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Abstract: Purpose  : 
Diagnosis of genetic disorders is hampered by large numbers of variants of uncertain
significance (VUSs) identified through next-generation sequencing.  Many such
variants may disrupt normal RNA splicing.  We examined effects on splicing of a large
cohort of clinically identified variants and compared performance of bioinformatic
splicing prediction tools commonly used in diagnostic laboratories.
Methods  :
257 variants (coding and non-coding) were referred for analysis across three
laboratories.  Blood RNA samples underwent targeted RT-PCR analysis with Sanger
sequencing of PCR products and agarose gel electrophoresis.  17 samples also
underwent transcriptome-wide RNA sequencing with targeted splicing analysis based
on Sashimi plot visualisation.  Bioinformatic splicing predictions were obtained using
Alamut, HSF 3.1 and SpliceAI software.
Results  :
85 variants (33%) were associated with abnormal splicing.  The most frequent
abnormality was upstream exon skipping (39/85 variants), which was most often
associated with splice donor region variants.  SpliceAI had greatest accuracy in
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predicting splicing abnormalities (0.91) and outperformed other tools in sensitivity and
specificity.
Conclusion  :
Splicing analysis of blood RNA identifies diagnostically important splicing abnormalities
and clarifies functional effects of a significant proportion of VUSs.  Bioinformatic
predictions are improving but still make significant errors. RNA analysis should
therefore be routinely considered in genetic disease diagnostics.
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Abstract 
 
Purpose:  
Diagnosis of genetic disorders is hampered by large numbers of variants of uncertain 
significance (VUSs) identified through next-generation sequencing.  Many such variants may 
disrupt normal RNA splicing.  We examined effects on splicing of a large cohort of clinically 
identified variants and compared performance of bioinformatic splicing prediction tools 
commonly used in diagnostic laboratories. 
Methods: 
257 variants (coding and non-coding) were referred for analysis across three laboratories.  
Blood RNA samples underwent targeted RT-PCR analysis with Sanger sequencing of PCR 
products and agarose gel electrophoresis.  17 samples also underwent transcriptome-wide 
RNA sequencing with targeted splicing analysis based on Sashimi plot visualisation.  
Bioinformatic splicing predictions were obtained using Alamut, HSF 3.1 and SpliceAI 
software. 
Results: 
85 variants (33%) were associated with abnormal splicing.  The most frequent abnormality 
was upstream exon skipping (39/85 variants), which was most often associated with splice 
donor region variants.  SpliceAI had greatest accuracy in predicting splicing abnormalities 
(0.91) and outperformed other tools in sensitivity and specificity. 
Conclusion: 
Splicing analysis of blood RNA identifies diagnostically important splicing abnormalities and 
clarifies functional effects of a significant proportion of VUSs.  Bioinformatic predictions are 
improving but still make significant errors. RNA analysis should therefore be routinely 
considered in genetic disease diagnostics. 
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INTRODUCTION 
 
Use of next-generation sequencing (NGS) technologies in clinical practice has led to an 

unprecedented increase in the number of variants being identified in patients undergoing 

investigation for genetic disorders.  Incomplete knowledge of the functional effects of 

variants and our limited understanding of genotype-phenotype correlations severely 

compromises attempts to definitively assign or refute pathogenicity for a large proportion 

of variants.  Variant of uncertain significance (VUS) reporting rates vary over time and 

depending on local reporting policies but of all variants listed on ClinVar (as of 13 November 

2019), 48% are asserted to be of uncertain significance (Figure S1).1  In a clinical setting, this 

uncertainty has major implications for patients and their families, where having a clear 

genetic diagnosis can allow evidence-based management decisions to be taken and 

informed reproductive choices to be made.2,3 

 
RNA splicing is thought to be disrupted by up to 62% of all pathogenic single nucleotide 

variants (SNVs).4  Current bioinformatic filtering strategies and clinical interpretation 

guidelines tend to focus heavily on amino-acid-level effects in terms of both variant 

detection and assignment of pathogenicity.5  This can lead to synonymous variants being 

filtered out at an early stage of analysis, even though such variants may affect splicing.  

Similarly, although deep intronic variant data are increasingly available via NGS approaches 

like genome sequencing, such non-coding variants are rarely considered owing to a lack of 

evidence on which to base interpretations.  Where bioinformatic predictions suggest that a 

variant affects splicing, there can be scope for additional RNA-based investigations.  

However, such splicing prediction tools frequently produce conflicting results and their 



accuracy and utility decreases outside of canonical splice sites and consensus splice 

regions.6 

 
In this study, we looked for RNA splicing defects in a large cohort of VUSs identified in 

patients who had undergone diagnostic genetic testing.  We compare in silico predictions of 

splicing with the results of blood RNA analysis and provide examples that illustrate the 

clinical utility of RNA-based testing in clinical diagnostics.  These results support the routine 

use of RNA analysis in clinical diagnostic practice. 

 
 
MATERIALS AND METHODS 
 
Patients and variants 

A cohort of patients with VUSs identified through routine diagnostic genetic testing was 

identified primarily through the Wessex Regional Genetics Laboratory, Salisbury (203 

variants), with seven other patients identified through the Exeter Genomics Laboratory.  

Additional patients with 47 variants from across the UK were identified through the 'Splicing 

and Disease' research study at the University of Southampton, ethically approved by the 

Health Research Authority (IRAS Project ID 49685, REC 11/SC/0269) and by the University of 

Southampton (ERGO ID 23056). Informed consent for splicing studies was provided for all 

patients from whom samples were obtained 

 

 
RNA extraction and cDNA preparation 

Blood was collected in PAXgene Blood RNA tubes and RNA extracted using the PAXgene 

Blood RNA Kit (PreAnalytiX, Switzerland).  cDNA was synthesised via reverse transcription 



using random hexamer primers.  For details of each laboratory's individual protocols see 

Supplementary Methods.   

 
RT-PCR analysis 

Primers were designed to amplify the region around each variant (sequences available on 

request).  Wherever possible, primer sequences were positioned at least two exons up- and 

downstream of the target variant.  PCR products were evaluated by agarose gel 

electrophoresis against control samples and purified PCR products were analysed by direct 

Sanger sequencing.  In a number of cases, PCR products separated by gel electrophoresis 

were purified and sequenced or cloned into E. coli using a TA-cloning vector.  Plasmids 

recovered from single-clone bacterial cultures were analysed by Sanger sequencing.  Please 

see Supplementary Methods for laboratory-specific PCR, Sanger sequencing and bacterial 

cloning conditions.   

 
RNA-seq analysis 

For full information, see Supplementary Methods. In brief, selected RNA samples 

underwent RNA-seq via Novogene (Hong Kong) using the NEBNext Globin and rRNA 

Depletion Kit and NEBNext Ultra Directional RNA Library Prep Kit for Illumina (New England 

Biolabs, MA).  At least 70M 150bp paired-end reads (21Gb raw data) per sample were 

generated on a HiSeq 2000 instrument (Illumina, CA).  Raw data were filtered for quality and 

had adapter sequences removed by Novogene.  Reads were aligned to the human genome 

(GRCh38) using STAR (v2.6.1c)7 on the University of Southampton's IRIDIS 4 high 

performance computing cluster and the splicing effects of specific variants was assessed 

visually using the Integrative Genomics Viewer8 (Broad Institute, MA) and its inbuilt Sashimi 

plot function.9  A threshold of three or more reads was required to call an abnormal splice 



event and use of the novel junction had to reach at least 5% read support compared to the 

alternative canonical junction.  Where appropriate, percent spliced in (PSI) values were 

calculated for abnormal splicing events.10 

 
In silico splicing predictions 

All variants were assessed bioinformatically for predicted splicing effects using Alamut 

Visual version 2.11 (Interactive Biosoftware, Rouen, France), which incorporates predictions 

from MaxEntScan (MES), NNSplice and Splice Site Finder (SSF).11–13  Individual tools were 

deemed to predict altered splicing where the change in splice site score was ≥10% (MES) or 

≥5% (NNSplice and SSF).14,15  An overall prediction of altered splicing was called where two 

out of three Alamut programs agreed.  Additional splice prediction information was 

obtained using Human Splicing Finder (HSF) version 3.1 (threshold ≥0.2) and from publicly 

available SpliceAI scores (v1.3) for variants (threshold ≥0.2).16,17  Missing score rate, 

sensitivity, specificity, overall accuracy, positive and negative predictive values were 

calculated for each tool individually and for the combined Alamut 2/3 assessment 

(equations in supplementary methods). The package pROC (v1.15.3)18 was used in R 

(v3.5.1)19 in RStudio20 to plot receiver operating characteristic (ROC) curves (ggplot2, 

v3.2.1)21 for the overlapping set of variants scored by all tools and calculate the area under 

the curve (AUC) for each tool and for the combined Alamut 2/3 assessment. 

 
 
RESULTS 
 
Variants affecting splicing 

A total of 257 different variants were assessed for their effect on splicing (Table S1).  243 

variants were single-nucleotide substitutions, while 14 variants spanned multiple 



nucleotides (10 deletions, 1 insertion, 2 deletion-insertions and 1 deletion with an in cis 

SNV).  Variants were located across 62 genes in total, with particularly high numbers of 

variants in BRCA1 (42), BRCA2 (42) and FBN1 (87).  In all, 85 variants (33%) were found to be 

associated with abnormal splicing.  44/57 single-nucleotide substitution variants (77%) 

located within the donor splice site or splice region (defined by sequence ontology as 

extending from the third last base of the exon up to the eight base of the intron) and 13/19 

single-nucleotide substitution variants (68%) located within the acceptor splice site or splice 

region (from the eighth last base of the intron up to the third base of the exon) were found 

to alter splicing (Fig. 1).22  175 variants in total did not involve annotated splice regions and 

of these, 23 (13%) affected splicing (21/167 single-nucleotide substitutions).  

 
39 variants were associated with skipping of the upstream exon (as defined by the location 

of a variant lying closer to that exon's donor splice site than to an acceptor splice site), 

which was the most frequent splicing abnormality identified.  Only 15 variants were 

associated with downstream exon skipping, however the analysed variant cohort contained 

relatively fewer acceptor region variants.  These exon skipping figures include three cases in 

which both upstream and downstream exons were skipped and one case of double 

upstream exon skipping.  23 variants led to use of an alternative splice donor site and 16 the 

use of an alternative splice acceptor site, while intron retention was associated with only 

three variants.  For four variants there were multiple splicing abnormalities identified. 

 
Illustrative examples 

Several examples from this cohort are pertinent in illustrating the variability in splicing 

effect seen across different variants (see Fig. 2). 

 



RNA-seq detects a splice variant missed by Sanger sequencing: 

This hemizygous DKC1 c.915+10G>A variant, identified in a male patient with dyskeratosis 

congenita, produced normal results from direct Sanger sequencing of RT-PCR products (Fig. 

2).  Similarly, gel electrophoresis did not suggest the presence of more than one RT-PCR 

product.  However, RNA-seq revealed creation of a novel intronic donor splice site, resulting 

in an insertion of 11 extra nucleotides, which was subsequently confirmed by isoform-

specific RT-PCR and sequencing of cloned amplicons.  The novel junction had a PSI value of 

20%, calculated as the number of length-normalised inclusion reads divided by the total 

number of length-normalised inclusion and exclusion reads.10  

 
A complex deep intronic variant affects splicing: 

This heterozygous P3H1 (LEPRE1) c.1224-80G>A variant was identified in a patient with 

osteogenesis imperfecta.  RT-PCR revealed a variety of differently sized bands on 

electrophoresis and PCR product cloning identified at least four alternative splicing events, 

including intron retention, creation of two novel intronic splice donor sites (inserting 68 or 

92 nt), with some additional use of an alternative exonic splice acceptor site (inserting 92 nt 

intronic sequence but deleting the first 17 nt of exon 8).  RNA-seq analysis was only able to 

confidently identify use of one of the two intronic splice donor sites.  Interestingly, the 

amino acid sequence of any intron retention event (including those utilising the subsequent 

novel intronic donor site) is predicted to result in introduction of a premature termination 

codon immediately beyond the end of exon 7. 

 
An apparent canonical splice site variant has no consequence: 

A heterozygous canonical splice donor site DCTN1 c.414+1G>A variant in intron 5 was 

predicted to disrupt splicing based on NM_004082.4.  However, the variant was found to be 



present at a relatively high minor allele frequency (MAF) of 3.0 x 10-4 in the Latino 

population and 6.4 x 10-5 in the gnomAD database (rs576198476).  RT-PCR analysis 

identified that DCTN1 exons 5-7 are in fact constitutively skipped in both this patient and in 

controls, negating any potential splicing effects caused by the variant.   

 
A deep exonic cryptic splice site: 

This heterozygous BRCA1 c.4868C>G transversion 119 nt upstream from the donor splice 

site of BRCA1 exon 15 is predicted to introduce a conservative alanine to glycine 

substitution at amino acid 1623.  However, RNA analysis shows that this variant in fact 

creates an exonic cryptic splice donor site at this position, leading to a 119 nt deletion and 

frameshift of the transcript. 

 
A "likely benign" intronic variant causes pathogenic exon skipping:  

A heterozygous non-coding BRCA1 c.5153-26A>G transition 26 nt upstream from the start of 

exon 18 is annotated as "likely benign" on ClinVar (rs80358109).  However, RNA analysis 

confirms that this variant induces skipping of the downstream exon 18, resulting in an out-

of-frame transcript.  Interestingly, although there is no predicted effect on the native splice 

acceptor site, several prediction tools incorrectly suggest creation of a novel cryptic 

acceptor site. 

 
A deep intra-exonic splice effect: 

A heterozygous SF3B4 c.417C>T synonymous variant located 254 nt into exon 3 was 

predicted to lead to an enhanced alternative splice site.  RT-PCR analysis confirmed the 

creation of an alternative deep exonic splice donor site.  However, use of this novel donor 

site was found to be coupled to use of a novel splice acceptor site also within SF3B4 exon 3, 



leading to an intra-exonic deletion of 125 nt.  This effect has previously been reported for 

this variant using a minigene assay.23 

 
RNA-seq coverage 

17 samples also underwent RNA-seq analysis.  In four cases, RNA-seq was able to detect a 

splicing abnormality consistent with initial RT-PCR results. In one case (DKC1), RNA-seq 

identified a splicing abnormality not initially detected by RT-PCR.  In another case (SF3B4), 

the splicing abnormality seen by RT-PCR was only seen in two RNA-seq reads and so fell 

below the reporting threshold.  In 11 other cases, no reportable splicing abnormality was 

detected.  Of note, splice junction depth of coverage varied considerably across assayed 

genes and also within genes, which in several cases limited the ability of RNA-seq to detect 

low-level splice junction usage. 

 
Bioinformatic splicing predictions 

We scored all variants with Alamut Visual (v2.11), including MES, NNSplice and SSF, and also 

with HSF and SpliceAI. Thresholds for change were selected above which a variant was 

deemed to be predicted to be splice affecting based on previous literature.14,15,17 A 

combined Alamut score was also calculated, where a variant was deemed to be predicted as 

splice affecting if two out of three individual tools within Alamut passed the defined 

threshold. The overall sensitivity, specificity, accuracy, positive and negative predictive 

values for each tool and the combined Alamut assessment are given in Table 1, based on all 

variants that were scored by each method. Figure 3 shows ROC curves with AUC values 

based on the overlapping set of variants scored by all tools.  SpliceAI performed the best in 

predictions of splicing disruption of all the tools/approaches across all of the considered 

metrics, with overall accuracy exceeding 90% (see Table 1).  



 
 
DISCUSSION 
 
VUS clarification and clinical impact through splicing analysis 

This study has helped to clarify the effects on splicing of over 250 VUSs in clinically 

important disease genes.  34% of these VUSs were found to affect splicing.  However, while 

this overall figure is certainly within the range of previous estimates for the proportion of 

variants affecting splicing, it should be noted that this cohort of variants was specifically 

selected for splicing studies.  As such, there will have been some intrinsic bias in selection, 

since we expect variants were more likely to be referred for RNA studies if they fell within a 

splice region or if clinical diagnostic laboratories had already highlighted a potential 

predicted effect on splicing.  Furthermore, the prior probability of these patients having a 

pathogenic variant in the genes tested is likely to be increased, since UK diagnostic genetic 

testing generally requires that a patient's phenotype potentially fits with the genes being 

tested.  Nevertheless, this cohort does represent a true-to-life set of clinically identified 

VUSs for which clarification of pathogenicity was sought by referring clinicians. 

 
The results of this study show that RNA splicing analysis, using RT-PCR or transcriptomics, 

has the ability to produce clear results that help clarify variant interpretation.  Where 

abnormal splicing is detected, this analysis constitutes a functional assay that provides 

supporting evidence of pathogenicity.5  In many such cases, these results therefore have 

direct clinical utility by allowing a genetic diagnosis to be made.  Indeed, the results of at 

least one of these cases (AARS) has been used to inform prenatal testing in a subsequent 

pregnancy.    

 



Only 30% of the variants in this study fell within annotated splice regions, while 13% of non-

splice region variants still affected splicing.  This highlights the need to consider possible 

splicing effects whenever deep exonic or deep intronic variants are identified.  With 

increasing use of genome sequencing, increasing numbers of intronic variants will be 

identified through clinical diagnostic testing.  Interpretation of such variants beyond the 

splice region remains largely uncertain.  However, through RNA analysis, potential splicing 

effects of such variants can be detected.   

 
Furthermore, a number of these results illustrate the danger of assuming the effects of 

splice site variants.  The DCTN1 c.414+1G>A example is a case in point of a benign canonical 

splice site variant and our cohort also includes two normal BRCA2 canonical splice site 

variants (BRCA2 c.6937+1G>T and BRCA2 c.8331+2T>C) that do not appear to cause 

abnormal splicing (with the caveat that splicing effects in blood may potentially differ from 

those in other tissues).  In addition, the SF3B4 example shows how difficult it can be to 

predict splice junction usage, since even if one correctly identifies creation of a cryptic 

donor site, one may not necessarily predict the acceptor site it will use.  This particular 

variant appears to create a type of non-canonical splicing  event known as an "exitron", 

where a novel intron is defined entirely within a large exon.24 

 
Targeted testing and transcriptome-wide analysis 

Our analysis helps provide some insight into the comparative use of RT-PCR and RNA-seq to 

look at splicing.  Compared to transcriptome-wide RNA-seq, RT-PCR should generally prove 

more sensitive for detecting substantial splicing abnormalities such as exon skipping, since 

targeted amplification allows a very low limit of detection.  However, endpoint RT-PCR and 

Sanger sequencing are not truly quantitative methods and suffer from biases such as 



preferential amplification of shorter products. Whole transcriptome RNA-seq, conversely, 

may provide more reliable quantification of splice isoforms through calculated read-based 

metrics such as PSI values.10  On the other hand, transcriptome-wide RNA-seq is intrinsically 

limited in its depth of coverage by the number of reads obtained per sample, particularly 

where a gene is poorly expressed.  A number of RNA-seq samples in this cohort did indeed 

have relatively poor coverage across the target region for the variants in question.  

However, where a splice abnormality results in a small-scale change, for example insertion 

of a few nucleotides as seen with DKC1 c.915+10G>A, RNA-seq may succeed in identifying 

this where Sanger sequencing of PCR products fails.  Small-scale splicing changes are easily 

missed on gel electrophoresis and coupled with the poor sensitivity of Sanger sequencing to 

detect low-level sample heterogeneity, this is an instance where RNA-seq can outperform 

RT-PCR.  Another potential approach to raise coverage depth could be to perform a targeted 

RNA-seq library prep focussed on the gene region of interest.  However, this would be at the 

expense of RNA-seq's other great advantage; the ability to look for alternative pathogenic 

splicing events or even alternative pathogenic sequence variants in the same or in other 

genes. 

 
Bioinformatic tool comparison  

The ability to accurately predict the affect a given sequence variant will have on splicing is 

highly desirable in prioritising variants for functional validation, or even as a diagnostic 

assessment in its own right. However, despite a multitude of different prediction methods 

being available, there is little consensus on the best tools or the optimal usage and score 

thresholds to use. A common approach is to score a variant with several (three-five) tools 

and take a consensus approach – if the majority of tools predict an effect, the variant is 



predicted to be splice affecting. In our assessment, we found little benefit of this consensus 

approach over the use of individual tools. Across all scored variants the Alamut 2/3 

consensus gave similar sensitivity and specificity to component tools MES and SSF, and gave 

a comparable AUC in the analysis considering the overlapping variant set that were scored 

by all tools. The newer, machine learning based approach, SpliceAI, outperformed the other 

tools across metrics, classifying over 90% of variants consistently with the experimental 

data. Our data suggest this method could assist in clinical interpretation of variants 

potentially affecting splicing, and offer benefits over existing approaches that are currently 

in use diagnostically.  

 
Despite questions over the accuracy and applicability of in silico splice prediction tools, in 

this cohort, a high proportion of variants were correctly predicted to alter normal splicing, 

particularly given the high proportion of variants outside of the immediate splicing area.14,15  

However, this is likely to be at least partially explained by the bias in case selection, since we 

expect variants were more likely to be referred for splicing analysis where diagnostic genetic 

test reports had predicted a possible splicing effect.   

 
Limitations of testing and using blood as a proxy tissue 

In analysing blood RNA, there are intrinsic limitations.  Most obviously, only genes that are 

transcribed in blood can be detected.  Genes that are highly tissue-specific in their 

expression can therefore prove problematic to analyse.  Alternative cell types may be 

available in some cases from skin or muscle biopsies and RNA from such sources has been  

successfully used for splicing analysis.25,26   However, even in the absence of such samples, 

low-level basal transcription of the genome is known to take place and some 80% of all 

human coding sequences have been identified in blood.27  In this study, reference was made 



to GTEx transcript per million (TPM) values (Table S1).28,29  Interestingly, informative RT-PCR 

results were obtainable for a number of genes reported to have TPM values of zero (FBN2, 

COL3A1, COL4A1, COL5A1), although this is not reliably the case for all such genes. 

A further important consideration is the tissue-specificity of splicing.  Use of blood as a 

proxy tissue assumes that similar splicing events are taking place in clinically relevant 

tissues, which is not necessarily the case.  Another limitation in detection may occur if 

nonsense-mediated decay (NMD) is efficient enough to remove all abnormally spliced 

transcripts from a sample.  Indeed, variability in NMD contributes to uncertainty in 

quantifying the relative usage of aberrant splice events.30,31  This means that simple 

quantification metrics of splice site usage are unlikely to be directly informative of  

pathogenicity and need to be considered in comparison to control samples. 

 
Mechanistic insights into splicing 

A notable finding in this study is that splice-altering variants located close to the donor 

splice site tend to cause skipping of the upstream exon.  In considering the splicing reaction, 

where the donor splice site is first cleaved and ligated to the intronic branch point to form a 

lariat, one might expect a disrupted donor splice site to cause intron retention.  However, 

retention of introns appears to be a relatively rare event in this study.  Furthermore, the 

presence of upstream exon skipping in these cases implies that splicing of the preceding 

intron has not yet been completed by the time the next intron is being spliced.  If upstream 

splicing were complete, there would be no upstream donor splice site available to allow 

exon skipping to take place (Fig. 4), except in the setting of a recursive splicing mechanism.24  

 
Splicing is known to occur co-transcriptionally and the choice of splice site depends not only 

on sequence but also on additional factors such as rate of transcription, RNA secondary 



structure, chromatin conformation and the effects of splicing enhancers and silencers.32  It 

may be that some of these factors are playing a role in driving the upstream exon skipping 

that predominates in this variant cohort.  The timing of splicing events may also potentially 

be influenced somewhat by intron length.  However, analysis of the intron-exon structure 

around these variants did not indicate any significant skewing of upstream versus 

downstream intron length.   

Further work will be needed to better characterise the mechanistic and regulatory elements 

of the abnormal splicing seen in this study.  Understanding the underlying mechanisms 

governing such splicing abnormalities is critical, not only to allow their better prediction but 

also to inform therapeutic approaches that aim to correct them.  Splice-switching antisense 

oligonucleotide (ASO) therapies are increasingly being developed for clinical use and their 

design depends upon accurate targeting of disease-specific splice sites or splice-regulatory 

elements.33,34  The sequence-specificity of this approach lends itself ideally to personalised 

medicine and indeed such a drug has recently been developed for an N-of-1 study in a single 

patient with a deep intronic variant affecting splicing.35  In the appropriate disease settings, 

splice-affecting variants lying within deep intronic or exonic regions therefore represent 

particularly good candidates for the development of splice-switching ASO therapeutic 

approaches.  

 
Conclusion 

This variant cohort is among the largest and most diverse to have had experimentally 

determined RNA splicing effects analysed and published to date.  While routine use of RNA 

analysis in genetic diagnostics requires further work to clarify the service implications, based 

on this study, we recommend that RNA-based splicing analysis be at least routinely 



considered in genetic disease variant interpretation in order to improve diagnostic uplift.  

While bioinformatic splicing prediction tools, particularly SpliceAI, continue to improve in 

accuracy, there is still significant miscalling of predictions from all tools.  Ideally, they should 

therefore not be relied upon in isolation in assessing a variant's effect on splicing and their 

predictions should not be a prerequisite line of evidence for classifying splice variants, 

should clear experimentally obtained RNA splicing evidence be available.  Owing to the 

subtlety and complexity of RNA splicing, additional work will be required in order to 

determine how best to incorporate splicing predictions and experimental splicing analysis 

into variant classification guidelines. 

In conclusion, this large study demonstrates the potential of blood RNA analysis in clarifying 

the effects of variants of unknown significance and the uplift of diagnostic rate. 
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Figure 1. Variant locations and effects on splicing.  A. Plot of the numbers of SNVs in this 

cohort (multi-nucleotide variants not included) present at each donor (D-3 to D+8) and 

acceptor (A-8 to A+3) splice region position, along with the numbers of these found to affect 

splicing.   B and C. Position-weight matrices of nucleotide sequence across the splice donor 

(B) and acceptor (C) regions as determined for the specific exon-intron junctions analysed in 



this study. In this representation, the donor splice site +1 position correlates to position 12 

in B, while the acceptor splice site -1 position correlates to position 25 in C.  D. Abnormal 

splicing effects plotted by SNV location.  Sequence ontology defines the donor splice region 

as extending from the third last nucleotide of the exon (D-3) to the eighth nucleotide of the 

intron (D+8) and the acceptor splice region as extending form the eighth last nucleotide of 

the intron (A-8) to the third nucleotide of the exon (A+3).22  E. Overall proportion of all 

variants affecting splicing in this cohort.  F. Proportions of different abnormal splicing events 

identified in this cohort. SE, skipped exon; A5SS, alternative 5´ splice site; A3SS, alternative 

3´ splice site; IR, intron retention. 

 
 
Figure 2. Illustrative examples of variant splicing analysis. DKC1 c.915+10G>A could not be 

identified by RT-PCR and Sanger sequencing but alternative donor splice site usage was 

identified by RNA-seq.  P3H1 (LEPRE1) c.1224-80G>A causes at least three abnormal splicing 

events using alternative splice donor and acceptor sites, as well as increasing levels of intron 

retention.  DCTN1 c.414+1G>A appears to alter a canonical splice donor site but exons 5-7, 

although annotated, are never expressed and are constitutively spliced out.  SF3B4 c.417C>T 

is a synonymous coding variant but causes formation of a 125 nt "exitron", an intronic 

region within an exon.  Pt, patient; Ctrl, control; A5SS, alternative 5´ splice site; A3SS, 

alternative 3´splice site. 

 
 
Figure 3. Bioinformatic tools for predicting abnormal splicing.  Receiver operating 

characteristic (ROC) curves and area under the curve (AUC) comparing in silico methods for 

predicting splice disruption in overlapping set of experimentally validated variants scored by 

all measures (136 non-splice disrupting, 70 splice disrupting). HSF = human splicing finder, 



MES = MaxEntScan (Alamut), NN = NNSplice (Alamut), SSF = SpliceSiteFinder (Alamut), Ala23 

= number of Alamut tools exceeding specified thresholds.   

 
 
Figure 4. A potential model of splicing disruption. Where an upstream splicing event is 

complete, a splice donor or acceptor site variant may lead to intron retention.  Where a 

preceding splicing event remains incomplete, a splice donor variant may cause skipping of 

the upstream exon.  Similarly, if a splice acceptor site variant causes an upstream splice 

donor site to remain unused then this may cause skipping of the exon downstream of the 

acceptor site variant.  Exonic or intronic variants that create or strengthen cryptic splice 

sites can lead to use of alternative splice donor or acceptor sites. 

 
 
  



Table 1. Performance assessment of in silico prediction tools on experimentally validated 

variants (n=257).  Values have been calculated omitting the missing scores for each tool. 

 
 

Scoring Metric n missing Sensitivity Specificity Accuracy PPV NPV 

HSF (2%) 28 0.8941 0.3958 0.5808 0.4663 0.8636 

SpliceAI (0.2) 11 0.8987 0.9162 0.9106 0.8353 0.9503 

Alamut SSF (5%) 5 0.7317 0.9294 0.8651 0.8333 0.8778 

Alamut MES (10%) 1 0.7381 0.9070 0.8516 0.7949 0.8764 

Alamut NNSplice (5%) 11 0.6923 0.8631 0.8089 0.7013 0.8580 

Alamut 2/3  14* 0.7237 0.9162 0.8560 0.7971 0.8793 

 
* 11 variants missing one score, three variants missing two scores 
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SUPPLEMENTARY INFORMATION 

 
SUPPLEMENTARY METHODS: 

 
Salisbury RNA extraction and RT-PCR protocol 

Blood samples were collected into PAXgene RNA collection tubes (Qiagen, UK) and RNA was 

extracted using the QIAcube Connect extraction machine (Qiagen, UK) and the standard 

protocol of the RNeasy kit (Qiagen, UK).  cDNA preparation was then carried out using 1.5µl 

of 10mM dNTP mix (Promega, UK), 2µl of 0.1M Dithiothreitol (Invitrogen, UK), 1µl of 40 U/µl 

Moloney Murine Leukemia Virus Reverse Transcriptase (Invitrogen, UK), 1µl of 40 U/µl 

RNAaseOut ribonuclease inhibitor (Invitrogen, UK), 4µl of Reverse Transcriptase buffer 

(Invitrogen, UK), 1µl of 10ng/µl random hexamer primers (Thermo Fisher, UK) and 10µl of 

RNA.  Samples were incubated for one hour at 37oC followed by 10mins at 65oC. For each 

variant, where possible, RNA analysis was carried out by using a forward PCR primer 

situated at least two exons upstream from the exon (or flanking intronic sequence) 

containing the variant and a reverse primer at least two exons downstream from the exon 

of interest.  This was subject to the resultant PCR fragment being of a reasonable size for 

Sanger sequencing (ideally below about 600 base pairs), and for those genes with relatively 

small exons the primers were situated further away where possible (all primer sequences 

available upon request).  PCR reactions were carried out in a 20µl volume containing 1.5µl 

of cDNA, 10nM of each primer (Promega, UK), 2µl of 10x Platinum Taq buffer (Invitrogen, 

UK), 0.2mM of each dNTP, 1.5mM MgCl2 and 0.5 units of Platinum Taq polymerase 

(Invitrogen, UK). Cycling parameters were 94oC for 12 minutes followed by 35 cycles of 94oC 

for 30 seconds, 60oC for 30 seconds and 72oC for 30 seconds. PCR products were checked by 

gel electrophoresis and then bi-directionally sequenced using the standard protocol of the 

supplementary information 



Big-Dye® Terminator v1.1 Cycle Sequencing Kit (Applied Biosystems, USA) and separated on 

an ABI 3130xl Genetic Analyzer (Applied Biosystems, USA).  Subsequent data were analysed 

using the Mutation Surveyor (version 3.1) software (SoftGenetics, USA). 

Exeter RNA extraction and RT-PCR protocol 

RNA was extracted from whole blood (PAXgene Blood RNA tube; Qiagen 762165) on the 

QIAcube automated nucleotide extraction robot using the PAXgene blood RNA kit (Qiagen 

762174) following the manufacturer’s protocol. Reverse transcription PCR was done using a 

random hexamer primer mix and the VILO SuperScript III RT-PCR system (Life Technologies; 

11754250) following the manufacturer’s protocol. Primers were designed manually using 

the Primer3Plus software (National Human Genome Research Institute, USA); where 

possible PCR primers were designed to span exon-exon boundaries. PCR amplification was 

performed using the Megamix Royal PCR master mix (MicroZone; 2MMR-10). PCR products 

were visualised by gel electrophoresis (3% agarose) before bi-directional Sanger sequencing. 

Sanger sequencing was performed using BigDye terminator v3.1 (Applied Biosystems; 

4337456) and the Agencourt automated clean-up system (AMPure (Beckman Coulter; 

A63881), CleanSEQ (Beckman Coulter; A29154)), following the manufacturer’s protocol, and 

sequenced using the ABI 3730 DNA analyser. Sanger sequencing products were visualised 

using Mutation Surveyor v5.1.2 (SoftGenetics). 

 
Southampton RNA extraction and RT-PCR protocol 

Blood was collected in PAXgene Blood RNA tubes (PreAnalytiX, Switzerland). RNA was then 

extracted from blood samples using PAXgene Blood RNA Kit (PreAnalytiX, Switzerland) and 

quality control was performed using a 2100 Bioanalyzer instrument (Agilent, UK).  RNA 

extracted from blood samples was converted to cDNA using the High-Capacity cDNA Reverse 



Transcription Kit (ThermoFisher Scientific, UK) using random hexamers. Primer pairs were 

designed manually depending on the genomic locations of variants and ordered from 

Integrated DNA Technologies (IDT, UK). PCR experiments were performed using GoTaq G2 

Polymerase PCR system (Promega, UK) according to the manufacturer's protocol. RT-PCR 

products were purified by GeneJET PCR Purification Kit (ThermoFisher Scientific, UK) and 

bidirectional Sanger sequencing was carried out by SourceBioscience (Nottingham, UK).  

Amplicons were also analysed by agarose gel electrophoresis and imaged by Chemidoc XRS+ 

(Bio-Rad, USA).  Where indicated, amplicons for further analysis were gel-purified by GeneJET 

Gel Extraction Kit (ThermoFisher Scientific, UK) and cloned into plasmids using a TA cloning 

kit, with the pCR 2.1 vector (ThermoFisher Scientific, UK). Plasmids carrying inserts were sent 

to SourceBioscience (Nottingham, UK) for Sanger sequencing.   

 
RNA-seq analysis 
 
QC of read data:  

QC was performed on sequencing reads received from Novogene with FastQC (v0.11.3) 

(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/), and compiled and 

visualised with MultiQC (v1.5) (https://multiqc.info/). 

 
Alignment with STAR (v2.6.1c)1:   

The STAR index was created with STAR’s genomeGenerate using 

GRCh38.primary_assembly.genome.fa and gencode.v30.annotation.gtf, both downloaded 

from GENCODE2 (https://www.gencodegenes.org/human/) with --sjdbOverhang 149 and all 

other settings as default. Samples were individually aligned in twopass Basic mode with the 

following parameters specified, and everything else as default: --outSAMmapqUnique 60, --

outFilterType BySJout, --outReadsUnmapped Fastx, --outSAMtype BAM Unsorted.  



Samtools3 (v1.3.2) was used to sort, index and extract regions (using Samtools view) 

corresponding to the gene harbouring the VOUS. 

 
QC of aligned data:  

QC was performed on aligned data using the following components of RSeQC4 (v2.6.4) 

(http://rseqc.sourceforge.net/): bam_stat.py, infer_experiment.py, geneBody_coverage.py, 

junction_annotation.py and junction_saturation.py. Results were compiled and visualised 

with MultiQC (v1.5) (https://multiqc.info/).   

 
In silico splicing predictions 

Equations for sensitivity, specificity, accuracy, positive and negative predictive values: 

Sensitivity = true positives / (true positives + false negatives) 

Specificity = true negatives / (true negatives + false positives) 

Accuracy = (true positives + true negatives) / (all variants) 

Positive predictive value = true positives / (true positives + false positives) 

Negative predictive value = true negatives / (true negatives + false negatives) 

 
 
  



SUPPLEMENTARY FIGURE AND TABLE LEGENDS: 
 
 
Figure S1. Variant classifications in ClinVar (as of 13 November 2019).  Proportions and 

numbers of variants listed in ClinVar under each of the five ACMG classifications. 

 
 
Table S1. Tabulated list of variants, splicing effects and bioinformatic predictions.  Variants 

highlighted in red were found to affect splicing, while blue-highlighted variants were not.  

SNV position is in reference to the nearest annotated donor (D) or acceptor (A) splice site in 

the listed transcript, where D-1 is the final nucleotide of an exon and A+1 is the first 

nucleotide of an exon.  Genomic coordinates are listed based on results obtained from the 

Ensembl Variant Effect Predictor (VEP) downloaded in VCF format.5  Bioinformatic 

predictions taken to indicate a splice-altering effect (within applied thresholds) are 

highlighted in red.  For splicing result: IR, intron retention; SE, skipped exon; A5SS, 

alternative 5´ splice site; A3SS, alternative 3´splice site.  For HSF predicted effects: DSB, 

donor site broken; NDS, new donor site; NAS, new acceptor site; ASB, acceptor site broken; 

"no result" refers to where HSF made erroneous calls of input sequence elements, leading 

to inappropriate predictions.  For SSF, MaxEntScan, NNSPLICE: NSS, native splice site.  

SpliceAI values were obtained from a pre-computed score file (v1.3).  *These two MKKS 

variants were present in trans in a single patient.  **This sample contained two separate but 

closely linked monoallelic NF1 variants, which have been considered together as a single 

variant for the purposes of this study.   
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