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ABSTRACT In this paper, we propose a deep learning assisted soft-demodulator for multi-set space-
time shift keying (MS-STSK) millimeter wave (mmWave) systems, where we train a neural network (NN)
to provide the soft values of the MS-STSK symbol without relying on explicit channel state information
(CSI). Thus, in contrast to the conventional MS-STSK soft-demodulator which relies on the knowledge of
CSI at the receiver, the learning-assisted design circumvents the channel estimation while also improving the
data rate by dispensing with pilot overhead. Furthermore, our proposed learning-aided soft-demodulation
substantially reduces the number of cost-function evaluations at the output of the MS-STSK demodulator.
We demonstrate by simulations that despite avoiding CSI-estimation and the pilot overhead, our learning-
assisted design performs closely to the channel-estimation aided design assuming perfect CSI for BER
< 10~*, whilst imposing a low complexity. Furthermore, we show by simulations that upon using
realistic imperfect CSI at the receiver employing conventional soft-demodulation, the learning-aided soft-
demodulator outperforms the conventional scheme. Additionally, we present quantitative discussions on the
receiver complexity in terms of the number of computations required to produce the soft values.

INDEX TERMS Index Modulation, Millimeter Wave, MIMO, Beamforming, Machine Learning, Detec-
tion.

NOMENCLATURE EXIT EXtrinsic Information Transfer
AA Antenna Array FDD Freque?ncy Division .Duplex
AC Antenna Combination LLR Log-Likelihood Ratio
AF Activating Function LSSTC Layered Steered Space-Time Coding
ANN Artificial Neural Network HBF HBF
AOA Angle-of-Arrival MF Multi-Functional
AoD Angle-of-Departure MIMO Multiple-Input Multiple-Output
BER Bit Error Rate MMSE M%ni.mum Mean Squared Error
BE Beamforming mmWave Mllllpleter Wave
BLAST Bell-Labs Layered Space-Time 11:]/[; 1111/[:11;;18 ;te twork
BS Base Station QAM Quadrature Amplitude Modulation
CSI Channel State Information RF Radio Frequency
DCMC Discrete-input Continuous-output SM Spatial Modulation

Memoryless Channel STSK Space-Time Shift Keying

DM Dispersion Matrix SNR Signal-to-Noise Ratio
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SVD Singular Value Decomposition
TPC Transmit Precoder

ULA Uniform Linear Array
V-BLAST Vertical-Bell Laboratories Layered
Space-Time
I. INTRODUCTION

HE rapid proliferation of cellular devices has led to

the requirement of providing massive wireless connec-
tivity for a huge number of users, each having data rate
demands [1]. However, given the dearth of bandwidth for
accommodating a large number of users at sub-6GHz fre-
quencies, wireless communication researchers have turned
their attention to millimeter wave frequencies spanning from
28 GHz to 300 GHz [1]. Whilst utilizing mmWave frequen-
cies looks promising, they impose a challenge in terms of
coverage, since mmWave frequencies are highly susceptible
to blockages. Furthermore, mmWave frequencies suffer from
high propagation losses because of oxygen absorption, rain-
induced fading and foliage attenuation. Therefore, to mitigate
the propagation loss, high gain directional transmission, pop-
ularly referred to as beamforming, has to be harnessed [2].
Typically, beamforming gain is achieved by the employment
of large antenna arrays (AA), where the antenna elements are
separated by half a wavelength.

To further enhance the data rate, multiple-input multiple-
output (MIMO) transmission in conjunction with beamform-
ing may be introduced. There is a vast body of literature fo-
cusing on MIMO-aided transmission, as exemplified by Bell-
Labs Layered Space-Time (BLAST) transmission, where a
high spatial multiplexing gains may be achieved [3]. Another
variant of MIMO-aided transmission which is the quintessen-
tial prerequisite for achieving diversity gains is space-time
block coding (STBC) [4], [5]. With BLAST, STBC and
beamforming as the building blocks, a novel MIMO trans-
mission scheme has been conceived by the authors of [6],
which is referred to as multi-functional MIMO (MF MIMO).
The rationale of MF MIMO is to exploit the multiple fea-
tures of MIMO transmission, such as multiplexing, diversity
as well as beamforming for improving the throughput of
the communication link. More particularly, El-Hajjar et al.
conceived layered steered space-time coding (LSSTC) [7]
by amalgamation of V-BLAST, STBC and BF in order to
achieve the aforementioned gains. Recently, Satyanarayana
et al. [2] proposed a MF MIMO for mmWave systems that
exhibits dual functionality by providing both diversity and
beamforming gains relying on the concept of sub-arrays.

A new arrival amongst the other MF MIMO techniques
is space-time shift keying (STSK) [8], [9], which strikes
a trade-off between multiplexing and diversity gains. More
explicitly, the STSK design relies on the generalization of a
technique referred to as spatial modulation (SM) [10], where
at any given time a single radio-frequency (RF) chain is
activated. If the information in SM transmission is implicitly
conveyed by the index of the RF chain and the complex-
valued signal, in STSK the information is conveyed by the
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classic complex-valued modulated signal as well as by the
index of the dispersion matrix (DM), which spans several
RF chains. Hemadeh er al. [9] extends the STSK philosophy
by amalgamating SM and STSK to conceive multi-set (MS)
STSK transmission. This design, as a descendant of the SM
and STSK schemes, conveys information implicitly by the
indices of the complex-valued signal, the dispersion matrix
and the RF chain. Thus, this design is capable of further
improving the data rate.

However, an impediment of index modulation systems
such MS-STSK is their high search complexity at the receiver
[11], since they have to perform an exhaustive search among
all the possible combinations of the MS-STSK symbol.
Furthermore, like in any typical communication system, its
receiver requires accurate channel state information (CSI)
in order to be able to decode the signal at a high integrity
[12]. In frequency division duplex (FDD) systems, pilots
are appended to the data frame for estimating the CSI at
the receiver. Consequently, this design results in a reduced
effective data rate and additionally imposes extra complexity
by the channel estimation prior to the detection process.

To circumvent the problem of both the pilot overhead and
channel estimation, a deep learning approach may be con-
ceived, where the MS-STSK information bits can be decoded
without explicit knowledge of the CSI. This philosophy
makes the design spectral-efficient while also significantly
reducing the complexity involved both in channel estimation
and detection. This design can be interpreted as blind detec-
tion, as it turns a ‘blind eye’ to the CSI while providing soft
information about the MS-STSK codeword.

At the time of writing, deep learning aided wireless solu-
tions have gained significant attention as a benefit of their
ability to learn patterns and detect trends. Samuel et al.
[13], [14] advocated neural network (NN) assisted MIMO
detection for a time-invariant channel. Dorner et al. [15]
conceived a point-to-point communication system relying
on NNs using asynchronous off-the-shelf software-defined
radios. Furthermore, Jin [16] et al. proposed sub-optimal
deep learning based detection for MIMO relay channels.
In the context of channel decoding, Nachmani et al. [17]
demonstrated that NN-aided belief propagation improves the
performance at a reduced complexity, while Liang et al.
[18] analyzed the performance of NN based iterative belief
propagation. The theoretical model proposed by Yan [19] et
al. for symbol detection using autoencoders may be expected
to find further beneficial applications.

Against this backdrop, our contributions are as follows.

1) We propose a deep learning assisted soft-demodulator
for multi-set space-time shift keying (MS-STSK) as-
sisted millimeter wave (mmWave) systems, where we
train a NN for providing the soft values of the MS-
STSK symbol without relying on explicit CSI.

2) Our simulations demonstrate that despite dispensing
with the CSI, our learning-assisted design performs
closely to the conventional design using perfect CSI
for BER < 10~*. This is achieved at a low complexity.
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Furthermore, our simulations demonstrated that upon
using realistic imperfect CSI at the receiver for con-
ventional soft-demodulation, the learning-aided soft-
demodulator can outperform the latter.

3) Additionally, we quantify the receiver complexity in
terms of the number of computations required to pro-
duce the soft values.

The rest of the paper is organized as follows. In Sec-
tion II, we detail the system model of MS-STSK amalga-
mated beamforming in mmWave communication, while in
Section IIT we present our proposed learning-assisted detec-
tor followed by quantifying the complexity of the design.
Finally, Section IV and Section V discuss our results and
conclusions, respectively.

Notations: We use upper case boldface, A, for ma-
trices and lower case boldface, a, for vectors. We use
)T, (O, |-k, Tr(.) E(.) for the transpose, Hermitian
transpose, Frobenius norm, trace and expectation operator,
respectively. We adopt A(m,n) to denote the m™ row and
n™ column of the A, I is the identity matrix of size N X N,
and A > O indicate that A is a positive definite matrix.
Finally, we use CA/, U, and i.i.d. to represent complex-valued
normal distribution, uniform distribution, and independent
and identical distribution, respectively.

—— MS-STSK
Transmitter

Receiver

FIGURE 1: Block diagram of a typical MS-STSK point-to-
point single-user link.
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FIGURE 2: Block diagram of the MS-STSK modulator.
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Il. SYSTEM MODEL

Let us consider the single-user point-to-point link of Fig. 1,
where the transmitter and receiver are equipped with Ny
and N, antenna arrays (AAs) of K antenna elements (AEs),
respectively. Furthermore, the transmitter has M RF chains,
where at any given time, only M AAs out of the total of
N, transmit antennas are activated, as illustrated in Fig. 1.
The transmitter of Fig. 1 maps the input stream of bits to
an MS-STSK codeword, where the information is implicitly
conveyed by the indices of the activated transmit antennas,
of the dispersion matrix and of the complex-valued QAM
symbol. A typical MS-STSK encoder is shown in Fig. 2,
where the input stream of [V, bits is mapped to a MS-STSK
codeword comprising the index of one of the N, = (N tl/ M )
transmit antenna combinations (ACs), the index of the Mg
dispersion matrices as well as the index of the M, complex-
valued QAM symbols. The resultant codeword X transmitted
by the MS-STSK encoder is expressed as:

X = Aq,czla (1)

where A, . is the ¢'" dispersion matrix selected for the c”
AC and z; is the [** QAM symbol. Thus, by employing MS-
STSK transmission, a total of log, (N.M¢gM.) bits are used
for conveying the information.

To elaborate further, let us consider a ‘toy’ example, where
we assume N, = 2, Mgy = 4 and M, = 4. In other words,
the transmitter is equipped with 2 ACs and transmitting 4-
QAM symbols with the aid of 4 dispersion matrices. Thus,
given the above MS-STSK parameters, a total of log,(2 x
4 x 4) = 5 bits can be transmitted. As a design example, let
us assume having the input bit sequence of ‘01101°. Then,
the mapping of the bit sequence to MS-STSK is carried out
as follows. By considering the least significant bit first, the
bit ‘1’ is mapped to the transmit antenna index, while the
ensuing bits ‘10’ are mapped to one of the four dispersion
matrices. And finally, the bits ‘01’ are mapped to a 4-QAM
symbol.

Thereafter, the MS-STSK codeword of (1) is transmitted
over mmWave channel by employing beamforming. Then,
the block-based received signal Y at the receiver after analog
RF combining is given by

Y = WgpHFReX + V, 2

where V is the Gaussian noise, and Frg and Wgg are the
analog RF beamforming and combining matrices of sizes

, K N; x Ny and N, x KN,, respectively. They are expressed

as
FR]:Z[O...FRFq...O]ECKNtXNta (3)
Frr, = diag(FReF3p... FaL), Q)

where Fip is the BF vector of the i AA of size K x 1.
Similarly,

. T
Wgr = dlag (VVRF1 R WRFi, e WRFNT) € CNTXKNT,
&)
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where Wi is the BF vector of the i AA of size K x 1.
Furthermore, H is the channel matrix of size KN, x KN,
expressed as

H=[HH,.  Hy] (6)

where H; is the sub-channel matrix of size N, K x MK,
which is expressed as

H,=|H .. :
(Hy © © HY

while H'" is the mmWave channel matrix of size K x K
spanning between the j** AA at the receiver and the m‘"
AA at the transmitter. In this paper, we consider a statistical
channel model having N, clusters with Ny, each, which is
given by

Ném,j} Nrf\;nﬂj}

Y. onlan(@n)al (617).

ne=1 npy=1
(7

1
! NeNray

For a uniform linear AAs, the response vectors a, and a;
are given by

ar(¢r> _ [1 ejQT”dcos((;Sr) . ej2T"(K—1)dcos(¢T)]T’ (8)

ag(dy) = [1 eI B dcos(pr) ejo’r(K—l)d<3<>S(¢5f,)]T7 )

where ¢, and ¢, are the angles of arrival and departure,
respectively.

Remark: Note that in our design learning-aided finger-
print based beam-alignment may be invoked for AoA-AoD
information. Once the beam-alignment is carried out, we
assume that the channel impulse response («) evolves in
time according to Jakes’ model, where the channel’s corre-
lation coefficient in time is defined by the zero-order Bessel-
function of the first kind as

¢ = Jo(2mfar), (10)

where f; is the maximum Doppler frequency and 7 is the
sample time.

At the receiver, Eq. (2) is vectorized during the detection
stage, which is given by

y=HXTK,, +V, a1

where each constituent vectorized matrix is expressed as

y = vec(Y) € CN-Tx1, (12)

H =1 Hy € CVT*NT Hyy = WepHFgp;  (13)

V = vec(V) e CNTx1L, (14)

X = [vec(Ayy)...vec(A, L) ... vec(A N, )]; (15)
c CNtTXNcMQ; (16)

K=1[0...050...0]". (17)
—— | N——"

q—1 Mqg—q

Furthermore, in the conventional MS-STSK aided
transceiver design, soft-decision detection is carried out by
outputting the log-likelihood ratio (LLR) of the MS-STSK
demodulator. The LLR of a bit is defined as the ratio of the
probabilities associated with the logical bit ‘0’ and logical bit
‘1’, which is formulated as:

p(b=1)

L(b) = log P6=0)’ (18)
where p(b = 1) and p(b = 0) are the probabilities associated
with the logical bit ‘1’ and logical bit ‘0’, respectively. The
sign of L(b) indicates the logical bit ‘1” or ‘0’, while the
magnitude indicates the confidence in that specific bit.

Then, the probability of receiving the signal y given that
the symbol K ; is transmitted from the ¢'" AC is given by

ly - HXZK,|?
o2 )

1
p(y1Kq1e) = (rot) N T exp (
19)

On the other hand, the received signal y conveys the bit
sequence B = [by,...,bn,], where N, = log(N.MgM.).
Then the LLR of the bit b; is given by

p(ylbi =1)
L(b;) = log ™2t~ (20)
(bi) = los b =0)
where
1
p(ylb; = 1) =———x7F X 2D
(mo2)"
<|y—ﬂXLKN2>
Z Xp | — 2 l
g
k,q,ceb;=1
(22)
and
1
p(ylbi =0) = (23)

(m02) KN T X

ly — HXZK,?
Z exp | — 5 .
0 o

k,q,c€b;=
(24)

It is important to emphasize that (19) relies on the knowl-
edge of CSI at the receiver. This requires pilots for chan-
nel estimation, hence reducing the effective data rate [20].
The effective Discrete-input Continuous-output Memoryless
Channel (DCMC) capacity accounting for the pilot density
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fp» which is the ratio of the number of pilots to the number
of data symbols, is given by [21], [22]

CMS—STSK _ (1 _ f )CMS—STSK
p

eDCMC = DCMC >
while

B 1
Cheme X =logy (N M Mg) — (NTCMQ)X (25)

Z E [logg Z exp(1ms-sTSK
q,l.c q’,l ¢’

],

~ 112 -
B (T~ ToKya) + V| = V)2
2

where

YMS-STSK = —
g

(26)
For N4 number of symbols and /N, number of pilots in a
frame, f, is expressed as
__ N
N, d+ Np )
Furthermore, when the minimum mean squared error
(MMSE) channel estimate is considered, the channel esti-
mate error variance (o3 ) for a total transmission signal power
p¢ 1s given by [23]

Io 27)

9 1
Uh -
1+ 100p: fp
Therefore, in the next section, we propose the deep learn-
ing aided MS-STSK demodulator, which provides the soft

LLR values by circumventing the requirement of having any
CSI knowledge.

(28)

lll. THE PROPOSED LEARNING-AIDED
SOFT-DECODING

In this section, we propose our learning assisted MS-STSK
soft-demodulator, which calculates the soft LLR values by
applying a neural network, thereby circumventing the re-
quirement of having CSI knowledge. We commence this
section by presenting some preliminaries on deep learning,
followed by our proposed design.

A. PRELIMINARIES ON NEURAL NETWORKS

Inspired by the biological nervous system, the deep learn-
ing relies on layers of artificial neurons, which process
the information in a similar fashion to that of the human
brain. Furthermore, akin to the structure of the human neural
networks, deep learning is composed of an interconnected
network of neurons, which led to the terminology of artificial
neural networks (ANNSs). Given its capability of learning
patterns and detecting trends, ANNs became one of the
important constituents of machine learning. A typical ANN
is illustrated in Fig. 3, where each layer of neurons is inter-
connected with the layers succeeding and preceding it. Fig. 3
presents a 4-layered-network, where the first and last layers
are the input and output layers, respectively, while the layers
sandwiched between them are referred to as hidden layers.
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Note that except for the input layer of Fig. 3, every other
layer has an activation function (AF) f(.), weight matrix
‘W and bias vector b. The output values of the input layers

Hidden Layers

f(xi, W1, by) f(u;, Wabs)

Input Layer
Output Layer

FIGURE 3: The structure of a typical feed-forward ANN.

are then forwarded to the next layer by invoking the AF.
The resultant output value then serves again as the input of
the next layer, where the AF of that layer is applied to its
input. The resultant value can be interpreted as the stimulus
it created for activating the corresponding neuron of that
layer. This process is then carried on until the output layer
is reached for each neuron. It is instructive to note that the
best choice of the AF is problem-specific and each layer
of the network may have different AF. The only constraint
concerning on the choice of the AF is its differentiability.
Some popularly used AFs are sigmoid, piecewise-linear and
threshold functions [24].

Machine learning is broadly classified as: unsupervised
and supervised learning. In unsupervised learning, the net-
work aims for learning the probability distribution of the
dataset by observing samples of it, while in supervised learn-
ing, the network aims for learning the mapping of inputs to
labels and then predicts the label from the new input. In this
paper, we invoke supervised learning for predicting the soft
LLRs from the received signal vector.

To elaborate a little further, supervised learning is a
twofold process that includes the training phase and testing
phase. During the training phase, the known input and output
data samples, which are labeled, are used for inferring the
mapping function between the input and output. This is
carried out by learning the network parameters such as the
weight matrix W and the bias vector b for each layer. The
network parameters are designed for minimizing an error,
or loss, between the predicted output and the actual output.
Having learned the network parameters, the testing phase
commences, where the learned weights obtained during the
training phase are invoked for predicting the output labels
and for quantifying the performance of the ANN using data
outside the training set.

B. LEARNING-AIDED SOFT-DECODING
Having presented the rudimentary philosophy of ANN, let us
now discuss the proposed learning-aided soft-decoding. Note
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that the rationale of using learning learning over conven-
tional soft-decoding is that by employing the former pilot-
assisted channel estimation can be eliminated. In contrast to
(19), where an exhaustive search is carried out over all the
legitimate combinations of the bit being either logical ‘0’
or ‘1°, the learning-aided design provides the soft-LLRs by
employing the ANN weights designed during the training
phase. In this design, the input training samples of the ANN
are the received signal vectors y, while the output labels are
the LLRs, as shown in Fig.4. Then, the ANN is trained to
infer the functional mapping between the input and output
samples. However, since the received signal vectors are af-
fected by the noise, the ANN may fail to accurately infer the
function. Therefore, the choice of the SNR during the training
is crucial, which can only be obtained empirically by varying
the SNR!.

For a given SNR, the ANN predicts the LLR value by
employing the AF f(v) in each layer of the network as
shown in Fig. 5, where the input of each AF is the output of
the preceding layer. In this paper, we opted for the sigmoid
function as the AF, as a benefit of its smoothness which is
formulated as

0 =

For example, in Fig. 5, the input of the first neuron in the
second layer is v; = w11y1 + w21Y2 + ws1ys + by. Then
the AF of (29) is applied to v; to obtain its mapping, which
serves as one of the inputs to the next layer. In this way, the
output of the AF of each layer is then fed to its subsequent
layer as shown in Fig. 4. This process is carried on until the
output layer is reached, where the final predicted values are
obtained. Note that initially the weights of each layer are
assigned to random values obeying the distribution A(0, 1).
These weights are then updated for ensuring that they min-
imize the error between the predicted LLR and the actual
LLR. Mathematically, it is formulated by a loss function (LF)
given by

1,
LF—S;HLiLZ—

(29)

+ p1l[W1 3 + p2l[Wall3 + ps|[ W53,

(30)

where S is the cardinality of the training set, f;i and L; are the
predicted and the known LLR value, respectively, of the i*"
training sample, while p1, p2, p3 are the regularization factors
used for avoiding over-fitting [25].

To minimize the loss function of (30), the gradient of the
loss with respect to the weights is computed and used for
updating the weight values in a gradient descent procedure
known as back-propagation. While only a local —rather
than global— minimum is ensured, the procedure has been
shown to be practical. A more detailed discourse on back-

IThere is a temptation to train the network at high SNRs, where the input
samples are noise-free. However, using noiseless training data may result in
performance degradation under realistic conditions.
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propagation is presented by Chauvin et al. in [26]. These
weights, which are learned during the training phase are then
stored in memory and are invoked during the testing phase.
In other words, the ANN predicts the LLR value from the
received signal vector y by employing the pre-determined
weights. Thus, this design does not depend on the channel
knowledge to obtain the LLR values. It is instructive to note
that during the training of ANN weights, we assume the
AoAs and AoDs of the channel matrix of (7) to be time-
invarying, while the small-scale fading coefficient is assumed
to evolve in time according to Jakes’ model.

The soft-LLR values predicted from the MS-STSK’s ANN
demodulator are then passed to the turbo channel decoder.
In the next section, we examine the complexity of both the
traditional MS-STSK receiver and the learning-aided MS-
STSK receiver.

—>—1LR,

‘FLLRN}J

Input Layer

FIGURE 5: Illustration of the input to the AF of each neuron.

C. RECEIVER COMPLEXITY

In this section, we commence by discussing the overhead
associated with the MS-STSK soft-demodulator, followed
by quantifying the receiver’s complexity in terms of the
number of computations for both the conventional and for
the learning-aided soft-demodulator.

Fig. 6 shows the block diagram of both of the conven-
tional MS-STSK and of the ANN assisted MS-STSK soft-
demodulators. To expound further, Fig. 6(a) employs the
conventional MS-STSK soft-demodulator, where first the
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Bits Sequence
—|FEC Encoder

MS-STSK
Transmitter

y
Pilots
7
jA RF Combiner
@
Y v Downconversion

FEC

Decoder

-

Output bits

MS-STSK Channel
= Soft-Demodulator Estl(n:la)uon
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(a) Conventional MS-STSK soft-demodulator.

Y
Bits Sequence MS—STSK v RF Combiner
— | FEC Encoder h Ny ) i
Transmitter : v g
Y/ Downconversion
<—— FEC Decoder
Output Bits
Encoder Turbo Decoder
Nur
Encl Decl
P
[~ ] /
S
Enc2 Dec2

(b) Learning MS-STSK soft-demodulator.
FIGURE 6: Block diagram of MS-STSK soft-demodulators: Conventional design and proposed ANN-assisted design.

signal is processed by analog RF combining and down-
converted to the baseband. Then, the receiver estimates the
channel matrix H with the aid of pilots. After the estimation
of the channel the receiver employs the soft-demodulator of
(20) to obtain the LLR values, which are then passed to the
channel decoder. It is important to emphasize that in this
design, the receiver has to estimate the channel using a pilot
overhead of f,,, which has to be high enough for sampling
the channel’s complex-valued envelop at multiples of the
Nyquist frequency for mitigating the effects of channel noise.

By contrast, Fig. 6(b) shows our proposed learning-
assisted soft-demodulator. Like in the conventional design,
the receiver first employs analog RF combining followed
by the down-conversion of the received signal. However, in
contrast to the conventional design, our proposed learning-
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aided soft-demodulator does not require the knowledge of the
CSI. The down-converted signal vector is fed to the ANN,
which then employs the learned weights to obtain the LLRs
without explicit CSI. In other words, our design by passes
the channel estimation stage, which is indispensable in the
conventional design. The LLRs gleamed from the ANN are
then passed to the turbo decoder, where the decoded bits are
retrieved.

Having discussed the pilot overhead, we now focus our
attention on the complexity in terms of the number of com-
putations. To quantify the complexity, let us assume that the
input and output vectors of the ANN shown in Fig. 4 are
of sizes n; and n,, respectively. Let us also assume that the
number of neurons in each hidden layer is n;. The AF (29)
is computed for each neuron of each layer by employing
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the corresponding layer’s weights and biases, as discussed in
Sec. III-B. Then the total number of computations required
for the ANN of Fig. 4 is on the order of O(n;n;,) +O(n}) +
O(npn,).

On the other hand, the number of computations required
for the conventional soft-demodulator is 2> (O(N.M3)) +
2N (O(NtNTNCMQTQ)). Table 1 shows the number of
computations required for the simulation parameters summa-
rized in Table 2.

TABLE 1: Quantifying the complexity in terms of the number
of complex-valued multiplications.

Design | Computations
Learning assisted Blind Detection 330
ML-Aided Detection for 12288

IV. SIMULATIONS

In this section, we present our simulation results character-
izing the performance of our proposed learning aided soft-
demodulator and of the conventional soft-demodulator. We
performed Monte Carlo simulations for analyzing the perfor-
mance of both designs. Furthermore, in our simulations, we
employed a half-rate turbo encoder using the LTE generator
polynomials as that of the LTE in Fig. 6. The simulation
parameters are summarized in Table 2.

TABLE 2: Simulation Parameters.

Parameters | Values
Number of AEs in each AA at Tx (K) 64
Number of AEs in each AA at Rx (L) 16
Number of AAs at Tx (IN¢) 4
Number of AAs at Rx (N;.) 2
Size of QAM symbol (M) 4
Number of dispersion matrices Mg 4
Size of consecutive AA selected (M) 2
Time slots (T') 2
Number of clusters (N.) 1&2
Number of rays (Nray) 1
AoA (¢r) variable
0% variable

Fig. 7 shows the histogram of the LLRs at the output of
the ANN for different SNR values. In our simulation, we
have limited the maximum and minimum values of the LLR
to 100 for the conventional MS-STSK soft-demodulator.
Therefore, we have trained the ANN using discrete output
samples, i.e +100 or —100, according to the bits transmit-
ted. Furthermore, the ANN adopted in our simulations is
of continuous regression, since the values from the soft-
demodulator are continuous-valued. Therefore, the maxi-
mum and minimum values of the ANN’s LLRs hover around
4100. It can be seen from Fig. 7 that for the SNR value of
0 dB, the densities of the ANN’s LLRs for bit ‘1’ and bit
‘0’ overlap with a larger area. The physical significance of
this is that the LLRs observed for bit ‘1’ fall with a higher
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probability on the wrong side of the bit, i.e. bit ‘0’, hence
forwarding less reliable information to the turbo channel
decoder. However, as the SNR is increased from 0-to-2-to-4
dB, observe in Fig. 7(a)-to-Fig. 7(c), that the overlapping area
between the two histograms is gradually reduced. In other
words, the ANN provides more reliable LLRs.

Fig. 8 characterizes the bit error rate of both the proposed
learning-aided soft-demodulator and of the conventional MS-
STSK soft-demodulator relying on the idealized simplifying
assumption of having perfect CSI knowledge. It is evident
from Fig. 8 that despite the lack of CSI knowledge, the
learning-aided soft-demodulator performs closely to the con-
ventional soft-demodulation. More particularly, at BER <
104, the SNR gap between the two is 1.5 dB. Furthermore,
when the realistic imperfect CSI is considered, the conven-
tional soft-demodulation exhibits inferior performance. This
becomes evident in Fig. 8, where the channel error variance
is increased from as low as 0.16 to as high as 0.9. In other
words, the conventional design is incapable of achieving a
low BER for low pilot overheads. We note that the normal-
ized pilot overhead required for training the learning-aided
design and used in Fig. 8 is around 0.002. For the same pilot
overhead, the conventional design produces an error floor. It
is important to note that our learning-aided soft-demodulator
relies on an extremely low pilot overhead as well as much
lower search complexity than the conventional MS-STSK
demodulator, as seen Table 1 and discussed in Sec. III-C.

Our learning-aided soft demodulator requires a low pilot
overhead for training the NN. We have found empirically
that the pilot overhead required for normalized Doppler
frequency of 1073 is 0.002, while it is around 5% for
conventional design, when MMSE based channel estimation
is employed. We also note that by using (28) the channel
estimation variance is around 0.16 for a pilot overhead of 5%
[23]. Given these parameters, we observed in Fig. 8 that our
proposed learning-aided soft-demodulation outperforms the
conventional detection relying on practical MMSE channel
estimation. However, in our design, retraining of the weights
may be required depending on the environment.

Fig. 9 shows the Discrete-input Continuous-output Mem-
oryless Channel (DCMC) capacity of both the proposed
design, and of the conventional design. Whilst our proposed
learning-assisted design exhibits a 1.5 dB SNR loss at a
BER of 10~* as shown in Fig. 8, observe in Fig. 9 that it
provides a pilot-overhead-dependent DCMC capacity reduc-
tion compared to the conventional proposed design. More
explicitly, this is because of the pilot overhead required by
the conventional design for channel estimation. For example,
the pilot overhead of the conventional design may span from
3% to 10% of the data rate, depending on the Doppler spread.
By contrast, the learning-assisted soft-demodulator does not
rely on channel estimation, hence almost totally eliminating
the pilot overhead, while providing a higher data rate. It is
evident from Fig. 9 that the learning assisted design provides
an SNR gain of 3 dB over the conventional design having a
10% pilot overhead at a throughput rate of 4 bps/Hz, while
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FIGURE 7: Histogram depicting the densities of the LLRs at the output of the ANN assisted MS-STSK demodulator for (a)

SNR= 0 dB (b) SNR=2 dB (c) SNR= 4 dB.

it is around 1.5 and 0.8 dB, when having 5.7% and 3% pilot
overhead, respectively.

Fig. 10 shows the EXtrinsic Information Transfer (EXIT)
chart of our proposed design and of the conventional design.
More particularly, Fig. 10 shows the EXIT chart of the
conventional design at the SNR of —28 dB, where extrinsic
soft-information is exchanged between the upper and lower
recursive systematic convolutional turbo decoders, as shown
in Fig. 6 , while the SNR is —26 dB for our learning-
assisted design. More explicitly, the stair-case shaped curve
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of Fig. 10 portrays the extrinsic information exchange be-
tween Ioppi, /lewt, and Igppi,/Ieqt,, When the input LLRs
are provided by: a) conventional MS-STSK soft-demodulator
and b) the learning-assisted soft-demodulator; where Iy, »
I.zt, denote the input and output mutual information of the
Decoder 12, while Lapri,» Teat, denote the input and output
mutual information of the Decoder 2, as shown in Fig. 6.
We observe from Fig. 10 that for the conventional design

2The decoder 1 and decoder 2 correspond to the constituent decoders in
the turbo decoder, as shown in Fig. 6(b).
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FIGURE 10: Exit chart (a) of the conventional design; (b) of the learning-assisted design.

relying on perfect CSI, the tunnel begins to open at SNR of
-28 dB allowing the stair-case-shaped decoding trajectory to

reach the (1, 1) point of perfect convergence to a vanishingly
low BER. By contrast, the machine learning aided design
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ryless Channel (DCMC) capacity of the proposed design,
and of the conventional design at 3%,5% and 10% npilot
overheads. The simulation parameters are listed in Table 2.

achieves this at SNR of -26 dB with the aid of as few as two
iterations.

V. CONCLUSIONS

We have proposed a deep learning assisted soft-demodulator
for MS-STSK mmWave systems, where we trained a NN to
provide the soft values of the MS-STSK symbol without rely-
ing on explicit CSI knowledge. We demonstrated that in con-
trast to the conventional MS-STSK soft-demodulator, which
requires the knowledge of CSI at the receiver, the learning-
assisted design circumvents channel estimation, while also
improving the data rate, since the latter does not impose a pi-
lot overhead. Furthermore, our proposed learning-aided soft-
demodulator avoids the exhaustive search complexity of eval-
uating the soft values at the output of the MS-STSK demod-
ulator. Our simulations demonstrated that despite dispensing
with CSI knowledge, our learning-assisted design performs
similarly to the conventional design relying on perfect CSI
knowledge for BER < 104, while upon using realistic CSI
at the receiver for the conventional soft-demodulation, the
learning-aided soft-demodulator outperforms the latter.
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