ALI, M. K., ALVARADO, M., ANDERSON, H. R., ANDERSON, L. M.,
ANDREWS, K. G., ATKINSON, C., BADDOUR, L. M., BAHALIM, A. N., BARKER-COLLO, S.,
BARRERO, L. H., BARTELS, D. H., BASANEZ, M. G., BAXTER, A., BELL, M. L., BENJAMIN, E. J.,
BENNETT, D., BERNABE, E., BHALLA, K., BHANDARI, B., BIKBOV, B., BIN ABDULHAK, A.,
BIRBECK, G., BLACK, J. A., BLENCOWE, H., BLORE, J. D., BLYTH, F., BOLLIGER, I.,
BONAVENTURE, A., BOUFOUS, S., BOURNE, R., BOUSSINESQ, M., BRAITHWAITE, T., BRAYNE,
C., BRIDGETT, L., BROOKER, S., BROOKS, P., BRUGHA, T. S., BRYAN-HANCOCK, C., BUCELLO,
C., BUCHBINDER, R., BUCKLE, G., BUDKE, C. M., BURCH, M., BURNEY, P., BURSTEIN, R.,
CALABRIA, B., CAMPBELL, B., CANTER, C. E., CARABIN, H., CARAPETIS, J., CARMONA, L.,
CELLA, C., CHARLSON, F., CHEN, H., CHENG, A. T., CHOU, D., CHUGH, S. S., COFFENG, L. E.,
COLAN, S. D., COLQUHOUN, S., COLSON, K. E., CONDON, J., CONNOR, M. D., COOPER, L. T.,
CORRIERE, M., CORTINOVIS, M., DE VACCARO, K. C., COUSER, W., COWIE, B. C., CRIQUI, M.
H., CROSS, M., DABHADKAR, K. C., DAHIYA, M., DAHODWALA, N., DAMSERE-DERRY, J.,
DANAEI, G., DAVIS, A., DE LEO, D., DEGENHARDT, L., DELLAVALLE, R., DELOSSANTOS, A,,
DENENBERG, J., DERRETT, S., DES JARLAIS, D. C., DHARMARATNE, S. D., et al. 2012.
Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990-2010:
a systematic analysis for the Global Burden of Disease Study 2010. Lancet, 380, 2197-223.

NAGAHARU, K., ZHANG, X., YOSHIDA, T., KATOH, D., HANAMURA, N., KOZUKA, Y., OGAWA, T.,
SHIRAISHI, T. & IMANAKA-YOSHIDA, K. 2011. Tenascin C induces epithelial-mesenchymal
transition-like change accompanied by SRC activation and focal adhesion kinase
phosphorylation in human breast cancer cells. Am J Pathol, 178, 754-63.

NAGANO, M., HOSHINO, D., KOSHIKAWA, N., AKIZAWA, T. & SEIKI, M. 2012. Turnover of focal
adhesions and cancer cell migration. Int J Cell Biol, 2012, 310616.

NAIDOO, K., JONES, R., DMITROVIC, B., WIJESURIYA, N., KOCHER, H., HART, I. R. & CRNOGORAC-
JURCEVIC, T. 2012. Proteome of formalin-fixed paraffin-embedded pancreatic ductal
adenocarcinoma and lymph node metastases. J Pathol, 226, 756-63.

NAIRN, R. S., KAZIANIS, S., MCENTIRE, B. B., DELLA COLETTA, L., WALTER, R. B. & MORIZOT, D. C.
1996. A CDKN2-like polymorphism in Xiphophorus LG V is associated with UV-B-induced
melanoma formation in platyfish—swordtail hybrids. Proceedings of the National Academy
of Sciences of the United States of America, 93, 13042-13047.

248



References

NARAYANAN, D. L., SALADI, R. N. & FOX, J. L. 2010. Ultraviolet radiation and skin cancer. Int J
Dermatol, 49, 978-86.

NASSAR, D., LATIL, M., BOECKX, B., LAMBRECHTS, D. & BLANPAIN, C. 2015. Genomic landscape of
carcinogen-induced and genetically induced mouse skin squamous cell carcinoma. Nat Med,
21, 946-54.

NAZARIAN, J., SANTI, M., HATHOUT, Y. & MACDONALD, T. J. 2008. Protein profiling of formalin fixed
paraffin embedded tissue: Identification of potential biomarkers for pediatric brainstem
glioma. Proteomics Clin Appl, 2, 915-24.

NEDELEC, B., FORGET, N. J., HURTUBISE, T., CIMINO, S., DE MUSZKA, F., LEGAULT, A,, LIU, W. L., DE
OLIVEIRA, A., CALVA, V. & CORREA, J. A. 2016. Skin characteristics: normative data for
elasticity, erythema, melanin, and thickness at 16 different anatomical locations. Skin Res
Technol, 22, 263-75.

NELDER, J. A. & WEDDERBURN, R. W. 1972. Generalized Linear Models. Journal of the Royal
Statistical Society Series a-General, 135, 370-+.

NIESSEN, W. M. A. 2006. Liquid chromatography-mass spectrometry, CRC Press.

NIKOLAEV, S. ., RIMOLDI, D., ISELI, C., VALSESIA, A., ROBYR, D., GEHRIG, C., HARSHMAN, K.,
GUIPPONI, M., BUKACH, O., ZOETE, V., MICHIELIN, O., MUEHLETHALER, K., SPEISER, D.,
BECKMANN, J. S., XENARIOS, I., HALAZONETIS, T. D., JONGENEEL, C. V., STEVENSON, B. J. &
ANTONARAKIS, S. E. 2011. Exome sequencing identifies recurrent somatic MAP2K1 and
MAP2K2 mutations in melanoma. Nat Genet, 44, 133-9.

NIRMALAN, N. J., HUGHES, C., PENG, J., MCKENNA, T., LANGRIDGE, J., CAIRNS, D. A., HARNDEN, P.,
SELBY, P. J. & BANKS, R. E. 2011. Initial development and validation of a novel extraction
method for quantitative mining of the formalin-fixed, paraffin-embedded tissue proteome
for biomarker investigations. J Proteome Res, 10, 896-906.

NISHIGORI, C., YAROSH, D. B., ULLRICH, S. E., VINK, A. A., BUCANA, C. D., ROZA, L. & KRIPKE, M. L.
1996. Evidence that DNA damage triggers interleukin 10 cytokine production in UV-
irradiated murine keratinocytes. Proceedings of the National Academy of Sciences of the
United States of America, 93, 10354-10359.

NOBLE, W. S. 2009. How does multiple testing correction work? Nat Biotech, 27, 1135-1137.

NOONAN, F. P., ZAIDI, M. R., WOLNICKA-GLUBISZ, A., ANVER, M. R., BAHN, J., WIELGUS, A., CADET,
J., DOUKI, T., MOURET, S., TUCKER, M. A., POPRATILOFF, A., MERLINO, G. & DE FABO, E. C.
2012. Melanoma induction by ultraviolet A but not ultraviolet B radiation requires melanin
pigment. Nat Commun, 3, 884.

O'DEA, D. 2000. The Costs of Skin Cancer to New Zealand. A Report to the Cancer Society. Wellington
School of Medicine, University of Otago: University of Otago.

O'DELL, B. L., JESSEN, R. T., BECKER, L. E., JACKSON, R. T. & SMITH, E. B. 1980. Diminished immune
response in sun-damaged skin. Arch Dermatol, 116, 559-61.

ORTEGA-MARTINEZ, I., GARDEAZABAL, J., ERRAMUZPE, A., SANCHEZ-DIEZ, A., CORTES, J., GARCIA-
VAZQUEZ, M. D., PEREZ-YARZA, G., IZU, R., LUIS DIAZ-RAMON, J., DE LA FUENTE, I. M.,
ASUMENDI, A. & BOYANO, M. D. 2016. Vitronectin and dermcidin serum levels predict the
metastatic progression of AJCC I-Il early-stage melanoma. Int J Cancer, 139, 1598-607.

249



References

OSAKI, M., OSHIMURA, M. & ITO, H. 2004. PI3K-Akt pathway: its functions and alterations in human
cancer. Apoptosis, 9, 667-76.

OSKARSSON, T., ACHARYYA, S., ZHANG, X. H. F., VANHARANTA, S., TAVAZOIE, S. F., MORRIS, P. G.,
DOWNEY, R. J.,, MANOVA-TODOROVA, K., BROGI, E. & MASSAGUE, J. 2011. Breast cancer
cells produce tenascin C as a metastatic niche component to colonize the lungs. Nature
Medicine, 17, 867-U256.

OSTASIEWICZ, P., ZIELINSKA, D. F.,, MANN, M. & WISNIEWSKI, J. R. 2010. Proteome,
phosphoproteome, and N-glycoproteome are quantitatively preserved in formalin-fixed
paraffin-embedded tissue and analyzable by high-resolution mass spectrometry. J
Proteome Res, 9, 3688-700.

PALMER-TOY, D. E., KRASTINS, B., SARRACINO, D. A., NADOL, J. B., JR. & MERCHANT, S. N. 2005.
Efficient method for the proteomic analysis of fixed and embedded tissues. J Proteome Res,
4,2404-11.

PAS, J., WYSZKO, E., ROLLE, K., RYCHLEWSKI, L., NOWAK, S., ZUKIEL, R. & BARCISZEWSKI, J. 2006.
Analysis of structure and function of tenascin-C. Int J Biochem Cell Biol, 38, 1594-602.

PASCUTTI, P. G. & ITO, A. S. 1992. EPR study of melanin-protein interaction: photoinduced free
radicals and progressive microwave power saturation. J Photochem Photobiol B, 16, 257-
66.

PATEL, V., HOOD, B. L., MOLINOLO, A. A., LEE, N. H., CONRADS, T. P., BRAISTED, J. C., KRIZMAN, D.
B., VEENSTRA, T. D. & GUTKIND, J. S. 2008. Proteomic analysis of laser-captured paraffin-
embedded tissues: a molecular portrait of head and neck cancer progression. Clin Cancer
Res, 14, 1002-14.

PAULITSCHKE, V., GERNER, C., HOFSTATTER, E., MOHR, T., MAYER, R. L., PEHAMBERGER, H. &
KUNSTFELD, R. 2015. Proteome profiling of keratinocytes transforming to malignancy.
Electrophoresis, 36, 564-76.

PAULO, J. A, LEE, L. S., BANKS, P. A., STEEN, H. & CONWELL, D. L. 2012. Proteomic analysis of
formalin-fixed paraffin-embedded pancreatic tissue using liquid chromatography tandem
mass spectrometry. Pancreas, 41, 175-85.

PEINADO, H., LAVOTSHKIN, S. & LYDEN, D. 2011. The secreted factors responsible for pre-metastatic
niche formation: old sayings and new thoughts. Semin Cancer Biol, 21, 139-46.

PENG, B., LIU, S., GUO, C,, SUN, X. & SUN, M. Z. 2016. ANXAS5 level is linked to in vitro and in vivo
tumor malignancy and lymphatic metastasis of murine hepatocarcinoma cell. Future Oncol,
12, 31-42.

PENG, J. & GYGI, S. P. 2001. Proteomics: the move to mixtures. J/ Mass Spectrom, 36, 1083-91.

PICKERING, C. R., ZHOU, J. H., LEE, J. J,, DRUMMOND, J. A., PENG, S. A., SAADE, R. E., TSAI, K. Y.,
CURRY, J. L., TETZLAFF, M. T., LAI, S. Y., YU, J., MUZNY, D. M., DODDAPANENI, H., SHINBROT,
E., COVINGTON, K. R., ZHANG, J., SETH, S., CAULIN, C., CLAYMAN, G. L., EL-NAGGAR, A. K.,
GIBBS, R. A., WEBER, R. S., MYERS, J. N.,, WHEELER, D. A. & FREDERICK, M. J. 2014.
Mutational landscape of aggressive cutaneous squamous cell carcinoma. Clin Cancer Res,
20, 6582-92.

PICOTTI, P. & AEBERSOLD, R. 2012. Selected reaction monitoring—based proteomics: workflows,
potential, pitfalls and future directions. Nature Methods, 9, 555.

250



References

PICOTTI, P., BODENMILLER, B., MUELLER, L. N., DOMON, B. & AEBERSOLD, R. 2009. Full dynamic
range proteome analysis of S. cerevisiae by targeted proteomics. Cell, 138, 795-806.

PINHO, S. S. & REIS, C. A. 2015. Glycosylation in cancer: mechanisms and clinical implications. Nat
Rev Cancer, 15, 540-55.

PRIETO, D. A., HOOD, B. L., DARFLER, M. M., GUIEL, T. G., LUCAS, D. A.,, CONRADS, T. P., VEENSTRA,
T. D. & KRIZMAN, D. B. 2005. Liquid Tissue™: proteomic profiling of formalin-fixed tissues.
Mass Spectrometry, 32-35.

PROKSCH, E., BRANDNER, J. M. & JENSEN, J. M. 2008. The skin: an indispensable barrier. Exp
Dermatol, 17, 1063-72.

PROTA, G. 2000. Melanins, melanogenesis and melanocytes: Looking at their functional significance
from the chemist's viewpoint. Pigment Cell Research, 13, 283-293.

RAIMONDI, S., SERA, F., GANDINI, S., IODICE, S., CAINI, S., MAISONNEUVE, P. & FARGNOLI, M. C.
2008. MC1R variants, melanoma and red hair color phenotype: a meta-analysis. Int J Cancer,
122, 2753-60.

RANGWALA, S. & TSAI, K. Y. 2011. Roles of the immune system in skin cancer. Br J Dermatol, 165,
953-65.

RASHBASH, J. 2016. RE: director for cancer registry modernisation, UK Trend

RATUSHNY, V., GOBER, M. D., HICK, R., RIDKY, T. W. & SEYKORA, J. T. 2012. From keratinocyte to
cancer: the pathogenesis and modeling of cutaneous squamous cell carcinoma. The Journal
of Clinical Investigation, 122, 464-472.

REELFS, O., TYRRELL RM FAU - POURZAND, C. & POURZAND, C. 2004. Ultraviolet a radiation-induced
immediate iron release is a key modulator of the activation of NF-kappaB in human skin
fibroblasts.

REIFENBERGER, J., KNOBBE, C. B., WOLTER, M., BLASCHKE, B., SCHULTE, K. W., PIETSCH, T., RUZICKA,
T. & REIFENBERGER, G. 2002. Molecular genetic analysis of malignant melanomas for
aberrations of the WNT signaling pathway genes CTNNB1, APC, ICAT and BTRC. Int J Cancer,
100, 549-56.

REJON, C., AL-MASRI, M. & MCCAFFREY, L. 2016. Cell Polarity Proteins in Breast Cancer Progression.
J Cell Biochem, 117, 2215-23.

REYMOND, M. A. & SCHLEGEL, W. 2007. Proteomics in Cancer. Advances in Clinical Chemistry.
Elsevier.

REZVANI, H. R., CARIO-ANDRE, M., PAIN, C., GED, C., DEVERNEUIL, H. & TAIEB, A. 2007. Protection
of normal human reconstructed epidermis from UV by catalase overexpression. Cancer
Gene Ther, 14, 174-86.

REZVANI, H. R., MAZURIER, F., CARIO-ANDRE, M., PAIN, C., GED, C., TAIEB, A. & DE VERNEUIL, H.
2006. Protective effects of catalase overexpression on UVB-induced apoptosis in normal
human keratinocytes. J Biol Chem, 281, 17999-8007.

ROBINSON, S. J. & HEALY, E. 2002. Human melanocortin 1 receptor (MC1R) gene variants alter
melanoma cell growth and adhesion to extracellular matrix. Oncogene, 21, 8037-46.

251



References

ROBOTI, P. & HIGH, S. 2012. The oligosaccharyltransferase subunits 0ST48, DAD1 and KCP2 function
as ubiquitous and selective modulators of mammalian N-glycosylation. J Cell Sci, 125, 3474-
84.

ROGENHOFER, N., NIENABER, L. R. M., AMSHOFF, L. C., BOGDANOVA, N., PETROFF, D., WIEACKER,
P., THALER, C. J. & MARKOFF, A. 2018. Assessment of M2/ANXAS5 haplotype as a risk factor
in couples with placenta-mediated pregnancy complications. J Assist Reprod Genet, 35,
157-163.

ROGERS, H. W., WEINSTOCK, M. A., FELDMAN, S. R. & COLDIRON, B. M. 2015. Incidence Estimate
of Nonmelanoma Skin Cancer (Keratinocyte Carcinomas) in the U.S. Population, 2012.
JAMA Dermatol, 151, 1081-6.

ROGERS, H. W., WEINSTOCK, M. A., HARRIS, A. R., HINCKLEY, M. R., FELDMAN, S. R., FLEISCHER, A.
B. & COLDIRON, B. M. 2010. Incidence estimate of nonmelanoma skin cancer in the United
States, 2006. Arch Dermatol, 146, 283-7.

RONG, Y., ZUO, L., SHANG, L. & BAZAN, J. G. 2015. Radiotherapy treatment for nonmelanoma skin
cancer. Expert Rev Anticancer Ther, 15, 765-76.

ROSCHER, I., FALK, R. S., VOS, L., CLAUSEN, O. P. F., HELSING, P., GJERSVIK, P. & ROBSAHM, T. E.
2018. Validating 4 Staging Systems for Cutaneous Squamous Cell Carcinoma Using
Population-Based Data: A Nested Case-Control Study. JAMA Dermatol, 154, 428-434.

ROSENGREN PIELBERG, G., GOLOVKO, A., SUNDSTROM, E., CURIK, I., LENNARTSSON, J,
SELTENHAMMER, M. H., DRUML, T., BINNS, M., FITZSIMMONS, C., LINDGREN, G.,
SANDBERG, K., BAUMUNG, R., VETTERLEIN, M., STROMBERG, S., GRABHERR, M., WADE, C.,
LINDBLAD-TOH, K., PONTEN, F., HELDIN, C. H., SOLKNER, J. & ANDERSSON, L. 2008. A cis-
acting regulatory mutation causes premature hair graying and susceptibility to melanoma
in the horse. Nat Genet, 40, 1004-9.

ROWE, D. E., CARROLL, R. J. & DAY, C. L., JR. 1992. Prognostic factors for local recurrence, metastasis,
and survival rates in squamous cell carcinoma of the skin, ear, and lip. Implications for
treatment modality selection. J Am Acad Dermatol, 26, 976-90.

RUNGER, T. M. & KAPPES, U. P. 2008. Mechanisms of mutation formation with long-wave ultraviolet
light (UVA). Photodermatol Photoimmunol Photomed, 24, 2-10.

SALLAM, R. M. 2015. Proteomics in cancer biomarkers discovery: challenges and applications. Dis
Markers, 2015, 321370.

SALZBERG, S. L. 1994. C4. 5: Programs for machine learning by j. ross quinlan. morgan kaufmann
publishers, inc., 1993. Machine Learning, 16, 235-240.

SANDER, C. S., CHANG, H., HAMM, F., ELSNER, P. & THIELE, J. J. 2004. Role of oxidative stress and
the antioxidant network in cutaneous carcinogenesis. Int J Dermatol, 43, 326-35.

SARIDAKI, Z., LILOGLOU, T., ZAFIROPOULOS, A., KOUMANTAKI, E., ZORAS, O. & SPANDIDOS, D. A.
2003. Mutational analysis of CDKN2A genes in patients with squamous cell carcinoma of
the skin. Br J Dermatol, 148, 638-48.

SCALA, S., OTTAIANO, A., ASCIERTO, P. A., CAVALLI, M., SIMEONE, E., GIULIANO, P., NAPOLITANO,
M., FRANCO, R., BOTTI, G. & CASTELLO, G. 2005. Expression of CXCR4 predicts poor
prognosis in patients with malignant melanoma. Clin Cancer Res, 11, 1835-41.

252



References

SCHMIDT, H., JOHANSEN, J. S., GEHL, J., GEERTSEN, P. F., FODE, K. & VON DER MAASE, H. 2006.
Elevated serum level of YKL-40 is an independent prognostic factor for poor survival in
patients with metastatic melanoma. Cancer, 106, 1130-9.

SCHUFFLER, P.J., FUCHS, T.J., ONG, C.S., WILD, P. J.,, RUPP, N. J. & BUHMANN, J. M. 2013. TMARKER:
A free software toolkit for histopathological cell counting and staining estimation. J Pathol
Inform, 4, S2.

SCHWARZ, A., NOORDEGRAAF, M., MAEDA, A., TORII, K., CLAUSEN, B. E. & SCHWARZ, T. 2010.
Langerhans cells are required for UVR-induced immunosuppression. J Invest Dermatol, 130,
1419-27.

SCHWEITZER, A. D., RAKESH, V., REVSKAYA, E., DATTA, A., CASADEVALL, A. & DADACHOVA, E. 2007.
Computational model predicts effective delivery of 188-Re-labeled melanin-binding
antibody to metastatic melanoma tumors with wide range of melanin concentrations.
Melanoma Research, 17, 291-303.

SCICCHITANO, M. S., DALMAS, D. A., BOYCE, R. W., THOMAS, H. C. & FRAZIER, K. S. 2009. Protein
extraction of formalin-fixed, paraffin-embedded tissue enables robust proteomic profiles
by mass spectrometry. J Histochem Cytochem, 57, 849-60.

SENESCHAL, J., CLARK, R. A., GEHAD, A., BAECHER-ALLAN, C. M. & KUPPER, T. S. 2012. Human
epidermal Langerhans cells maintain immune homeostasis in skin by activating skin
resident regulatory T cells. Immunity, 36, 873-84.

SETLOW, R. B., GRIST, E., THOMPSON, K. & WOODHEAD, A. D. 1993. Wavelengths effective in
induction of malignant melanoma. Proc Natl Acad Sci U S A, 90, 6666-70.

SETLOW, R. B., REGAN, J. D., GERMAN, J. & CARRIER, W. L. 1969. EVIDENCE THAT XERODERMA
PIGMENTOSUM CELLS DO NOT PERFORM THE FIRST STEP IN THE REPAIR OF ULTRAVIOLET
DAMAGE TO THEIR DNA. Proceedings of the National Academy of Sciences of the United
States of America, 64, 1035-1041.

SETLOW, R. B. & SETLOW, J. K. 1962. EVIDENCE THAT ULTRAVIOLET-INDUCED THYMINE DIMERS IN
DNA CAUSE BIOLOGICAL DAMAGE. Proceedings of the National Academy of Sciences of the
United States of America, 48, 1250-1257.

SHAIN, A. H., BAGGER, M. M., YU, R., CHANG, D., LIU, S., VEMULA, S., WEIER, J. F.,, WADT, K.,
HEEGAARD, S., BASTIAN, B. C. & KIILGAARD, J. F. 2019. The genetic evolution of metastatic
uveal melanoma. Nat Genet, 51, 1123-1130.

SHARMA, S., WAGH, S. & GOVINDARAJAN, R. 2002. Melanosomal proteins--role in melanin
polymerization. Pigment Cell Res, 15, 127-33.

SHI, S. R., LIU, C., BALGLEY, B. M., LEE, C. & TAYLOR, C. R. 2006. Protein extraction from formalin-
fixed, paraffin-embedded tissue sections: quality evaluation by mass spectrometry. J
Histochem Cytochem, 54, 739-43.

SHLIAHA, P. V., BOND, N. J,, GATTO, L. & LILLEY, K. S. 2013. Effects of traveling wave ion mobility
separation on data independent acquisition in proteomics studies. J Proteome Res, 12,
2323-39.

SHULL, A. Y., LATHAM-SCHWARK, A., RAMASAMY, P., LESKOSKE, K., OROIAN, D., BIRTWISTLE, M. R.
& BUCKHAULTS, P. J. 2012. Novel somatic mutations to PI3K pathway genes in metastatic
melanoma. PLoS One, 7, e43369.

253



References

SIEGEL, R., NAISHADHAM, D. & JEMAL, A. 2013. Cancer statistics, 2013. CA Cancer J Clin, 63, 11-30.

SILVA, J. C., GORENSTEIN, M. V., LI, G. Z.,, VISSERS, J. P. & GEROMANOQOS, S. J. 2006. Absolute
quantification of proteins by LCMSE: a virtue of parallel MS acquisition. Mol Cell Proteomics,
5, 144-56.

SIRIWARDENA, B. S., KUDO, Y., OGAWA, |, KITAGAWA, M., KITAJIMA, S., HATANO, H., TILAKARATNE,
W. M., MIYAUCHI, M. & TAKATA, T. 2006. Periostin is frequently overexpressed and
enhances invasion and angiogenesis in oral cancer. Br J Cancer, 95, 1396-403.

SLUYTER, R. & HALLIDAY, G. M. 2001. Infiltration by inflammatory cells required for solar-simulated
ultraviolet radiation enhancement of skin tumor growth. Cancer Immunol Immunother, 50,
151-6.

SOO0D, A., WYKES, J., ROSHAN, D., WANG, L. Y., MCGUINNESS, J., FOWLER, A. & EBRAHIMI, A. 2019.
A critical analysis of the prognostic performance of the 8th edition American Joint
Committee on Cancer staging for metastatic cutaneous squamous cell carcinoma of the
head and neck. Head Neck.

SOONG, S. J., HARRISON, R. A., MCCARTHY, W. H., URIST, M. M. & BALCH, C. M. 1998. Factors
affecting survival following local, regional, or distant recurrence from localized melanoma.
J Surg Oncol, 67, 228-33.

SOUSA, J. F., HAM, A. J., WHITWELL, C., NAM, K. T., LEE, H. J., YANG, H. K., KIM, W. H., ZHANG, B.,
LI, M., LAFLEUR, B., LIEBLER, D. C. & GOLDENRING, J. R. 2012. Proteomic profiling of
paraffin-embedded samples identifies metaplasia-specific and early-stage gastric cancer
biomarkers. Am J Pathol, 181, 1560-72.

SOUTH, A. P., PURDIE, K. J., WATT, S. A., HALDENBY, S., DEN BREEMS, N. Y., DIMON, M., ARRON, S.
T., KLUK, M. J., ASTER, J. C., MCHUGH, A., XUE, D. J., DAYAL, J. H., ROBINSON, K. S., RIZVI, S.
M., PROBY, C. M., HARWOOD, C. A. & LEIGH, I. M. 2014. NOTCH1 mutations occur early
during cutaneous squamous cell carcinogenesis. J Invest Dermatol, 134, 2630-8.

SPARROW, L. E., SOONG, R., DAWKINS, H. J., IACOPETTA, B. J. & HEENAN, P. J. 1995. p53 gene
mutation and expression in naevi and melanomas. Melanoma Res, 5, 93-100.

SPRUNG, R. W., BROCK, J. W. C., TANKSLEY, J. P., LI, M., WASHINGTON, M. K., SLEBOS, R. J. C. &
LIEBLER, D. C. 2009. Equivalence of Protein Inventories Obtained from Formalin-fixed
Paraffin-embedded and Frozen Tissue in Multidimensional Liquid Chromatography-
Tandem Mass Spectrometry Shotgun Proteomic Analysis. Molecular & Cellular Proteomics,
8, 1988-1998.

SPRUNG, R. W., MARTINEZ, M. A., CARPENTER, K. L., HAM, A. J., WASHINGTON, M. K., ARTEAGA, C.
L., SANDERS, M. E. & LIEBLER, D. C. 2012. Precision of multiple reaction monitoring mass
spectrometry analysis of formalin-fixed, paraffin-embedded tissue. J Proteome Res, 11,
3498-505.

SRINIVAS, P. R., VERMA, M., ZHAO, Y. & SRIVASTAVA, S. 2002. Proteomics for cancer biomarker
discovery. Clin Chem, 48, 1160-9.

STEIN, A. L. & TAHAN, S. R. 1994. Histologic correlates of metastasis in primary invasive squamous
cell carcinoma of the lip. J Cutan Pathol, 21, 16-21.

STEINBERG, D. 2009. CART: Classification and Regression Trees. Top Ten Algorithms in Data Mining,
9, 179-201.

254



References

STRATIGOS, A., GARBE, C., LEBBE, C., MALVEHY, J., DEL MARMOL, V., PEHAMBERGER, H., PERIS, K.,
BECKER, J. C., ZALAUDEK, I., SAIAG, P., MIDDLETON, M. R., BASTHOLT, L., TESTORI, A., GROB,
J. J.,, EUROPEAN DERMATOLOGY, F., EUROPEAN ASSOCIATION OF, D.-O., EUROPEAN
ORGANIZATION FOR, R. & TREATMENT OF, C. 2015. Diagnosis and treatment of invasive
squamous cell carcinoma of the skin: European consensus-based interdisciplinary guideline.
Eur J Cancer, 51, 1989-2007.

STRICKLAND, P. T. 1986. Photocarcinogenesis by near-ultraviolet (UVA) radiation in Sencar mice. J
Invest Dermatol, 87, 272-5.

SU, F., VIROS, A., MILAGRE, C., TRUNZER, K., BOLLAG, G., SPLEISS, O., REIS-FILHO, J. S., KONG, X.,
KOYA, R. C., FLAHERTY, K. T., CHAPMAN, P. B., KIM, M. J., HAYWARD, R., MARTIN, M., YANG,
H., WANG, Q., HILTON, H., HANG, J. S., NOE, J., LAMBROS, M., GEYER, F., DHOMEN, N.,
NICULESCU-DUVAZ, I., ZAMBON, A., NICULESCU-DUVAZ, D., PREECE, N., ROBERT, L., OTTE,
N.J., MOK, S., KEE, D., MA, Y., ZHANG, C., HABETS, G., BURTON, E. A., WONG, B., NGUYEN,
H., KOCKX, M., ANDRIES, L., LESTINI, B., NOLOP, K. B., LEE, R. J., JOE, A. K., TROY, J. L.,
GONZALEZ, R., HUTSON, T. E., PUZANOV, |., CHMIELOWSKI, B., SPRINGER, C. J., MCARTHUR,
G. A, SOSMAN, J. A, LO, R. S., RIBAS, A. & MARAIS, R. 2012. RAS mutations in cutaneous
squamous-cell carcinomas in patients treated with BRAF inhibitors. N Engl J Med, 366, 207-
15.

SUN, C. B., ZHAO, A. Y, JI, S., HAN, X. Q., SUN, Z. C., WANG, M. C. & ZHENG, F. C. 2017. Expression
of annexin A5 in serum and tumor tissue of patients with colon cancer and its clinical
significance. World J Gastroenterol, 23, 7168-7173.

SUN, X., LIU, S., WANG, J., WEI, B., GUO, C., CHEN, C. & SUN, M. Z. 2018. Annexin A5 regulates
hepatocarcinoma malignancy via CRKI/II-DOCK180-RAC1 integrin and MEK-ERK pathways.
Cell Death Dis, 9, 637.

SUPEK, F., BOSNJAK, M., SKUNCA, N. & SMUC, T. 2011. REVIGO summarizes and visualizes long lists
of gene ontology terms. PLoS One, 6, €21800.

SZKLARCZYK, D., FRANCESCHINI, A., WYDER, S., FORSLUND, K., HELLER, D., HUERTA-CEPAS, J.,
SIMONOVIC, M., ROTH, A., SANTOS, A., TSAFOU, K. P., KUHN, M., BORK, P., JENSEN, L. J. &
VON MERING, C. 2015. STRING v10: protein-protein interaction networks, integrated over
the tree of life. Nucleic Acids Res, 43, D447-52.

TADOKORO, T., KOBAYASHI, N., ZMUDZKA, B. Z., ITO, S., WAKAMATSU, K., YAMAGUCHI, Y.,
KOROSSY, K. S., MILLER, S. A., BEER, J. Z. & HEARING, V. J. 2003. UV-induced DNA damage
and melanin content in human skin differing in racial/ethnic origin. FASEB J, 17, 1177-9.

TAKADATE, T., ONOGAWA, T., FUJII, K., MOTOI, F., MIKAMI, S., FUKUDA, T., KIHARA, M., SUZUKI, T.,
TAKEMURA, T., MINOWA, T., HANAGATA, N., KINOSHITA, K., MORIKAWA, T., SHIRASAKI, K.,
RIKIYAMA, T., KATAYOSE, Y., EGAWA, S., NISHIMURA, T. & UNNO, M. 2012.
Nm23/nucleoside diphosphate kinase-A as a potent prognostic marker in invasive
pancreatic ductal carcinoma identified by proteomic analysis of laser micro-dissected
formalin-fixed paraffin-embedded tissue. Clin Proteomics, 9, 8.

TAKADATE, T., ONOGAWA, T., FUKUDA, T., MOTOI, F., SUZUKI, T., FUJII, K., KIHARA, M., MIKAMI, S.,
BANDO, Y., MAEDA, S., ISHIDA, K., MINOWA, T., HANAGATA, N., OHTSUKA, H., KATAYOSE,
Y., EGAWA, S., NISHIMURA, T. & UNNO, M. 2013. Novel prognostic protein markers of
resectable pancreatic cancer identified by coupled shotgun and targeted proteomics using
formalin-fixed paraffin-embedded tissues. Int J Cancer, 132, 1368-82.

255



References

TANG, J., QIN, Z., HAN, P., WANG, W., YANG, C., XU, Z, LI, R, LIU, B., QIN, C., WANG, Z., TANG, M.
& ZHANG, W. 2017. High Annexin A5 expression promotes tumor progression and poor
prognosis in renal cell carcinoma. Int J Oncol, 50, 1839-1847.

TAS, F. 2012. Metastatic behavior in melanoma: timing, pattern, survival, and influencing factors. J
Oncol, 2012, 647684.

THOMPSON, A. K., KELLEY, B. F., PROKOP, L. J., MURAD, M. H. & BAUM, C. L. 2016. Risk Factors for
Cutaneous Squamous Cell Carcinoma Recurrence, Metastasis, and Disease-Specific Death:
A Systematic Review and Meta-analysis. JAMA Dermatol, 152, 419-28.

THOMPSON, J. F., SCOLYER, R. A. & KEFFORD, R. F. 2005. Cutaneous melanoma. The Lancet, 365,
687-701.

THORPE, L. M., YUZUGULLU, H. & ZHAO, J. J. 2015. PI3K in cancer: divergent roles of isoforms,
modes of activation and therapeutic targeting. Nature reviews. Cancer, 15, 7-24.

TING, W., SCHULTZ, K., CAC, N. N., PETERSON, M. & WALLING, H. W. 2007. Tanning bed exposure
increases the risk of malignant melanoma. Int J Dermatol, 46, 1253-7.

TSAOQ, H., NADIMINTI, U., SOBER, A.J. & BIGBY, M. 2001. A meta-analysis of reverse transcriptase-
polymerase chain reaction for tyrosinase mRNA as a marker for circulating tumor cells in
cutaneous melanoma. Arch Dermatol, 137, 325-30.

UGUREL, S., UTIKAL, J. & BECKER, J. C. 2009. Tumor biomarkers in melanoma. Cancer Control, 16,
219-24.

ULRICH, C., KANITAKIS, J., STOCKFLETH, E. & EUVRARD, S. 2008. Skin cancer in organ transplant
recipients--where do we stand today? Am J Transplant, 8, 2192-8.

VALLEJO-TORRES, L., MORRIS, S., KINGE, J. M., POIRIER, V. & VERNE, J. 2014. Measuring current and
future cost of skin cancer in England. J Public Health (Oxf), 36, 140-8.

VALVERDE, P., HEALY, E., JACKSON, I., REES, J. L. & THODY, A. J. 1995. Variants of the melanocyte-
stimulating hormone receptor gene are associated with red hair and fair skin in humans.
Nat Genet, 11, 328-30.

VAN DE MERBEL, A. F., VAN DER HORST, G., BUIJS, J. T. & VAN DER PLUIJM, G. 2018. Protocols for
Migration and Invasion Studies in Prostate Cancer. Methods Mol Biol, 1786, 67-79.

VAN DER WEYDEN, L., PATTON, E. E., WOOD, G. A., FOOTE, A. K., BRENN, T., ARENDS, M. J. & ADAMS,
D. J. 2016. Cross-species models of human melanoma. J Pathol, 238, 152-65.

VAPNIK, V. & CHERVONENKIS, A. 1974. Theory of pattern recognition. Nauka, Moscow.

VENESS, M. J. 2006. Defining patients with high-risk cutaneous squamous cell carcinoma. Australas
J Dermatol, 47, 28-33.

VENNING, F. A., WULLKOPF, L. & ERLER, J. T. 2015. Targeting ECM Disrupts Cancer Progression.
Front Oncol, 5, 224.

VIZCAINO, J. A., CSORDAS, A., DEL-TORO, N., DIANES, J. A., GRISS, J., LAVIDAS, I|., MAYER, G., PEREZ-
RIVEROL, Y., REISINGER, F., TERNENT, T., XU, Q. W., WANG, R. & HERMJAKOB, H. 2016. 2016
update of the PRIDE database and its related tools. Nucleic Acids Res, 44, D447-56.

256



References

VLAYKOVA, T., TALVE, L., HAHKA-KEMPPINEN, M., HERNBERG, M., MUHONEN, T., COLLAN, Y. &
PYRHONEN, S. 2002. Immunohistochemically detectable Bcl-2 expression in metastatic
melanoma: Association with survival and treatment response. Oncology, 62, 259-268.

VON MERING, C., HUYNEN, M., JAEGGI, D., SCHMIDT, S., BORK, P. & SNEL, B. 2003. STRING: a
database of predicted functional associations between proteins. Nucleic acids research, 31,
258-261.

WABNITZ, G. H., KOCHER, T., LOHNEIS, P., STOBER, C., KONSTANDIN, M. H., FUNK, B., SESTER, U.,
WILM, M., KLEMKE, M. & SAMSTAG, Y. 2007. Costimulation induced phosphorylation of L-
plastin facilitates surface transport of the T cell activation molecules CD69 and CD25. Eur J
Immunol, 37, 649-62.

WAKAMATSU, K. & ITO, S. 2002. Advanced chemical methods in melanin determination. Pigment
Cell Res, 15, 174-83.

WANG, D., KHOSLA, A., GARGEYA, R., IRSHAD, H. & BECK, A. H. 2016. Deep learning for identifying
metastatic breast cancer. arXiv preprint arXiv:1606.05718.

WANG, N. J., SANBORN, Z., ARNETT, K. L., BAYSTON, L. J., LIAO, W., PROBY, C. M., LEIGH, I|. M.,
COLLISSON, E. A., GORDON, P. B., JAKKULA, L., PENNYPACKER, S., ZOU, Y., SHARMA, M.,
NORTH, J. P., VEMULA, S. S., MAURO, T. M., NEUHAUS, |. M., LEBOIT, P. E., HUR, J. S., PARK,
K., HUH, N., KWOK, P. Y., ARRON, S. T., MASSION, P. P., BALE, A. E., HAUSSLER, D., CLEAVER,
J. E., GRAY, J. W., SPELLMAN, P. T., SOUTH, A. P., ASTER, J. C., BLACKLOW, S. C. & CHO, R. J.
2011. Loss-of-function mutations in Notch receptors in cutaneous and lung squamous cell
carcinoma. Proc Natl Acad Sci U S A, 108, 17761-6.

WANG, Q., ZHANG, M., TOMITA, T., VOGELSTEIN, J. T., ZHOU, S., PAPADOPOULOS, N., KINZLER, K.
W. & VOGELSTEIN, B. 2017. Selected reaction monitoring approach for validating peptide
biomarkers. Proc Natl Acad Sci U S A, 114, 13519-13524.

WARD, D. G., SUGGETT, N., CHENG, Y., WEI, W., JOHNSON, H., BILLINGHAM, L. J., ISMAIL, T.,
WAKELAM, M. J., JOHNSON, P. J. & MARTIN, A. 2006. Identification of serum biomarkers
for colon cancer by proteomic analysis. Br J Cancer, 94, 1898-905.

WASSERSTEIN, R. L. & LAZAR, N. A. 2016. The ASA's Statement on p-Values: Context, Process, and
Purpose. American Statistician, 70, 129-131.

WATSON, A. D., GUNNING, Y., RIGBY, N. M., PHILO, M. & KEMSLEY, E. K. 2015. Meat Authentication
via Multiple Reaction Monitoring Mass Spectrometry of Myoglobin Peptides. Anal Chem,
87, 10315-22.

WATSON, M., GARNETT, E., GUY, G. P. & HOLMAN, D. M. 2014. The Surgeon General’s call to action
to prevent skin cancer.

WEBB-ROBERTSON, B. J., WIBERG, H. K., MATZKE, M. M., BROWN, J. N., WANG, J., MCDERMOTT, J.
E., SMITH, R. D., RODLAND, K. D., METZ, T. O., POUNDS, J. G. & WATERS, K. M. 2015. Review,
evaluation, and discussion of the challenges of missing value imputation for mass
spectrometry-based label-free global proteomics. J Proteome Res, 14, 1993-2001.

WEINBERG, A. S., OGLE, C. A. & SHIM, E. K. 2007. Metastatic cutaneous squamous cell carcinoma:
an update. Dermatol Surg, 33, 885-99.

WEINSTEIN, D., LEININGER, J., HAMBY, C. & SAFAI, B. 2014. Diagnostic and prognostic biomarkers
in melanoma. J Clin Aesthet Dermatol, 7, 13-24.

257



References

WEISS, S. A, HANNIFORD, D., HERNANDO, E. & OSMAN, |. 2015. Revisiting determinants of
prognosis in cutaneous melanoma. Cancer, 121, 4108-23.

WEISSER, J., LAI, Z. W., BRONSERT, P., KUEHS, M., DRENDEL, V., TIMME, S., KUESTERS, S., JILG, C. A,,
WELLNER, U. F., LASSMANN, S., WERNER, M., BINIOSSEK, M. L. & SCHILLING, O. 2015.
Quantitative proteomic analysis of formalin-fixed, paraffin-embedded clear cell renal cell
carcinoma tissue using stable isotopic dimethylation of primary amines. BMC Genomics, 16,
559.

WENDT, M. K., SMITH, J. A. & SCHIEMANN, W. P. 2010. Transforming growth factor-beta-induced
epithelial-mesenchymal transition facilitates epidermal growth factor-dependent breast
cancer progression. Oncogene, 29, 6485-98.

WHITE-GILBERTSON, S., KURTZ, D. T. & VOELKEL-JOHNSON, C. 2009. The role of protein synthesis
in cell cycling and cancer. Mol Oncol, 3, 402-8.

WISNIEWSKI, J. R. 2013. Proteomic sample preparation from formalin fixed and paraffin embedded
tissue. J Vis Exp, 50589.

WISNIEWSKI, J. R., OSTASIEWICZ, P. & MANN, M. 2011. High recovery FASP applied to the
proteomic analysis of microdissected formalin fixed paraffin embedded cancer tissues
retrieves known colon cancer markers. J Proteome Res, 10, 3040-9.

WISZTORSKI, M., FATOU, B., FRANCK, J., DESMONS, A., FARRE, I., LEBLANC, E., FOURNIER, I. &
SALZET, M. 2013. Microproteomics by liquid extraction surface analysis: application to FFPE
tissue to study the fimbria region of tubo-ovarian cancer. Proteomics Clin Appl, 7, 234-40.

WOLNICKA-GLUBISZ, A., STRICKLAND, F. M., WIELGUS, A., ANVER, M., MERLINO, G., DE FABO, E. C.
& NOONAN, F. P. 2015. A melanin-independent interaction between Mclr and Met
signaling pathways is required for HGF-dependent melanoma. Int J Cancer, 136, 752-60.

WORLD HEALTH ORGANISATION. 2016. How Common is Skin Cancer? [Online]. Available:
http://www.who.int/uv/fag/skincancer/en/index1.html [Accessed 17/02/2016 2016].

WU, M., CHEN, X,, LOU, J., ZHANG, S., ZHANG, X., HUANG, L., SUN, R., HUANG, P., WANG, F. & PAN,
S. 2016. TGF-betal contributes to CD8+ Treg induction through p38 MAPK signaling in
ovarian cancer microenvironment. Oncotarget, 7, 44534-44544,

XIAO, Z., LI, G., CHEN, Y., LI, M., PENG, F., LI, C., LI, F., YU, Y., OUYANG, Y., XIAO, Z. & CHEN, Z. 2010.
Quantitative proteomic analysis of formalin-fixed and paraffin-embedded nasopharyngeal
carcinoma using iTRAQ labeling, two-dimensional liquid chromatography, and tandem
mass spectrometry. J Histochem Cytochem, 58, 517-27.

XU, H., YANG, L., WANG, W., SHI, S. R,, LIU, C,, LIU, Y., FANG, X., TAYLOR, C. R., LEE, C. S. & BALGLEY,
B. M. 2008. Antigen retrieval for proteomic characterization of formalin-fixed and paraffin-
embedded tissues. J Proteome Res, 7, 1098-108.

XU, I. M., LAI, R. K,, LIN, S. H., TSE, A. P., CHIU, D. K., KOH, H. Y., LAW, C. T., WONG, C. M., CAIl, Z,,
WONG, C. C. & NG, I. O. 2016. Transketolase counteracts oxidative stress to drive cancer
development. Proc Natl Acad Sci U S A, 113, E725-34.

XUE, G., HAO, L. Q,, DING, F. X., MEI, Q., HUANG, J. J., FU, C. G., YAN, H. L. & SUN, S. H. 2009.
Expression of annexin a5 is associated with higher tumor stage and poor prognosis in
colorectal adenocarcinomas. J Clin Gastroenterol, 43, 831-7.

258



References

YAMADA, Y., BANNO, Y., YOSHIDA, H., KIKUCHI, R., AKAO, Y., MURATE, T. & NOZAWA, Y. 2006.
Catalytic inactivation of human phospholipase D2 by a naturally occurring Gly901Asp
mutation. Arch Med Res, 37, 696-9.

YAMAMOTO, M. & SUGIMOTO, T. 2016. Advanced Glycation End Products, Diabetes, and Bone
Strength. Curr Osteoporos Rep, 14, 320-326.

YAMANO, Y., UZAWA, K., SAITO, K., NAKASHIMA, D., KASAMATSU, A., KOIKE, H., KOUZU, Y.,
SHINOZUKA, K., NAKATANI, K., NEGORO, K., FUJITA, S. & TANZAWA, H. 2010. Identification
of cisplatin-resistance related genes in head and neck squamous cell carcinoma. Int J Cancer,
126, 437-49.

YAMASHITA, S. & KATSUMATA, 0. 2017. Heat-Induced Antigen Retrieval in Immunohistochemistry:
Mechanisms and Applications. Methods Mol Biol, 1560, 147-161.

YANG, F., SHEN, Y., CAMP, D. G., 2ND & SMITH, R. D. 2012. High-pH reversed-phase
chromatography with fraction concatenation for 2D proteomic analysis. Expert Rev
Proteomics, 9, 129-34.

YAO, M., SHANG, Y. Y., ZHOU, Z. W., YANG, Y. X., WU, Y. S., GUAN, L. F., WANG, X. Y., ZHOU, S. F. &
WEI, X. 2017. The research on lapatinib in autophagy, cell cycle arrest and epithelial to
mesenchymal transition via Wnt/ErK/PI3K-AKT signaling pathway in human cutaneous
squamous cell carcinoma. J Cancer, 8, 220-226.

YATES, J. R., RUSE, C. I. & NAKORCHEVSKY, A. 2009. Proteomics by mass spectrometry: approaches,
advances, and applications. Annu Rev Biomed Eng, 11, 49-79.

YOCUM, A. K., KHAN, A. P., ZHAOQ, R. & CHINNAIYAN, A. M. 2010. Development of selected reaction
monitoring-MS methodology to measure peptide biomarkers in prostate cancer.
Proteomics, 10, 3506-14.

YOKOYAMA, H. & MIZUTANI, R. 2014. Structural biology of DNA (6-4) photoproducts formed by
ultraviolet radiation and interactions with their binding proteins. Int J Mol Sci, 15, 20321-
38.

YOSHIDA, A., OKAMOTO, N., TOZAWA-ONO, A., KOIZUMI, H., KIGUCHI, K., ISHIZUKA, B., KUMAI, T.
& SUZUKI, N. 2013. Proteomic analysis of differential protein expression by brain
metastases of gynecological malignancies. Hum Cell, 26, 56-66.

YU, H. S., LIAO, W. T. & CHAI, C. Y. 2006. Arsenic carcinogenesis in the skin. J Biomed Sci, 13, 657-
66.

YU, K. H., ZHANG, C., BERRY, G. J., ALTMAN, R. B., RE, C., RUBIN, D. L. & SNYDER, M. 2016. Predicting
non-small cell lung cancer prognosis by fully automated microscopic pathology image
features. Nat Commun, 7, 12474.

YU, Y. Q., GILAR, M., LEE, P. J., BOUVIER, E. S. & GEBLER, J. C. 2003. Enzyme-friendly, mass
spectrometry-compatible surfactant for in-solution enzymatic digestion of proteins. Anal
Chem, 75, 6023-8.

ZENG, Q., CHEN, S., YOU, Z., YANG, F., CAREY, T., SAIMS, D. & WANG, C.-Y. 2002. Hepatocyte Growth
Factor Inhibits Anoikis in Head and Neck Squamous Cell Carcinoma Cells by Activation of
ERK and Akt Signaling Independent of NF??B.

ZHANG, M., BISWAS, S., QIN, X., GONG, W., DENG, W. & YU, H. 2016. Does Notch play a tumor
suppressor role across diverse squamous cell carcinomas? Cancer Med, 5, 2048-60.

259



References

260



Appendix 1

Appendices

Appendix 1: A Table of all known FFPE mass spectrometry based proteomic studies.

Sample processing and

Total proteins

Type of FFPE tissue buffers LC/MS method (unique) Notes Reference
Breast cancer;
Stage 0 (n=7),
stage Il, 2 y recur (n = 5) LMD, Liquid Tissue™ RP-HPLC LTQ 9437 total IZ=izem G
al., 2011)
stage Il, non-recur (n = 4)),
stage Ill (n=9)
LMD. 0.1 M Tris —HCI
Colon adenoma (n = 4), pH 8.0/0.1 M DTT/0.5% RP-HPLC lon Average 8481 (Wisniewski,
FFPE (w/v) PEG 20,000/4 % Trap/Orbitrap per sample. 2013)
SDS, 99 °C. MED-FASP,
SAX
0.1 M Tris-HCI pH Cancer = 5985
Colon cancer and matched SO R RIT0.58 HPLC lon +54 from 6 SAX (Wisniewski
normal (n = 3) (s PLEET AD 00058 Trap/Orbitrap Normal = 5868 @ fractions etal, 2011)
SDS at 99 °C 1 h, FASP, £110 !
SAX B
Frozen = 5426
91% identical
between FFPE and
Xylene with a graded Frozen.
ethanol series. LMD or No significant
needle MD. 0.1 M Tris difference N
SILAC labelled mouse liver | HCI pH 8.0/ 0.1 M DTT, $E;‘;é$;i’:ap FFPE = 5203 observed in gfjas'z%ﬂff
blender, sonifier, SDS to subcellular v
4%,99°C1h, location. No
clarification, FASP storage time
effect of FFPE.
LMD had no
effect.
Extracted FFPE
mouse liver with
heat, augmented
by elevated
hydrostatic
pressure.
Xylene Wlth. 3 graded Without Found that
ethanol el 500 mM pressure = extended storage
Mouse liver Tris HCLpH 7/ 2% SDS, | pp o ¢ 11q 3449 i e o || VoMarek
sonication, 100 °C 20 YEED S e al., 2012)
min, 80 °C 2 h. 40,000 . .
adleprlliad =5192 a55|.sted antigen
retrieval but huge
effect on just
heat.
Frozen = 4932
Frozen with heat =
4451
. LCM, 0.1% .
CSCC, Bowen’s disease, RapiGest/50mM TEAB, | RP-HPLCSWATH | 3574 (Azimi et al.,
actinic keratosis . ) 2019)
95°C 30 mins
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colon mucosal biopsies
directly frozen (DF)

xylene with graded
ethanol series, 300mM

RNA later . RP-HPLC lon iFFPE = 3384 DF = 3840 (Bennike et
immediate FFPE (iFFPE) Uit IElL 124 S0 Trap/Orbitrap  sFFPE=3328  RNAlater=3718  al., 2016)
. 12mM SDC/pH9.0, 95
FFPE are 30mins room °C 60 mins, sonication
temp (sFFPE) !
Octane. 20 mM Tris
pH9, dialysed against capillary
100 mM Tris HCL pH8.2. | . .
Human liver (n=3) Denatured via 8 I\/FI) isotachophoresis Average 3287 n=3-(3209, (Xuetal,
) (CITP)RP-HPLC 3302, 3350) 2008)
Urea, reduction, lon Trap
alkylation, diluted 100
mM ammonium acetate
xyelen with graded
ethanol series, 100mM
HEPES pH7.5/4% SDS/
50mM DTT 1hr 95°C,
acetone precipitation,

Clear cell renal carcinoma resuspended at 100mM | RP-HPLC- 2938 1307 found in 3 (Weisser et
NaOH, sonication, orbitrap replicates al., 2015)
40mM formaldehyde
added after digestion
and then quenched in
20mM glycine 20min
22°C
Octane. LMD. 20 mM
Tris pH 9/2% SDS, 100 Frozen soluble =

. °C20 min, 60°C2h, CIEF RP-HPLC 2380 (Guo et al.,

Glioblastoma Dialysed against 100 lon Trap FFPE = 2733 Frozen pellet = 2007)
mM Tris HCL pH 8.2, 3110
reduction alkylation

Normal mean =
2121
Xylene with a graded Carcinoma mean =

Normal renal kidney tissue ethanol series. 62.5 mM Normal =2663 @ 1671

(n=16), Tris—HCI pH 6.8/4% RP-HPLC lon total no difference in (Craven et

clear cell renal cell SDS/10% glycerol/100 Trap/Orbitrap Carcinoma = the number of al., 2013)

carcinoma (n = 8) mM DTT, 105 °C 45 min, 2516 total proteins identified
FASP digestion. between tissue

blocks of different
ages
Microdissection, Sub-X
with a graded ethanol
series. 100 mM ABC
Intestinal-type gastric pHS8,80°C2h, Peptide IEF (IPG
cancer (n = 10), metaplasia | trifluoroethanol, strips), RP-HPLC | Average 2350 (Sousa et
(n =10), normal mucosa (n | sonication, 60 °C1h, lon protein/sample al., 2012)
=10) sonication, Trap/Orbitrap
Carboxyethylphosphine,
reduction, alkylation,
trypsin.
Frozen = 2554
FFPE had less
lysine C-terminal
to arginine C-

Sub-X with a graded terminal peptides

ethanol series. 100 mM (little effect on

Colon adenoma ABC alone, and 1ImM iialanelh) FFPE = 2302. IDs), no difference s el
Trap al., 2009)

EDTA, or 100 mM
pyridoxamine, 80 °C 2 h

in sub-cellular
location,
increased
methionine
oxidation; 17% at
1 year, 25% at 10
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years.
EDTA and
pyridoxamine
decreased protein
identifications. No
effect of storage
time on protein
yield after 10
years.

cutaneous Sqf:;m"s cell RapiGest/0.1m HEPES RP-HPLC Orbitrap 2102 (Foll et al.,
carcinoma (n=24) pH8/0.2mM DTT, 95 °C 4 h. 2017)
Clear cell renal cell Sub-X with a graded
carcinoma, FFPE and fresh ethanol series, 100 mM ‘ll\'/rlrl:g F(;I:j—:dPLC FFPE = 1982 Frozen = 2154 gslprzuglgzt)at
frozen ABC pH 8, 80 °C 2 h. P @
FFPE heat Frozen = 1341
induced AR1 =
Octane and methanol, 1830 Average amount
20 mM Tris HCL pH protein extracted .
Human renal carcinoma 9/2% SDS, 100 °C 20 CIEF RP-HPLC .FFPE heat from FFPE =10.0 (Shietal.,
. o . lon Trap induced AR 2 = 2006)
min, 60 °C 2 h, dialysis 1962 mg/ml, fresh
for SDS removal control tissue =
FFPE no heat = 11.5 mg/m|
962 > mg/mi.
100mM ABC/20%
acetonitrile, 95 °C 1
hour, 65 °C 2 hours,
then either:
1.20mM DTT 57 °C1
hour, 50mM IAA _
Zelm‘:i’r:‘a;rf:":t’:::::"(hl_s 2.0.2% RapiGest/ RP-HPLC lon ; 3 11777135 (Drummond
n=3) P ~> | 50mM ABC, 20mM DTT | Trap/Orbitrap 3' : 1598 etal.,, 2015)
- 57 °C 1 hour, 50mM IAA T
3. 50mM Tris-
HCL/pH7.4/ 1% triton X-
100/ 0.5% SDC/ 0.1%
SDS/ 150mM NacCl/
2mM EDTA
Xylene with a graded
benign nevi (n = 25), ethanol series,
primary melanoma (n = microdissection, 20 mM | RP HPLC lon Total 1528 (Byrum et
12), metastatic melanoma | Tris pH 7/2% SDS, 90 °C | Trap/Orbitrap al., 2013)
(n=24) for 1 h. Bioruptor; 5
min, 65 °C for 4 h.
Pancreatic ductal Xylene with a graded MudPIT. RP-
adenocarcinoma, primary ethanol series, LMD, ! 1504 unique 854 common to all | (Naidoo et
L o HPLC lon .
tumours, matched lymph Liquid Tissue™, 95 °C Trap/Orbitra proteins samples al., 2012)
nodes (n=7) 1.5h. P P
. Xylene with a graded
E 1
mnadlior::r:;lzlr:::ii:% ared ethanol series, LMD, RP-HPLC lon A:/str:iies |§Oir (Alkhas et
o Stfomal o P 100 mM ABC/20% ACN, = Trap/Orbitrap fun P al., 2011)
95°C1h,65°C2h. ’
LCM, 0.1% .
¢SCC (n=5) RapiGest/50mM TEAB, $:H /%fb'isr'; 1310 (2‘(\321'2")' el
95°C 30 mins & >
e, Menewiha g
poor prog o ethanol series, LMD, RP-HPLC lon - (Takadate et
better prognosis (n = 4) A o . 1229 total Better = 845
. Liquid Tissue™, 95 °C Trap/Orbitrap al., 2013)
noncancerous pancreatic Normal = 730
. 1.5h.
ductal tissues (n = 5)
Wilm's tumour and healthy | Heptane, 2% Tris/2% RP-HPLC lon FFPE normal = (Hammer et
renal tissue (n=7) SDS, 100 °C for 20 min, Trap/Orbitrap 1168 al., 2014)
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80 °C for 2 h.
Centrifugation
14,000xg. Methanol-
chloroform
precipitation. 25 mM
ABC/1% RapiGest

mouse liver

Prostate cancer - PCa
Benign prostate
hyperplasia - BPH

ovarian cancer

Pancreatic cancer, poor
prognosis (n = 4), better
prognosis (n = 4)

lung cancer (n = 2),
squamous cell carcinoma (n
=1),

hepatic metastasized
colorectal cancer (n = 3)

Mouse liver

58°C 60 mins, SubX
deparaffinization and
graded ethanol,
haematoxylin,
dehydrated ethanol
series, rehydrated in
50% glycerol, LCM
toluene with graded
ethanol series, 20mM
Tris-HCL/pH 9, 97 °C 30
mins, Trypsin digestion
on tissue using chemical
inkjet printer. Solvent
was then applied and
aspirated to a low bind
tube

Xylene with a graded
ethanol series, LMD,
Liquid Tissue™, 95 °C
1.5h.

Xylene with a graded
ethanol series. 100 mM
HEPES pH 7.5/4 %
SDS/50 mM DTT, 95 °C
1 h. Centrifugation
14,000 rpm. Acetone
precipitation. 100 mM
NaOH pH 8

1. Frozen - 40 mM
Tris/6 M guanidine-
HCI/65 mM DTT pH8.2,
sonication, clarification,
reduction, alkylation,
1M guanidine-HCL
2.40 mM Tris/6 M
guanidine-HCI/65 mM
DTT pH8.2, sonication,
clarification, reduction,
alkylation, 1M
guanidine-HCL

3. 40mM Tris/2% SDS
pH8.2, sonication,
100°C 20mins, 60°C
2hrs, reduction,
alkylation, 0.1% SDS

4. 40 mM Tris/6 M
guanidine-HCI/65 mM
DTT pH8.2, sonication,
reduction, alkylation,
1M guanidine-HCL
5.40 mM Tris/6 M
guanidine-HCI/65 mM
DTT pH8.2, sonication,
100°C 30mins,
clarification

RP-HPLC lon
Trap

RP-HPLC lon
Trap/Orbitrap

RP-HPLC lon
Trap/Orbitrap

RP-HPLC lon
Trap/Orbitrap

RP-HPLC lon
Trap

mouse liver=
684

PCa= 1156
BPH= 702

total 1109

Total 1099
unique
proteins

1003

1=976
2= 130
3= 820
4= 331
5= 827
6=526

792 in cancerous
region, 983 in
benign.

845 better
prognostic
924 poor

prognostic

(Prieto et
al., 2005)

(Wisztorski
et al, 2013)

(Takadate et
al., 2012)

(Bronsert et
al., 2014)

(Jiang et al.,
2007)
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6. Pellet from 5. - 90%
formic acid 5mins,
cyanogens bromide
1g/ml overnight dark,
ph8.5, lyophilised,
40mM Tris/ 6M
guanidine-HCL

Appendices

Melanoma melanocytic

LMD, Liquid Tissue™.

nevus (n = 1), metastatic | 1DE, band excision, HPLC LTQ-XL 888 el
L . al., 2011)
melanoma (n=1) trypsin digestion.
Xylene with graded
ethanol series,
suspended in:
1. 20mM Tris-HCL/ 2%
SDS/200mM DTT/ 20%
glycerol/ 1% protease
inhibitor/pH8.8
2. 40mM Tris-HCL/6M
guanidine-HCL/ 65mM mouse liver:
DTT/ pH8.2 1,5,8 =887,
3.25mM Tris-HCL/ 737,693 all methods tried
mouse liver (N=6, n=3) 150mM NaCl/ 1% NP- RP-HPLC lon mouse colon: on mouse liver (Broeckx et
mouse colon (N=3, n=3) 40/ 1% SDS/ 0.1% SDS/ Trap/Orbitrap 1,5,8=772, best three pick,ed al,, 2016)
Human colon (N=3, n=3) pH 7.6 223,185 thereafter v
4.5mM DTT/ 0.2% human colon:
RapiGest/ pH 8.4 1,5, 8=681,
5.2% SDS/ pH 8 463,554
6. 100mM ABC/ 30%
acetonitrile/ pH8.4
7.50% 100mM ABC/
50% triflouroethanol
8.20mM Tris-HCL/ 0.5%
SDS/ 1.5% CHAPS/
200mM DTT/ 10%
glycerol/ pH 8.8
Compared FFPE
with previously
analysed fresh
frozen tissue.
Found all 730
Octane and methanol. proteins in FF
Nasopharyngeal carcinoma, | 20 mM Tris/2% SDS dataset.
WHO type | (n=10), Il (n = pH7, 100 °C 20 min, 60 HPLC - SCX, RP- 730 total Compared (Xiao et al.,
10), Il (n = 10), and normal | °C 2 h. Centrifugation HPLC Q-TOF subcellular 2010)
(n=10) 12,000xg. TCA acetone localization and
precipitation. iTRAQ. molecular
function groups;
distribution of
proteins similar
between FFPE and
FF.
Xylene with a graded
ethanol series, 20 mM
Colorectal cancer and TrisHCI pH 8.8/200 mM
. . DTT/2% SDS/1% RP-HPLC lon (Maes et al.,
paired adjacent control S . 713 total
colon mucosa (n = 3) protease |nh|b|tor, 98 Trap/Orbitrap 2013)
°C for 20 min, 80 °C for
2 h. Centrifugation
14,000xg.
irradiated C57BL/6 mice Xylene Wlth. a graded RP-HPLC lon (Azimzadeh
heart tissue (n = 3) SNBSS, AU il Trap/Orbitrap [Ea etal., 2012)

Tris—HCl pH 8.8/2%
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SDS/1% beta-
octylglucoside/200 mM
DTT/200 mM glycine.
100 °C 2, Centrifugation
14,000xg, Precipitated,
suspended Tris buffer.

Normal pancreas (n = 3),
chronic pancreatitis (n = 3),
pancreatic cancer (n = 3),
FFPE

1. Lung cancer without
lymph node involvement
(n=7)

2. Lung cancer with lymph
node involvement (n=6)
3. lymph nodes involved

Human Aorta,

Unfixed (n = 3),

Fresh frozen 3 month (n=3)
Fresh frozen 15 years (n=3)
FFPE 15 years (n=2)

Non-alcoholic
steatohepatitis, FFPE and
fresh frozen

Head and neck cSCC;
normal (n = 4), well
differentiated (WD; n = 4),
moderately differentiated
(MD; n = 4), poorly
differentiated(PD; n = 4),

Colon cancer

Nephrectomy tumour and
normal (n =4)

Rat spinal cords, healthy
and experimental
autoimmune
encephalomyelitis (EAE)
Mouse pancreatic tissues
(n = 8), FFPE and matched
frozen for method
developed, Human
pancreatic cancer (n = 11)

heptane, methanol,
Centrifugation
20,000xg, dried,
resuspended 250 uL 6
M guanidine-HCI/50
mM ABC/20mM DTT,
pH 8.5, 70 °Cfor 1 h.
IAA, DTT.

LCM, xylene with a
graded ethanol series.
LMD. Liquid Tissue™.

Xylene with a graded
ethanol series, 100 mM
Tris—HCl pH 8.0/4%
SDS/100 mM DTT,
extracted at either:
24°C1h14.7 psi,
95°C1h14.7 psi,

or 95 °C 1 h 40,000 psi
using a NEP 2320
Barocycler,

xylene and graded
ethanol series, LMD,
Liquid Tissue™, heated
95°C1.5h.

SafeClear Il. LMD. Liquid
Tissue™, heat 95 °C 1.5
h

SubX deparaffinization
and graded ethanol,
microdisected, Liquid
Tissue, 95°C for 90
mins, reduced in 10mM
DTT at 95°C for 5 mins
Xylene with a graded
ethanol series. RapiGest
buffer, 105 °C 30 min,
cool, vortex, 80 °C 2 h,
reduction, alkylation
Xylene with 70%
ethanol. Needle
dissection, Liquid Tissue
kit, 95°C 90 mins, iTRAQ
Qproteome kit, Xylene
with a graded ethanol
series, Extraction
buffer, 100 °C 20 min,
80 °Cfor 2 h.

RP-HPLC lon
Trap/Orbitrap

RP-HPLC LTQ

RP-HPLC lon
Trap/Orbitrap

RP-HPLC LTQ

RP-HPLC lon
Trap

RP-HPLC lon
Trap

RP-HPLC Q-TOF
(Msf)

HPLC SCX,

MALDI TOF/TOF

RP-HPLC lon
Trap

266

Total 525

1.449
2.438
3.233

Average FFPE =
370

FFPE = 367
total

Averages:
N =147.5
WD =351.5
MD =274.5
PD=244.3

350

FFPE = 283

FFPE = 262
unique
proteins

Mouse FFPE =
237

Control =178
cancer = 198

(Proteins
identified in at
least 2 of 3
specimens).

649 total unique
proteins

Average unfixed =
283

Average frozen 3
month = 564
Average frozen 15
y=20

225 common
between FFPE and
frozen,

142 unique FFPE,
493 unique to
frozen.

Frozen = 718 total

Also did SELDI-
TOF and MALDI-
TOF-TOF but did
not report protein
yield

Frozen = 268

Frozen = 500

Mouse Frozen =
271,

(Paulo et al.,
2012)

(Kawamura
et al,, 2010)

(Fuetal.,
2013)

(Bell et al.,
2011)

(Patel et al.,
2008)

(Prieto et
al., 2005)

(Nirmalan et
al., 2011)

(Jain et al.,
2012)

(Kojima et
al., 2012)



and uninvolved tissue (n =
8), FFPE

Centrifugation
14,000xg.

Appendices

Mouse heart

Paediatric brainstem
gliomas (n=2)

mouse liver

rat liver

All methods were
deparaffinised and
rehydrated in Xylene
and graded ethanol,

1. Laemmli buffer/2%
SDS/ protease inhibitor
cocktail

2. 2% CHAPS/ protease
inhibitor cocktail
3.0.2% Tween 20/
protease inhibitor
cocktail

4. RIPA buffer/2% SDS/
1% NP40/ protease
inhibitor cocktail
5.20mM Tris-HCL pH
8.8/ 2% SDS/ 1% beta-
octylglucoside/ 200mM
DTT/ 200mM glycine/
protease inhibitor
cocktail

all methods incubated
at 100°C 20mins, 80°C
2hrs,

Xylene with a graded
ethanol series, 100 mM
ABC/30% ACN, 95 °C 30
min, 65 °C 3 h, 180
proteolytic labelling.

1. LCM - scraped into
tube, 60°C for 30mins,
deparaffinization
reagent, graded
ethanol, liquid tissue
buffer + 0.5% RapiGest,
95°C for 90mins

2. non-LCM - 60°C for

30 mins, xylene washes,

graded ethanol, LCM,
Liquid Tissue™ + 0.5%
RapiGest, 95°C for
90mins

both reduced in 5mM
DTT for 1 hour 60°C,
alkylated 15mM IAA
room temp 1 hour,
trypsin digest in 75mM
ABC overnight

1. Deparaffinised and
rehydrated in graded
ethanol, sonication 2%
SDS/ 100mM ABC,
reduction, alkylation
2. 40mM Tris/ 6M
guanidine-HCL/ 65mM
DTT pH 8.2, 100°C 30
mins, 50mM ABC,
alkylation

3. Qproteome kit, 80°C
for 2 hrs

RP-HPLC LTQ 192 total

Orbitrap proteins

RP-HPLC lon

Trap 180 188 total

proteolytic

labelling

RP-HPLC |

Clon 185

Trap
1. Not
reported
2. Not

RP-HPLC Q-TOF reported

(MSE) 3. Not
reported
4.173
5.166

A mix of the non-
ionic detergent
1% beta-
octylglucoside
plus 2% SDS gave
optimal protein
release from FFPE
sections.
Increasing
amounts of SDS
beyond 4% did
not enhance the
protein yield
further. 17
fractions from SDS
page separation

(Azimzadeh
et al., 2010)

(Nazarian et
al., 2008)

LCM =170 (Scicchitano
non-LCM= 132 et al., 2009)
Each donein

triplicate, only (Aarnisalo
proteins in 2/3 etal., 2010)

included.
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Adenoma parathyroid (n =

4. Liquid tissue kit, 95°C
for 90 mins,

5. Liquid tissue kit, 95°C
for 90 mins, reduction,
alkylation

Xylene with a graded
ethanol series. 20 mM
Tris—HCI pH 4/0.2 M

Dy Shenomss, | e e o
TS sonication, 4 °C 1 h, 100

°C 20 min, 60 °C 2 h.

clarification,

NSCLC FF = 166

xylene and graded phosphoproteome
Non-small cell lung ethanol, 40mM Tris/ RP-HPLC lon NSCLC = 151 carried out on FF (Gamez-
tumours (NSCLC) 6M Gdn HCL pH 8.2, Trap/Orbitrap RCC = 154 and FFPE: Pozo et al.,
Renal cell carcinomas (RCC) | 100°C 20 mins, 80°C 2 NSCLC FF =56 2011)

hrs NSCLC FFPE =49

RCC FFPE =42

Xylene with a graded

ethanol series,
Primary gynaecological Qproteome™ FFPE . .
tumour and matched brain | Tissue kit, 100 °C 20 $:33—IF;IPLC Ll 129 total :/ll‘:aTaasrts;';ZS 101 g\l(oszfgclig)et
metastases (n = 15) min, 80 °C for 2 h. ! !

Centrifugation

14,000xg.

Deparaffinization in

heptane for 1 hour,

methanol to remove

insoluble heptane layer, | RP-HPLC lon (Palmer-Toy
Temporal bone 2% SDS/ 100mM ABC/ Trap FFPE=123 Frozen=94 etal,, 2005)

20mM DTT/ pH 8.5,

sonicated, 70°C 1 hour,

reduction and alkylation
g;::t:lz\'(;e:'g;'zg;ive (n | Liauid Tissue™, 95 °C RP-HPLCMALDI- (Jain et al.,
=5) ! 1.5, iTRAQ TOF/TOFiTRAQ 2008)

Xylene with a graded

ethanol series, 20 mM .
ﬁ'vffp skeletalmuscleand | ") g 8/2% HPLC Q-TOF FFPE = 66 Frozen = 85 (2%%‘;')5 etal,

SDS/200 mM DTT, 100
°C20min,80°C2h

RP, reverse phase. HPLC, high pressure liquid chromatography. LTQ, linear ion trap. LMD, laser microdissection. FASP, filter

aided separation protocol. SAX, strong anion exchange. CIEF, capillary isoelectric focusing. IEF, isoelectric focusing.
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Appendix 2

Appendix 2: Histograms of 1D and 2D SCC proteomic quantification data.

Histograms of proteomic quantification data for each ¢SCC was plotted in the R package
Inferno. The distribution was evidently a mixture of normal (Gaussian) and non-normal
data. Consequently, a conservative non-parametric approach was used in the subsequent

statistical analyses.
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Appendix 3

Appendix 3: Histograms of 1D and 2D melanoma proteomic quantification data.
Histograms of proteomic quantification data for each melanoma was plotted in the R
package Inferno. The distribution was normal in some cases but non-normal in others.

Consequently, a conservative non-parametric approach was used for statistical analyses.
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Appendix 4: Machine learning algorithms used in this thesis

ALGORITHM DESCRIPTION REFERENCE
(Freund,
Boosting algorithm that uses very weak learners to create 1996)
voting weights and ultimately a strong learner.
ADAPTIVE BOOSTING Changes weights of votes after each iteration to try and
(ADABOOST) include all sample measurements.
The more each iteration contributes to overall success the
more weight it is given in strong learner
(Breiman,
Decision tree based method. Uses bootstrapping to create 1996)
resamples of training data where each resample will contain a
BOOTSTRAP variety of the initial data. These resamples are then
AGGREGATORS aggregated. Doing this reduces the chance of individual
(BAGGING) trees/branches overfitting the data as a tree is created for
each resample, therefore only the important branches are
maintained.
Builds decision trees where each node splits classes based on (Salzberg,
C5.0 information gained. The attribute with the highest 1994)
information gain is used to split it further.
(Breiman et
;:’EQSRSEI:ISCISLK_?:EQED Creajces both classification and regression trees where aI.,.1984,
(CART) applicable. Steinberg,
2009)
{Rashmi,
2015
Very similar to gbm except is designed for speed and to #598}
EXTREME GRADIENT reduce overfitting.
BOOSTING: DROPOUTS . .
EETMULTPLE | Ve eakieaner el s tn ot on
ADDITIVE REGRESSION ) ! .
throughout creation of weak learners which reduces the
TREES (XGBDART) . . . .
correlation between learners, ultimately reducing overfitting.
DART specifically uses dropouts to reduce over fitting
(Chen and
Guestrin,
Very similar to gbm except is designed for speed and to 2016)

EXTREME GRADIENT
BOOSTING TREE

(XGBTREE)

reduce overfitting.

Uses weak learners and their loss function to create strong
learner. However, employs occasional randomisation
throughout creation of weak learners which reduces the
correlation between learners, ultimately reducing overfitting.
DART specifically uses dropouts to reduce over fitting
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GENERLISED LINEAR
MODEL (GLM)

GLMNET

GRADIENT BOOSTING
MACHINE (GBM)

K'S NEAREST
NEIGHBOUR (KNN)

LINEAR DISCRIMINANT
ANALYSIS (LDA)

NAIVE BAYES (NB)

NEURAL NETWORK
(NNET)

RANDOM FOREST (RF)

REGULARISED RANDOM
FOREST (RRF)

SUPPORT VECTOR
MACHINE (SVM)

Fits multiple linear regression models for continuous
response variable to a discreet or continuous predictor. In
this case the response variable is binary and so glm creates a
logistic regression model.

Similar to above in creating logistic regression but uses
penalised maximum likelihood to reduce complexity of model
and reduce overfitting

Boosting algorithm that uses weak learners to optimise
gradient of loss function.

Each weak learner attempts to reduce gradient of loss
function subsequent to previous learner.

Can result in overfitting

Uses number of neighbours to determine unknown data
points

Similar to a PCA plot whereby the algorithm looks for linear
combinations of variables which best explain the data. LDA
however, attempts to explicitly model the difference
between the classes of data

uses Bayes theorem to calculate the probability of something
given a training set where probabilities are learnt

based off of the animal neuronal network, an artificial neural
network is a predictive tool that utilised several hidden
layers, all interconnected, to predict an outcome based off of
training data

Several decision trees combined to gain the mode of the
classes (if classification) or mean (if regression).

Uses regularisation to establish if a split in a branch achieves
any additional information. If it does not then the prior node
is weighted more

Represents the data in points in space to separate the
categories with a wide a margin as possible. Test data is then
mapped onto this space to determine its predicted category
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(Nelder and
Wedderburn,
1972)

(Nelder and
Wedderburn,
1972)

(Breiman,
1997)

(Cover and
Hart, 1967)

(Cohen et al.,
2014)

(Duba and
Hart, 1973)

(McCulloch
and Pitts,
1943)

(Breiman,
1999)

(Breiman,
1999)

(Vapnik and
Chervonenkis,
1974)



