Long-length and thermally stable high-finesse Fabry-Perot interferometers made of hollow core optical fiber
Long-length and thermally stable high-finesse Fabry-Perot interferometers made of hollow core optical fiber
We made and characterized two Fabry-Perot interferometer samples made of the latest-generation hollow core fiber with sub-1-dB/km loss. Thanks to this low transmission loss, we achieved a finesse of over 140 and 120, for interferometer lengths of 5 and 23 m, respectively. This resulted in transmission peaks as narrow as 47 kHz. Our all-fiber Fabry-Perot interferometers have standard single-mode fiber pigtails (for easy integration in conventional fiber optic systems) and employ fiber mode field adapters to enable low-loss coupling between the pigtails and the low-loss hollow core fiber. The high-reflectivity mirrors (>98 %) were deposited directly on the fiber mode field adapters, which were glued to the hollow core fiber, resulting in permanently-aligned Fabry-Perot interferometers. We also measured how the position of the transmission peaks change with temperature (an important performance metrics for most applications, e.g., when used as a narrow-band band-pass filter) and found that it changed 14.5 times less in our Fabry-Perot interferometer relative to a similar device made of standard single mode fiber.
Fabry-Perot, optical fiber applications, optical fiber devices
2423-2427
Ding, Meng
4ce864fb-eb5c-47d6-8902-7b3785a162d7
Komanec, Matej
be991afd-3cb0-458a-a7c8-4557051e2bcf
Suslov, Dmytro
5a67f33b-9b3a-428e-910e-9fbc8d1a6248
Dousek, Daniel
e7308d3b-fdcc-4d9f-ad98-bc905774c860
Zvanovec, Stanislav
037bcfba-8cc7-4f6f-8226-72d29fe7e636
Numkam Fokoua, Eric
6d9f7e50-dc3b-440a-a0b9-f4a08dd02ccd
Bradley, Thomas
d4cce4f3-bb69-4e14-baee-cd6a88e38101
Poletti, Francesco
9adcef99-5558-4644-96d7-ce24b5897491
Richardson, David J.
ebfe1ff9-d0c2-4e52-b7ae-c1b13bccdef3
Slavík, Radan
2591726a-ecc0-4d1a-8e1d-4d0fd8da8f7d
15 April 2020
Ding, Meng
4ce864fb-eb5c-47d6-8902-7b3785a162d7
Komanec, Matej
be991afd-3cb0-458a-a7c8-4557051e2bcf
Suslov, Dmytro
5a67f33b-9b3a-428e-910e-9fbc8d1a6248
Dousek, Daniel
e7308d3b-fdcc-4d9f-ad98-bc905774c860
Zvanovec, Stanislav
037bcfba-8cc7-4f6f-8226-72d29fe7e636
Numkam Fokoua, Eric
6d9f7e50-dc3b-440a-a0b9-f4a08dd02ccd
Bradley, Thomas
d4cce4f3-bb69-4e14-baee-cd6a88e38101
Poletti, Francesco
9adcef99-5558-4644-96d7-ce24b5897491
Richardson, David J.
ebfe1ff9-d0c2-4e52-b7ae-c1b13bccdef3
Slavík, Radan
2591726a-ecc0-4d1a-8e1d-4d0fd8da8f7d
Ding, Meng, Komanec, Matej, Suslov, Dmytro, Dousek, Daniel, Zvanovec, Stanislav, Numkam Fokoua, Eric, Bradley, Thomas, Poletti, Francesco, Richardson, David J. and Slavík, Radan
(2020)
Long-length and thermally stable high-finesse Fabry-Perot interferometers made of hollow core optical fiber.
IEEE Journal of Lightwave Technology, 38 (8), , [8995582].
(doi:10.1109/JLT.2020.2973576).
Abstract
We made and characterized two Fabry-Perot interferometer samples made of the latest-generation hollow core fiber with sub-1-dB/km loss. Thanks to this low transmission loss, we achieved a finesse of over 140 and 120, for interferometer lengths of 5 and 23 m, respectively. This resulted in transmission peaks as narrow as 47 kHz. Our all-fiber Fabry-Perot interferometers have standard single-mode fiber pigtails (for easy integration in conventional fiber optic systems) and employ fiber mode field adapters to enable low-loss coupling between the pigtails and the low-loss hollow core fiber. The high-reflectivity mirrors (>98 %) were deposited directly on the fiber mode field adapters, which were glued to the hollow core fiber, resulting in permanently-aligned Fabry-Perot interferometers. We also measured how the position of the transmission peaks change with temperature (an important performance metrics for most applications, e.g., when used as a narrow-band band-pass filter) and found that it changed 14.5 times less in our Fabry-Perot interferometer relative to a similar device made of standard single mode fiber.
Text
2020_Meng_jlt_HCF-FP_glued_Revision_Final
- Accepted Manuscript
More information
Accepted/In Press date: 9 January 2020
e-pub ahead of print date: 12 February 2020
Published date: 15 April 2020
Keywords:
Fabry-Perot, optical fiber applications, optical fiber devices
Identifiers
Local EPrints ID: 437927
URI: http://eprints.soton.ac.uk/id/eprint/437927
ISSN: 0733-8724
PURE UUID: 1a0575cd-1006-4126-9ba6-d6edf1ee62f3
Catalogue record
Date deposited: 24 Feb 2020 17:30
Last modified: 17 Mar 2024 03:32
Export record
Altmetrics
Contributors
Author:
Meng Ding
Author:
Matej Komanec
Author:
Dmytro Suslov
Author:
Daniel Dousek
Author:
Stanislav Zvanovec
Author:
Eric Numkam Fokoua
Author:
Thomas Bradley
Author:
Francesco Poletti
Author:
Radan Slavík
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.
View more statistics