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Abstract

This paper studies the asymptotic properties of empirical nonparametric regres-
sions that partially misspecify the relationships between nonstationary vari-
ables. In particular, we analyze nonparametric kernel regressions in which a
potential nonlinear cointegrating regression is misspecified through the use of
a proxy regressor in place of the true regressor. Such models occur in linear
and nonlinear regressions where the regressor suffers from measurement error
or where the true regressor is a latent or filtered variable as in mixed-data-
sampling. The treatment allows for endogenous regressors as the latent variable
and proxy variables that cointegrate asymptotically with the true latent vari-
able, including correctly specified as well as misspecified systems, and is there-
fore intermediate between nonlinear nonparametric cointegrating regression and
completely spurious nonparametric nonstationary regressions. The results re-
late to recent work on dynamic misspecification in nonparametric nonstationary
systems and the limit theory accommodates regressor variables with autoregres-
sive roots that are local to unity and whose errors are driven by long memory
and short memory innovations, thereby encompassing applications with a wide
range of economic and financial time series. Some implications for forecasting
under misspecification are also examined.
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1 Introduction

Kernel regression methods are commonly used in empirical research when theory
suggests no obvious model specification or when there is uncertainty about a given
parametric specification and tests of that specification against a general nonpara-
metric alternative may be desired. Time series models typically involve additional
uncertainties about temporal dependence, nonstationarity, or memory properties of
the variables in the regression. Such properties may be assessed by prior estimation
or tests, but with the additional consequence of pre-test implications for inference. It
is therefore desirable to have econometric methods of estimation and testing that ac-
commodate a wide range of temporal dependence characteristics in the data. Recent
research has shown that standard methods of nonparametric kernel regression may
be conducted when the regressor has nonstationary characteristics of unknown and
unspecified form, including autoregressive unit root, local unit root, or fractional unit
root properties (Wang and Phillips, 2009a, 2009b, 2011, 2016 —hereafter WP; Duffy,
2014; Gao and Dong, 2018). In nonstationary cases an important aspect of this work
is that the results apply even when the regressor is endogenous, thereby including
nonparametric cointegrating regressions.
The present paper extends these results to include nonparametric cointegrating

regressions in which the true regressor is a latent variable and a proxy variable is
used in the empirical regression in place of the latent variable. Such regressions arise
naturally when the true regressor is measured with error and/or when the proxy
variable cointegrates asymptotically with the true latent variable. A typical example
arises when the true regressor appears in filtered form as in mixed-data-sampling
(MIDAS) regressions (Ghysels et al., 2004, 2005) or HP filtering. In this framework,
the nonparametric nonstationary model suffers simultaneously from endogeneity of
the latent regressor variable and measurement error in the observed proxy regressor.
Such a framework is intermediate between correctly specified nonlinear nonparametric
cointegrating regressions of the type studied in WP (2009a, 2009b) and completely
spurious nonparametric regressions such as those in Phillips (2009). Important special
cases of the present framework include nonparametric nonstationary systems in which
the regressor is dynamically misspecified, as in the work by Kasparis and Phillips
(2012), or similar nonstationary systems in which the true variable is measured with
a stationary error, as in Duffy (2014).
The asymptotic results reveal the effects of misspecification, including the asymp-

totic bias, in nonparametric nonstationary regression. In certain cases such as when
the true regression function is convex, the direction of the bias may be determined.1

In general, when linkages between the observed regressor and the latent variable are

1In recent work on linear dynamic systems with nonstationary regressors Duffy and Hendry (2018)
analyzed the effects of measurement error and were able to sign these effects in certain special cases.
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‘close’, in a sense that will be made precise, an empirical nonparametric regression
has a clear interpretation in terms of its pseudo-true value limit as a local average of
the true cointegrating regression function. The findings of the paper therefore con-
tribute in several ways to our present understanding of nonparametric cointegrating
regression theory. They are particularly helpful in appreciating the combined impact
of endogeneity and measurement error in such regressions.
The results of the paper also complement a large literature of recent microecono-

metric work on nonparametric estimation in the setting of a single endogenous regres-
sor and independently identically distributed (iid) data. In such models, instrumental
variable methods and regularization techniques are used to overcome the inconsis-
tency of standard nonparametric estimation by kernel or sieve methods (e.g., Hall
and Horowitz, 2005; Horowitz, 2011; Chen and Reiss, 2011). When the explanatory
variable suffers from measurement error, these methods are typically inconsistent even
in the iid setting. Schennach (2004) studied such problems of nonparametric regres-
sion in the presence of measurement error, but without addressing endogeneity of the
regressor. Most recently in this literature, Ausumilli and Otsu (2018) have developed
wavelet basis methods for dealing simultaneously with an endogenous regressor that
is measured with error, showing that the impact of measurement error is to reduce the
(already slow) convergence rate of nonparametric IV estimation. The results of the
present paper show that in the nonstationary time series setting under endogeneity
and measurement error, the standard nonparametric kernel estimator is convergent
at the usual rate but to a local average of the nonparametric cointegrating regression
function. Like most of the above cited work in nonparametric IV regression in micro-
econometrics this paper deals with a nonparametric regression of a single endogenous
regressor. This limitation is somewhat mitigated in the current time series setting by
other features of generality in the model, including the nonstationarity of the observed
variables and the temporal dependence properties of the equation errors.
The paper is organized as follows. Section 2 describes the latent variable non-

parametric model of cointegration studied here. This model involves dual sources of
endogeneity that arise from (i) the use of a proxy variable in the empirical regression,
leading to measurement error, as well as (ii) inherent endogeneity in the regressor.
Section 3 provides assumptions under which the asymptotics are developed and gives
the limiting stochastic processes that are involved in the limit theory. Section 4 pro-
vides a general result on the limit behavior of sample nonlinear functionals, which
extends many existing results on weak convergence to local time. This result is ap-
plied to deliver asymptotic results for sample covariance functionals that appear in
latent variable nonparametric cointegrating regressions with a proxy variable regres-
sor. Section 5 gives a weak consistency result and asymptotic distribution theory for
such regressions, extending the limit theory in WP (2009b, 2016) for correctly spec-
ified cointegrated models to latent and filtered variable cases. Section 6 concludes.
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Proofs of the main results are given in Appendix A and supplementary results in
Appendix B.
Throughout the paper, we make use of the following notation: for x = (x1, ..., xd),

||x|| =
∑d

j=1 |xj|, an ∼ bn stands for 0 < lim infn→∞ an/bn ≤ lim supn→∞ an/bn < ∞.
We denote constants by C,C1, ..., which may differ at each appearance.

2 Partially Misspecified Cointegrated Models

We suppose that two nonstationary variables (yt, zt) are linked according to the non-
parametric regression model

yt = g(zt) + ηt, t = 1, ..., n (2.1)

where g is an unknown function and ηt is a zero mean stationary disturbance whose
properties are detailed below. In such models, it is natural to employ kernel regres-
sion methods to estimate the function g.When zt is an integrated, near-integrated or
fractionally integrated process, the model (2.1) is now commonly known as a nonlin-
ear nonparametric cointegrating regression. The model may be estimated by kernel
regression just as in stationary regression cases.
Importantly, and in contrast to stationary nonparametric regression, such kernel

regression is consistent even when the regressor zt is endogenous. The reason for
this robustness to endogeneity in the regressor, as explained in WP (2009b), is that
nonstationary regressors such as unit root processes have a wandering character that
assists in tracing out the true regression function. In effect, a nonstationary regressor
such as zt serves as its own instrument in nonparametric kernel regresion by delin-
eating the shape of a smooth curve g as y varies over the entire real line by virtue of
the recurrence of the limit process corresponding to a standardized version of zt. This
advantage might suggest that such nonparametric regressions might also show some
degree of immunity even to measurement error in the regressor. However, Kasparis
and Phillips (2012) discovered that this is not so by demonstrating that dynamic
misspecification in the timing of the regressor dependence produces inconsistency in
nonlinear nonparametric regressions, a result that differs markedly from paramet-
ric linear cointegrated regression where the dynamic timing of the regressor has no
asymptotic import. Our following analysis reveals the effects of misspecification of
a nonlinear regression function in a wide range of nonstationary cases that include
measurement error in the regressor.
To fix ideas, we suppose that the regressor zt in the true model (2.1) is latent and

unavailable to the econometrician, whereas another variable xt is observed and is used
in the regression in place of zt. The fitted nonparametric regression then has the form

yt = ĝ(xt) + η̂t, (2.2)
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where

ĝ(x) =

∑n
t=1 ytK[(xt − x)/h]∑n
t=1K[(xt − x)/h]

=

∑n
t=1 ηtK[(xt − x)/h]∑n
t=1K[(xt − x)/h]

+

∑n
t=1 g(zt)K[(xt − x)/h]∑n

t=1K[(xt − x)/h]

= :
Pn∑n

t=1K[(xt − x)/h]
+

Sn∑n
t=1K[(xt − x)/h]

, (2.3)

where K(x) is a non-negative kernel function and 0 < h ≡ hn → 0 is a bandwidth.
We study the asymptotic behavior of the fitted nonparametric regression function
ĝ(x) under certain regularity conditions that prescribe the relationship between xt
and the latent variable zt and the generating mechanism of (xt, zt, ηt) . Analysis of
(2.3) requires consideration of two components. The asymptotic behavior of the first
component follows in much the same way as for a correctly specified system, which
is given in WP (2009b). The second component embodies the effects of the misspec-
ification in the numerator Sn. Its asymptotic behavior involves the study of sample
covariances of the form

Sn =
n∑
t=1

g(zt)K[(xt − x)/h], (2.4)

where h = hn → 0 as the sample size n → ∞. Importantly, (2.4) depends on two
nonstationary time series (zt, xt) , so that the limit theory for the sample function
Sn depends on any linkages that are involved in the generating mechanism of these
two series. This complicaation leads to considerable technical diffi culties in the as-
ymptotic development which are resolved in the paper. We now proceed to analyze
sample functions involving such sample covariances of nonlinear functions of related
nonstationary variables (zt, xt) . To begin, we define the conditions on these variables,
the regression function in (2.1), and the properties of the errors ηt.

3 Assumptions and Preliminaries

Let λi = (εi, ei), i ∈ Z be a sequence of iid random vectors with Eλ0 = 0, E||λ0||2 <∞
and lim|t|→∞ |t|a [|Eeitε0|+ |Eeite0|] < ∞ for some a > 0. The variates λi form primi-
tive innovations in linear processes that are described below. It should be mentioned
that no restriction is imposed on the relation between εi and ei. We make use of the
following assumptions about the components of (2.1) and (2.2) for the development
of the asymptotic theory in our main results.

A1. xk = ρnxk−1 + ξk, where x0 = 0, ρn = 1 − τn−1 for some constant τ ≥ 0,
and ξk =

∑∞
j=0 φjεk−j. The coeffi cients φk, k ≥ 0, satisfy one of the following

conditions:
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LM: φk ∼ k−µ l(k), 1/2 < µ < 1 and l(k) is a function slowly varying at ∞;

SM:
∑∞

k=0 |φk| <∞ and φ ≡
∑∞

k=0 φk 6= 0.

A2. (i) uk =
∑∞

j=0 ψj λ
′
k−j with ψj = (ψ1j, ψ2j) satisfying

∑∞
j=0(|ψ1j|+|ψ2j|) <∞;

(ii) wnk = wn(λk+d, λk+d−1, ...), where d ≥ 0 is an integer, is an arbitrary ran-
dom array satisfying the bounding inequality |wnk| ≤ δn

∑∞
j=−d

(
|ϕ1j εk−j|+

|ϕ2j ek−j|
)
where the coeffi cients ϕj = (ϕ1j, ϕ2j) themselves satisfy

∑∞
j=0(|ϕ1j|+

|ϕ2j|) <∞ and the scalar sequence δn → 0, as n→∞.

A3. m(x, y) is a real function on R2 satisfying the following conditions:

(i) E
∣∣m(x, u1)

∣∣, where ut is given in A2(i), is bounded and integrable;
(ii) there exist δ > 0, integer β ≥ 1 and a bounded and integrable function

T (x) such that, for all x, y, t ∈ R,

|m(x, y)−m(x, t)| ≤ T (x) |y − t|δ (1 + |y|β + |t|β) . (3.5)

AssumptionA1 allows for nearly integrated autoregressive transforms of short and
long memory linear processes, a general linear process set up that has been widely used
in the nonparametric nonstationary time series literature —see WP (2009a, b, 2011,
2016) and Wang (2014, 2015). The initialization x0 = 0 is assumed for convenience
but this is not necessary. The main results still hold if x0 = oP (dn), as is clear from
analysis of the proofs. The process xt, t ≥ 1, is strictly speaking a triangular array
due to the dependence of ρn on n. But the use of a double index on n will be omitted
whenever there is no confusion. Assumption A2 ensures that uk is a stationary linear
process and wnk is an asymptotically negligible random component that plays a role
in bounding one of the components of the misspecification error in our main result.
As will be apparent in Section 4, the array component wnk is useful in accommodating
fitted coeffi cients in temporal averaging processes such as MIDAS. By virtue of the
boundedness and integrability requirement of E|m(x, u1)| given in A3 (i) there exists
a finite constant c0 such that the function m(x, c0) is bounded and integrable. This
fact will be used in the proofs that follow without further reference.
Assumption A3 (ii) is a weak condition of uniform continuity for multi-argument

functions, which is stronger than local Hölder continuity and weaker than uniform
Hölder continuity. It is easy to verify in applications. To give an illustration, let
m(x, y) = K(x) f(x+y) orm(x, y) = K(x) f(y). If f(.) and K(.) satisfy the following
condition A4, then m(x, y) satisfies (3.5).

A4 (i) There exist δ > 0 and integer β ≥ 1 such that, for all y, t ∈ R,

|f(y)− f(t)| ≤ C |y − t|δ (1 + |y|β + |t|β); (3.6)
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(ii)
∫∞
−∞K(x)dx = 1 and (1 + |x|1+β)K(x) is bounded and integrable, where β
is given in (3.6).

It is readily seen that functions such as f(y) = |y|α and 1/(1 + |y|α), where α > 0,
satisfy (3.6).
As will become apparent in what follows, the role of the function m(x, y) in appli-

cations is to provide a linkage between the observable time series xt and the dependent
variable yt in the model (2.1) and fitted regression (2.2). This linkage function allows
for potential cointegrating links between yt and xt as well as measurement error. Ex-
amples of this linkage function are given in Section 4 and include functions of the type
m(x, y) = K(x) f(y) mentioned above. Corollary 4.1 and its proof employ such link-
age functions and show how the limit theory of sample covariance functionals of two
nonstationary time series that is given in our Theorem 4.1 can be applied to analyze
misspecification components such as those arising from the second term in (2.3).

To complete this section, we define some stochastic processes that appear in the
limit theory. In the following, let d2n = var(

∑n
j=1 ξj) and, for t ≥ 0, define the

continuous stochastic processes

Zt = W (t) + τ

∫ t

0

e−τ(t−s)W (s)ds,

W (t) =

 B3/2−µ(t), under LM,

B1/2(t), under SM,

where BH(t)} is fractional Brownian motion with Hurst exponent H. In this event, it
is well known that Zt is a fractional Ornstein-Uhlenbeck process, having continuous
local time which we denote by LZ(t, x). We further have the following asymptotic
orders

(Eε20)−1 d2n ∼

 cµ n
3−2µ l2(n), under LM,

φ2 n, under SM,

where cµ = 1
(1−µ)(3−2µ)

∫∞
0
x−µ(x + 1)−µdx (e.g., see Giraitis et al., 2012, or Wang et

al., 2003). Finally, it is known (Jeganathan, 2008; WP, 2009a) that the functional
law Znbntc ⇒ Zt holds in the Skorohod space D [0, 1] for the standardized element
Znk = xk/dn where k = bntc is the integer part of nt.

4 Nonlinear Functionals of Nonstationary Processes

Our first main result concerns the limit behavior of a standardized sample mean
functional of a nonlinear function with multiple arguments that involve stationary and
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nonstationary processes. Such functionals turn out to be very useful in determining
asymptotics for sample covariance functionals such as (2.4) that appear in misspecified
fitted nonparametric regressions like (2.2). The following result is given in a general
form to enhance its usefulness both in the present context and other applications.

Theorem 4.1. In addition to A1—A3, suppose that E||λ0||2β+2 <∞ where β is given
as in (3.5) of A3. For any cn →∞ with cn/n→ 0 and z ∈ R, we have

cn
n

n∑
t=1

m
[
cn(Znt + c′nz), ut + wnt

]
→D

∫ ∞
−∞

m1(t)dt L̃Z(1, z), (4.7)

where Znk = xk/dn, m1(t) = Em(t, u1) and

L̃Z(r, z) =

 LZ(r, 0), if c′n → 0,

LZ(r,−z), if c′n = 1.

Remark 1. An important element of the proof of Theorem 4.1 involves demon-
strating that the sample mean functional can be asymptotically approximated so that
the residual difference

Rn :=
cn
n

n∑
t=1

[
m
(
cnZnt, ut + wnt

)
−m1(cn Znt)

]
= oP (1). (4.8)

The rate at which Rn converges to zero heavily depends on the sequence δn given
in A2 (ii). Indeed, by letting m(x, y) = K(x) y, where wnt = δn |εt| and K satisfies
certain smoothness conditions, as in Proposition 7.2 of WP (2016), it is readily seen
that

Rn =
cn
n

n∑
t=1

K
(
cnZnt

)
(ut + δn|εt|) = OP (δn).

This rate cannot be improved. The representation (4.8) suggests that the existence of a
limit distribution for the sample mean functional in (4.7), and hence that of a suitably
standardized version of (2.4), relies on the validity of an asymptotic approximation
of the form (4.8). Indeed, it seems unrealistic to consider the asymptotic distribution
of sample functionals such as (4.7), at least in this framework, except in cases where
the approximating residual element Rn has the property that wnt →P 0 so that (4.8)
holds with some convergence rate. In some specialized cases of the latter situation,
the asymptotic behavior of Rn is known and has been considered in WP (2016) and
Duffy (2014) for some particular functions m(x, y), specifically m(x, y) = K(x)y. It
would be interesting to consider more general extensions of this framework in which
residual elements such as Rn do not necessarily have the property that wnt →P 0 and
where the approximating component is not necessarily of the form m1. Such exten-
sions would assist in analyzing spurious nonparametric regressions with nonstationary
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series, which have been considered in a special case by Phillips (2009), as discussed
below. But such an extension seems beyond the scope of our present methods and is
therefore left as a challenge for future work.
Remark 2. In spite of this limitation, Theorem 4.1 still provides a very general

extension of existing results on convergence of sample functions to quantities that in-
volve scaled local time, as is apparent from the form of (4.7). In previous research, WP
(2009a, 2009b) [see also Jeganathan (2008) and Chapter 1 of Wang (2015)] established
similar results for the statistic cn

n

∑n
t=1K

[
cn(Znt + c′nz)

]
m(λt, ..., λt−m0), where m0 is

a fixed constant. Moving toward a general formulation ofm(x, y), for xt satisfying A1
with τ = 0 and the coeffi cients φk satisfying the SM condition, Duffy (2014) provided
a result for n−1/2

∑n
t=1m(xk, uk) under a strong smoothness condition on m(x, y).

Our Theorem 4.1 has the advantage that it allows for nearly integrated long memory
as well as short memory linear processes, which are now widely used in the applied
literature, in addition to processes that satisfy some general linkage relationships, as
will be apparent in our applications below. Furthermore, our formulation of m(x, y)

enables easy implementation of Theorem 4.1 to several useful practical applications,
as is indicated in the following corollaries.

Corollary 4.1. Let ak = γnk xk+wnk+uk, where max1≤k≤n |γnk−γ0| → 0 as n→∞,
for some γ0 ∈ R. If, in addition to A1, A2 and A4, suppose that E||λ0||2β+2 < ∞
where β is given as in ( 3.6). Then, for any fixed x ∈ R,

dn
nh

n∑
t=1

f(at)K
[
(xt − x)/h

]
→D Ef

(
γ0 x+ u1

)
LZ(1, 0), (4.9)

whenever h := hn → 0 and dn/nh→ 0. When h = 1, we have

dn
n

n∑
t=1

f(at)K
(
xt − x

)
→D

∫ ∞
−∞
Ef
(
γ0 t+ γ0 x+ u1

)
K(t)dt LZ(1, 0). (4.10)

Remark 3. Phillips (2009) gave the first investigation of asymptotics for sample
covariance functionals of the form

∑n
t=1 f(at)K

[
(xt−x)/h

]
where both xt and at are

I(1) processes. The argument in that work essentially imposed independence between
the time series xt and at so that there was no linkage at all between the variables2,
thereby extending the standard spurious linear regression framework (Phillips, 1986;
Granger and Newbold, 1974) to nonparametric regression. The limit distribution in
that spurious nonparametric regression framework for xt and at differs from Corollary
4.1 in this paper where there is an explicit linkage between the variables. In particular,
the situation considered here is that at is “close”to being linearly cointegrated with
xt with an asymptotically constant coeffi cient and a stationary shift subject to an

2It is unclear at the moment whether more general versions of a spurious regression result exist
under the same setting as Phillips (2009) but without imposing independence between xt and at.
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asymptotically negligible error. This framework clearly specializes to include the
standard case of a regressor that is measured with error where γnk = γ0 = 1 and
wnk = 0. In the present general framework the latent variable at in the nonparametric
regression is replaced with a proxy variable xt whose long run properties relate to those
of at but via an asymptotically cointegrating linkage in which measurement error is
permitted. Moreover, the specification of the proxy variable xt via the equation ak =

γnk xk+wnk+uk allows for sample size dependent coeffi cients γnk, which accommodates
estimated coeffi cients. In particular, we mention that γnk can be taken to be an
arbitrary random array satifying

max
1≤k≤n

|γnk − γ0| = oP (1), (4.11)

as n→∞, for some γ0 ∈ R. This generalization only involves a minor modification in
the proof of Corollary 4.1, the details of which are omitted. Finally, we note that the
limit distribution given in (4.10) still involves the local time of the Gaussian process
Zt associated with the weak limit of the process Znbntc based on standardized versions
of the sample observations xbntc.
Remark 4. Kasparis and Phillips (2012) investigated the asymptotics of Sn :=∑n
t=1 f(xt+d)K

[
(xt−x)/h

]
under certain strict conditions on xt, essentially requiring

xt to be a random walk with iid innovations. As a direct consequence of Theorem 4.1,
we may establish similar results under far less restrictive conditions. To illustrate, for
some d ≥ 1, let

ak =
d∑

j=−d

γnk(j)xk+j, where max 1≤k≤n
−d≤j≤d

|γnk(j)− γ(j)| → 0. (4.12)

As discussed in Remark 5 below, this formulation allows for various fixed data filtering
methods (such as MIDAS) that are commonly used in time series regressions. The
sample size dependence of the coeffi cients γnk(j) in (4.12) allows for an even wider
range of filters that may adjust to sample size. Note that for any j ≥ 1,

xk+j = ρnxk+j−1 + ξt+j = ... = ρjnxk +

j∑
i=1

ρj−in ξk+i,

xk−j = ρ−1n xk−j+1 − ρ−1n ξk−j+1 = ... = ρ−jn xk −
j−1∑
i=0

ρ−j+in ξk−i.

We may therefore write

ak = xk

d∑
j=−d

γnk(j)ρ
j
n +

d∑
j=1

γnk(j)

j∑
i=1

ρj−in ξk+i −
d∑
j=1

γnk(−j)
j−1∑
i=0

ρ−j+in ξk−i

= xk

d∑
j=−d

γnk(j)ρ
j
n +

d∑
i=1

ξk+i

d∑
j=i

γnk(j)ρ
j−i
n −

d∑
i=1

ξk−i+1

d∑
j=i

γnk(−j)ρ−j+i−1n

= xk γ
∗
nk + wnk + uk, (4.13)
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where, by letting δn = max 1≤k≤n
−d≤j≤d

|γnk(j)− γ(j)|+ max−d≤j≤d |ρjn − 1|, we have

γ∗nk =

d∑
j=−d

γnk(j)ρ
j
n =

d∑
j=−d

γ(j) +O(δn),

uk =

d∑
i=1

ξk+i

d∑
j=i

γ(j)−
d∑
i=1

ξk−i+1

d∑
j=i

γ(−j),

and

|wnk| ≤
d∑
i=1

|ξk+i|
d∑
j=i

∣∣γnk(j)ρj−in − γ(j)
∣∣

+

d∑
i=1

|ξk−i+1|
d∑
j=i

∣∣γnk(−j)ρ−j+i−1n − γ(−j)
∣∣

≤ Cδn

d∑
i=1

(
|ξk+i|+ |ξk−i+1|

)
.

Now suppose that ξt =
∑∞

j=0 φjεt−j with
∑∞

j=0 |φj| < ∞ and φ =
∑∞

j=0 φj 6= 0, so
that xt satisfies A1 with SM memory. Since δn → 0, it is readily seen from (4.13)
that wnt and ut given in (4.12) satisfy A2. As an immediate consequence of Corollary
4.1, we have the following result.

Corollary 4.2. Suppose that A1 with coeffi cients satisfying SM holds. Suppose also
that A4 holds and E||λ0||2β+2 <∞, where β is given as in (3.6). Then, for any fixed
x ∈ R and at defined in (4.12),

1√
nh

n∑
t=1

f(at)K
[
(xt − x)/h

]
→D φ−1(Eε20)−1/2 Ef

(
x

d∑
j=−d

γ(j) +

d∑
i=1

ξi

d∑
j=i

γ(j)−
d∑
i=1

ξ−i+1

d∑
j=i

γ(−j)
)

×LZ(1, 0), (4.14)

whenever h→ 0 and n2h→∞. In particular, we have

1√
nh

n∑
t=d

f(xt)K

(
xt−d − x

h

)
→D

1

φ(Eε20)1/2
E

{
f
(
x+

d∑
j=1

ξj
)}

LZ(1, 0),

1√
nh

n∑
t=d

f(xt−d)K

(
xt−d − x

h

)
→D

1

φ(Eε20)1/2
E

{
f
(
x−

d∑
j=1

ξj
)}

LZ(1, 0).

Using (4.10), results for h = 1 can be derived similarly. The details are omitted.
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Remark 5. It is evident from Corollary 4.2 that the kernel weighted sample mo-
ment function fails to deliver a consistent kernel regression estimator for the function
f(x) but leads instead to a local average pseudo-true-value function (PTVF) about
x. Apart from dynamically misspecified regression, the formulation of the observed
variable (4.12) is relevant in many other situations that arise in applied econometric
work. For instance, the inconsistency and PTVF depicted in Corollary 4.2 may occur
when there is temporal aggregation of the data. If the covariate at is sampled more
frequently than the dependent variable, Ghysels, Santa-Vlara and Valkanov (2004,
2006) propose the following mixed-data-sampling (MIDAS) form of weighted aver-
age specification at =

∑d
j=0 γ(j)xt+j where 0 ≤ γ(j) ≤ 1 and

∑d
j=0 γ(j) = 1. In

practical work, preliminary estimates γ̂n(j) are typically required for the MIDAS co-
effi cients γ(j), leading to the empirically filtered variable ẑt =

∑d
j=0 γ̂j,nxt+j with

max0≤j≤d |γ̂n(j)− γ(j)| = oP (1). It follows that if use of a MIDAS structure misspec-
ifies the generating mechanism, then the kernel regression estimator is inconsistent.
The present formulation of (4.11) allows for this type of filtering with estimated coeffi -
cients γ̂n(j). A similar linear pre-filtering of the regressors is considered by Bollerslev
et al (2013) in a different context. In particular, that work proposes a predictive
regression for stock returns of the form yt = f

(∑d
j=1 γ(j)xt−j

)
+ ηt involving the

temporal aggregate
∑d

j=1 γ(j)xt−j as regressor. The purpose of the linear filtering
in this case is to adjust any persistence in the predictor (xt) to conform with the
temporal properties of stock returns (yt) thereby balancing the predictive regression
equation. Again preliminary estimators for γ(j) are typically required in practice and
are covered by the present formulation. Further extensions are possible by allowing
for two-sided temporal average specifications in which the parameter d = dn → ∞
as n→∞. These are particularly relevant in applied time series work that use trend
detection filtering methods such as the Whittaker filter (Whittaker, 1923; Phillips,
2010; Phillips and Jin, 2015), the Hodrick Prescott filter (Leser, 1961; Hodrick and
Prescott, 1997), and bandpass filters (Baxter and King, 1999). Conditions for validity
in such cases will be considered in subsequent work.

5 Applications

This section develops a nonparametric regression application of our limit theory for
sample covariance functionals of nonstationary time series. Except where mentioned
explicitly, the notation used here is the same as in Sections 2-3.
Suppose that the time series (yt, xt) are observed but the real data generating

process has the form

yt = g(zt) + ηt, xt = αnt zt + wnt + ut, (5.15)
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where g(x) is an unknown regression function, xt, ut and wnt satisfy A1 and A2, and
ηt is an error process defined by

ηt =

∞∑
j=0

θj λ
′
t−j

with θj = (θ1j, θ2j) satisfying
∑∞

j=0 j
1/4(|θ1j|+ |θ2j|) <∞. We further assume that

αn := max
1≤k≤n

|α−1nk − 1| → 0, as n→∞,

This formulation involves a nonparametric regression model with latent endogenous
regressor variable zt that is observed with error via a proxy variable xt that is asymp-
totically linked through an approximate cointegrating relation to zt. The resulting
fitted regression is a partially misspecified nonlinear nonparametric cointegrating re-
gression. In particular, the previous section showed that for certain choices of αnt,
wnt and ut the model is dynamically misspecified. Further, for εi ⊥ ei and ψ1j = b1j

= θ2j = 0 we have classical measurement error, i.e. the measurement error ut + wnt

is exogenous and independent of xt.
Since data on only (yt, xt) is observed, standard kernel estimation of the function

g leads to

ĝ(x) =

∑
ytK[(xt − x)/h]∑
K[(xt − x)/h]

,

where K is a non-negative kernel function and the bandwidth h := hn → 0. The
following result shows the limit behavior of ĝ(x).

Theorem 5.1. If, when f(x) is replaced by g(x), A4 holds and E||λ0||2β+2 < ∞
where β is given in A4, then

ĝ(x)→P g1(x) := Eg
(
x− u1

)
, (5.16)

for any fixed x and h→ 0 satisfying dn/nh→ 0.

Remark 6. Since g1(x) 6= g(x) in general, the nonparametric estimate ĝ(x) will
usually produce an inconsistent estimate of g(x). The nature of the asymptotic bias
g1(x)− g(x) depends on the degree of nonlinearity of g in conjunction with the shape
and support of the density of the measurement error. If g(x) is convex (concave) then
by Jensen’s inequality g1(x) ≥ g(x) (g1(x) ≤ g(x)), indicating a positive (negative)
bias in this misspecified nonparametric regression. The actual deviation of g1(x) from
g(x) can be calculated by application of the mean value theorem for smooth functions3.
If g(x) is monotonic, then so too is g1(x). Figure 1 shows the effect of misspecification
in the case of the cubic function g (x) = x3 when u1 ∼ N (0, 1) . When g is linear,
g1(x) = g(x) and ĝ(x) is consistent, just as in linear cointegrating regression with
stationary measurement error.

3Taylor expansion yields g(x+u1) = g(x)+ g′(x)u1+
1
2g
′′(ξ)u21 for some ξ between x and x+u1,

and the claim follows from g′′(ξ) ≥ 0, Eu1 = 0 and Eu21 > 0.
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Figure 1: Nonparametric function g (x) = x3 (solid black) and pseudo-true-value
function (PTVF) g1 (x) =

∫
(x− u)3 ϕ (u) du = x3 + 3x (dashed green) with

standard Gaussian ϕ (u) .

Remark 7. The pseudo true regression function g1(x) = Eg
(
x − u1

)
averages g

around its local value at x with the weighting delivered by the density of the measure-
ment error u in (5.15). By standard theory, a pseudo true value minimizes the distance
(with respect to some asymptotic L2-norm) between the fitted regression function and
some (possibly) unknown true regression function (e.g. White, 1981). In parametric
cases, the pseudo true value carries information about parameters of interest which is
exploited by methods such as indirect inference which lead to consistent estimation
of the true parameters under certain conditions. In the nonparametric case, informa-
tion about the true function g can be obtained by deconvolution methods when the
measurement error density is known or can be estimated. Such methods are used in
nonparametric instrumental variables estimation of nonlinear nonparametric micro-
econometric models, as discussed earlier. Information about g can be obtained in other
cases and is usefully employed in prediction. For example, suppose that {yt, xt}nt=1
are observed with yt determined by the predictive regression yt = g(zt−1) + ηt with
zt being a latent nonstationary variable with zt = xt + ut, xt ⊥ ut (giving a classical
errors-in-variables formulation) and a martingale difference equation error, ηt, with
respect to some filtration Ft to which (xt, ut) are adapted. Suppose that we are inter-
ested in obtaining the mean out-of-sample forecast E (yn+1|Fn) = g(zn) utilizing {xt}
as a proxy for the unobservable zt via nonparametric estimation. As demonstrated in
Theorem 5.1, under certain conditions the kernel regression estimator approximates
g1(x) = Eg(x − u1). Interestingly, the pseudo-true regression function g1(x) forms a
better predictor for E (yn+1|Fn) than the true function g(x), when the proxy variable
{xt} is employed and used in prediction. In particular,

E {[E (yn+1|Fn)− g1(xn)]} = E [g(zn)− g1(xn)]

= E {E [g(xn + un)− g1(xn)|xn]} xt⊥ut= E [g1(xn)− g1(xn)] = 0.

14



Therefore, g1(xn) is an unbiased estimator for the mean of E (yn+1|Fn). In fact, the
deviation of the pseudo-true regression function g1(x) from the true function g(x) on
average compensates for fact that {zt} is only partially observable and values of the
proxy variable {xt} are used instead in prediction. On the other hand if we were to
utilize the true regression function g(x) together with the proxy {xt}, we would have

E {[E (yn+1|Fn)− g(xn)]} = E [g(xn + un)− g(xn)] ,

which is non zero in general.

Under somewhat stronger conditions on g(x), ut, αnk and δn, it is possible to
establish the asymptotic distribution of Rn(x) := ĝ(x) − g1(x). Theorem 5.2 below
provides this limit theory under the following assumption.

A5. (i) For some integer β ≥ 1, when y, t ∈ R, we have

|g(y)− g(t)| ≤ C |y − t| (1 + |y|β + |t|β);

(ii)
∫∞
−∞K(x)dx = 1 and K(x) has a finite compact support;

(iii) xt is defined as in A1 and uk =
∑∞

j=0 ψj λ
′
k−j, where the coeffi cents ψj =

(ψ1j, ψ2j) satisfy that
∑∞

j=0 ||ψj|| < ∞ and n
∑∞

j=νn
||ψj||2 = o(1) with

νn = (n/dn)δ for some δ < 1/3;

(iv) nh/dn →∞, nh3/dn → 0 and αn + δn = O(h);

(v) E||λ1||2(β+1) <∞.

Theorem 5.2. Under A5, for any fixed x, we have( n∑
k=1

K[(xk − x)/h]
)1/2[

ĝ(x)− g1(x)
]
→D Λ×N (0, 1), (5.17)

where Λ2 = E
[
η1 + g(x− u1)− g1(x)

]2 ∫∞
−∞K

2(y)dy.

Remark 8. WP (2016) established a version of (5.17) without investigating
the effect of misspecification in the model, thereby imposing the conditions that ut =

wnt = 0, and αnk = 1 on the present framework. Duffy (2014) allowed for ut 6= 0, while
still imposing wnt = 0 and αnk = 1, but requiring τ = 0 for the time series xt defined in
A1 and requiring the coeffi cients φk to have SM memory, thereby restricting attention
to I (1) time series. Our Theorem 5.2 provides a general result for nonparametric
regression under misspecification that allows for nearly integrated short and long
memory latent variables that are observed with error. This result substantially extends
the existing literature on nonparametric nonstationary regression to a latent variable
framework that covers many potential time series applications in econometric work in
which measurement error effects may be expected.
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Remark 9. Endogeneity does not affect the probability limit or the limit dis-
tribution expressions of the kernel estimators when there are measurement errors
(c.f. Theorems 5.1-5.2). This finding is analogous to that of Wang and Phillips
(2009b) who consider structural regressions without measurement errors. Nonethe-
less, under endogeneity the limit variance of the kernel estimator may be larger.
According to Theorem 5.2 the limit variance under measurement errors is of the form
Λ2 = E [η1 + g(x− u1)− g1(x)]2. It is apparent that this expression will be larger if
η1 and g(x − u1) are positively correlated, which may be so for certain functions g
when the measurement error is endogenous.

6 Conclusion

The present framework focuses on latent variable nonparametric cointegrating regres-
sions which are partially misspecified through the presence of measurement error or
the use of proxy variables in the regression. The limit theory reveals that such regres-
sions lead to bias in estimation yet may be interpreted as estimating locally weighted
averages of the true regression function and are amenable to inference. The latent
variable framework does not include fully spurious nonparametric regresssion systems
of the type studied in Phillips (2009). Extensions to such systems are of interest not
only from the perspective of completing the limit theory for linear spurious regression
(Phillips, 1986) to include nonlinear nonparametric regression but also because the
present results seem close to the limit of what is possible for partially misspecified
regressions arising from latent variable measurement error. It is therefore of interest
to understand how gross misspecification, as distinct from partial misspecification due
to measurement error, affects such regressions with randomly trending variables.
Nonparametric regressions offer empirical researchers considerably more flexibility

than linear regressions in establishing ‘empirical relationships’. Given the well-known
tendency of trending variables to produce plausible regression findings in the absence
of an underlying relationship between the variables, it is important to understand
the implications of conducting nonparametric regressions with such variables when
the linkages between the variables are no longer as ‘close’as the partially misspec-
ified linkages studied in the present paper. What the present paper does show is
that when there are ‘close’linkages between the observed regressor and the latent or
filtered variables used in practice, an empirical nonparametric regression has a clear
interpretation in terms of a local average relationship of the true regression function.
In this sense, there is useful interpretable information that can be recovered from the
pseudo-true value in nonparametric nonstationary regression with latent unobserved
variables. In addition, when proxy variables are used in estimation and prediction,
it is the property of the forecast given the proxy variable that is most relevant in
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practice and this forecast, as we have shown, is unbiased.

7 Appendix A: Proofs of the main results

We first introduce two lemmas that play a key role in the proofs of our main results.
Notation is the same as in previous sections except where explicitly mentioned.

Lemma 7.1. Let p(s, s1, ..., sl) be a real function of its components and t1, ..., tl ∈ Z,
where l ≥ 0. There exists an m0 > 0 such that the following results hold.

(i) For any h > 0 and k ≥ 2l +m0, we have

E| p(xk/h, λt1 , ..., λtl)| ≤
C h

dk

∫ ∞
−∞
E|p(t, λ1, ..., λl)|dt. (7.18)

(ii) For any h > 0, k − j ≥ 2l +m0 and j + 1 ≤ t1, ..., tl ≤ k, we have

E
[∣∣p(xk/h, λt1 , ..., λtl)∣∣ | Fj] ≤ C h

dk−j

∫ ∞
−∞
E|p(t, λ1, ..., λl)|dt. (7.19)

If in addition Ep(t, λ1, ..., λl) = 0 for any t ∈ R, then∣∣E [p(xk/h, λt1 , ..., λtl) | Fj]∣∣
≤

Ch
∑k−min{t1,...,tl}

j=0 |φj|
d2k−j

∫ ∞
−∞
E
{
|p(y, λ1, ..., λl)|

l∑
j=1

|εj|
}
dy. (7.20)

Proof. The proof of Lemma 7.1 is similar to Lemma 2.1 of Wang (2015). See, also,
Lemma 8.1 of Wang and Phillips (2016). A proof of (7.20) is given in Appendix B for
convenience. 2

For any cnk = (cn,1k, cn,2k) satisfying supn≥1
∑∞

k=0(|cn,1k|+ |cn,2k|) <∞, let Lnt =∑∞
k=0 cnkλ

′
t−k. Note that, for γ ≥ 1,

|Lnt|γ ≤
( ∞∑
k=0

|cnkλ′t−k|
)γ

≤
[ ∞∑
k=0

(|cn,1k|+ |cn,2k|)
]γ−1 ∞∑

k=0

(|cn,1k|+ |cn,2k|) ||λt−k||γ

≤ C
∞∑
k=0

(|cn,1k|+ |cn,2k|) ||λt−k||γ, (7.21)
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by Hölder’s inequality. A simple application of (7.18) yields that, if E||λ1||γ <∞ and
p(x) is a positive bounded integrable function, then

n∑
t=1

E
[
(1 + |Lnt|γ)p(xt/h)

]
≤

n∑
t=1

Ep(xt/h) + C
∞∑
k=0

(|cn,1k|+ |cn,2k|)
n∑
t=1

E
[
||λt−k||γ p(xt/h)

]
≤ C1 nh/dn, (7.22)

for any h > 0, i.e.,
∑n

t=1(1+|Lnt|γ)p(xt/h) = OP (nh/dn). Similarly, if E||λ1||γ+γ1 <∞,
then

n∑
t=1

E
[
||λt−j||γ1(1 + |Lnt|γ)p(xt/h)

]
≤ C1 nh/dn, (7.23)

for any h > 0 and uniformly for j ∈ Z. Results (7.22) and (7.23) will be directly used
in the following proofs without further explanation.

Lemma 7.2. If, in addition to A5, Eg(u1) = 0, then

dn
nh

n∑
t=1

K
[
(xt − x)/h

]
,
( dn
nh

)1/2 n∑
t=1

[
ηt + g(ut)

]
K
[
(xt − x)/h

]
→D

(
LZ(1, 0), a0N × LZ(1, 0)1/2

)
, (7.24)

where a20 = E
[
η1 + g(u1)

]2 ∫∞
−∞K

2(x)dx and N ∼ N (0, 1) independent of LZ(1, 0).

Proof. For any m > 0, let um,t =
∑m

j=0 ψjλ
′
t−j and ηm,t =

∑m
j=0 θjλ

′
t−j. By noting

Eg(ut) = Eg(u1) = 0, we may write

n∑
t=1

[
ηt + g(ut)

]
K
[
(xt − x)/h

]
=

n∑
t=1

[
ηm,t + g(um,t)− Eg(um,t)

]
K
[
(xt − x)/h

]
+Rn1 +Rn2

where Rn1 =
∑n

t=1

(
ηt − ηm,t

)
K
[
(xt − x)/h

]
and

Rn2 =

n∑
t=1

{
g(ut)− g(um,t)− E

[
g(ut)− g(um,t)

]}
K
[
(xt − x)/h

]
.

For any fixed m > 0, it follows from Wang and Phillips (2009a, 2009b) that( dn
nh

n∑
t=1

K
[
(xt − x)/h

]
,
( dn
nh

)1/2 n∑
t=1

[
ηm,t + g(um,t)− Eg(um,t)

]
K
[
(xt − x)/h

])
→D

(
LZ(1, 0), amN × LZ(1, 0)1/2

)
, (7.25)
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where a2m = E
[
ηm,1 + g(um,1) − Eg(um,1)

]2 ∫∞
−∞K

2(x)dx. Result (7.24) will follow if
we prove

a2m → a20, (7.26)

as m→∞, and, for i = 1 and 2,

Rni = op
[
(nh/dn)1/2

]
, (7.27)

as n→∞ first and then m→∞.
We only prove (7.27) for i = 2. The proof of (7.27) for i = 1 is similar [see, (8.13)

of Wang and Phillips (2016), for instance]. Due to A5 and Eg(u1) = 0, the proof of
(7.26) is trivial. We omit the details. To prove (7.27) for i = 2, we write

Rn2 = Rn3 +Rn4, (7.28)

where, for νn given in A5 (iii),

Rn3 =
n∑
t=1

{
g(ut)− g(uνn,t)− E

[
g(ut)− g(uνn,t)

]}
K
[
(xt − x)/h

]
Rn4 =

n∑
t=1

{
g(uνn,t)− g(um,t)− E

[
g(uνn,t)− g(um,t)

]}
K
[
(xt − x)/h

]
Note that ut − uνn,t =

∑∞
j=νn+1

ψjλ
′
t−j. By using A5 (i) and (7.22) with γ = 2β,

it follows from the Hölder’s inequality that

|Rn3| ≤ C
n∑
t=1

∣∣ut − uνn,t| (1 + |ut|β + |uνn,t|β)K
[
(xt − x)/h

]
+C

n∑
t=1

E
{∣∣ut − uνn,t| (1 + |ut|β + |uνn,t|β)

}
K
[
(xt − x)/h

]
≤ C

( n∑
t=1

∣∣ut − uνn,t|2)1/2 { n∑
t=1

(1 + |ut|2β + |uνn,t|2β)K2
[
(xt − x)/h

]}1/2
+C (

∞∑
j=νn

||ψj||2)1/2
n∑
t=1

K
[
(xt − x)/h

]
= OP

{
(n

∞∑
j=νn

||ψj||2)1/2
[
(nh/dn)1/2 + n−1/2(nh/dn)

}
= oP

[
(nh/dn)1/2

]
.

Taking this into (7.28), to prove (7.27) for i = 2 it suffi ces to show that

Rn4 = oP
[
(nh/dn)1/2

]
, (7.29)

as n→∞ first and then m→∞.
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To prove (7.29), let gt = g(uνn,t) − g(um,t), g̃t = gt − Egt and ν1n = 2νn + m0,
where m0 is defined as in Lemma 7.1. By setting

∑j
t=i = 0 if i > j, we may write

ER2n4 =

n∑
s,t=1

E
{
g̃s g̃tK

[
(xs − x)/h

]
K
[
(xt − x)/h

]}
≤ 2

n∑
s=1

( s+m0+1∑
t=s

+

s+ν1n∑
t=s+m0+2

+

n∑
t=s+ν1n+1

) ∣∣∣E{ · · ·} ∣∣∣
=: ∆1n + ∆2n + ∆3n. (7.30)

Hölder’s inequality implies that

|∆1n|

≤
n∑
s=1

s+m0+1∑
t=s

(
E
{
|g̃s|2K2

[
(xs − x)/h

]})1/2(
E
{
|g̃t|2K2

[
(xt − x)/h

]})1/2
≤ C m0

n∑
s=1

E
{
|g̃s|2K

[
(xs − x)/h

]}
.

As in the estimation of Rn3, by using

|gt|2 ≤ C
[ ∞∑
j=m

|ψjλ′t−j| (1 + |uνn,t|β + |um,t|β)
]2

≤ C1

∞∑
j=m

(|ψ1j|+ |ψ2j|) ||λt−j||2 (1 + |uνn,t|2β + |um,t|2β)

due to A5(i) and (7.21), it follows from (7.23) with γ + γ1 = 2β + 2 that, whenever
νn ≥ m,

|∆1n| ≤ C m0

n∑
t=ν1n+1

E
{[
|gt|2 +

(
E|gt|

)2]
K
[
(xt − x)/h

]}
≤ C m0

∞∑
j=m

(|ψ1j|+ |ψ2j|)

n∑
t=ν1n+1

E
{(

1 + ||λt−j||2
)

(1 + |uνn,t|2β + |um,t|2β)K
[
(xt − x)/h

]}
≤ C1

∞∑
j=m

(|ψ1j|+ |ψ2j|) (nh/dn) = o(nh/dn), (7.31)

as n→∞ first and then m→∞.
We next consider ∆3n. As Eg̃t = 0 and g̃t depends only on λt−νn , ..., λt, it follows

from (7.20) with k = t, j = s and l = νn that, for t−s ≥ 2νn+m0 (hence t−νn ≥ s+1),∣∣E[g̃tK[(xt − x)/h
]
| Fs

]∣∣ ≤ Ch
∑νn

j=0 |φj|
d2t−s

∫
K(y − x/h)E

{
|g̃νn|

νn∑
j=1

|εj|
}
dy

≤
C1νn h

∑νn
j=0 |φj|

d2t−s
,

20



where φj are given as in A1. Note that
∑νn

j=0 |φj|
∑n

j=νn
d−2j ≤ C(1 + log n) under

both LM and SM, and as in the estimation of (7.31) [by using (7.23)],
n∑
s=1

E
{
|g̃s|K

[
(xs − x)/h

](
1 + ||λs−j||β+1

)}
≤ Cndn/h, (7.32)

unifromaly for j ≥ 0. As a consequence, conditional arguments yield that

|∆3n| ≤ 2
n∑
s=1

n∑
t=s+ν1n+1

E
{
|g̃sK

[
(xs − x)/h

]
|
∣∣E[g̃tK[(xt − x)/h

]
| Fs

]∣∣}
≤ C

n∑
s=1

E
{
|g̃s|K

[
(xs − x)/h

]} n∑
t=s+ν1n

νn h
∑νn

j=0 |φj|
d2t−s

≤ C νn h(1 + log n) (ndn/h) = o(ndn/h), (7.33)

due to hνn(1 + log n) = o(nh3/dn)δ = o(1).
To estimate ∆2n, recall that |g(x)| ≤ C(1 + |x|β+1) by A5 (i). We have that

|g̃t| ≤ |gt|+ E|gt| ≤ C
[
1 +

( νn∑
j=0

|ψjλ′t−j|
)β+1]

+ E|gt|

≤ C
(
1 +

νn∑
i=0

(|ψ1i|+ |ψ2i|) ||λt−i||β+1
)
.

Note that, for t− s ≥ m0 + 2,

E
[
(1 + ||λt−i||β+1)K

[
(xt − x)/h

]
| Fs

]
≤ Ch

dt−s

(
1 + ||λt−i||β+1 I(i≥t−s)

)
due to Lemma 7.1 (ii) with l = 1, where I(.) denotes the indicator function. It is
readily seen from the conditional arguments that

|∆2n| ≤ 2
n∑
s=1

s+ν1n∑
t=s+m0+2

∣∣∣E{g̃s g̃tK[(xs − x)/h
]
K
[
(xt − x)/h

]}∣∣∣
≤ C

n∑
s=1

E
{
|g̃s|K

[
(xs − x)/h

]
s+ν1n∑

t=s+m0+2

h

dt−s

[
1 +

νn∑
i=0

(|ψ1i|+ |ψ2i|)
(
1 + ||λt−i||β+1 I(i≥t−s)

)]}
≤ C

ν1n∑
t=m0+2

h

dt

n∑
s=1

E
{
|g̃s|K

[
(xs − x)/h

]}
+ C

ν1n∑
t=m0+2

h

dt

νn∑
i=0

(|ψ1i|+ |ψ2i|)

n∑
s=1

E
{
|g̃s|K

[
(xs − x)/h

](
1 + ||λt+s−i||β+1 I(i≥t)

)}
≤ C

ν1n∑
t=1

h

dt

[
1 +

n∑
s=m0+1

h

ds

]
≤ C

hν1n
dν1n

nh/dn = o
[
nh/dn

]
, (7.34)
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due to hν1n ≤ Chνn = o(nh3/dn) = o(1) and d−1ν1n ≤ C, where we have used (7.32).
Combining (7.30)-(7.34), Rn4 = oP [(nh/dn)1/2] as n→∞ first and then m→∞,

i.e., we have (7.29). The proof of Lemma 7.2 is now complete. 2

Proof of Theorem 4.1. We start with some preliminaries. LetAl =
∑∞

j=l+1

(
|ψ1j|+

|ψ2j|
)
, where l is chosen so large that Al ≤ 1. Due to

ut =
( l∑
j=0

+

∞∑
j=l+1

)
ψj λ

′
t−j = ul,t + ul,1t, say,

it follows from (3.5) that, for any x ∈ R,

|m(x, ut)−m(x, ul,t)| ≤ T (x) |ul,1t|δ (1 + |ut|β + |ul,t|β).

As in (7.21) and by recalling A0 =
∑∞

j=0

(
|ψ1j|+ |ψ2j|

)
<∞, we have

|ul,1t|2 ≤ Al

∞∑
j=0

(
|ψ1j|+ |ψ2j|

)
||λt−j||2,

1 + |ut|β + |ul,t|β ≤ 1 + C
∞∑
j=0

(
|ψ1j|+ |ψ2j| ||λt−j||β

)
.

Hence, by letting α = max{β, 2}, it follows that

|m(x, ut)−m(x, ul,t)|
≤ T (x)

(
|ul,t|2

)δ/2
(1 + |ul,t|β + |ul,1t|β)

≤ Aδl T (x)
(

1 + C
[ ∞∑
j=0

(
|ψ1j|+ |ψ2j|

)
||λt−j||α

])1+δ/2
≤ CAδl T (x)

(
1 +

∞∑
j=0

(
|ψ1j|+ |ψ2j|

)
||λt−j||3α/2

)
(7.35)

Similarly, for any x, x0 ∈ R, we have

|m(x, ul,t)−m(x, x0)| ≤ T (x) |ul,t − x0|δ(1 + |x0|β + |ul,t|β)

≤ C T (x)
[
1 +

l∑
j=0

(
|ψ1j|+ |ψ2j|

)
||λt−j||β+1

]
. (7.36)

We are now ready to prove Theorem 4.1. First assume wnk = 0. This restriction
will be removed later. For convenience of notation, we further assume z = 0. The
removal of the restriction z = 0 is standard and so details are omitted.
Let m1l(x) = Em(x, ul,1). We may write

cn
n

n∑
t=1

m
(
cnZnt, ut

)
=: Sn + S1n + S2n,
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where Sn = cn
n

∑n
t=1m1l(cn Znt),

S1n =
cn
n

n∑
t=1

[
m(cn Znt, ut)−m(cn Znt, ul,t)

]
,

S2n =
cn
n

n∑
t=1

[
m(cn Znt, ul,t)−m1l(cn Znt)

]
.

It follows from Corollary 2.3 (i) of Wang (2015) that, for any l ≥ 1,

Sn →d

∫ ∞
−∞

m1l(x) dxLZ(1, 0).

Since, by (7.35),

E|m(x, u1)−m(x, ux,1)|

≤ C T (x)A
δ/2
l E

(
1 +

∞∑
j=0

(
|ψ1j|+ |ψ2j|

)
||λt−j||max{3β/2,3}

)
≤ C1 T (x)A

δ/2
l ,

we have
∫∞
−∞ |m1l(x)−m1(x)|dx ≤ CA

δ/2
l

∫∞
−∞ T (x)dx→ 0, i.e.,∫ ∞

−∞
m1l(x)dx →

∫ ∞
−∞

m1(x)dx, as l→∞.

Hence, to prove (4.7) with νnk = 0, it suffi ces to show that

Sin = oP (1), i = 1, 2, (7.37)

as n→∞ first and then l→∞.
The proof of (7.37) for i = 1 is simple. Indeed, due to (7.35) and E||λ0||max{3β/2,3} <

∞, it follows from Lemma 7.1 (i) with h = dn/cn and m = 0 that

E|S1n| ≤
cn
n

n∑
t=1

E
∣∣m(cn Znt, ut)−m(cn Znt, ul,t)

∣∣
≤ C A

δ/2
l

cn
n

n∑
t=1

E
(

1 +
∞∑
j=0

(
|ψ1j|+ |ψ2j|

)
||λt−j||max{3β/2,3}

)
T
(
cn Znt

)
≤ C A

δ/2
l sup

j≥0

cn
n

n∑
t=1

E
(
1 + ||λt−i||max{3β/2,3}

)
T
(
cn Znt

)
≤ C A

δ/2
l

(
1 +

dn
n

n∑
t=m0

d−1k
)
≤ CA

δ/2
l → 0,

as n→∞ first and then l→∞, which implies (7.37) with i = 1.
We next prove (7.37) with i = 2. Write p(x, y) = m(x, y)−m1l(x). First note that,

by the boundedness and integrability of E|m(x, u1)|, there exists a finite constant x0
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such that m(x, x0) is bounded and integrable. For this x0, it follows from (7.36) that,
for any l ≥ 1 and x ∈ R,

|p(x, ul,t)| ≤ |m(x, ul,t)−m(x, x0)|+ E|m(x, ul,t)−m(x, x0)|

≤ C T (x)
[
1 +

l∑
j=0

(
|ψ1j|+ |ψ2j|

)
||λt−j||β+1

]
. (7.38)

Therefore, for any l ≥ 0 and x ∈ R, we have

E
(
|p(x, ul,t)|+ |p(x, ul,t)|2

)
≤ CT (x) + C T 2(x)E

[
1 +

l∑
j=0

(
|ψ1j|+ |ψ2j|

)
||λt−j||β+1

]2
≤ C1 T (x)

[
1 +

l∑
j=0

(
|ψ1j|+ |ψ2j|

)
E||λt−j||2β+2

]
≤ C2 T (x). (7.39)

Similarly, for any l ≥ 0 and x ∈ R, it follows that

E|p(x, ul,t)|
(
1 +

l∑
j=1

|εj|
)

≤ C T (x)
[
1 +

l∑
j=0

(
|ψ1j|+ |ψ2j|

)
E
{
||λt−j||β+1

(
1 +

l∑
i=0

|εi|
)}

≤ C1 (1 + l)T (x). (7.40)

Since T (x) is bounded and integrable, (7.38) implies that

Ep2(cn Znk, ul,k) ≤ C (7.41)

for any k ≥ 1; it follows from (7.39) and Lemma 7.1 (i) with h = dn/cn that

E
(
|p(cnZnk, ul,k)|+ |p(cnZnk, ul,k)|2

)
≤ C

dn
cn dk

∫ ∞
−∞
E
(
|p(x, ul,l)|+ |p(x, ul,l)|2

)
dx

≤ C1 dn
cn dk

, (7.42)

for any k ≥ 2l +m0; and by (7.40) and Lemma 7.1 (iii) with h = dn/cn, we have∣∣E[p(cnZnk, ul,1k) | Fj]∣∣
≤

C dn
∑l

j=0 |φj|
cn d2k−j

∫ ∞
−∞
E|p(x, ul,1l)|

(
1 +

l∑
j=1

|εj|
)
dx

≤
C dn l

∑l
j=0 |φj|

cn d2k−j
, (7.43)
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for any k − j ≥ 2l +m0.
Result (7.37) with i = 2 can now be proved by using standard conditional argu-

ments as those of Lemma 2.2 (ii) in Wang (2015). A outline is given as follows.
For each l ≥ 1, we have

ES22n =
(cn
n

)2 n∑
s,t=1

E
{
p(cn Zns, ul,s) p(cn Znt, ul,t)

}
=

(cn
n

)2 ( ∑
|t−s|≤2l+m0

+
∑

|t−s|>2l+m0

)
E
{
p(cn Zns, ul,s) p(cn Znt, ul,t)

}
:= ∆1n + ∆2n.

Using (7.41) and (7.42), we have

|∆1n| ≤
(cn
n

)2 ∑
|t−s|≤2l+m0

E
{
p2(cn Zns, ul,s) + p2(cn Znt, ul,t)

}
≤ C

[
(l +m0)

2
(cn
n

)2
+
cndn
n2

∑
|t−s|≤2l+m0

(d−1s + d−1t )
]

≤ C1
[(l +m0)cn

n
+
((l +m0)cn

n

)2]
.

Using (7.42)-(7.43) and conditional arguments, it follows that

|∆2n| ≤ 2
(cn
n

)2 ∑
t−s>2l+m0

E
{
|p(cn Zns, ul,s)|

∣∣E[p(cn Znt, ul,t) | Fs]∣∣}
≤ C l

l∑
j=0

|φj|
d2n
n2

n∑
s=1

1

ds

n∑
t=s+2l

1

d2t−s

≤ C l
dn log n

n
.

Combining all these estimates, it follows that

ES22n ≤ ∆1n + ∆2n

≤ C l
dn log n

n
+ C1

[(l +m0)cn
n

+
((l +m0)cn

n

)2]→ 0,

as n→∞ first and then l→∞, yielding (7.37) with i = 2.

The proof of (4.7) with wnk = 0 is now complete. We next remove the restriction
wnk = 0. In fact, by (3.5), we have

cn
n

n∑
t=1

m
(
cn Znt, ut + wnt

)
=

cn
n

n∑
t=1

m
(
cn Znt, ut

)
+O(δδn)

cn
n

n∑
t=1

(1 + |wt|β+1 + |ut|β)T
(
cn Znt

)
,
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where wt =
∑∞

j=−d
(
|ϕ1j εk−j|+ |ϕ2j ηk−j|

)
. Note that

(1 + |wt|β+1 + |ut|β) ≤ (1 + ũt)
β+1 ≤ C

[
1 +

∞∑
j=0

(
θ1j + θ2j

)
||λt−j||β+1

]
, (7.44)

where ũt =
∑∞

j=−d
(
θ1j + θ2j

)
||λt−j|| with (letting ψ1j, ψ2j = 0 if j < 0)

θ1j = |ϕ1j|+ |ψ1j| and θ2j = |ϕ2j|+ |ψ2j|.

As δn → 0, result (4.7) follows from that of the first part with wnk = 0 and (7.22)
with h = dn/cn.
The proof of Theorem 4.1 is now complete. 2

Proof of Corollary 4.1. We first prove (4.9). For any given x, write κnt =

γ0x + ut + wnt, κ̃nt = (γnt − γ0)x + κnt and βn = max1≤k≤n |γnk − γ0|. Since at =

hγnt(xt − x)/h+ κ̃nt, it follows from (3.6) that

|f(at)− f(κnt)| ≤ |f(at)− f(κ̃nt)|+ |f(κ̃nt)− f(κnt)|
≤ C

∣∣hγnt(xt − x)/h
∣∣δ(1 + |at|β + |κ̃nt|β

)
+C

∣∣(γnt − γ0)x∣∣δ(1 + |κ̃nt|β + |κnt|β
)

≤ C (hδ + βδn)
[
1 + |ut|β + |wnt|β +

(
|xt − x|/h

)β+1]
≤ C (hδ + βδn)

[
1 + |ũt|β +

(
|xt − x|/h

)β+1]
, (7.45)

where ũt is defined as in (7.44).
Let K1(s) = (1 + |s|β+1)K(s). It follows from (7.45) and (7.22) with p(s) = K1(s)

that

dn
nh

n∑
t=1

f(at)K
[
(xt − x)/h

]
=

dn
nh

n∑
t=1

f(κnt)K
[
(xt − x)/h

]
+O(hδ + βδn)

dn
nh

n∑
t=1

(1 + |ũt|β)K1

[
(xt − x)/h

]
=

dn
nh

n∑
t=1

f(κnt)K
[
(xt − x)/h

]
+ oP (1),

due to h→ 0 and βn → 0. Result (4.9) now follows from (4.7) with

m(t, y) = K(t) f(γ0x+ y), cn = dn/h, c′n = 1/dn, z = −x.

The proof of (4.10) is similar. Indeed, in this case we may write

at = βn(γnt − γ0)xt/βn + γ0xt + ut + wnt,
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and the similar arguments to the proof of (7.45) yield that, for any fixed x,

|f(at)− f(γ0xt + ut + wnt)|
≤ Cβδn |xt|δ

(
1 + |at|β + |γ0xt + ut + wnt|β

)
≤ C βδn

(
1 + |xt − x|1+β

)
(1 + |ũt|β),

implying that (letting K2(s) = (1 + |s|1+β)K(s))

dn
nh

n∑
t=1

f(at)K
(
xt − x

)
=

dn
nh

n∑
t=1

f(γ0xt + ut + wnt)K
(
xt − x

)
+O(βδn)

dn
nh

n∑
t=1

(1 + |ũt|β)K2

[
(xt − x)/h

]
=

dn
nh

n∑
t=1

f(γ0xt + ut + wnt)K
(
xt − x

)
+ oP (1).

Result (4.10) follows from (4.7) with

m(t, y) = K(t) f(γ0x+ γ0t+ y), cn = dn, c′n = 1/dn, z = −x.

The proof of Corollary 4.1 is now complete. 2

Proof of Theorem 5.1. We may write

ĝ(x) =

∑
ηtK[(xt − x)/h]∑
K[(xt − x)/h]

+

∑
g(zt)K[(xt − x)/h]∑
K[(xt − x)/h]

=: R1n +R2n. (7.46)

As in Wang and Phillips (2016) (see, also, Lemma 7.2), it is easy to show that R1n =

OP

[
(nh2)1/4

]
. On the other hand, a simple application of Corollary 4.1 yields that

{ dn
nh

n∑
t=1

K
[
(xt − x)/h

]
,
dn
nh

n∑
t=1

g(zt)K
[
(xt − x)/h

]}
→D

(
LZ(1, 0), Eg

(
x− u1

)
× LZ(1, 0)

)
. (7.47)

The result (5.16) follows from the continuous mapping theorem. 2

Proof of Theorem 5.2. We may write∑
g(zt)K[(xt − x)/h] =: yn1 + yn2,

where

yn1 =
∑

g(x− ut)K[(xt − x)/h]

yn2 =
∑[

g
[
α−1nt (xt − wnt − ut)

]
− g(x− ut)

]
K[(xt − x)/h]
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Due to A5 (i), (iv) and the fact that K(x) has a compact support, for any fixed x,
we have

|yn2| ≤ C
∑[

|α−1nt (||xt − x|+ |wnt|) + |α−1nt − 1| |x− ut|
)(

1 + |x− ut|β + |α−1nt (x− ut − wnt)|β
)
K[(xt − x)/h]

≤ Cx (h+ αn + δn)
n∑
k=1

(
1 + |ũt|β+1

)
K[(xt − x)/h]

= OP

[
(h+ αn + δn)

nh

dn

]
= oP

[(
nh

dn

)1/2]
,

due to αn + δn = O(h) and nh3/dn → 0, where ũt is defined as in (7.44) and we have
used Hölder’s inequality and (7.22). Taking these facts into (7.46), simple calculations
show that (5.17) will follow if we prove

dn
nh

n∑
t=1

K
[
(xt − x)/h

]
,
( dn
nh

)1/2 n∑
t=1

AtK
[
(xt − x)/h

]
→D

(
LZ(1, 0),ΛN × LZ(1, 0)1/2

)
, (7.48)

where At = ηt+g(x−ut)−Eg(x−ut) and N ∼ N (0, 1) independent of LZ(1, 0). This
follows from a simple application of Lemma 7.2, since g̃(y) = g(x − y) − Eg(x − u1)
still satisfies A5(i) with Eg̃(u1) = 0 for any fixed x ∈ R. 2
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8 Appendix B: Proof of (7.20)

Note that

xk − xj =

k∑
i=j+1

ρk−in ξi +

j∑
i=1

(ρk−in − ρj−in ) ξi

=
k∑

i=j+1

ρk−in

( i∑
u=j+1

+

j∑
u=−∞

)
εuφi−u +

j∑
i=1

(ρk−in − ρj−in ) ξi.

We may have

xk = x1jk + x2jk, (8.49)

where x1jk =
∑k

i=j+1 εi ak,i with

ak,i =
k∑
u=i

ρk−un φu−i = ak−i,

and x2jk depends only on εj, εj−1, ...
Let Λm =

∑m
j=1 εtjak−tj and y

∗
jk = x1jk − Λm. It is readily seen that there exists

an m0 > 0 such that, whenever k − j ≥ 2m + m0, 0 < a1 ≤ E(y∗jk)
2/d2k−j ≤ a2 <∞,

where a1 and a2 are constants. As a consequence, similar arguments as in the proof
of Theorem 2.18 of Wang (2015) [In particular, see part (ii), the fact F, and (2.66)]
yields that, whenever k− j ≥ 2m+m0, y∗jk/dk−j has a density function fjk(x), which
is uniformly bounded over x by a constant C and

sup
x
|fjk(x+ u)− fjk(x)| ≤ C min{|u|, 1}. (8.50)

This, together with (8.49) and the independence of εi, implies that

E
{
p(xk/h, λt1 , ..., λtm) | Fj

}
= E

{
p
[
(x2jk + Λm + y∗jk)/h, λt1 , ..., λtm

]
| Fj

}
= E

{∫ ∞
−∞

p
[
(x2jk + Λm + dk−jy)/h, λt1 , ..., λtm

]
fjk(y) dy | Fj

}
=

h

dk−j

∫ ∞
−∞
E
{
p(y, λt1 , ..., λtm) fjk

(−x2jk − Λm + hy

dk−j

) ∣∣Fj}dy. (8.51)

As x2jk depends only on εj, εj−1, ..., and j + 1 ≤ t1, ..., tm ≤ k, we have

E
{
p(y, λt1 , ..., λtm) fjk

(−x2jk + hy

dk−j

) ∣∣Fj}
= fjk

(−x2jk + hy

dk−j

)
E
{
p(y, λt1 , ..., λtm)

}
= 0.
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Taking this fact into (8.51) and using (8.50), we have∣∣E{p(xk/h, λt1 , ..., λtm) | Fj
}∣∣

≤ h

dk−j

∫ ∞
−∞
E
{
p(y, λt1 , ..., λtm)∣∣∣ fjk(−x2jk − Λm + hy

dk−j

)
− fjk

(−x2jk + hy

dk−j

)∣∣∣ ∣∣Fj} dy
≤ Ch

dk−j

∫ ∞
−∞
E
{
|p(y, λt1 , ..., λtm)| min{|Λm|/dk−j, 1}

}
dy

≤
Ch
∑k−min{t1,...,tm}

j=0 |φj|
d2k−j

∫ ∞
−∞
E
{
|p(y, λ1, ..., λm)|

m∑
j=1

|εj|
}
dy,

as required. 2
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