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FACTORS WITHIN SKIN CANCER THAT CONTRIBUTE TO METASTASIS 

Andrew George Shapanis 

Skin cancer is the most frequent cancer worldwide and accounts for 1 in every 3 cancers 

diagnosed. Skin cancer comprises of melanoma, arising from the melanocytes of the skin 

and keratinocyte carcinomas which arise in the keratinocytes and include cutaneous 

squamous cell carcinoma (cSCC) and basal cell carcinoma.  cSCC predominantly affects the 

older generation and is one of the most common types of cancer capable of metastasising, 

with 5 year survival rates reported as <30%. Although less common, melanoma can affect 

all ages and has one of the highest rates of metastasis of any cancer, with 5 year survival 

rates as low as 23%, depending on whether or not distant metastasis has occurred. There 

are currently very few prognostic markers capable of predicting metastasis in these skin 

cancers. Presently in the UK, melanoma is graded according to the American Joint 

Committee on Cancer Guidelines (AJCC) whereas cSCCs are categorised as high or low risk 

according to the British Association of Dermatologists’ guidelines (BAD). Other staging 

systems have been proposed but most of them also rely on histological features such as 

differentiation, diameter, depth, site and/or Clark’s level, amongst others.  

This study aimed to identify factors within cSCC and melanoma which contribute to 

metastasis using a mass spectrometry based proteomics approach. A method to extract 

protein from formalin fixed paraffin embedded (FFPE) samples was developed and 

optimised. Proteins were extracted from 24 FFPE surgically excised primary cSCC (P-NM) 

and melanoma (Pmel-NM) tumours which had not metastasised at 5 years post-operatively 

and from 24 FFPE surgically excised primary metastatic cSCC (P-M) and melanoma (Pmel-

M) tumours which had metastasised.  



 

A total of 144 and 31 significantly differentially expressed proteins between metastatic and 

non-metastatic samples were identified in the cSCC and melanoma groups respectively. 

KEGG, gene ontology, weighted gene co-expression network analysis (WGCNA) and 

ingenuity pathway analysis (IPA) highlighted several key pathways likely to be involved in 

development of metastasis in cSCC and melanoma. Multiple reaction monitoring (MRM) of 

two proteins, ANXA5 and DDOST, verified the original differences in levels of these proteins 

in cSCC and also validated these findings in an independent sample cohort. Additionally, 

MRM analysis and machine learning revealed that the combination of ANXA5 and DDOST 

levels could correctly predict metastasis better than any guideline in current clinical use, 

with an AUC of 0.929, sensitivity and specificity of 88.24% and 94.12% respectively. 

However, MRM was technically challenging in the melanoma group and was not able to 

verify the original melanoma mass spectroscopy results. 

Machine learning and modelling of histological characteristics from cSCC samples was 

subsequently undertaken to see whether it was possible to improve on current prediction 

of prognosis with these readily available parameters.  Surprisingly, this produced a 

prediction model with an Area Under the Curve (AUC) of 0.997 and a sensitivity and 

specificity of 94.1% and 100% respectively.  Despite this model not requiring any additional 

work over and above that which is already currently reported histologically when cSCCs are 

routinely excised in the UK, it was better than the aforementioned ANXA5 and DDOST 

model and moreover, than any guideline in clinical use at the present time.  Moreover, this 

model has the potential to be integrated into a clinical setting with relative ease and speed.  

This study has identified a number of factors, including key pathways that likely contribute 

to metastasis in cSCC and melanoma. In addition, the combination of proteomics, machine 

learning and mathematical modelling has identified key prognostic indicators in cSCC and 

has demonstrated that this approach may have potential to do likewise in many other 

cancer types. 
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 GENERAL INTRODUCTION 

1.1 Structure and function of skin 

The skin is the largest human organ and plays a vital role in many homeostatic functions 

including temperature regulation and water loss as well as acting as a physical barrier for 

protection against the environment (Proksch et al., 2008). The skin is comprised of three 

main layers, the subcutaneous tissue, the dermis (inner layer) and the epidermis (outer 

layer) (Figure 1.1). The dermis consists mainly of connective tissue such as collagen and 

elastin with some cells (fibroblasts, endothelial cells within blood vessels) and structures 

such as sweat glands and hair follicles embedded within. The epidermis is a cell rich 

structure composed mainly of keratinocytes, but also contains melanocytes and 

Langerhans cells. The basal layer comprises undifferentiated keratinocytes which 

proliferate and whose daughter cells become more terminally differentiated as they move 

to the upper layers of the skin. Above the basal layer is the suprabasal layer, granular cell 

layer and the outermost layer which is called the stratum corneum. The stratum corneum 

consists of dead keratinocytes which gradually desquamate from the skin surface.  

The skin has a relatively high turnover rate of cells, with cells transiting from the basal layer 

to the surface of the stratum corneum within 48 days (Iizuka, 1995).  This high turnover and 

rate of proliferation amongst cells of the skin increase their susceptibility to carcinogenesis 

development (Ratushny et al., 2012). 

Figure 1:1 Schematic cross-sectional diagram of human skin 
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1.2 Skin cancer 

Skin cancer is the most common form of cancer worldwide and more frequently affects 

lighter pigmented individuals (World Health Organisation, 2016, Gloster and Neal, 2006). 

Skin cancer comprises of two main subgroups; melanoma and keratinocyte cancers (KCs, 

also known as non-melanoma skin cancer (NMSC)). Cutaneous melanoma arises when 

somatic gene mutations occur within the melanocytes in the basal layer of the epidermis. 

Within melanoma, there are 4 main histological sub-types, these include superficial 

spreading melanoma, nodular melanoma, lentigo maligna melanoma and acral melanoma 

(Bataille et al., 1996).  Superficial spreading melanoma is the most common type of 

melanoma and as the name implies, usually refers to a melanoma which spread out across 

the skin. Conversely however, nodular melanomas often grow vertically up and down, 

being the second most common type of melanoma. Lentigo maligna melanoma is often 

found in older individuals at high sun exposed body sites. These themselves grow from a 

benign precancerous legion known as a lentigo maligna. Finally, the rarest form of 

melanoma is acral melanoma which is typically found in the palm of hands, soles of feet 

and under fingernails of patients. This type of melanoma is more prevalent than other 

forms of melanoma in individuals with black or brown skin (Farage et al., 2009).  

KCs arise when keratinocytes of the epidermis develop somatic gene mutations and 

become cancerous (Armstrong and Kricker, 2001); (Albert and Weinstock, 2003). The two 

types of KCs are basal cell carcinoma (BCCs) and cutaneous squamous cell carcinoma 

(cSCCs). Although BCCs are very common, they rarely metastasise, unlike melanomas and 

cSCCs which can metastasise to other organs (Dinehart and Pollack, 1989, Thompson et al., 

2005). 
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Figure 1:2 Schematic cross sectional diagram of squamous cell carcinoma (SCC) and 

melanoma development. 

1.2.1 Incidence 

The World Health Organisation (WHO) estimates that 1 in every 3 cancers diagnosed are 

skin cancers and that there are 130,000 melanoma and 2-3 million NMSC cases worldwide 

with a continual increase each year (World Health Organisation (2016). Skin cancer is one 

of the cancers that has increased by more than 50% from 1990 to 2010 (Murray et al., 2012). 

However, skin cancer numbers are believed to be greatly underestimated as it has been 

suggested that during 2006 in the US alone there were 3.5 million NMSCs in 2.1 million 

individuals (Rogers et al., 2010) and 5.4 million total NMSCs in 3.3 million individuals 6 years 

later in 2012 (Rogers et al., 2015). In addition, there was over 750,000 NMSC cases in 

Australia (Fransen et al., 2012) and an estimated 51,555 cSCC cases in the UK, which is more 

than double that of what it was less than a decade ago (Goon et al., 2016).  Furthermore, 

figures presented at a UK TREND NMSC workshop suggested there was >200,000 

keratinocyte carcinoma (KC) cases in the UK during 2015 (Rashbash, 2016). 

The GLOBOCAN project, which is part of the International Agency for Research on Cancer, 

reports on incidence, mortality and prevalence of major types of cancer for 184 countries 
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of the world (GLOBOCAN, 2017). However, like many other cancer epidemiology registers, 

GLOBOCAN has not reported on the number of KC cases, mainly because recording of KCs 

is poor in many countries (Lomas et al., 2012). Related to this, it is thought that KC incidence 

is greatly underestimated because records are either incomplete or simply lacking; this is 

particularly the case in Europe, Australia and America, because registries often only include 

a patient’s first KC, with subsequent tumours as well as multiple tumours not being counted 

individually (Lomas et al., 2012). 

GLOBOCAN calculated the number of worldwide melanoma cases in 2008 to be 197,000 

(Ferlay et al., 2010) and, given that this was over a decade ago coupled with the rising 

incidence rates (C.R.UK, 2015), it is likely that the actual figure today is much higher. 

Melanoma is most common in Caucasian populations and those who live in areas of higher 

sun exposure are at greater risk. It is for this reason that Australia, New Zealand and the 

USA have amongst the highest rates of melanoma in the world (Giblin and Thomas, 2007). 

Rates as high as 40-60 per 100,000 a year have been reported in Australia and New Zealand 

and 10-15 per 100,000 annually in central Europe (Garbe and Leiter, 2009). Although the 

UK does not have as high sun exposure as Australia, wealth and disposable income enables 

UK residents to use sun beds and/or to travel abroad to higher sun-exposed areas, 

potentially increasing the likelihood of developing melanoma (Giblin and Thomas, 2007, 

Godden et al., 2010). UK melanoma rates have been increasing for decades and continue 

to do so, despite intervention strategies such as public health announcements on avoiding 

excess exposure to sunshine (Diffey, 2004). 

1.2.2 Economic burden 

Due to the inconsistencies in skin cancer records, producing accurate estimations of the 

economic burden of skin cancer is inherently difficult (O'Dea, 2000). It has been reported 

that the annual economic costs of skin cancer to New Zealand in 2006 was NZ$123.1 million 

(£69 million) (O'Dea, 2000). Moreover, it has been estimated that total costs, including 

diagnosis, treatment and pathology for KCs in Australia during 2010 were AU$511 million 

(£299.5 million), predicted to increase to AU$703 million (£412 million) by 2015 (Fransen 

et al., 2012). In the USA, the total annual direct and indirect costs associated with skin 

cancer (including precancerous lesions) have been estimated at $6.6 billion (£5.1 billion) 
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(Bickers et al., 2006).  More recently, the economic burden of skin cancer in the USA has 

been estimated by the U.S. Department of Health and Human Services to be $8.1 billion 

(£6.26 billion) each year, of which $4.8 billion (£3.7 billion) is for KC and $3.3 billion (£2.55 

billion) for melanoma (Watson et al., 2014). 

A study looking at the economic burden of skin cancer in England estimated the total cost 

of melanoma in 2002 at over £138 million (around £75 million direct cost to NHS) and KC 

at over £100 million (around £50 million direct cost to NHS) (Morris et al., 2009) with direct 

NHS costs expected to rise to £180 million in 2020 (Vallejo-Torres et al., 2014). The study 

by Vallejo-Torres et al (2014) used cancer registry data of 8,658 melanomas and 69,840 

KCs. This figure of KCs is a lot lower than the >200,000 suggested by Prof Jem Rashbass, 

Director of the National Cancer Registration (Rashbash, 2016), therefore it is likely that KC 

costs in England and the UK are, and will be, much greater than these estimates.    

1.2.3 Risk factors 

There are a number of genetic and environmental risk factors which contribute to the 

development of skin cancer (Figure 1.3). The main environmental risk factor is exposure to 

ultraviolet radiation (UVR) from the sun and/or sun beds (Narayanan et al., 2010). Other 

environmental risk factors for skin cancer are smoking (De Hertog et al., 2001), exposure 

to arsenic (Yu et al., 2006), radiotherapy (Karagas et al., 1996), immunosuppression (for 

example via immunosuppressive drugs) (Alter et al., 2014, Euvrard et al., 2003) and use of 

certain medications for various diseases (for example oral steroids (Karagas et al., 2001) 

and the use of BRAF inhibitors in melanoma (Su et al., 2012)). In addition to these risk 

factors, some studies have suggested that that the use of sunscreen actually increases the 

risk of melanoma in latitudes greater than 40ᵒ (Gorham et al., 2007). This latter association 

may be due to the fact that older sunscreens protected mainly against UVB and thus also 

protected against sunburn, which may have resulted in people remaining in the sunshine 

for longer and obtaining more UVA exposure.  However, fair-skinned people are at greater 

risk of skin cancer (see below), therefore the positive association between sunscreen use 

and melanoma may simply be due to the fact that fair-skinned people are more likely to 

use sunscreens.    
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Phenotypic factors resulting from genetic inheritance such as red hair, freckles/fair 

complexion and a tendency to sunburn have a 2.4, 2.4 and 1.7 increase risk of developing 

melanoma (Thompson et al., 2005). The hair, skin and eye colour in mammals is determined 

by the content and composition of melanin pigment in these tissues (Ito and Wakamatsu, 

2003). Melanin exists in two forms, the yellow/red pheomelanin and the dark brown/black 

eumelanin (Wakamatsu and Ito, 2002) which in different ratios produce the variation in 

human hair and skin colour. Although people with darker skin contain similar numbers of 

melanocytes to fair skinned individuals, they have higher amounts of melanin, specifically 

eumelanin, in their skin (Brenner and Hearing, 2008). Skin pigmentation, due to melanin 

content, plays a crucial role in defence against UVR induced DNA damage and many studies 

have shown that darker skinned people have more resistance to UVR-induced DNA damage 

compared to Caucasians (Tadokoro et al., 2003, Jablonski and Chaplin, 2010, Gallagher et 

al., 1995). Although there is little research surrounding the effect different melanin 

composition has on metastasis, it has been reported that high amounts of melanin can 

reduce the efficacy of radiotherapy (Brożyna et al., 2016) and furthermore that it could be 

a potential route for treatment using a 188-rhenium-labeled antibody, targeted to melanin 

(Klein et al., 2013, Schweitzer et al., 2007). 

An important germline genetic factor which affects the ratio of eumelanin and 

pheomelanin in an individual is the melanocortin 1 receptor (MC1R) genotype, which also 

affects tanning response and susceptibility to skin cancer (Haddadeen et al., 2015, 

Robinson and Healy, 2002, Valverde et al., 1995). MC1R gene variants are frequent in the 

UK and Ireland (Gerstenblith et al., 2007) and the presence of two variant alleles in an 

individual causes red hair and fair skin, whereas a single variant allele results in fair skin 

(Raimondi et al., 2008, Flanagan et al., 2000, Healy et al., 2000). Certain 

diseases/syndromes can also lead to skin cancer development, for example 

oculocutaneous albinism type 2 (where skin melanin is lacking) and xeroderma 

pigmentosum (XP, where UV-induced DNA repair is compromised) (Setlow et al., 1969, 

Bradford et al., 2011). 
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Figure 1:3. Phenotypic/genetic and environmental risk factors associated with skin 

cancer development.  

MC1R, Melanocortin 1 receptor 

1.2.4 Treatment 

The main treatment for skin cancer is surgical excision (Madan et al., 2010).  For small 

tumours, including BCCs and some cSCCs, it is not uncommon for curettage to be 

performed, a method also reported to achieve good results (Madan et al., 2010). Other 

treatment methods are ablation via CO2 laser and cold induced destruction by liquid 

nitrogen cryosurgery, however, these are usually done on small tumours.  

For cSCCs at low risk of metastasis a 4-5mm excision margin is advocated, whereas for high 

risk cSCCs a margin of at least 6mm is preferred (Madan et al., 2010). For SCCs of high risk, 

the draining lymph nodes can also be excised to assess for metastasis (Motley et al., 2003).  

An alternative mode of excision is via Mohs micrographic surgery whereby the tumour is 

removed and the surface of the residual open wound is then removed and stained before 

being viewed under a microscope. If tumour cells are seen in the wound skin under 

microscopy, further wound tissue is excised and again stained and viewed under 

microscopy. This process is repeated until the wound tissue is completely clear of tumour 

(at which stage all microscopic tumour has been removed).   
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Following surgery, radiotherapy is occasionally used on high risk tumours which, under 

histological analysis, have been shown to have small groups of cancer cells away from the 

main tumour (i.e. microsatellite tumours) in order to reduce the risk of developing further 

metastasis. Treatment for metastatic cSCC is limited and radiotherapy is sometimes used 

on metastases which are difficult or impractical to remove (Rong et al., 2015).  

Chemotherapy has been used in some cases of metastatic cSCC but has proven to be limited 

in its efficacy (Weinberg et al., 2007). A study investigating the ability of retinol and 

isotretinoin to reduce new occurrences of skin cancer in 525 participants with a history of 

BCC or SCC revealed that using either of these chemotherapeutics had no benefit compared 

to a placebo group (Levine et al., 1997).  

Similarly, the mainstay of treatment for melanoma is to excise the tumour. It is 

recommended that in situ melanomas are excised with a margin of 5mm, or those ≥2mm 

deep with a 2cm margin (Haigh et al., 2003). The British Association for Dermatologists 

(BAD) suggest a 1cm margin for those <1mm depth and between 1-2cm for those between 

1 and 2mm deep (Marsden et al., 2010). Similar to cSCC, radiotherapy can be used after 

excision of high risk tumours with microsatellites present in histology in an attempt to 

prevent subsequent metastasis (Garbe et al., 2008). Radiotherapy is also sometimes used 

for metastases although mainly for palliative purposes, of which a response rate of 67% for 

the irradiated metastasis has been reported (Kirova et al., 1999).  Chemotherapy has also 

been used for metastatic melanoma, but in recent European consensus-based 

interdisciplinary guidelines for diagnosis and treatment of melanoma, it was reported that 

adjuvant cytotoxic chemotherapy had no clear therapeutic advantage and suggested that 

this type of therapy should no longer be used (Garbe et al., 2016). Related to this, a study 

on 1256 patients published in the Lancet found that adjuvant PEGylated interferon α-2b 

significantly increases recurrence-free survival rates of patients with melanoma, but did 

not increase overall survival rates (Eggermont et al., 2008). By contrast, a systematic review 

and meta-analysis found that the use of adjuvant PEGylated interferon α-2b significantly 

increases disease free survival as well as the overall survival in melanoma, but noted that 

the adverse effects of the treatment could negatively affect quality of life of the patient 

(Mocellin et al., 2010).   However, over recent years, newer therapies have included 

immunotherapy (e.g. anti cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), anti-

Programmed cell death protein 1 (PD1) antibodies) and BRAF inhibitors. Whereas 
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Ipilimumab, an anti CTLA-4 antibody has been shown to increase disease free survival of 

patients, it is unclear about the effect it has on overall survival (Eggermont et al., 2015, 

Garbe et al., 2016). Conversely, vemurafenib, a v-Raf murine sarcoma viral oncogene 

homolog B (BRAF) enzyme inhibitor has been found to significantly increase overall survival 

rates compared with dacarbazine, a systemic chemotherapy reagent (McArthur et al., 

2014). More recently however, combination therapy using dabrafenib and trametinib have 

proven effective at treating BRAF mutant melanoma, increasing progression-free survival 

from 12% in the dabrafenib monotherapy group to 22% and furthermore increasing median 

overall survival from 18.7 to 25.1 months (Long et al., 2017, Long et al., 2015). 

1.2.5 Ultraviolet radiation (UVR)  

UVR is the most important exogenous factor that contributes to skin cancer development 

(Narayanan et al., 2010). There are three main types of UVR; the long wave UVA (315nm-

400nm), the medium wave UVB (280nm-315nm) and the short wave UVC (100nm-280nm) 

(El Ghissassi et al., 2009). The amount of UVR that reaches the earth’s surface consists of 

approximately 95% UVA and 5% UVB, whereas UVC is blocked by the stratospheric ozone 

layer (El Ghissassi et al., 2009, Narayanan et al., 2010). Tanning beds / sunbeds utilising 

artificial sunlight to induce suntans emit UVA and UVB to simulate sun exposure (Ting et al., 

2007), and are used by the public to induce a suntan through production of melanin in the 

skin (Brenner and Hearing, 2008). It has been reported that individuals who use sun beds 

have a three times higher risk of developing melanoma (Chen et al., 1998, Ting et al., 2007) 

a 1.5 increase risk of developing BCC and a 2.5 increased risk of developing cSCC (Karagas 

et al., 2002).  

For a long period of time it was believed that UVA was relatively harmless and that UVB 

was the main causative for skin cancer, particularly melanoma (Runger and Kappes, 2008, 

El Ghissassi et al., 2009, Narayanan et al., 2010). This was accredited to UVB’s ability to 

cause more DNA damage, however, it is now recognised that UVA can also cause skin 

cancer through DNA mutations and that skin cancers (including cSCC and melanoma) can 

be induced by UVA in mice (Ikehata et al., 2008, Strickland, 1986, Kelfkens et al., 1991, 

Noonan et al., 2012).  
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UVR causes direct DNA damage through the formation of cyclobutane pyrimidine dimers 

(CPDs), and 6-4 photoproducts (Brash et al., 1991, Balajee et al., 1999). Under normal 

circumstances, many of these photoproducts are repaired by nucleotide excision repair 

(NER), however, if not repaired they lead to development of DNA mutations, including C to 

T or CC to TT substitutions, which can result in skin carcinogenesis (Yokoyama and Mizutani, 

2014). In patients who suffer from xeroderma pigmentosum (XP), who have a 10,000x 

increased risk of skin cancer (Kraemer et al., 1994), NER is deficient (Setlow et al., 1969) 

and therefore multiple DNA mutations arise, leading to skin cancer (Bradford et al., 2011). 

In normal skin and in the skin of XP patients, the development of mutations in tumour 

suppressor genes or oncogenes can affect the behaviour of the protein encoded by the 

gene, resulting in altered cell behaviour and uncontrolled proliferation, thus leading to 

tumorigenesis (Kramer et al., 1990, Setlow and Setlow, 1962, Kraemer et al., 1994).  

1.2.6 Models of skin cancer 

There are currently several different models used to study the development and 

progression of skin cancer. These differ according to the type of skin cancer being 

investigated.  For example, development of melanoma has been observed and investigated 

using Xiphophorus fish (also known as swordtail fish) (Setlow et al., 1993), Sinclair swine 

(Millikan et al., 1974), horses (Rosengren Pielberg et al., 2008), dogs (Khanna et al., 2006), 

the Monodelphis domestica marsupial (also known as the South American Opossum) (Ley, 

1984) and various transgenic mice (Kato et al., 1998, Becker et al., 2010). Some of these 

models, e.g. Xiphophorus fish, have been useful in trying to identify which wavelengths of 

UVR (i.e. UVA as well as UVB) are important in melanomagenesis (Setlow et al., 1993, Nairn 

et al., 1996). Furthermore, some of the genetic alterations leading to melanoma 

development in humans have also been seen in certain animal models such as cyclin-

dependent kinase Inhibitor 2A (CDKN2A) mutations in Xiphophorus fish (Kazianis et al., 

1999). 

Another model, M.domestica, has allowed investigations into the role of pyrimidine dimers 

in melanoma. This is because M.domestica has a light activated DNA repair system, capable 

of repairing UVR-induced pyrimidine dimers (Ley, 1984) and because it is one of the few 

models where melanoma can be induced by UVR. However, all models of melanoma have 
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their limitations, for example in M.domestica, melanomas develop in the dermis rather 

than in the epidermis and only metastasise rarely (Ley, 2002). Sinclair swine have certain 

genetic similarities in their melanocytic tumours to those seen in humans, but the main 

difference is that a significant proportion of tumours spontaneously regress in this pig 

model (Millikan et al., 1974). Mouse models have become popular in studying melanoma 

development due to the ease of housing and ability for transgenic modification; examples 

include mice overexpressing Hepatocyte Growth Factor and mice with melanocortin 1 

receptor alterations (Wolnicka-Glubisz et al., 2015). Another common animal model used 

to study melanoma, due to the ability to genetically manipulate them, is the zebrafish (van 

der Weyden et al., 2016). The Angora goat has been presented as a possible model for both 

melanoma and cSCC because, in one study, 2.2% and 3.8% of 1731 goats sampled had 

developed melanoma and cSCC respectively (Green et al., 1996). 

Most animal models of cSCC are mice, including hairless mice which can develop cSCCs in 

response to UVR (de Gruijl and Forbes, 1995). Another mouse model is the chemical 

carcinogenesis model which involves the use of  9,10-dimethyl-1,2-benzanthracene 

(DMBA) and tetradecanoyl-phorbol acetate (TPA) which induces the formation of benign 

papillomas that then progress to cSCC (Abel et al., 2009). In this model, HRas, Kras and Tp53 

genes are known to be mutated and more recent work suggests that altered expression of 

many genes in human cSCC are similarly modified in their expression in cSCCs in this model 

(Nassar et al., 2015).  Furthermore, one study found that genomic drivers of SCC 

development could be identified in human and solar ultraviolet radiation-driven hairless 

mice (Chitsazzadeh et al., 2016). Although BCC is not a focus of this current thesis, there 

are also transgenic mouse models of BCC, particularly those affecting the hedgehog 

signalling pathway (Mao et al., 2006). 

In addition to animal in vivo models, there are cell line in vitro models for skin cancer. Cell 

culture models have the advantage of being relatively cheap and easy to maintain in 

comparison to animal models (Beaumont et al., 2013). Furthermore, 2D cell models of 

melanoma and cSCC can be used effectively for many assays, including adhesion, migration 

and cell communication (Haass et al., 2005). More recently, 3D culture cell models have 

been employed; one such model by Commandeur et al (2009) was generated using a 

combination of cSCC cell lines, cSCC biopsies and fibroblast cultures to recreate an invasive 
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cSCC environment. Despite their limitations, many of the animal and cell models can help 

answer questions in specific research areas, and have improved our current understanding 

of melanoma and cSCC. 

1.2.7 Oxidative stress  

Exposure to UVR can cause oxidative stress, producing free radicals, collectively referred to 

as reactive oxygen species (ROS) in cells and tissues (Bayr, 2005). Free radicals are any 

molecules which possess one or more unpaired free electrons. These electrons can be 

passed onto, and consequently excite, nearby molecules potentially breaking bonds and/or 

making new bonds between atoms/molecules. ROS are common by-products produced by 

normal metabolic processes, typically neutralised by anti-oxidants such as superoxide 

dismutase (SOD) (Bickers and Athar, 2006, Bayr, 2005). In the event of a build-up or sudden 

increase in ROS, anti-oxidant defence mechanisms can become overwhelmed, resulting in 

an excess of free radicals. These free radicals can attack and damage nearby DNA and cause 

single and double strand breakages, base modifications such as 8-hydroxyguanine (Cheng 

et al., 1992) as well as by inducing cross linking between DNA and proteins (Athar, 2002). 

These free radical-induced alterations in DNA can affect tumour suppressor genes or genes 

regulating many aspects of cell function, including cell cycle, proliferation, and cell survival, 

and can ultimately lead to carcinogenesis (Sander et al., 2004). As well as effects on DNA, 

ROS can damage proteins resulting in loss of or gain of function (Bayr, 2005).  

Enzymes involved in the detoxification of ROS produced by UVR include SOD and catalase 

(Rezvani et al., 2006). However, while catalase is known to protect against UVR-induced 

ROS (Rezvani et al., 2006, Rezvani et al., 2007), one study found that keratinocytes 

expressing higher levels of catalase had a notable increase in ROS after UVB exposure 

compared to those expressing lower levels of catalase, suggesting that catalase may not be 

protective under certain cellular and/or environmental conditions (Heck et al., 2003). ROS 

are thought to mediate a number of effects of UVR, and it has been reported that UVB 

induces cell cycle changes in keratinocytes similar to ROS and that both induce apoptosis 

by altering mitochondrial membrane permeability (Bickers and Athar, 2000). Other studies 

have found that UVR and ROS can induce a number of similar proteins and transcription 
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factors including NF-κB (Reelfs et al., 2004) and mitogen-activated protein kinase (MAPK) 

(Kim et al., 2005).  

1.2.8 Genetic mutations in skin cancer 

Melanoma and cSCC are two of the most highly mutated human malignancies, with 

melanoma harbouring around 20 mutations per mega base pair and cSCC containing up to 

50 mutations per mega base pair (Durinck et al., 2011, Martincorena and Campbell, 2015, 

South et al., 2014, Nikolaev et al., 2011). It is thought that only a proportion of these 

mutations are needed for the development of cancer. This has led to the driver/passenger 

model of mutations in cancer, whereby key “driver” mutations are required for malignancy 

and many of the other mutations are “passenger” mutations that do not necessarily 

contribute to the development or growth of neoplasia (Greenman et al., 2007). This can be 

seen as an example of Darwinian evolution because those cells containing mutations with 

the “desirable” characteristics for neoplasia generally proliferate, survive and invade into 

surrounding tissue (Martincorena and Campbell, 2015). Examples of genes with driver 

mutations in cSCC and melanoma are provided in Table 1.1. 

One key driver mutation for many cancers, including melanoma and cSCC is the TP53 

tumour suppressor gene, encoding the p53 protein which is a major cell cycle regulator 

(Benjamin and Ananthaswamy, 2007). p53 is often referred to as the guardian of the 

genome because it halts the cell cycle allowing the cell time to repair damaged DNA. A 

mutation in the TP53 gene can cause a faulty p53 protein, reducing its ability to halt the 

cell cycle and thus allowing proliferation in the presence of DNA damage. It is reported that 

between 50-90% of cSCCs and around 35% of melanomas contain mutations in the TP53 

gene (Brash et al., 1991, Durinck et al., 2011, Leffell, 2000, Sparrow et al., 1995).  

Another important signalling pathway known to potentially harbour driver mutations in 

cSCC is the NOTCH pathway. It has been reported that 82% of cSCCs have a mutation in 

either NOTCH1 or NOTCH2 genes (South et al., 2014). NOTCH is a signalling pathway that is 

activated in humans by Delta-like and Jagged ligands binding to NOTCH receptors 1, 2, 3 or 

4, which causes the release of the NOTCH intracellular domain (D'Souza et al., 2008). The 

intracellular domain then travels to the nucleus where it regulates CBF1, Suppressor of 

Hairless, Lag-1 (CSL), a transcription factor for NOTCH target genes which are notably 
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involved in cell survival and growth (Mozuraitiene et al., 2015). Hyperactivity of NOTCH 

signalling can cause upregulation of β-catenin, another transcription factor, heavily 

involved in cell survival and proliferation (Moon et al., 2004). Although NOTCH mutations 

seem uncommon in melanoma, there is evidence that a C-to-G somatic mutation in the 

pre-microRNA, pre-miR-146a/C (leading to pre-miR-146a/G) in melanoma activates NOTCH 

signalling and promotes oncogenesis (Forloni et al., 2014) . 
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Table 1.1 Examples of genes with driver mutations in cSCC and melanoma 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Gene/Pathway 
Protein 
involved 

Effect of mutation References 

cSCC 

NOTCH 
NOTCH-1, 
NOTCH-2 

Disruption between balance of growth and 
differentiation 

(Wang et al., 2011, Saridaki 
et al., 2003, Zhang et al., 
2016, South et al., 2014, Li et 
al., 2015, Pickering et al., 
2014) 

    

RAS/RAF/MAPK 
KRAS,HRAS,  
NRAS 

Continuous activation of MAPK and PI3/AKT 
signalling pathways, increased survivability, 
growth and proliferation 

(Wang et al., 2011, South et 
al., 2014, Durinck et al., 
2011, Su et al., 2012, Li et al., 
2015) 

    

P53 P53 

TP53 mutations disable ability to halt cell 
cycle to allow DNA repair, enabling 
uncontrolled proliferation with development 
of mutations 

(South et al., 2014, Durinck 
et al., 2011, Li et al., 2015, 
Pickering et al., 2014) 

    

CDKN2A 

p16INK4a 
(p16) 

P16 mutations disable ability to inhibit CDK4 
and CDK6, resulting in less activation of 
retinoblastoma proteins, thus allowing more 
progression of cell cycle from G1 to S-phase. 

(South et al., 2014, Durinck 
et al., 2011, Li et al., 2015, 
Pickering et al., 2014) 

p14arf (p14) 
P14 mutations result in an inability to help 
activate p53. Promotes unregulated 
proliferation 

(South et al., 2014, Durinck 
et al., 2011, Li et al., 2015, 
Pickering et al., 2014) 

Melanoma 

    

PI3k-AKT PTEN 

Loss of function causes activation of PI3/AKT 
pathway. (Often occurs with BRAF). Results 
in increased survivability, growth and 
proliferation 

(Mozuraitiene et al., 2015, 
Goel et al., 2006, Haluska et 
al., 2006, Shull et al., 2012) 

    

RAS/RAF/MAPK 
BRAF,MAPK,  
NRAS 

Continuous activation of MAPK signalling, 
increased cell survival and growth 

(Mozuraitiene et al., 2015, 
Goel et al., 2006, Hodis et al., 
2012) 

    

CDKN2a 

CDK4 
Mutation causes inability for inhibition by 
P16, leading to cell cycle progression 

(Hodis et al., 2012, 
Mozuraitiene et al., 2015) 

p16INK4a 
(p16) 

P16 mutations disable ability to inhibit CDK4 
and CDK6, resulting in less activation of 
retinoblastoma proteins, thus allowing more 
progression from G1 to S-phase. 

(Mozuraitiene et al., 2015, 

Hodis et al., 2012) 

p14arf (p14) 
P14 mutations results in an inability to help 
activate p53. Promotes unregulated 
proliferation 

(Mozuraitiene et al., 2015, 
Hodis et al., 2012) 

 

   

Wnt/β-catenin 
CTNNB1, 
APC, ICAT 

Causes aberrant activation of wnt signalling, 
leading to increase in cell proliferation 

(Mozuraitiene et al., 2015, 
Reifenberger et al., 2002) 
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The RAS signalling pathway is strongly associated with cell growth, differentiation and 

survival and mutations in this pathway are found in 20%-25% of human cancers (Downward, 

2003). RAS genes are mutated in ~3-30% of cSCCs (South et al., 2014, Su et al., 2012), which 

is a much lower frequency than mutations in TP53, NOTCH1 and NOTCH2 in these tumours 

(South et al., 2014). Conversely, the BRAF gene which encodes for another member of the 

RAS signalling pathway is found to be mutated in ~60% - 70% of superficial spreading 

melanomas (Haluska et al., 2006).  A single mutation at codon 600, where a valine residue 

is substituted for a glutamate (V600E), accounts for roughly 50% of total BRAF mutations 

in melanoma (Su et al., 2012). Whereas BRAF inhibitors, which target the oncogenic BRAF 

protein resulting from this mutation, are beneficial in melanoma, many patients can 

develop cSCCs as an adverse effect of this therapy in a process referred to as paradoxical 

MAPK activation (Gibney et al., 2013). Furthermore, in contrast to the lower level of RAS 

mutations in sporadic cSCC, approximately 60% of cSCCs arising secondary to vemurafenib 

(a BRAF inhibitor) have RAS mutations (Su et al., 2012).  

Amongst the many other mutations that have been identified in cSCC and melanoma, those 

in CDNK2A and phosphatase and tensin homolog (PTEN) are also considered as driver 

mutations. For instance, somatic CDKN2A mutations can be found in 28% of cSCCs (South 

et al., 2014) whereas germline mutations in this gene are seen in melanoma patients with 

a strong family history of this cancer (Harland et al., 2014). In addition, between 10 and 30% 

of all melanomas have a loss of function in the PTEN tumour suppresser gene, resulting in 

phosphatidylinositol-4,5-bisphosphate 3-kinase/protein kinase B (PI3K/AKT) pathway 

activation; it is worth noting that mutation in PTEN are often found in conjunction with 

BRAF mutations (Davies et al., 2008, Haluska et al., 2006). 

1.2.9 Proteins in skin cancer 

Genes are segments of DNA which encode for proteins. The first step of protein synthesis 

is transcription and involves RNA polymerase reading a gene and creating a complimentary 

mRNA strand from the gene exons. Once the mRNA has been created, it exits the nucleus 

and travels to the ribosome where a small ribosomal subunit binds and moves along it until 

it reaches a sequence of three bases, known as a codon, which encodes a “start” signal. 

After the start signal, tRNA molecules which consist of an anti-codon (a complementary 
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codon to that found on the mRNA) and a specific amino acid, begin to bind to the mRNA. 

As more and more tRNA molecules are added, the amino acid chain gets longer, until a stop 

codon is reached, which signals for the ribosome to release the finished polypeptide chain. 

The amino acid sequence then undergoes folding to become a protein. Protein folding is 

dependent on a number of factors but usually results in a structure which is the most 

thermodynamically stable in its current environment (Dobson et al., 1998). Due to the 

immense number of possible structures one polypeptide can form it is also reasonable that 

folding favours those structures that are most efficient, that is those which require the least 

amount of energy to create (Dobson, 2003). 

Synonymous mutations are genetic mutations which do not alter translated amino acid 

sequence.  Although sometimes referred to as silent mutations, synonymous mutations can 

have effect on post translational modifications and splicing effecting downstream function 

or even cellular location and abundance. Non-synonymous mutations, however, are 

mutations which alter the amino acid sequence as the codon encodes a different amino 

acid when transcribed and translated. Changes in the amino acid sequence can result in 

issues with stability and the way the protein is folded (Lorch et al., 1999) which can 

subsequently lead to altered function (Yamada et al., 2006) as well as unintended protein-

protein interactions (Jones et al., 2007).  

1.2.10 The immune system involvement in skin cancer 

It has been known that UVR has significant immunosuppressive effects since the 1970’s 

when Margaret Kripke showed that skin tumours transplanted to un-irradiated mice 

resulted in rejection of the transplanted cancer whereas tumour rejection failed to occur 

in mice irradiated with UVR (Kripke, 1974, Kripke, 1977). Similar results have been reported 

by other groups (Sluyter and Halliday, 2001) and immune suppression resulting from UVR 

is evident in humans in other types of studies (O'Dell et al., 1980). The exact reasons for 

this UVR-induced immunosuppression are not fully understood. There is some evidence 

that UVR damages Langerhans cells, which are specialised antigen presenting cells in the 

skin, promoting apoptosis of these cells (Aberer et al., 1981). In addition, UVR causes 

Langerhans cells to migrate to the local lymph nodes where they induce production of T 

regulatory cells (Tregs), thus dampening immune responses (Schwarz et al., 2010). 
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Furthermore, keratinocytes release the immunosuppressive cytokine interleukin-10 (IL-10) 

after UVR exposure (Nishigori et al., 1996) and inhibit tumour antigen presentation by 

epidermal antigen presenting cells (Beissert et al., 1995) resulting in a reduced immune 

response against the tumour. 

A role for a weakened immune system in cSCC development can be seen clearly in 

immunosuppressed individuals following organ transplantation, with some studies 

suggesting that the incidence of cSCC is 50-250 fold higher in transplant recipients 

compared to the general public (Alter et al., 2014, Euvrard et al., 2003). The reduction in 

immunosurveilance is believed to result in approximately 5%, 10-27% and 40-60% of renal 

transplant recipients developing NMSC within 2, 10 and 20 years following transplantation 

respectively (Ulrich et al., 2008). Although other malignancies have been reported to 

following organ transplantation, skin cancers account for the majority of malignancies in 

this group, with cSCC and BCC accounting for 90% of the tumours (Euvrard et al., 2003). An 

increased risk of melanoma in transplant recipients, by a factor of 1.6-3.4 in Europe and 2-

4 in Australia, has also been noted (Euvrard et al., 2003). Furthermore, 

immunocompromised individuals are at significant risk of metastases from skin cancer 

(Martinez et al., 2003).   

1.2.11 Metastatic skin cancer 

The act of metastasis has been summarised into 8 major steps; 1-detachment from primary 

tumour, 2-invasion into surrounding tissue, 3-invasion into a vessel, 4-circulation in vessels 

(lymphatic or haematogenous), 5-stasis within the vessel, 6-extravasation, 7-invasion into 

new tissue and 8-finally proliferation (Brodland and Zitelli, 1992). Of the common skin 

malignancies, cSCC and melanoma are the two cancers most capable of metastasis.  

1.2.11.1 Metastasis in cutaneous Squamous Cell Carcinoma (cSCC)  

The mortality rate of cSCCs and melanoma vary depending on a number of factors but both 

have poor clinical outcomes after metastases have developed. The occurrence of 

metastasis for cSCC is approximately 4% (Brantsch et al., 2008) to 9.9% (Weinberg et al., 

2007). In one study, it was found that 81.5% of cSCC metastases involved regional lymph 

nodes, 3.7% involved distal nodes and 14.8% involved distant metastases (Dinehart and 
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Pollack, 1989). It has been reported that common sites of distant metastases are the lungs, 

brain, liver, skin and bone (Figure 1.4) (Weinberg et al., 2007). 

 

Figure 1:4 Local and distant cutaneous Squamous Cell Carcinoma (cSCC) metastases 

Metastasis occurs by invasion into the dermis and subsequently into the lymphatic system, 

followed by metastatic deposition in local lymph node. Distant cSCC metastasis in brain, 

lungs, liver and bone may occur via haematogenous spread from the lymph node or from 

the primary cancer. cSCC cells are represented by the pale cells in the boxes on the left of 

the figure whereas the black areas represent metastatic deposits in distant organs on the 

right side of the figure. 

Specific characteristics have been known to increase the risk of SCC metastasis in affected 

patients (Madan et al., 2010, Motley et al., 2003, Weinberg et al., 2007, Thompson et al., 

2016, Veness, 2006). The site of the primary SCC has a major effect on the risk of developing 

metastasis. It has been reported that between 11 and 16% of SCC of the lip progress to 

metastasise (Rowe et al., 1992, Frierson and Cooper, 1986), which has been more recently 

confirmed in a systematic review and meta-analysis on risk factors for SCC metastasis in 
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which both lip and ear had a risk ratio of 2.28 and 2.33 in developing metastasis, 

respectively (Thompson et al., 2016).  In addition to the site of the tumour, the size of the 

cSCC also plays a critical role in potential to metastasise; this effect of size is seen both in 

relation to diameter and depth of the cSCC. For example, cSCCs larger than 2cm 

metastasise in 30% - 42% of cases (Alam and Ratner, 2001, Rowe et al., 1992), whereas 

cSCCs exceeding 6mm in depth have been reported to metastasise in 16% of patients 

(Brantsch et al., 2008) with another study reporting that all cSCCs >6mm in depth 

metastasised (Stein and Tahan, 1994). In the systematic review by Thompson et al (2016), 

depth of tumour invasion (i.e. Breslow thickness) and invasion into subcutaneous fat were 

found to have the highest associated risk of both recurrence and metastasis of cSCC. 

Studies have found that patients with perineural invasion by the primary cSCC are more 

likely to suffer from nodal metastasis than those that don’t have perineural invasion 

(Cherpelis et al., 2002). One large study found that  patients diagnosed with perineural 

invasion were 20% more likely to develop regional metastasis and 11.7% more likely to 

develop distant metastases (Goepfert et al., 1984). This positive association between 

perineural invasion and metastases was also confirmed in the recent systematic 

review/meta-analysis (Thompson et al., 2016).  

The differentiation status of the primary cSCC is also a factor influencing development of 

metastases (Motley et al., 2002). In the early part of the twentieth century, Broders 

designed a staging system for SCC, using stages 1 – 4, to categorise how differentiated 

tumours were (Broders, 1921). In Broders’ system, stages 1-3 consist of a ratio of 

differentiated cells to undifferentiated cells of 3:1, 1:1 and 1:3 respectively, whereas stage 

4 consists of no differentiated cells. It has been found that cSCCs with stage 2 or higher 

have a greatly increased risk of metastasis (Breuninger et al., 1990) with one study 

reporting that 92% of lip SCCs that metastasised were grade 4 (Frierson and Cooper, 1986). 

The rate of metastasis from poorly differentiated cSCCs is reported to be as high as triple 

the rates of well differentiated tumours (Weinberg et al., 2007). Poor differentiation is also 

associated with a higher disease-specific death rate (Thompson et al., 2016).  

In addition to site, size, perineural invasion and differentiation, other factors which 

influence the metastasis rate of cSCC include immunosuppression (e.g. in organ transplant 

recipients as highlighted earlier) (Euvrard et al., 2003, Martinez et al., 2003, Ulrich et al., 
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2008) and differences in treatment (e.g. type of surgery, radiotherapy etc.)(Karagas et al., 

1996, Brantsch et al., 2008). 

1.2.11.2 Metastasis in melanoma 

While the incidence of melanoma is lower than that of cSCC, the rate of metastasis is higher 

and has a poor prognosis associated with it (Balch, 1992, Manola et al., 2000).  Metastases 

in melanoma is dependent on a multitude of factors, one of which is depth of invasion, 

which is recorded as Breslow thickness (Breslow, 1970) and Clark’s level (Thompson et al., 

2005). Breslow thickness is simply the depth of the melanoma in mm but is well known to 

have a positive correlation with metastasis and indeed a worse prognosis (Breslow, 1979, 

Cornish et al., 2009). Clark’s level is defined as the layer of skin that the tumour invades 

into (Clark et al., 1969). Although similar to Breslow depth in terms of reporting the 

thickness of the tumour, it takes into consideration the thickness of skin at different body 

sites (some being thicker than others) as all skin has an epidermis, dermis and 

subcutaneous tissue. A figure representing Clark’s level and Breslow depth can be seen in 

Figure 1:5.  

Figure 1:5: A Diagram of Clark’s level and Breslow thickness 
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A large study containing 3,001 patients with primary cutaneous melanoma reported that 

466 (15.5%) progressed to metastatic melanoma (Meier et al., 2002). Of the 466 patients 

with metastatic melanoma, 21.7% developed satellite/in-transit metastases, 50.2% 

developed regional lymph node metastases, 28.1% developed distant metastases, with 

51.5% of the satellite/in-transit metastases and 59% regional lymph node metastases 

subsequently developing into distant metastases (Meier et al., 2002). In the same study, 

57.3% of the overall patients who developed distant metastases died (Meier et al., 2002).   

In a separate study of 1,521 patients with American Joint Committee on Cancer (AJCC) 

stage IV melanoma, a median survival time of 7.5 months was reported, which equated to 

an estimated 5 year survival rate of 6% (Barth et al., 1995). In that study, patients could be 

split into 3 prognostic groups based on site of metastasis, namely (i) nodal, cutaneous or 

gastrointestinal metastasis with a median survival of 12.5 months, (5 year survival rate of 

14%), (ii) pulmonary metastasis with a median survival of 8.3 months (5 year survival rate 

of 4%) or (iii) liver, brain or bone metastasis with a mean survival time of 4.4 months 

(estimated 5 year survival rate of 3%) (Barth et al., 1995). In addition, one of the earlier 

melanoma meta-analysis of 15,000 patients with local melanoma and 2,116 with nodal 

metastasis highlighted ulceration of the primary tumour as an important prognostic marker, 

also noting that there was a positive correlation between ulceration and thickness (Balch, 

1992). Recently, the American Society for Cancer Immunology (ASCO) has reported that 

melanoma involving nodal metastasis has a 5-year survival rate of 64% (depending on the 

number of nodes affected) and that melanoma involving distant metastasis has a 5-year 

survival rate of about 23% (ASCO). It is also known that the location of the melanoma plays 

an important role in prognosis, for instance an early study found that melanoma on the 

scalp had a worse prognosis than melanoma on the face or neck and that melanoma on the 

hand had a poorer prognoses than melanoma on the arms and legs (Balch, 1992).  

Clinical parameters are vital in giving accurate prognostic information but with the 

advancement in technology / instruments and methodology, laboratory prognostic 

markers, more commonly referred to as biomarkers, are becoming more and more 

important in determining risk and prognosis (Manola et al., 2000). There are many studies 

that have looked for melanoma specific protein biomarkers (Ugurel et al., 2009, Griewank, 

2016, Gogas et al., 2009).  
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There are two main types of biomarkers, these are diagnostic biomarkers and prognostic 

markers. Presently, it is common practise to carry out immunohistochemical staining on 

sections of tumours to first diagnose patients and to additionally aid in prognosis. Markers 

in use today are premelanosome protein (PMEL), Melanogenesis Associated Transcription 

Factor (MITF), S100 proteins family members (Weinstein et al., 2014), melanoma cell 

adhesion molecule (MCAM), PI16 and matrix metalloproteinase-2 (MMP2) which may also 

offer some limited predictive information in relation to clinical outcome (Gould Rothberg 

et al., 2009). This number of known biomarkers is not as high when looking at differences 

between primary tumours which will metastasise and those which will not. Nonetheless, a  

large systematic review and meta-analysis on tissue biomarkers for prognosis of melanoma 

revealed a number of markers associated with development of metastasis in melanoma 

(Gould Rothberg et al., 2009). These include Bcl-2 expression (Vlaykova et al., 2002), MCAM, 

MMP and tissue plasminogen activator which were all significantly different in melanomas 

which subsequently metastasised. Furthermore, the meta-analysis reported that although 

chemokine receptors C-X-C chemokine receptor type 1 (CXCR1), C-X-C chemokine receptor 

type 2 (CXCR2), C-X-C chemokine receptor type 3(CXCR3), C-X-C chemokine receptor type 

4 (CXCR4), C-C chemokine receptor type 5 (CCR5), C-C chemokine receptor type 7 (CCR7) 

and C-C chemokine receptor type 10 (CCR10) have been associated with metastasis in 

melanoma, only CXCR4 is significantly associated with poorer prognosis (Scala et al., 2005, 

Gould Rothberg et al., 2009).  

There have been several studies which have looked at markers in serum which suggest that 

cutaneous melanoma has metastasised.  For example, increased expression of YKL-40 

protein in patients with metastatic melanoma is associated with poorer prognosis (Schmidt 

et al., 2006).  Another marker which has been investigated as a potential indicator of 

melanoma metastases is tyrosinase mRNA, but a meta-analysis has suggested that this 

offers limited potential as a biomarker (Tsao et al., 2001). Similarly, serum lactate 

dehydrogenase (LDH) and S100B levels are not sufficiently robust for use as biomarkers, 

despite being associated with poor prognosis in AJCC stage III/IV melanoma patients 

(Bougnoux and Solassol, 2013).  A proteomic study utilising mass spectrometry was able to 

discriminate between clinical stages of melanoma in >80% of cases and suggested that 

proteomic profiling may become a valuable tool in identifying high risk melanomas (Mian 

et al., 2005). Several studies have utilised mass spectrometry (MS) based proteomics to 
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identify serum biomarkers for metastasis in melanoma. It has been reported that 

vitronectin and demcidin are potent serum biomarkers of survival in metastatic melanoma 

(Ortega-Martinez et al., 2016). Another MS proteomic study found that co-expression of 

MDA-9 and GRP78 are also good serum biomarkers indicative of lymph node metastasis 

(Guan et al., 2015). Furthermore, Regucalcin (RGN), Syntaxin-7 (STX7), 

methylenetetrahydrofolate dehydrogenase 1-like (MTHFD1L) have also been associated 

with different progression states of melanoma with high levels identified in recurring 

tumours and high Breslow’s thickness (Bystrom et al., 2017).  

There have been improvements in the systemic treatment of metastatic cutaneous 

melanoma, however, survival rates of patients with metastatic melanoma still remain poor 

(Garbe et al., 2011). In addition, there has been no major advance in the treatment of 

metastatic cSCC over recent years, however, a recent phase I/II trial using anti-PD1 therapy 

suggests that this may offer some hope for metastatic cSCC (Migden et al., 2018).  In most 

cases of cutaneous melanoma and cSCC, the presence of metastasis generally results in 

disease related mortality. Thus, there is a need to discover new biomarkers which could be 

used for prognostic prediction of the future development of metastases from melanoma 

and cSCC at the time of excision of the primary tumour. Advances in this area of research 

could lead to better clinical management of patients, e.g. identifying those who require 

long term follow-up and potentially permitting earlier treatment with systemic anti-cancer 

therapies, as well as providing insight into key pathways which could be targets for 

development of novel treatments. Due to its incredible sensitivity, one of the methods at 

the forefront of biomarker discovery (and the focus of this thesis) is mass spectrometry 

based proteomics. 

1.3 Proteomics 

Proteomics is a diverse field encompassing the analysis of proteins within biological 

samples. It entails the process of identifying and quantifying proteins in a given sample and 

has a variety of methodologies dedicated to it. One method with exceptional sensitivity 

and accuracy at the forefront of proteomic research is mass spectrometry (MS) based 

proteomics (Aebersold and Mann, 2003).  
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Although many mass spectrometry systems differ in their setup, they largely consist of an 

ion source, a mass analyser to determine the mass to charge ratio (m/z) of the ionised 

analyte and a detector to establish the number of ions at each m/z value (Aebersold and 

Mann, 2003).  

1.3.1 Ion source 

Mass spectrometry measures ions in the gaseous phase, therefore the role of the ion 

source is to generate the ions that can then be introduced into the mass spectrometer in 

the gaseous phase. Different techniques can be used to ionise samples; two of the main 

methods used in proteomics are desorption ionisation and spray ionisation, of which the 

two most commonly employed methods are matrix assisted laser desorption ionisation 

(MALDI) and electrospray ionisation (ESI), respectively (Cole, 2011). MALDI requires the 

analyte being measured to be embedded into a low molecular weight matrix, which is 

sensitive to UV. A UV laser is then used to excite the matrix, which absorbs energy and 

passes it to nearby analytes, ionising them and liberating them from the matrix into the 

gaseous phase. MALDI is generally good for simple peptide mixtures and can allow specific 

ionisation for targeted and directed proteomics (Karas and Hillenkamp, 1988). Conversely, 

ESI is performed on samples in solution by applying a high voltage to create an aerosol 

spray. As the charged spray of droplets travel to the cone entrance of the mass 

spectrometer, they evaporate until the maximum amount of charge each droplet can hold 

is reached, this is known as their Rayleigh limit. At this point, the electrostatic repulsion of 

positive charges in a “size-decreasing” droplet becomes stronger than the surface tension 

of the water droplet itself, causing Coulomb fission whereby the droplet explodes into 

many smaller droplets, with less ions in each. This process continues until one analyte ion 

is present (Cole, 2011, Ho et al., 2003), (Figure 1.5). As ESI is carried out on samples in 

solution, it is often coupled with a liquid chromatography system (LC), enabling 

multidimensional fractionation prior to ionisation (Fenn et al., 1989). 
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Figure 1:6 Diagram of electrospray ionisation (ESI).  

Analytes in solution are forced through a capillary with a high voltage, creating a Taylor 

cone where charged droplets containing analytes are released. Charged droplets 

evaporate until their Rayleigh limit is reached and Coulombic fission takes place, causing a 

release of smaller droplets, each with less analytes within. These smaller droplets keep 

undergoing evaporation and Coulombic explosions until eventually charged ion analytes 

are liberated, where they enter the mass spectrometer through the cone 

1.3.2 Mass analyser 

There are four basic types of mass analysers used in mass spectrometry based proteomics; 

these are: - ion trap (including Orbitrap), quadrupole, time of flight (TOF) and Fourier 

transform ion cyclotron resonance (FTICR) analysers. Variants of each of these exists, as 

well as hybrids and systems which combine their usage in tandem (Aebersold and Mann, 

2003).  Ion trap and FTICR utilize m/z resonance frequency to separate and analyse ions, 

whereas quadrupoles use m/z stability and TOF analysers use flight time to separate ions 

(Yates et al., 2009).  

Ion trap mass analysers vary in their design but essentially “trap” ions using their m/z 

properties before using a detector to measure the number of ions present. They are 

reasonably cheap, sensitive and durable and as a result are frequently seen in mass 

spectrometry based proteomic studies. Their disadvantage however is their low mass 

accuracy due to the finite number of ions that can be held before charge disturbs their 

spacing and ultimately their mass measurement (Aebersold and Mann, 2003). FTICR 
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analysers use similar principals to the ion trap in respect to trapping ions and holding them 

before analysis using their m/z. FTICRs can actually be correctly referred to as a Penning 

ion trap as it utilizes a high vacuum and strong magnetic fields to achieve a similar result. 

FTICR analysers have good sensitivity, accuracy, resolution and dynamic range but are 

expensive and require experience and training in their use (Aebersold and Mann, 2003).  

Quadrupoles also utilise ion m/z to select their ions and analyse them. Quadrupoles consist 

of four rods connected together electrically in which two opposing rods share a direct 

current (DC) and the remaining two opposing rods share an alternating current (AC). A radio 

frequency voltage originating from the AC rods is emitted along with an offset DC voltage 

from the DC rods. These opposing voltages influence the path of passing ions in relation to 

their m/z value. Ions which have an unstable (critical) m/z value don’t acquire a stable 

trajectory as they are repelled and attracted to each rod unevenly, causing them to either 

hit an electrode or exit the quadruple structure. Those that have m/z values which oscillate 

between the DC and radio frequency voltages evenly have a stable trajectory and make it 

through the quadrupole to a connected detector (Miller and Denton, 1986) (Figure 1.6).  

These radio frequency and DC voltages can be manipulated to allow only certain m/z values 

to pass through the quadrupole at any one time. This means precursor ions can be 

specifically selected and often fragmented before detection to obtain MS/MS spectra. 

Quadrupoles are simple, easy and cheap to produce and as a result are often used in 

proteomic mass spectrometry. 
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Figure 1:7 Diagram of a quadrupole mass analyser.  

Two opposing DC and AC electrode rods create a radio frequency that guides ions of a 

certain mass to charge ratio through on a stable trajectory. Those with mass to charge 

ratios in the unstable, critical range have an unstable trajectory and do not make it through 

the quadrupole 

TOF analysers determine the m/z value by measuring the time it takes for an ion to get 

from one point to another through a vacuum. Ions are accelerated through an electric field 

at a known strength toward a detector. The time it takes for an ion to reach the detector 

depends on the velocity of the ion, which is dependent on the weight of the ion (as heavier 

ones will move slower than smaller ones) and the charge of the ion as it receives more or 

less kinetic energy from the initial acceleration (Domon and Aebersold, 2006, Guilhaus et 

al., 1997). The time it takes the ion to travel from the starting point to the detector can be 

used to calculate the m/z value with exceptional resolution and accuracy.  

1.3.3 Detector 

The final part of the mass spectrometer is the detector. As ions hit or pass by the detector, 

it measures the charge induced or the current produced, respectively. This charge or 

current excites an electron in the detector, which is then recorded on a computer. As ions 

are typically in very low abundance in mass spectrometry, the numbers of electrons excited 

in the detector are similarly low as a result of this. For this reason, many detectors use an 

electron multiplier where one excited electron can stimulate multiple other electrons 

which can subsequently stimulate additional electrons, thus amplifying the signal which 

can then be read on a computer and converted to a mass spectrum. 
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1.3.4 Tandem mass spectrometry 

Early proteomics methods involving mass spectrometry (MS) had one level of 

measurement whereby analytes in a sample are measured at the state in which they were 

introduced into the mass spectrometer (i.e. peptides), giving an MS spectra. In tandem 

mass spectrometry (which the majority of mass spectrometers are nowadays), analytes are 

measured in a first scan as afore mentioned, but subsequent to this, analyte ions are 

fragmented (giving fragment ions) and also measured, giving MS/MS spectra. This enables 

the user to determine what the constituents of a precursor ion (i.e. peptides) are, aiding in 

protein identification (McLafferty, 1981). Fragmentation of ions can be performed in a 

variety of ways, the most common of which in proteomic studies is through collision-

induced dissociation (CID). CID is achieved when an inert gas such as argon, helium or 

nitrogen is accelerated, giving them kinetic energy, towards the target ion. When the inert 

gas collides with the ion, some of the energy is transferred to the ion causing bonds to 

break, resulting in smaller fragments of the initial ion (Mitchell Wells and McLuckey, 2005). 

These fragment ions are then detected and produce MS/MS spectra. 

1.3.5 Data acquisition  

During the mass spectrometry process there are two main types of acquisition modes; data 

dependant acquisition (DDA) and data independent acquisition (DIA). During DDA 

experiments, precursor ions are measured in an initial scan, giving an MS spectra and then 

subjected to fragmentation to acquire MS/MS spectra. Once an ion is analysed, it can be 

dynamically excluded from future scans to ensure that lower abundant peptides are also 

measured (Peng and Gygi, 2001). The issue with this type of acquisition is that it favours 

those ions with the highest abundance, so low abundance ions can be missed. Up to 84% 

of proteins in a complex protein mixture can remain unsampled for this reason (Egertson 

et al., 2013). In addition to this, because the selectivity is random there can be up to 30% 

variability between replicates of the same sample (Egertson et al., 2013). However, it has 

been found that because of this randomness, replicates of the same sample have the ability 

to identify additional (including lower abundance) ions (Liu et al., 2004).  
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A more recent type of acquisition mode is DIA which, in brief, fragments all ions to obtain 

MS/MS spectra for the whole sample. There are currently a few ways of doing this, one of 

which is named MSE, created by the Waters corporation. MSE does this by performing a full 

scan at low energy and then quickly switching to a high energy state and fragmenting all 

ions (Doerr, 2015, Shliaha et al., 2013). As this method fragments everything, it produces a 

vast array of MS/MS data with no clear indication of what the parent ions are to each 

fragment ion. It is for this reason that MSE uses extra hardware, known as traveling wave 

ion mobility separation, within the mass spectrometer to produce more information about 

ions to correctly assign them to parent molecules. Traveling wave ion mobility separation 

separates ions by their size and shape, meaning that those with the same m/z value can be 

separated, thus giving more parameters to enable better identification when searching 

huge MS/MS data against databases (Shliaha et al., 2013). Due to the complex data output 

from DIA and specifically MSE, specialised pieces of software are needed to decipher 

MS/MS spectra, one such program also created by the Water Corporation is Protein Lynx 

Global Server (PLGS). PLGS works by gathering data on MS and MS/MS spectra and 

identifying a single matched protein, after which all associated peptides and fragments are 

removed from the search; the process is then repeated for the next peptide and 

subsequent peptides (Shliaha et al., 2013).  

1.3.6 Qualitative and quantitative proteomics 

The type of data acquisition mode is largely dependent on the output desired, be it 

qualitative or quantitative. Qualitative proteomics aims to identify the proteins present in 

a sample with no quantitation. DDA experiments are often better in this scenario as when 

they detect a peptide of a certain m/z, they exclude it from future selection to enable better 

coverage of the sample, in an attempt to discover all peptides in a sample. The issue with 

this type of acquisition is that quantification cannot be achieved as the number of peptides 

identified is not proportional to the true amount of peptide in a sample. It is for this reason 

that DDA experiments are optimal for qualitative experiments but lack the ability to 

perform absolute quantitative experiments.  
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DIA detects a peptide each time it is encountered and so is proportional to the amount 

within the sample. This can be taken one step further to achieve absolute quantification by 

spiking in a known amount of peptide into each sample (internal standard) as a reference 

and calculating the amount of an unknown peptide against it using the Hi3 method (Silva 

et al., 2006). The Hi3 method uses the three most intense tryptic peptide ions from an 

internal standard to create a universal signal response factor which in turn is compared to 

the three most intense tryptic peptides of each protein identified to gain quantification of 

the identified proteins (Doneanu et al., 2012).  Using DIA in this manor is a useful approach 

for quantitative biomarker discovery. However, due to the assumption that the amount of 

known peptide spiked into a sample and detection of the total amount of the known 

peptide using DIA are accurate, which in some cases may not be entirely correct, validation 

using a more specific form of quantitation is beneficial; this often comes in the form of 

targeted proteomics.  

1.3.6.1 Targeted and untargeted proteomics 

Untargeted proteomics is the method of acquiring proteomic data without targeting 

specific proteins. It is often carried out for biomarker discovery as it is not limited to looking 

at specific proteins of interest but as a means to identify all proteins in a sample. Targeted 

proteomics however is an approach that is used to measure specific proteins (in a sample) 

which have usually been determined by previous biomarker discovery methods.  The main 

type of targeted proteomics is selective reaction monitoring (SRM)/multiple reaction 

monitoring (MRM) (Lange et al., 2008). The basic principle of MRM is to select peptides 

from a protein of interest and have an isotopically heavy labelled version of each of these 

peptides synthesised. Then, using a known amount of heavy labelled peptide in a sample, 

it is possible for one to calculate the true concentration of the native peptide (and thus the 

native protein) in the sample. As MRM is a targeted approach it benefits from higher 

sensitivity than non-targeted approaches, because the instrument is set to detect and 

fragment only those ions of specific m/z’s dependant on the peptide being investigated.  
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1.3.7 Data analysis 

MS spectra obtained from mass spectrometry must be processed and analysed to establish 

which m/z values belong to which peptides and therefore what proteins were present in 

the original sample. In the early days of mass spectrometry this was usually done through 

peptide mass fingerprinting, which is where the MS peak value is compared to theoretical 

mass values that could be obtained from known proteins being cleaved by the specific 

proteases (e.g. trypsin). In that early period of mass spectrometry, genomic databases were 

much smaller than they are currently and, as such, just three or four peptide matches were 

needed to correctly identify a protein. Nowadays however, databases are huge and ever 

growing and therefore the criteria for correct protein identification has become more 

stringent, meaning that more peptide matches and more coverage of the protein sequence 

are needed in order to have confidence in identifying the correct protein (Baldwin, 2004). 

By using CID MS/MS data, current search engines and algorithms can match real fragments 

in MS/MS data to a database of hypothetical fragments which could be obtained from 

protease cleavage from all known/hypothetical peptides. This approach enables an extra 

dimension of sequence coverage and specificity to protein matches, thus increasing the 

chances of correct protein matching and increasing confidence in the results generated by 

this process (Baldwin, 2004). However, the more attempts searches make at matching a 

fragment to a database sequence, the higher the probability of getting a false “match” by 

random chance. To counteract this, most search engines use a factor known as false 

discovery rate (FDR) whereby the data is also searched against a dummy database of either 

random or reversed genomic sequences; those fragments that match readily with the 

decoy database can be excluded at a pre-set threshold, increasing the confidence in 

peptide and protein matches that are genuine (Choi and Nesvizhskii, 2008). 

1.3.8 Fractionation 

Proteomic mass spectrometry is frequently used for complex protein/peptide mixtures, 

therefore samples are fractionated to produce several, less complex sample fractions prior 

to introduction into the mass spectrometer. Most fractionation techniques utilise 

characteristics specific to peptides such as their size, their isoelectric point, hydrophobicity 
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and polarity to separate protein/peptide mixtures.  Two of the most frequently employed 

fractionation methods are gel fractionation and liquid chromatography (LC).  

Polyacrylamide gel electrophoresis (PAGE) is a common technique used throughout 

biological sciences whereby samples are separated as a result of different speeds of 

movement through a polyacrylamide gel. Gel electrophoresis can be done in one dimension 

and two dimensions. In 1D gels, proteins are separated according to their size by being 

pulled through the polyacrylamide gel by electric current, with smaller proteins travelling 

further in the gel than larger proteins. In 2D gel electrophoresis, proteins are first separated 

by their isoelectric points by increasing pH through a polyacrylamide gel and the proteins 

are then separated according to their size using gel electrophoresis in the same way that 

they are separated in 1D gels (Hames, 1998). Once the proteins have been separated, 

specific bands and areas of interest can be dissected out and subjected to proteomic 

analysis, reducing the complexity of the input sample for proteomics.  

Another method of fractionating complex samples is through liquid chromatography. There 

are various different types of liquid chromatography methods that can be used to separate 

proteins by their characteristics, these include anion exchange, cation exchange, 

hydrophobicity and polarity. Liquid chromatography consists of two main components, a 

stationary phase, most commonly an immobilised particle on the lining of a column, and a 

mobile phase, the liquid containing analytes which passes by the stationary phase. Anion 

exchange and cation exchange utilise charge of the analyte whereby negatively charged 

and positively charged analytes, respectively, are adsorbed to stationary phase (Niessen, 

2006). The most common type of LC used in mass spectrometry is reverse phase 

chromatography as it couples well with ESI and is easy to achieve. Reverse phase 

chromatography utilises a hydrophobic stationary phase, often a silica molecule with a 

carbon chain (C18) attached. As hydrophobic analytes in the mobile phase pass by the 

stationary phase, they are adsorbed to the column and are then later eluted by a gradual 

increase in an organic solvent, causing peptides to elute off gradually, essentially 

fractionating the sample. Reverse phase chromatography can be repeated in tandem to 

achieve even better fractionation whereby the first column is at high pH and the second is 

at low pH (Yang et al., 2012). In this process, the analytes bind to the first high pH column 

and are eluted off in “slugs” through a stepwise increment in organic buffer.  Each 
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incremental aliquot released from the high pH column is then further separated on a low 

pH column using a gradual increase around the concentration used to elute from the first 

column. For example, the first aliquot from the high pH column will be eluted off at 11% 

acetonitrile, the analytes released by this process are them captured on a second low pH 

column where a gradient of 9% to 13% acetonitrile is used, and thus separating that “slug” 

more. 

1.3.9 Proteomics in cancer 

Proteomics encompasses a wide variety of techniques, ranging from simple western blots 

to complex targeted mass spectrometry based proteomics. Before the usage of mass 

spectrometers in proteomics in the late 20th century, laboratories wishing to identify 

protein biomarkers would use a more directed single hypothesis approach which 

investigated one or a few proteins of interest in the relevant tissue/sample. Nowadays, 

many proteomics studies, especially for biomarker discovery, work on more general 

hypotheses (e.g. many proteins may be different) and their results are frequently 

hypothesis generating. Typically, mass spectrometry based proteomics identifies a number 

of biomarkers, which can then be validated using more targeted methods, such as MRM 

mass spectrometry.  

Mass spectrometry based proteomics has led the way in protein biomarker discovery in 

recent decades (Srinivas et al., 2002).  Many biomarker discoveries can be attributed to 

mass spectrometry based proteomics and techniques are constantly being adapted and 

improved (Sallam, 2015). The past few decades has seen an increase in serum biomarker 

discovery (Jacobs et al., 2005) in the hope of identifying markers that can be tested easily 

in serum and provide early diagnosis of disease. Much of the tissue-based proteomics 

focuses on fresh tissue because the fresher the tissue, generally the more intact the 

proteins are and therefore the better the results are. Nonetheless, advances in 

methodology has led to several proteomics studies investigating preserved tissue, including 

tissue preserved with formalin fixation (Appendix 1). It is recognised that samples that have 

been preserved can be problematic for downstream mass spectrometry analysis, due to 

protein destruction, protein modifications and/or the presence of certain “contaminating” 

reagents leading to reduced protein yield and accuracy. 
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1.4 Formalin fixed paraffin embedded proteomic studies 

Many cancers identified in clinical practice are excised for diagnostic and/or therapeutic 

purposes.  In most cases, the excised tumour is formalin fixed and then paraffin embedded 

(FFPE) so that it becomes ready for tissue sections to be cut with a microtome and 

histologically stained to confirm the diagnosis and assess any known characteristics that 

aid accurate prognosis. As this method of tissue processing is generally standard 

throughout the NHS and globally, there is a huge bank of FFPE samples available for use in 

clinical research studies.  Coupled with detailed clinical notes and clinical outcome, these 

FFPE samples represent a useful biorepository of samples (Wisniewski, 2013).  

Unfortunately, formalin fixation causes multiple cross-linking between proteins, limiting 

their analysis using standard proteomic protocols. Many research studies have attempted 

to perform proteomics on FFPE samples by using various methods to extract and prepare 

the proteins/peptides for MS (appendix 1). The total number of publications relating to 

“FFPE” and “Proteomics” has increased 54 fold since the first 4 publications in 2005 (Figure 

1.7). Appendix 1 is a table of a large proportion of published proteomic studies aimed at 

testing different methods for the use of FFPE samples in proteomics.  

 

Figure 1:8: PubMed publications using key words “FFPE” and “Proteomics”. Search 

carried out in early 2018.  

FFPE, formalin fixed paraffin embedded 
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The highest number of proteins identified in a novel FFPE proteomic methodology study in 

appendix 1, was 9,437 (Bateman et al., 2011). This method, like many others, utilised a FFPE 

protein extraction kit, specifically “Liquid Tissue”. Many other studies have used this kit, 

albeit with slight modifications, but have achieved lower protein IDs. For instance, the 

highest number of protein IDs achieved by Naidoo et al (2012) was 1,504, Takadate et al 

(2013) 1,229, Byrum et al (2011) 888, Kawamura et al (2010) 449 and several other studies 

achieved less than this. The second and third highest protein yield were both from 

Wisniewski et al (2013, 2011) attaining 8,481 and 5985 IDs respectively, utilising their filter 

aided separation (FASP)-strong anion exchange (SAX) protocol. Wisniewski et al, amongst 

many others, utilised heat induced antigen retrieval, similar to the method used in 

immunohistochemistry to reveal antigen binding sites (Yamashita and Katsumata, 2017). 

Using heat in the presence of water and a reducing agent, for instant dithiothreitol (DTT), 

facilitates the hydrolysis of cross-linked bonds, thus freeing covalently bound proteins and 

peptides. Selected methods also attempt to utilise pressure to achieve antigen retrieval, 

however studies using this approach are less common and are generally less successful. An 

issue which has been focused on in numerous methods within studies is solubility (or lack 

of solubiliy, which varies between the types of tissue used in different studies) of proteins 

because if the sample is insoluble, the processes of reducing, alkylating and especially 

digestion, becomes inefficient. SDS, glycerol, polyetheleneglycol and a few other 

substances have been used with a degree of success. However, the use of these reagents 

is unfavourable as subsequent steps are required to ensure the complete removal of them 

because they often contaminate LC systems and saturate signals leading to poor MS spectra. 

Several studies have utilised RapiGest (Waters, Massachusetts), a surfactant that increases 

solubility of proteins and peptides as well as catalysing digestion, while the resultant 

solution remains suitable for analysis by LC-MS (Yu et al., 2003). 

Although the studies in appendix 1 are ranked according to protein yield, it cannot be 

accredited solely to the methodology used, the type of tissue used as well as 

instrumentation play a pivotal role in the number of protein IDs. Of the different types of 

tissue employed, colon, liver, renal and brain were the most widely used. Protein yield 

seems to be indiscriminate of tissue types used as there is no clear tissue achieving more 

protein yields. However, because it is a fairly new technique, the number of studies to asses 

this is limited and as such no firm conclusions can be made. In addition to tissue type, it 
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seems that the LC-MS system used is fairly independent of protein yield also, but this could 

be due to the majority of studies utilising very similar, if not identical system set-ups.  

Of the studies listed in Appendix 1, five papers used skin-based tissues, three on cSCC (Azimi 

et al., 2016, Foll et al., 2017, Azimi et al., 2019), and two on melanoma (Byrum et al., 2011, 

Byrum et al., 2013). All three papers investigating cSCC used RapiGest in their protocol as 

well as heat-induced antigen retrieval. Furthermore, both melanoma studies also utilised 

heat-induced antigen retrieval but with different buffers and reagents. 3 out of 5 of these 

experiments used RP-HPLC-Orbitrap setups. Due to the sensitivity and resolution of 

orbitraps, they are much better at achieving higher numbers of protein identifications. 

However, they are not well suited to perform true absolute quantification and as such often 

rely on targeted quantification methods, making biomarkers discovery less possible.  

1.5 Bioinformatics 

The vast quantity of data that proteomic studies generate requires a number of different 

analysis techniques to utilise all data available. Analysing biological data with the use of 

computational power, or informatics, is widely referred to as bioinformatics and can entail 

a host of different methods. 

Bioinformatics encompasses a number of different analysis techniques, including classical 

statistics, pathway analysis, machine learning and modelling and topological data analysis. 

Classical statistics generally comprises of parametric and non-parametric comparative tests 

such as T test or Mann Whitney-U test respectively. These tests are used to calculate 

whether there is a difference between two groups (or multiple groups in the case of ANOVA 

and Kruskal Wallis) by determining whether a null hypothesis is true or false through 

calculation of a P-value and whether the P-value is below a pre-defined threshold (usually 

P<0.05) (Wasserstein and Lazar, 2016).  

Pathway analysis is a generic term for bioinformatics tools that aim to establish which 

pathways are likely to be involved in a biological process based on how many of the 

identified proteins or expressed genes involved in that pathway are increased or decreased 

in the biological samples being investigated. It is inclusive of, but not limited to, gene 

ontology analysis, protein-protein interactions and KEGG pathway analysis (Khatri et al., 
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2012). Gene ontology analysis uses inputted protein or gene IDs to establish which areas 

of biological processes, molecular functions and components of a user defined background 

are over or under-represented (Khatri and Draghici, 2005). The differences identified are 

then given scores dependant on the measuring metric used (often a Z score), which can 

then be interpreted to identify important groups of proteins in a given set of gene/protein 

IDs. KEGG is an acronym for “Kyoto Encyclopaedia of Genes and Genomes” and includes 

three features; the genes database, the pathway database and the ligand database. The 

genes and pathway database can be used collectively by the input of several genes of 

interest  to aid in predicting pathway enrichment (defined in their pathway database) 

(Kanehisa and Goto, 2000). 

The term “model” can mean different things dependant on the discipline and context it is 

used. In terms of biological systems, it is generally used to refer to an organism that holds 

potential to investigate a disease or organism of interest with the intent to learn about the 

disease or another organism from that organism (Fields and Johnston, 2005). A 

mathematical model is any system utilising mathematical theories and language to 

calculate an unknown output. Modelling in computational biology combines these two 

definitions so that biological data is used to create a mathematical model using machine 

learning techniques. This is mainly done by one of two methods, either through supervised 

or non-supervised learning. Supervised learning is the creating of models using biological 

data with known outcome. Using the known outcome in supervised learning strategies 

enables algorithms to assess what features of the biological data can be used to predict the 

outcome on future data, where the outcome is unknown. This is known as predictive 

modelling and has many computational methods designed for/attributed to it, including 

generalised linear modelling (GLM), support vector modelling (SVM), decision trees (a full 

list of machine learning algorithms used in this thesis can be seen in Appendix 4). Each of 

these modelling techniques has its own benefits. A common way of assessing and 

visualising the output of data from these models is by using receiver operating 

characteristics (ROC) curve and the area under the curve (AUC). ROC curves investigate the 

true positive and true negative rates of a given model and the AUC can be used as a metric 

to compare models (Larranaga et al., 2006). Non-supervised learning is the creating of 

models using only biological data, without the input of outcome. This method requires the 

chosen algorithm to infer a function that exploits hidden correlations in the data. There are 
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several types of models which utilise non-supervised learning, including neural networks 

and topological data analysis. Topological data analysis is the process of analysing data 

using topology, which is the mathematical study of continuous space and shape. 

Application of topological data analysis to biological data allows investigators to look at the 

“space and shape of the biological data” to try to identify information in the data that 

classical statistics may overlook, such as the presence of different subgroups.  

Proteomics offers great potential to examine for biomarkers which indicate whether 

metastases will develop from a primary cancer which has been recently excised.  cSCC and 

melanoma are two important types of skin cancer which can metastasise and for which 

there are limited biomarkers available to assist with determining prognosis. 

1.6 Hypothesis 

The hypothesis for this project on cSCC and melanoma is that there is a significant 

difference in the protein profile between primary skin tumours that, despite excision of the 

primary cancer, have gone on to metastasise and primary skin tumours which have not 

metastasised by 5 years following excision of the neoplasm.  

1.7 Aims  

The aims of this PhD project are: 

• To perform proteomic analysis on FFPE cSCC samples, and separately on FFPE 

melanoma samples, in order to examine for differences between primary tumours 

which metastasised and primary tumours which had not metastasised after excision 

of the primary tumour.  

• To use the proteomics data to identifying key pathways and processes involved in 

metastasis of skin cancer.  

• To validated discovery proteomics using multiple reaction monitoring on selected 

proteins.  
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• To use predictive modelling and machine learning to try to develop a model capable 

of predicting metastasis using protein biomarkers in cases where successful 

validation with MRM has been conducted.   

• To develop a mathematical model which uses clinical and/or histological data from 

cSCC to predict metastasis.  
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 MATERIALS AND METHODS 

2.1 Tissue samples 

Tissue blocks were identified and obtained from the Histopathology Department, 

University Hospitals Southampton NHS Foundation Trust. Primary metastatic (P-M) 

tumours were selected on the criteria that they had metastasised, confirmed by histological 

evidence of metastasis in the Histopathology Department.  Primary non-metastatic (P-NM) 

tumours were selected based on the fact that the patient had been seen in the 

Dermatology Centre, University Hospitals Southampton NHS Foundation Trust at least 5 

years after their tumour excision and there was no documented evidence of metastases at 

that stage. The research was approved by the South Central Hampshire B National Research 

Ethics Service Committee (reference number 07/H0504/187).  

2.2 Haematoxylin and Eosin staining (H&E) 

4µm tissue sections were cut using a microtome and mounted on 3-

aminopropyltriethoxysilane (APES) coated slides. Slides were deparaffinised in two washes 

of xylene, each for 5 minutes and then rehydrated in 100% ethanol for 10 minutes and 70% 

ethanol for 5 minutes followed by 3 minutes in distilled water. Slides were then stained 

with Mayer’s Haematoxylin (MHS32 - Sigma) for one minute and then washed in running 

tap water for five minutes. Next, sections were stained in eosin (E4009 - Sigma) for one 

minute and again, washed in running tap water before being dehydrated in 70% ethanol 

for five minutes and 100% ethanol for 10 minutes. Sections were cleared through two 

washes of xylene (X/0250/17 - Fischer), each for five minutes, before cover slips were 

mounted, using DPX (06522 - Sigma).  

2.3 Immunohistochemistry (IHC) 

4µm tissue sections were cut with a microtome, deparaffinised and rehydrated, then 

endogenous peroxidase was inhibited by incubating slides with 0.5% hydrogen peroxide 

(H1009 - Sigma) in methanol for 10 minutes. Slides were washed with TBS three times, each 

for two minutes. Citrate buffer heat antigen retrieval was carried out by boiling slides in a 
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microwave at medium-high power for 25 minutes in 10mM citric acid monohydrate 

(C/6200/53 - Fisher), pH 6. Sections were then washed under running tap water for three 

minutes before being washed with TBS three times, each for two minutes. Avidin and biotin 

(SP-2001 - Vector) were applied separately to the slides for 20 minutes each, with three 

TBS washes, each two minutes, after the avidin and again after the biotin. Slides were then 

immersed in culture medium containing 20% FBS and 1% BSA in Dulbecco’s Modified Eagle 

Medium (DMEM) for 20 minutes. Slides were incubated with primary antibody in culture 

medium overnight at 4ᵒC. Langerhan’s cells were immunostained using an anti-CD1a 

monoclonal antibody (M3571, clone 010 - Dako) at a dilution of 1:50. B cells were 

immunostained using an anti-CD20 monoclonal antibody (M0755, clone L26 - Dako) at a 

dilution of 1:100. After overnight incubation, slides were washed with TBS for five minutes 

each, then anti-mouse, biotin conjugated, secondary antibody (315-066-045-JIR) used at a 

dilution of 1:400 in TBS was added to the slides and left to incubate for one hour at room 

temperature. Slides were then washed three times in TBS, each for five minutes, before 

applying 3,3’-Diaminobenzidine (DAB) chromogen (K3468 - Dako) for five minutes. Slides 

were immediately washed with TBS and then rinsed under running cold tap water for three 

minutes. Slides were then counterstained with Mayer’s haematoxylin (MHS32 - Sigma) for 

1.5 minutes. Once counterstained, slides were washed in cold running tap water for four 

minutes before being dehydrated for five minutes in 70% ethanol, 10 minutes in 100% 

ethanol, followed by two subsequent washes in xylene, each for five minutes. DPX was then 

used to mount coverslips on slides. 

Whole slides were imaged using an Olympus DotSlide at 20x magnification. Representative 

high power fields of view (at 20x) were then captured and used for analysis. Five fields of 

view were selected for CD1a stained sections and 10 fields of view for CD20 stained sections; 

this higher number of fields of view were taken for CD20 because staining was often 

concentrated in certain areas of the tissue, and therefore 10 fields of view enabled a more 

representative analysis.  
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2.4 Image analysis 

Image analysis was conducted using either Image J (Jensen, 2013) or TMarker (Schuffler et 

al., 2013). Image J was used to count and calculate the percentage of immunopositive cells 

in the tissue on the immunohistochemistry (IHC) stained slides. This was achieved by 

separating the red, green, blue filters and altering the intensity to show only blue 

(haematoxylin) and brown (DAB) staining. Images were then converted to pixels and 

automatically counted to obtain the number of cells in each group. TMarker is a piece of 

software designed for the counting of IHC staining and is somewhat similar to Image J, but 

TMarker automates a lot of the process, allowing batch analysis of images. Within the fields 

of view, all immunopositive and relevant immunonegative cells were counted, in order to 

obtain the percentage of cells which were immunopositive.  

2.5 Tissue microdissection 

FFPE tissue samples were cut with a microtome, mounted, deparaffinised and rehydrated. 

10µl of tissue lysis buffer was added to the slides and then the tumour and immune 

infiltrate were microdisected away from the surrounding skin tissue using a sterile 

hypodermic needle, and then placed into an microcentrifuge tube. The entire tumour and 

adjacent immune infiltrate were removed together into the microcentrifuge tube because 

it was considered that both these components were likely to be important in determining 

metastatic spread (Figure 2.1). 
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Figure 2:1 Example of microdissection of cutaneous Squamous Cell Carcinoma (cSCC) for 

proteomic analysis.  

Left images are tissue sections of cSCC samples before microdissection.  Middle images 

are after the tumour and relevant peritumoral immune infiltrate has been microdissected 

from the surrounding skin using a sterile hypodermic needle. Right images are after the 

microdissected tumour and relevant peritumoral immune infiltrate has been removed 

from the glass slide into an microcentrifuge tube. 

2.6 Protein extraction from Formalin Fixed Paraffin Embedded (FFPE) 

samples 

A range of approaches were evaluated whilst optimising the method for protein extraction 

but the method used for the proteomic analysis of cSCCs in this project was adapted from 

the technique described by Nirmalan et al (2011).  Three 10µm sections of each tissue 

sample were cut with a microtome, deparaffinised and rehydrated before being counter 

stained in Mayer’s haematoxylin. Slides were subsequently washed under running water 

for 3 minutes and then microdissected into microcentrifuge tubes containing 100µl lysis 

buffer, consisting of 0.2% RapiGest SF (186001861 - Waters), 50mM ammonium 

bicarbonate (09830 - Sigma) and 5mM DTT (D9779 – Sigma). Samples were then kept on 
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ice whilst being transferred from Dermatopharmacology to the Centre for Proteomic 

Research where the remainder of the protein extraction was performed. Samples were 

boiled in a heatblock for 30 minutes at 105°C; during boiling, the microcentrifuge tubes 

were weighted shut to avoid evaporation and periodically tapped to keep the liquid at the 

bottom of the tubes.  The samples in the microcentrifuge tubes were subsequently cooled 

on ice for five minutes, briefly vortexed and then put into a heatblock at 80°C for two hours. 

After heating, samples were cooled on ice and reduced through the addition of 5mM 

dithioerythritol (DTE) (D8255 - Sigma) in 100µl molecular grade water for 30 minutes at 

60°C. Samples were then alkylated through the addition of 15mM iodacetamide (I6125 - 

Sigma) in 200µl molecular grade water for 30 minutes at room temperature in the dark. 

Samples were subsequently digested by addition of 1µg trypsin (V5111 - Promega) (which 

cleaves at Lysine or Arginine) in 2µl molecular grade water and left at 37°C overnight to 

facilitate digestion. After digestion, 0.5% triflouracetic acid (TFA) (91700 - Sigma) was 

added to the microcentrifuge tubes for 30 minutes at 37°C to enable the hydrolysis of the 

RapiGest SF surfactant. Samples were then centrifuged at 15,000xg for 15 minutes to pellet 

insoluble material and precipitate. Supernatant containing the tryptic peptides were 

transferred to a new microcentrifuge tube and then lyophilised in vacuum using an 

Eppendorf Concentrator-5301 before being reconstituted in 106µl of 200mM ammonium 

formate.  

2.7 Direct detect spectrometry for measurement of peptide 

concentration 

Peptide concentration was measured using a direct detect spectrometer (Merck) according 

to the manufacturer’s recommendations. Briefly, 2µl of control (200mM ammonium 

formate) was spotted onto the control segment of the direct detect membrane card. Three 

x 2µl of sample were then spotted onto the three sample segments on the direct detect 

membrane. A laser emitting infrared light is then pointed at each sample/control position 

and absorbance against wavenumber (cm-1) is measured. This is used by the software to 

calculate the number of amine bonds and the total protein/peptide concentration.  
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2.8 C18 peptide clean up 

During the protein extraction step, samples are often exposed to various salts and other 

reagents to aid in solubilising and digesting protein. Using a reverse phase separation by 

running the sample through a C18 column, it is possible to remove a lot of this 

contaminating matter, which otherwise could interfere with downstream mass 

spectrometry analysis.  This process is standard in most proteomic laboratories and has 

very little risk associated with it. The only potential risk is that some peptides don’t adhere 

to the C18 column and as such are lost as they flow straight through. However, if this were 

to happen, it would not likely change the results as LC systems coupled to mass 

spectrometers use reverse phase to separate samples and therefore such peptides would 

be lost anyway. Samples were desalted prior to MS analysis using an EmporeTM C18 plate 

(Sigma, 66875-U). Before C18 clean up, samples were acidified, either by lyophilising and 

reconstituting in C18 wash buffer, consisting of 0.5% acetic acid in water, or by adding 0.2µl 

100% TFA. The C18 plate was equilibrated with 100µl methanol and centrifuged at 250xg 

until the methanol had passed through the filter. A further 50µl methanol was then added 

to wells and allowed to drip through the filter, after which the sample solutions were added 

to the wells and centrifuged at 250xg for 10 minutes in order for the samples to bind to the 

membrane in their respective wells. The wells were then washed with 200µl wash buffer 

and centrifuged at 250xg and the filtrate discarded. This wash and centrifugation step was 

repeated, and the collection plate emptied again. After the 2nd wash, the collection plate 

was removed and a new sterile collection plate was used for collection of the “cleaned up” 

peptide samples. 150µl elution buffer (consisting of 80% acetonitrile, 0.5% acetic acid in 

water) was added to the wells and centrifuged for 10 minutes until all the solution had 

passed through the membrane and into the collection plate. This solution in the collection 

plates contained the cleaned-up peptides, which were now ready for introduction into the 

LC/MS system. 
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2.9 Mass spectrometry 

2.9.1 Discovery proteomics with LC/MSe. 

2.9.1.1 1 dimensional liquid chromatography (1D) 

Prior to introduction to the LC system, 3.75µg of sample was lyophilised and reconstituted 

in 6µl of the buffer A (0.1% formic acid in water), specific to that method. 1D reverse phase 

liquid chromatography was performed using a nanoAcquity UPLC system (Waters) whereby 

peptides were injected and trapped onto a Symmetry C18 180µm x 20mm trap column 

(Waters, 186006527) and washed for 5 minutes in buffer A. Peptides were separated on a 

75µm I.D x 250mm, 1.7µm particle size C18 analytical column (Waters, 186007474) using 

flow rate of 300nl/min and a linear gradient of 1 to 50% organic buffer B (with buffer A), 

(buffer A = 0.1% formic acid in water, buffer B = 0.1% formic acid in acetonitrile) over 150 

minutes with a wash at 60% buffer B (with buffer A) at the end. The separation was 

performed on the LC system, coupled to the mass spectrometer (in a set-up known as 

“online separation”) and sprayed directly into the nanospray source of a Waters G2-S 

Synapt HDMS mass spectrometer operating in MSe mode with ion mobility enabled 

(HDMSE). Alternating low (5v) and high (20v-40v) collision energy scans were enabled in ion 

mobility mode and data was acquired between 50 to 2000 m/z. Glu-fibrinopeptide, (m/z = 

785.8426) was used as an internal calibration standard known as “lock-mass”. Three blank 

runs were performed between each sample to ensure no carry over between samples 

occurred. Samples were randomly batched into groups of 12 and calibrations were 

performed at the beginning of each batch. At the start, middle and end of each batch an 

enolase standard was used to assess the performance of the machine in terms of resolution, 

peak width and sensitivity. Before starting each batch, the system was operated using 50% 

buffer A, 50% buffer B for several hours, in addition to 3 blanks, to ensure a clean column.  
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2.9.1.2 2 dimensional liquid chromatography (2D) 

Online 2D reverse phase liquid chromatography was also performed using a nanoAcquity 

UPLC system (Waters), injected into a 5µl loop but then first adsorbed to a high pH column 

(XBridge, BEH130 C18 5µm 300x50 nano – 186003682). The first column was then eluted 

into 6 fractions, using 6 different compositions (11.1%, 14.5%, 17.4%, 20.8%, 45% and 65%) 

of buffer B. After each fraction, the eluted sample was trapped onto a low pH column, 

where it was subsequently eluted via a buffer B gradient directly into the nano spray source 

of the mass spectrometer (as stated in the 1D LC/MSe method). The high pH pump was set 

at a constant flow rate of 1µl/min and had a buffer A composition of 20mM ammonium 

formate in water.  

2.9.2 Mass spectrometry quantification 

Throughout the discovery phase, the method of absolute quantification was used during 

LC/MS whereby 100fmol of digested enolase standard (Waters) was spiked into samples 

prior to LC/MS. As MSe fragments all ions, using the Hi3 approach whereby the top three 

tryptic peptides of an internal standard (enolase) are correlated to the three most 

abundant tryptic peptides of each protein ID, absolute quantification can be achieved (Silva 

et al., 2006). 

2.9.3 Targeted mass spectrometry 

To confirm the results that were found in the discovery phase of this project, the same 

samples were subjected to targeted mass spectrometry in the form of multiple reaction 

monitoring (MRM). Furthermore, validation on previously untested samples was also 

carried out using MRM analysis. MRM utilises the targeted quantification strategy to 

accurately measure the amounts of specific peptides in a sample. Using the 

chromatography and mass spectra from the SCC discovery proteomics, a spectral library 

was created in Skyline.  
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2.9.3.1 Creation of spectral library 

Discovery proteomic chromatograms and accompanying spectra were imported into 

skyline to create a spectral library. Mass spectra were searched against a protein/peptide 

database (in this case the human proteome) to score spectra to peptides. The result was a 

spectral library that consisted of tens of thousands of spectra which are associated with 

peptides. Spectral libraries were used to identify unique peptides for each protein of 

interest. 

2.9.3.2 Multiple reaction monitoring (MRM) 

The unique peptides identified from spectral libraries were synthesised to incorporate a >6 

Dalton shift by isotopic labelling of one of the amino acids (13C6
15N4 or 13C6

15N2) (Cambridge 

Research Biochemicals).  

A two-fold dilution series of each heavy peptide from 400fmol down to 0.78fmol was 

created in buffer A to form a calibration curve. 1µg of peptides extracted from SCC samples 

was spiked into each dilution to serve as a background matrix. Dilution series were 

performed using the 1D LC/MS method previously mentioned, however, instead of MSe, a 

targeted acquisition method was applied. Transition ions (that is ions that are created 

during the fragmentation process of precursor ions in the mass spectrometer) were 

selected from the spectral library created from the discovery proteomics. A targeted 

method was created for each peptide, using the transition ions identified in Skyline. In 

doing this, the mass spectrometer focusses on the light (native) and heavy (synthesised) 

peptides in a run. Performing a dilution series gave a calibration curve which could later be 

used to determine the amount of heavy and subsequently light (native) peptides in a 

sample. 

After the calibration curves had been created, the samples used in the discovery phase 

were examined using the MRM method containing 100fmol of each heavy peptide. Results 

were imported into Skyline for analysis. Using the slope of the calibration curves, skyline 

calculates the actual amount of heavy peptide present in each sample as well as the ratio 

between heavy and light peptides. The amount of light peptide is then calculated by 

dividing the calculated heavy amount by the ratio of light to heavy. In addition to the 
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discovery set, MRM was also carried out on a validation set of samples which were 

previously untested. 

2.9.4 Data processing 

Five minutes of extracted ion chromatogram was inputted into threshold inspector (Waters) 

to determine correct high and low collisional energy thresholds to filter out as much noise 

as possible and allow the highest number of peptide identifications.  Once established for 

each batch, thresholds were set and samples were processed using Waters Protein Lynx 

Global Server (PLGS) ver 3.0.3. The 6 fractions that 2D LC produced were all processed 

individually and then subsequently merged in PLGS. Processed files were then searched 

against the human UniProt – SwissProt protein database (November 2016). During 

searching, using PLGS, a workflow was set to allow only those peptides which acquired 3 or 

more ions, proteins identified from 1 or more peptides and proteins that had 7 matched 

products for identification. PLGS Primary digest reagent was set to trypsin and 1 missed 

cleavages were allowed. Peptides can often become modified during the extraction process 

through oxidation and deamidation. It is therefore necessary to add these modification to 

a variable modifications list so that if they are indeed modified, they still get identified. 

Variable modifier reagents were deamidation of asparagine and glutamine along with 

oxidation of methionine. It has also been found that methylol groups (hydroxymethylation) 

of cysteine is often present in FFPE tissue (Metz et al., 2004) and therefore was also 

included as a variable modification. Fixed modifier reagents were carbamidomethylation 

of cysteine residues.  

2.10 Data pre-processing and Statistical analysis 

A matrix consisting of sample ID in rows and protein identifications, with abundancy values, 

in columns was created. This matrix was then imported into Inferno, an R package created 

for analysis of proteomic data.  
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2.10.1 Missing values 

Many ‘omics studies results contain missing values due to various reasons. There have been 

several methods developed to attempt to counter this, some of which rely on creating 

random numbers within standard deviations and some more elaborate that attempt to 

encompass all available data to create and impute numbers. However, due to the 

complexity of imputing data and allowing consideration for why data was originally missing 

(too low to detect, not present, or by random chance wasn’t sampled), it has been 

suggested that ultimately, no imputation results in higher statistical power and confidence 

(Bantscheff et al., 2012, Webb-Robertson et al., 2015). Nonetheless it is impractical to use 

protein IDs which only have one value and therefore a threshold is still required. It has been 

reported that up to 50% of data is missing in 2D gel electrophoresis proteomics and that 

this has no effect on statistical analysis (except on correlational studies) (Jung et al., 2005).  

Furthermore, in an FFPE proteomic study looking at cSCC, the authors used only protein 

data which appeared in 50% or more of samples (Foll et al., 2017). The current study 

therefore allowed up to 49% missing values per protein ID, any protein which appeared in 

less than 50% of samples was not included in statistical analysis, thus ensuring results in 

which one can have high confidence in the analysed data.  

2.10.2 Normalisation 

Although the technique of absolute quantification allows direct comparison between 

samples, normalisation of data is first required to ensure an equal comparison. In this study, 

a total protein concentration normalisation strategy was carried out. This was performed 

by calculating the median of the values within a sample and dividing each value by this 

median. Median rather than mean was chosen because proteomics data often has a ‘floor 

effect’ whereby values are only given above a certain abundance (dependant on how 

sensitive the machine is), therefore creating a non-normal distribution (Figure 2.2). 

Histograms were created for all samples to assess the Gaussian distribution of normalised 

data using Inferno, manually setting the bins to 25.   



Chapter 2 

52 

2.10.3 Histograms of p-values 

The non-parametric Mann Whitney U test for significance was used to test differences 

between the primary metastatic (P-M) and primary non-metastatic (P-NM) groups. 

Statistical advice (by Research, Design and Methodology, University of Southampton) 

recommended plotting all p-values obtained in a histogram to assess the confidence and 

false positive rate. This was performed using Prism software.  

2.11 Bioinformatics 

As proteomic results yield a lot of data, many different bioinformatics approaches are 

required to fully interrogate the data. Most of the bioinformatics analysis was carried out 

using R unless otherwise stated. 

2.11.1 Time to metastasis plots 

Time to metastasis plots were created using clinical data where time zero is the date of 

excision and time is the number of days until metastasis was identified (up to a five year 

period) where a binary operator was used, i.e did metastasis occur, yes/no. Where 

Figure 2:1: ‘Floor effect’ often produced by proteomic data. 

Much of proteomic data suffers from the ‘floor effect’ whereby the lower values are at 

higher abundance due to instrumentation measurement limitations 
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metastasis was present at the day of excision (i.e through nodal biopsies or CT scan), time 

to metastasis is 0. As P-NM samples never metastasised (during the 5 year period which 

was the criteria for P-NM samples), they had a set time of 1,825. Plots were created using 

the survminer and survival packages in R.  

2.11.2 Volcano plots 

Volcano plots were plotted within R using log10 p-values and log2 fold changes. Log10 p-

values were calculated from p-values obtained using the Mann Whitney U test for 

significance comparing P-M and P-NM abundancies for individual proteins. Log2 fold 

change values were calculated by subtracting the specific protein value medians between 

P-M and P-NM, and then log2 transforming these data. Coordinates that had p-values 

greater than 0.05 and log2 fold changes less than 1 were coloured red. Coordinates that 

had p-values greater than 0.05 and log2 fold changes greater than 1 were coloured black. 

Coordinates that had p-values less than 0.05 and log2 fold changes less than 1 were 

coloured orange. Coordinates that had p-values less than 0.05 and log2 fold changes 

greater than 1 were coloured green. Coordinates that had p-values less than 0.01 and log2 

fold changes greater than 0.5 were coloured blue. Coordinates that had p-values less than 

0.001 were coloured pink. Coordinates were labelled using Uniprot accession numbers 

2.11.3 Search tool for the retrieval of interacting genes/proteins (STRING) analysis 

Interactions between genes/proteins were assessed using STRING analysis (Szklarczyk et 

al., 2015). Significantly differentially expressed proteins (p<0.05) between P-M and P-NM 

were inputted into STRING analysis software. A medium confidence score of 0.4 was set as 

an allowance parameter for associations, as suggested by the software. Individual proteins 

were mapped as nodes with lines representing a contribution to a shared function; thicker 

lines indicate a stronger confidence in the interaction. KEGG pathway analysis was then 

mapped on top of these created structures to identify significantly enriched areas. 
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2.11.4 Gene ontology analysis 

Gene ontology analysis was carried out using GoGorilla gene enrichment analysis (Eden et 

al., 2009), whereby the list of significantly differentially expressed proteins were imported 

into this software programme. A two unranked list of genes approach was used, with the 

human Uniprot-SwissProt database set as the background proteome. Output was shown in 

reduced and visualised gene ontology (REViGO) format (Supek et al., 2011). The REViGO R 

script for generating treemaps was downloaded and adapted.  

2.11.5 Weighted gene co-expression network analysis (WGCNA) 

Weighted gene co-expression network analysis (WGCNA) was carried out on the proteomic 

data using the WGCNA package in R. The mean connectivity and scale free independence 

of the data was assessed to identify a suitable soft threshold to use when creating the 

similarity and adjacency matrix. A soft threshold is a value used to power the correlations 

between genes to highlight more significant connections and reduce noise. A topological 

overlap matrix (TOM) was created and used to carry out hierarchical clustering and module 

identification. Modules were then correlated to clinical/histopathological traits in addition 

to analysis through KEGG pathway enrichment. A brief overview of the pre-processing steps 

involved in WGCNA can be seen in Figure 2.3. 
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Figure 2:3: Overview of weighted gene co-expression network analysis 
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2.11.6 Topological data analysis 

Topological data analysis (TDA) is an alternative approach to exploring data by looking at 

the shape of the data as opposed to direct comparisons. To create a topological structure, 

sample proteomes are correlated to other sample proteomes using any one of a number 

of algorithms (i.e. regression, hamming, etc) and then clustered in accordance to their 

similarities. Ayasdi is a machine intelligence software that allows topological modelling of 

large datasets. Differentiation, depth and diameter of samples (recorded during tumour 

excision) were used to generate a topological structure in Ayasdi, using a hamming metric 

and neighbourhood lenses. Gain and resolution was set at 35 and 5.5 respectively. 

Outcome was then mapped on top of the structure created from differentiation, depth and 

diameter.  

Normalised proteomic abundancy data with a 50% missing value threshold was used to 

generate a topological structure in Ayasdi. This was repeated for 1D data and 2D data. 

Subsequent structures were mapped for outcome, differentiation, depth and diameter. 

Outcome revealed separate P-M and P-NM groups within the structure. These groups were 

analysed using Kolmogorov-Smirnov test for significance to identify proteins that differed 

in the P-M and P-NM groups.  

2.11.7 Predictive modelling 

Predictive modelling was carried out using the statistical programming language R. 

Packages caret, caret ensemble, pROC and doParallel were used in the production of 

predictive models. Data was split into training and test sets with models trained on the 

training set using 10 fold cross validation repeated 3 times. The model was then used to 

predict the outcome in the test set. A full list of the algorithms used in this thesis can be 

found in Appendix 4.     
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 Proteomic characterisation of cutaneous 

squamous cell carcinomas (cSCC) 

3.1 Introduction 

Cancer results from the dysplastic growth of mutated cells that form tumours which 

subsequently invade into surrounding tissue (Hanahan and Weinberg, 2000). In healthy 

cells, transcription and translation are meticulously maintained to ensure homeostasis 

within the cell and to aid in its ability to uphold its functions. DNA damage and mutations, 

as occurs in the early stages of cancer development, can cause alterations in protein 

expression as well as alterations in protein functions, both of which can have critical effects 

on the cell (Hanahan and Weinberg, 2011). Dysregulation in protein abundancies within a 

cell can lead to dysplastic behaviour and an inability to perform its intended function (Le 

Quesne et al., 2010). This abnormality in protein expression can contribute to the 

development and progression of cancer (Hanahan and Weinberg, 2000, Hanahan and 

Weinberg, 2011). Cancerous cells possess the ability to rapidly proliferate and invade, but 

in the early stages of cancer development they usually lack the ability to metastasise. This 

ability comes through clonal evolution within the tumour whereby additional genetic 

alterations and selective pressures cause genetically diverse subclonal populations to form 

(Greaves and Maley, 2012). Cells from some of these genetically diverse subpopulations 

can then spread to other organs via the lymphatics or blood vessels and form metastases 

(Brodland and Zitelli, 1992, Greaves and Maley, 2012).  

Although many studies have been performed on the genetics of cSCC development (Li et 

al., 2015, Pickering et al., 2014, South et al., 2014, Durinck et al., 2011) few studies have 

looked at identifying differentially expressed proteins in cSCC (Dang et al., 2006). The vast 

numbers of mutations in cSCC (i.e. approximately 50 mutations per megabase) (South et 

al., 2014) means that it may be challenging to identify genetic markers predictive of the 

development of cSCC metastases. However, the fact that genes “instruct” cells how to 

behave, whereas proteins “carry out” those instructions, it is possible that it may be easier 

to find markers which predict cSCC metastases using proteomics.  One proteomics study 

that used FFPE cSCC samples identified a number of proteins differentially expressed in 
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cSCC compared to normal skin; these included tenascin, vinculin, calmodulin like protein 5, 

IQGAP1 and transgelin (Azimi et al., 2016). However, this study by Azimi et al (2016) was 

limited in its sample size and it did not investigate the relation to metastasis. Very recently 

however, a larger study by the same group (Azimi et al., 2019) did investigate the relation 

between precancerous legions and cancer by examining Bowen’s disease, actinic keratosis 

and cSCC. Nonetheless, again, they do not investigate cSCC metastasis or relate their 

findings to it. 

Determining what proteins are involved in the progression from the primary cancer to 

metastatic cancer is vital for identifying patient prognosis. At present, cSCC patients are 

separated into high and low risk categories according to the size, depth, differentiation, 

and site of the tumour, whether the tumour shows perineural or perivascular invasion, and 

the immunocompetence of the patient. The identification of protein biomarkers which are 

involved in cSCC metastasis would lead to a better ability to identify those patients likely to 

develop metastases from cSCC and might also lead to improved treatment strategies.  

Mass spectrometry based proteomics is at the forefront of biomarker discovery (Reymond 

and Schlegel, 2007) and has been used in the investigation of breast (Gast et al., 2009), 

colon (Ward et al., 2006), pancreatic (Koopmann et al., 2004) cancers and indeed many 

more. Studies have identified the potential to undertake mass spectrometry based 

proteomics in FFPE tissues (see table in Appendix 1), which opened up opportunities to 

undertake cancer studies on FFPE samples. This current study aimed to identify biomarkers 

relevant to metastasis in cSCC using a proteomic approach by looking for differentially 

expressed proteins between primary cSCC which subsequently metastasised (P-Ms) and 

primary cSCCs which had not metastasised at 5 years after excision (P-NMs).  

3.2 Materials and Methods 

A total of 89 samples were used for this part of the study, consisting of 44 P-M samples (24 

P-M samples for proteomics) and 45 P-NM samples (24 P-NM samples for proteomics). 

Immunohistochemical staining and proteomic analysis was performed to identify factors 

within cSCC that contribute to metastasis 
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3.2.1 Immunohistochemistry and image analysis 

P-M and P-NM samples were immunohistochemically stained according to methods 

outlined in chapter 2.3. Briefly, sections were cut using a microtome before 

deparaffinization and rehydration in xylene and ethanol, respectively. Sections were then 

subjected to heat induced antigen retrieval and blocked, probed with a primary antibody 

before being washed and probed with a secondary antibody. Images of sections were taken 

on an Olympus DotSlide microscope. ImageJ and a software developed for quantifying IHC 

(TMarker) were compared to assess which is more effective for future quantification, of 

which the superior one was used for all future IHC analysis (full materials and methods 

outlined in chapter 2.4).  

3.2.2 Proteomic analysis of cutaneous Squamous Cell Carcinoma (cSCC) samples 

Two cSCC samples with undetermined outcome (P-M or P-NM) were used when optimising 

the protein extraction method. The best performing method was used for protein 

extraction of 24 P-M samples and 24 P-NM samples of which full materials and methods 

can be found in chapter 2.6. Samples were quantified using a Direct Detect infrared 

spectrometer outlined in chapter 2.7 and cleaned up using a C18 reverse phase technique 

(full material and methods can be found in chapter 2.8). Samples were then analysed using 

a Waters Synapt G2-Si high resolution mass spectrometer using the methods described in 

chapter 2.9.  

3.2.3 Bioinformatics and data analysis 

Protein concentrations were normalised as described in chapter 2.10.2. Statistical analysis 

was performed on the results by comparing P-M data to P-NM data. Whole proteome 

analysis was carried out through the use of volcano plots (methods in chapter 2.11.1), 

topological data analysis (methods in chapter 2.11.5) and predictive modelling (methods in 

chapter 2.11.6). Significantly differentially expressed proteins were further analysed using 

STRING, gene ontology and WGCNA as outlined in chapters; 2.11.2, 2.11.3, 2.11.4, 

respectively.  

 “Time to metastasis” plots were created using R and the packages survminer and survival. 

Time to metastasis was deduced from patient records where the start point was the day of 
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excision of the tumour except in cases where the patient presented with metastases. If 

metastasis was present from initial presentation then time to metastasis was 0.  P-NM 

samples were set a consistent time to metastasis at 1,825 days (5 years), which was the 

cut-off used to define P-NM samples. High and low expression was defined as either above 

or below the median, respectively. P values were obtained by log-rank test.  

3.3 Results  

3.3.1 Clinical and histological characterisation of samples used for 

immunohistochemistry 

44 primary metastatic (P-M) and 45 primary non-metastatic (P-NM) tumours were used in 

the IHC staining of cSCC. A summary of the samples used can be seen in Table 3.1. Briefly, 

there were more samples from male patients, P-M tumours were more poorly 

differentiated than P-NM tumours, and P-M tumours consisted of more samples reporting 

perivascular invasion, perineural invasion and/or in immunosuppressed subjects. The 

average depth and diameter were larger in P-M than P-NM samples. Information on 

geographic ancestry was not collected and therefore was not available 
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Table 3.1: A table showing clinical and histological details of cutaneous Squamous Cell 

Carcinoma (cSCC) samples used for immunohistochemistry staining.  

 
P-M P-NM 

number of Samples 44 45 

Male 
33 

(75%) 
32 

(71.11%) 

Female 
11 

(25%) 
13 

(28.89%) 

Well differentiated 
1 

(2.27%) 
14 

(31.11%) 

Moderately differentiated 
13 

(29.55%) 
27 

(60%) 

Poorly differentiated 
30 

(68.18%) 
4 

(8.89%) 

Perivascular invasion 
9 

(20.45%) 
1 

(2.22%) 

Perineural invasion 
9 

(20.45%) 
2 

(4.44%) 

Immunosuppressed 
7 

(15.91%) 
3 

(6.67%) 

Avg tumour depth (mm) 7.70 ± 5.34 4.30 ± 2.79 
Avg Tumour diameter 
(mm) 29.35 ± 31.39 12.00 ± 8.27 

P-M, Primary metastatic. P-NM, Primary non-metastatic.  

Initially, several cSCCs were stained with H&E to help gain histological experience, using 

microscopy, in recognising the relevant parts of cSCC samples.  This included recognition of 

the tumour cells and the peritumoral immune infiltrate and being able to distinguish these 

from the surrounding normal skin tissue (Figure 3.1). This skill was important for 

subsequent analysis of immunohistochemical staining and for the acquisition of the 

relevant cSCC tissue for proteomic analysis.  
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Figure 3:1: Haematoxylin and eosin staining of SCCs which allows identification of the 

tumour and peritumoural immune infiltrate 

3.3.2 Image analysis and quantification of CD20+ cells in cutaneous Squamous Cell 

Carcinoma (cSCC) 

Previously in Dermatopharmacology, P-M and P-NM cSCCs were immunostained for CD8 

and FOXP3, and it was found that lower numbers of CD8+ cells and higher numbers of 

FOXP3+ cells   (i.e. regulatory T cells) were present in P-Ms than in P-NMs. This previous 

work was carried out using ImageJ to aid in counting and analysis of images. However, 

TMarker is an alternative image analysis programme which enables batch analysis and so 

speeds up image processing time dramatically as well as removing some observatory bias. 

Following immunohistochemical staining of 20 cSCCs, quantification by TMarker and 

ImageJ were compared, and TMarker seemed superior to ImageJ in relation to the values 

obtained by manual counting of immunopositive cells, achieving; 0.87, 0.99 and 0.99 R 

values in total number of cells, number of immunopositive cells and percentage of cells 

which were immunopositive, respectively (Figure 3.2). Therefore, TMarker was used in this 

project for the counting of cells in P-M and P-NM tissue sections which had undergone 

immunohistochemical staining. 
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Figure 3:2: Comparison between TMarker and ImageJ in relation to manual counting.  

20 high power field (20x magnification) images from 20 cSCCs that had been 

immunostained for CD20 were counted using TMarker and ImageJ software and compared 

to manual counting (R values). The results suggest that TMarker is an appropriate software 

for counting the immunopositive cells and total cells in cSCC sections which have 

undergone immunohistochemistry. 

3.3.3 CD20+ and CD1a+ cells in P-M and P-NM cutaneous squamous cell carcinoma 

(cSCC) 

P-M and P-NM cSCCs were immunostained separately with anti-CD20 and anti-CD1a 

antibodies to calculate the percentages of B cells and Langerhans cells respectively in these 

samples. Previous work in Dermatopharmacology investigating CD8+ and FOXP3+ cells in 

cSCCs had quantified the numbers of immunopositive cells in 5 high power fields (HPFs), 

however, in the current project CD20+ cells were concentrated in certain areas of the 

peritumoral infiltrate, whereas CD1a+ cells were scattered throughout the tumour and 

peritumoral infiltrate.  For this reason, in order to obtain a representative analysis of CD20+, 
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and separately CD1a+, cells in P-M and P-NM cSCCs, quantitation of immunopositive cells 

was conducted on 10 HPFs for CD20 and on 5 HPFs for CD1a.  

There was no significant difference in the percentage of CD20+ cells between the P-Ms and 

the P-NMs (P=0.1238, Mann-Whitney U). The P-M group was found to show a median of 

7.42% of peritumoural cells staining CD20+ (IQR= 1.603 to 21.55, n=44) and the P-NM group 

showed a median of 15.32% of peritumoural cells staining CD20+  (IQR= 3.28 to 26.76, n=45) 

(Figure 3.3). 

 

Figure 3:3: immunohisochemical staining of P-M and P-NM tumours for CD20.  

P-M and P-NM tumours were immunostained for CD20+ cells, and quantification of 

staining was calculated using TMarker (10 high power fields of view at 20x magnification 

for each tumour). A. Graph showing results of CD20+% staining of peritumoural cells r (P-

NM, n=44; P-M, n=45; P=0.1238). Each dot represents single tumour. Error bars show 

interquartile range with median plotted on them. A Mann-Whitney U test was performed 

for statistical significance B. Representative image of CD20+ staining in P-M group. 

Immunohistochemical staining demonstrated CD1a expression within (intratumoural) and 

adjacent to the malignant keratinocytes (peritumoural) and therefore both were quantified 

independently. P-NM and P-M had a median of 2.26% (IQR=0.865 to 3.43, n=45) and 

0.645% (IQR= 0.1025 to 1.583, n=44) CD1a+ cells intratumorally respectively (P = 0.0003, 

Mann Whitney U test). Medians of 0.4400% (IQR= 0.220 to 0.9050, n= 45) and 0.16% 

(IQR=0.04 to 0.6725, n=44) of CD1a+ cells were present peritumorally in P-NM and P-M 

respectively (P=0.0045, Mann-Whitney U test) (Figure 3.4). 
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Figure 3:4: Immunohistochemical staining of P-M and P-NM tumours for CD1a 

P-M and P-NM were stained using an anti-CD1a antibody. Positive immunostaining in 

images was quantified using TMarker (5 high power fields of view at 20x magnification for 

each tumour). A. Graph displaying percentage of intratumoural CD1a+ cells (P-NM, n=45; 

P-M, n=44; P=0.0003). B and C. Representative images of intratumoural CD1a+ staining in 

P-NMs and P-Ms respectively. D. Graph displaying percentage of peritumoural CD1a+ cells 

(P-NM, n=45; P-M, n=44; P=0.0045). E and F. Representative images of peritumoural 

CD1a+ staining in P-NMs and P-Ms respectively. In A and D, each dot represents single 

tumour, and error bars show interquartile range with median plotted on. A Mann-Whitney 

U test was performed for statistical significance. Results are shown as percentage of total 

number of immune cells which stained positive for CD1a. 
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3.3.4 Association of CD20+ cells and CD1a+ with time to metastasis in cutaneous 

Squamous Cell Carcinoma (cSCC) 

A “time to metastasis” plot was developed to determine if there is a relationship between 

the numbers of CD20+ and/or CD1a+ cells and the time taken for a cSCC to metastasise. 

Higher amounts of CD20 were significantly associated with less chance of metastasis 

(p=0.027, Log-rank test) Figure 3.5.  

Figure 3:5: The effect CD20 expression has on time to metastasis 

“Time to metastasis” plots were created using date of excision as start time. CD20 high 

and low expression was determined by above or below the median, respectively. P value 

obtained by Log-rank test.  

Furthermore, higher levels of intratumor CD1a staining was significantly associated with a 

decreased risk of developing cancer (p=0.011). However, there was no association between 

CD1a+ peri tumoural cells and time to metastasis (p=0.17) Figure 3.6. 
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Figure 3:6: The effect CD1a expression within and around the tumour has on time to 

metastasis.  

“Time to metastasis” plots were created using date of excision as start time. CD1a 

expression was determined as high or low according to the value being above or below 

the median, respectively. P value obtained by Log-rank test.  

3.3.5 Optimisation of tissue sample preparation and fractionation technique for 

subsequent proteomic investigation.  

The next aim of the project was to determine whether proteins could be successfully 

extracted and fractionated from the cSCC samples. The extraction and processing of 

proteins from cSCCs proved difficult as a result of the formalin fixation of these FFPE 

samples. For this reason, different techniques were tested in combination with 

fractionation methods to establish the most suitable approach (Figure 3.7). Two different 

fractionation techniques were tested on pre-digested cell lines; strong anion exchange (SAX) 

(Wisniewski, 2013)  and online 2D fractionation (Figure 3.7). SAX performed poorly and 

identified fewer than 1,000 unique proteins. 2D fractionation produced higher protein 

yields (≥2,000 proteins)  than SAX, with protein numbers similar to those often achieved 

from pre-digested cell lines by other researchers in the Centre for Proteomics, University 

of Southampton and was therefore considered superior to SAX. Although only two 

fractionation methods were used, a variety of extraction methods were assessed. Based on 

studies by Wisniewski (Wisniewski, 2013, Wisniewski et al., 2011), a filter aided separation 

protocol (FASP) was attempted. FASP was tested in conjunction with SAX fractionation and 
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varied widely in terms of protein IDs and was therefore considered not adequately 

reproducible. The FASP/2D method was tested on frozen and FFPE cSCC samples as well as 

on fresh and frozen normal skin. The data indicate that this method was more suitable for 

FFPE protein extraction. Furthermore, the FASP/2D method achieved higher protein yields 

from cSCC than from normal skin. Nonetheless, although this method produced protein 

yields higher than 1,000 proteins, its variability was very large and therefore was not 

considered reliable. The FASP/2D technique was also tested utilising different boiling times 

but these changes seemed detrimental and did not improve protein yield.  

The final method tested was one based on Nirmalan et al. (2011) which utilised RapiGest 

surfactant, coupled to 2D fractionation. This method produced consistent results, resulting 

in a median of 772 protein identifications. In addition to yielding higher and more 

reproducible protein ID numbers, the RapiGest method was superior to others as it was 

much cheaper, faster and easier to undertake. Furthermore, FASP and SAX methods 

resulted in a large amount of insoluble material being discarded, whereas the RapiGest 

method produced minimal insoluble material.  
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Figure 3:7: Varying combinations of extracting and fractionating samples were tested to 

identify a suitable methodology 

Two cSCC samples with undetermined clinical outcome, in addition to matched skin 

samples, were used to optimise the protein extraction method from FFPE tissue. Cell lines 

(HaCaT and HeLa) which had not been fixed in formalin nor paraffin embedded were used 

for comparison purposes.  Analysis was conducted using a nano aquity UPLC system 

(Waters) and a Waters Synapt G2-si high resolution mass spectrometer. 2D fractionation 

gave a higher number of protein IDs than SAX in cell lines. FASP methods gave varying 

results in conjunction with both SAX and 2D fractionation in cSCC and skin samples. SAX, 

Strong anion exchange. FASP, Filter aided separation protocol. 

3.3.6 Verification of RapiGest method 

MS technical repeats (i.e. 3 experiments using the same protein extraction sample) and 

biological repeats from the same sample (i.e. 3 independent protein extractions using the 

RapiGest method from the same tissue samples) were carried out to examine the 

reproducibility. Two SCC samples were used and named A and B.  A1, A2, A3 and B1, B2, B3 

refer to independent days of extraction, where A1a/A2a/A3a, A1b/A2b/A3b and 

A3a/A3b/A3c are reference to triplicate repeats within an independent extraction. The 
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results of the three RapiGest/2D experiments in Figure 3.7 were compared to assess the 

technical reproducibility of the MS method. Figure 3.8 shows a Venn diagram visualising 

the proteins’ IDs that were shared between the three experiments. 48.2% of the protein 

IDs identified were similar in all three cases and 66.2% of protein IDs identified were 

detected in at least 2 experiments. A coefficient of correlation analysis of the protein ID 

abundancies between experiments produced high r values (r>0.85), indicating good 

reproducibility between samples.  

 

Figure 3:8:  Investigating the technical reproducibility of the RapiGest method.  

Protein identifications from the three MS experiments which used RapiGest extraction 

(data points from Figure 3.7) were analysed for reproducibility. Identical protein IDs were 

found in 48.2% of cases when comparing all 3 experiments and 66.2% of cases when 

comparing 2 of the 3 experiments. Coefficient of correlation analysis of protein 

abundancies revealed high similarity in protein IDs between all 3 experiments, and thus 

reproducibility of this method. 
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In the biological repeat experiment, 46% of proteins identified were shared between all 3 

replicates in samples A1-3 and 65.6% of protein IDs were found in at least 2 replicates 

(Figure 3.9).  46.9% of protein IDs in samples B1-3 were shared between all 3 replicates and 

65.7% of IDs were found in at least 2 replicates. 

The coefficient of correlation analysis of protein ID abundancies between A1-3 and B1-3 

reveal high r values, suggesting the data obtained from RapiGest extraction was of high 

similarity, further highlighting the reproducibility of the method. 

The number of IDs achieved in biological repeats (median A = 870, median B =788) was 

consistent with what has been achieved during the earlier optimisation experiments (722). 

These data combined indicate that the RapiGest method achieved high protein yield 

consistently, with good protein ID coverage between biological and technical repeats. 
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Figure 3:9: Investigating the reproducibility between RapiGest biological repeats.  

Protein extraction of cSCC samples A and B was conducted three separate times each. 

Protein IDs were expressed in a Venn diagram. Identical protein IDs were noted in 46% 

and 46.9% of cases in A and B respectively following MS of all three extracted  samples and 

almost 2/3rds of the protein IDs were identical following MS of 2 extracted samples. 

Coefficient of correlation of protein abundancies between the three repeats was analysed 

and displayed high positive correlation. A, biological replicates of cSCC “A”. B, biological 

replicates of cSCC “B”.  



Chapter 3  

73 

Initial experiments using the RapiGest method utilised three histological sections of FFPE 

tissue at 10µm. It was investigated whether using more sections would increase the protein 

ID yield, however, it was found that increasing the number of sections to 10 had a 

detrimental effect on the protein yields (median = 389 protein identifications). After these 

analyses, it was concluded that the RapiGest method on three histological tissue sections 

from cSCC was reproducible and achieved high protein identification yields, therefore 

proteomic analysis of P-M and P-NM cSCCs was commenced.  

3.3.7 Clinical and histological characteristics of discovery proteomic samples 

A total of 48 samples were used for the discovery proteomics consisting of 24 P-Ms and 24 

P-NMs. The clinical and histological characteristics of these samples can be seen in Table 

3.2. There was an equal ratio of males: females between P-M and P-NM samples. There 

were similar numbers of moderately differentiated samples in the P-M and P-NM groups, 

however, there were a greater number of well differentiated cSCCs in the P-NM than the 

P-M group as well as a larger number of poorly differentiated samples in the P-M than in 

the P-NM group. There were slightly more cSCCs that had perivascular and perineural 

invasion in the P-Ms, and more immunosuppressed patients in this group. P-M samples 

were, on average, deeper (in terms of depth of invasion of the tumour) and larger than P-

NM samples. 
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Table 3.2: Clinical and histological details of cSCC samples used for discovery proteomics.  

 
P-M cSCCs P-NM cSCCs 

Number of samples 24 24 

Male 
18 

(75%) 
18 

(75%) 

Female 
6 

(25%) 
6 

(25%) 

Well differentiated 
1 

(4.17%) 
8 

(33.33%) 

Moderately differentiated 
11 

(45.83%) 
14 

(58.33%) 

Poorly differentiated 
12 

(50%) 
2 

(8.33%) 

Perivascular invasion 
3 

(12.5%) 
0 

(0%) 

Perineural invasion 
4 

16.67%) 
2 

(8.33%) 

Immunosuppressed 
2 

(8.33%) 
0 

(0%) 

Average tumour depth (mm) 6.94 ± 4.01 3.88 ± 2.08  
Average tumour diameter 
(mm) 27.04 ± 14.70 12.82 ± 7.77 

3.3.8 Protein extraction quantification 

After extraction and digestion of proteins from P-M and P-NM samples, peptides were 

quantified using the direct detect spectrometer from Merck using the method outline sin 

Chapter 2. The results of this quantification can be seen in Table 3.3. The mean total protein 

extracted was 144.05µg in the P-M group and 84.55µg in the P-NM group.  
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Table 3.3: Concentrations and total amounts of proteins extracted from P-M and P-NM 

cSCCs.   

P-M cSCCs P-NM cSCCs 

Sample ID 
Concentration 

(µg/µl) 
Total peptide 

(µg) 
Sample ID 

Concentration 
(µg/µl) 

Total peptide 
(µg) 

P-M1 1.198 119.8 P-NM2 2.489 248.9 

P-M2 0.703 70.3 P-NM5 1.349 134.9 

P-M3 1.450 145.0 P-NM6 0.860 86.0 

P-M4 3.103 310.3 P-NM11 0.226 22.6 

P-M5 0.866 86.6 P-NM13 0.527 52.7 

P-M7 1.894 189.4 P-NM16 0.366 36.6 

P-M10 1.155 115.5 P-NM20 0.539 53.9 

P-M11 1.516 151.6 P-NM22 1.433 143.3 

P-M13 2.328 232.8 P-NM25 2.155 215.5 

P-M14 1.700 170.0 P-NM28 2.005 200.5 

P-M15 2.144 214.4 P-NM29 0.810 81.0 

P-M16 0.870 87.0 P-NM31 2.970 297.0 

P-M22 1.059 105.9 P-NM32 0.426 42.6 

P-M25 2.273 227.3 P-NM35 0.951 95.1 

P-M26 0.915 91.5 P-NM38 1.196 119.6 

P-M27 0.537 53.7 P-NM39 1.594 159.4 

P-M28 0.617 61.7 P-NM40 0.831 83.1 

P-M39 0.421 42.1 P-NM41 0.705 70.5 

P-M41 1.705 170.5 P-NM42 2.181 218.1 

P-M43 2.317 231.7 P-NM43 0.478 47.8 

P-M45 1.431 143.1 P-NM46 0.465 46.5 

P-M47 2.054 205.4 P-NM47 0.576 57.6 

P-M48 0.441 44.1 P-NM48 0.731 73.1 

P-M49 1.725 172.5 P-NM51 2.102 210.2 

3.3.9 Protein ID yields from 1D and 2D fractionation 

The above described RapiGest method utilised 2D liquid chromatography separation, 

however, much research undertaken in the Centre for Proteomics, University of 

Southampton utilises 1D separation for other proteomic studies. As this method was well 

established in our laboratory, it was decided to use both 1D and 2D liquid chromatography 

separation as two independent methods to research and investigate biomarkers of 

metastasis in cSCC.  All MS was therefore carried out utilising the RapiGest protein 

extraction method with 1D fractionation and, separately, 2D fractionation.  

The numbers of proteins identified in each sample was similar using 1D and 2D 

fractionation, with 2D identifying marginally more protein IDs in each sample (Figure 3.10). 



Chapter 3 

76 

The highest number of protein IDs achieved was 960 and the lowest 58. The majority of 

samples identified between 400 and 600 proteins with a mean of 614 IDs in the P-M group 

and a mean of 509 in the P-NM group.  

 

Figure 3:10: Number of protein IDs in all samples using 1D and 2D fractionation.  

3.75µg of protein from each sample was subjected to LCMS and mass spectra were 

processed into protein IDs using Protein Lynx Global Server (PLGS).  

The number of unique proteins identified in all samples was 2,986 following 1D and 2,848 

following 2D LC fractionation (total 4,018 combining 1D and 2D). 45% of proteins (1,817 of 

4,018) were identical following 1D and 2D LC (Figure 3.11). 

 

Figure 3:11: Number of unique proteins identified by MS following 1D and 2D LC 

fractionation.  

Total number of unique proteins identified in all P-M and P-NM samples using MS 

following 1D and 2D LC.  



Chapter 3  

77 

3.3.10 Establishing the distribution of the mass spectrometry protein results 

To establish the best statistical analysis test for the data, histograms of each cSCC sample 

were created to determine if the data was parametric or non-parametric (Appendix 2). 

Alike other proteomics studies, the data suffered from the floor effect because the 

instrument can only detect down to a certain abundance of protein (Figure 3.12). Log10 

transformation often results in a more normal distribution of data (because the scale is 

reduced), nonetheless, with the data Log10 transformed, there were still several samples 

that had a non-normal distribution (Appendix 2). As non-parametric tests are more 

conservative, it was decided that the non-parametric Mann Whitney U test for significance 

with non-log10 transformed data would be used to determine significantly differentially 

expressed proteins between P-Ms and P-NMs.  
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Figure 3:12: Histograms of proteomic quantification data revealed a non-normal 

distribution. 

Protein abundancies of each sample were plotted in histograms using the R package 

“Inferno”, to analyse the normality of the distribution to determine whether parametric 

or non-parametric statistics should be used. Abundancy data in samples were ‘binned’ (i.e. 

separated into a series of intervals) and plotted against frequency to create histograms 

(yellow bars). Data was also log10 transformed and plotted as histograms. The majority of 

the data is normally distributed but some of the data is not and therefore a conservative 

non-parametric test was used (all histograms Appendix 2) 

 



Chapter 3  

79 

3.3.11 Investigating confidence in significantly differentially expressed proteins 

Statistical analysis of ‘omics data can be difficult because hundreds, and even thousands, 

of comparisons between variables creates a very high chance of false positives (Franceschi 

et al., 2013).  

One way to assess the false discovery rate is to plot all p-values obtained through statistical 

analysis into a histogram (Figure 3.13). A normal distribution of p-values is indicated by a 

higher frequency of p-values closer to 0, with a sharp decline down to 0.5, followed by a 

level frequency thereafter.  

p-values obtained through comparison of protein abundancies between P-M and P-NM 

tumours were plotted in a histogram. This revealed a trend that would be expected of data 

with a low false positive rate and true significant differences. As previously stated, ‘omics 

data also often suffers from missing values. To accommodate for this, multiple amounts of 

missing data were analysed and it was found that the higher the allowance of missing data 

in the analyses, the less confidence there was in the data in terms of false positive rate. 

Allowing a missing value percentage of 50 produced a high confidence p-value histogram 

in addition to maintaining high n numbers.  
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Figure 3:13: p-value histograms of the comparison of differences in the abundancy of 

unique proteins between P-M and P-NM cSCCs.  

p-values obtained through comparing P-M and P-NM protein abundancies (allowing four 

different percentages of missing values) using Mann Whitney U test were plotted as 

histograms. The higher the amount of missing data, the less confidence there was in the 

data. 50% missing data displayed an appropriate balance between confidence in the data 

and number of significant results. 
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3.3.12 Differentially expressed proteins 

There was a total of 79 significantly differentially expressed proteins identified between 

the P-M and P-NM groups in the 1D data and 98 in the 2D data (P<0.05). 33 of these were 

identified in the data obtained both following 1D, and separately, 2D fractionation, 

equating to a total of 144 significantly differentially expressed proteins (P<0.05) identified 

in the combination of 1D and 2D data (Figure 3.14).  

 

Figure 3:14 : Venn diagram displaying the number of significantly differentially 

expressed proteins identified in 1D and 2D data.  

p-values were obtained through Man Whitney U test for significance of differential 

expression of proteins between the P-M and P-NM groups. 79 proteins were differentially 

expressed following 1D and 98 following 2D LC (P<0.05). 33 (22.9%) proteins were found 

to be differentially expressed in both the 1D and 2D data. 

3.3.13 Volcano plots 

In addition to whether proteins are significantly differentially expressed, the fold change in 

expression between P-M and P-NM is also important. One method to compare the p-values 

and fold changes of protein abundancies is to visualise them in the form of a volcano plot.  
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Figure 3:15: Volcano plot of 1D data highlights proteins of interest.  

Protein p-values were obtained through comparing protein abundancies in P-M and P-NM 

tumours using the Mann Whitney U test. Fold change was calculated by subtracting the 

mean of the protein abundancies in the P-NM group from the P-M group. p-values were 

log10 transformed and fold change was log2 transformed to generate the volcano plot of 

the data. Red points indicate non-significant p-value (P>0.05) and fold change <1 log2. 

Black points indicate non-significant p-value (P>0.05) but fold change >1 log2. Orange 

points indicate significant p-value (P<0.05) and fold change <1 log2. Green points indicate 

significant p-value (P<0.05) and fold change >1 log2. Blue points indicate a higher 

significant p-values (P<0.01) with fold change >0.5 log2. Purple points represent points 

with highest significance (P<0.001). Labels are Uniprot protein accession numbers. 

Volcano plot created in R. 
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Figure 3:16: Volcano plot of 2D data highlights proteins of interest.  

P-values of differential protein expression between P-M and P-NMs were obtained using 

Mann Whitney U test for significance. Fold changes were calculated by determining the 

differences between mean expressions of proteins in P-NM to P-M tumours. P-values were 

log10 transformed and fold changes were log2 transformed for the purpose of producing 

the volcano plot. Red points indicate non-significant p-value (P>0.05) and fold change <1 

log2. Black points indicate non-significant p-value (P>0.05) but fold change >1 log2. Orange 

points indicate significant p-value (P<0.05) and fold change <1 log2. Green points indicate 

significant p-value (P<0.05) and fold change >1 log2. Blue points indicate a higher 

significant p-values (P<0.01) with fold change >0.5 log2. Purple points represent points 

with highest significance (P<0.001). Labels are Uniprot protein accession numbers. 

Volcano plot created in R. 
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The volcano plot of the 1D data shows that 124 proteins (30.32%) were down regulated (<0 

fold change) and 285 proteins (69.68%) were upregulated (>0 fold change) between the P-

M and the P-NM groups.  The plot also highlights a number of potential biomarkers suitable 

for further investigation (Figure 3.15), including 29 proteins which were significantly 

differentially expressed (P<0.05) with a “significant” fold change (dependant on threshold). 

Protein accession numbers (and their corresponding gene IDs) of these potential 

biomarkers are P61158 (ACTR3), P50991 (CCT4), P07237 (P4HB), P50454 (SERPINH1), 

Q15582 (TGFBI), P15880 (RPS2) , Q9NSB2 (KRT84), P35900 (KRT20), Q9H299 (SH3BGRL3), 

Q9NV66 (TYW1), Q15019 (SEPT2), P09382 (LGALS1), Q15063 (POSTN), P29692 (EEF1D), 

P35908 (KRT2), and Q6KB66 (KRT80) (full list in Table 3.4). Several blue data point accession 

numbers clustered in the top right of the volcano plot correspond to ribosomal proteins.  

In the 2D volcano plot, 139 proteins (29.57%) were down regulated (<0 fold change) and 

331 proteins (70.43%) were upregulated (>0 fold change). Exploring the data from this 

volcano plot revealed 22 proteins that were significantly differentially expressed (P<0.05) 

with a “significant fold” change (Figure 3.16) including several that have been highlighted 

in the 1D plot. Accession numbers (and corresponding gene IDs) of potential biomarkers in 

the 2D volcano plot are P25398 (RPS12), P61981 (YWHAG), Q15582 (TGFBI), P06396 (GSN), 

P08758 (ANXA5), P02751 (FN1), P31949 (S100A11), P22626 (HNRNPA2B1), P24821 (TNC), 

P29401 (TKT), P40121 (CAPG), Q15063 (POSTN), P35908 (KRT2), P12110 (COL6A2), P08779 

(KRT16) and P62937 (PPIA) (full list in Table 3.5). Similarly to the 1D volcano plot, several 

of the blue data point’s accession numbers in the 2D plot represent ribosomal proteins.  

3.3.14 Significantly differentially expressed proteins and their respective fold changes 

The significantly differentially expressed proteins in the proteomic profiling results, 

following 1D LC, and their respective fold changes between P-M and P-NM groups can be 

seen in Table 3.4. Actin related protein 3 (ACTR3), T-complex protein 1 subunit delta (CCT4), 

Protein disulphide-isomerase (P4HB), Serpin H1, TGFB induced protein (TGFBI) and 40S 

ribosomal protein S2 (RPS2) all have high significance (P<0.001). Of the differentially 

expressed proteins presented in Table 3.4, the fold change ranges from the most 

downregulated protein, KRT2 (-1.47336 log2 fold change) to the most upregulated protein, 

KRT20 (1.661553 log2 fold change).  
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Table 3.4: A table of significantly differentially expressed proteins with fold change 

between P-Ms and P-NMs during MS following 1D fractionation.  

Uniprot ID Gene ID 
log2 Fold 
Change 

p-value 
 

(Continued) 

P61158 ACTR3 0.961506898 5.21E-06 P19338 NCL 0.570498 0.015221 
P50991 CCT4 1.30927292 0.000178  P39656 DDOST 0.686281 0.015341 
P07237 P4HB 0.733735226 0.000197  O00571 DDX3X 0.55198 0.015599 
P50454 SERPINH1 1.317776969 0.000362  P46783 RPS10 0.533801 0.015599 
Q15582 TGFBI 0.928341791 0.000667  P35908 KRT2 -1.47336 0.016373 
P15880 RPS2 0.535540549 0.000977  P62937 PPIA 0.522324 0.01663 
P62081 RPS7 0.577872021 0.001138  P26038 MSN 0.372223 0.018779 
Q15019 SEPT2 0.699315588 0.00159  P50990 CCT8 0.643611 0.018874 
P09382 LGALS1 0.966564061 0.001659  Q99623 PHB2 0.626632 0.019505 
P13010 XRCC5 0.831577845 0.003321  P04259 KRT6B -0.43177 0.021146 
Q15063 POSTN 1.032788051 0.003898  P62140 PPP1CB 0.582665 0.021844 
P29692 EEF1D 0.535534134 0.004054  P13796 LCP1 0.626618 0.023763 
Q9H299 SH3BGRL3 -0.761111358 0.004194  P50395 GDI2 0.417755 0.024282 
P62857 RPS28 0.594810883 0.004916  P21810 BGN -0.73761 0.024587 
P08238 HSP90AB1 0.696523855 0.005466  P02675 FGB 0.662066 0.025039 
P12111 COL6A3 0.6616087 0.00553  P35900 KRT20 1.661553 0.025217 
P60709 ACTB 0.331314871 0.00553  P04792 HSPB1 0.43912 0.025692 
P23246 SFPQ 0.58683941 0.005641  P10599 TXN 0.578065 0.025747 
P08133 ANXA6 0.457416134 0.00585  Q07065 CKAP4 0.620822 0.025817 
O43707 ACTN4 0.39691863 0.005863  P29401 TKT 0.465121 0.026105 
Q9NV66 TYW1 -1.134978807 0.005908  P09651 HNRNPA1 0.119659 0.026825 
P51884 LUM 0.80396623 0.007435  P52597 HNRNPF 0.450961 0.027294 
P62277 RPS13 0.589690303 0.007468  Q9HCY8 S100A14 -0.51908 0.029751 
Q9NSB2 KRT84 1.438285492 0.007721  P13639 EEF2 0.36846 0.030267 
P60660 MYL6 0.565832754 0.007811  P35580 MYH10 1.153696 0.030978 
P22626 HNRNPA2B1 0.662690619 0.008254  P07741 APRT 0.406844 0.031729 
P61978 HNRNPK 0.454874485 0.008254  Q02878 RPL6 0.365138 0.033587 
P35222 CTNNB1 0.721477453 0.008257  O00148 DDX39A 0.408352 0.03601 
Q14697 GANAB 0.746390079 0.0099  P46940 IQGAP1 0.379869 0.036832 
P07437 TUBB 0.426709653 0.009969  Q6KB66 KRT80 -1.22693 0.039027 
P08758 ANXA5 0.441600309 0.010052  P12109 COL6A1 0.461111 0.039192 
P04844 RPN2 0.554418246 0.010152  P60866 RPS20 0.312545 0.039198 
P24821 TNC 0.929523896 0.011412  O75369 FLNB 0.524255 0.044172 
P11142 HSPA8 0.383725658 0.012193  P15088 CPA3 -0.49888 0.044723 
Q9NZT1 CALML5 -0.901133441 0.012585  P07900 HSP90AA1 0.424161 0.046572 
P62805 HIST1H 0.312532197 0.013583  P16144 ITGB4 0.791541 0.047448 
P59998 ARPC4 0.466567609 0.013831  P62318 SNRPD3 0.484703 0.047584 
P36578 RPL4 0.402361344 0.014564  P30044 PRDX5 0.661837 0.047683 
P16403 HIST1H1C 0.79468494 0.014741  P42224 STAT1 0.882976 0.048652 

p-values were obtained through Mann Whitney U test for significance between P-Ms and P-NMs. Fold change 

calculated from mean of protein abundancies between each group. Green shading indicates proteins which 

were significantly differentially expressed in both the 1D and 2D data. 
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Table 3.5: Details of proteins that were significantly differentially expressed between P-

Ms and P-NM groups in the MS data following 2D LC.  

Uniprot ID Gene ID 
log2 Fold 
Change 

p-value 
  

(Continued) 

P25398 RPS12 0.899331 1.08E-04 Q14697 GANAB 0.481031 0.018922 
P61981 YWHAG 0.529794 0.000145   P27824 CANX 0.5971 0.019724 
Q15582 TGFBI 1.116691 0.000187   P16615 ATP2A2 -0.62138 0.019818 
P06396 GSN 0.609908 0.000655   P02675 FGB 0.694736 0.019933 
P02751 FN1 0.883513 0.00098   Q9NZT1 CALML5 -0.80848 0.021169 
P08758 ANXA5 0.463055 0.001   P04264 KRT1 -0.81594 0.021718 
Q15063 POSTN 0.981432 0.001047   P35908 KRT2 -1.24764 0.021718 
P31949 S100A11 1.220557 0.001104   P62249 RPS16 0.365977 0.021847 
P08779 KRT16 -0.64341 0.001175   P50990 CCT8 0.569868 0.022002 
P63000 RAC1 0.475662 0.001428   Q96FW1 OTUB1 0.406082 0.022399 

P22626 
HNRNPA2B
1 

0.723681 0.001739   P30044 PRDX5 0.683793 0.022719 

P02545 LMNA 0.436365 0.002937   P26038 MSN 0.494652 0.02298 
P36957 DLST 0.541366 0.002971   P63104 YWHAZ 0.323326 0.02298 
P18206 VCL 0.391585 0.003743   P20700 LMNB1 0.676225 0.024282 
P62277 RPS13 0.479793 0.003863   P05141 SLC25A5 0.823864 0.025666 
P29401 TKT 0.521632 0.004185   Q562R1 ACTBL2 0.495019 0.026073 
P46782 RPS5 0.62297 0.004337   P13796 LCP1 0.685076 0.026452 
P12110 COL6A2 1.202369 0.004823   P01871 IGHM -0.88295 0.026604 
P40121 CAPG 0.6193 0.006275   P35555 FBN1 0.508086 0.027037 
Q99497 PARK7 0.521044 0.006502   P48668 KRT6C -0.71584 0.027113 
P23246 SFPQ 0.643473 0.007564   P02538 KRT6A -0.34777 0.027147 
P62937 PPIA 0.53968 0.007713   P37802 TAGLN2 0.455563 0.027434 
P04179 SOD2 0.762658 0.007975   P60866 RPS20 0.319156 0.027496 
P08123 COL1A2 0.450851 0.00823   P39656 DDOST 0.541621 0.029103 
P08238 HSP90AB1 0.497668 0.00823   P01011 SERPINA3 0.490469 0.030512 
P61978 HNRNPK 0.536419 0.008247   P29508 SERPINB3 -0.66772 0.030512 
P62158 CALM 0.477913 0.008814   Q99715 COL12A1 0.722631 0.032952 
P24821 TNC 0.850068 0.009468   P00338 LDHA 0.298966 0.033683 
Q07960 ARHGAP1 0.559179 0.010409   O43390 HNRNPR 0.430315 0.034032 
P07437 TUBB 0.471989 0.010616   P01009 SERPINA1 0.554795 0.034206 
P62314 SNRPD1 0.592314 0.010933   P62081 RPS7 0.363127 0.034206 
P60174 TPI1 0.556856 0.012021   Q02388 COL7A1 -0.88471 0.034513 
P31146 CORO1A 0.759081 0.012238   P11021 HSPA5 0.377159 0.035508 
P68104 EEF1A1 0.283546 0.012781   P07195 LDHB 0.6105 0.036002 
P09525 ANXA4 0.553413 0.01287   Q05707 COL14A1 0.650654 0.03669 
P04259 KRT6B -0.52402 0.013583   P55795 HNRNPH2 -0.60532 0.038253 
P08670 VIM 0.454294 0.013583   O00299 CLIC1 0.539654 0.039171 
P14625 HSP90B1 0.59337 0.013831   P21333 FLNA 0.267202 0.039408 
P02671 FGA 0.62589 0.014133   P00558 PGK1 0.485908 0.041488 
P60660 MYL6 0.436868 0.014429  P62899 RPL31 0.458861 0.042321 
Q03252 LMNB2 0.590182 0.014685  P30041 PRDX6 0.877492 0.042339 
Q99878 HIST1H2AJ 0.407634 0.014719  P07900 HSP90AA1 0.419973 0.042481 
P29590 PML 0.628868 0.014724  P51884 LUM 0.532743 0.042486 
P23396 RPS3 0.399818 0.015319  P19338 NCL 0.366465 0.043658 
Q99623 PHB2 0.67447 0.016553  P62805 HIST4H 0.265299 0.043658 
P07237 P4HB 0.631181 0.017242  Q71UI9 H2AFV 0.546786 0.044845 
P12111 COL6A3 0.501978 0.017242  P62269 RPS18 0.250738 0.045023 
P27482 CALML3 -0.51899 0.018889  P30101 PDIA3 0.421946 0.045921 
P50395 GDI2 0.444733 0.018889  P27816 MAP4 0.496461 0.046927 

Significance was calculated using Mann Whitney U test. Fold change was calculated from the ratio of the mean expression 

of the protein in the P-M group relative to the P-NM group and log 2 transforming the data. Green shading indicates 

proteins that were significantly differentially expressed in both the 1D and 2D data.  
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Similarly to the 1D results, the fold changes seen within the differentially expressed 

proteins following 2D proteomic experiments vary greatly (Table 3.5). 40S ribosomal 

protein S12 (RPS12), protein 14-3-3 gamma (YWHAG), TGFβ induced protein (TGFBI), 

gelsolin (GSN) fibronectin (FN1) and annexin A5 (ANXA5) are all highly differentially 

expressed (P≤0.001). The most downregulated protein is KRT2 (-1.24764) and the highest 

upregulated protein is S100A11 (1.220557).  

Many of the significantly differentially expressed proteins identified in the 1D data (Table 

3.4) can also be seen in 2D data (Table 3.5) (highlighted in green). Example of these are 

TGFB induced protein (TGFBI), periostin (POSTN), heat shock protein 90-beta (HSP90AB1), 

calmodulin-like protein 5 (CALML5), collagen alpha-3(VI) chain (COL6A3), fibrinogen beta 

chain (FGB), lumican (LUM), nucleolin (NCL) and tenascin (TNC). Although the p-values for 

comparison of many of these proteins between P-M and P-NM cSCCs vary between the 1D 

and 2D data, their fold change is relatively consistent between both sets of data.  

Some examples of significantly differentially expressed proteins from the 1D data can be 

seen in Figure 3.17. Of the proteins in this figure, the lowest number of samples that 

detected a specific protein was 15 and the highest was 24 (all of them). The median 

abundancies of these proteins varies, ranging from the lowest, SEPT2 (0.4352ng), to the 

highest, COL6A3 (75.22ng). All of the proteins presented in Figure 3.17 express an increase 

in abundancy in P-M samples compared to P-NM samples.  
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Figure 3:17: Examples of significantly differentially expressed proteins from 1D 

proteomic profiling experiments.  

Protein abundancies from P-M samples were compared to P-NM samples using Mann 

Whitney U test for significance and plotted using Prism. Median +/- interquartile range 

shown.  

Examples of significantly differentially expressed proteins from the 2D data can be seen in 

Figure 3.18. The lowest number of samples where the protein was identified is 17 and the 

highest number of cSCCs in which the protein was detected is 24. The lowest median 

abundancy is S100A11 (0.2615ng) and the highest is POSTN (15.51ng). Similarly to the 1D 

data (Figure 3.17), all of the proteins in Figure 3.18 are upregulated in P-Ms compared to 

P-NMs.  
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Figure 3:18: Examples of significantly differentially expressed proteins from 2D 

proteomic profiling experiments.  

Protein abundancies were compared between P-M and P-NM samples using Mann 

Whitney U test for significance. Median +/- interquartile range shown here. 

3.3.15 Search tool for the retrieval of interacting genes/proteins (STRING) analysis 

STRING is a database of known and predicted protein-protein interactions, gathering its 

information from various sources including experimental data, computational modelling 

and text mining.  The data from the MS experiments following 1D and 2D separation was 

analysed using STRING to generate a structure of protein interactions that are likely to play 

a role in metastases of cSCC. 

The structure created using STRING for 1D can be seen in Figure 3.19. Nodes represent 

proteins and the lines connecting the nodes indicate an interaction between these 
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proteins, which may include physical interaction (e.g. direct binding), signalling pathways, 

or common biological effects. The density of each individual line in the structure 

corresponds to the confidence of the interaction between nodes. Within the structure 

produced from the 1D proteomic profiling data, many proteins are interacting. For 

example, 98 interactions would be expected by chance from the 77 proteins analysed, but 

the created structure resulted in 246 interactions which therefore suggests the inputted 

proteins are acting in a combined manner to promote metastasis. The structure showed 

clusters of interacting proteins, which included ribosomal proteins, extracellular proteins 

and proteins involved in protein folding. 
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Figure 3:19: STRING structure of significantly differentially expressed proteins from the 

1D data.  

Significantly differentially expressed proteins identified from Mann-Whitney U test 

between P-M and P-NMs were analysed using STRING software to create a structure of 

known interactions. A medium confidence score of 0.4 was allowed for interaction 

certainty. Nodes represent proteins and lines represent known interactions between 

proteins. The thicker the line, the higher confidence in the interaction data. Total number 

of nodes is 77. Total number of interactions is 246.  
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After this STRING structure was created, other areas of interest such as KEGG pathway 

enrichment could be mapped onto this. KEGG pathway analysis identifies proteins involved 

in biological systems through a manually curated database. Proteins are scored through 

well published algorithms (Franceschini et al., 2013, Von Mering et al., 2003, Szklarczyk et 

al., 2015) and resulting p-values are corrected for false discovery rate (FDR). Figure 3.20 

utilises the same structure produced in Figure 3.19, mapping on significantly enriched 

KEGG pathways by highlighting nodes red if they are involved. Ribosomal proteins were 

identified as being the most significantly enriched KEGG pathway with an adjusted p-value 

of 0.00000792. Focal adhesion was significantly enriched, obtaining an adjusted p-value of 

0.00000968, in addition to protein processing in the endoplasmic reticulum (P=0.000165) 

and regulation of cytoskeleton (P=0.000959). 
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Figure 3:20: STRING structure with significantly enriched KEGG pathways from 1D data.  

KEGG pathway analysis was carried out within STRING software to give FDR adjusted p-

values of enriched pathways. Proteins involved are highlighted in red. Green highlighted 

text indicates KEGG pathway enriched in both the 1D and 2D data. ER, endoplasmic 

reticulum. 
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The STRING structure for the 2D data can be seen in Figure 3.21. Similar to the 1D results, 

the amount of interactions expected (128) was far less than actually observed (340) from 

the 94 proteins input into the software and this therefore suggests that these proteins are 

interacting in a manner which is greater than that expected to be seen by chance. 

Furthermore, similar clusters are seen in the KEGG analyses of the STRING structures of the 

2D and the 1D data, such as ribosomal proteins, and proteins involved in the extracellular 

matrix and protein folding.  

 

Figure 3:21: STRING structure of significantly differentially expressed proteins from the 

2D data.  

This structure was created in STRING using the differentially expressed proteins between 

P-M and P-NMs found in the 2D data. A medium allowance of 0.4 was set for similarity. 

The total number of nodes was 94. The expected number of interactions was 128, the 

actual number of interactions was 340.  
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Figure 3:22: KEGG pathway enrichment of 2D STRING structure.  

STRING software was used to map KEGG pathway involvement within the STRING 

structure from the 2D data to give an FDR adjusted p-value. Proteins involved in pathways 

are indicated in red. Green highlighted text indicates KEGG pathway enrichment in the 

STRING structures from both the 1D and 2D data. ER, endoplasmic reticulum. 
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KEGG pathway enrichment analysis of the STRING structure from the 2D data revealed 

several enriched pathways (Figure 3.22). The highest enriched KEGG pathway was protein 

processing in the endoplasmic reticulum with an adjusted p-value of 0.0000168. The 

ribosome pathway was enriched with a p-value of 0.0000192, in addition to PI3K-AKt 

signalling (P= 0.0000391) and protein digestion and absorption (P=0.000175).  

Five of the KEGG pathways identified were enriched in both 1D and 2D proteomic profiling 

data. Ribosomal pathway was the most enriched in the 1D data and the 2nd most enriched 

in the 2D data. Protein processing in the endoplasmic reticulum was the highest enriched 

in the 2D data and the 3rd most enriched in the 1D data. Focal adhesion was highly enriched 

in both the 1D and 2D data, along with PI3K-AKt signalling and antigen 

processing/presentation.  

3.3.16 Gene ontology analysis 

Results were further analysed with GoGorilla gene ontology analysis which comprises a 

database of all known genes, classified according to cell biological processes, cell molecular 

functions and cellular component (Ashburner et al., 2000). The results obtained from gene 

ontology enrichment analysis in GoGorilla from significantly differentially expressed 

proteins (between P-Ms and P-NMs) is too large to display graphically. REViGO (i.e. reduce, 

visualise gene ontology) was subsequently employed as it condenses the results from gene 

ontology enrichment analyses, such as Go Gorilla, into simpler graphics for visualisation as 

seen in Figure 3.23. Modified R code was used to create a REViGO tree map for 

differentially expressed proteins in the 1D data, with the proportion of the size of individual 

squares and rectangles, and thus the area coverage, in the figure indicating the amount of 

enrichment of the relevant biological process, molecular function and/or cellular 

component.   
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Figure 3:23: REViGO gene ontology analysis of significantly differentially expressed 

proteins in the 1D data.  

Significantly differentially expressed proteins in the 1D data were inputted into GoGorilla 

gene ontology software. Gene ontology terms were then inputted into REViGO to reduce 

redundancies. The area of each component in the figure is representative of its 

enrichment. 

Using the differentially expressed proteins from the 1D data, several areas of gene ontology 

were found to be highly enriched. The largest, and therefore the highest, enriched area 

within biological processes was ‘mRNA metabolism’, followed by ‘regulated exocytosis’. 

‘Extracellular matrix organisation’, ‘response to unfolded proteins’ and ‘cell activation 

involved immune response’ were also areas of enrichment within the significantly 

differentially expressed proteins from the 1D data. Within the molecular function gene 

ontology area, the largest proportion of enrichment is in ‘telomeric DNA binding’. Second 

to telomeric DNA binding are several other areas of enrichment, sharing similar 

proportions, including ‘cell adhesion’, ‘structural molecular activity’, ‘cadherin binding’, 

‘protein binding’ and several other ontologies involved in various aspects of binding. 
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‘Secretory granule lumen’, ‘extracellular matrix (ECM)’ and ‘intracellular ribonucleoprotein 

complex’ were all areas of enrichment within the cellular component area of gene 

ontology.  

 

 



Chapter 3 

100 

 

Figure 3:24: REViGO gene ontology analysis of significantly differentially expressed 

proteins in the 2D data.  

Significantly differentially expressed proteins from the 2D data were subjected to gene 

ontology analysis using GoGorilla. Gene ontology terms and p-values were reduced of 

redundancies (keeping most enriched terms) by REViGO and presented in tree map 

format, with the size of each area representative of the amount of enrichment of this 

process, function and/or component.  

Using the differentially expressed proteins identified in the 2D data, the highest area of 

enrichment in biological processes was ‘regulated exocytosis’ and ‘cell activation involved 

in immune response’ (Figure 3.24). ‘Extracellular matrix organisation’ and ‘viral 

transcription’ was also highly enriched in the biological process area. ‘mRNA binding’ and 

‘structural molecule activity’ was highly enriched in molecular function gene ontology areas 

in addition to various other binding ontologies. Within the cellular component area, 

‘extracellular matrix’ and ‘secretory granule lumen’ are highly enriched. ‘Membrane bound 

organelle’, ‘cytosolic small ribosomal subunit’ and ‘vesicle’ gene ontologies were also 

enriched.  
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‘Regulated exocytosis’ and ‘cell activation involved in immune response’ were both highly 

enriched biological processes in the REViGO results from both the 1D and 2D data. Within 

molecular function, many binding ontologies were enriched in both the 1D and 2D data. 

‘Extracellular matrix’ and ‘secretory granule lumen’ gene ontologies were highly enriched 

within cellular component in both the 1D and 2D data.  

3.3.17 Ingenuity pathway analysis 

In addition to STRING/KEGG pathway enrichment analysis and GO/REViGO, ingenuity 

pathway analysis (IPA) was performed on all of the 1D and 2D proteomic data as well as on 

the significantly differentially expressed proteins from the 1D and 2D data (Figure 3.25). 

The results were combined into one graph and ranked by the sum of the Log10 P-values for 

each data set. A –log10 P-value cutoff of >5 (P< 0.00001) was employed on the sum of the 

–log10 P-values for each pathway. IPA revealed a number of significantly enriched 

pathways, the most significant being ‘EIF2 signalling’. Some data sets had insufficient data 

to report an activation state (Zscore), for instance ‘EIF2 signalling’ in the significantly 

differentially expressed proteins data sets following 1D and 2D fractionation. There were 

several immune related pathways which were significantly enriched, including ’leukocyte 

extravasation signalling’, ‘FC receptor-mediated phagocytosis in macrophages and 

monocytes’, ‘production of nitric oxide and ROS in macrophages’ and ‘CD28 signalling in T 

helper cells’. Furthermore, there were a number of significantly enriched pathways 

associated with integrin signalling and intracellular signalling pathways, including ‘ILK 

signalling’, ‘integrin signalling’, ‘PI3K/AKT signalling’ and ‘ERK/MAPK signalling’. Several 

Rac/Rho signalling pathways were also identified, including ‘RhoGDI signalling’, ‘RhoA 

signalling’ and ‘signalling by Rho family GTPases’ and ‘Rac signalling’. Furthermore, 

‘signalling by Rho family GTPases’ was amongst the most activated pathways (mean Z score 

= 2.377). Conversely, RhoGDI was one of the few pathways identified as inhibited (mean Z 

score = -1.741).  

A unique function of IPA is to identify upstream regulators based on the data provided. The 

four data sets used for pathway analysis were also used for this function (Figure 3.26). It 

was predicted that a number of upstream regulators were significantly enriched, several of 

which were immune related, including TCR (mean Z score = 2.125), IgG (mean Z score = -
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3.769), IL15 (mean Z score = 3.024), IL6 (mean Z score = 2.556), IL1a (mean Z score = 2.498) 

and TGFB1 (mean Z score = 3.029); some of these were associated with a positive Z score 

whereas others had a negative Z score. MicroRNA 122, and more specifically miRNA-122-

5p, were also denoted by a negative Z score, thus predicted to be inhibited. Several other 

noteworthy predicted upstream regulators were EGFR, TP63, PI3K, CTNNB1 and CD44. 
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3.3.18 Weighted gene co-expression network analysis 

Weighted gene co-expression network analysis (WGCNA) is a bioinformatics approach 

which aims to highlight groups of genes (or proteins) which are heavily correlated (either 

positively or negatively) with each other. Several pre-processing steps are required before 

such a network can be derived (Figure 2.3). Correlated proteins were clustered into a total 

of 6 modules and subjected to pathway analysis (Figure 3.27) and correlated to 

clinical/histological characteristics (Figure 3.28). The ‘turquoise’ module had the greatest 

number of significantly enriched pathways and protein complexes with the most 

significantly being neutrophil degranulation. Other noteworthy significant results in the 

‘turquoise’ module are protein processing in the ER, platelet degranulation and IL-12 family 

signalling. The ‘blue’ module had the second most number of pathway enrichments, 

including; ribosome, peptide chain elongation, and selenocysteine synthesis. The ‘yellow’ 

module had significant enrichment in neutrophil degranulation and keratinization. Module-

trait analysis identified several relationships between protein modules and 

clinical/histological characteristics. The ‘brown’ module correlated positively with CD1 

intratumoural stain (r=0.32, P=0.03). The ‘blue’ module was positively correlated with 

metastasis (r=0.29, P=0.04) and inversely with CD1a intratumoural stain (r=-0.29, P=0.04). 

The ‘turquoise’ module heavily correlated positively with both Clarks level (r=0.49, 

P=0.0004) and inversely with CD1a peritumoural stains (r=-0.5, P=0.0003). The ‘yellow’ 

module had an inverse correlation with differentiation (r=-0.39, P=0.006) and CD20 (r=-

0.33, P=0.02). 
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Figure 3:27: Protein complex and pathway analysis of WGCNA modules.  

Modules identified by WGCNA were subjected to KEGG and Reactome pathway analysis in 

addition to overlay of the CORUM database. Strong hierarchical filtering was employed to 

reduce the number of terms and ease interpretation. Only results with P<0.001 are shown.  
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Figure 3:28: Module-trait analysis of WCGNA.  

WGCNA modules were correlated to clinical and histological characteristics using Pearson 

correlation to identify relationships. In each cell, the upper value is the correlation 

coefficient (r) and the lower value is the P-value. ME, module eigengene; CD1aI, CD1a 

intratumoural stain; CD1aP, CD1a peritumoural stain.  

3.3.19 Topological data analysis (TDA) 

Topological data analysis is a higher dimensional analysis strategy aimed at identifying 

patterns in data and represents an alternative way of exploring data sets in addition to 

classical statistical analysis. Using the non-parametric Kolmogorov-Smirnov (KS) test for 

significance and various metrics (e.g. hamming, regression) for clustering, it enables an 

alternative method of investigating large data sets. Structures are generated using 2 or 

more variables, allowing colour mapping to reveal location of variables within sample 

nodes. Nodes can consist of one or more samples, depending on the similarity between 

them. 

Currently, prognosis of cSCCs regarding whether or not they will metastasise is typically 

calculated by a number of factors, including differentiation, diameter and depth. For this 

reason, diameter, depth and differentiation of samples were inputted into Ayasdi to create 

a topological model structure to assess how these factors relate to outcome (Figure 3.29). 

Colour mapping of outcome onto the structure from the diameter, depth and 

differentiation revealed groups of blue (P-NMs) and groups of red (P-Ms) with some 

intermediate groups of yellow and green indicating nodes with both P-Ms and P-NMs 

within them.  
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Figure 3:29: Topological model of cSCC differentiation, diameter and depth against 

subsequent development of metastases.  

A topological model was created from samples’ diameter, depth and differentiation 

values. A hamming metric was used with two neighbourhood lenses; resolution 40, gain 

7.5. Differentiation was categorised into 1 (well differentiated) 2, (moderately 

differentiated) and 3 (poorly differentiated). Outcome (i.e. subsequently metastasised or 

did not metastasise) was colour mapped onto the resulting structure. Blue indicates P-

NMs, red indicates PMs and yellow and green represent a combination of P-NMs and PMs.  

To determine if the same separation of P-NMs and P-Ms could be obtained using proteomic 

abundancy data, a structure using just the identified proteins and their abundancies was 

created in Ayasdi (Figure 3.30). Protein data from both 1D and 2D separation experiments 

were capable of producing topological structures that separated P-NMs (blue) from P-Ms 

(red). Intermediate groups (yellow) containing both P-Ms and P-NMs could be found 

interlinking blue and red nodes.  
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Figure 3:30: Topological model of 1D and 2D protein data against subsequent 

development of metastases.  

Using proteomic data from 1D and 2D LC experiments, a topological model was created in 

Ayasdi using a hamming metric with two neighbourhood lenses. Lens resolution = 40, gain 

= 7.5 for 1D data. Lens resolution = 33, gain = 7 for 2D data. Outcome (i.e. subsequently 

metastasised or did not metastasise) was colour mapped on top of the structure. Blue 

represents P-NMs, red represents P-Ms and yellows indicate nodes containing both P-Ms 

and P-NMs. Protein data from 1D and 2D data resulted in topological structures which 

largely separated the P-M and P-NM groups.  
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To determine if protein driven topological structures have a correlation with 

differentiation, depth or diameter, the structures created in Figure 3.30 were colour 

mapped accordingly (Figure 3.31). Colour mapping of differentiation on the 1D and 2D 

protein data topological structures revealed some equivocal separation of the clinical 

groups. Depth and diameter in Figure 3.31 show less pronounce groups than differentiation 

but nonetheless show a general increase in higher values towards the P-M outcome section 

(shown in Figure 3.30).  

 

Figure 3:31: Topological structures of 1D and 2D protein data in relation to 

differentiation, depth and diameter of the cSCCs.  

The topological structures for the 1D and 2D protein data were colour mapped for 

differentiation, depth and diameter of the cSCCs. Blue and green represent lower values, 

red and orange represent higher values (i.e. Larger in diameter or depth and less 

differentiated). Colour mapping revealed some clustering of poor, medium and well 

differentiated nodes, whereas the structures related to diameter and depth revealed 

several loose clusters of nodes. Higher values of differentiation were seen in P-M outcome 

regions identified in Figure 3.30. 
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Creating a structure that can differentiate between P-M and P-NM clinical outcome from 

the samples’ proteomes (Figure 3.30) enables the comparison between the groups to 

establish driving variables that could be of importance in the transition between P-NMs 

and P-Ms. A comparison of exclusively P-NM nodes (completely blue nodes) was compared 

to exclusively P-M nodes (completely red nodes) from the topological structure from the 

1D data in Figure 3.30. In doing so, a number of variables were seen to drive the different 

groups with 40 of these variables being significant (Table 3.6). 80% of significant differences 

(32 variables) were identified in previously performed analyses. The 8 newly identified 

differences between the groups consisted of 6 proteins and 2 clinical parameters. The 

clinical parameters found to drive the differences between the groups were diameter (P= 

0.00808) and differentiation (P= 0.04685). The 6 newly identified significant proteins were 

ACTN3 (P= 0.0984), SFN (P= 0.0239), OTUB1 (P= 0.0335), RPL18 (P= 0.0355), NAGK (P= 

0.0397) and KRT74 (P= 0.0443).  

P-M and P-NM groups from the TDA structure of the 2D data in Figure 3.30 were compared 

using Kolmogorov-Smirnov test for significance and revealed 59 variables significantly 

different between the two groups (Table 3.7). 80% of these (47 variables) had been 

previously identified in preceding analyses. Of the 12 newly identified variables, 2 were 

clinical parameters (diameter and differentiation of the cSCCs) and the remaining 10 were 

proteins. The 10 newly identified significantly different proteins were HSPB1 (P= 0.0054), 

UQCRC1 (P= 0.0197), APOE (P=0.0236), DMKN (P= 0.0236), APRT (P= 0.0250), SARNP (P= 

0.0298), KRT14 (P= 0.03349), IGKV3-20 (P= 0.03968), COL1A1 (P= 0.04435) and USP5 (P= 

0.04435). 15% of all significantly different variables identified were found in both TDA 

analyses of the 1D and 2D data.  
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Table 3.6: Group analysis for TDA structure of 1D data comparing P-M and P-NM groups.  

Variable Gene ID  p-value  KS Score 

Outcome (metastasis) N/A 2.55E-09 1 
P61158 ACTR3 3.19336E-05 0.816176471 
P13010 XRCC5 0.001163116 0.769230769 
P50991 CCT4 0.001702508 0.75 
P07237 P4HB 0.001702508 0.595959596 
Q9NSB2 KRT84 0.002467246 0.703296703 
P50454 SERPINH1 0.003800385 0.588235294 
P08133 ANXA6 0.003800385 0.582352941 
P15880 RPS2 0.006610785 0.555882353 
Q15019 SEPT2 0.008082509 0.637362637 
P35222 CTNNB1 0.008082509 0.607142857 
Diameter of cSCC N/A 0.008082509 0.528947368 
O00571 DDX3X 0.009223018 0.55 
Q08043 ACTN3 0.009846365 0.615384615 
Q02878 RPL6 0.012739434 0.539473684 
O43707 ACTN4 0.013573266 0.498746867 
Q14697 GANAB 0.016377393 0.529411765 
P62081 RPS7 0.017421443 0.50140056 
P29692 EEF1D 0.018524639 0.516447368 
Q6KB66 KRT80 0.02358712 0.634920635 
P31947 SFN 0.02358712 0.476315789 
P62857 RPS28 0.026551868 0.482954545 
Q9NZT1 CALML5 0.026551868 0.482352941 
P62277 RPS13 0.028154288 0.56043956 
Q15063 POSTN 0.028154288 0.473684211 
P62318 SNRPD3 0.031617112 0.623931624 
P52597 HNRNPF 0.033485006 0.549450549 
Q96FW1 OTUB1 0.033485006 0.549450549 
P08758 ANXA5 0.033485006 0.45112782 
Q9NV66 TYW1 0.035449065 0.659090909 
Q07020 RPL18 0.035449065 0.461111111 
Q9UJ70 NAGK 0.03968188 0.573426573 
P50395 GDI2 0.03968188 0.456582633 
P36578 RPL4 0.041959012 0.566666667 
P30044 PRDX5 0.041959012 0.456140351 
P62140 PPP1CB 0.044349062 0.575757576 
P16403 HIST1H1C 0.044349062 0.538461538 
Q7RTS7 KRT74 0.044349062 0.538461538 
P24821 TNC 0.044349062 0.470588235 
Differentiation of cSCC N/A 0.046856493 0.428229665 
P15088 CPA3 0.049485877 0.504807692 

Blue nodes (P-NM) and red nodes (P-M) from the topological structure for the 1D data in Figure 3.30 were compared using 

Kolmogorov-Smirnov’s test. Orange shading in the table indicates proteins already identified in previous analyses. Blue 

text indicates variables found in analysis of TDA structures for both 1D and 2D data comparing P-Ms and P-NMs. 
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Table 3.7: Significantly different variables between P-M and P-NM groups in 2D TDA. 

Variable Gene ID  p-value  KS Score 

Outcome (metastasis) N/A 2.09E-10 1 
Diameter of cSCC N/A 0.000920998 0.590909091 
Q15063 POSTN 0.000995911 0.633053221 
P08779 KRT16 0.001256214 0.564393939 
P61981 YWHAG 0.001977241 0.571428571 
P06396 GSN 0.003067621 0.535714286 
P25398 RPS12 0.003295976 0.709090909 
P31949 S100A11 0.003539914 0.60130719 
P50395 GDI2 0.004691266 0.528138528 
P04792 HSPB1 0.005387613 0.507575758 
P02751 FN1 0.005770175 0.513457557 
Q15582 TGFBI 0.007071711 0.523923445 
P02545 LMNA 0.010507637 0.477272727 
Q99878 HIST1H2AJ 0.014455892 0.466403162 
P22626 HNRNPA2B1 0.014455892 0.462121212 
P02675 FGB 0.015389755 0.464426877 
P18206 VCL 0.016377393 0.476190476 
P51884 LUM 0.016377393 0.476190476 
P16615 ATP2A2 0.017421443 0.492105263 
Q96FW1 OTUB1 0.019689815 0.529411765 
P31930 UQCRC1 0.019689815 0.65 
P04179 SOD2 0.019689815 0.567307692 
P08758 ANXA5 0.02091991 0.443181818 
P02649 APOE 0.02358712 0.522556391 
Q6E0U4 DMKN 0.02358712 0.578947368 
P48668 KRT6C 0.02358712 0.45 
P07741 APRT 0.025030636 0.45021645 
P02538 KRT6A 0.028154288 0.428030303 
P62158 Calm1 0.028154288 0.43452381 
P27816 MAP4 0.028154288 0.454761905 
P63000 RAC1 0.028154288 0.454761905 
P01871 IGHM 0.029841473 0.625 
P82979 SARNP 0.029841473 0.554945055 
P40121 CAPG 0.029841473 0.441558442 
P11021 HSPA5 0.031617112 0.424242424 
P35908 KRT2 0.031617112 0.424242424 
P62314 SNRPD1 0.033485006 0.507936508 
P02533 KRT14 0.033485006 0.420454545 
P29401 TKT 0.033485006 0.45 
O43390 HNRNPR 0.033485006 0.430641822 
P46782 RPS5 0.035449065 0.543956044 
P14625 HSP90B1 0.035449065 0.420948617 
Q07960 ARHGAP1 0.035449065 0.510121457 
P60660 MYL6 0.03968188 0.412878788 
Differentiation of cSCC N/A 0.03968188 0.412878788 
P12111 COL6A3 0.03968188 0.412878788 
P09525 ANXA4 0.03968188 0.422360248 
P60174 TPI1 0.03968188 0.412878788 
P01623 IGKV3-20 0.03968188 0.504201681 
Q562R1 ACTBL2 0.041959012 0.492063492 
P36957 DLST 0.041959012 0.444444444 
Q14697 GANAB 0.041959012 0.428571429 
P62937 PPIA 0.041959012 0.409090909 
P02452 COL1A1 0.044349062 0.40530303 
P08123 COL1A2 0.044349062 0.40530303 
P45974 USP5 0.044349062 0.575757576 
P12110 COL6A2 0.046856493 0.401515152 
P68104 EEF1A1 0.046856493 0.401515152 
P24821 TNC 0.049485877 0.409090909 
P62277 RPS13 0.049485877 0.436507937 

Blue nodes (P-NM) were compared to red nodes (P-M) from the topological structure for the 2D data in Figure 3.30 using 

Kolmogorov-Smirnov’s test to investigate driving variables. Orange shading in the table indicates proteins previously 

identified in prior analyses. Blue text indicates variables identified in analysis of TDA structures for both 1D and 2D data 

comparing P-Ms and P-NMs. 
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3.4 Discussion 

This study aimed to identify biomarkers of metastasis in cSCC using FFPE samples. The initial 

direction of the study focused on IHC staining of P-M and P-NM samples to look at certain 

immunological parameters which might have relevance to development of cSCC 

metastases while also becoming familiar with histological parameters of cSCC.  

It has previously been reported that there are higher numbers of tumour associated B cells 

in primary melanomas that did not metastasise than in those that did metastasise and that 

a higher number of tumour associated B cells is associated with significantly better overall 

survival in cutaneous melanoma (Garg et al., 2016). In this study, we stained for B cells to 

answer the question of whether this difference could also be seen in cSCC in addition to 

gaining experience in skin histology which would ultimately aid in microdissection for 

proteomics. However, this current study found no difference in CD20+ cell numbers 

between P-M and P-NM in cSCCs (Figure 3:3), although, higher numbers of CD20+ cells was 

associated with a longer time to metastasis (Figure 3:5). Staining for CD1a, a Langerhans 

cell marker, revealed there were significantly more Langerhans cells in P-NM than P-M 

tumours (Figure 3:4). Furthermore, a significant relationship was found between 

intratumoral CD1a cells and time to metastasis (Figure 3:6). It is unclear whether this is a 

causal association, i.e. whether the tumour has gone on to metastasise because there are 

less Langerhans cells in the primary cancer, or whether the reduced numbers of Langerhans 

cells are an epiphenomenon of tumours that metastasise. Langerhans cells are a specialised 

type of dendritic cell residing in the epidermis (Merad et al., 2002). Much of the published 

research in the literature on Langerhans cells and cSCC has investigated Langerhans cells 

contribution to cSCC development from normal skin (Lewis et al., 2015, Schwarz et al., 

2010), rather than on Langerhans cells contribution to metastasis.  

Langerhans cells can promote T cell activation (Fujita et al., 2012) and it has been reported 

that there are more CD8+ cytotoxic T cells in P-NMs than P-Ms (Lai et al., 2015, Lai et al., 

2016). It is possible that the increase in Langerhans cells in P-NMs may promote T cell 

activity, hindering carcinogenesis progression and therefore preventing it from 

metastasising, but it is not clear whether this would occur via antigen presentation to CD4+ 

T cells by MHC class II or via cross-presentation to CD8+ T cells. However, it has been 

reported that murine epidermis lacking Langerhans cells developed carcinogenesis less 
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readily than those with Langerhans cells intact, suggesting a pro-oncogenic role for 

Langerhans cells (Lewis et al., 2015). One could argue that the latter observation is not 

relevant to UVR-induced skin cancer because that study used chemical carcinogenesis and 

it is known that Langerhans cells metabolise 7,12-dimethylbenz[a]anthracene (DMBA) to 

the carcinogen DMBA-trans-3,4-diol (Modi et al., 2012). In the current study, the fewer 

Langerhans cells in P-M may be due to the malignant keratinocytes causing a reduction in 

the number of Langerhans cells in the tumour, or possibly the tumour not being seen as 

“threatening” by the immune system, or due to an increased migration of Langerhans cells 

to lymph nodes in an attempt to activate an immune response to a more aggressive cSCC. 

Related to this, it is known that Langerhans cells can induce Tregs in some circumstances 

(Seneschal et al., 2012, Gomez de Aguero et al., 2012); for example UVR damaged 

Langerhans cells have been reported to migrate to lymph nodes and activate T regulatory 

cells, a mechanism which may promote tumorigenesis (Schwarz et al., 2010). In P-M cSCCs, 

it is possible that migration of Langerhans cells to the lymph nodes might result in the 

increase in T regulatory cells that has been reported in P-Ms previously (Lai et al., 2015, Lai 

et al., 2016) thus resulting in a dampened immune response and allowing the tumour to 

grow and metastasise. Furthermore, ingenuity pathway analysis revealed upstream 

regulator, TGBF1, a protein which is in part, responsible for Treg cell’s suppressive function 

(Wu et al., 2016), as significantly activated in the P-M group (Figure 3:25).   

Extracting proteins from FFPE samples is a complex technique, with no optimal protocol 

established to date (Appendix 1). The current study found that using a combination of 2D 

online fractionation and an extraction method using RapiGest surfactant gave a high 

protein yield, consistently producing better yields than many results in the current 

literature (Appendix 1). Furthermore, analysis of this method revealed that almost half of 

the proteins identified were found in all three repeats and that the protein abundancies 

were very similar between samples, suggesting good reproducibility. 1D fractionation is an 

established method in our laboratory for other types of proteomics and therefore it was 

decided to undertake both 1D and 2D fractionation as independent methodologies, 

producing two separate sets of results for cSCCs. Over 4,000 unique proteins were 

identified in this study, which is one of the highest proteome coverages achieved from 

proteomics studies using FFPE samples (Appendix 1). Furthermore, this study has achieved 

the highest number of protein IDs compared to any other proteomic studies on FFPE cSCCs 
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in the published literature, including the most recent studies by Azimi et al (Azimi et al., 

2016, Azimi et al., 2019)and Foll et al (Foll et al., 2017) which achieved 1,310, 3574, and 

2,102 protein IDs, respectively. 

To establish which statistical analysis to carry out to compare the P-M and P-NM groups, 

the proteomics data had to be assessed to see whether it had a normal (Gaussian) 

distribution. As previously stated, proteomics data suffers from the inability to detect 

proteins below certain concentrations and therefore it can suffer from the “floor effect”. 

The floor effect (also referred to as the basement effect) occurs when data cannot be 

recorded below a certain level and thus the distribution of data is skewed because the true 

lowest values may not be present (Karp and Lilley, 2007). Therefore, a conservative non-

parametric approach was used for statistical analysis of the proteomics data in this current 

study. Similarly to other ‘omics’ studies, significance testing large data sets has a probability 

of producing false positives. In smaller data sets, family-wise error rates through tests such 

as Bonferroni, are usually applied. However, doing this in large data sets can cause false 

negatives as criteria become more stringent with every variable measured (Noble, 2009). 

Statistical advice (from Research Design and Methodology, University of Southampton) 

suggested that plotting all p-values, obtained through statistical analysis, into a histogram 

which would clarify whether the data was enriched in true significant results (higher in the 

P<0.05 region) or whether it represented a set of significant p-values which were due to 

chance alone (where the histogram of p-values would be expected to look flat). Different 

percentages of missing values were considered during the analysis, but a missing value of 

50% was chosen in order to include the highest numbers of samples per protein yet still 

have confidence in the results. The option to impute missing values was considered, but it 

is known that not imputing data results in higher statistical power and confidence 

(Bantscheff et al., 2012, Webb-Robertson et al., 2015), therefore no imputation was carried 

out.  

Proteomic quantification data produced through 1D and 2D fractionation was explored in 

a variety of ways.  Although a number of driver genetic mutations are known to exist in 

cSCC, many of the proteins encoded by these genes (including NOTCH1, NOTCH2, p53, 

HRAS, NRAS, BRAF, PI3K (South et al., 2014, Pickering et al., 2014, Li et al., 2015) did not 

appear in the data in the current study. Some proteins such as CDKN2A, Kras and others 
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encoded by mutated genes reported in the South et al (2014), Pickering et al (2014) and Li 

et al (2015) publications appeared but in very few samples. However, the effects of the 

mutations are more likely to alter function than abundance of the mutated protein.  

Admittedly, IHC studies on cSCC have identified elevated levels of nuclear p53 in cSCCs 

(Missero and Antonini, 2014) but the use of FFPE samples in the proteomics is likely to have 

resulted in preferential enrichment of cytosolic proteins rather than those in the nucleus 

and/or membranes. Support for this comes from the use of the software programme, 

Panther, in the present study which indicated that approximately 10% - 15% of the proteins 

identified by mass spectrometry following 1D and 2D separation were attributed to a 

nuclear or membrane location.  

In order to identify proteins relevant to cSCC metastasis, multiple analyses were 

performed; these included classical statistics (Mann Whitney U test), String analysis/KEGG 

pathway enrichment, Gene ontology analysis, IPA, WGCNA and TDA. These analyses aimed 

to explore the data in different perspectives in order to provide a comprehensive view of 

the differences between P-M and P-NM cSCCs and to ultimately identify important 

pathways and proteins involved in the development of metastases from this cancer. In view 

of the vast numbers of differentially expressed proteins in P-Ms and P-NMs, it is not 

possible to discuss each individual protein in detail, but some of these proteins reoccur in 

several different types of analyses, suggesting that they play a role in driving metastasis. 

For example, Tenascin C (TNC) was identified in almost all of the analyses, including its 

involvement in multiple KEGG pathways, having a statistically significant difference in its 

levels between P-Ms and P-NMs, and being a driver between P-M and P-NM groups in the 

TDA. Tenascins are large extracellular glycoproteins involved in various cell functions 

including adhesion, signalling, proliferation and migration (Pas et al., 2006). TNC is elevated 

in several cancers including brain (McLendon et al., 2000), breast (Ioachim et al., 2002), 

cervical (Buyukbayram and Arslan, 2002), gastro-intestinal (Gazzaniga et al., 2005), head 

and neck (Atula et al., 2003), and melanoma (Ilmonen et al., 2004) and there is evidence 

that it may be involved in metastases of cancers from breast (Oskarsson et al., 2011) and 

colorectal origins (Gulubova and Vlaykova, 2006). Another protein found in most of the 

above analyses is glucosidase-α neutral AB (GANAB), an enzyme involved in cleaving 

glycoproteins. Interestingly, GANAB has been reported to show reduced expression in head 
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and neck cancers (Chiu et al., 2014), but there has been little research on this protein in 

other cancers.  

Some proteins identified, such as transketolase (TKT), Rab GDP dissociation inhibitor 2 

(GDI2), lumican (LUM), periostin (POSTN) and fibrinogen beta chain (FGB) were found to 

be significantly differentially expressed in multiple analyses but were not seen in the KEGG 

pathway analysis. Nonetheless, many of these proteins have been recognised as involved 

in cancer development. For example, TKT is a cellular enzyme involved in metabolism and 

has been reported to counteract oxidative stress and promote liver cancer development 

(Xu et al., 2016). GDI2 has been reported as a metastasis suppressor in bladder cancer by 

inhibiting Rho GTPases in the cytoplasm (Moissoglu et al., 2009). In this current study, 

however, we found an increase in both GDI2 and RAC1 (a Rho GTPase) in P-Ms  and, 

moreover, it has been reported previously that GDI2 promoted epithelial-mesenchymal 

transition (which is relevant for metastasis (Kalluri and Weinberg, 2009)) through RAC1 

mediated NF-κB activation (Cho et al., 2014). LUM, an extracellular matrix protein has been 

reported as a potential biomarker in cisplatin-resistant head and neck cancer (Yamano et 

al., 2010) and POSTN is an extracellular protein recognised as a promoter of epithelial-

mesenchymal transition and has been reported in several cancers, promoting metastasis 

(Morra and Moch, 2011). 

Many ribosomal proteins were identified as being differentially expressed, particularly 

ribosomal protein 13 (RPS13) which was identified in almost all analyses. RPS13 has been 

found in other cancers, for instance in gastric cancer (Guo et al., 2011) and in addition to 

RPS13, other ribosomal proteins such as RPS7, RPS20, RPS2, RPS28, RPL4, RPL6 and RPS10 

were also found to be significantly different between P-Ms and P-NMs in many analyses 

performed in the present study. Cancerous cells proliferate rapidly and as a result require 

increased protein synthesis (White-Gilbertson et al., 2009), but it is not clear whether the 

increase in ribosomal proteins in P-Ms is causally contributing to development of 

metastasis or whether this increase is simply a result of a more aggressive type of cancer.  

STRING/KEGG pathway analysis and gene ontology analysis identifies “areas of interest” 

based on significantly differentially expressed proteins. STRING analysis in the current 

study revealed clusters of interacting proteins, and mapping KEGG pathways on top of this 

structure revealed several pathways significantly enriched between P-Ms and P-NMs. One 
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such “pathway”, involving multiple proteins, was extracellular matrix receptor interactions 

(Figure 3:22). In addition, gene ontology analysis identified enrichment in extracellular 

matrix and extracellular matrix organisation (Figure 3:23, Figure 3:24). These findings 

suggest a strong involvement of extracellular matrix interactions in development of cSCC 

metastasis. The extracellular matrix is a complex network of proteins secreted by cells of a 

specific tissue (Venning et al., 2015). For metastasis to occur, a cancerous cell must 

separate from the primary tumour and invade adjacent tissue (Brodland and Zitelli, 1992). 

This is dependent on the composition of the extracellular matrix (ECM) and the ability of 

the cell to invade and migrate within this. Several proteins have been identified in this study 

as promoters of cancer cell migration in the ECM, including POSTN (Siriwardena et al., 2006, 

Michaylira et al., 2010), TNC (Venning et al., 2015) and ANXA5 (Peng et al., 2016, Ding et 

al., 2017). Furthermore, promotion of epithelial-mesenchymal transition of cells through 

interactions with ECM proteins has been reported, including several identified in this 

current study; examples are POSTN (Morra and Moch, 2011), GDI2 (Cho et al., 2014) and 

TNC (Nagaharu et al., 2011). 

Additional to these findings, this current study identified an enrichment in focal adhesion 

in gene ontology (Figure 3:23, Figure 3:24) and KEGG pathway analysis (Figure 3:20, Figure 

3:22), involving multiple highly significantly differentially expressed proteins (e.g. TNC, FN1, 

RAC1, VCL and multiple collagens). Focal adhesion is the formation of large assemblies 

between the proteins in the extracellular matrix and the integrins on the cell surface, and 

the resulting cell-matrix adhesions can have an effect on cell adhesion, migration and 

intracellular signalling (Nagano et al., 2012). IPA revealed significant activation of integrin 

signalling in P-Ms compared to P-NM (Figure 3:25). A number of integrins have been 

identified, as have their ligands, in the published literature, many of which were seen to 

differ in amount between P-Ms and P-NMs in this current study (e.g. TNC, FN1, POSTN, VCL 

and various collagens). Integrins are transmembrane proteins which can alter intracellular 

signalling, and have been reported to be involved in cSCC tumorigenesis and metastasis 

(and have been reviewed in a number of papers, e.g. (Eke and Cordes, 2015, Duperret and 

Ridky, 2013, Janes and Watt, 2006). A study investigating pancreatic cancer identified 

periostin (POSTN) as a ligand for α6 β4 integrin complex, resulting in an activation of PI3K-

AKt signalling (Baril et al., 2006). Furthermore, TGFβ has also been reported to induce 



Chapter 3 

120 

expression and intracellular localisation of EGFR (increased expression seen in Figure 3:25) 

which in turn activates the PI3K-Akt signalling pathway (Wendt et al., 2010).  

In this current study, PI3K-AKt signalling was found to be significantly enriched through 

KEGG pathway analysis (Figure 3:20, Figure 3:22) and IPA (Figure 3:25, Figure 3:26). PI3K-

AKt signalling plays a major role in cellular function, regulating proliferation, growth and 

survival, and when dysregulated is well known to play an important role in cancer (Osaki et 

al., 2004, Danielsen et al., 2015) and development of metastasis (Yao et al., 2017, Li et al., 

2017). The data in the current study also suggests an upregulation of ILK signalling in P-Ms 

(Figure 3:25), a pathway which has been reported to act with PI3K-Akt signalling to 

promote epithelial-mesenchymal transition (EMT), an important process in tumorigenesis 

and metastasis (Li et al., 2014). Many of the proteins identified in PI3K-AKt signalling in this 

current study were also involved in focal adhesion and/or extracellular matrix receptor 

interactions. These data collectively suggest an interaction between ECM, focal adhesion 

and PI3K-AKt signalling.  

Another significantly enriched area involving the ECM comprised exosomes, exocytosis and 

extracellular signalling seen in GO analysis (Figure 3:23, Figure 3:24) and IPA (Figure 3:25). 

Exocytosis is the process of ejecting molecules from the cell via vesicle fusion with the 

plasma membrane. A role for ANXA5 has been reported in exocytosis and membrane repair 

(Bouter et al., 2011), as has the calcium ion binding protein CALML5 (albeit in neurones) 

(Burgoyne and Clague, 2003), with both of these proteins found in the present study to be 

significantly differentially expressed between P-Ms and P-NMs. Furthermore, it has been 

suggested that primary tumours can secrete factors (through exocytosis) to transform 

distant sites into pre-metastatic niches (Kaplan et al., 2005), through effect on extracellular 

signalling. Exosomes secreted from primary tumours have received a lot of recent attention 

due to their ability to prime these pre-metastatic niches for metastatic spread (Costa-Silva 

et al., 2015, Hoshino et al., 2015, Peinado et al., 2011). 

WGCNA is a tool used to identify groups of heavily correlated genes in a dataset and relate 

them to clinical characteristics or identify pathway enrichment within them. Six modules of 

heavily correlated proteins were identified in this study, and these were arbitrarily labelled 

with a colour. The only module which was correlated (either positively or negatively) with 

metastasis was the blue one. This blue module expressed enrichment in many pathways 
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including various ribosomal activities and translation. Cancerous cells undergo rapid 

proliferation and therefore require timely protein synthesis and, generally, more 

aggressive tumours proliferate faster than less aggressive tumours. The blue module and 

its enrichment in protein processing and folding, seen in this current study, are therefore 

of no surprise. Furthermore, proliferation requires nucleotide binding and therefore the 

enrichment seen in these areas is also to be expected. The yellow module displayed 

enrichment in keratinisation and is understandably positively correlated to differentiation. 

The turquoise module showed significant pathway enrichment and was positively 

correlated to Clarks and CD1a peritumoural staining.   

Another analytical tool for the exploration of large data sets being used in ‘omics’ studies 

is topological data analysis (Bigler et al., 2016). Using 3 current major prognostic markers 

of cSCC (differentiation, depth and diameter), a TDA structure was generated in the current 

study that largely distinguished outcome between most samples into P-Ms and P-NMs. This 

in itself suggests that TDA is a useful method to distinguish between P-M and P-NM 

tumours using certain histological characteristics. The proteomic data in the current study 

generated a TDA structure that largely distinguished between P-Ms and P-NMs. This, taken 

in conjunction with the earlier analysis of the proteomic data, suggests that TDA might be 

useful as an approach to identify a useful prognostic marker to distinguish between primary 

cSCC lesions which will and those which won’t go on to metastasise. It is unclear at the 

present time whether a whole proteomic TDA or a targeted assay comprising of several 

proteins would produce a better prognostic marker, however, each approach will require 

further investigation and validation on a larger sample size.  

To date, this is one of the largest mass spectrometry based proteomics studies on cSCC. 

Furthermore, it is one of the largest mass spectrometry based proteomic studies carried 

out on FFPE samples. More importantly, this study identified a number of potential 

biomarkers for metastasis in cSCC in addition to identifying several key pathways involved.  
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 Verification and validation of cutaneous 

squamous cell carcinoma protein biomarkers using targeted 

mass spectrometry and machine learning 

4.1 Introduction 

Multiple reaction monitoring (MRM) is a targeted proteomic approach which utilises 

isotopically labelled peptides by the incorporation of heavy isotopes, to accurately 

determine the concentration of the native counterpart in a sample. Depending on the 

preciousness of the tissue samples and the number of samples, it is common to create a 

reference calibration curve of increasing amounts of heavy peptides to avoid the need to 

create a calibration curve within each sample. Typically, a sample is ‘spiked’ with a known 

concentration of heavy labelled peptide which is then ionised, usually by ESI. Ions are then 

separated in an initial mass analyser (often a quadrupole) to only allow the heavy and 

native peptides of interest to pass through. Ions are then fragmented using collision-

induced dissociation and the resulting products, known as transitions, are detected with a 

final mass analyser (Picotti and Aebersold, 2012). Using the known amount of heavy 

peptide and the ratio of heavy to light peptide, it is possible to calculate the concentration 

of the light (i.e. native) peptide (Figure 4.1). 

The development of an MRM experiment requires prior information of the target to be 

measured, usually inferred from previous data acquired. Peptides specific to proteins are 

usually identified from a discovery experiment or can be selected based upon previously 

acquired proteomic data from the Proteomics IDEntification (PRIDE) database (Vizcaino et 

al., 2016). However, peptides identified using PRIDE must first be validated in one’s tissue 

samples to ensure that the peptides are indeed present (and in sufficient quantities to be 

able to be measured). Alternatively, it is possible to create an archive of spectra from 

previous experiments, where peptides identified have corresponding spectra in a library 

known as a “spectral library”. This library can then be used to identify unique proteins, 

peptides and fragment ions (transition ions) within the samples measured. Skyline is a 

software designed to aid in the development, implementation and analysis of MRM 

experiments. Skyline is capable of creating a spectral library from previous data and can 



Chapter 4 

124 

identify unique peptides to specific proteins (MacLean et al., 2010, Liebler and Zimmerman, 

2013). In addition to choosing unique peptides, it is important to pick unique fragments 

(transition ions) for each peptide. This is because MRM, as the name implies, looks at 

multiple targets, therefore it is imperative that two or more fragments with the same mass 

are not selected, otherwise the measurement of these ions will give inaccurate results.  

 

Figure 4:1: Flow diagram of multiple reaction monitoring.  

Top; A calibration curve of heavy labelled peptide is created: Samples are ionised and 

heavy labelled peptides are then isolated in a mass analyser. Peptides are fragmented in a 

CID cell, then precursors and transitions are measured. The peak area and known 

concentration are plotted to give a calibration curve. Bottom; Samples are spiked with 

heavy labelled peptides of interest and then ionised: Peptides of interest are isolated and 

these peptides are fragmented in the CID cell. A mass analyser measures the amount of 

heavy and light ions of interest. The peak area of heavy peptide is plotted on a calibration 

curve to find it’s true concentration. The concentration of the heavy peptide is divided by 

the ratio of the heavy to light peptides to calculate the concentration of the light peptide. 

CID, collisional induced dissociation. 

MRM has been used in a wide array of disciplines (Liebler and Zimmerman, 2013), including 

animal husbandry (Kusebauch et al., 2018) and meat authentication (Watson et al., 2015) 

but is most notably used in systems biology (Elschenbroich and Kislinger, 2011) and 

biomarker discovery/validation (Picotti and Aebersold, 2012).  In terms of systems biology, 
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examples where MRM has been used include elucidation of the beta-catenin signalling 

pathway (Chen et al., 2010) in addition to measuring a network of growth proteins from 

S.cerevisiae (Picotti et al., 2009). Biomarker discovery and validation using MRM has led to 

candidate biomarkers for ovarian cancer (Wang et al., 2017), colorectal cancer  (Kume et 

al., 2014), oral cancer (Chen et al., 2017b) and prostate cancer (Yocum et al., 2010) amongst 

others. 

As MRM produces an absolute quantification measurement, it is possible to do classical 

statistical analysis on the results, in addition to more elaborate interrogation. An 

increasingly attractive area in medicine and biomarker discovery is predictive modelling. 

Predictive modelling is the technique of using machine learning on known data to predict 

unknown data. Machine learning has been used in a variety of fields, including, but not 

limited to, diabetes (Kavakiotis et al., 2017), depression (Dipnall et al., 2016) ageing (Fabris 

et al., 2017) and cancer (Hornbrook et al., 2017, Lynch et al., 2017, Yu et al., 2016, Gupta 

et al., 2014). 

4.2 Methods 

A total of 101 samples were used in this chapter, consisting of 22 P-M samples (of the 24 

P-M samples used in discovery) and 22 P-NM samples (of the 24 P-NM samples used in 

discovery) for verification and 28 P-M and 29 P-NM samples for validation.  

4.2.1 Selecting suitable proteins for verification and validation 

Our laboratory had already carried out some previous work on transketolase (TKT) and 

therefore had some isotopically labelled heavy peptides of this protein. As TKT was 

identified as significantly differentially expressed in both 1D data and 2D data, it was 

decided to take forward for verification and validation. A list of all combinations of proteins 

that were significantly differentially expressed in both 1D data and 2D data, where one 

protein was always TKT, was created. For example, the first row of the list would be TKT, 

protein 2, protein 3, followed by the second row which would be TKT, protein 2, protein 4, 

and so on.  
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1D data and 2D data were both, separately, split into a training data set (67% of all data) 

whereby a glm model (using each combination of proteins as predictors) was trained 

through 5-fold cross validation repeated 3 times and allowing an automatic tune length of 

5. The remaining 33% of data was used as a test set to test the final models produced from 

the training stage. The 1D and 2D AUCs of each model from the different combinations of 

proteins were summed to rank models and identify which proteins could best predict 

metastasis in the discovery cSCC proteomic data.  

4.2.2 Using targeted proteomics to verify and validate original findings 

A spectral library of the discovery proteomics data was created as outlined in chapter 

2.9.3.1. Targeted proteomics was carried out as described in chapter 2.9.3.2. Briefly, 

isotopically heavy labelled peptides were initially analysed using a Synapt G2-Si high 

resolution mass spectrometer, to assess their suitability as MRM targets. A serial halving 

dilution of each peptide was then analysed in a background cSCC peptide matrix to 

determine calibration data. 

100fmol of each isotopically heavy labelled peptide was spiked into 22 P-M samples (of the 

24 P-M discovery samples) and 22 P-NM samples (of the 24 P-NM discovery samples) and 

analysed on a Synapt G2-si mass spectrometer. Calibration data achieved in the initial 

analysis of heavy labelled peptides was used to calculate the true amount of each heavy 

labelled peptide in each sample. Using the light: heavy ratio, it was then possible to 

calculate the amount of native peptide in each sample.  

4.2.3 Time to metastasis plot 

R and the packages survminer and survival were used to create “time to metastasis” plots. 

Time “0” was determined as the date of excision and counted in days until metastasis 

occurred or in occasions where metastasis was present at excision, time of metastasis was 

also defined at 0. In instances where metastasis was not present (i.e. P-NMs), time to 

metastasis was set at 5 years (1,825 days), which was the cut off for the P-NM criteria. High 

and low expression was defined as either above or below the median, respectively. P values 

were obtained by log-rank test.  
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4.2.4 Predictive modelling on verification and validation data 

Verification and validation MRM data was pooled together (to total 101 samples) and split 

into training (67%) and test sets (33%). Various algorithms were used to create models on 

the training set, whereby the predictors were the MRM peptide data. Models were created 

using 10 fold cross validation repeated 3 times. Models were compared to assess 

conformity and correlation to select best models for stacking.  

The final model was tested on the test data to produce a ROC curve. Current guidelines 

were used on the data to acquire a sensitivity and specificity which was then plotted on the 

ROC curve. Sensitivities and specificities were also taken from the Roscher et al (Roscher et 

al., 2018) paper.  

4.3 Results 

4.3.1 Selecting suitable proteins for Multiple Reaction Monitoring (MRM) analysis 

Machine learning on the discovery proteomic data was performed to identify which 

proteins had the best power to predict metastasis. As previously mentioned, our laboratory 

had access to transketolase (TKT) heavy labelled peptides and, as a result, all models were 

created to incorporate TKT (uniprot ID: P29401), the other 2 markers being one of every 

combination of proteins that were significantly differentially expressed between P-M and 

P-NM in both the 1D and 2D data. The top model consisted of P29401 (TKT), P39656 

(Dolichyl-diphosphooligosaccharide--protein glycosyltransferase 48 kDa subunit, DDOST) 

and P08758 (Annexin A5, ANXA5) (Table 4:1). An AUC of the ROC curve of 0.9 and 0.938 

was produced on 1D and 2D data, respectively.  
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Table 4.1: Top 10 protein combination models produced to classify samples as P-M or P-

NM.  

ROC, receiver operating characteristic. AUC, area under curve. 
Identifiers are Uniprot IDs 

4.3.2 Selecting suitable peptides for Multiple Reaction Monitoring (MRM) proteins 

Once the biomarker candidates of interest had been selected, they were matched against 

the Skyline spectral library (created from proteomics data produced in the discovery phase) 

to assess their suitability to be used for MRM analysis. Skyline was also used to identify 

unique peptides for DDOST and ANXA5 which had multiple, high intensity transition ions 

(Figure 4.2). The three heavy labelled TKT peptides we had in our laboratory were matched 

against the spectral library where it was highlighted that only 1 of the 3 were detected in 

the discovery data and so could not possibly be correctly referenced (as the ms/ms spectra 

is unknown). Nonetheless, the remaining 7 peptides were present in the discovery data 

with high spectral counts (number of spectra per peptide) and at high intensities, indicating 

they would be good MRM candidates. Table 4.2 is a table of the unique peptides selected 

for each protein with their m/z and the most suitable transition ions. Therefore the 6 

peptides for DDOST and ANXA5 were synthesised with heavy isotopes incorporated into 

their structure.  

 

Marker1 Marker2 Marker3 1D 
ROC 
AUC 

1D ROC 
Sensitivity 

1D ROC 
Specificity 

2D 
ROC 
AUC 

2D ROC 
Sensitivity 

2D ROC 
Specificity 

SUM 1D 
& 2D ROC 

AUCs 
P29401 P39656 P08758 0.9 1 0.667 0.938 1 0.75 1.838 

P29401 P51884 Q9NZT1 0.889 1 0.667 0.767 1 0.6 1.656 

P29401 Q15582 P08758 0.875 0.75 1 0.778 1 0.5 1.653 

P29401 P51884 P08758 0.813 0.75 1 0.833 1 0.6 1.646 

P29401 P50990 P08758 0.933 0.833 1 0.7 0.5 1 1.633 

P29401 P39656 P51884 0.88 0.8 1 0.75 0.5 1 1.63 

P29401 P62937 P08758 0.939 1 0.714 0.667 0.429 1 1.605 

P29401 P07237 P51884 0.905 0.857 1 0.7 0.833 0.6 1.605 

P29401 Q15063 P62277 0.85 0.6 1 0.75 0.857 0.75 1.6 

P29401 P08758 Q9NZT1 0.857 0.833 0.857 0.738 0.429 1 1.595 
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Figure 4:2: Unique peptides of candidate biomarkers showed several transition ions 

identified in spectral library.  

Three Unique peptides for both DDOST and ANXA5 were identified and compared to the 

spectral library created from the discovery proteomic data. Each peptide displayed a 

number of transition ions found in the spectral library and at high intensities. As work on 

TKT had been carried out previously in our lab, we used the heavy labelled peptides 

already purchased. 1 of these 3 peptides was identified in the cSCC spectral library with 

good transition ions, the remaining 2 were not. 
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Table 4.2. The unique peptides selected for each protein of interest with their m/z and 

transition ions 

TKT, Transketolase. DDOST, Dolichyl-diphosphooligosaccharide--protein glycosyltransferase 48 kDa subunit. 
ANXA5, Annexin A5. m/z, mass to charge ratio 

4.3.3 Predictive power of DDOST and ANXA5 

As DDOST and ANXA5 were selected by creating a predictive model in conjunction with TKT 

and it was unclear whether there would be sufficient data from TKT to contribute to such 

a model, DDOST and ANXA5 were assessed for their predictive power alone (Figure 4.3). 

Using discovery proteomic data of DDOST and ANXA5, a number of different algorithms 

were used to build predictive models, including glm (Nelder and Wedderburn, 1972), knn 

(Cover and Hart, 1967), svm (Vapnik and Chervonenkis, 1974), nb (Duba and Hart, 1973), 

c5.0 (Breiman et al., 1984), rf (Breiman, 1999), bagging (Breiman, 1996) and cart (Steinberg, 

2009). A full list of the algorithms used in this thesis can be found in Appendix 4. Models 

were trained on DDOST and ANXA5 discovery proteomic data using 5 fold cross validation 

repeated 3 times.  

The glm algorithm produced a model with the highest ROC score and therefore this was 

explored further. 1D and 2D proteomic data were trained and tuned using the glm 

algorithm (Figure 4.4) and an average AUC (area under the curve) of 0.82 was obtained 

from and AUC of 0.84 on 2D proteomic data and 0.80 on 1D proteomic data. These models 

suggest that DDOST and ANXA5 would have potential predictive power without 

incorporating TKT into the prediction.   

PROTEIN PEPTIDE M/Z AT  
CHARGE 
2 

TRANSITION IONS MODIFIED PEPTIDE  
SEQUENCE  

M/Z AT  
CHARGE 2 

TRANSITION IONS 

TKT  IIALDGDTK 473.2662 
648.3199, 535.2358, 
420.2089 

IIALDGDTK[13C6, 15N2] 477.2733 
656.3341, 543.25, 
428.2231 

DDOST 

TLVLLDNLNVR 635.3799 
1055.6208, 
843.4683, 615.3573 

TLVLLDNLNVR[13C6, 15N4] 640.384 
1065.629, 853.4766, 
625.3656 

GFELTFK 421.2264 
637.3556, 395.2289, 
294.1812 

GFELTFK[13C6, 15N2] 425.2335 
645.3698, 403.2431, 
302.1954 

SSLNPILFR 523.8033 
872.5352, 759.4512, 
435.2714, 175.1190 

SSLNPILFR[13C6, 15N2] 528.8074 
882.5435, 769.4595, 
445.2797, 185.1272 

ANXA5 

GLGTDEESILTLLTSR 852.9543 

1376.7268, 
1132.6572, 
803.4985, 690.4145, 
476.2827 

GLGTDEESILTLLTSR[13C6, 15N4] 857.9585 

1386.7350, 
1142.6655, 
813.5068, 700.4227, 
486.2910 

FITIFGTR 477.774 
807.4723, 964.3883, 
593.3406, 480.2565, 
333.1881 

FITIFGTR[13C6, 15N4] 482.7781 
817.4806, 704.3965, 
603.3488, 490.2648, 
343.1964 

SEIDLFNIR 553.7957 
890.5094, 777.4254, 
662.3984, 549.3144, 
175.1190 

SEIDLFNIR[13C6, 15N4] 558.7998 
900.5177, 787.4336, 
672.4067, 559.3226, 
185.1272 
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Figure 4:3: Demonstrating the predictive ability of DDOST and ANXA without TKT.  

To establish whether a predictive model could be produced if the MRM on TKT didn’t 

produce useful data, a number of different, simple, machine learning algorithms were 

trained using 5 fold cross-validation repeated 3 times on DDOST and ANXA5 discovery 

proteomic data. It was evident that, in the absence of TKT data, DDOST and ANXA5 still 

have significant potential to predict outcome. Box and whiskers depict resampling 

performance range. Dots report median, boxes give interquartile range and whiskers give 

range. Hollow points depict outliers. Glm, generalised linear model. Knn, K’s nearest 

neighbour. SVM, support vector machine. Nb, Naïve Bayes. Rf, Random forest. Cart, 

classification and regression trees. 
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Figure 4:4: DDOST and ANXA5 have an average AUC of 0.82 when trained using 5 fold 

cross validation repeated 3 times on DDOST and ANXA5 discovery proteomic data.  

glm was identified as a potentially suitable algorithm so it was trained and tuned on 1D 

(blue) and 2D (green) DDOST and ANXA5 discovery proteomic data to reveal a model 

capable of categorising P-M and P-NM samples. AUC, area under the curve 

4.3.4 MRM peptide calibration curves 

Heavy labelled peptides were initially analysed on a synapt G2-Si high resolution mass 

spectrometer in targeted acquisition mode at a concentration of 100fmol to assess the 

chromatography of each peptide. Chromatograms and accompanying mass spectra were 

imported into Skyline for analysis (Figure 4.5). Chromatography demonstrated good 

intensities and good peak widths/shapes of precursor ions and associated transitions ions. 

The chromatograms of all of the peptides were within the predicted retention time window 

apart from Peptide 1, ANXA5, which was earlier than predicted. Nonetheless, it was the 

only peak of significant intensity where the precursors and transition ions matched and was 

therefore selected as the peptide peak.  
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Figure 4:5: MRM chromatography of the selected heavy peptides.  

Each of the seven peptides produced clear chromatographic peaks, with matching peaks 

corresponding to MRM transitions. Intensities were sufficient for reliable measurements 

to allow quantification of the heavy peptide and to correlate it with the original amount 

loaded heavy peptid. Peptide 1 for ANXA5 was not observed in the predicted retention 

time window (blue shading) but was confirmed via its corresponding transition ions. 

Once quantification of heavy peptides had been established by assessing chromatography, 

calibration curves for each heavy labelled peptide were produced to enable later 

determination of the native peptide concentration in unknown samples. A two fold dilution 

series from 200fmol down to 0.78125fmol of each heavy peptide was used for the MRM 

experiments, with 1µg of cSCC peptide background matrix added to each sample as an 

internal standard. Peak areas of TKT followed the expected linear trend of the dilution 

series and the standard cSCC background matrix appeared consistent (Figure 4:6). 
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Figure 4:6: Calibration of TKT heavy peptide 1 for MRM 

Calibration data of the heavy labelled TKT peptide was created using MRM on a twofold 

dilution of heavy peptide amounts from 200fmol to 0.78125fmol (blue). 1µg of cSCC 

peptide background matrix was used as internal standard (red). Peptide sequence and 

m/z shown for both light (red) and heavy, (blue) peptides. 

A similar dilution calibration curve was produced for DDOST (Figure 4.7) and ANXA5 (Figure 

4.8) peptides. Each peptide had a linear trend, as was to be expected of a dilution series. 

The internal standard was also fairly consistent between peptides.  
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Figure 4:7: Calibration of DDOST heavy peptides 1,2 and 3 for MRM.  

Calibration data of the heavy labelled DDOST peptide was created using MRM on a 

twofold dilution of heavy peptide amounts from 200fmol to 0.78125fmol (blue). 1µg of 

cSCC peptide background matrix was used as internal standard (red). Peptide sequence 

and m/z shown for both light (red) and heavy, (blue) peptides. 
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Figure 4:8: ANXA5 peptide calibration data from MRM of ANXA5 heavy peptides 1, 2 

and 3.  

Calibration data of the heavy labelled ANXA5 peptide was created using MRM on a two 

fold dilution of heavy peptide amounts from 200fmol to 0.78125fmol (blue). 1µg of cSCC 

peptide background matrix was used as internal standard (red). Peptide sequence and 

m/z shown for both light (red) and heavy, (blue) peptides. 

A linear regression of the MRM results of each heavy peptide compared with the sample 

amount of each heavy peptide was performed to obtain a slope and an R2 value. The R2 

value is also known as the coefficient of determination and is an indication of how 

predictive one variable is on the other, in this case, how much the peak area can predict 

the analyte concentration of the heavy peptide. The slope can later be used to calculate 

the analyte concentration in a sample, when the peak area of the light and heavy peptides 

of that sample has been obtained using MRM. All of the selected heavy peptides had an R2 

value above 0.9, indicating a good ability to quantify analyte concentration using MRM. TKT 

had an R2 of 0.9827 (Figure 4.9) and each of the three peptides for DDOST had R2 values of 
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0.9773, 0.9288, and 0.9814 (Figure 4.10) and for ANXA5 had R2 values of 0.9245, 0.9916, 

and 0.9355, (Figure 4.11).  

 

Figure 4:9: Linear regression of TKT peak area of MRM peptide to inputted analyte 

concentration. 

MRM heavy peptide data was imported into Skyline to acquire peak areas for each 

concentration and a linear regression model fitted between MRM peak area and analyte 

concentration. 

 

 

Figure 4:10: Linear regression of DDOST peak area of MRM peptides to inputted analyte 

concentrations. 

Dilution calibration curve was imported into Skyline to acquire peak areas for each 

concentration and a linear regression model fitted between MRM peak area and analyte 

concentration. 
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Figure 4:11: Linear regression of ANXA5 peak area of MRM peptides to inputted analyte 

concentration. 

Dilution calibration curve was imported into Skyline to acquire peak areas for each 

concentration and a linear regression model fitted between MRM peak area and analyte 

concentration. 

4.3.5 Verification of protein biomarkers from discovery proteomics 

After the production of suitable calibration data for each MRM peptide, each discovery 

proteomic sample was investigated using MRM, with the addition of 100fmol heavy 

peptide. Results were imported into Skyline and corresponding peaks identified and 

selected. The peak area of the heavy peptide was used with the linear regression from the 

calibration data to calculate the “corrected” amount of heavy labelled peptide in each 

sample. Using the corrected amount of heavy peptide and dividing it by the ratio of light 

(native) to heavy, the amount of native peptide in the sample could be accurately 

quantified. There was no significant difference of the TKT peptide measured between P-M 

and P-NM (Figure 4.12). However, the MRM results indicated that there was significantly 

more DDOST in the P-M than P-NM samples, consistent with what had been previously 

identified in the discovery proteomics (Figure 4.13). Furthermore, there was also 

significantly more ANXA5 in the P-M than P-NM cSCCs, which was also similar to that 

observed in the discovery proteomics (Figure 4.14). An average for each of the proteins, 

DDOST and ANXA5, were calculated used the mean of their three respective peptides. Both 

of these means were significantly different between P-M and P-NM. 
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Figure 4:12: MRM verification of TKT.  

Concentration of the TKT native peptide was determined by dividing the corrected 

concentration of the heavy peptide by the ratio of heavy:light peptide peaks (as per figure 

4.1). Mann-Whitney U test for significance. Error bars are the median with interquartile 

range  

 

Figure 4:13: MRM verification of DDOST peptides and overall protein.  

Concentration of native peptide was determined by dividing the calculated concentration 

of the heavy peptide by the ratio of heavy:light peptide peaks. An average of all 3 peptides 

was calculated using the mean. Mann-Whitney U test for significance. Error bars are 

median with interquartile range  
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Figure 4:14: MRM verification of ANXA5 peptides and overall protein. 

 Concentration of native peptide was determined by dividing the calculated concentration 

of the heavy peptide by the ratio of heavy:light peptide peaks. An average of all 3 peptides 

was calculated using the mean. Mann-Whitney U test for significance. Error bars are 

median with interquartile range  

4.3.5.1 Histological verification of L-Plastin 

Although MRM successfully verified the discovery findings, we chose to investigate 

whether these findings could also be validated via a third, independent method, 

immunohistochemistry. L-plastin is a protein found in 68% of carcinomas and 53% of solid 

tumours (Lin et al., 1993) and is also known to have an important role in the activation of 

T-cells (Wabnitz et al., 2007). For these reasons, it was hypothesised there would be more 

L-plastin+ cells in the P-M group than the P-NM group. To investigate this, 

immunohisochemical staining for L-Plastin was carried out on the discovery proteomic 

samples (Figure 4.15). L-Plastin+ cells were identified predominantly in the stroma of the 

cSCCs with few L-Plastin+ cells in the tumour islands.  Consistent with the result of the 

discovery proteomics, there was significantly more L-Plastin+ cells in P-M samples 

compared to P-NM cSCCs (P=0.0136).  
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Figure 4:15: Immunohistochemical staining of L-Plastin in P-M and P-NM samples.  

Slides were subjected to standard IHC protocols and stained using a rabbit monoclonal 

antibody to L-Plastin.  Representative images of L-Plastin stain are shown on the right side 

of the figure, where top panel is P-M and bottom panel is P-NM. P values obtained through 

Mann Whitney U test for significance. 

4.3.6 Machine learning on Multiple Reaction Monitoring (MRM) verification data 

Using the data from the MRM performed on the cSCCs above (henceforth referred to as 

the “MRM peptide verification data”), different machine learning algorithms were trained 

using 5 fold cross validation repeated 3 times. The peptide MRM data (Figure 4.16) and 

“protein” MRM data (mean of peptides) (Figure 4.17) was trained on 13 different machine 

learning algorithms. The results from these algorithms suggested that although the MRM 

data for DDOST and ANXA5 have some predictive power, there wasn’t an obvious model 

that outperforms the others; in fact most of the models appear to be relatively weak 

learners, scoring <0.8 AUC. To further validate the above findings, it was decided upon to 

carry out DDOST and ANXA5 MRM analysis on a previously unseen separate sample cohort 

of cSCCs.  
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Figure 4:16: MRM peptide verification data for DDOST and ANXA5 were subjected to 

several different machine learning algorithms to assess the predictive power of the data.  

5 fold cross validation repeated 3 times was carried out on all MRM peptide verification 

data. Error bars are confidence intervals. Nb, Naïve Bayes. SVM, support vector machine. 

Knn, K’s nearest neighbour. Glm, generalised linear model. Xgb, extreme gradient 

boosting. Rf, random forest. Lda, linear discriminant analysis. Cart, classification and 

regression trees. 
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Figure 4:17: MRM protein verification data for DDOST and ANXA5 were subjected to 

several different machine learning algorithms to assess the predictive power of the data.  

5 fold cross validation repeated 3 times was carried out on all MRM peptide averages (the 

“protein” data). Error bars are confidence intervals. Nb, Naïve Bayes. SVM, support vector 

machine. Knn, K’s nearest neighbour. Glm, generalised linear model. Xgb, extreme 

gradient boosting. Rf, random forest. Lda linear discriminant analysis. Cart, classification 

and regression trees. 

4.3.7 Validation of DDOST and ANXA5 results on new set of cutaneous Squamous 

Cell Carcinoma (cSCC) samples 

A new set of cSCCs were selected and processed for proteomic analysis according to the 

same criteria as the discovery samples. A table of clinical characterisations of the samples 

used for validation can be found in Table 4:2. Briefly, there was 28 P-M samples and 29 P-

NM samples, each with a similar male to female ratio. There were more, well differentiated 

tumours in the P-NM group and more, poorly differentiated tumours in the P-M group, as 

was to be expected. P-M samples were also typically larger in diameter and depth, 

compared to P-NM samples.  
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Table 4.3: Clinical and histological details of cSCC samples used for validation MRM 

analysis.   

 

P-M P-NM 

Number of Samples 28 29 

Male 
21 

(75.00%) 
20 

(68.96%) 

Female 
7 

(25.00%) 
9 

(31.03%) 

Well differentiated 
0 

(0.00%) 
11 

(37.93%) 

Moderately differentiated 
8 

(28.57%) 
12 

(41.38%) 

Poorly differentiated 
20 

(71.43%) 
6 

(20.69%) 

Perivascular invasion 5 
(17.86%) 

1 
(3.45%) 

Perineural invasion 
6 

(21.43%) 
1 

(3.45%) 

Immunosuppressed 
4 

(14.29%) 
5 

(17.24%) 

Mean  Tumour depth (mm) 8.54 ± 7.19 4.45 ± 2.93 
Mean Tumour diameter 
(mm) 32.91 ± 38.85* 13.33 ± 8.19 

P-M, Primary metastatic. P-NM, Primary non-metastatic.  
*outlier with 210mm diameter included 

MRM was carried out in the same manner as for the earlier verification MRM analysis. 

Calibration data that were created for the verification MRM experiments were also used in 

the validation cohort of samples to calculate the “corrected” amount of heavy peptide in 

the cSCC samples and subsequently the amount of the native peptide of interest. Similar 

to the results of the discovery proteomics and the verification MRM experiments, there 

was significantly more DDOST (Figure 4.18) and ANXA5 (Figure 4.19) in the P-M than in the 

P-NM samples. 
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Figure 4:18: MRM Validation of DDOST peptides and overall protein.  

Concentration of native peptide was determined by dividing the calculated concentration 

of the heavy peptide by the ratio of heavy:light peptide peaks on MRM. An average of all 

3 peptides was calculated using the mean. Mann-Whitney U test for significance. Error 

bars are median with interquartile range  
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Figure 4:19: MRM validation of ANXA5 peptides and overall protein.  

Concentration of native peptide was determined by dividing the calculated concentration 

of the heavy peptide by the ratio of heavy:light peptide peaks on MRM. An average of all 

3 peptides was calculated using the mean. Mann-Whitney U test for significance. Error 

bars are median with interquartile range  
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The MRM data from all the cSCC samples (discovery/verification groups and validation 

groups) along with the number of days until metastasis occurred, from the initial 
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respectively. There was a significant positive association between high DDOST expression 

and a quicker time to metastasis (Figure 4.20). There was also a significant positive 

association between high ANXA5 expression and a quicker time to metastasis (Figure 4.21). 
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Furthermore, high expression of both DDOST and ANXA5, combined, was significantly 

associated with a shorter time to metastasis (Figure 4.22).   

 

Figure 4:20: The effect MRM DDOST data has on time to metastasis.  

Time to metastasis was deduced from the number of days between the initial dermatology 

clinic attendance and the identification of metastasis. High and low expression was defined 

as above or below the median as per Figure 4:18.  P value obtained through Log Rank test. 
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Figure 4:21: The effect MRM ANXA5 data has on time to metastasis.  

Time to metastasis was determined from the number of days between the initial 

dermatology clinic attendance and the identification of metastasis. High and low 

expression was defined as above or below the median from Figure 4:19.  P value obtained 

through Log Rank test. 
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Figure 4:22: The effect combined high expression of MRM DDOST and ANXA5 data has 

on time to metastasis.  

High expression denotes samples that had high DDOST and high ANXA5 expression 

(defined as above the median value for each of these proteins). Time to metastasis was 

deduced from number of days between the initial dermatology clinic attendance and the 

identification of metastasis. P value calculated using Log Rank test.  

4.3.9 Machine learning on all Multiple Reaction Monitoring (MRM) data 

It was decided that the peptide MRM data would be more suitable for modelling than the 

protein MRM data as this is a simplification of the original (peptide) data. For instance, the 

proteins MRM data is derived from the peptide data, and so by using the “raw” peptide 

data, hidden trends should be maintained, whereas if the averaged protein data was used, 

these might become less prominent. All MRM samples (from the verification and validation 

data) were pooled together, totalling 50 P-M samples and 51 P-NM samples. For machine 

learning and to build a predictive model which could later be tested, these samples were 

randomly split into training (67%) and testing (33%) cohorts. Models were trained using 10 

fold cross validation repeated 3 times. 13 widely varying machine learning algorithms were 

trained on the training cohort (Figure 4.23). None of the tested models appeared 

significantly better than the others. Furthermore, it appeared that similar to the verification 

MRM, all of the tested models were relatively weak learners, highlighted by their relatively 

low AUC scores.  
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Figure 4:23: Applying different machine learning algorithms to the MRM data from the 

combined verification and validation samples. 

All peptide MRM data was split into training (67%) and testing (33%) cohorts. Different 

algorithms were trained on the training set using 10 fold cross validation repeated 3 times. 

Error bars are confidence intervals. Nb, Naïve Bayes. Xgb, extreme gradient boosting. Gbm, 

gradient boosting model. Rf, random forest. Svm, Support vector machine. Knn, K’s 

nearest neighbour. Lda, linear discriminant analsysis, glm, generalised linear model. 

“Ensemble modelling” is the approach of taking several weak learners and using them 

together to create a strong, top level learner. Stacked ensemble modelling is a type of 

ensemble modelling and is the process of creating several weak learners which attempt to 

solve a problem and using a meta-learner on these models’ predictions to solve the same 

problem better. For a stacked model to work, there needs to be little conformity between 

model predictions as if there is conformity amongst models, the correlated predictions will 

inherently be weighted more by the meta-learner. With this is mind, a correlation matrix 

of predictions produced by the models tested was generated (Figure 4.24). A high 

correlation is hard to define, but typically any pairwise correlation over 0.75 is probably too 

correlated for a stacked model. Using the correlation matrix, it was identified that glmnet, 

knn, adaboost, xgbDART and gbm did not seem overly correlated but still had good AUCs 

suggesting each of the models are correctly classifying different samples.  
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Figure 4:24: Testing for correlation of the mathematical models applied to the MRM 

data.  

Predictions from models were correlated and visualised in a correlation matrix to assess 

their conformity. A group of mathematical models of the MRM data which exhibit low 

correlation is desirable for generation of a stacked ensemble model, because a meta-level 

learner applied to multiple uncorrelated models can learn from each model and correctly 

classify samples where models disagree. Nb, glmnet, knn, adaboost, xgbDART and gbm 

show minimal correlation and thus these models displayed suitability for stacking. Nb, 

Naïve Bayes. Xgb, extreme gradient boosting. Gbm, gradient boosting model. Rf, random 

forest. Svm, Support vector machine. Knn, K’s nearest neighbour. Lda, linear discriminant 

analysis, glm, generalised linear model. Blue crosses indicate correlation above 0.75. 

A typical meta-learner is either a decision tree or neural network as it is able to identify 

complex patterns in simple data, i.e. predictions from weaker learners. For this reason, an 

extreme gradient boosted tree algorithm was used. This in itself is a type of ensembling 

called boosting whereby weak learners are sequentially applied to a dataset and learn after 

each iteration with the weight of each learner depending on its accuracy. An overview of 

the stacked ensemble model produced can be seen in Figure 4.25.  
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Figure 4:25: Overview of stacked model used to predict metastasis in cSCC from DDOST 

and ANXA5 MRM data.  

Selected models, based on their High ROC score and low correlation to other models, were 

trained on the DDOST and ANXA5 MRM data from the training group of cSCCs (67%) using 

10 fold cross validation repeated 3 times. Predictions from each model were then 

submitted to a top level meta-classifier which was also trained using 10 fold cross 

validation repeated 3 times. The final top level model was then used to predict the 

likelihood of metastases in the testing data set of cSCCs (33%).  

The stacked ensemble model produced a ROC curve with an AUC of 0.929 (confidence 

interval 0.8277 – 1) (Figure 4.26). This suggested that the model is better at predicting 

likelihood of metastases from primary cSCC than any other clinical scoring systems 

currently in use, including the British Association of Dermatologists (BAD) and American 

Joint Committee on Cancer (AJCC) scoring systems. An optimal threshold in the ROC curve 

generated by the model would give rise to a sensitivity of 88.24% and a specificity of 

94.12%, or if sensitivity were to be favoured, a sensitivity of 94.12% and a specificity of 

82.36%. 
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Figure 4:26: The final predictive model using DDOST and ANXA5 MRM data.  

The stacked ensemble model was tested on the test set of data and a corresponding ROC 

curve produced. Evaluation of current clinical scoring systems in use that determine high 

and low risk of metastasis were applied to the cSCC samples used for MRM (red points). A 

study by Roscher et al assessed current clinical scoring systems and reported their 

sensitivities and specificities (blue points). AUC confidence interval = 0.8277 - 1. BAD, 

British Association of Dermatologists. EDF, European Dermatology Forum. BWH, Brigham 

Women's Hospital. AJCC, American Joint Committee on Cancer. UICC, Union for 

International Cancer Control. AUC, area under the curve. 

4.4 Discussion 

The aim of this chapter was to identify potentially important proteins from the discovery 

proteomic data generated in chapter 3 and validate those findings as well as assess their 

potential as prognostic biomarkers. From the discovery proteomics, there was a total of 

133 potential biomarkers, however when reduced to the number of significantly 

differentially expressed proteins in both the 1D and 2D data, this number reduced to 33. 

Nonetheless, it is still challenging to explore this many proteins in depth (e.g. using MRM) 

and assess their prognostic value.  
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MRM was chosen as the most practical and viable option to verify the results of the 

discovery proteomics. Although other assays can be performed on peptides such as peptide 

ELISAs and western blots, these could be very expensive because antibodies would need to 

be raised against specific sequences of peptides identified in the initial proteomics. 

Furthermore, there is a risk of variable specificity because certain domains of peptide 

sequences might be homologous to other similar proteins. MRM is a specific and sensitive 

targeted MS approach capable of accurately quantifying peptides in a sample. As our 

laboratory had previously done MRM work on TKT (a protein identified as significantly 

differentially expressed in both 1D and 2D discovery proteomics), it was decided to use this 

protein, with 2 others for the MRM analysis.  

Logistic regression was carried out on each combination of proteins, where the number in 

each combination was 3, one of which was always TKT. This machine learning gave rise to 

hundreds of models, of which the one with the highest ROC AUC in both the 1D and 2D 

data was TKT, DDOST and ANXA5. Unfortunately, it was later discovered that of the three 

peptides our laboratory currently had for TKT, only one was present in our cSCC discovery 

proteomics spectral library, meaning that the others had not been identified in the 

discovery proteomics. This resulted in just one peptide for TKT, which was likely to be of 

value, and which subsequently revealed no significant difference in TKT between P-M and 

P-NM. Typically, it is suggested to have 3 or more transitions (fragmentations) per peptide 

and have 3 or more peptides per protein to generate an accurate representation of the 

true abundance of a protein. Therefore, the results from a single TKE peptide meant that it 

could not be concluded with any confidence whether there was or was not more TKT in P-

M than P-NM cSCCs, and thus TKT was omitted from future analysis. Nonetheless, all 6 

peptides for DDOST and ANXA5 (3 for each) could be detected in the spectral library and 

what’s more with a high spectral count and high intensity.  

In light of this, DDOST and ANXA5 were employed for MRM verification/validation and 

modelling, without TKT. ANXA5 is a protein commonly used in flow cytometry to identify 

apoptotic cells as it gets localised to the outer membrane during this process. It is also 

known to have anticoagulative properties and may indeed be partly responsible for several 

placenta-mediated pregnancy complications (Aranda et al., 2018, Rogenhofer et al., 2018). 

moreover, it has been suggested that ANXA5 may be a suitable prognostic marker for other 
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types of cancers, including colorectal cancer (Xue et al., 2009, Sun et al., 2017) , renal cell 

carcinoma (Tang et al., 2017) and liver cancer (Peng et al., 2016). The mode of action of 

ANXA5 in promoting development of metastases is not fully understood, but it has been 

proposed that the increase in ANXA5 associated with poorer prognosis could be due to 

activation of the PI3K/Akt/mTOR signalling pathway (Tang et al., 2017), or could be partially 

attributed to ANXA5’s effect on integrin signalling (Sun et al., 2018). It has been found that 

knockdown of ANXA5 leads to suppressed expression of various molecules in the integrin 

signalling pathway, which can have an anti-progressive effect on tumours (Sun et al., 2018, 

Janes and Watt, 2006).  

There is limited research surrounding DDOST and any role it may play in cancer. Its typical 

cellular function is to catalyse the transfer of high mannose oligosaccharides to asparagine 

residues on newly formed polypeptides (Roboti and High, 2012). Nonetheless, one study 

found that there was higher average expression of DDOST in positive metastatic lymph 

nodes (1.29) compared to negative lymph nodes (0.4) in gastric cancer (Hasegawa et al., 

2002). The human protein atlas also recognises DDOST as an unfavourable marker in renal 

cancer, liver cancer, and head and neck cancer but a favourable marker in endometrial 

cancer (Human Protein Atlas, 2018). The mechanisms by which DDOST could enable 

metastasis is unknown but may involve glycosylation and the impact this has on cancer 

progression (Pinho and Reis, 2015). DDOST has several aliases, including OST-48 

(oligosaccharide transferase-4) and AGE-R1 (advanced glycosylation end products - 

receptor 1). AGE’s are proteins or lipids which have been glycated, potentially altering their 

function (Baraka-Vidot et al., 2015), and were first identified in their role in degenerative 

diseases such as diabetes (Yamamoto and Sugimoto, 2016), chronic kidney disease (Clarke 

et al., 2016) and Alzheimer’s disease (Drenth et al., 2017). AGE’s are a ligand for DDOST and 

upon binding have been associated with a pro-inflammatory effect (Byun et al., 2017). 

Another significantly different protein identified in this study which has been found to have 

a pro-inflammatory effect is L-plastin. 

As previously stated, L-plastin has been reported to be expressed in 68% of carcinomas and 

53% of other solid tumours of nonepithelial origin (Lin et al., 1993). Furthermore, it has 

been identified to be important in the activation of T-cells (Wabnitz et al., 2007). Given that 

previous studies have identified higher numbers of T-cells in P-M samples compared to P-
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NM samples and specifically higher T-Reg cells in P-M compared to P-NM (Lai et al., 2016, 

Lai et al., 2015), it was decided to immunohistochemically stain for L-plastin to identify if 

there is also more L-plastin in P-M samples compared to P-NM samples. This study found 

this to be significantly true (p=0.0136) and therefore it is possible that L-plastin is activating 

T-cells and potentially T-Reg cells, in a pro-oncogenic fashion. Simultaneously, in Chapter 3 

of this thesis, PI3K-Akt signalling was identified as a potential key pathway involved in the 

metastasis of cSCC. In light of this, it has been identified that PI3K-Akt signalling promotes 

prostate cancer metastasis via upregulating L-plastin (Chen et al., 2017a).  

Using modelling, DDOST and ANXA5 showed predictive prognostic value in the discovery 

proteomic data, and verification/validation MRM found more DDOST and ANXA5 in P-M 

than P-NM cSCCs. A previous study by Azimi et al (Azimi et al., 2016), used FFPE cSCC 

samples to identify biomarkers of cSCC by comparing normal skin to cSCC, but they did not 

identify ANXA5 or DDOST in their list of significantly differentially expressed proteins. 

Moreover a very recent study by the same group, investigating proteomic differences 

between Bowen’s disease, actinic keratosis and cSCC FFPE samples did not identify ANXA5 

or DDOST (Azimi et al., 2019). 

There are currently no widely used protein prognostic biomarkers for metastasis from 

primary cSCC used in the clinic today. This current study identified significantly more 

DDOST and ANXA5 in P-M samples than P-NM samples in three separate phases; discovery, 

verification on the same discovery samples using a targeted approach and finally validation 

in a previously unseen separate sample cohort. Using verification and validation MRM data, 

there was a total of 101 samples, each with 6 accurate peptide measurements, i.e. 3 for 

DDOST and 3 for ANXA5. With the size of this sample set and the accurate nature of the 

measurements of DDOST and ANXA5, it was decided to create a machine learning model 

of the data to identify to what extent these proteins could predict metastasis in cSCC. Each 

of the models produced were relatively weak learners and so a stacked ensemble approach 

was taken. 

There are three main types of ensemble modelling; bagging, boosting and stacking. 

Typically, bagging is used to decrease variance, boosting used to reduce biasing and 

stacking employed to generally improve predictions. The resulting stacked model produced 

an AUC of 0.929 (CI = 0.8277 - 1), with an optimal accuracy of 91.18% (sensitivity = 88.24%, 
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specificity = 94.12%). Moreover, the model out performed every current clinical scoring 

system at every threshold (every edge of the ROC curve) in both sensitivity and specificity. 

In addition, high DDOST and ANXA5 each showed a positive association with a quicker time 

to metastasis from the primary cSCC and their combined high expression has a positive, 

highly significant association with a quicker time to metastasis. This highlights that not only 

are these two proteins good indicators of future metastasis but that they seem to be 

associated with how long it takes for cSCC to metastasise. In conclusion, this study verified 

and validated findings outlined in chapter 3 in addition to identifying the prognostic 

predictive potential of two key proteins; DDOST and ANXA5.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 4 

158 

 

 

 

 

 

 



Chapter 5 

159 

 Proteomic characterisation of Melanoma skin 

tumours 

5.1 Introduction 

Melanoma arises when melanocytes acquire genetic mutations and become cancerous. 

Melanocytes are pigment producing cells, typically residing in the skin but can be found in 

other areas of the body such as the uvea (Shain et al., 2019). Cutaneous melanoma rates in 

the UK have increased by 175% in males between 1993-1995 and 2013-2015 and 95% in 

females during the same period (Cancer Research UK, 2018).  Melanoma accounts for 5% 

of all cancer in the UK population and is the 5th most common type of cancer, excluding 

NMSCs (Cancer Research UK). Melanoma is the 5th leading cancer in males and the 7th 

leading cancer in females in the USA (not including NMSCs) (Siegel et al., 2013). It has been 

reported that on average, an individual suffering from melanoma could lose 20.4 years of 

potential life, almost 4 years more than that of all other malignant cancers where the 

potential loss of life has been estimated 16.6 years (Ekwueme et al., 2011).  

Melanoma diagnosis is typically carried out through visual examination by a healthcare 

professional, usually a dermatologist or a doctor with a special interest in dermatology. In 

addition to histological confirmation on the excised lesion, immunohistochemical staining 

is used to support the diagnosis. Several histological stains have been identified as markers 

which help to identify melanoma, these include S-100, HMB45, melan-A/MARTI and MITF 

(Kashani-Sabet, 2014). More recently however, a type of artificial intelligence known as a 

deep convolutional neural network (CNN) was employed to diagnose malignant melanoma 

clinically from a library of almost 130,000 images. The resulting model was able to predict 

malignant melanoma with as much accuracy as human experts (Esteva et al., 2017).  

Although the use of CNN allows for early diagnosis and subsequently faster treatment, it is 

still inevitable that some of these primary tumours may go on to metastasise. It is believed 

that one third of melanoma patients will experience recurrence (Soong et al., 1998), 

whether it be local, nodal or distant. Despite the capability of melanoma to spread to any 

organ, the most frequent sites of distant metastasis are the liver, bone and brain and the 5 
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year survival rate for metastatic melanoma is <15% (Tas, 2012). Furthermore, it has been 

identified that the site of recurrence has a significant effect on the mortality rate, with 

those experiencing metastasis to visceral sites being at the greatest risk (Soong et al., 1998).  

Due to the high mortality rate associated with metastatic melanoma, it is crucial to identify 

prognostic markers for melanoma and indeed markers for metastasis as well. LDH has been 

described as “an independent and highly significant predictor of survival outcome among 

patients with stage IV [melanoma]” (Balch et al., 2009). Despite its use in the clinic, studies 

have criticised its ability to predict prognosis due to its low sensitivity and specificity 

(Bougnoux and Solassol, 2013). Several other biomarkers have been proposed as potential 

prognostic markers; these have included, but are not limited to, CXCR1, CXCR2, CXCR3, 

CXCR4, CCR5, CCR7 and CCR10. However, studies have suggested that out of this list, only 

CXCR4 has enough prognostic data to be appropriately used as a prognostic marker for 

melanoma (Scala et al., 2005, Gould Rothberg et al., 2009). Furthermore, a study 

investigating the efficacy of several suggested prognostics marker for melanoma (BRAF, 

MMP2, P27, Dicer, Fbw7 and Tip60) found that although BRAF and MMP2 are strong 

prognostic markers for stage 1 and stage 2 melanoma respectively, there are very few 

prognostic markers useful for late stage AJCC melanomas and metastatic melanoma (Cheng 

et al., 2015).  

A proteomics study which utilised raw mass spectra of 205 serum samples from 101 AJCC 

stage 1 melanomas and 104 AJCC stage 4 melanoma was able to correctly predict the stage 

over 80% of the time (Mian et al., 2005). More recently however, proteomic studies have 

begun to look at FFPE tissue due to the abundance of available samples and the amount of 

complimentary clinical data which comes with them. A study on melanoma FFPE identified 

171 proteins which varied between benign nevi, primary melanoma and metastatic 

melanomas. Despite this being the largest proteomic FFPE melanoma study to date, it 

focuses on the differences between different lesions (i.e. benign nevi and melanoma) and 

melanomas at notably different stages (primary and metastatic) (Byrum et al., 2013).  

In this chapter, primary melanomas which subsequently metastasised and primary 

melanomas which did not metastasise were subjected to proteomic analysis to identify 

protein biomarkers of metastasis. It is vital to identify markers of metastasis in patients 

who have not gone on to metastasise yet in an attempt to identify factors which might 
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allow clinicians to prevent the development of metastases. Furthermore, it is crucial to 

identify whether a tumour is likely to metastasise after excision because melanoma is 

frequently excised with no evidence of metastasis at that stage yet metastases present at 

a later date.  

5.2 Methods 

A total of 48 samples were used in this chapter, consisting of 24 Pmel-M samples and 24 

Pmel-NM samples. These samples were stratified for Breslow depth to ensure there was 

no significant bias in the sample cohort. The optimised method developed in chapter 3 was 

used for the discovery phase in this chapter. 

5.2.1 Proteomic analysis of melanoma samples 

Full materials and methods of the discovery proteomics methods can be found in chapter 

2.6. Samples were quantified using a Direct Detect infrared spectrometer outlined in 

chapter 2.7 and cleaned up using a C18 reverse phase technique (full material and methods 

can be found in chapter 2.8). Samples were then analysed using a Waters Synapt G2-Si high 

resolution mass spectrometer using the methods described in chapter 2.9.  

5.2.2 Bioinformatics and data analysis 

Chapter 2.10.2 describes the way in which protein concentrations were normalised. 

Statistical analysis was performed on the results by comparing Pmel-M data to Pmel-NM 

data. Whole proteome analysis was carried out through the use of volcano plots as 

described in chapter 2.11.1 and topological data analysis as outlined in chapter 2.11.5. 

Significantly differentially expressed proteins were further analysed using STRING, gene 

ontology and WGCNA as outlined in chapters; 2.11.2, 2.11.3, 2.11.4, respectively.  

5.2.3 Targeted mass spectrometry of melanoma 

Only one protein, Keratin 9, was identified as significantly differentially expressed between 

Pmel-M and Pmel-NM and so was selected as one of the three proteins to progress to 

targeted mass spectrometry. Our laboratory had already performed a targeted analysis of 

GSN in another experiment and as such we had isotopically heavy labelled peptides for this 
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protein, therefore it too was selected for MRM analysis. The final protein selected was 

based off of the discovery data and biological relevance.  

A spectral library of the discovery proteomics data was created as outlined in chapter 

2.9.3.1. Targeted proteomics was carried out as described in chapter 2.9.3.2. Briefly, 

isotopically heavy labelled peptides were initially analysed using a Synapt G2-Si high 

resolution mass spectrometer, to assess their suitability as MRM targets. A serial halving 

dilution of each peptide was then analysed in a background melanoma peptide matrix to 

determine calibration data. 

100fmol of each isotopically heavy labelled peptide was spiked into 24 Pmel-M samples 

and 24 Pmel-NM samples and analysed on a Synapt G2-si mass spectrometer. Calibration 

data achieved in initial analysis of heavy labelled peptides was used to calculate the true 

amount of each heavy labelled peptide in each sample. Using the light: heavy ratio, it was 

then possible to calculate the amount of native peptide in each sample.  

5.3 Results 

The proteomic discovery method used in this chapter has been described in chapter 2 and 

was also carried out in chapter 3. To ensure the same methodology was suitable for the 

melanoma portion of this project, bioreplicate experiments of melanoma were undertaken 

and the reproducibility assessed (Figure 5.1). A coefficient or correlation was determined 

by correlating every protein abundancy in one sample to each other sample, which gives 

an r value where the closer the number to 1, the better the correlation. An acceptable r 

value is dependent on many things, but an r value of > 0.8 is generally acceptable; in 

comparison of the bioreplicate experiments, the r values obtained were 0.7933, 0.7938 and 

0.8224. Furthermore, 47.8% of the proteins identified were identified in at least 2 of the 3 

bioreplicates.  
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Figure 5:1: investigating the technical reproducibility of the RapiGest method in 

melanoma.  

Proteins from melanoma sample “A” was extracted and quantified with mass 

spectrometry in triplicate. 28.5% of all the unique proteins in three experiments were 

identified in all experiments. 47.8% of the unique proteins were identified in two or more 

experiments. There was a high positive correlation of all proteins between experiments. 

5.3.1 Clinical characteristics of melanoma samples 

Similar to chapter 3, 24 Pmel-M and 24 Pmel-NM were used in the discovery proteomics 

(Table 5:1). Briefly, there were slightly more males than females in the Pmel-M group and 

slightly more females in the Pmel-NM group. The majority of melanomas were classified as 

superficial spreading in both groups. The majority of samples had a reported Clark’s levels 

of IV. As Breslow thickness is a known indicator of prognosis and risk of metastasis, we 

decided to stratify for Breslow thickness, and as such, there was no significant difference 

in this parameter between the Pmel-M and Pmel-NM groups. Similar to chapter 3, 

information on geographic ancestry was not collected and therefore was not available. 
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Table 5.1: A Table of clinical characteristics of melanoma samples used for discovery 

proteomics 

 
Pmel-M Pmel-NM 

Number of Samples 24 24 

Male 14 
(58.33%) 

9 
(37.5%) 

Female 10 
(41.67%) 

15 
(62.5%) 

Superficial spreading 17 
(70.83%) 

20 
(83.33%) 

Nodular 6 
(25%) 

4 
(16.67%) 

Desmoplastic 1 
(4.17%) 

0 
(0%) 

Pigmentation – High 6 
(25%) 

4 
(16.67%) 

Pigmentation – Moderate 7 
(29.17%) 

7 
(29.17%) 

Pigmentation -Low 4 
(16.67%) 

7 
(29.17%) 

Clark's Level V 2 
(8.33%) 

0 
(0%) 

Clark's Level IV 16 
(66.67%) 

15 
(62.5%) 

Clark's Level ≤ III 6 
(25%) 

9 
(37.5%) 

Breslow thickness (mm) 2.76 ± 1.63 2.08 ± 1.46 

Pmel-M, Primary tumours which metastasised. Pmel-NM, Primary tumours which did not metastasise. 
pigmentation could not be acquired for all as several FFPE blocks were returns to histopathology either by 
request or because too little tissue was left for research 

5.3.2 Protein quantitation and identification 

Following extraction and digestion of proteins from the melanomas, peptide quantification 

was carried out to ensure later loading onto the mass spectrometer was standardised 

(Table 5:2). There was a wide variety in the total yield of peptides from each sample, 

ranging from 18.3µg to 217.5µg. The median total peptide concentration was 76.6µg in the 

Pmel-M group and 55.9µg in the Pmel-NM group.  
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Table 5.2: Quantification of total peptide concentration using DirectDetect 

Metastatic Non-Metastatic 

Sample mg/ml 
protein 

Total 
peptide (µg) 

Sample mg/ml 
protein 

Total 
peptide (µg) 

Pmel-M1 0.814 81.4 Pmel-NM1 0.475 47.5 

Pmel-M2 0.183 18.3 Pmel-NM2 0.405 40.5 

Pmel-M3 0.991 99.1 Pmel-NM4 0.519 51.9 

Pmel-M4 1.298 129.8 Pmel-NM7 0.645 64.5 

Pmel-M5 1.365 136.5 Pmel-NM11 0.358 35.8 

Pmel-M6 0.23 23 Pmel-NM13 0.338 33.8 

Pmel-M7 0.661 66.1 Pmel-NM14 1.269 126.9 

Pmel-M8 0.361 36.1 Pmel-NM16 0.506 50.6 

Pmel-M9 0.312 31.2 Pmel-NM17 0.394 39.4 

Pmel-M10 0.683 68.3 Pmel-NM20 0.529 52.9 

Pmel-M11 1.238 123.8 Pmel-N21 0.682 68.2 

Pmel-M15 0.277 27.7 Pmel-NM22 0.597 59.7 

Pmel-M16 0.76 76 Pmel-NM23 0.589 58.9 

Pmel-M17 0.75 75 Pmel-NM24 0.631 63.1 

Pmel-M18 0.47 47 Pmel-NM25 0.404 40.4 

Pmel-M20 0.905 90.5 Pmel-NM26 0.66 66 

Pmel-M21 2.175 217.5 Pmel-NM30 0.358 35.8 

Pmel-M22 0.903 90.3 Pmel-NM31 0.413 41.3 

Pmel-M24 1.615 161.5 Pmel-NM32 0.613 61.3 

Pmel-M26 0.807 80.7 Pmel-NM33 0.428 42.8 

Pmel-M27 1.439 143.9 Pmel-NM34 1.535 153.5 

Pmel-M28 0.47 47 Pmel-NM35 1.23 123 

Pmel-M29 0.67 67 Pmel-NM36 1.723 172.3 

Pmel-M30 0.772 77.2 Pmel-NM37 0.845 84.5 

Pmel-M, Primary tumours which metastasised. Pmel-NM, Primary tumours which did not metastasise.  

 

The total number of protein IDs per sample varied, both between Pmel-M and Pmel-NM 

and between the 1D and 2D LC separation experiments (Figure 5.2). Less proteins were 

identified in samples separated by 2D compared to those separate by 1D, and fewer 

proteins were identified in Pmel-NM than in Pmel-M cases. The number of IDs ranged from 

114 to 1,111 and the mean number of IDs was 435 with a standard deviation of 188.  
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Figure 5:2: Numbers of unique proteins identified using 1D, and separately 2D, 

fractionation prior to MS. 

3.75µg of protein per melanoma sample was analysed using mass spectrometry and the 

results were processed in the Protein Lynx Global Server to identify individual proteins. 

A total of 3,447 unique proteins were identified from all 48 melanoma samples, which 

consisted of 2,750 IDs in samples separate by 1D and 2,259 IDs in samples separate by 2D. 

45.32% of proteins were identified in the results from both 1D and 2D which equated to a 

total of 1,562 IDs.  

 

Figure 5:3: Number of unique proteins identified from 1D and 2D fractionation 

The total number of proteins identified following 1D fractionation of the 48 melanoma 

samples (which included 24 Pmel-M and 24 Pmel-NM) was 2750, and following 2D 

separation was 2259. 45.32% of proteins were identified in both 1D and 2D fractionation 

methods 
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As described in chapter 3, proteomic data often suffers from the “floor effect” as the limitations of 

instruments causes a bottom level below which proteins cannot be detected. For this reason, it was 

suggested non-parametric tests were used to statistically analyse the data. Alternatively, log 

transforming the data can sometimes result in a Gaussian distribution and thus create a suitable 

dataset for parametric tests. Log transforming this data from the melanoma samples resulted in a 

mixture of normally and non-normally distributed samples (Figure 5.4, Appendix 3). For this 

reason, a conservative approach was taken and non-parametric tests were used to analyse the data 

(unless otherwise stated).  
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Figure 5:4: Histograms of proteomics data from the melanoma samples. 

Histograms of proteins abundancies were created using Inferno. As the sensitivity of the 

MS instrument is finite, a “floor effect” can be seen on the raw data and therefore the data 

was log10 transformed to assess the distribution. A mixture of normal and non-normal 

distributions can be seen in the log10 transformed data; for this reason, a conservative 

approach was taken and subsequent analysis used non-parametric tests. Histograms of all 

melanoma samples can be found in Appendix 3. 
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5.3.3 Significantly differentially expressed proteins 

A combined total of 31 significantly differentially expressed proteins (P<0.05) were 

identified between Pmel-M and Pmel-NM melanomas in the 1D and 2D data, (Figure 5.5). 

16 significantly differentially expressed proteins were identified between the Pmel-M and 

Pmel-NM tumours in the 1D data and 16 significantly differentially expressed proteins 

identified between Pmel-M and Pmel-NM tumours in the 2D data. One protein was 

identified as significantly differentially expressed between Pmel-M and Pmel-NM 

melanomas in both the 1D and 2D data; this protein was keratin 9 (KRT9).  

 

Figure 5:5: Numbers of proteins that were differentially expressed between Pmel-M and 

Pmel-NM melanomas in the 1D and the 2D data 

A total of 16 proteins were identified as significantly differentially expressed between 

Pmel-M and Pmel-NM in the 1D data and also in the 2D data, however, only one protein 

was identified as significantly differentially expressed between Pmel-M and Pmel-NM in 

both the 1D and the 2D data. P<0.05, Man Whitney U test for significance. 

A volcano plot of each data set (1D and 2D) of the melanoma samples was created. The 

volcano plot for the 1D data highlighted proteins P01860 (IGHG3), Q9H6N6 (MYH16), 

Q92817 (EVPL) and Q7KZF4 (SND1) by their low P value and high fold changes. Volcano plot 

for the 2D data highlighted proteins Q8N1N4 (KRT78), Q14240 (WIF4A2), P19012 (KRT15), 

P35527 (KRT9), P40926 (MDH2) and Q8NBS9 (TXNDC5) with a low P value and high fold 

changes.  
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Figure 5:6: Volcano plot of 1D data highlights proteins of interest. 

P-values obtained from Pmel-M vs Pmel-NM using Mann Whitney U test and subsequently 

log10 transformed for visualisation in volcano plots. Fold changes (FC) were acquired by 

subtracting mean quantification of Pmel-M from Pmel-NM and were then log2 

transformed to generate the graph. Red points indicate non-significant p-value (p>0.05) 

and fold change (<1 log2). Black points indicate non-significant p-value (p>0.05) but 

significant fold change (>1 log2). Orange points indicate significant p-value (p<0.05) but 

not significant fold change (<1 log2). Green points indicate significant fold change (>1 log2) 

and significant p-value (p<0.05). Labels are Uniprot protein accession numbers. 



Chapter 5 

171 

 

Figure 5:7: Volcano plot of 2D data highlights proteins of interest. 

P-values obtained from Pmel-M vs Pmel-NM using Mann Whitney U test and subsequently 

log10 transformed for visualisation in volcano plots. Fold changes (FC) were acquired by 

subtracting mean quantification of Pmel-M from Pmel-NM and were then log2 

transformed to generate the graph. Red points indicate non-significant p-value (p>0.05) 

and fold change (<1 log2). Black points indicate non-significant p-value (p>0.05) but 

significant fold change (>1 log2). Orange points indicate significant p-value (p<0.05) but 

not significant fold change (<1 log2). Green points indicate significant fold change (>1 log2) 

and significant p-value (p<0.05). Labels are Uniprot protein accession numbers. 

There were two proteins with P values below 0.001 for differential expression between 

Pmel-M and Pmel-NM melanomas; these were actin gamma 1 (ACTG1) and keratin type II 

cytoskeletal 78 (KRT78) in the 1D and 2D data, respectively. There was a range in the fold 

changes for the same comparison of the proteins in the 1D data with the lowest being -

0.252 and the highest being +1.802 (Table 5:3). Similarly, there was a wide range of fold 

changes between Pmel-M and Pmel-NM melanomas in the 2D data with the lowest being 

+0.097 and the highest being +1.461 (Table 5:4). The one protein identified as significantly 
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differential expressed between the Pmel-M and Pmel-NM groups in both 1D and 2D, was 

KRT9, which is indicated by the green shading in Tables 5.3 and 5.4.  

Table 5.3: List of significantly differentially expressed proteins between Pmel-M and 

Pmel-NM in the 1D data and their respective fold changes and P values 

Uniprot 
ID 

Gene ID Protein Name log2FoldChange P value 

P63261 ACTG1 Actin Gamma 1 0.338013 4.82E-03 

P01860 IGHG3 Immunoglobulin Heavy Constant Gamma 3 1.802058 0.009022 

P25786 PSMA1 Proteasome Subunit Alpha 1 0.788837 0.010045 

Q9H6N6 MYH16 myosin heavy chain 16 -1.02722 0.019726 

P35527 KRT9 Keratin 9 -0.61257 0.02913 

P62491 RAB11a Ras-related protein Rab-11A 0.382207 0.030177 

P13639 EEF2 Eukaryotic elongation factor 2 0.457982 0.030267 

Q92817 EVPL Envoplakin 1.057036 0.03326 

P30086 PEB1 Periplasmic amino acid-binding protein -0.25176 0.035189 

P68104 EEF1A1 Eukaryotic translation elongation factor 1 α1 0.386652 0.035508 

P62805 HISTH4 Histone H4 0.284845 0.035508 

P46776 RPL27A Ribosomal Protein L27a 0.496393 0.037992 

P35579 MYH9 Myosin-9 0.375744 0.039408 

Q15063 POSTN Periostin 0.493123 0.041138 

Q7KZF4 SND1 Staphylococcal nuclease domain containing 1 1.356476 0.041184 

Q7L7L0 HIST3H2A Histone H2A type 3 0.414143 0.041316 

p-values were obtained through Mann Whitney U test for significance between Pmell-Ms and Pmel-NMs. Fold change was 

calculated from the mean of protein abundancies between each group. Green shading indicates single significantly 

differentially expressed protein in both the 1D and 2D data 
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Table 5.4: List of significantly differentially expressed proteins between Pmel-M and 

Pmel-NM in the 2D data and their respective fold changes and P values 

Uniprot ID Gene ID Protein Name log2FoldChange P value 

Q8N1N4 KRT78 Keratin 78 -0.76589 8.25E-04 

Q14240 EIF4A2 Eukaryotic Translation Initiation Factor 4A2 -1.02262 0.007681 

P01859 IGHG2 Immunoglobulin Heavy Constant Gamma 2 -0.74507 0.013166 

Q15019 SEPT2 Septin 2 -0.15355 0.01868 

Q8NBS9 TXNDC5 hioredoxin Domain Containing 5 1.461222 0.021754 

P20700 LMNB1 Lamin B1 0.695982 0.021874 

P62249 RPS16 Ribosomal Protein S16 0.370449 0.024652 

P05023 ATP1A1 ATPase Na+/K+ Transporting Subunit Alpha 1 0.497553 0.026246 

P19012 KRT15 Keratin 15 -1.206 0.028958 

P35527 KRT9 Keratin 9 -1.04325 0.029021 

P16070 CD44 Cluster of Differentiation 44 0.140834 0.030051 

P40926 MDH2 Malate Dehydrogenase 2 1.063803 0.030735 

Q16555 DPYSL2 Dihydropyrimidinase-related protein 2 -0.25623 0.034954 

O75083 WDR1 WD Repeat Domain 1 0.613523 0.035621 

P06396 GSN Gelsolin 0.155568 0.039034 

P23528 CFL1 Cofilin 1 0.096728 0.046927 

 p-values were obtained through Mann Whitney U test for significance between Pmel-Ms and Pmel-NMs. Fold change 

calculated from mean of protein abundancies between each group. Green shading indicates significantly differentially 

expressed protein in both the 1D and 2D data. 

Examples of significantly differentially expressed proteins between Pmel-M and Pmel-NM 

groups from the 1D data can be seen in Figure 5.8. The median abundancy of proteins 

varied a lot with the lowest being 0.37ng of PSMA1 in the Pmel-NM group to the highest 

being 20.72ng of ACTG1in the Pmel-M group.  

Examples of significantly differentially expressed proteins from the 2D data can be seen in 

Figure 5:9. The lowest median abundancy of a protein was 0.109ng of KRT78 in the Pmel-

M group and the highest was 2.086ng of LMNB1in the Pmel-M group. 

 



Chapter 5 

174 

 

Figure 5:8: Examples of significantly differentially expressed proteins between Pmel-M 

and Pmel-NM melanomas in 1D proteomic data  

P values obtained through Mann Whitney U test for significance. Median with interquartile 

range shown.  
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Figure 5:9: Examples of significantly differentially expressed proteins between Pmel-M 

and Pmel-NM melanomas in 2D proteomic data  

P values obtained through Mann Whitney U test for significance. Median with interquartile 

range shown.  

5.3.4 Search tool for the retrieval of interacting genes/proteins (STRING) analysis 

STRING analysis was used to create a network from the significantly differentially expressed 

proteins between Pmel-M and Pmel-NM identified in the 1D data (Figure 5:10) and 2D data 

(Figure 5:11). Significantly differentially expressed proteins from the 1D data produced a 

structure with 13 edges. A network with this many proteins would be expected to have 3 

edges by chance alone and thus the network is significantly enriched in interactions 

(P=0.000004) and suggests that these proteins are likely to be connected in determining 

biological aspects of melanoma metastasis. Reactome pathway overlay highlighted several 

proteins involved in the MAPK pathway, including BRAF and RAF. Furthermore, Reactome 

enrichment displayed a strong coverage of an innate immune response. 
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Figure 5:10: STRING analysis of significantly differentiated proteins between Pmel-M and 

Pmel-NM from the 1D data 

Significantly differentiated proteins between Pmel-M and Pmel-NM from 1D discovery 

proteomics were analysed using STRING. A medium confidence score of 0.4 was allowed 

in the structure creation as recommended by the software manufacturers. Thickness of 

lines (edges) indicates confidence in association between two proteins. Total number of 

nodes is 14. Total number of edges is 13.  The Reactome pathway enrichment has been 

overlaid onto the STRING structure. FDR, False discovery rate. 

Significantly differentially expressed proteins between Pmel-M and Pmel-NM from the 2D 

data yielded a structure with 8 edges. From a similar set of proteins and a network of similar 

size, only one edge would be expected by chance and the network is therefore enriched in 

interactions (P= 0.000106), again suggesting that the proteins in the network are at least in 

part biologically connected to melanoma metastases. Amongst other pathways, Reactome 

enrichment was identified in the immune system. There was also enrichment in JAK-STAT 

signalling after IL12 stimulation, a cytokine secreted by antigen presenting cells (Dorman 

and Holland, 2000).  
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Figure 5:11: STRING analysis of significantly differentiated proteins between Pmel-M and 

Pmel-NM from the 2D data 

Significantly differentiated proteins between Pmel-M and Pmel-NM from 2D discovery 

proteomics were inputted into STRING. A medium confidence score of 0.4 was allowed in 

the structure creation. Thickness of lines (edges) indicates confidence in association 

between two proteins. Total number of nodes is 15. Total number of edges is 8.  The 

Reactome pathway enrichment has been overlaid onto the STRING structure. FDR, False 

discovery rate. 

5.3.5 Gene ontology analysis 

Gene ontology analysis of significantly differentially expressed proteins between Pmel-M 

and Pmel-NM from 1D proteomic data were reduced and visualised using ReViGO and this 

highlighted several enriched gene ontology terms (Figure 5:12). This included “cadherin 

binding”, “cell adhesion molecule binding” and “cell-cell adhesion”. Further enrichment in 

“protein metabolic processes”, “cellular response to growth factor stimulus” and 

“phagocytosis” was observed, in addition to “vesicle” and “extracellular region part”. 
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Figure 5:12: Gene ontology analysis of significantly expressed proteins between Pmel-M 

and Pmel-NM in 1D data.  

Significantly differentially expressed proteins were inputted into GoGorilla and reduced 

using ReViGO. The area of each of the rectangles or boxes is representative of the amount 

of enrichment of that gene ontology term. 

Gene ontology analysis of significantly differentially expressed proteins between Pmel-M 

and Pmel-NM in the 2D data also revealed several area of enrichment (Figure 5:13). Similar 

to the 1D data, there appeared to be enrichment in binding including, “cytoskeletal binding” 

and “skeletal protein binding”. Indeed, several areas related to cytoskeletal polymerisation 

and organisation. There was also enrichment in “extracellular exosome”, “vesicle” and 

“focal adhesion”.  
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Figure 5:13: Gene ontology analysis of significantly differentially expressed proteins 

between Pmel-M and Pmel-NM in the 2D data. 

Significantly differentially expressed proteins were analysed for GO enrichment using 

GoGorilla and reduced using REViGO. The area of each of the rectangles or boxes is 

representative of the amount of the enrichment of that gene ontology term. 

5.3.6 Ingenuity pathway analysis 

Ingenuity pathway analysis of significantly differentially expressed proteins in both the 1D 

and 2D melanoma proteomic data revealed no strong enrichment of pathways, therefore 

only whole 1D and 2D melanoma proteomic data was used. This 1D and 2D proteomic data 

revealed a number of significantly enriched pathways (Figure 5:14). As was the case in 

chapter 3, a combined p value cut off of <0.00001 (>5 log10 p value) was employed. EIF2 

signalling was the most enriched pathway in both the 1D and 2D data, and was predicted 

to be activated in both cases. Multiple Rho signalling pathways were enriched in these data, 

however some were predicted to be activated, such as “RhoA signalling” and “signalling by 

Rho family GTPases”, whereas some were predicted to be inhibited, such as “RhoGDI 
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signalling” and “regulation of actin-based motility by Rho”. “Integrin signalling” and 

“integrin-linked kinase (ILK) signalling” were both predicted to be activated. In addition, 

there was enrichment in several immune related pathways, including “acute phase 

response signalling”, “leukocyte extravasation signalling”, “granzyme B signalling” and “Fc 

receptor mediated phagocytosis in macrophages and monocytes”. IPA is also able to 

predict upstream regulators based on the proteomic data provided, therefore this was also 

explored (Figure 5:15). The most significant upstream regulator identified in the 1D 

melanoma proteomic data was PCGEM1 and in the 2D proteomic data was IL15. The most 

inhibited upstream regulator was miR-122-5p and most activated was either IL15 or HIF1A. 

Several of the upstream regulators were only detected in one dataset (i.e. the 1D or 2D 

melanoma proteomic dataset), including PCGEM1, HSP90B1, CUL4B, SYVN1, SPDEF, 

EOMES, ERK1/2 and EGLN. 
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5.3.7 Weighted gene co-expression network analysis 

The number of clinical and histological characteristics our laboratory had available for the 

melanoma samples were much less than that for cSCC in Chapter 3, and therefore this 

limited the number of results provided in the weighted gene co-expression network 

analysis. After pre-processing and network creation, there were 4 modules of proteins 

identified (Figure 5:16). No module correlated significantly with development of 

metastasis. The only characteristics which significantly correlated with protein modules 

were Clark’s level and Breslow thickness. The brown, blue and turquoise modules 

correlated positively with Clark’s level, of which the turquoise module gave the highest and 

most significant correlation. The brown, blue and turquoise modules also correlated 

positively with Breslow thickness. Blue and turquoise modules both positively correlated 

significantly with Breslow thickness at a high level of significance.  

 

Figure 5:16: Module-trait correlation analysis, using WGCNA. 

Proteomic data from the melanomas was used to create a network and identify modules 

of correlated clusters. Correlation values are from Pearson’s correlation. In each box, the 

upper values are correlations and lower values in parentheses are p values. ME, module 

eigengene. 

The modules identified from WGCNA can be input into various pathway analysis tools to 

better understand why proteins are correlated and what effect it might have on biological 

systems. The blue module displayed an enrichment in various protein production related 

pathways including ribosomal, translation and elongation pathways. Interestingly, the blue 

module was also enriched for the Reactome pathway “regulation of expression of SLITs and 
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ROBOs”. The majority of enrichment within the turquoise module related to MAPK 

signalling, specifically BRAF. These included enrichment in “signalling by high-kinase activity 

BRAF mutants”, “paradoxical activation of RAF signalling by kinase inactive BRAF2, 

“signalling by moderate kinase activity BRAF mutants”, “MAP2K and MAPK activation”, 

“p130cas linkage to MAPK signalling for integrins”, and “signalling by BRAF and RAF 

fusions”. Indeed, the turquoise module also expressed enrichment in various integrin 

related pathways, including those already mentioned relating to MAPK activation in 

addition to “focal adhesion” and “ECM-receptor interaction”. Although there was some 

enrichment in the brown and yellow modules, there was little of great significance and 

coverage.  
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Figure 5:17: WGCNA module pathway analysis of the melanoma proteomic data. 

Modules identified in WGCNA were subjected to pathway analysis and CORUM database 

alignment. Strong hierarchical filtering was employed to reduce the number of terms and 

optimise interpretation, therefore only results with P<0.001 are shown. 
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5.3.8 Topological Data analysis 

Similar to WGCNA, TDA is a type of unsupervised machine learning which uses all the data 

available, in this case proteomic data, to establish trends and correlate sample proteomes. 

Whole sample proteomes from the 1D and 2D melanoma proteomic data were inputted 

into Ayasdi workbench to create representative TDA structures (Figure 5:18). Both the 

Pmel-M and the Pmel-NM groups appeared to have high homology between nodes as there 

was relatively high interconnectivity between them. Nonetheless, the interconnectivity 

between nodes of the Pmel-M group was very high and therefore suggested that the Pmel-

M samples were, by and large, very similar. Although proteomic data was able to effectively 

separate Pmel-M from Pmel-NM samples using TDA, there appeared to be different 

subgroups within the Pmel-NM group. This potential for a subgroup within the Pmel-M 

group was seen more clearly in the 2D data compared to the 1D data but was visible in both 

sets of data. Due to this, it was decided to recreate the structures but with the intention of 

driving these groups to separate to allow comparison between them (Figure 5:19). Driving 

the separation of these groups revealed several proteins which, if these subgroups of Pmel-

M and Pmel-NM are correct (i.e. exist in biological terms), might be “driving proteins” (i.e. 

proteins which are likely causative in generating the biological subgroups). Splitting the 

groups in the 1D data produced four obvious groups, two for Pmel-M and two for Pmel-

NM. There were 3 and 15 driving proteins within the Pmel-NM tumours and within the 

Pmel-M tumours respectively. Several driving proteins were identified as different between 

M1 and NM1/NM2, which is to be expected as these are essentially subgroups of Pmel-M 

vs Pmel-NM. Surprisingly, however, M2 vs NM1/NM2 only highlighted a few driving 

proteins that differed between them. Conversely, the 2D melanoma proteomic data 

produced only one Pmel-M group and one Pmel-NM group along with one mixed group 

which couldn’t be defined as completely Pmel-M or Pmel-NM. An interesting driver factor 

identified between the mixed group and the NM group was age. A table of all driving factors 

can be seen in Table 5:5. 
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Figure 5:18: Topological structures created from 1D and 2D melanoma proteomic data. 

A hamming metric and two neighbourhood lenses were used in Ayasdi to create 

topological structures. Outcome was colour mapped on top of these structures to illustrate 

how the structure relates to outcome. Blue nodes represent Pmel-NM, red represents 

Pmel-M and yellow indicate nodes containing both Pmel-NM and Pmel-M. 
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Figure 5:19: Driving separation of TDA identified melanoma sub-groups. 

Groups were driven apart by modifying resolution and gain of the neighbourhood lenses 

until separation was achieved. Kolmogorov Smirnov test of fitness was used to determine 

potential driver proteins (P<0.05). Upper topological structure generated from1D data,  

lower topological structure from 2D data.  
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Table 5.5: Proteins identified as possible driver proteins in TDA subgroups of melanoma 

 

5.3.9 MRM analysis 

The number of proteins that were identified as differentially expressed between Pmel-M 

and Pmel-NM was much lower than that seen as differentially expressed between P-M 

cSCCs and P-NM cSCCs, however, similar to the cSCC portion of this project, MRM was 

employed to see whether it would validate the discovery proteomic results of the 

melanoma data. As KRT9 was the only significantly differentially expressed protein to 

appear in both the 1D and 2D discovery proteomics of the melanomas, it seemed suitable 

to try to verify this by MRM. As our laboratory already had GSN heavy labelled peptides, 

GSN was also chosen for MRM verification. The prospect of doing machine learning to 

identify a third target differentially expressed protein in the melanomas was considered, 

Factor  P-value Factor  P-value Factor  P-value Factor  P-value Factor  P-value Factor  P-value

Outcome 0.008 Outcome 0.004 Outcome 4.12E-04 Outcome 0.001 P02790 0.004 P42224 0.035

P62917 0.035 P26373 0.012 P37837 0.035 P02647 0.022 P15153 0.012 P25786 0.047

P62269 0.035 Q15365 0.022 P21333 0.044 P42224 0.030 O00299 0.030 Q7KZF4 0.047

Q14764 0.035 Q9Y490 0.022 P61313 0.047 P22314 0.032

O43175 0.035 P17987 0.025 P31948 0.047 P00338 0.032

Q15063 0.044 P37802 0.035 P23381 0.065 P16403 0.032

P42224 0.047 P62269 0.035 P02768 0.032

P09382 0.047 P11940 0.035 P26373 0.033

P68104 0.038 P37837 0.033

Q8NBS9 0.038 P02647 0.035

P62805 0.038 P17987 0.035

P63261 0.038 P12956 0.038

P13639 0.038 P04899 0.040

P02790 0.044 Q07065 0.044

P25786 0.047 Q9BVC6 0.047

P49189 0.047

O00299 0.047

P46776 0.047

Q7L7L0 0.047

P17931 0.047

P26641 0.047

P23246 0.047

Factor  P-value Factor  P-value Factor  P-value

Outcome 8.24E-06 P50995 0.013 Outcome5.08E-05

Q8N1N4 0.008 O00299 0.030 O43390 0.014

Q13813 0.010 Age 0.042 O00299 0.017

P17931 0.021 P19012 0.049 P50995 0.019

P19012 0.027 P61978 0.021

P41219 0.033 Breslow 0.035

M vs Mixed Mixed vs NM M vs NM

1D

2D

M1 vs NM1 M1 vs NM2 M2 vs NM2 M2 vs NM1 M1 vs M2 NM1 vs NM2
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but decided against because the main reason for doing it on the cSCC data was to reduce 

the number of options from which to choose proteins for MRM verification / validation in 

that project. In the case of melanoma, there were fewer options, and so LMNB1 was chosen 

as the third candidate due to its high fold change, low p value, novelty and credibility in 

terms of likely biological influence. 

5.3.9.1 Selecting suitable peptides from proteins of interest for Multiple Reaction 

Monitoring (MRM) analysis 

To identify suitable unique peptides for the proteins of interest, the data were imported 

into skyline and matched to a melanoma spectral library created from the melanoma 

proteomic discovery data (Figure 5:20). All 3 of the GSN peptides held in our laboratory 

were identified in the melanoma spectral library. Peptides for KRT9 and LMNB1 were 

selected based on being unique to their respective proteins and having a high spectral 

count with transitions (fragment ions) at a relatively high intensity. Examples of the spectral 

library matches for these peptides, including their transitions, are shown in figure 5.20. The 

final peptides selected, along with their m/z and suitable transitions can be seen in Table 

5.6. 
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Figure 5:20: Spectral library matching of GSN, KRT9 and LMNB1 in the melanoma 

samples 

The three GSN peptides already present in our laboratory appeared in the melanoma 

spectral library, however, peptide two displayed only one viable transition ion and thus 

highlighted a potential weakness of this peptide. 3 peptides for each KRT9 and LMNB1 

were selected based on their spectral count (i.e. the number of the discovery melanoma 

samples they appeared in) and the intensities of the transition ions. Peptide sequence 

given at the top of each spectra. 
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Table 5.6: The unique peptides selected for each protein of interest with their m/z and 

transition ions 

 

5.3.9.2 MRM peptide calibration curves 

Peptides were synthesised and isotopically heavy labelled by Cambridge Research 

Biochemicals. Each peptide was subsequently tested on a Synapt G2-Si mass spectrometer 

at a concentration of 100fmol to establish their suitability (Figure 5:21). Peptide 3 of KRT9 

proved inadequate as a corresponding peak could not be reliably selected. Peptides 1 and 

2 for proteins KRT9 and LMNB1 were found outside of their predicted retention time 

window (blue shading), however, these were the only logical peaks in the chromatogram 

and thus these peptides were included in the subsequent MRM experiments. Nonetheless, 

peptide 1 of KRT9 and peptide 2 of GSN had slightly un-uniformed peaks (tailing on either 

side) but were included (with some caution) in the subsequent MRM investigations. 

PROTEIN PEPTIDE M/Z AT 
CHARGE 
2 

TRANSITION IONS MODIFIED PEPTIDE SEQUENCE  M/Z AT 
CHARGE 
2 

TRANSITION IONS 

GSN 

EPGLQIWR 499.7754 
772.4464, 602.3409, 
474.2823, 175.1190 

EPGLQIWR[13C6, 15N4] 504.7787 
782.4547, 612.3492, 
484.2906, 185.1272 

AVEVLPK 378.2367 585.3606 AVEVLPK[13C6, 15N2] 382.2438 593.3748 

TGAQELLR 444.2509 
786.4468, 729.4254, 
658.3882, 530.3297 

TGAQELLR[13C6, 15N4] 449.255 
796.4551, 739.4336, 
668.3965, 540.3379 

KRT9 

SGGGGGGGLGSGGSIR 616.8025 
974.5014, 917.4799, 
860.4585, 633.3315 

SGGGGGGGLGSGGSIR[13C6, 15N4] 621.8067 
984.5097, 927.4882, 
870.4667, 643.3397 

FSSSSGYGGGSSR 618.268 
1088.4603, 
1001.4283, 
827.3642, 740.3322 

FSSSSGYGGGSSR[13C6, 15N4] 623.2721 
1098.4686, 
1011.4365, 
837.3725, 750.3405 

LASYLDK 405.2238 
696.3563, 625.3192, 
375.2238, 262.1397 

LASYLDK[13C6, 15N2] 409.2309 
704.3705, 633.3334, 
383.2380, 270.1539 

LMNB1 

AGGPTTPLSPTR 577.8118 
872.4863, 771.4359, 
670.3883, 460.2514 

AGGPTTPLSPTR[13C6, 15N4] 582.816 
882.4919, 781.4442, 
680.3965, 470.2597 

LVEVDSGR 437.7351 
662.3104, 533.2678, 
434.1994, 319.1724 

LVEVDSGR[13C6, 15N4] 442.7392 
672.3187, 543.2761, 
444.2077, 329.1807 

IQELEDLLAK 586.3321 
930.5142, 801.4716, 
688.3876, 242.1499 

IQELEDLLAK[13C6, 15N2] 590.3392 
938.5284, 809.4858, 
696.4018, 242.1499 
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Figure 5:21: Chromatography of MRM peptides 

100fmol of each peptide was investigated on a Synapt G2-Si mass spectrometer in targeted 

acquisition mode and results imported into skyline. Peptide 3 of KRT9 produced unreliable 

peaks which would have led to future confusion over the correct peak in tumour samples 

and was therefore omitted from future experiments. Peaks from peptides 1 and 2 from 

KRT9 and LMNB1 were found outside of the predicted retention time window (depicted 

as shaded area in above graphs) but these appeared to be the only logical peaks and these 

peptides were therefore included in subsequent experiments on melanoma. The peak 

shape of peptide 1, KRT9 appeared suboptimal (i.e. non-gaussian) but this peptide was 

used in subsequent MRM experiments on melanoma samples in order to have more than 

one peptide for KRT9 in those investigations. Peptide 2, GSN peak was also imperfect as it 

showed tailing with some transitions not having distinct peaks, but was used with caution 

in subsequent melanoma MRM experiments.  

Once suitability of the relevant peptides had been established as above, calibration curves 

of each peptide were created to enable calculation of the amount of heavy and 

subsequently the corresponding light peptides, in each melanoma sample. Each calibration 
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curve for GSN peptides produced an R2 value above 0.9 and suggested a good linear trend 

for comparison of added amount of heavy peptide in the sample with the MS estimated 

amount of heavy peptide in the sample (Figure 5:22). However, the light peptide 

(background melanoma matrix), used as an internal melanoma standard, was detected at 

a very low intensity.  

 

Figure 5:22: MRM calibration curves for GSN.  

Calibration data of the heavy labelled GSN peptides was created using MRM on a twofold 

dilution series of the amount of relevant heavy peptide. 1µg of melanoma peptide sample 

was used as a background matrix (red). 

Calibration curves for peptides 1 and 2 of KRT9 also produced R2 values above 0.9 with an 

acceptable linear trend for MS estimated amount versus added amount of heavy peptide 

(Figure 5:23). Although the internal melanoma standard was present at a constant 

concentration, it appeared as though it might be increasingly detected as the amount of 

heavy labelled peptide increased. 
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Figure 5:23: Calibration curves for KRT9 

Calibration data of heavy labelled peptides for KRT was created using MRM on a twofold 

dilution series of the amount of relevant KRT9 heavy peptide. 1µg of melanoma peptide 

sample was used as internal standard (red). 

Calibration curves for peptides 1 and 3 of LMNB1 produced R2 values above 0.9, however 

peptide 2 did not and therefore could not accurately determine the true amount of heavy 

peptide in a sample and, subsequently, the level of the native peptide within a sample 

(Figure 5:24). 



Chapter 5 

198 

 

Figure 5:24: Calibration curves for LMNB1 

Calibration data of heavy labelled peptides for LMNB1 was created using MRM on a 

twofold dilution series of the amount of relevant heavy peptide.  1µg of melanoma peptide 

sample was used as internal standard (red). 

5.3.9.3 Verification 

Following the production of the heavy peptide calibration curves as above, each melanoma 

sample was investigated with MRM with the addition of 100fmol of each heavy labelled 

peptide. The calibration curve was then used to determine the corrected concentration of 

heavy peptide in a sample which was subsequently used, with the heavy to light ratio, to 

find out the amount of light peptide in each sample. However, MRM analysis of the Pmel-

M and Pmel-NM samples demonstrated no significant difference in the amount of any of 

these peptides between the Pmel-M and Pmel-NM groups.  
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Figure 5:25: MRM verification data between Pmel-M and Pmel-NM. 

Each melanoma sample was investigated with the addition of 100fmol of the relevant 

heavy labelled peptide. The “true” heavy peptide concentration was calculated using the 

previously determined calibration curves for the heavy peptides. The true heavy 

concentration was then used with the heavy:light ratio to calculate the concentration and 

amount of the light peptide in the sample. The averages (Avg) of the peptides for the 

different proteins were calculated using the mean. Error bars are interquartile range with 

median plotted on. Mann Whitney U test for significance. 
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5.3.10 cSCC-melanoma proteome comparison 

As cSCC and melanoma arise from the same tissue, albeit from different cells within skin, 

comparing the discovery proteomic data from the experiments in this thesis might provide 

some insight into the similarities and differences between these two malignancies in 

relation to the development of metastases from this tissue.  One simple method of doing 

this is to compare the proteomes of the primary samples which subsequently metastasised 

(P-M cSCCs and Pmel-Ms), primary samples which did not metastasise (P-NM cSCCs and 

Pmel-NMs) and the significantly differentially expressed proteins that differed between the 

P-M cSCCs and P-NM cSCCs and between the Pmel-Ms and Pmel-NMs. There were fewer 

melanoma proteins in every comparison against cSCC. For example, there were 265 P-M 

cSCC specific proteins, 370 shared proteins between P-M and Pmel-Ms, and 55 Pmel-M 

specific proteins. Likewise, 190 cSCC specific proteins were found in P-NM cSCC samples, 

316 shared between P-NM cSCCs and Pmel-NMs, and 73 Pmel-NM specific proteins. 

Interestingly, the large majority of proteins were identified in both the primary tumours 

(cSCC and melanoma) which subsequently metastasised and the primary tumours (cSCC 

and melanoma) which did not metastasise. However, only 136 proteins were specific to 

tumours which metastasised and 25 proteins specific to tumours which did not 

metastasise. Comparison of the entire SCC proteomic data compared to the entire 

melanoma proteomic data revealed a number of unique IDs found only in one set of 

samples (cSCC or melanoma). Furthermore, in cases where the analysis was restricted to 

proteins present in at least 50% of the samples, 210 of these proteins were found only in 

SCC and 57 were found exclusively in melanoma. There were 8 proteins identified as being 

significantly differentially expressed between primary tumours which metastasised and 

primary tumours which had not metastasised in both melanoma and cSCC; these included 

EEF2, SEPT2, POSTN, HISTH4, EEF1A1, GSN, RSP16 and LMNB1. 
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Figure 5:26: Comparison of the cSCC and melanoma discovery proteomics data. 

cSCC and melanoma discovery proteomic data, generated by LC-MS, were compared to 

identify similarities and differences between these two tumours. Venn diagrams were 

created in R using package “Venndiagram”. 1. Total number of unique proteins identified 

in SCC and melanoma were compared using no missing value filter (as is the case for all 

other analyses which utilised a 50% missing value filter, where each protein was identified 

in at least 50% of samples). 2. Unique protein IDs (from proteins which appeared in at least 

50% of samples) from SCC and melanoma were compared. 3. IDs from both SCC and 

melanoma primary tumours which had subsequently metastasised were compared to IDs 

from both SCC and melanoma primary tumours which had not metastasised. 4. IDs from 

SCC primary tumours which subsequently metastasised were compared to IDs from 

melanoma primary tumours which subsequently metastasised. 5. IDs from SCC primary 
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tumours which had not metastasised were compared to IDs from melanoma primary 

tumours which had not metastasised. 6. Significantly differentially expressed proteins 

between P-M and P-NM in SCC were compared to significantly differentially express 

proteins between Pmel-M and Pmel-NM in melanoma. 7. Breakdown of 6, comparing 

significantly differentially expressed proteins identified in 1D and 2D data from SCC and 

melanoma. 

5.4 Discussion 

The aim of this chapter was to identify potential prognostic markers for subsequent 

development metastasis in primary melanoma. There are currently very few prognostic 

biomarkers available that can complement staging systems of melanoma or are helpful 

when used on their own (Weiss et al., 2015). Many other studies have aspired to identify 

prognostic biomarkers in melanoma, including some which used FFPE melanoma samples 

(Byrum et al., 2011, Byrum et al., 2013), however, a lot of these studies focussed on 

differences between primary melanomas and metastatic deposits from this cancer. In the 

current study, we set out to identify prognostic markers from primary tumours which had 

metastasised and primary tumours which had not metastasised. Furthermore, as Breslow 

depth is a known prognostic marker, samples were stratified for this feature in order to 

ensure there was no significant difference between the Breslow thicknesses of the Pmel-M 

and Pmel-NM groups.  

Although identical methods were used for the proteomic investigations of cSCCs and 

melanomas, Figure 5:26 highlights that there were fewer proteins identified in melanoma 

samples compared to cSCC samples. Indeed, although melanoma and cSCC are skin cancers, 

throughout this project the proteomic analysis of melanoma samples proved more 

challenging than that for cSCCs. Fewer proteins were identified in melanoma, and a lower 

number of these were significantly differentially expressed between primary tumours 

which metastasised and primary tumours which had not metastasised.  Moreover, MRM 

analysis failed to validate the initial discovery findings in melanoma, in part due to 

difficulties faced in the MRM method development and seemingly low native peptide 

concentration. It is possible that the difficulties encountered with the melanoma samples 

could have arisen from the melanin present within these melanomas. Melanins are 

polymers produced in a process known as melanogenesis, where the amino acid tyrosine 
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is oxidised and undergoes a series of changes to become predominantly either eumelanin 

or pheomelanin (Prota, 2000). Furthermore, melanin is renowned for its “sticky” properties 

and ability to bind to other substances, including proteins (Mani et al., 2001). In fact, it has 

been reported that melanoproteins (melanin bound to proteins) are better scavengers of 

UV-induced free radicals (Pascutti and Ito, 1992) and thus melanin may have a biological 

need to bind to proteins. Furthermore, the pH environment surrounding melanin has been 

found to have an important effect on its binding capabilities and, indeed, more acidic 

environments induce more melanin polymerisation in addition to a stronger bond between 

melanin and other proteins/peptides and the formation of potential melanin bridges 

between proteins (Mani et al., 2001). Much of the protein extraction protocol used for LC-

MS is carried out in an acidic environment and moreover, most of the LC separation is 

carried out in acidic conditions. It is therefore possible that the protein extraction from the 

melanoma samples released high concentrations of melanin (e.g. as a result of lysis of 

melanosomes), which subsequently bound to free proteins (or peptides after digestion) 

and modified their mass. Furthermore, melanin is made from the amino acid tyrosine, 

which has an amine group, and dopaquinone in the melanin synthetic pathway also 

contains tyrosine’s amine group. This may have encouraged binding of melanin precursors 

to proteins and/or peptides during the extraction of proteins from the melanoma samples 

because protein/protein cross-linkages can be formed between nucleophilic groups of 

amino acids, and it is likely that similar cross linkages can form between proteins/peptides 

and melanin (and its precursors), thus modifying the mass of the protein in question 

(Hoffman et al., 2015).  

In addition to acidic environments producing more polymerisation of melanin and 

melanoproteins, alkaline environments can allow auto-oxidation which can also induce 

polymerisation (Mani et al., 2001). It is therefore possible that the higher pH used in the 

2D LC separation resulted in more polymerisation of melanin and possibly promoted 

additional melanin polymer/protein binding. This extra alkaline step in the 2D fractionation 

process could account for the fewer protein IDs seen in the 2D melanoma data than in the 

1D melanoma data, as seen in Figure 5:3.  Melanins have also been reported to bind to 

chromatographic columns, thus degrading LC/MS performance, resulting in studies 

attempting to remove melanin from samples containing melanosomes (Chi et al., 2006).  
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Another possibility for the difficulties encountered with attempting to identify proteins 

associated with subsequent development of metastases in the melanoma proteomics 

could be due to the presence of subgroups within Pmel-M and Pmel-NM tumours, as 

suggested in the TDA analysis. It is possible that within the sample cohort, these subgroups 

might have differed in their mechanisms of developing metastasis and therefore the power 

to identify significant differences was low because more samples would have been needed 

in each of the subgroups. Whereas the melanoma samples used in this project have not 

been investigated genetically, these different subgroups might possess different 

pathogenic genotypes such as that of a BRAF mutant (Haluska et al., 2006), CDKN2A mutant 

(Harland et al., 2014) or PTEN mutant (Davies et al., 2008).  

The modules identified in the WGCNA could also be explained by different subgroups and 

could also potentially clarify why there was no correlation with propensity to metastasise. 

For example, it is possible that modules of correlated proteins, specifically blue and 

turquoise, represent different genotypes which could explain the BRAF/MAPK enrichment 

seen in the turquoise module.  

Despite the possibility of subgroups within the melanoma groups, 31 proteins were 

identified as significantly differentially expressed between Pmel-M and Pmel-NM. STRING 

analysis and subsequent pathway analysis of these proteins revealed an enrichment in 

immune response. It is well known that immunosuppressed individuals have an increased 

risk of developing melanoma (Euvrard et al., 2003) and indeed an increased risk of 

metastasis (Martinez et al., 2003). The 1D proteomic data also highlighted enrichment in 

several MAPK pathways in the melanomas. It has been reported that BRAF mutations 

appear in ~60-70% of melanomas (Haluska et al., 2006) and BRAF mutations are associated 

with a higher risk of metastasis (Adler et al., 2017). These proteomic data are consistent 

with this, which in turn supports the biological relevance of the results presented in the 

discovery proteomics part of this project.  

Cytoskeletal remodelling and motility appeared to be highlighted in several pathway 

enrichment analysis tools including GO and IPA. Significant activation of remodelling of 

adherens junctions, actin cytoskeleton signalling and enrichment in actin polymerisation 

and cytoskeletal organisation was noted. These are likely to be relevant to the biology of 

the melanomas in this project, because as cancers progress, they often lose polarity 
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resulting in growth and invasion of the cancer into surrounding tissue as a result of 

alterations in actin polymerisation, cytoskeletal reorganisation and adherens junctions 

(Gandalovicova et al., 2016). An activation of many Rho related pathways including 

regulation of actin-based motility, RhoA signalling and signalling by Rho GTPases was 

observed. A dysregulation of Rho signalling is known to have an effect on cell polarity and 

thus, in this instance could be promoting progression by increasing invasiveness 

(Ellenbroek and Collard, 2007).  

IPA upstream analysis also predicted a number of proteins which it inferred were either 

activated or inhibited. IPA indicated a strong activation of IL15 in the 1D and 2D melanoma 

proteomic data, but as highlighted in the results, there was no strong enrichment of 

pathways in the significantly differentially expressed proteins in Pmel-M compared to 

Pmel-NM.  Higher levels of IL-15 have been associated with less metastasis than IL-15 

knockouts in breast and melanoma cell lines (Gillgrass et al., 2014) and with a better 

immune response in melanoma. There were several other noteworthy predicted upstream 

regulators, including EGFR which is known to have an important role in many cancers, but 

is also believed to play a possible role in vemurafenib (BRAF inhibitor) resistance (Gross et 

al., 2015). Furthermore, the most inhibited regulator was miR-122, which conversely in 

other studies have been found to be increased in metastatic cancers (Fan et al., 2018). 

The MRM experiments failed to verify the results which suggested that KRT9, GSN and 

LMNB1 were associated with development of melanoma metastases in the discovery 

proteomics. The decision to investigate KRT9 as an MRM verification target was a simple 

choice because KRT9 was the only significantly different protein present in both the 1D and 

2D melanoma data.  Likewise, the decision to investigate GSN further was based on the fact 

that our laboratory already had the heavy labelled GSN peptides. The criteria for selecting 

the final target was more challenging. The graph for LMNB1 in the discovery proteomics 

(Figure 5:9) looked promising as there appeared to be a good split between Pmel-M and 

Pmel-NM in addition to having a relatively high fold change. Furthermore, LMNB1 appeared 

to be relatively high in abundance, which reduces the risk of instrument sensitivity 

becoming a limiting factor. Another factor involved in choosing LMNB1 was that there was 

little research on this area and thus there was an element of novelty to investigating this 

further.   
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As previously mentioned, MRM analysis throughout the melanoma verification process 

proved more difficult than compared to cSCCs. The reason for this is unclear but, as 

mentioned above, it is possible that the high concentrations of melanin might have affected 

the results of the heavy and native peptides alike, resulting in unreliable results. Indeed, 

several of the chromatograms for the heavy labelled peptides were inconsistent, in 

addition to being present at low intensities. It would have been possible to increase the 

concentration of the heavy peptides in order to increase the intensity of the peaks, but the 

fact that 100fmol of peptide were of low intensities suggests that the problem was 

associated with the peptides themselves, or the cells / tissue that the peptides resided in. 

Furthermore, the intensities of the native peptides in the melanoma sample seen in the 

calibration experiments were extremely low, suggesting again that something in the tissue 

or preparation of the mixture was responsible for the reduced number of ions detected for 

those specific masses of peptides / proteins. All samples were kept at -20°C until their use 

in the discovery proteomics and MRM experiments, whereupon they were kept at 4°C in 

order to avoid repeated freeze/thaw cycles.  It is possible that during this 4°C period some 

degradation of proteins / peptides occurred, or that there was sufficient time for 

melanoproteins to form, resulting in differences in mass, thus lowering the intensity of the 

peptides on the MRM chromatograms.  

Nonetheless, no significant difference between Pmel-M and Pmel-NM for any of the 

targeted peptides was detected by MRM. Although the proteins could not be validated 

using MRM, other proteins from the list of differentially expressed proteins in the 

melanoma discovery proteomics could be investigated, and/or the MRM for the three 

investigated proteins (GSN, KRT9, LMNB1) could be optimised to a greater extent and 

repeated.  Alternatively, a different methodology could be used to verify and subsequently 

validate some of the discovery proteomic data. Another possibility might be to cleave any 

melanoproteins in the samples and filter out melanin (Chi et al., 2006) to optimise the MRM 

experiments. Despite the MRM data being inconclusive, it should be noted that the 

proteomic discovery data yielded many results that would have been expected (as 

highlighted in the results and discussion of this chapter) in addition to novel areas of 

interest such as potential subgroups with the Pmel-M and Pmel-NM groups of melanoma.   
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 Modelling Clinical Characteristics of 

cutaneous Squamous Cell Carcinoma (cSCC) 

6.1 Introduction 

Modelling of proteomics data provided interesting results in the earlier chapters in this 

thesis, and in view of having gained experience in machine learning and the lack of an 

optimal clinical staging system for cSCC, the work in this chapter aimed to determine 

whether it was possible to use modelling of clinical and/or histological parameters of cSCC 

(as this data is routinely available in clinical practice) to better predict prognosis in cSCC. 

Current clinical staging systems for cSCC vary greatly in their criteria for high/low risk or 

aggressive/non-aggressive cSCCs  (Stratigos et al., 2015, Farasat et al., 2011, Lydiatt et al., 

2017, Motley et al., 2003).  A systematic review and meta-analysis of risk factors for cSCC 

has highlighted many factors which contribute to the development and progression of cSCC 

(Thompson et al., 2016). These factors which relate to the primary tumour include a 

Breslow thickness of >2mm, Clarks level 5, perineural invasion, diameter >20mm, site (e.g. 

temple, ear, lip) and poor differentiation status. Furthermore, many of these risk factors 

were also noted when the authors reported risk factors for development of cSCC metastasis 

(Thompson et al., 2016).  

The British Association of Dermatologists (BAD) guidelines for evaluation of cSCCs have 

limitations of being very sensitivity but rather unspecific. The BAD defines a low risk SCC as 

a tumour which appears on a sun-exposed site (excluding ear or lip), has a diameter of less 

than 20mm, is less than 4mm in depth, has a Clarks level below 5 and is well differentiated 

(Motley et al., 2003). The European Dermatology Forum (EDF) guidelines also suggest that 

any tumour with moderate or poor differentiation is of high risk, but state that depth of 

less than 6mm is low risk (compared to 4mm in the BAD guidelines) (Stratigos et al., 2015). 

The American Joint Committee on Cancer (AJCC) 7th edition use similar characteristics 

except that they classify poorly differentiated (rather than including moderately 

differentiated) tumours as high risk; furthermore, they state a tumour of 2mm thickness or 

Clarks level ≥4 is high risk (Karia et al., 2014). Guidelines are constantly adapting in an 
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attempt to improve their efficacy and, as such, the new AJCC (8th) edition was modified so 

that any tumour >6mm or Clarks level 5 are classified as high risk (Sood et al., 2019).  

Other staging systems for cSCC have also been proposed; these include the Brigham and 

Women’s Hospital (BWH) (Karia et al., 2014), Brueninger et al system (Breuninger et al., 

2012) and the Union for International Cancer Control (UICC) (Fang, 2017), each with their 

own criteria. Although different institutions use different staging systems for cSCC, it is 

clear that a global and improved cSCC staging system is desperately needed, especially one 

that has a good sensitivity and specificity.  Currently, the AJCC 8th version has arguably the 

best system, producing a sensitivity and specificity of 72.5% and 74.6% respectively 

(Roscher et al., 2018). Based on the limitations of the current staging systems, it was 

envisioned that the generation of a staging system which employed clinical and/or 

histological parameters, through machine learning and modelling of relevant clinical and 

histological parameters, would be extremely helpful because it could be employed in 

practise and utilised in a clinical setting with ease and, moreover, relatively quickly.  

6.2 Methods 

Clinical features of the cSCC samples used in this thesis were subjected to predictive 

modelling to assess their power to successfully predict which samples are metastatic. 

6.2.1 Predictive modelling 

As described in chapter 2, predictive modelling was carried out using the statistical 

programming language R with machine learning packages; caret, caret ensemble, pROC and 

doParallel for multithread, parallel processing. Clinical and histological data from cSCC 

samples used for the earlier proteomics studies were combined into one large dataset, 

totalling 101 samples. This dataset was then randomly (but consistently for each 

subsequent modelling approach) split into training (67%) and test (33%) sets. Machine 

learning was then carried out using 10-fold cross validation repeated 3 times for each 

model. When creating stacked models, base learners were assessed for their correlation to 

identify a suitable set of models. Stacked models were also trained using 10 fold cross 

validation repeated 3 times. A full list of the algorithms used in this thesis can be found in 

Appendix 4. 
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6.3 Results 

6.3.1 Initial modelling 

Selecting which algorithm to use, or which algorithms to use in the case of a stacked 

ensemble model, is not an obvious choice because there is not one specific algorithm which 

has been identified as the optimal one when applying modelling to a clinical problem. Much 

of the selection process is based on a process of trial and error, and gaining experience in 

identifying which models perform best with the relevant data. For binomial classification 

problems, which this is (has metastatised or has not metastatised), a first point of call is 

usually logistic regression due to its simplicity, speed and understandability. Therefore, a 

generalised linear model (glm) approach was taken as an initial starting point to generate 

a model which could potentially predict likelihood of development of metastases in 

patients with primary cSCC. 

 

Figure 6:1: A glm model with clinical and histological characteristics of cSCC as predictor 

variables produced a model with an AUC of 0.813.  

A glm model, using cSCC histological parameters (differentiation, diameter, Clarks level, 

depth, perivascular invasion, perineural invasion and site of tumour) and clinical 

parameters (age, sex of the patient) as predictive variables. The model was trained using 

10-fold cross validation repeated 3 times on a training set (67%) and tested on a test set 

(33%).  
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6.3.2 Feature selection 

 A glm model was created for cSCC, using histological parameters (differentiation, 

diameter, depth, Clarks level, perivascular invasion, perineural invasion and site of the 

primary tumour) and clinical parameters (age and sex of the patient) to predict which 

samples were P-M and P-NM (figure 6.1). The ROC curve of this glm model produced an 

AUC of 0.813 with a 95% confidence interval of 0.680-0.946 (DeLong) and an optimal 

sensitivity and specificity of 94.1% and 70.6%, respectively. Understanding the 

characteristics used as predictors, and thus identifying those which add most value to the 

model, requires evaluation to assess the usefulness (i.e. the predictive power) of each one 

of the characteristics. Therefore, this was undertaken for the parameters that had been 

used in the initial glm model. 

 

Figure 6:2: The individual predictive power of each variable in identifying the likelihood 

of development of metastases from primary cSCCs. 

Using 10-fold cross validation repeated 3 times, a glm model was created for each clinical 

characteristic to help identify useful predictors. Models were trained on 67% of the data 

and tested on 33% of the data.  
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To determine the individual predictive power of each characteristic in the initial model, a 

glm model of each one was created (Figure 6:2). Diameter was the best individual predictor 

with an AUC of 0.95 and differentiation and depth were second and third respectively, with 

AUCs of 0.877 and 0.848. Perivascular invasion and site of tumour were only slightly better 

than that observed by chance alone, whereas sex (gender) of the patient was actually 

worse than simply using chance alone. It is important to note that this highlights the 

individual predictive power of the characteristic whereas, in truth, many of these 

characteristics will be more powerful when used in combination due to the true biological 

connections between them, i.e. the fact that more aggressive tumours are likely to exhibit 

several features that associate with being aggressive.  

Furthermore, the diameter, differentiation and depth (henceforth dubbed the 3 D’s) of an 

SCC have been recognised for many years to influence clinical outcome in cSCC as well as 

in other cancers such as melanoma, and therefore these factors represent a good set of 

variables to use as predictors. A glm model was therefore created, using diameter, depth 

and differentiation as the predictors (Figure 6:3).  

 

Figure 6:3: A glm prediction model using diameter, differentiation and depth produces a 

model with an AUC of 0.983. 

10-fold cross validation repeated 3 times was employed when creating the glm model 

using differentiation, diameter and depth as predictive variables. The model was trained 

on 67% of the cSCC samples and tested on 33% of the samples.  
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A glm model using the 3 D’s produced an AUC of 0.983 with a 95% confidence interval of 

0.9506-1 (DeLong). The optimal threshold produced a sensitivity of 94.1% and a specificity 

of 94.1%. This alone is a good model and warrants the application of this model to a larger 

sample cohort to validate it further in a larger set of patients. However, this model still 

produced several misclassifications in the 101 cSCCs in this study, which if extrapolated to 

the general population could result in many patients being misclassified and therefore 

incorrectly treated worldwide if the model was employed in clinical practice.  

Although the model was trained using repeated cross validation, there was still a risk of 

overfitting which may not have been detected here due to an inherent bias secondary to 

the greater number of poorly differentiated tumours in the P-M group compared to the P-

NM group. For this reason, it was decided to try different algorithms and, indeed, ensemble 

algorithms in an attempt to reduce the likelihood of overfitting because many algorithms 

have built-in defence strategies to avoid this. For this reason, glmnet was henceforth used 

in place of glm because glmnet uses regularisation to reduce the chance of overfitting. 

Regularisation is a function in mathematical models which constrains certain components 

in the data and reduces the impact attributable to these parameters (i.e. by reducing 

coefficients of features towards zero) thus decreasing the potential for overfitting. 

Furthermore, although depth performed better as an individual predictor of metastasis 

(Figure 6:2), it was found that with differentiation and diameter, Clark’s level and depth 

performed equally well.  In addition, the use of Clark’s level attempts to account for 

different thicknesses of the dermis at different skin sites.  Therefore, Clark’s level was 

selected in place of depth in subsequent models. These models were generalised linear 

model with convex penalties (glmnet), linear discriminant analysis (Ida), extreme gradient 

boositing: dropouts meet multiple additive regression trees (xgbDART), neural network 

(nnet), naïve bayes (nb), C5.0, gradient boosted machines (gbm), support vector model 

radial (svmRadial), regularised random forest (RRF), adaptive boosting (adaboost), treebag, 

K’s nearest neighbour (knn) and recursive partitioning and regression trees (rpart). 



Chapter 6 

213 

6.3.3 Algorithm selection 

 

Figure 6:4: Testing multiple machine learning algorithms 

Multiple different machine learning algorithms were 10fold cross validated on a training 

set of data (67% of total 101 cSCCs) and then tested on the remaining 33% of the data. 

Predictive variables; diameter, differentiation and Clark’s level were used. Error bars 

indicate the variance amongst models within cross validation.  

Many of the models tested, produced high ROC scores (Figure 6:4). However, as expected, 

no single model was perfect and each model misclassified different samples in terms of 

predicting outcome. Stacked ensemble modelling, as previously used in chapter 4 of this 

thesis, is an excellent way to get good coverage of correct classifications and often 

increases the possibility of “catching” hard to classify samples so that the resulting model 

is more accurate. 

It is reasonable, but incorrect, to assume that the more mathematical models used, the 

better the final prediction model will be. In fact, the importance and benefits of combining 

models lies within the use of those models which corroborate appropriately each other’s 

prediction, specifically in those cases which are classified as positive results (in this case, 

metastasis). Nonetheless, a stacked model of all the above tested algorithms was created 

(Figure 6:5). This stacked model proved worse than the use of glm by itself, supporting the 

notion that too many algorithms can be detrimental.  
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Figure 6:5: Using multiple machine learning algorithms to predict development of 

metastases from cSCC. 

Using the 13 different algorithms outlined in Figure 6:4, a model was trained using 10fold 

cross validation on 67% of the cSCC data and tested on the remaining 33% of the data. The 

predictors which were used were differentiation, diameter and Clark’s level.  

6.3.4 Stacked ensemble modelling 

To successfully combine models for a stacked ensemble model, it is important to make sure 

that there isn’t too high a correlation between the models, because this could result in 

excessive weighting for incorrectly classified samples. Similar to the model produced for 

the MRM data in chapter 4, a correlation matrix of all the tested models was created to 

help select suitable algorithms (Figure 6:6).  
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Figure 6:6: Correlation matrix between different model classifications.  

The predictions of the 13 models shown in Figure 6:4 were correlated to each other.  In 

general, pairwise correlations >0.75 are considered too correlated for use in a stacked 

model. 

Although the correlation matrix provides useful information when deciding which models 

to try in conjunction with each other, there is no ideal way of choosing the most 

complimentary models and the best method for picking which models to use remains trial 

and error.  Therefore, through trial and error, glmnet, xgbDART, nnet and RRF were found 

to be a good combination of algorithms. Each of these individual algorithms produced high 

ROC scores and a range of sensitivities and specificities (Figure 6:7 and Figure 6:8). 

Furthermore, each of these models expressed little correlation (positive or negative) to one 

another, suggesting their suitability for stacking (Figure 6:9). 
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Figure 6:7: investigating the predictive power of glmnet, xgbDART, nnet and RRF 

algorithms previously identified. 

Each of the models were trained on 67% of the cSCC samples using 10fold cross validation 

repeated 3 times, and tested on 33% of the cSCC samples. Diameter, differentiation and 

Clark’s level used as predictors. Error bars indicate the variance amongst models within 

the cross validation.  

 

Figure 6:8: ROC curves of glment, xgbDART, nnet and RRF as individual models to predict 

development of metastases from primary cSCCs. 

Diameter, differentiation and Clark’s level were used as predictors when training each 

model on 67% of 101 cSCC samples using 10fold cross validation repeated 3 times. Models 

were then tested on the remaining 33% of the cSCC samples.  
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Figure 6:9: There is relatively low correlation between the individual models (also called 

base level learners) nnet, xgbDART, glmnet and RRF in the prediction of metastases from 

primary cSCCs.  

Predictions of each model, trained on 67% of data using 10 fold cross validation repeated 

3 times, were correlated to each other. As each model performed quite well, some 

correlation was to be expected.  

 

Figure 6:10: ROC curve analysis of the stacked ensemble model produced an AUC of 

0.997. 

A stacked ensemble model using glmnet, xgbDART, nnet and RRF as base learners was 

trained on 67% of the data using10 fold cross validation repeated 3 times. Predictions were 

then submitted to a top level Meta learner, xgbTree, to stack the model and test on the 

remaining 33% of data.  
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The nnet, xgbDART, glmnet and RRF prediction models were therefore combined to 

generate a stacked ensemble model.  This stacked ensemble model produced an AUC of 

0.997 (Figure 6:10) with a 95% confidence interval of 0.9883-1 (DeLong). This resulted in 

an optimal threshold providing a sensitivity of 94.1% and specificity of 100%. If sensitivity 

were favoured over the optimal threshold, one could obtain a sensitivity of 100% and a 

specificity of 88.2%. This model was compared to the prediction of metastases using clinical 

scoring systems on the same data, and compared to the data published by Roscher et al 

(2018) as previously depicted in Figure 4:26.  The result suggested that this stacked 

ensemble model was better at predicting development of metastases from primary cSCCs 

than any current cSCC scoring system in use today.  

6.4 Discussion 

The original model produced (Figure 6:1) when using cSCC histological parameters 

(differentiation, diameter, Clarks level, depth, perivascular invasion, perineural invasion 

and site of tumour) and clinical parameters (age, sex of the patient) as predictors of 

development of metastases from cSCC achieved a relatively good AUC value and, as such, 

highlighted the well-recognised potential of each of these variables to predict clinical 

outcome in cSCC. Nonetheless, using features which are loosely related to the classification 

state (for example in this case, sex of patient) in conjunction with strong features which 

actually hold predictive potential, will result in a weaker model because those loose 

features decrease the effect of the important ones (Bastanlar and Ozuysal, 2014). It is for 

this reason that understanding the data and carefully selecting biologically relevant 

features (or at least those which have strong predictive power in a given input data) is 

critical. Furthermore, features (predictive variables) which are strongly correlated with 

other features can lead to unnecessary bias and so should be avoided. For these reasons, 

the number of features in subsequent models was limited to three from the initial nine that 

were used originally. Diameter and differentiation are two histological parameters that are 

always recorded when excising a cSCC and are known to be important risk factors of 

metastasis. This coupled with the fact that, individually, they were the best performers out 

of all the other parameters when used in separate models, supported their use as features 

in the later models. Many of the guidelines in use today use differentiation state as a factor 

when establishing high/low risk of metastases and, furthermore, often classify cSCCs with 
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poor differentiation or poor and moderate differentiation as high risk (Motley et al., 2003, 

Stratigos et al., 2015). The issue with this, however, is that there are some moderate 

differentiated cSCCs with no other high risk features thus, for example, they are lower risk 

than those tumours which are moderately differentiated and show evidence of perineural 

invasion, and so using differentiation alone could readily misclassify cSCCs inappropriately.  

Although depth was the second best performing individual feature for predicting 

metastases, it was reasoned that Clark’s level is essentially a simplification of depth in 

relation to skin site because different skin sites have different thicknesses of the dermis 

between the epidermis and the subcutaneous tissue (Losquadro, 2017). Of course, site also 

plays an important role in metastasis because different areas of the body have more or less 

vascularity and lymphatic channels (amongst other things) (Nedelec et al., 2016). However, 

in order to include site in the models, the training data set would have needed to be 

extremely large so as to ensure that overfitting did not occur. Furthermore, the WGCNA 

analysis of cSCC in chapter 3 also revealed a module (turquoise) which not only expressed 

a positive correlation with Clark’s level but also displayed enrichment in multiple pathways 

involved in metastasis. Therefore, it was considered that Clark’s level as a feature would 

give the algorithm a combined appreciation of depth and site as well as the more complex 

biological involvement between these (because they are correlated). Indeed, the 

combination of diameter, differentiation and Clark’s level in a glm model produced an 

excellent model with a high ROC AUC.  Nonetheless, this was the result of using just one 

(relatively simple) model and it was considered that perhaps an ensemble model (or indeed 

another more complex model) might generate a ROC curve with a higher AUC.  

There is no defined rule for which model or algorithm best suits which data; this largely still 

relies on experience and on trial and error (Bastanlar and Ozuysal, 2014). Several different 

algorithms were tested individually in this chapter but then a process of trial and error was 

used to select the combination of models used for stacking. Each of the individual 

algorithms employed has its strengths, for instance, glm is a common algorithm used for 

binomial classification problems and its universality makes it a preferred first choice.  

xgbDART is a powerful algorithm as, being a boosting algorithm, it can learn from all the 

data provided in a sequential manner and specifically xgbDART uses randomisation to 

reduce the chance of overfitting. Boosting algorithms are good at identifying and ignoring 
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noise in the data, which if this current study were to be performed on an even bigger cohort 

in the future, could significantly reduce overfitting and increase the overall accuracy of the 

model. Nnet is a powerful machine learning algorithm which is very good at identifying 

patterns within data. Given that diameter, differentiation and Clark’s level are all likely to 

be biologically connected, and so probably influence each other in certain ways, nnet may 

be able to identify patterns in this data that would be hard to identify without machine 

learning. RRF is a random forest algorithm which utilises regularisation to reduce the 

chance of overfitting. The use of regularisation here is important because random forest 

models can have a tendency to overfit especially when they have a huge amount of trees, 

each with multiple branches and nodes. Regularisation works by shrinking the coefficient 

estimates towards zero which, in turn, produces a simpler model, less capable of overfitting.  

Although xgbDART and RRF are both decision tree based, they provide different coverage 

(Figure 6:9), as xgbDART uses mostly very small decision trees to learn sequentially from 

the last, whereas RRF creates one big “forest” of trees which results in one model that has 

learnt from all the data as a whole. The resulting stacking model, which used glmnet, 

xgbDART, nnet and RRF in combination, gave a ROC curve with a very high AUC and 

outperformed all current guidelines/clinical scoring systems in use currently.  In addition, 

this ensemble model gave a ROC curve with a better AUC than that of the model derived 

from MRM data outlined in chapter 4.  Admittedly, the mass spectrometry-based 

proteomics in chapters 3 and 4 gave better insight into the biology of cSCC, but the work in 

the current chapter shows, perhaps surprisingly, that a fresh look (i.e. mathematical 

modelling) at old systems (i.e. simple histological parameters) can sometimes have the 

potential to predict clinical outcome to a better extent than novel observations with “omics” 

approaches.  
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 General Discussion 

The title and aim of this thesis were to identify factors within skin cancer that contribute to 

the development of metastasis. This was accomplished using a mass spectrometry-based 

proteomic approach on cSCC and melanoma primary tumours which had metastasised and 

primary tumours which had not metastasised within a minimum of 5 years since excision 

of the primary cancer. This alone highlights a way in which this study is fairly unique 

because most other studies investigate for factors within primary tumours and their 

subsequent metastases or for differences between the primary and metastatic tumours 

(Corbo et al., 2017). The use of primary tumours which metastasised and primary tumours 

which did not metastasise means that these two groups are likely to be more similar than 

when comparing primary with metastatic tumours. Therefore, less differences in the 

proteins identified were expected between the groups but it was likely that any such 

differences would be of interest as a potential driving influence of the development of 

metastasis.  

Although both melanoma and cSCC arise in the skin, they obviously arise from different cell 

types and, as such, the proteomic profiles and possible contributing factors to development 

of metastasis were expected to differ between them. The total number of proteins 

identified in the cSCC samples was 4,018 (Figure 3:11) whereas the total number of 

proteins identified in the melanomas was 3,447 (Figure 5:3).  We believe this to be the 

highest number of unique proteins (and indeed proteome coverage) from any cSCC or 

melanoma FFPE proteomic study, for example the number of proteins identified in a 

previous melanoma study was 1,528 (Byrum et al., 2013) and in cSCC was 2,120 (Foll et al., 

2017). More recently, a proteomics study of actinic keratoses, Bowen’s disease and cSCCs, 

published in the Journal of Investigative Dermatology, identified 3574 proteins across 93 

samples of actinic keratosis, Bowen’s disease and cSCC (Azimi et al., 2019). The number of 

IDs in this thesis are also on par with cell line proteomics investigations on cSCC and 

melanoma (Konstantakou et al., 2017, Paulitschke et al., 2015). The reason for the lower 

number of proteins identified in the melanoma samples in this thesis was hypothesised to 

be a result of melanin binding to proteins. For example, it was likely that the higher amount 

of melanin found in melanomas could bind to proteins in the tumour either during formalin 

fixation or during the subsequent protein extraction process prior to the LC-MS (Hoffman 
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et al., 2015). Despite attempts to isolate pure proteins without melanin during the protein 

extraction, this may have been impossible because melanin is frequently bound to protein 

in vivo (Mani et al., 2001) and may in fact have a biological disposition to do so (Pascutti 

and Ito, 1992); (Sharma et al., 2002).  

A total of 144 proteins and 31 proteins were identified as being significantly differentially 

expressed between P-M and P-NM cSCCs (Figure 3:14) and between Pmel-M and Pmel-NM 

melanomas (Figure 5:5), respectively. The 144 proteins identified in cSCC gave insight into 

the possible factors contributing to the development of metastasis in cSCC. It is well 

established that the immune system plays a key role in cSCC development and progression 

(Rangwala and Tsai, 2011). This is predominantly shown though the effect of 

immunosuppression, where the risk of developing skin cancer can increase 50-250 fold in 

immunosuppressed individuals (Alter et al., 2014, Euvrard et al., 2003) and the risk of 

metastasis is also raised in this patient group (Martinez et al., 2003). Ingenuity pathway 

analysis revealed significant activation of the TCR in P-M compared to P-NM (Figure 3:26) 

suggesting that there was significantly more activation of T cells in P-M than in P-NM 

tumours. Although more T cell activation in P-M samples may seem counter-intuitive, it has 

been found that P-M samples have increased numbers of T-reg lymphocytes (Lai et al., 2016, 

Lai et al., 2015), so it is possible that part of the observed TCR activation might be due to 

activation of higher number of Tregs, which in turn would suppress the immune system 

and allow the cancer to metastasise. Furthermore, IPA also highlighted activation of TGFB1 

in P-M samples, which might support the hypothesis that the increase in TCR activation is 

related to Treg immunosuppression, because TGFB1 is, at least in part, responsible for Treg 

suppressive function (Wu et al., 2016). 

Immunosuppression from Treg cells would facilitate an environment suitable for cancer 

progression but does not necessarily explain how the cancer itself progresses and 

metastasises. The bioinformatic analysis of the mass spectrometry results in this thesis 

identified an enrichment in several connected biological pathways which eluded to possible 

systems involved in the development of cSCC metastasis. Simultaneously, gene ontology 

analysis (Figure 3:23, Figure 3:24), KEGG enrichment analysis (Figure 3:20, Figure 3:22) and 

IPA (Figure 3:25) revealed significantly more extracellular matrix/focal adhesion and 

integrin signalling in P-M compared to P-NM.  It is known that extracellular stimuli can 
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promote PI3K-Akt signalling (Thorpe et al., 2015), which in turn is known to promote cancer 

progression (Yao et al., 2017, Li et al., 2017) and indeed, there was evidence of enrichment 

and activation of the PI3K-Akt signalling in P-M compared to P-NM (Figure 3:20, Figure 3:22, 

Figure 3:25, Figure 3:26). Furthermore, activation of PI3K-Akt signalling and ERK (which was 

also seen in the IPA in this chapter 4) has been found to promote metastasis in 

oropharyngeal  SCC as it induces resistance to anoikis (Zeng et al., 2002), a kind of 

programmed cell death specific to epithelial cells which lose polarity and separate from 

their normal environment. The IPA (Figure 3:25) and gene ontology results also suggested 

significantly more exocytosis in P-M samples compared to P-NM samples. One possible 

explanation for this is that P-M samples are priming distant sites into pre-metastatic niches, 

ready for metastasis (Costa-Silva et al., 2015, Hoshino et al., 2015, Peinado et al., 2011). 

The 31 significantly differentially expressed proteins identified in the melanoma samples 

also indicated an immune system involvement because significant enrichment in this was 

identified in KEGG analysis (Figure 5:10, Figure 5:11) and IPA (Figure 5:14), albeit less so 

than that seen in the cSCC analysis.  KEGG pathway analysis also revealed a significant 

enrichment in “signalling by BRAF and RAF fusions” (Figure 5:10), which supports findings 

that over-activation of BRAF (usually through mutations) can contribute to melanoma 

metastasis (Adler et al., 2017).  IPA and gene ontology analysis also indicated enrichment 

of cytoskeletal remodelling through remodelling of adheren junction, actin cytoskeleton 

and actin polymerisation/cytoskeletal organisation and activated Rho signalling pathways 

in Pmel-M compared to Pmel-NM. As many cancer progress, they often lose their polarity 

which can promote metastasis (Rejon et al., 2016, Halaoui and McCaffrey, 2015, 

Gandalovicova et al., 2016), with evidence that reduced polarity could be caused by 

dysregulation of Rho signalling (Ellenbroek and Collard, 2007) which leads to cytoskeletal 

rearrangements, increasing invasive potential (van de Merbel et al., 2018).  

Although 31 differentially expressed proteins were identified between the Pmel-M and 

Pmel_NM groups, TDA revealed that there could be molecular subgroups within the Pmel-

M and Pmel-NM groups. It is possible that these subgroups represented clusters of samples 

with known mutations in genes such as BRAF, CDKN2A or PTEN.  It is also possible that 

these subgroups represent, until now, unidentified clusters of melanoma samples based 

on alterations within tumour proteomes independently of mutations in the 
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aforementioned genes. To determine which of these is correct, future studies could benefit 

from increasing the sample numbers, undertaking proteomic investigations as were 

performed in this thesis, and conducting targeted sequencing analysis to look for known 

driver gene mutations in each sample. Furthermore, future studies could benefit from 

stratifying melanoma cohorts into their known subgroups, i.e. superficial spreading 

melanoma, lentigo maligna melanoma, nodular melanoma and acral melanoma. Stratifying 

for these known subgroups could enable investigation into the molecular biology 

underpinning each but perhaps moreover, could identify if the molecular phenotypes 

identified here, correspond to these sub-groups or if indeed they are independent 

molecular phenotypes.  

Interestingly, only one protein was identified in both the 1D and 2D data from the 

melanoma proteomics; this was Keratin 9. Keratin 9 is almost exclusively found in the 

suprabasal layers of palmoplantar epidermis (Fuchs-Telem et al., 2013) and therefore 

identifying this protein in melanoma samples from various different body sites was 

interesting. Unfortunately, this difference in expression could not be verified using MRM, 

and so future studies could investigate this further and, if confirmed, could investigate how 

this keratin might influence melanomas to promote metastasis. A brief comparison of 

melanoma and cSCC proteomics was performed (Figure 5:26), however, the results were 

only discussed in minor detail as careful consideration was given to the fact that the 

melanoma proteomic data was not verified. Nonetheless, if future studies could verify the 

validity of the melanoma data in this thesis, interesting analyses could proceed from the 

differences in the metastases-related proteomes between cSCCs and melanoma.  

Although MRM was unable to verify the findings of the preceding mass spectrometry-based 

proteomic in this tumour, MRM proved successful in verifying the results of the discovery 

proteomics in cSCCs (Figure 4:13, Figure 4:14) as well as validating this on a completely 

new sample cohort (Figure 4:18, Figure 4:19).  Furthermore, additional verification was 

performed through IHC staining of L-plastin (Figure 4:15). Selecting ANXA5 and DDOST for 

MRM verification was done by machine learning and modelling of the discovery proteomic 

cSCC data. Machine learning involves the use of an algorithm to identify trends in data and 

then apply them to unknown cases (Bastanlar and Ozuysal, 2014). Machine learning and 

artificial intelligence have been used in biological sciences and medicine to create 
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diagnostic and prognostic tests (Lao et al., 2017) as well as in predictive analysis to calculate 

the chance of drug; resistance, suitability and even identify targets (Korotcov et al., 2017). 

It has also been used in image analysis (Erickson et al., 2017) and has proved to be 

invaluable when combined with medical professional inputs (Wang et al., 2016) and has 

even proved more accurate in some cases (Esteva et al., 2017).  

Nonetheless, employing machine learning and modelling on the MRM cSCC data produced 

a model capable of predicting metastasis with an optimal accuracy of 91.18% (sensitivity = 

88.24%, specificity = 94.12%). Moreover, the ROC curve of that model produced an AUC of 

0.929 and performed better at predicting development of cSCC metastases than clinical 

scoring systems in current use. Although this doesn’t necessarily mean that ANXA5 or 

DDOST are contributing to metastasis directly, it does suggest that these proteins are either 

influencers or are influenced by the metastatic process. ANXA5 has been found to promote 

metastasis in several types of cancer (Xue et al., 2009, Sun et al., 2017, Tang et al., 2017), 

however, little is known about DDOSTs role in cancer progression. It could be beneficial for 

future studies to identify, whether ANXA5 and DDOST are causally involved in the 

development of metastases from cSCCs. This could be done by assessing cellular location 

of these proteins as well as ablating the expression of their respective genes in the relevant 

cell types to determine the effect this has on the metastatic potential of cSCC samples. The 

identification of ANXA5 and DDOST as biomarkers of cSCC metastasis could also lead to 

potential new treatment options for patients with cSCCs that are likely to metastasise in 

order to prevent the development of future metastases.  

Despite the predictive power of the ANXA5 and DDOST proteins, the final chapter in this 

thesis showed that using diameter, differentiation and Clark’s level of invasion of the 

primary cSCC in a machine learning approach produced a prediction model with a ROC AUC 

of 0.997.  At an optimal threshold (that is one that produces the highest sensitivity and 

specificity summed), a sensitivity of 94.1% and specificity of 100% could be achieved giving 

a summed sensitivity and specificity of 194.1% (out of 200%). Currently, according to a 

study by Roscher et al (2018), the systems outlined by Breuninger et al (2012) and the 

Brigham’s and Women’s hospital (Karia et al., 2014) have the best predictive ability with a 

summed sensitivity and specificity of 153.2% and 155.3 (each out of 200%), respectively. 

Admittedly, Roscher et al investigated 184 cSCC samples and we only studied 101 cSCC 
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samples; nonetheless, the model presented in chapter 6 is better than the current 

guidelines/scoring systems used to predict the development of metastasis from cSCCs.  

This latter model is potentially very easy to test further and, if confirmed, to subsequently 

employ in a clinical setting because, theoretically, a software with the built in coefficients 

of each feature could be created. A pathologist could then input the differentiation, 

diameter and Clark’s level of a cSCC section and obtain a more accurate high/low risk of 

metastasis for the individual patient. Such a system could result in optimal patient care and 

ensure that cSCC patients are followed up appropriately. Furthermore, employing such a 

system could save the NHS time and money through avoiding unnecessary follow up 

appointments as well as potentially identifying metastatic spread at an earlier stage in 

those requiring follow-up following excision of the primary cSCC.  

In conclusion, this thesis has identified multiple factors within skin cancer that contribute 

to metastasis. Proteomic and subsequent bioinformatics analysis of cSCC and melanoma 

samples highlighted several key pathways likely to be involved in the metastatic process. 

Verification and validation of cSCC proteomics using MRM confirmed these results and 

moreover revealed that two proteins, ANXA5 and DDOST could accurately predict 

metastasis in cSCC, therefore, making them biomarkers for metastasis in cSCC. It was also 

identified that a model, produced using only differentiation, diameter and Clark’s level is 

more accurate at predicting development of metastasis from primary cSCCs than that used 

in any current clinical scoring system, and that, following further confirmation, this latter 

model could be integrated into current clinical practice with relative ease. 
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Appendix 1 

Appendix 1: A Table of all known FFPE mass spectrometry based proteomic studies. 

Type of FFPE tissue 
Sample processing and 
buffers 

LC/MS method 
Total proteins 
(unique) 

Notes Reference 

Breast cancer;  
Stage 0 (n = 7),  
stage II, 2 y recur (n = 5)  
stage II, non-recur (n = 4)),  
stage III (n = 9) 

LMD, Liquid Tissue™ RP-HPLC LTQ 9437 total  
(Bateman et 
al., 2011) 

Colon adenoma (n = 4), 
FFPE 

LMD. 0.1 M Tris –HCl 
pH 8.0/0.1 M DTT/0.5% 
(w/v) PEG 20,000/4 % 
SDS, 99 °C. MED-FASP, 
SAX 

RP-HPLC Ion 
Trap/Orbitrap 

Average 8481 
per sample. 

 (Wisniewski, 
2013) 

Colon cancer and matched 
normal (n = 3) 

0.1 M Tris-HCl pH 
8.0/0.1 M DTT/0.5% 
(w/v) PEG 20,000/4% 
SDS at 99 °C 1 h, FASP, 
SAX 

HPLC Ion 
Trap/Orbitrap 

Cancer = 5985 
± 54 
Normal = 5868 
± 110 

from 6 SAX 
fractions 

(Wisniewski 
et al., 2011) 

SILAC labelled mouse liver 

Xylene with a graded 
ethanol series. LMD or 
needle MD. 0.1 M Tris 
HCl pH 8.0/ 0.1 M DTT, 
blender, sonifier, SDS to 
4%, 99 °C 1 h, 
clarification, FASP 

RP-HPLC Ion 
Trap/ Orbitrap 

FFPE = 5203 

Frozen = 5426 
91% identical 
between FFPE and 
Frozen. 
No significant 
difference 
observed in 
subcellular 
location. No 
storage time 
effect of FFPE.  
LMD had no 
effect. 

(Ostasiewicz 
et al., 2010) 

Mouse liver 

Xylene with a graded 
ethanol series, 50 mM 
Tris HCL pH 7/ 2% SDS, 
sonication, 100 °C 20 
min, 80 °C 2 h. 40,000 
psi applied 

RP-HPLC LTQ 

Without 
pressure = 
3449 
With pressure 
= 5192 

Extracted FFPE 
mouse liver with 
heat, augmented 
by elevated 
hydrostatic 
pressure. 
 
Found that 
extended storage 
time had no effect 
on pressure 
assisted antigen 
retrieval but huge 
effect on just 
heat. 
 
Frozen = 4932 
Frozen with heat = 
4451 

(Fowler et 
al., 2012) 

cSCC, Bowen’s disease, 
actinic keratosis  

LCM, 0.1% 
RapiGest/50mM TEAB, 
95˚C 30 mins 

RP-HPLC SWATH 3574  
(Azimi et al., 
2019) 
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colon mucosal biopsies 
directly frozen (DF)  
RNA later 
immediate FFPE (iFFPE) 
FFPE are 30mins room 
temp (sFFPE) 

xylene with graded 
ethanol series, 300mM 
Tris-HCL/12mM SDS/ 
12mM SDC/pH9.0, 95 
°C 60 mins, sonication 

RP-HPLC Ion 
Trap/Orbitrap 

iFFPE = 3384 
sFFPE = 3328 

DF = 3840 
RNA later = 3718 

(Bennike et 
al., 2016) 

Human liver  (n = 3) 

Octane. 20 mM Tris 
pH9, dialysed against 
100 mM Tris HCL pH8.2. 
Denatured via 8 M 
Urea, reduction, 
alkylation, diluted 100 
mM ammonium acetate 

capillary 
isotachophoresis 
(CITP)RP-HPLC 
Ion Trap 

Average 3287 
n = 3 - (3209, 
3302, 3350) 

(Xu et al., 
2008) 

Clear cell renal carcinoma 

xyelen with graded 
ethanol series, 100mM 
HEPES pH7.5/4% SDS/ 
50mM DTT 1hr 95ᵒC, 
acetone precipitation, 
resuspended at 100mM 
NaOH, sonication, 
40mM formaldehyde 
added after digestion 
and then quenched in 
20mM glycine 20min 
22ᵒC 

RP-HPLC-
orbitrap 

2938 
1307 found in 3 
replicates 

(Weisser et 
al., 2015) 

Glioblastoma 

Octane. LMD. 20 mM 
Tris pH 9/2% SDS, 100 
°C 20 min, 60 °C 2 h, 
Dialysed against 100 
mM Tris HCL pH 8.2, 
reduction alkylation 

CIEF RP-HPLC 
Ion Trap 

FFPE = 2733 

Frozen soluble = 
2380  
Frozen pellet = 
3110 

(Guo et al., 
2007) 

Normal renal kidney tissue 
(n = 16),  
clear cell renal cell 
carcinoma (n = 8) 

Xylene with a graded 
ethanol series. 62.5 mM 
Tris–HCl pH 6.8/4% 
SDS/10% glycerol/100 
mM DTT, 105 °C 45 min, 
FASP digestion. 

RP-HPLC Ion 
Trap/Orbitrap 

Normal = 2663 
total 
Carcinoma = 
2516 total 

Normal mean = 
2121  
Carcinoma mean = 
1671 
no difference in 
the number of 
proteins identified 
between tissue 
blocks of different 
ages 

(Craven et 
al., 2013) 

Intestinal-type gastric 
cancer (n = 10), metaplasia 
(n = 10), normal mucosa (n 
= 10) 

Microdissection, Sub-X 
with a graded ethanol 
series. 100 mM ABC 
pH8, 80 °C 2 h, 
trifluoroethanol, 
sonication, 60 °C 1 h, 
sonication, 
Carboxyethylphosphine, 
reduction, alkylation, 
trypsin. 

Peptide IEF (IPG 
strips), RP-HPLC 
Ion 
Trap/Orbitrap 

Average 2350 
protein/sample 

 (Sousa et 
al., 2012) 

Colon adenoma 

Sub-X with a graded 
ethanol series. 100 mM 
ABC alone, and 1mM 
EDTA, or 100 mM 
pyridoxamine, 80 °C 2 h 

RP-HPLC Ion 
Trap 

FFPE = 2302. 

Frozen = 2554 
FFPE had less 
lysine C-terminal 
to arginine C-
terminal peptides 
(little effect on 
IDs), no difference 
in sub-cellular 
location, 
increased 
methionine 
oxidation; 17% at 
1 year, 25% at 10 

(Sprung et 
al., 2009) 
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years. 
EDTA and 
pyridoxamine 
decreased protein 
identifications. No 
effect of storage 
time on protein 
yield after 10 
years. 

cutaneous squamous cell 
carcinoma (n=24) 

deparaffinised, 0.1% 
RapiGest/0.1m HEPES 
pH8/0.2mM DTT,  95 °C 4 h. 

RP-HPLC Orbitrap 2102   
(Foll et al., 
2017) 

Clear cell renal cell 
carcinoma, FFPE and fresh 
frozen 

Sub-X with a graded 
ethanol series, 100 mM 
ABC pH 8, 80 °C 2 h. 

MRM RP-HPLC 
Triple Quad 

FFPE = 1982 Frozen = 2154 
(Sprung et 
al., 2012) 

Human renal carcinoma 

Octane and methanol, 
20 mM Tris HCL pH 
9/2% SDS, 100 °C 20 
min, 60 °C 2 h, dialysis 
for SDS removal 

CIEF RP-HPLC 
Ion Trap 

FFPE heat 
induced AR 1 = 
1830 
FFPE heat 
induced AR 2 = 
1962 
FFPE no heat = 
962 

Frozen = 1341 
Average amount 
protein extracted 
from FFPE = 10.0 
mg/ml, fresh 
control tissue = 
11.5 mg/ml. 

(Shi et al., 
2006) 

temporal cortex from 
Alzheimer’s patients (N=3, 
n=3) 

100mM ABC/20% 
acetonitrile, 95 °C 1 
hour, 65 °C 2 hours, 
then either: 
1. 20mM DTT 57 °C 1 
hour, 50mM IAA 
2. 0.2% RapiGest/ 
50mM ABC, 20mM DTT 
57 °C 1 hour, 50mM IAA 
3. 50mM Tris-
HCL/pH7.4/ 1% triton X-
100/ 0.5% SDC/ 0.1% 
SDS/ 150mM NaCl/ 
2mM EDTA 

RP-HPLC Ion 
Trap/Orbitrap 

1. = 1715 
2. =1773  
3. = 1598 

 (Drummond 
et al., 2015) 

benign nevi (n = 25), 
primary melanoma (n = 
12), metastatic melanoma 
(n = 24) 

Xylene with a graded 
ethanol series, 
microdissection, 20 mM 
Tris pH 7/2% SDS, 90 °C 
for 1 h. Bioruptor; 5 
min, 65 °C for 4 h. 

RP HPLC Ion 
Trap/Orbitrap 

Total 1528  (Byrum et 
al., 2013) 

Pancreatic ductal 
adenocarcinoma, primary 
tumours, matched lymph 
nodes (n = 7) 

Xylene with a graded 
ethanol series, LMD, 
Liquid Tissue™, 95 °C 
1.5 h. 

MudPIT, RP-
HPLC Ion 
Trap/Orbitrap 

1504 unique 
proteins 

854 common to all 
samples 

(Naidoo et 
al., 2012) 

Endometrial cancer, 
malignant areas compared 
to stromal areas 

Xylene with a graded 
ethanol series, LMD, 
100 mM ABC/20% ACN, 
95 °C 1 h, 65 °C 2 h. 

RP-HPLC Ion 
Trap/Orbitrap 

Average 1500 
proteins ID per 
run. 

 (Alkhas et 
al., 2011) 

cSCC (n=5) 
LCM, 0.1% 
RapiGest/50mM TEAB, 
95˚C 30 mins 

RP-HPLC Ion 
Trap/Orbitrap 

1310  (Azimi et al., 
2016) 

Pancreatic cancer,  
poor prognosis (n = 4),  
better prognosis (n = 4)  
noncancerous pancreatic 
ductal tissues (n = 5) 

Xylene with a graded 
ethanol series, LMD, 
Liquid Tissue™, 95 °C 
1.5 h. 

RP-HPLC Ion 
Trap/Orbitrap 

1229 total 
Poor = 924 
Better = 845 
Normal = 730 

(Takadate et 
al., 2013) 

Wilm's tumour and healthy 
renal tissue (n=7) 

Heptane,  2% Tris/2% 
SDS, 100 °C for 20 min, 

RP-HPLC Ion 
Trap/Orbitrap 

FFPE normal = 
1168 

 (Hammer et 
al., 2014) 
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80 °C for 2 h. 
Centrifugation 
14,000×g. Methanol-
chloroform 
precipitation. 25 mM 
ABC/1% RapiGest 

mouse liver 
Prostate cancer - PCa  
Benign prostate 
hyperplasia - BPH 

58°C 60 mins, SubX 
deparaffinization and 
graded ethanol, 
haematoxylin,  
dehydrated ethanol 
series, rehydrated in 
50% glycerol, LCM 

RP-HPLC Ion 
Trap 

mouse liver= 
684 
PCa= 1156 
BPH= 702 

 (Prieto et 
al., 2005) 

ovarian cancer 

toluene with graded 
ethanol series, 20mM 
Tris-HCL/pH 9, 97 °C 30 
mins, Trypsin digestion 
on tissue using chemical 
inkjet printer. Solvent 
was then applied and 
aspirated to a low bind 
tube 

RP-HPLC Ion 
Trap/Orbitrap 

total 1109 
792 in cancerous 
region, 983 in 
benign. 

(Wisztorski 
et al., 2013) 

Pancreatic cancer, poor 
prognosis (n = 4), better 
prognosis (n = 4) 

Xylene with a graded 
ethanol series, LMD, 
Liquid Tissue™, 95 °C 
1.5 h. 

RP-HPLC Ion 
Trap/Orbitrap 

Total 1099 
unique 
proteins 

845 better 
prognostic 
924 poor 
prognostic 

(Takadate et 
al., 2012) 

lung cancer (n = 2),  
squamous cell carcinoma (n 
= 1),  
hepatic metastasized 
colorectal cancer (n = 3) 

Xylene with a graded 
ethanol series. 100 mM 
HEPES pH 7.5/4 % 
SDS/50 mM DTT, 95 °C 
1 h. Centrifugation 
14,000 rpm. Acetone 
precipitation. 100 mM 
NaOH pH 8 

RP-HPLC Ion 
Trap/Orbitrap 

1003  (Bronsert et 
al., 2014) 

Mouse liver 

1. Frozen - 40 mM 
Tris/6 M guanidine-
HCl/65 mM DTT pH8.2, 
sonication, clarification, 
reduction, alkylation, 
1M guanidine-HCL 
2. 40 mM Tris/6 M 
guanidine-HCl/65 mM 
DTT pH8.2, sonication, 
clarification, reduction, 
alkylation, 1M 
guanidine-HCL 
3. 40mM Tris/2% SDS 
pH8.2, sonication, 
100ᵒC 20mins, 60ᵒC 
2hrs, reduction, 
alkylation, 0.1% SDS 
4. 40 mM Tris/6 M 
guanidine-HCl/65 mM 
DTT pH8.2, sonication, 
reduction, alkylation, 
1M guanidine-HCL 
5. 40 mM Tris/6 M 
guanidine-HCl/65 mM 
DTT pH8.2, sonication, 
100ᵒC 30mins, 
clarification 

RP-HPLC Ion 
Trap 

1 = 976 
2=  130 
3=  820 
4=  331 
5= 827 
6= 526 

 (Jiang et al., 
2007) 



Appendices 

265 

6. Pellet from 5. - 90% 
formic acid 5mins, 
cyanogens bromide 
1g/ml overnight dark, 
ph8.5, lyophilised, 
40mM Tris/ 6M 
guanidine-HCL 

Melanoma melanocytic 
nevus (n = 1), metastatic 
melanoma (n = 1) 

LMD, Liquid Tissue™. 
1DE, band excision, 
trypsin digestion. 

HPLC LTQ-XL 888  (Byrum et 
al., 2011) 

mouse liver (N=6, n=3) 
mouse colon (N=3, n=3) 
Human colon (N=3, n=3) 

Xylene with graded 
ethanol series, 
suspended in:  
1. 20mM Tris-HCL/ 2% 
SDS/200mM DTT/ 20% 
glycerol/ 1% protease 
inhibitor/pH8.8 
2. 40mM Tris-HCL/6M 
guanidine-HCL/ 65mM 
DTT/ pH8.2 
3.25mM Tris-HCL/ 
150mM NaCl/ 1% NP-
40/ 1% SDS/ 0.1% SDS/ 
pH 7.6 
4.5mM DTT/ 0.2% 
RapiGest/ pH 8.4 
5. 2% SDS/ pH 8 
6. 100mM ABC/ 30% 
acetonitrile/ pH8.4 
7. 50% 100mM ABC/ 
50% triflouroethanol 
8. 20mM Tris-HCL/ 0.5% 
SDS/ 1.5% CHAPS/ 
200mM DTT/ 10% 
glycerol/ pH 8.8 

RP-HPLC Ion 
Trap/Orbitrap 

mouse liver: 
1,5,8 = 887, 
737, 693 
mouse colon: 
1,5,8 = 772, 
223, 185 
human colon: 
1, 5, 8= 681, 
463, 554 

all methods tried 
on mouse liver, 
best three picked 
thereafter 

(Broeckx et 
al., 2016) 

Nasopharyngeal carcinoma, 
WHO type I (n = 10), II (n = 
10), III (n = 10), and normal 
(n = 10) 

Octane and methanol. 
20 mM Tris/2% SDS 
pH7, 100 °C 20 min, 60 
°C 2 h. Centrifugation 
12,000×g. TCA acetone 
precipitation. iTRAQ. 

HPLC - SCX, RP-
HPLC Q-TOF 

730 total 

Compared FFPE 
with previously 
analysed fresh 
frozen tissue. 
Found all 730 
proteins in FF 
dataset. 
Compared 
subcellular 
localization and 
molecular 
function groups; 
distribution of 
proteins similar 
between FFPE and 
FF. 

(Xiao et al., 
2010) 

Colorectal cancer and 
paired adjacent control 
colon mucosa (n = 3) 

Xylene with a graded 
ethanol series, 20 mM 
TrisHCl pH 8.8/200 mM 
DTT/2% SDS/1% 
protease inhibitor, 98 
°C for 20 min, 80 °C for 
2 h. Centrifugation 
14,000×g. 

RP-HPLC Ion 
Trap/Orbitrap 

713 total  (Maes et al., 
2013) 

irradiated C57BL/6 mice 
heart tissue (n = 3) 

Xylene with a graded 
ethanol series, 20 mM 
Tris–HCl pH 8.8/2% 

RP-HPLC Ion 
Trap/Orbitrap 

Total 544  (Azimzadeh 
et al., 2012) 
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SDS/1% beta-
octylglucoside/200 mM 
DTT/200 mM glycine. 
100 °C 2, Centrifugation 
14,000×g, Precipitated, 
suspended Tris buffer. 

Normal pancreas (n = 3), 
chronic pancreatitis (n = 3), 
pancreatic cancer (n = 3), 
FFPE 

heptane, methanol, 
Centrifugation 
20,000×g, dried, 
resuspended 250 μL 6 
M guanidine-HCl/50 
mM ABC/20mM DTT, 
pH 8.5, 70 °C for 1 h. 
IAA, DTT. 

RP-HPLC Ion 
Trap/Orbitrap 

Total 525 

(Proteins 
identified in at 
least 2 of 3 
specimens). 

(Paulo et al., 
2012) 

1. Lung cancer without 
lymph node involvement 
(n=7) 
2. Lung cancer with lymph 
node involvement (n=6) 
3. lymph nodes involved 

LCM, xylene with a 
graded ethanol series. 
LMD. Liquid Tissue™. 

RP-HPLC LTQ 
1. 449 
2. 438 
3. 233 

649 total unique 
proteins 

(Kawamura 
et al., 2010) 

Human Aorta, 
Unfixed (n = 3),  
Fresh frozen 3 month (n=3) 
Fresh frozen 15 years (n=3) 
FFPE 15 years (n=2) 

Xylene with a graded 
ethanol series, 100 mM 
Tris–HCl pH 8.0/4% 
SDS/100 mM DTT, 
extracted at either: 
24 °C 1 h 14.7 psi,  
95 °C 1 h 14.7 psi,  
or 95 °C 1 h 40,000 psi 
using a NEP 2320 
Barocycler, 

RP-HPLC Ion 
Trap/Orbitrap 

 
Average FFPE = 
370 

Average unfixed = 
283 
Average frozen 3 
month = 564 
Average frozen 15 
y = 20 

(Fu et al., 
2013) 

Non-alcoholic 
steatohepatitis, FFPE and 
fresh frozen 

xylene and graded 
ethanol series, LMD, 
Liquid Tissue™, heated 
95 °C 1.5 h. 

RP-HPLC LTQ 
FFPE = 367 
total 

225 common 
between FFPE and 
frozen,  
142 unique FFPE,  
493 unique to 
frozen. 
Frozen = 718 total 

(Bell et al., 
2011) 

Head and neck cSCC; 
normal (n = 4), well 
differentiated (WD; n = 4), 
moderately differentiated 
(MD; n = 4), poorly 
differentiated(PD; n = 4), 

SafeClear II. LMD. Liquid 
Tissue™, heat 95 °C 1.5 
h 

RP-HPLC Ion 
Trap 

Averages: 
N = 147.5 
WD = 351.5 
MD = 274.5 
PD = 244.3 

 (Patel et al., 
2008) 

Colon cancer 

SubX deparaffinization 
and graded ethanol, 
microdisected, Liquid 
Tissue, 95°C for 90 
mins, reduced in 10mM 
DTT at 95°C for 5 mins 

RP-HPLC Ion 
Trap 

350 

Also did SELDI-
TOF and MALDI-
TOF-TOF but did 
not report protein 
yield 

(Prieto et 
al., 2005) 

Nephrectomy tumour and 
normal (n = 4) 

Xylene with a graded 
ethanol series. RapiGest 
buffer, 105 °C 30 min, 
cool, vortex, 80 °C 2 h, 
reduction, alkylation 

RP-HPLC Q-TOF 
(MSE) 

FFPE = 283 Frozen = 268 
(Nirmalan et 
al., 2011) 

Rat spinal cords, healthy 
and experimental 
autoimmune 
encephalomyelitis (EAE) 

Xylene with 70% 
ethanol. Needle 
dissection, Liquid Tissue 
kit, 95ᵒC 90 mins, iTRAQ 

HPLC SCX, 
MALDI TOF/TOF 

FFPE = 262 
unique 
proteins 

Frozen = 500 
(Jain et al., 
2012) 

Mouse pancreatic tissues 
(n = 8), FFPE and matched 
frozen for method 
developed, Human 
pancreatic cancer (n = 11) 

Qproteome kit, Xylene 
with a graded ethanol 
series, Extraction 
buffer, 100 °C 20 min, 
80 °C for 2 h. 

RP-HPLC Ion 
Trap 

Mouse FFPE = 
237 
Control = 178 
cancer = 198 

Mouse Frozen = 
271, 

(Kojima et 
al., 2012) 
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and uninvolved tissue (n = 
8), FFPE 

Centrifugation 
14,000×g. 

Mouse heart 

All methods were 
deparaffinised and 
rehydrated in Xylene 
and graded ethanol,  
 
1. Laemmli buffer/2% 
SDS/ protease inhibitor 
cocktail 
2. 2% CHAPS/ protease 
inhibitor cocktail 
3. 0.2% Tween 20/ 
protease inhibitor 
cocktail 
4.  RIPA buffer/2% SDS/ 
1% NP40/ protease 
inhibitor cocktail 
5. 20mM Tris-HCL pH 
8.8/ 2% SDS/ 1% beta-
octylglucoside/ 200mM 
DTT/ 200mM glycine/ 
protease inhibitor 
cocktail 
 
all methods incubated 
at 100ᵒC 20mins, 80ᵒC 
2hrs, 

RP-HPLC LTQ 
Orbitrap 

192 total 
proteins 

A mix of the non-
ionic detergent 
1% beta-
octylglucoside 
plus 2% SDS gave 
optimal protein 
release from FFPE 
sections. 
Increasing 
amounts of SDS 
beyond 4% did 
not enhance the 
protein yield 
further. 17 
fractions from SDS 
page separation 

(Azimzadeh 
et al., 2010) 

Paediatric brainstem 
gliomas (n = 2) 

Xylene with a graded 
ethanol series, 100 mM 
ABC/30% ACN, 95 °C 30 
min, 65 °C 3 h, 18O 
proteolytic labelling. 

RP-HPLC Ion 
Trap 18O 
proteolytic 
labelling 

188 total  (Nazarian et 
al., 2008) 

mouse liver 

1. LCM - scraped into 
tube, 60°C for 30mins, 
deparaffinization 
reagent, graded 
ethanol, liquid tissue 
buffer + 0.5% RapiGest, 
95°C for 90mins 
2. non-LCM - 60°C for 
30 mins, xylene washes, 
graded ethanol, LCM, 
Liquid Tissue™ + 0.5% 
RapiGest, 95°C for 
90mins 
both reduced in 5mM 
DTT for 1 hour 60°C, 
alkylated 15mM IAA 
room temp 1 hour, 
trypsin digest in 75mM 
ABC overnight 

RP-HPLC Ion 
Trap 

185 
LCM = 170 
non-LCM= 132 

(Scicchitano 
et al., 2009) 

rat liver 

1. Deparaffinised and 
rehydrated in graded 
ethanol, sonication 2% 
SDS/ 100mM ABC, 
reduction, alkylation  
2. 40mM Tris/ 6M 
guanidine-HCL/ 65mM 
DTT pH 8.2, 100ᵒC 30 
mins, 50mM ABC, 
alkylation 
3. Qproteome kit, 80ᵒC 
for 2 hrs  

RP-HPLC Q-TOF 
(MSE) 

1. Not 
reported 
2. Not 
reported 
3. Not 
reported 
4. 173 
5. 166 

Each done in 
triplicate, only 
proteins in 2/3 
included. 

(Aarnisalo 
et al., 2010) 
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4. Liquid tissue kit, 95ᵒC 
for 90 mins,  
5. Liquid tissue kit, 95ᵒC 
for 90 mins, reduction, 
alkylation 

Adenoma parathyroid (n = 
5) from sporadic primary 
hyperparathyroidism(PHPT) 
patients 

Xylene with a graded 
ethanol series. 20 mM 
Tris–HCl pH 4/0.2 M 
glycine/2% SDS, 
sonication, 4 °C 1 h, 100 
°C 20 min, 60 °C 2 h. 
clarification, 

RP-HPLC Ion 
Trap/Orbitrap 

163  (Donadio et 
al., 2011) 

Non-small cell lung 
tumours (NSCLC)  
Renal cell carcinomas (RCC) 

xylene and graded 
ethanol, 40mM Tris/ 
6M Gdn HCL pH 8.2, 
100ᵒC 20 mins, 80ᵒC 2 
hrs 

RP-HPLC Ion 
Trap/Orbitrap 

NSCLC = 151 
RCC  = 154 

NSCLC FF = 166 
phosphoproteome 
carried out on FF 
and FFPE: 
NSCLC FF = 56 
NSCLC FFPE = 49 
RCC FFPE = 42 

(Gamez-
Pozo et al., 
2011) 

Primary gynaecological 
tumour and matched brain 
metastases (n = 15) 

Xylene with a graded 
ethanol series, 
Qproteome™ FFPE 
Tissue kit, 100 °C 20 
min, 80 °C for 2 h. 
Centrifugation 
14,000×g. 

RP-HPLC Ion 
Trap 

129 total 
Primary = 76 
Metastatic = 101, 

(Yoshida et 
al., 2013) 

Temporal bone 

Deparaffinization in 
heptane for 1 hour, 
methanol to remove 
insoluble heptane layer, 
2% SDS/ 100mM ABC/ 
20mM DTT/ pH 8.5, 
sonicated, 70°C 1 hour, 
reduction and alkylation 

RP-HPLC Ion 
Trap 

FFPE=123 Frozen= 94 
(Palmer-Toy 
et al., 2005) 

Oral HPV lesions, HIV 
positive (n = 5), negative (n 
= 5) 

Liquid Tissue™, 95 °C 
1.5, iTRAQ 

RP-HPLC MALDI-
TOF/TOFiTRAQ 

114  (Jain et al., 
2008) 

Sheep skeletal muscle and 
liver 

Xylene with a graded 
ethanol series, 20 mM 
Tris HCL pH 8.8/2% 
SDS/200 mM DTT, 100 
°C 20 min, 80 °C 2 h 

HPLC Q-TOF FFPE = 66 Frozen = 85 
(Addis et al., 
2009) 

RP, reverse phase. HPLC, high pressure liquid chromatography. LTQ, linear ion trap. LMD, laser microdissection. FASP, filter 

aided separation protocol. SAX, strong anion exchange. CIEF, capillary isoelectric focusing. IEF, isoelectric focusing. 
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Appendix 2 

Appendix 2: Histograms of 1D and 2D SCC proteomic quantification data.   

Histograms of proteomic quantification data for each cSCC was plotted in the R package 

Inferno. The distribution was evidently a mixture of normal (Gaussian) and non-normal 

data. Consequently, a conservative non-parametric approach was used in the subsequent 

statistical analyses.  
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Appendix 3 

Appendix 3: Histograms of 1D and 2D melanoma proteomic quantification data.   

Histograms of proteomic quantification data for each melanoma was plotted in the R 

package Inferno. The distribution was normal in some cases but non-normal in others. 

Consequently, a conservative non-parametric approach was used for statistical analyses.  
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Appendix 4 

Appendix 4: Machine learning algorithms used in this thesis 

ALGORITHM DESCRIPTION REFERENCE 

ADAPTIVE BOOSTING 
(ADABOOST) 

Boosting algorithm that uses very weak learners to create 
voting weights and ultimately a strong learner.  
Changes weights of votes after each iteration to try and 
include all sample measurements. 
The more each iteration contributes to overall success the 
more weight it is given in strong learner 

(Freund, 
1996) 

BOOTSTRAP 
AGGREGATORS 
(BAGGING) 

Decision tree based method. Uses bootstrapping to create 
resamples of training data where each resample will contain a 
variety of the initial data. These resamples are then 
aggregated. Doing this reduces the chance of individual 
trees/branches overfitting the data as a tree is created for 
each resample, therefore only the important branches are 
maintained.  

(Breiman, 
1996) 

C5.0 
Builds decision trees where each node splits classes based on 
information gained. The attribute with the highest 
information gain is used to split it further. 

(Salzberg, 
1994) 

CLASSIFICATION AND 
REGRESSION TREES 
(CART) 

Creates both classification and regression trees where 
applicable.  

(Breiman et 
al., 1984, 
Steinberg, 
2009) 

EXTREME GRADIENT 
BOOSTING: DROPOUTS 
MEET MULTIPLE 
ADDITIVE REGRESSION 
TREES (XGBDART) 

Very similar to gbm except is designed for speed and to 
reduce overfitting.  
 
Uses weak learners and their loss function to create strong 
learner. However, employs occasional randomisation 
throughout creation of weak learners which reduces the 
correlation between learners, ultimately reducing overfitting. 
DART specifically uses dropouts to reduce over fitting 

{Rashmi, 
2015 
 #598} 

EXTREME GRADIENT 
BOOSTING TREE 
(XGBTREE) 

Very similar to gbm except is designed for speed and to 
reduce overfitting.  
 
Uses weak learners and their loss function to create strong 
learner. However, employs occasional randomisation 
throughout creation of weak learners which reduces the 
correlation between learners, ultimately reducing overfitting. 
DART specifically uses dropouts to reduce over fitting 

(Chen and 
Guestrin, 
2016) 
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GENERLISED LINEAR 
MODEL (GLM) 

Fits multiple linear regression models for continuous 
response variable to a discreet or continuous predictor. In 
this case the response variable is binary and so glm creates a 
logistic regression model. 

(Nelder and 
Wedderburn, 
1972) 

GLMNET 
Similar to above in creating logistic regression but uses 
penalised maximum likelihood to reduce complexity of model 
and reduce overfitting 

(Nelder and 
Wedderburn, 
1972) 

GRADIENT BOOSTING 
MACHINE (GBM) 

Boosting algorithm that uses weak learners to optimise 
gradient of loss function. 
Each weak learner attempts to reduce gradient of loss 
function subsequent to previous learner. 
Can result in overfitting 

(Breiman, 
1997) 

K'S NEAREST 
NEIGHBOUR (KNN) 

Uses number of neighbours to determine unknown data 
points 

(Cover and 
Hart, 1967) 

LINEAR DISCRIMINANT 
ANALYSIS (LDA)  

Similar to a PCA plot whereby the algorithm looks for linear 
combinations of variables which best explain the data. LDA 
however, attempts to explicitly model the difference 
between the classes of data 

(Cohen et al., 
2014) 

NAÏVE BAYES (NB) 
uses Bayes theorem to calculate the probability of something 
given a training set where probabilities are learnt 

(Duba and 
Hart, 1973) 

NEURAL NETWORK 
(NNET) 

based off of the animal neuronal network, an artificial neural 
network is a predictive tool that utilised several hidden 
layers, all interconnected, to predict an outcome based off of 
training data 

(McCulloch 
and Pitts, 
1943) 

RANDOM FOREST (RF) 
Several decision trees combined to gain the mode of the 
classes (if classification) or mean (if regression). 

(Breiman, 
1999) 

REGULARISED RANDOM 
FOREST (RRF) 

Uses regularisation to establish if a split in a branch achieves 
any additional information. If it does not then the prior node 
is weighted more 

(Breiman, 
1999) 

SUPPORT VECTOR 
MACHINE (SVM) 

Represents the data in points in space to separate the 
categories with a wide a margin as possible. Test data is then 
mapped onto this space to determine its predicted category 

(Vapnik and 
Chervonenkis, 
1974) 

 

 

 

 


