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Fertility projections are a key determinant of population
forecasts, which are widely used by government policymak-
ers and planners. In keeping with the recent literature, we
propose an intuitive and transparent hierarchical Bayesian
model to forecast cohort fertility. UsingHamiltonianMonte
Carlomethods and a dataset from theHuman Fertility Data-
base, we obtain fertility forecasts for 30 countries. We use
scoring rules to quantitatively assess the predictive accu-
racy of the forecasts; these indicate that ourmodel predicts
with an accuracy comparable to that of the best-performing
models in the current literature overall, with stronger per-
formance for countrieswithout a recent structural shift. Our
findings support the position of hierarchical Bayesian mod-
elling at the forefront of population forecasting methods.
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1 | INTRODUCTION

Fertility is one of the three components of population change, together with mortality and migration - population
forecasts are obtained by projecting these components forward under certain assumptions and methodologies. Gov-
ernment policymakers, decision makers and planners use these forecasts for numerous purposes such as planning for
the future provision of basic societal needs, e.g., food, water and energy, as well as health and education services;
shaping policies both locally and nationally; determining fiscal projections; and informing pensions models (Office for
National Statistics, 2019a; Population Reference Bureau, 2001; National Records of Scotland, 2019). Fertility fore-
casts specifically are required to plan maternity and childcare services, predict demand for nursery school places, as
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well as various other uses (Office for National Statistics, 2019b; Shang, 2012; National Records of Scotland, 2019). As
a result, models that can generate plausible fertility forecasts with appropriate uncertainty are in high demand.

There is a large body of literature concerning the proposal of models to produce accurate estimates of fertility
rates. Much of the early work focuses on parametric techniques, which involve choosing functions to fit closely to
the bell-shaped curves of age-specific fertility rates (e.g., see Peristera and Kostaki (2007)). Such functions include
polynomials (Brass, 1960), the Coale-Trussell function (Coale and Trussell, 1974), beta and gamma distributions (Hoem
et al., 1981), and theHadwiger distribution (Hadwiger, 1940). In addition, the relational models of Brass (1974) assume
a linear relationship between an observed set of fertility rates and some standard (Booth, 2006). Hoem et al. (1981)
describes a selection of these methods and gives a detailed comparison. Recently, a slight hump at younger ages has
appeared in the curves for some developed countries (Chandola et al., 1999), which the previous models are unable to
respond to (Peristera and Kostaki, 2007). Chandola et al. (1999) suggests a possible cause as the emerging differences
between marital and non-marital fertility, proposing a mixture of Hadwiger functions to model this phenomenon.

Since the 1980s, attention has largely moved to models that treat fertility as stochastic rather than deterministic,
and so are able to quantify the uncertainty in forecasts (Wiśniowski et al., 2015). The functional model of Lee (1992)
is particularly notable in this school of thought, with its use of principal component analysis and time series inspiring
many approaches that involve modelling the randomness of fertility (Booth, 2006). These further functional methods
include the work of Hyndman and Ullah (2007) and Shang (2012). Consistent with the change to a probabilistic
viewpoint, Bayesian models are now a popular choice in the population forecasting literature as they can incorporate
uncertainty naturally. Recent papers such as Wiśniowski et al. (2015) and Bijak and Bryant (2016) attribute the rise in
their usage to computational developments occurring as recently as the last decade. Hierarchical Bayesianmodels (e.g.,
see Girosi and King (2008)), which allow borrowing of strength, are also becoming increasingly common. This strength
can be borrowed from other countries, an approach used in the methodology of the first probabilistic population
projections to be published by the United Nations (Ševčíková et al., 2016). Alternatively, the strength can be borrowed
across ages and cohorts (e.g., see Czado et al. (2005)) for the fertility rate estimates of a single country.

In an attempt to determine whether the increasingly sophisticated and computationally expensive models pro-
posed in recent years have actually led to greater predictive accuracy, Bohk-Ewald et al. (2018a) perform a compre-
hensive comparison of 20 existing cohort fertility forecasting approaches. Taking a cohort approach, the aggregate
fertility measure the authors use to compare the methods is the cohort total fertility rate (CFR). The CFR is calculated
by summing the age-specific rates for a given cohort, i.e., a group of women with the same birth year, across all re-
productive ages (Jasilioniene et al., 2015); as such, it can be interpreted as the average completed family size for that
cohort. The equivalent measure under a period approach is the total fertility rate (TFR), which sums the rates for a
given calendar year - this can be interpreted as the average completed family size for a hypothetical cohort of women
who experience the fertility rates of that one year throughout their reproductive lives (Ní Bhrolcháin, 2011).

By its definition, the TFR provides a summary of fertility over a brief period of time which can be very recent,
and is therefore more immediately relevant compared to the CFR (Bongaarts and Feeney, 1998). However, as well as
the absence of a practical interpretation, a further drawback is that changes in the TFR can be due to tempo effects,
i.e., changes in the average age of childbearing during the period in question, rather than just quantum effects, i.e.,
changes in the average number of children per woman (Bongaarts and Feeney, 1998). As a result, cohort fertility tends
to be more stable across time than period fertility (de Beer, 1985; Li and Wu, 2003), which makes it a more appealing
measure for forecasting purposes. For these reasons, combined with the frequent adoption of the cohort approach
in the recent fertility forecasting literature, we also decide to take a cohort approach.
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Returning to the work of Bohk-Ewald et al. (2018a), the authors find that in terms of forecast accuracy, four
methods perform better than the naive freeze rates approach, which simply freezes the age-specific rates at their
most recent observed values. These superior approaches include the two simple extrapolation methods of Myrskylä
et al. (2013a) and de Beer (1985, 1989). The former extrapolates the age-specific trends exhibited over the previous
five years for a further five years before freezing the rates; the latter extrapolates patterns exhibited by the rates
across ages and cohorts jointly by fitting two interconnected ARIMA time seriesmodels. The remaining two successful
approaches are both Bayesian methods, namely the conjugate normal-normal model of Schmertmann et al. (2014a)
and the aforementioned model of Ševčíková et al. (2016). The former constructs a prior from quadratic penalties,
simultaneously penalising potential future patterns of rates in the age and cohort dimensions that are deemed unlikely
by the historical data; the latter first forecasts the TFR using a hierarchical Bayesianmodel, subsequently decomposing
it into age-specific projections according to a particular target pattern determined by expert opinion.

Of the eight methods that allow uncertainty quantification (this includes the methods we have described except
for that of de Beer (1985, 1989)), the Bayesian model of Schmertmann et al. (2014a) appears to perform strongest,
and therefore could be seen as the best when considering forecast accuracy and uncertainty together. Overall, the
questionable dominance of the Bayesian approaches over simple extrapolation methods causes the authors to ques-
tion whether such complex models requiring large amounts of data and computation time are really necessary in order
to obtain accurate cohort fertility forecasts - this is one of the motivations of our work.

This discussion brings us to the main purpose of this paper. In the spirit of the highly successful model of Schmert-
mann et al. (2014a) and in keeping with the most recent literature, we propose a hierarchical Bayesian model for
forecasting cohort fertility. By incorporating our assumptions explicitly into the model structure and then letting the
data determine their precise satisfaction, we aim to construct a transparent and intuitive model with realistic levels of
forecast uncertainty that can compete with the current best-performing models in the field. We fit our model using
the state-of-the-art Hamiltonian Monte Carlo computational methodology implemented by the software RStan (Stan
Development Team, 2018a).

After presenting our approach in Section 2, in Section 3 we compare the forecast performance of our model with
that of Schmertmann et al. (2014a), Myrskylä et al. (2013a) and de Beer (1985, 1989). We fit to the fertility data
available in 2014 to generate forecasts for 30 countries and perform a qualitative comparison. We also fit to the data
available 10 years earlier in 2004 to generate forecasts for 29 countries, allowing us to use scoring rules and other
summary statistics to compare the approaches quantitatively. Lastly, we discuss our findings in Section 4.

2 | METHOD

2.1 | Introduction

Let us consider an incomplete Lexis surface, i.e., a heat map of fertility rate estimates plotted by age against cohort
year of birth. For a cohort of women at a given age, the fertility rate is estimated by dividing the number of live
births by the number of women (Jasilioniene et al., 2015). Figure 1 gives an example of a Lexis surface for England
and Wales data from the Human Fertility Database (2019), taking the present to be 2014 by only using the data that
would have been available in that year; also note that the surface is restricted to ages 15-44 and the 1923-1999
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cohorts. Features of interest include the high rates in the dark region which occurred during the 1960s and early
1970s for women in their twenties, and the increase in the peak age of childbearing from the 1960s cohorts to the
late 1970s cohorts (Office for National Statistics, 2017). We call the set of rates for each cohort a cohort schedule,
with a cohort schedule complete if it is fully observed and incomplete otherwise. Using this terminology, we see from
Figure 1 that the cohort schedules up to and including the 1970 cohort are complete - this is because in 2014, the
1970 cohort would have been the youngest cohort to have an observable rate for women aged 44.

F IGURE 1 Lexis surface of England and Wales Human Fertility Database (2019) fertility rate estimates by age
against cohort year of birth, taking the present to be 2014. White cells correspond to future rates which are yet to
be observed. The last complete cohort schedule (of the 1970 cohort) is indicated, as well as an incomplete cohort
schedule (of the 1985 cohort).

The dataset we consider as a whole consists of complete and incomplete cohort schedules for ages 15-44 from
countries across Europe, with several countries from North America and Asia. Following Schmertmann et al. (2014a),
we separate the data into historical and contemporary sections. For each country, we take all the available complete
cohort schedules for the 1904-1953 cohorts to form the historical part, and the 1960-1999 cohort schedules to form
the contemporary part. We illustrate this in Figure 2 for England andWales. From Figure 2a, we see that England and
Wales only contributes 31 of the 50 desired historical cohort schedules from the 1923 cohort onwards.

F IGURE 2 England and Wales (a) historical and (b) contemporary Lexis surfaces (Human Fertility Database,
2019).
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The reason for this separation is apparent upon considering the model structure. For a given country, the parame-
ters are the true fertility rates in its contemporary Lexis surface (one for each of the possible cohort-age combinations
in Figure 2b). The historical data from all the countries (displayed in Figure 3) informs the core of the model. We
specify a prior for the (hyper)parameters, which is then updated by combining its information with that obtained from
the country’s observed contemporary rates (the rate estimates in Figure 2b) in the likelihood. This gives a posterior
distribution for the parameters of the entire contemporary Lexis surface. We specify our model in Section 2.2.

F IGURE 3 The combined historical Lexis surfaces from all of the countries in our dataset (Human Fertility
Database, 2019).

2.2 | Model specification

Suppose there are C birth cohorts (c = 1, . . . ,C ) and A ages (a = 1, . . . ,A) in the contemporary Lexis surface of a
particular country. For each cohort-age combination (c, a) , let Nca be the observed number of births, Wca be the
number of women alive (i.e., the exposure) and θca be the true fertility rate; then µca =Wcaθca is the mean number
of births. Due to its suitability for modelling count data, we assume a Poisson distribution for Nca with mean µca , i.e.,
Nca ∼ Poisson(µca ) . We model θca on the logarithmic scale, the standard approach to take when modelling rates. It
also ensures that our model will not generate negative forecasts, which is especially beneficial in instances where we
have diminishing fertility at ages where the level is already low. Letting H be the total number of complete historical
cohort schedules contributed by all the countries, we define Φ to be the A × H matrix of these cohort schedules (see
Figure 3 in Section 2.1 for a visual representation of such a matrix with A = 30 and H = 653). Let Π be the equivalent
matrix on the logarithmic scale, i.e., Πah = log(Φah ), a = 1, . . . ,A, h = 1, . . . ,H . We then let X be the A × 3 matrix
consisting of the first three principal components of Π, obtained from its singular value decomposition (SVD). These
components are essentially highly significant covariates that together explain a large proportion of the variation of
the historical cohort schedules. The underlying assumption, also made in Schmertmann et al. (2014a), is that these
components will explain a similar proportion of the variation in the contemporary cohort schedules. We now define
the core of the model, which takes the following log-linear form:

log(θca ) = [Xβ]a + εca , (1)
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where β = (β1, β2, β3)′ is the vector of regression parameters, i.e., the respective weights on the three principal
components - see Schmertmann et al. (2014a) for an interpretation of these weights when the principal components
of Φ are computed. The βi ’s are allowed to vary freely, imposing no constraints on the possible shapes or levels of
the incomplete cohort schedules; we ensure that this is the case by giving each βi a diffuse N (0, 302) prior. The εca ’s
are the error terms, and we enforce our remaining model assumptions through their prior distribution.

Firstly, letting b = (b1, b2, b3)′, from (1) it is clear that the model is invariant under the following parameterisation:

{β, εca } → {β + b, εca − [Xb]a }.

To resolve this identification problem, we impose a constraint on the vector of ’jump-off’ εca ’s, i.e., the εca ’s whose
cohort-age combinations correspond to the calendar year we are taking to be the present - we will discuss the reason
for this choice in due course. We call this vector εJO and illustrate it in Figure 4a below. We let εJO = (IA − PX)η,
where η = (η1, ..., ηA)′ and PX = X(X′X)−1X′, the projection matrix of X. We then let ηa iid∼ N (0,σ21 ) , a = 1, . . . ,A.
Hence X′εJO = 0. As X has three columns, this imposes three linear constraints on εJO , fixing its level and therefore
making the model identifiable.

F IGURE 4 Representation of (a) εJO , (b) Region A, (c) Region B and (d) Region C on a typical contemporary Lexis
surface where the present is 2014, with the included cohort-age combinations filled in grey.

Next, we divide the contemporary Lexis surface into three regions A-C, which are illustrated in Figures 4b-d.
Region A consists of the εca ’s with cohort-age combinations in the first cohort only, Region B those in cohorts two to
five, and Region C those in cohort six onwards. We then specify the priors on the εca ’s by the region they belong to:

Region A : Let ε1a iid∼ N (0,σ22 ), a = 1, . . . ,A

Region B : Let εca ∼ N (ρ1ε (c−1)a ,σ23 ), c = 2, . . . , 5

Region C : Let εca ∼ N (ρ2ε (c−1)a + ρ3 (ε (c−1)a + ∆̂(c−1)a ),σ24 ), c = 6, . . . ,C ,

where ∆̂(c−1)a =
1

30
(10ε (c−1)a − ε (c−2)a − 2ε (c−3)a − 3ε (c−4)a − 4ε (c−5)a ) is the ordinary least squares (OLS)

slope estimator obtained by fitting a linear regression model without an intercept to the five error terms

corresponding to age a and cohorts c − 5, . . . , c − 1.

Lastly, we assume that each σi ∼ N + (0, 0.252) and each ρi ∼ N + (0, 0.52) , where N + ( · , ·) indicates a half-normal prior.
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In words, our Region A prior states that the error terms are simply independently and identically normally dis-
tributed with mean 0 and variance σ22 . Our Region B prior states that for each age, the εca ’s follow an AR(1) process
across cohort with coefficient ρ1 and constant error variance σ23 . In Region C, the prior states that the εca ’s are nor-
mally distributedwithmean equal to a weighted combination of the previous age-specific error ε (c−1)a , and the sum of
this error term and the slope ∆̂(c−1)a that it gives rise to along with the previous four age-specific errors, with weights
ρ2 and ρ3 respectively and variance σ24 . The Region C prior is the most important as it will determine the forecasts -
this is because this region includes all the future cohort-age combinations. What we are actually doing in this prior
is balancing the two most common extrapolation methods for observed fertility rates in the demographic forecast-
ing literature, which we will call the freeze-rate and freeze-slope approaches respectively in line with Schmertmann
et al. (2014a). The freeze-rate approach assumes that the next age-specific rate will be similar to the previous one,
i.e., θca ≈ θ(c−1)a . On the other hand, the freeze-slope approach assumes that the next age-specific rate will follow
the recent trend of its past rates, i.e., θca ≈ θ(c−1)a + δ̂ (c−1)a , where δ̂ (c−1)a is the recent slope - we take this to be
calculated using the last five rates in the same spirit as Myrskylä et al. (2013a) and Schmertmann et al. (2014a).

In our model we are working on a logarithmic scale and with these assumptions applied to the error terms instead
of the actual rates; these are two of the key differences from the model of Schmertmann et al. (2014a). For the freeze-
rate approach the two are equivalent using (1), i.e., εca ≈ ε (c−1)a ⇒ θca ≈ θ(c−1)a . However for the freeze-slope
approach they are not, as εca ≈ ε (c−1)a + ∆̂(c−1)a ⇒ θca ≈ θ(c−1)a × exp(∆̂(c−1)a ) , again using (1). This is intuitive, as a
small change on the log scale is approximately equivalent to the proportionate change on the original scale.

Returning to the Region C prior, it is now clear that we are allowing the data to choose howmuchweight to put on
the freeze-rate and freeze-slope assumptions through ρ2 and ρ3 respectively. We do not constrain these parameters to
sum to 1, as if ρ2+ρ3 < 1 each age-specific process is stationary and will revert to [Xβ]a in the long term. If ρ2+ρ3 > 1
then the process is non-stationary and will not exhibit long-term reversion, instead having a more explosive nature.
By leaving the sum of ρ2 and ρ3 unconstrained, for each country we allow the parameters to learn from the observed
contemporary fertility rate estimates, choosing whether they want to follow a stationary or non-stationary process
as a result. The degree of stationarity, i.e., how close ρ2 + ρ3 is to 1, is also significant, as it determines how strongly
the reversion occurs in the forecasts. It is this reversion of a stationary process to [Xβ]a that motivated our decision
to constrain εJO to make the model identifiable earlier in this section. The rationale behind this is that if we could
choose where we would want our forecasts to revert to in the future, it would be somewhere close to where we
started forecasting from, i.e., the value in the calendar year taken to be the present, as opposed to the initial value or
some average across the contemporary cohort schedules. This is in line with the current fertility literature, e.g., the
use of only the last five years of data in Myrskylä et al. (2013a). In constraining εJO therefore, the desire is that for
each country [Xβ]a will be close to the jump-off value for each age a . We discuss this further in Section 3.2.3.

Here we propose a hierarchical model to borrow strength across ages and cohorts. This is particularly important
in Region C, where we allow ρ2, ρ3 and σ24 to learn from all the observed cohort-age combinations after the fifth
cohort. In this way, our forecasts take as much information as possible from the contemporary Lexis surface about
the relative importance of the freeze-rate and freeze-slope assumptions. Our model is also hierarchical in the typical
sense, in that we have two levels of priors due to the presence of the hyperparameters (the σi ’s and the ρi ’s). We give
an overview of the model fitting in Section 2.3.
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2.3 | Model fitting

The hierarchical nature of our proposed model means that it is not possible to write the posterior in closed form -
instead, we need to approximate it using Monte Carlo methods. Such methods are also required for the hierarchical
Bayesian model of Ševčíková et al. (2016), whereas the posterior of the conjugate Bayesian model of Schmertmann
et al. (2014a) is tractable and hence can be computed precisely. For complex hierarchical models such as ours, well-
known Markov chain Monte Carlo (MCMC) methods like the Metropolis algorithm are less satisfactory due to their
local random walk behaviour, i.e., slow exploration of the posterior (e.g., see Gelman et al. (2014)). The method of
Hamiltonian Monte Carlo (HMC) increases the efficiency of this exploration through Hamiltonian dynamics (for more
details see Stan Development Team (2018b)). The variant of HMC that wewill use in the computation of the proposed
model is the no-U-turn sampler (NUTS), which determines certain algorithm parameters adaptively in each iteration
so as to maximise the exploration distance relative to the current position. The NUTS is implemented by the software
RStan (Stan Development Team (2018a)), which we will use to fit our model in Section 3.

The fitting process consists of two parts. First, we use RStan to perform T iterations of the NUTS algorithm,
following a warmup period of T ′ iterations for the purposes of estimation and optimisation of algorithm parameters.
This generates T samples of β, the σi ’s and the ρi ’s, as well as the εca ’s with observed cohort-age combinations and
therefore observed values of Nca andWca . Second, for the purposes of forecasting we need to obtain T samples of
the εca ’s with unobserved cohort-age combinations. We do this by simulating them from N (ρ2ε (c−1)a + ρ3 (ε (c−1)a +
∆̂(c−1)a ),σ24 ) , one set of samples for each of the T original samples. This gives T samples of θca = exp( [Xβ]a + εca )
for each cohort-age combination. We are able to code our model in such a way that RStan can perform this simulation
within each iteration.

The posterior distribution allows us to quantify our uncertainty about the true rates θca but not the empirical birth
rates. We need to incorporate the additional variation to account for the fact that we are predicting an observation and
not the mean. The process by which we do this for a conjugate model (e.g., Schmertmann et al. (2014a)) is described
in Appendix A, and is simple because we have the posterior distribution in closed form. The process is slightly more
involved for the proposed model however, as we only haveT samples of each θca available to us. Our goal is to have a
credible interval for each empirical rate as these arewhat we are trying to forecast; for this reasonwe need to generate
empirical birth rates from our T samples of each true birth rate θca . For each (c, a) , we do this by first sampling a
random observation from Poisson(µtca ) for t = 1, ...,T , where µtca =Wcaθ

t
ca is the t th sampled value of µca and θtca the

t th sampled value of θca . If (c, a) is unobserved, we takeWca to be its most recently observed value at age a . We then
divide each of these T Poisson realisations byWca to obtain a sample of T empirical birth rates. We then compute
the 90% and 50% credible intervals (CIs), which are probability intervals based on the posterior predictive distribution.
We do this by extracting the (5%, 95%) and (25%, 75%) quantiles of the sample of empirical birth rates. Note that the
additional uncertainty only has a noticeable effect for small countries with comparatively low exposures.
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3 | RESULTS

3.1 | Data and computation

In order to assess the forecast performance of our proposed model, we follow the advice of Bohk-Ewald et al. (2018a)
to compare against the naive freeze rates method and the simple extrapolation models of Myrskylä et al. (2013a) and
de Beer (1985, 1989) at a minimum; we will refer to these as Models MGC and dB respectively, after the authors.
We additionally include the model of Schmertmann et al. (2014a) in our comparison (denoted Model SZGM), as our
proposed hierarchical Bayesian model (denotedModel hB) has been developed in the same spirit. We fit themodels to
the countries available in the Human Fertility Database (2019)1 dataset. We first fit the models to the data available
in 2004, allowing us to use the more recent (or holdout) data to perform a quantitative comparison using scoring rules
and various summary statistics relating to point and probabilistic accuracy. This generates forecasts for 29 countries,
which we call ‘2004 (fertility) forecasts’ and present in Section 3.2. We then incorporate the holdout data directly by
fitting themodels to the data available in 2014, generating ‘2014 (fertility) forecasts’ for 30 countries whichwe discuss
in Section 3.3. The R code and Stan files to obtain the Model hB forecasts are available from https://github.com/

jvellison/hBfert. For theModel SZGMcomputationwe use the R code available on the Schmertmann et al. (2014a)
project website (Schmertmann et al., 2014b), slightly modified to account for the change in data and incorporation
of additional variation (see Appendix A). For Model MGC we use our own R code written according to the method
described in Myrskylä et al. (2013a) and inspired by the corresponding Stata code (Myrskylä et al., 2013b) as well as
the R code used to produce the work of Bohk-Ewald et al. (2018a) (Bohk-Ewald et al., 2018b); we also use this R code
to implement Model dB. We fit Model hB to each country separately, with T ′ = 1, 000 warmup iterations followed
by T = 4, 000 retained iterations (see Section 2.3) thinned by a factor of two from an initial 8, 000. We examine
convergence for each fit in the conventional way, and find that the samples mix well across theT iterations.

3.2 | 2004 fertility forecasts

In this section we provide an analysis of the 2004 forecasts using various approaches. First, in Section 3.2.1 we use
scoring rules to quantitatively compare the accuracy of the Model hB, SZGM, MGC, dB and freeze rates forecast
distributions. In Section 3.2.2 we use typical summary statistics to compare their point accuracy and coverage (where
possible). Then, in Section 3.2.3 we graphically explore both the stationarity of the Model hB forecasts and the way
in which the degree of stationarity affects the nature of the reversion.

3.2.1 | Scoring rules

To compare the models on their forecast precision and uncertainty we use scoring rules, which are measures of predic-
tive accuracy for probabilistic prediction (Gelman et al., 2014). This means that they consider the posterior distribution
as a whole rather than a summary statistic of it such as the mean or median. For a probabilistic forecast G (with as-
sociated CDF G and PDF g ) and observed value y , a scoring rule summarises the suitability of G in light of y by a

1Note that this is an update to the 2011 version of the dataset used in Schmertmann et al. (2014a). It includes 12 additional countries (Belarus, Chile, Croatia,
Denmark, Iceland, Italy, Japan, Norway, Poland, Spain, Taiwan and Ukraine), modifications to rate estimates available in 2011, and additional rate estimates.

https://github.com/jvellison/hBfert
https://github.com/jvellison/hBfert
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score. The scoring rules we will use are negatively oriented, which means that smaller scores are desirable (Jordan
et al., 2017). Following Jordan et al. (2017) we compute the logarithmic score (LogS; Good (1952)) and the continuous
ranked probability score (CRPS; Matheson and Winkler (1976)):

LogS(G , y ) = − log(g (y )) ; (2)

CRPS(G , y ) =
∫
Ò
(G (z ) − É{y ≤ z })2dz, (3)

where É{·} is the indicator function. From equation (2), it is clear that the LogS penalises forecast distributions that
assign negligible probability to y . In contrast, the CRPS “generalises the absolute error” (Gneiting and Raftery, 2007)
by penalising forecast distributions whose CDFs differ substantially from the empirical CDF of y , i.e., the “perfect
forecast” (Bröcker, 2012). In fact, equation (3) reduces to the absolute error if G is a deterministic (or point) forecast;
therefore the CRPS allows us to score probabilistic and deterministic forecasts under the same metric, which is an
attractive property (Gneiting and Raftery, 2007). Consequently, it is not surprising that the CRPS is more “sensitive to
distance” (Gneiting and Raftery, 2007) and so would score a narrow distribution with median close to y , but negligible
probability assigned to y , more favourably than the LogS - this is because the forecast is accurate, even though it is
too precise. For further discussion of scoring rules, see Gneiting and Raftery (2007).

Regarding computation for the models with probabilistic forecasts (Models hB, SZGM and MGC), the LogS and
CRPS can be calculated exactly under Models SZGM and MGC due to their Gaussian forecast distributions; the same
is not true for Model hB due to its intractable posterior (see Section 2.3), and as a result approximations are required.
We use a Gaussian approximation for g to compute the LogS and an empirical CDF-based approximation for G to
compute the CRPS (see Krüger et al. (2019) for details).

We fit the models over ages 15-44, using the 1950-1989 cohorts as our contemporary data and maintaining the
1904-1953 cohorts as our historical data as in Section 2.1. We fix the number of complete contemporary cohorts at
11 (meaning that the 1950-1960 cohorts are complete and the 1961-1989 cohorts are increasingly incomplete), and
focus solely on the CFR for simplicity and consistency with the recent literature. For each model we compute the
CRPS for the CFR forecasts with a corresponding observed value - the number of such forecasts varies by country
due to data availability, ranging from 5-13 with a modal value of 12 observed CFR values available after 2004 (for
the 1961-1972 cohorts). We then plot the average CRPS by country in Figure 5, noting that this reduces to the mean
absolute error for freeze rates andModel dB as their forecasts are deterministic. We order the countries by decreasing
average CRPS (increasing predictive accuracy) under Model hB, for ease of comparison against the other methods.

The figure provides strong support for Model hB being competitive with the current best cohort fertility fore-
casting methods - its average score is significantly better than that for freeze rates for 27 of the 29 countries, and
only marginally worse for the remaining two countries (Iceland and Bulgaria). In terms of its performance among the
models identified as the most accurate in Bohk-Ewald et al. (2018a), it is fair to say from inspecting Figure 5 that
for all countries from Denmark to the right (excluding England and Wales and Slovakia), the difference between the
Model hB average score and the lowest for that particular country (achieved byModel hB for Portugal and the USA) is
negligible. For the countries left of Denmark we see larger differences from theminimum, in particular for Switzerland,
Iceland and Estonia; Model SZGM exhibits the opposite trend, performing very strongly for these countries overall
but poorly for Denmark, Sweden, Finland, the USA, the Netherlands and Spain. To facilitate a fair comparison, we
present histograms of the average scores for each model in Appendix B (Figure 12) - the Model hB and SZGM plots
indicate that, excluding the Netherlands, their average CRPS distributions across countries are quite similar.
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F IGURE 5 Plot of the average continuous ranked probability score (CRPS) against country for the 2004 cohort
total fertility rate (CFR) forecasts for the proposed model (hB), the models of Schmertmann et al. (2014a) (SZGM),
Myrskylä et al. (2013a) (MGC) and de Beer (1985, 1989) (dB), and the naive freeze rates approach. Model hB—•;
Model SZGM—o; Model MGC—�; Model dB—2; freeze rates—S. Countries are ordered by decreasing average CRPS
under Model hB; post-communist countries are in bold.

Of the two simple extrapolation models, Model MGC clearly outperforms Model dB as well as the two Bayesian
models, with a highly competitive average score across nearly all the countries; this conclusion is also supported by
the relevant histograms in Figure 12. This strong performance is consistent with the assessment of Bohk-Ewald et al.
(2018a) in terms of forecast accuracy, however the authors did find its forecast uncertainty to be substantially weaker
in comparison. From the discussion of scoring rules at the start of this section, we know that the CRPS scores accurate
forecast distributions with poor coverage more favourably compared to the LogS, which explicitly penalises forecasts
which assign small probabilities to the true value. It is therefore also important to consider howModels hB, SZGM and
MGC perform under the LogS, which we do by presenting Figure 6 (the equivalent of Figure 5 for the LogS) overleaf.

Themost notable difference between the trends exhibited in Figures 5 and 6 is the highly erratic and unpredictable
nature of the Model MGC scores in the latter - indeed, we are unable to display some of the Model MGC average
LogS values as they are too large. This dramatically poorer performance for Model MGC under the LogS compared
to the CRPS indicates that its forecast distributions grossly underperform in terms of forecast uncertainty, agreeing
with Bohk-Ewald et al. (2018a). Regarding the two Bayesian models, again we see evidence of their complementary
behaviour in that where Model SZGM performs badly, Model hB tends to perform well and vice versa. Under this
scoring rule the models appear to be more balanced in terms of the relative magnitudes of their differences from the
smallest average score, excluding the poor performance for the Netherlands under Model SZGM; this improvement
for Model SZGM suggests that overall, Model hB may perform slightly worse in terms of coverage but better in terms
of forecast accuracy. In Section 3.2.2 we will investigate whether the summary statistics support these conclusions.
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F IGURE 6 Plot of the average logarithmic score (LogS) against country for the 2004 cohort total fertility rate
(CFR) forecasts for the proposed model (hB), the models of Schmertmann et al. (2014a) (SZGM) and Myrskylä et al.
(2013a) (MGC). Model hB—•; Model SZGM—o; Model MGC—�. Countries are ordered by decreasing average LogS
under Model hB; post-communist countries are in bold.

To get some idea of what the forecast distributions actually look like, we present theModel hB and SZGM forecast
distributions graphically for five countries in Figure 7; note that we do not present the Model MGC forecast distribu-
tions in these plots for simplicity and due to their pre-established poorer coverage. The first two plots (from L-R) of
Figure 7 represent countries that perform significantly better under Model hB compared to Model SZGM according
to the scoring rules (the Netherlands and the USA). This is evident from the way that the holdout CFR values fall in the
centre of the Model hB 50% CIs, whereas they drift from the Model SZGM intervals after the first few forecast years.
The next two plots are where the opposite is true, i.e., Model SZGM outperforms Model hB in the scoring rules. The

F IGURE 7 2004 cohort total fertility rate (CFR) posterior distributions for selected countries, with average
continuous ranked probability score (CRPS) and logarithmic score (LogS) for the proposed model (Model hB) and the
model of Schmertmann et al. (2014a) (Model SZGM) respectively and the dashed line indicating the start of the
forecast period: Model hB 90% credible interval (CI)— ; Model hB 50% CI— ; Model SZGM 90% CI— ; Model
SZGM 50% CI— ; Human Fertility Database (2019)—•.
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first of these, Czechia, is a post-communist (PC) country, and the effect of the declining rates experienced across the
post-communist region (Billingsley, 2010) on the forecast CIs is clear. Both models seemingly project the downturn
unrealistically into the future, with the wider CIs for Model SZGM being the sole reason why it outperforms Model
hB. The second case for Switzerland is more convincingly in favour of Model SZGM, looking like the reverse of the
first two plots. Lastly, the right plot for Scotland gives an instance where there is little to choose between the models
under both scoring rules; the CIs overlap for the first few forecast years before diverging, with the subsequent holdout
CFR values falling roughly in between them. We also observe that the Model hB credible intervals are consistently
narrower than those for Model SZGM - we will see whether this difference leads to a reduction in coverage compared
to Model SZGM when we examine the summary statistics in Section 3.2.2.

Overall, through the use of scoring rules to assess the predictive performance of the Model hB cohort fertility
forecast distributions relative to some of the current best models in the field, we have found strong evidence to
supportModel hB being competitive in terms of forecast accuracy and uncertainty. Figure 13 in the on-line supporting
information gives the CFR plots for the countries not represented in Figure 7.

3.2.2 | Summary statistics

The scoring rules in Section 3.2.1 are single metrics that are able to quantify the overall performance of a forecast
distribution in terms of accuracy and uncertainty; next we use various standard summary statistics in order to assess
these two qualities separately, with the results presented in Table 1. Note that for simplicity and ease of interpretation,
these statistics are calculated across all the countries rather than being country-specific as the average scores were in
Section 3.2.1 - in this way we can determine whether these results are consistent with our previous general findings.

TABLE 1 Summary statistics calculated across all countries for the 2004 cohort total fertility rate forecasts under
the proposed model (hB), the models of Schmertmann et al. (2014a) (SZGM), Myrskylä et al. (2013a) (MGC) and
de Beer (1985) (dB), and the naive freeze rates approach; MAE = mean absolute error; MAPE = mean absolute
percentage error; RMSE = root mean square error; CI = credible interval.

Measure hB SZGM MGC dB Freeze rates

MAE (3dp) 0.011 0.013 0.009 0.011 0.020

MAPE (%, 2dp) 0.63 0.72 0.49 0.62 1.15

RMSE (2sf) 0.021 0.024 0.016 0.021 0.034

Coverage of 90% CI (%) 76 83 56 — —

Coverage of 50% CI (%) 58 54 32 — —

We have given three measures of predictive accuracy, namely the mean absolute error (MAE), mean absolute per-
centage error (MAPE) and the root mean square error (RMSE); note that for the models with probabilistic forecasts,
we compute each error using the median of the relevant forecast distribution. The MAE values for the four models
(excluding freeze rates due to its MAE being substantially larger) indicate that the typical magnitude of the CFR fore-
cast error is 0.01, i.e., 10 children for every 1000 women in a given cohort over their reproductive lives. Freeze rates
actually performs worst by a long way under all three measures, which is not surprising given the analysis of Figure 5
in Section 3.2.1 and the findings of Bohk-Ewald et al. (2018a). Focusing on the four models, we see that Model MGC
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has the lowest value (and therefore best forecast accuracy) for all three statistics; this confirms our conclusions based
on the computation of the CRPS in Section 3.2.1. In terms of the ordering of the remaining models, Models hB and dB
have nearly identical values, all slightly larger than those for Model MGC; model SZGM is a little further behind again.
This equivalence of Models hB and dB does not necessarily follow from Section 3.2.1, where Model dB appeared to
perform significantly worse than Model hB from Figure 5 - however, the fact that the scoring rules are not a measure
of forecast accuracy alone (they also take into account forecast uncertainty) could explain this difference.

The reason for Model SZGM performing relatively badly under these measures is likely due to the frequent high
scores in Figure 5 pulling up the averages. When we consider the results for just the non-post-communist (non-PC)
countries (not presented in Table 1), they actually show a greater margin of improvement for Model hB over Model
SZGM across the three statistics - in particular, the MAPE decreases to 0.56% for Model hB while it increases to
0.85% for Model SZGM). Naturally this is countered by the opposite effect being observed for the PC countries (here
the MAPE increases to 0.78% for Model hB while it decreases to 0.45% for Model SZGM, the lowest across all the
models). So there appears to be evidence that Model hB is better suited to forecasting the CFR for countries with
more stable contemporary fertility histories.

To quantify uncertainty we compute the coverage of the 90% and 50% CIs for the models with probabilistic fore-
casts (i.e., Models hB, SZGM and MGC). The results are consistent with our findings from computing the logarithmic
score in Section 3.2.1, with Model SZGM closest to the nominal values, followed closely by Model hB and thenModel
MGC, which has very poor coverage. In terms of the coverages for the non-PC and PC countries separately, we see
a similar trend to that observed for the predictive accuracy measures - the Model hB coverages exceed those for
Model SZGM for the non-PC countries (79% versus 77% and 61% versus 44%), but are substantially lower for the PC
countries (71% versus 96% and 54% versus 75%). This provides further evidence for our previous conclusion that the
forecast performance of Model hB is more favourable for the countries without a recent structural shift.

To summarise, the analysis in this section has confirmed our findings from Section 3.2.1, that Model hB has
forecast accuracy comparable to that of the current best cohort fertility forecasting models - indeed, onlyModel MGC
performs significantly better. Conclusions are harder to state with forecast uncertainty, as we only have the strong and
weak coverage of Models SZGM and MGC respectively (established in Bohk-Ewald et al. (2018a)) to compare against.
Model hB lies in between the two models in this regard, but is undoubtedly closer to Model SZGM than Model MGC;
it is most competitive with Model SZGM when considering the non-PC countries alone, where its coverage is slightly
higher than that of Model SZGM. Overall these results are positive for Model hB, however the poorer performance
for PC countries is concerning and should be investigated - we do this in Section 3.2.3.

3.2.3 | Stationarity and reversion

Lastly, we return to the stationarity discussion in Section 2.2 by presenting the posterior distributions of ρ2, ρ3 and
their sum by country in Figure 8. First, we note that for each country, the ρ2 error bars lie beneath the ρ3 error bars
(comparing Figures 8a and 8b). This means that the observed time series of age-specific rates in the contemporary
Lexis surfaces are telling us that more weight should be put on the freeze-slope approach, i.e., following the recent
age-specific trends, compared to the freeze-rate approach, i.e., remaining at the current age-specific level. Another
interesting point is that all the countries choose for their age-specific processes to be stationary, which we can see
from the ρ2 + ρ3 error bars in Figure 8c all lying below 1. This means that our age-specific forecasts all revert to [Xβ]a
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in the long term and so are unlikely to be explosive. Despite this, there does appear to be a difference between the
average degree of stationarity, i.e., how close the sum is to 1, for the PC and non-PC countries. The former tend to
have their distributions of ρ2 + ρ3 at a lower level, and hence exhibit a faster reversion.

F IGURE 8 2004 posterior distribution summary of (a) ρ2, (b) ρ3 and (c) ρ2 + ρ3 by country, with the •’s at the
sample median and the error bars indicating the 90% credible interval. Post-communist countries are in red.

F IGURE 9 2004 Canada (top) and Russia (bottom) fertility forecasts at ages 20, 25, 30, 35 and 40; the dashed
line indicates the start of the forecast period and the solid line the median reversion value for the proposed model
(Model hB): Model hB 90% credible interval (CI)— ; Model hB 50% CI— ; the model of Schmertmann et al. (2014a)
(Model SZGM) 90% CI— ; Model SZGM 50% CI— ; Human Fertility Database (2019)—•.

We illustrate this observation by comparing the age-specific forecasts of Canada and Russia, countries with rela-
tively large and small values of this sum respectively, in Figure 9. The Canada forecasts have reasonably wide credible
intervals with only slight evidence of reversion to the solid line for the forecast period shown here. Conversely, the
Russia forecasts show a very fast reversion and tend to have narrower credible intervals as a result. This provides some
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explanation for why our forecasts tend to underperform for the PC countries. It is especially damaging for the Russia
forecasts at older ages, where the Model hB intervals are unable to cope sufficiently well with the continued trends
that we observe in the forecast period as a result of this reversion. This seems counter-intuitive when we consider
that the contemporary data chose to put more weight on following the slope, but instead we have reverted quickly
back to the current level. This figure also allows us to assess how successfully we revert back to the current level as
imposed by the identifiability constraint (see Section 2.2). Canada and Russia present conflicting results, whereby the
former has its median reversion values quite far away from the current level compared to the latter, where they are
much closer. This difference could be due to only constraining three linear combinations of the jump-off error terms
to equal zero, causing the level of achievement of the desired reversion to vary across countries.

3.3 | 2014 fertility forecasts

Following the 2004 forecasts, we now generate 2014 forecasts for ages 15-44, contemporary cohorts 1960-1999
and historical cohorts 1904-1953. Although some countries have data as recent as 2017 (e.g., Austria and Hungary),
others only have data up to 2013 (e.g., Germany and Ukraine). We choose to use the data available in 2014 for these
forecasts to ensure that we have 10 or 11 complete contemporary cohorts for each country. We do not use scoring
rules to compare the forecasts because there are at most three additional data points for any one country, too few to
allow the average to be reliably interpreted. Also, differences in these averages are likely to be negligible due to the
minimal uncertainty present when completing the first few cohorts. Furthermore, countries with data up to 2013 or
2014 do not have any observed data to apply a scoring rule to, so we would not be able to compare all countries.

With only qualitative comparison possible, we present the 2014 CFR forecasts for a range of countries in Figure
10. Across these plots we see that, as in Figure 7, the Model hB forecasts tend to be more pessimistic and carry
less uncertainty compared to the Model SZGM forecasts. However, we also note that the forecast distributions
consistently overlap at least partly across all 30 countries for which we obtained forecasts (see Figure 14 in the on-
line supporting information for the remaining CFR plots not shown in Figure 10). This is somewhat reassuring, as it
suggests that the two approaches are able to make roughly similar inferences about the future based on the identical
historical and contemporary data that has been fed into them for each country, albeit processed in different ways.

F IGURE 10 2014 cohort total fertility rate (CFR) posterior distributions for selected countries, with the dashed
line indicating the start of the forecast period: the proposed model (Model hB) 90% credible interval (CI)— ; Model
hB 50% CI— ; the model of Schmertmann et al. (2014a) (Model SZGM) 90% CI— ; Model SZGM 50% CI— ;
Human Fertility Database (2019)—•.
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The first two plots (from L-R) of Austria and England and Wales have the most stationary observed CFR values
before the forecast period begins. However whereas the Austria forecast remains without any particular direction,
the England and Wales forecast initially shows an increase to replacement level which is then followed by a decline
to sub-replacement level for the younger cohorts. The remaining three plots for Portugal, Russia and Taiwan are all
forecasting from observed CFR declines in the contemporary Lexis surfaces. Portugal is forecast to continue this
decline almost linearly by both models but for Russia the opposite is true, with the forecasts reversing the downward
trend; Model SZGM in fact forecasts an optimistic return to replacement level. The subtle difference between the
observed CFR values are likely to explain the divergent forecasts for these two countries, namely that Russia shows
evidence of the start of an upturn in the CFR just as the forecast period begins whereas Portugal does not. Taiwan is an
interesting case whereby like Portugal we see an initial continuation of the decline, but then the downturn stabilises
under both models; Model SZGM forecasts this to happen slightly earlier than Model hB.

Regarding stationarity, the analogue of Figure 8 for the 2014 forecasts presented in Figure 11 again shows a
preference for the freeze-slope assumption compared to freeze-rate. However whereas for the 2004 forecasts we
had no overlap between the error bars in Figures 8a and 8b, here we see substantial overlap for Finland, Iceland and
Taiwan. This suggests that ten years after the 2004 forecasts, there is some evidence of amove towards stability in the
time series of age-specific fertility rates. Figure 11c demonstrates again not only that all the countries are choosing
to follow stationary processes as before, but also that the post-communist countries are still tending to revert faster
once the forecast period begins through the comparatively smaller values of ρ2 + ρ3. However even for a non-post-
communist country such as Taiwan, which has a reasonably high level of ρ2 + ρ3, from the CFR forecast in the right
plot of Figure 10 we see clear evidence of the reversion kicking in as we move towards the younger cohorts. This is
advantageous as it means that our model will not forecast a trend to continue indefinitely, which would be unrealistic.

F IGURE 11 2014 posterior distribution summary of (a) ρ2, (b) ρ3 and (c) ρ2 + ρ3 by country, with the •’s at the
sample median and the error bars indicating the 90% credible interval. Post-communist countries are in red.

To summarise, even though it is not easy to draw substantive conclusions from the 2014 CFR forecasts due to
the lack of validation data available, there is a consistent overlap of the Model hB and SZGM credible intervals across
countries. Also, the presence of stationarity in the age-specific forecasts for every country, as in the 2004 forecasts
in Section 3.2.3, means that we do not need to be concerned about explosive behaviour in our age-specific or CFR
forecasts. Therefore with the little information we have, the 2014 forecasts appear to be plausible and have a well-
calibrated level of uncertainty.
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4 | DISCUSSION

The aim of this article is to propose a transparent and intuitive hierarchical Bayesian model (Model hB) for forecasting
cohort fertility in the spirit of the highly successful model of Schmertmann et al. (2014a), that can compete with
the current best cohort fertility forecasting models in terms of forecast accuracy and uncertainty. We incorporate
our assumptions, which are similar to those made by Schmertmann et al. (2014a), explicitly into the model structure
through a coherent autoregressive time series prior for the error terms (see Section 2.2); the resulting hierarchical form
of our model also allows the borrowing of strength across the contemporary cohort-age combinations. The precise
specification of the prior is determined by the data, which allows us to learn about the relative weights on staying
at the current level (freeze-rate approach) versus following the recent trend (freeze-slope approach) for each country,
and subsequently dictating the degree of stationarity of the age-specific processes. The presence of stationarity for
all countries in both sets of forecasts makes the reversion level very important - our decision for this level to be as
close to jump-off as possible was in the spirit of the recent literature (e.g., see Myrskylä et al. (2013a)). However, this
reversion does appear to suppress the desire of the data to follow the recent slope in some cases (see Section 3.2.3).

To be considered an important contribution to the literature, it is necessary that our proposed model performs
sufficiently well in its purpose, i.e., forecasting age-specific fertility rates and in particular the CFR. To determine this,
we carry out an extensive validation of Model hB by comparing its 2004 CFR forecasts for 29 countries against those
generated from the models of Schmertmann et al. (2014a), Myrskylä et al. (2013a) and de Beer (1985, 1989), three
of the top four models determined by Bohk-Ewald et al. (2018a) in terms of forecast accuracy; in addition to this
we compare against the naive freeze rates method, which any justifiable fertility forecasting method should be able
to easily outperform. We show that when quantifying the probabilistic accuracy of these forecasts through scoring
rules (see Section 3.2.1), there is strong evidence that Model hB is highly competitive in terms of forecast accuracy
and uncertainty, as well as unquestionably able to outperform the freeze rates method. The calculation of summary
statistics regarding point accuracy and coverage in Section 3.2.2 support these conclusions. For the 2014 forecasts a
quantitative comparison is not possible, however the forecasts look reasonable in terms of level and uncertainty (see
Section 3.3). So on thewhole, Model hB is able to competewell with the current bestmodels in the field. It is important
to note, however, that as the Model hB forecasts have only been assessed over a select set of countries at one time
point, further validation will be necessary in order to obtain firmer conclusions regarding forecast performance.

A key advantage of the competing models is their low computational cost, as it takes seconds to produce a fit
for one country. Model hB requires MCMC methodology and therefore large numbers of iterations are sometimes
necessary to obtain results of a suitable quality. This can be computationally expensive; however, thanks to the
state-of-the-art HamiltonianMonte Carlo methods and the RStan software package (Stan Development Team, 2018a),
posterior sampling can be conducted with reasonable efficiency. To quantify this, we found the average fitting time
per country for the 2004 and 2014 forecasts to be 15 and 21 minutes respectively, with no country taking longer
than one hour to fit; this is not an unreasonable length of time in practice, especially if it makes the underlying model
assumptions more realistic and provides adequate levels of uncertainty. Regarding the simple extrapolation method
of Myrskylä et al. (2013a), it may perform well in terms of forecast accuracy but does not have well-calibrated levels
of uncertainty (see Section 3.2.2); the model of de Beer (1985, 1989) and the freeze rates method do not provide any
uncertainty quantification and therefore can only have limited use as deterministic forecasting approaches. Hence,
we believe that the use of complex statistical methods in cohort fertility forecasting models such as Model hB and
the conjugate Bayesian model of Schmertmann et al. (2014a) is worth the effort, in response to the question posed
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by Bohk-Ewald et al. (2018a). This is especially important if the aim is to obtain long-term fertility forecasts, as long
time series of rates are necessary in order to have appropriate uncertainty.

The finding regarding the greater success in forecasting for non-post-communist countries deserves some discus-
sion. Clearly the contemporary Lexis surfaces of post-communist countries provide a stronger forecasting challenge
due to the sharp decline in the time series of age-specific fertility rates following the regime change. Model hB seems
to respond to this by decreasing the combined sum of the weights on the freeze-rate and freeze-slope approaches,
leading to an increased degree of stationarity and therefore a faster reversion in the forecast period (see Section 3.2.3).
This suggests that the sensitivity of Model hB to recent data could be a disadvantage when there has been a recent
structural shift in the country of interest. In an attempt to decrease this sensitivity, we experimented with allowing ρ2
and ρ3 to borrow strength across countries; however, the post-communist countries appeared only able to tolerate
very slight increases to the value of ρ2 + ρ3, which were insufficient to noticeably influence the forecasts. Further
investigation into the reasons behind this inconsistency in performance, as well as its reduction, will be required.

As mentioned earlier, further validation of Model hB needs to be carried out. This should involve expanding the
set of countries considered so that we can assess performance in a wider range of circumstances, for example high
fertility settings. Additionally, multiple forecasts should be generated at various time points to allow quantitative as-
sessment of the performance of Model hB across time and in the long term. We also aim to make further attempts to
improve the forecast performance ofModel hB for countries exhibiting a recent structural break. To this end, potential
avenues to explore are restricting the contemporary data used for such countries, incorporating expert opinion, and
imposing a constraint on the shape of the cohort schedules; this latter suggestion is the one key assumption of the
model of Schmertmann et al. (2014a) that we did not build into our proposed model. The superior performance of
the model of Myrskylä et al. (2013a) in terms of forecast point accuracy (see Section 3.2.2) provides evidence that
such constraints are not vital in order to achieve reasonable success; however, it could still be useful to investigate,
especially the implications on long-term forecasts. Given the results from this paper, when performing fertility fore-
casting we recommend fitting a selection of models that have been shown to be competitive in the literature, and
fully exploring the causes of any divergences occurring among the forecasts.

In conclusion, our hierarchical Bayesian approach to forecasting cohort fertility is successful through its transpar-
ent specification and competitive forecast performance when compared against three of the current best models in
the field according to Bohk-Ewald et al. (2018a), in particular for countries without a recent structural shift. In addi-
tion, it demonstrates how advanced computational methods can be used to fit hierarchical Bayesian models with an
atypical setup. This not only cements the position of hierarchical Bayesian methods at the forefront of population
forecasting methods, but also makes a valuable contribution to the fertility modelling and forecasting literature.
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A | QUANTIFYING UNCERTAINTY FOR A CONJUGATE MODEL

The posterior distribution for the conjugate model of Schmertmann et al. (2014a) is (θ |ycountry) ∼ N (µpost, Σpost) ,
using the same notation as the authors. To incorporate the additional variation described in Section 2.3, we add amodi-
fied version ofΨ, the covariancematrix for the observed rates, to Σpost. Wedenote this byΨ∗ := diagj=1,...,CA

[
[µpost ]j /W ∗j

]
.

We modify Ψ by first extending it to all CA cohort-age combinations, with index j corresponding to the j th combina-
tion when ordered by age within cohort. We then evaluate the numerator of each entry at its corresponding value of
µpost rather than y , but the denominatorW ∗

j
remains as the j th exposure; in the same spirit as Section 2.3,W ∗

j
is taken

to be its most recently observed value at age a if unobserved. We then compute the 90% and 50% credible intervals
for the empirical birth rates as µpost ± z

√
diag(Σpost +Ψ∗) , where z ≈ 1.64 and 0.67 respectively. This will only have a

noticeable effect for small countries with comparatively low exposures for some cohort-age combinations.

B | DISTRIBUTION OF THE AVERAGE CONTINUOUS RANKED
PROBABILITY SCORE ACROSS COUNTRIES FOR EACH MODEL

F IGURE 12 Histograms of the average continuous ranked probability score (CRPS) across countries for the
2004 cohort total fertility rate (CFR) forecasts for the proposed model (hB), the models of Schmertmann et al.
(2014a) (SZGM), Myrskylä et al. (2013a) (MGC) and de Beer (1985, 1989) (dB), and the naive freeze rates approach.

http://mc-stan.org/
http://mc-stan.org/

	Introduction
	Method
	Introduction
	Model specification
	Model fitting

	Results
	Data and computation
	2004 fertility forecasts
	Scoring rules
	Summary statistics
	Stationarity and reversion

	2014 fertility forecasts

	Discussion
	Quantifying uncertainty for a conjugate model
	Distribution of the average continuous ranked probability score across countries for each model

