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ABSTRACT

This paper proposes a set of rotation invariant features based on three dimensional Gaussian Markov
Random Fields (3D-GMREF) for volumetric texture image classification. In the method proposed here,
the mathematical notion of spherical harmonics is employed to produce a set of features which are used
to construct the rotation invariant descriptor. Our proposed method is evaluated and compared with
other method in the literature for datasets containing synthetic textures as well as medical images. The
results of our experiments demonstrate excellent classification performance for our proposed method
compared with state-of-the-art methods. Furthermore, our method is evaluated using a clinical dataset
and show good performance in discriminating between healthy individuals and COPD patients. Our
method also performs well in classifying lung nodules in the LIDC-IDRI dataset. Our results indicate
that our 3D-GMRF-based method enjoys more superior performance compared with other methods in

the literature.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

The presence of texture in our natural world demonstrates its
importance on the characterization of objects or regions. Tex-
tures therefore exhibit rich information about our surroundings.
In computer vision, textures provide essential visual cues about
objects appearance and properties. They play a key role in many
applications, including remote sensing, medical image analysis,
object recognition, and automated inspection. Due to the signif-
icance of textures in computer vision discipline, various meth-
ods have been developed for texture analysis. Such techniques
can be broadly categorized into statistical, structural, spectral,
and model-based methods. They generally aim to extract fea-
tures for texture description in order to classify, segment and
synthesize textures (Tuceryan and Jain, 1993). Most of these
methods are initially developed to characterize textures existing
in two-dimensional images. However, recent advances in three-
dimensional (3D) imaging technology, particularly in medical
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imaging, and the increasing availability of high-resolution im-
ages, require new methods for 3D texture analysis since 2D tex-
ture analysis methods ignore some valuable information con-
tained in 3D textures (Kovalev et al., 2001). Consequently,
many of the methods that are originally proposed for 2D tex-
ture images have been extended to characterize textures in 3D
images. Nevertheless, the extension of these methods into 3D
is not trivial and faces some challenges, such as issues regard-
ing voxels sampling, computation time, and rotation invariance.
Markov Random Fields (MRFs) have been introduced about
two decades ago as a tool for solving visual perception prob-
lems (Wang et al., 2013). One important type of MRFs is the
Gaussian Markov Random Fields (GMRF) which is among tex-
ture analysis methods that has been proved to demonstrate ex-
cellent performance in characterizing textures in 2D images,
and are then employed for texture classification (Chellappa and
Chatterjee, 1985; Dharmagunawardhana et al., 2016) and seg-
mentation (Dharmagunawardhana et al., 2014; Manjunath and
Chellappa, 1991; Mahmoodi and Gunn, 2011; Xia et al., 2006).
GMRF model parameters can capture the essential structures of
texture, and it has been a popular choice for modelling textures



(Tuceryan and Jain, 1993). GMRF extension to characterize
textures in volumetric images has not received much attention,
hence, exploring this would be beneficial in many applications,
especially in medical image analysis applications in which rich
texture information is available in the form of volumetric im-
ages.

The main challenge in texture analysis is to deal with po-
tential changes such as rotation, scales, and translation in tex-
ture images. In the natural world, textures may be observed at
various scales and orientations. An optimal texture descriptor,
therefore, should be invariant to transformations such as scal-
ing and rotation to enable us to develop efficient methods for
texture analysis. Rotation invariance is an essential property of
any efficient texture analysis method because many computer
vision problems presume images are captured at random orien-
tations. Various methods have been developed to achieve ro-
tation invariance for 2D textures. However, extending these
methods for 3D texture is far from being a simple task. Op-
timal rotation invariance requires equidistance sampling, which
is a straightforward task on the circular neighborhood of a 2D
texture. However, such a task becomes complex on a sphere
representing a neighborhood in a 3D texture. Another issue re-
lates to the order of sampled points, which is easily manageable
in the circle but difficult to deal with on the surface of a sphere
due to the dimensionality. These issues establish the need for
developing new methods for 3D texture analysis, enjoying a ro-
tation invariance property.

Existing methods of 3D texture analysis handle the rotation
invariance problem in a few ways. In the method proposed by
Fehr and Burkhardt (2008), the spherical harmonics function
are employed to achieve the rotation invariance by computing
the minimization of the full correlation over all angles between
grey-values of all points on a spherical surface, with a given ra-
dius and the volume representation. These points are weighted
in an arbitrary but fixed order to provide a fast method for a
correlation across all angles. Another method based on spheri-
cal harmonics is proposed by Banerjee et al. (2012) to describe
3D regions; however, unlike the method of Fehr and Burkhardt
(2008), the rotation invariant descriptors are constructed by
computing a set of histograms for each voxel on a sphere equiv-
alent to a set of variables that represent frequency components
of local binary patterns (LBP) codes in a spherical harmonics
domain. By measuring the distance between two histograms,
the similarity between two regions can then be estimated. Based
on a region growing algorithm and uniform patterns, an ex-
tension to the 3D LBP method is proposed in (Paulhac et al.,
2008) by searching for uniform regions located on the surface
of a sphere. A novel method is introduced by Kazhdan et al.
(2003) to construct a rotation invariant descriptor based on the
spherical harmonic representation of 3D shapes. This method
depends on the amount of energy measured within each fre-
quency for each sphere in concentric spheres of different radii.
The function defined in a spherical coordinate system is decom-
posed into its harmonics, and these harmonics are then summa-
rized within each frequency. The L;-norm is computed for each
frequency component to produce 2D descriptors indexed by ra-
dius and frequency. Although this method suffers from infor-
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mation loss due to the possibility of having the same harmonic
reorientations for two different models, it proves to display bet-
ter results in comparison with other descriptors. Despite the fact
that this method describes the 3D shapes rather than volumetric
texture; the idea of using spherical harmonics to achieve rota-
tion invariance is adopted by Banerjee et al. (2012) to construct
a rotation invariant texture descriptor. Additionally, the method
presented by Cid et al. (2017) attempts to classify 3D solid tex-
tures, based on so-called ’steerability’, a key property of the
Riesz wavelets. the steerability property indicates that the local
response of a randomly rotated image can be obtained analyt-
ically from a linear combination of the responses of all com-
ponents of the filter bank without the requirement of a rotated
filter. Depeursinge et al. (2018) investigate the local rotation
invariance (LRI) and directional sensitivity (DS) of radiomics
features stating that optimal radiomics image operators must
combine LRI with DS. To achieve this, invariant texture opera-
tors based on spherical harmonic wavelet (SHW) are proposed
to combine LRI with DS which are then employed for 3D tex-
ture classification. The significance of the local directional in-
formation is also exploited in (El khadiri et al., 2018) to develop
the local directional ternary pattern (LDTP). In this method,
features are extracted from the local ternary pattern (LTP) and
combined with the directional features extracted from local di-
rectional patterns (LDP) to construct a new descriptor for tex-
ture classification. Han et al. (2015) calculate Haralick features
of 3D texture extracted from Lung CT images and utilize them
for pulmonary nodules classification.

In addition to these methods, the deep convolutional neu-
ral networks (CNN) traditionally achieved rotation invariance
by learning through rotation-based data augmentation. Such
a method becomes costly for 3D images due to an intractable
number of rotation arrangements in a 3D space. Therefore, ro-
tation invariance has recently been exploited in CNN for var-
ious problems, including texture analysis. Winkels and Co-
hen (2019) introduce 3D CNNs with group convolutions (3D
G-CNNs) by exploiting the prior knowledge found in images
such as orientation to perform rotation invariance. Worrall et al.
(2017) investigate the issue of CNNs being not rotation invari-
ant and present the Harmonic Networks (H-Nets) to achieve ro-
tation invariance. This is carried out by replacing the CNN filter
with the circular harmonic that represents all rotated versions
of the filter. Andrearczyk and Depeursinge (2018) evaluate the
employment of equivariance and invariance to rotations to clas-
sify 3D textures and conclude that it is beneficial to classify
3D textures by including built-in equivariance and invariance in
CNNs, but this involves considerable computational complex-
ity.

The choice of feature extraction from 3D images using 3D
approaches rather than 2D approaches has been investigated in
(Almakady et al., 2018; Paulhac et al., 2008; Yan et al., 2016;
Griffiths and Boehm, 2019). In medical image analysis, the
development of 3D approaches is curial since most medical
imaging modalities produce volumetric images. However, it
is suggested to use CNN for 2D slices of a 3D volumetric tex-
ture to provide more training data. Such an approach could
tackle the issue of a small number of training data (Xie et al.,



2019). Although 3D CNN is numerically expensive in terms of
time and memory, it achieves better results compared with 2D
CNN because it captures features in 3D space (Yan et al., 2016).
In the method presented in (Xie et al., 2019), semi-supervised
adversarial classification (SSAC) model is proposed using la-
belled and unlabelled data which is employed for benign and
malignant lung nodule classification in chest CT scans. Unla-
belled data in this method is used to minimize the requirement
for data annotation by high-skilled professionals that are not
always available. Hussein et al. (2017) propose 3D CNN multi-
task learning for lung nodules characterization. This method
exploits the volumetric information provided by 3D images of
the CT scan. Such information is lost when 2D slices are used.
The method is then applied for lung nodules classification. The
problem of nodule classification is also investigated in (Shen
et al., 2017) where a method based on multi-crop convolutional
neural networks (MC-CNN) is introduced for lung nodule ma-
lignancy classification. This method utilizes a multi-crop pool-
ing strategy that captures nodule salient information and uses it
for lung nodule classification.

Despite the fact that CNNs have made remarkable improve-
ments in image-related tasks such as image classification and
segmentation (Xie et al., 2019; Litjens et al., 2017; Xie et al.,
2018), there are substantial remaining challenges which could
limit the applications of deep learning-based methods in the
medical field. This is because CNNs require a large-scale anno-
tated dataset for training to achieve better performance which
usually does not exist in the medical domain (Kumar et al.,
2016). In medical imaging, it is challenging to obtain large
amount of data due to ethical issues associated with patient
privacy (Winkels and Cohen, 2018). Furthermore, the lack of
sufficient annotated data complicates these challenges as these
datasets require accurate annotations by high-skilled experts
which is a time consuming task (Tajbakhsh et al., 2016). Be-
sides, the training stage in CNNs requires extensive computa-
tional and memory resources. Although utilizing transfer learn-
ing overcomes the issue associated with small training dataset,
its performance could be influenced by different medical ap-
plications (Tajbakhsh et al., 2016). Such complications can be
avoided by methods based on handcrafted features to become
beneficial for medical image applications in the absence of ex-
tensive training data and powerful hardware.

In this paper, we propose a rotation invariant descriptor for
volumetric texture classification by extending the descriptor
proposed in (Almakady et al., 2018). Unlike deep learning-
based methods, our proposed method does not require large
training data or powerful hardware, which makes it suitable for
medical image applications where datasets are usually small.
The main contribution of this paper is to achieve the rotation
invariance by employing spherical harmonics to remove the ef-
fect of rotation for 3D-GMRF parameters. Unlike the descrip-
tor previously proposed in (Almakady et al., 2018), the size of
the descriptor in the method proposed here does not increase if
more voxels are sampled. This is because the concatenated his-
tograms are computed in terms of spherical harmonic frequen-
cies rather than 3D-GMREF estimated parameters which leads to
a stable computation time. Our proposed method is suitable for

Fig. 1. Graphical representation of voxels y,., sampled over a sphere sur-
face where g, is the central voxel.

tasks that deal with texture features of volumetric images with
any rotated texture patterns. Since volumetric images are com-
monly produced and used in medical imaging applications, our
method can be used in disease detection by classifying discrim-
inative texture features extracted from 3D medical images. In
some diseases, the pathological changes can be characterized
by alterations affecting the texture of tissue, hence, capturing
these textural alterations under various rotation can help to de-
tect the disease. In such cases, our proposed method with the
rotation invariance property can be exploited to recognise tex-
ture patterns that characterize the diseases under any random
rotation. The rest of this paper is organized as follows. A brief
background about 3D-GMREF is given in Section 2. Section
3 introduces our proposed method. Section 4 discusses the re-
sults and performance measurements with comparisons to other
methods. The evaluations of the methods on COPD detection
and lung nodule classification are presented in section 5, and
finally, the paper is concluded in section 6.

2. Background

2.1. Three-dimensional Gaussian Markov Random Field
Model (3D-GMRF)

GMREF has seen various applications in image processing and
analysis including volumetric texture analysis. The 3D-GMRF
model parameters are utilized as features which have been used
for volumetric texture classification (Almakady et al., 2018)
and segmentation (Almakady et al., 2019).

In the method presented in (Almakady et al., 2018), the 2D-
GMRF based method proposed in (Dharmagunawardhana et al.,
2016) is extended to 3D-GMREF for volumetric texture classifi-
cation. In this method, the 3D-GMRF model is generated at
each voxel, where the estimated parameters of the model are
employed as texture features in addition to the mean of a pro-
cessed image region. Let Q = {v = (i,j,k)| 1 <i < H, 1 <
Jj < W,1 < k < D} denote the set of points indexed by (i, j, k)
on a H x W x D 3D lattice corresponding to voxels in three-
dimensional image volume. The local conditional probability
density function of the intensity value g, at location v is defined
by:
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where V, is a neighborhood of the voxel at location v, «,
is a set of interaction coefficients that represent the influence
on a voxel by intensity values y,., located at a relative posi-
tion r in the neighborhood (Dharmagunawardhana et al., 2016;
Petrou and Sevilla, 2006). The neighborhood scheme adopted
here is voxels sampled over a sphere surface with radius R, so
that V, € {0,¢]|0 < 0 < 7,0 < ¢ < 27} and |V,| is equivalent to
the number of voxels. Fig 1 shows the sampled voxels over a
sphere surface equivalent to the neighbors y, ., where the center
of the sphere corresponds to the gray scale of the central voxel
gy. The model parameters in equation (1) are estimated by us-
ing the maximum likelihood estimation (MLE) and is found by
taking the partial derivative of a log-likelihood function with re-
spect to a,, o and setting it to zero. The partial derivative of the
log-likelihood function calculated based on (1), with respect to
A leads to a non-linear equation. Therefore, in this paper, A be-
ing the mean intensity of the neighborhood patch, is computed
separately for each neighborhood patch and is subtracted from
the intensity of the patch to avoid dealing with non-linear equa-
tions and the issues associated with them. Parameters @, and
o are then calculated from patches whose mean is subtracted
beforehand. Such a technique would then lead us to a set of
linear equations for each voxel,
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where @, = rowla,] and y, = col[y,,,] for r € V,, I is
the identity matrix with the same size of the observation ma-
trix y,y7 , the superscript T is the transpose operation, Q, is the
neighborhood patch known as estimation cube and c is a con-
stant number to control the strength of regularization (Friedman
et al., 2001; Bjorkstrom, 2001) . The constant c is a regular-
ization parameter to ensure that the observation matrix is non-
singular and invertible. The value of ¢ is empirically chosen
to maximize the classification accuracy. Parameters estimation
is conducted locally at each voxel resulting in a feature vec-
tor f, = {a,, o-%, A,} for each voxel location v. A descriptor is
therefore constructed by computing a histogram for each of cal-
culated parameters {a,, o2, A} over the whole volume. The cal-
culated histograms are then concatenated to form a descriptor
for the entire volume. However, this descriptor is not rotation
invariant since rotating the texture results in a rotation of neigh-
bors y,., leading to some changes in relevant parameters «, .
Hence, the same process of computing the histograms of cal-
culated parameters leads to different descriptors in comparison
with the descriptors computed before the rotation.

3. Rotation Invariant Descriptor

If a descriptor does not change under any arbitrary rotation,
it is known as a rotation invariant descriptor. However, as previ-
ously stated, constructing such a descriptor is not a trivial task
in a spherical neighborhood. To achieve rotation invariance,

Table 1. Number of classes in each category.

Category name Classes
interpolated 30
Geometric 25
Fourier 15
Mixed texture 25

Fig. 2. Illustration of different sampling systems: On the left, points are
sampled on the surface of the sphere to result in unequally spaced points.
On the right, the points are uniformly distributed on the surface of the
sphere.

we decompose model parametres as a linear combination of or-
thogonal spherical harmonics in this paper to eliminate the ef-
fect of rotating textures that particularly results in changing the
interaction parameters a,. Before applying spherical harmon-
ics, it is important to retain the locations of voxels under any
random rotation. Such a procedure can be achieved by distribut-
ing equidistant points on the neighborhood sphere surrounding
the central voxel g,.

3.1. Equidistant Spherical Sampling

A significant step towards achieving rotation invariance in
2D texture methods proposed by Ojala et al. (2002), is the dis-
tribution of P equally spaced points indexed by p on the cir-
cumference of a circle with radius R. The coordinates of such
points can be simply given by (—Rsin(2np/P), Rcos(2np/P)).
Following the same notion, the uniform distribution of points
on a sphere is essential to achieve rotation invariance for their
indices. The solution proposed by Deserno (2004) is adopted in
this paper where equidistant points are regularly placed on the
surface of a sphere. The circles of latitude are defined at a con-
stant interval dy, while points on those circles are also sampled
at constant intervals dg such that dy ~ d and,

dydy = 4nr* IN “4)

where r is the radius of a sphere, N is the number of points re-
quired to be uniformly distributed on the surface of a sphere.
Fig 2 (right) shows the arrangement of points in an equidis-
tant sampling scheme, resulting in uniformly distributed points
on the surface of the sphere. In contrast, the popular sampling
scheme samples points on ¢ and 6 with equal distance; how-
ever, the conversion to the Cartesian coordinate system results
in points bunched around the poles (8 = &, 6 = 0) where it is
sparse around (@ = m/2), this sampling scheme then leads to the
incorrect distribution of points (See e.g. Fig. 2 (left)).
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Fig. 3. Example of constructing rotation invariant descriptors for normal and rotated samples.

3.2. Spherical Harmonics

Spherical harmonics (SH) are a set of orthogonal functions
with which any function in a spherical coordinate system can
be linearly decomposed. They are analogous to Fourier kernels
in Fourier transformation. The transformation with spherical
harmonics results in complex valued coefficients (Green, 2003).
For given sampled points on a unit sphere, the real Y3,(6, ¢) and
imaginary Y;}(6, ¢) parts of spherical harmonic functions with
degree £ and order m are defined by:

v - V2K cos(mg)P(cos) m # 0 5)
REZ\ KD P)(cost) m=0

o V2K sin(jmg|)P2(cos6) m # 0 ©)
re K?P?(COS@) m=0

where £ e R, ¢ <m < ¢, P} is the associated Legendre
polynomial and K7 is a scaling factor to normalize the function
and is given by:

4 (€ + |m|)!

The projection of functions in spherical coordinates into real
and imaginary spherical harmonics are coeflicients Cy, and C7,
with degree ¢ and order m. These coefficients are 31mp1y com-
puted by integrating the product of spherical function f and the
spherical harmonics function as follows:

K = \/(25+ 1) (€ = |m])! -
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The discrete approximation of function f by using these coeffi-
cients C, and C7; for n number of bands is written as follows:

—

4

Z ( o+ JCI)(Yre(6, ¢) + jY7;(6, ¢)) (10)

m=—{

n—

f6.¢) =

T
<)

Where j = \/_ 1, ¢ is a positive integer value in the range [0,
n— 1], and Cy, , C}, are calculated in (8) and (9) respectively.
An important property of spherical harmonics is the rotation in-
variance. According to such a rotational invariance property,
the projection of function f is identical to the rotation of pro-
jected function f (Kazhdan et al., 2003). Hence, any rotation of
function f does not change its L,-norm (Banerjee et al., 2012).
Based on this key property, the rotation invariant descriptor is
proposed by computing the amount of energy contained within
each spherical harmonic frequency, which are constant over any
random rotation of the spherical function.

3.3. Construction of 3D-GMRF Rotation Invariant Descriptor

The 3D-GMRF model parameters a, at voxel v measure the
influence of voxels y,., on the surface of a spherical neighbor-
hood, in the central voxel g, (see Fig. 1). As previously stated,
the rotation of neighbors y, ., results in the changes of parame-
ters a,. To remove the effect of rotation, a function f is defined
at voxel location v to represent the estimated parameters «, (see
equation 2) that are sampled on the neighborhood sphere. Let
(6, ¢) € Q; where Q, represents the uniformly distributed points
on the surface of a sphere and let the function f represents the
GMRF model parameters «@,. The 3D-GMREF rotation invariant
descriptor is therefore defined by:

H(IFy-1l) . H(o?) , H(D)
1D
Where P is the number of points sampled on the surface of
neighborhood sphere with radius R, H(.) is the histogram of the
descriptor’s elements over the entire volume and ||F|| is the L;-
norm of the frequency component (Kazhdan et al., 2003) of the
function f computed by:

Fedl = |>> 1Fuo,9)P (12)
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where F((0, ¢) is calculated as:
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Fig. 4. Construction of the rotation invariant descriptor GMRF;,%”'. (€}]
For each voxel in the volume image, discrete points are parametrized on
the sphere and parameters «, are estimated to represent a function in the
spherical coordinate system. (2) The function is decomposed into its har-
monic frequencies. (3) Within each frequency, the harmonics are accumu-
lated, and a L,-norm is computed for each frequency component to result
in a set of variables for each voxel. (4) A histogram is computed for each
variable, including variance o2 and mean A. (5) Histograms are concate-
nated to construct a rotation invariant descriptor for the whole volume.
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Each voxel in the volumetric image is composed of a set of ele-
ments representing the L,-norm of frequency components || F||,
in addition to other model parameters o> and 4, since variance
and mean are not affected by texture rotation. A histogram is
computed for each of these elements to produce a rotation in-

Fig. 5. Example of volumetric textures from the solid texture database syn-
thesized by the interpolation method. The top row represents a normal
subset and samples in the bottom row are rotated versions of the normal
subset.

variant descriptor representing the entire volumetric image at
any random rotation. In the example illustrated in Fig. 3, two
volumetric texture patches with different orientation produce
identical descriptors. The construction process of our proposed
method is illustrated with more details in Fig. 4.

4. Volumetric Texture Classification

4.1. Dataset

There are few synthetic volumetric texture datasets available
for methods evaluation. The RFAI database is one of the avail-
able databases for synthetic 3D texture images (Paulhac et al.,
2009), which is created to evaluate texture classification and
segmentation methods. This database is constructed using two-
dimensional dataset such as Brodatz and fractal textures. Four
different methods are employed to generate 3D textures in this
database. The first method is by interpolating two or more 2D
texture images to construct a volumetric texture (See e.g. Fig.
5). In the second method geometric shapes such as spheres and
cubes, are used to generate volumetric textures (See e.g. Fig.
6). Fourier transformation is employed to synthesize volumet-
ric textures in the third method (See e.g. Fig. 7), whereas the
fourth method is a mixture of the three previous methods to gen-
erate volumetric textures. Table 1 lists the number of classes
contained within each category. These methods produce four
different categories in which each category contains five types
of textures according to the type of distortion: normal, rotated,
Gaussian blur, Gaussian noise, and subsampling. Each of these
types contain several classes and each class is composed of 10
volumetric images with a size of 64 x 64 x 64. The database also
offers a dataset for segmentation problems. This diversity of
synthetic textures provides an appropriate way to evaluate tex-
ture analysis methods under different conditions. All datasets
with their subsets are considered to evaluate our proposed ro-
tation invariant descriptor. A simple program is developed to
easily construct the volumetric texture with size 64 X 64 x 64.



Table 2. Classification accuracies [ %] of our method and some other methods using RFAI datasets.

Synthetic Texture Dataset

Descriptor Fourier Geometric Interpolated Mixed texture
rotate noise smooth subsampling | rotate noise smooth subsampling | rotate noise smooth subsampling | rotate noise smooth subsampling
A GMRF}?;’ 97.3 100 72.0 47.0 98.0 100 828 28.4 99.6 93.0 7859 49.16 988 99.6 920 26.8
B GMRFifI 59.33 - - - 704 - - - 43.81 - - - 70.0 - -
C 3D Riesz 97.0 100  87.0 45.0 8.0 960 420 21.0 - - - - - -
D NI/RD/CI - LBP""% | - - - - - - - - 953 - - R _ R
~P=32
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Fig. 6. Example of volumetric textures synthesized by the geometrical
method. The top row represents a normal dataset and samples in the bot-
tom row are rotated versions of the normal dataset.

Fig. 7. Example of volumetric textures synthesized by the Fourier method.
The sample of the left represents a normal dataset and the sample on the
right is the rotated version of the normal dataset.

4.2. Metrics and Parameter Selection

The rotation invariant descriptor proposed here are examined
by using different datasets, metrics and parameter settings. The
similarity between descriptors is estimated by using L;-norm as
a distance metric and the k-nearest-neighbors (kNN) with (k=1)
is exploited to classify the textures. The leave-one-out strat-
egy is used to measure classification accuracy. The best num-
ber of histogram bins is selected to produce the highest rate
of accuracy. However, the number of bins should not be se-
lected in such a way that it leads to an increase in the descriptor
size. Various numbers of points P sampled on the surface of the
neighborhood sphere are selected, P = {32, 42, 60, 100, 200} to
assess the performance of the descriptor, while the radius R of
the sphere is assigned to {1, 2}. The normal (unrotated textures)
subset of each dataset is used as a training set, and each of the
other subsets including the randomly rotated textures subset is
used as a test set.

Histogram bins

Fig. 8. Classification accuracies [ %] achieved for various sampling points
(P) and R = 1 by employing different numbers of histogram bins.

4.3. Results and Discussions

In this section, our proposed descriptor GMRF %ﬁ”' is eval-
vated and compared with other methods using RFAI database.
The performance of our method using different settings is also
evaluated using a selected dataset from RFAL

4.3.1. Performance Evaluation and Comparison to Other
Methods

The aim of the first experiment here is to ensure that the
GMRF}}" is truly rotation invariant. Our proposed method
here along with the rotation variant method GMRF %ﬁ proposed
in (Almakady et al., 2018) are both evaluated on the rotated
subset of the four datasets. For each dataset, we train the nor-
mal subset and test the methods on the rotated subset. Since the
rotation variant descriptor GMRF f,% is constructed by concate-
nating the histograms of GMRF parameters, any texture rota-
tion leads to the change of parameters order and therefore re-
sults in unsatisfactory classification performance. The correct
classification accuracies of both methods presented in Table 2
(A-B) show that our proposed rotation invariant descriptor suc-
cessfully classifies the rotated set while the other method poorly
performs when the rotated subset is used. Further investigation
is carried out by employing more rotation angles to examine
the rotation invariance property of the descriptor proposed here.
The classification performance of GMRF f,?{i is evaluated under
various rotation angles and is compared with the performance
of the rotation variant method GMRF iﬁ. The normal (unro-
tated) subset from the volumetric texture dataset is selected as a
training set, then the two methods are tested on the textures ro-
tated with angles ranging from 0° to 340° around axes x, y and
z. The results of this experiment displayed in Table 3 also indi-
cate that despite the fact that our rotation invariant descriptor is



Table 3. Classification accuracies achieved with various rotation angles

Classification accuracy [%] for each angle

Method Axis  0° 20° 40° 60° 80° 100° 120° 140° 160° 180° 200°  220°  240°  260°  280° 300° 320° 340°
X 100 996 964 944 940 89.6 90.4 88.8 87.2 94.4 88.0 86.4 90.0 94.4 95.2 94.8 95.6 99.2
GMRFif[i y 100 992 964 976 960 93.6 90.8 88.8 87.6 96.0 90.4 90.0 93.2 96.0 96.8 97.6 98.4 99.2
4 100 976 952 948 960 952 92.0 89.2 88.0 92.8 88.4 86.0 87.6 89.2 94.0 95.2 95.2 98.0
X 100 69.6 484 428 456 464 40.8 39.2 432 67.2 48.0 34.8 41.6 48.0 48.0 472 49.6 724
GMRF;?Q1 y 100 760 596 59.6 628 560 46.8 47.6 51.2 62.8 51.2 48.4 52.8 60.8 59.2 55.6 61.2 76.4
z 100 656 512 444 444 508 44.4 38.4 45.6 63.2 40.4 36.8 36.0 43.6 45.2 44.8 47.2 63.2

only trained on the normal (unrotated) samples; it successfully
classifies the samples under various rotations. The rotation in-
variant descriptor proposed here achieves higher performance
than the rotation variant method through all rotation angles, ex-
cept for the O where no rotation has been applied. The rotation
variant method GMRF f,ﬁ, on the other hand, performs lower
in classifying the rotated samples as the descriptors constructed
by this method are not rotation invariant and therefore the clas-
sification is highly affected by the rotation. The aforementioned
results indicate that GMRF f,fl){" proposed here is invariant to ro-
tation.

To demonstrate the classification performance of GMRF 32"

descriptor, a comparison with two recent texture-based methods
is made by using the same synthetic dataset. The first method
is an LBP-based method proposed in (Citraro et al., 2017) to
combine three descriptors NI/RD/CI—LBP""3¢ extracted from
3D volumetric textures. These are intensity, radial difference,
and contrast descriptors respectively. This method is evaluated
on the rotated subset of the interpolated dataset in the RFAI
database consisting of 30 classes, each comprising 10 volumet-
ric images (Paulhac et al., 2009), (see Table 1 for further de-
scription regarding this synthetic dataset). The second method
proposed in (Cid et al., 2017) based on the 3D Riesz wavelet,
consists of three approaches for local image orientation estima-
tion, based on multidimensional Riesz, uni-directional Riesz,
and first-order Riesz components. Our method is evaluated us-
ing all datasets of the RFAI database and compared with the
reported results of the each method involved in this compari-
son. All subsets, normal, rotate, noise, smooth and subsampling
are considered in this experiment in which the normal subset of
each dataset is used as a training set, and the testing is per-
formed on the remaining subsets of the corresponding dataset.

The classification accuracies presented in Table 2 (A,C,D)
demonstrate the excellent performance of our proposed de-
scriptor GMRF f,%” , outperforming the other two descriptors.
For Geometric dataset in particular, our proposed descriptor
outperforms the 3D Riesz wavelet-based method (Cid et al.,
2017) with a significant margin. The descriptor proposed here
also comparatively performs well with noise, smooth and sub-
sampling subsets data. Comparing with Riesz wavelet-based
method, our proposed descriptor is favorably competitive for

Fourier dataset and performs better for Geometric dataset.

The proposed method here is further evaluated using differ-
ent sampling rates and histogram bins values. The classifica-
tion accuracies presented in Table 4 demonstrate the classifica-
tion performance of GMRF}7" at different sampling rates us-
ing the interpolated dataset of the RFAI database. It is observed
that our descriptor achieves the best results with sampling rate

Table 4. Classification accuracies [ %] for various sampling rates (P), R =
1 and two histogram bins values using interpolated dataset of the RFAI
database.

Classification Accuracies [%]

P Histogram bins =5 Histogram bins =10
32 96.99 97.99
42 98.66 99.66
60 98.32 99.66
100 98.32 99.66
200 94.98 93.97

P = {42,60, 100} with 10 number of histogram bins. With too
few or too many sampling points such as P = {32,200} the
performance is slightly lowered. This is because a high sam-
pling rate on a sphere with radius R = 1 tends to capture noise,
while a low sampling rate leads to the ignorance of fine details
and therefore reduces the discriminative power of the descrip-
tor. With only P = {42}, the descriptor can capture significant
details that are enough to characterize the local textures with
less sensitivity to noise. With P = {60} sampling points, our de-
scriptor also achieves a satisfactory result; however, it requires
more computation time when compared with P = {42}.

Fig. 8 depicts the classification accuracies obtained by set-
ting a different number of histogram bins using the interpolated
dataset. It is evident that the accuracy is improved when using
a histogram with 10 bins but starts gradually dropping until it
reaches a histogram with 40 bins. The accuracy then remains
steady at low values with very slight changes. Therefore, the
best appropriate value of histogram bins is 10 leading to a high
classification performance with a low-dimensional descriptor.

The scales can be controlled by altering the value of radius
R, as higher values of R can capture larger structures. Clas-
sification accuracies displayed in Fig.9 indicate that R = {1}
performs better than R = {2} on the Interpolated dataset except
for higher sampling rate P = {200}. As previously explained,
this high number of sampling points tends to capture noise in
R = {1}. The relatively low classification accuracy associated
with R = {2} compared with the accuracy for R = {1} is poten-
tially due to the importance of adjacent neighbors of the central
voxel in texture structures. This is because for larger radii, for
instance R = {2}, the adjacent neighbors of the central voxel
are ignored and faraway neighbors, which contribute less, are
considered. Nevertheless, higher scales i.e. larger R, can char-
acterize macro structures or dominant patterns that are located
at a large scale (Ojala et al., 2002). The size of the descriptor is
based on the number of frequency components resulting from
the accumulation of the spherical harmonics in addition to the
variance o2 and mean A. In other words, given the number of
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Fig. 9. Classification accuracies [ %] of different scales R = {1, 2} for differ-
ent sampling rate P = {42, 60,200} when the number of histogram bins is
set to 10.

spherical harmonic bands n, the size of descriptor is calculated
by:

IGMRF Y| = (n+2) % b (14)

where b is the number of histogram bins, the additional terms
refer to the variance o> and mean A. It is obvious that the
number of sampling points P does not affect the size of the de-
scriptor. This is because the parameters «, of 3D-GMRF model
are decomposed into a fixed number of frequency components
of spherical harmonics proportional to the number of bands n.
This overcomes the problem of the growth of sampling points,
resulting in a reduction in descriptor sizes and therefore less
computational time is required for matching histograms.

The classification performance of the descriptor is reported
here through the Cumulative Match Characteristic (CMC)
curve. The CMC represents the classification accuracies
achieved within the Rank-k where £ is the kth nearest neighbor.
As can be seen from Fig.10, the perfect classification among all
datasets can always be achieved within Rank-5 and in particular
within Rank-2 for Fourier dataset.

5. Application to Medical Image Classification

5.1. Application to COPD Detection

In this experiment, the descriptor proposed here is employed
for the detection of chronic obstructive pulmonary disease
(COPD). Clinically, COPD refers to a group of progressive lung
diseases defined as a common, preventable, and treatable dis-
ease characterized by persistent respiratory symptoms and air-
flow limitation that is due to airway and/or alveolar abnormali-
ties (Vogelmeier et al., 2017). This disease is characterized by
pathological changes affecting the texture of a healthy lung in
the CT scan images of lungs. The changes in lung textures can
be detected to discriminate COPD patients from healthy indi-
viduals by classifying the features extracted from lung images.

A clinical dataset of full-lung HRCT volumetric images com-
posed of 32 subjects is exploited in this experiment. These are
19 healthy subjects and 13 subjects diagnosed with COPD. The
rotation invariant descriptor is constructed for each subject by
applying our method on extracted randomly rotated volumes
of interest (VOIs) from the HRCT images of lungs (See e.g.

Table 5. Comparison of our method with other handcrafted feature based
methods on the COPD dataset for various values of R.

Method Classification accuracy [%]
R=1 R=2 R=3

A GMRF2 90.63 81.25 8437
B GMRFZQ1 81.25 75.00 78.12
C LPH 750 5625 75

D LBP 78.12 71.88 75

E 3D GLCM 75.00 - -

F  Gabor filters 78.12 - -

G SIFT 75 - -

H Intensity features method 68.75 - -

I Density-based method 71.88 - -

Fig. 11). We conducted three experiments investigating our
proposed method performance on the COPD dataset. The first
experiment given in Section 5.1.1 presents the comparison with
the texture based methods. Section 5.1.2 compares our method
with the intensity based methods. The comparison with deep
learning based methods is finally presented in Section 5.1.3.

5.1.1. Comparison to texture based methods

This experiment aims at comparing our method with texture
feature based methods using the COPD dataset. Five differ-
ent texture-based methods are considered in this experiment in
addition to our previously proposed method GMRF ;ﬁ to ex-
amine the rotation invariance property. These methods are;
the local parameter histogram (LPH) method based on 2D-
GMRF (Dharmagunawardhana et al., 2016), LBP (Ojala et al.,
2002), three-dimensional gray-level co-occurrence matrix (3D
GLCM) (Haralick et al., 1973; Han et al., 2015), features ex-
tracted by a bank of Gabor filters (Manjunath and Ma, 1996)
and scale invariant feature transform (SIFT) (Lowe, 2004) . In
3D GLCM, a set of texture features is derived for each VOI
from the 3D GLCM by using 13 angular directions and 4 dis-
tances. For LPH and LBP, we set R = 1 and P = 8, while Ga-
bor filters are computed using six orientations and four scales
as reported in (Manjunath and Ma, 1996). SIFT is a rotation
and scale invariant method for local feature extraction, which
has been used for various tasks including texture classification
(Yang and Newsam, 2008; Xu et al., 2012). In this experiment,
a number of keypoints are detected for each slice in VOIs, and
then the 128 dimensional descriptors are constructed for these
keypoints. To perform the classification task, a normalized
global descriptor is obtained by computing the distribution of
the local descriptors after being labelled using the k-mean clus-
tering algorithm (Yang and Newsam, 2008). The above meth-
ods are applied to each slice in the same extracted VOIs, and
then the best result achieved among all slices in VOIs is se-
lected to ensure a fair comparison. The classification accura-
cies presented in Table 5 (A-G) demonstrate the discriminatory
power of the descriptor proposed here to distinguish between
healthy individuals and COPD patients compared with all other
methods. Moreover, the outcomes of the comparison between
the GMRF-based methods (A and C in Table 5), in addition to
the performance of Gabor filters and SIFT, support the assump-
tion that information contained in 3D HRCT images is better
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Fig. 10. CMC curves demonstrating the classification performance of our proposed descriptor on different datasets : (a) Interpolated dataset (b) Geometric

dataset, (c) Fourier dataset and (d) Mixed texture dataset.

described by 3D descriptors, therefore, when extracting texture
features from 3D images, the 3D model can better describe a 3D
texture. In contrast, the 2D based methods process each slice in
the volume separately which would lead to the negligence of
valuable information which could be found by including the
third dimension. Moreover, since the method that shown in Ta-
ble 5 (B) is variant to the rotation, it is not able to capture dif-
ferent rotated textures and then performs less than the method
presented in Table 5 (A) on the rotated VOIs. Regarding the
Gabor filters-based method shown in Table 5 (F), besides the
low classification performance, a disadvantage associated with
the method of Gabor filter bank, is that it requires filtering the
bank of filters with textures rotated under a maximum number
of angles to extract features for different possible rotated pat-
terns. Such a process of filtering would be numerically expres-
sive and time consuming and also interactable for all possible
rotation angles. In contrast, our method extracts the rotated fea-
tures using the rotation invariant property. As can be seen from
Table 5 (A-D), increasing the neighborhood size (Radius R) is
not always beneficial because this incorporates irrelevant vox-
els that could have less influence on the central voxel. Larger
neighborhood sizes also could lead to the negligence of micro
textures which could be found in a small neighborhood size.

5.1.2. Comparison to intensity based methods
The importance of texture information extracted from CT
images has already been proved to be effective in COPD de-

tection (Park et al., 2008; Uppaluri et al., 1997, 1999; Sluimer
et al., 2003; Sorensen et al., 2010). Additional experiments
are conducted here to measure the performance of our method
when texture features are excluded in COPD images analysis.
The aim of this experiment is to demonstrate the discriminative
power of texture features for COPD diagnosis by analysing 3D
lung HRCT scans. The same VOIs extracted previously from
the clinical dataset are used in the following experiments.

A. Comparison with features excluding texture information

In this experiment, our proposed method is tested by
excluding the texture features @, and o2 and keeping only
the intensity feature represented by A, . This results in the
feature vector f, = {4,} which leads to the final descriptor i.e.
GMRF ]3,%”' = H(A) . This descriptor is constructed for each
of the VOIs and then the same settings and process described
in Section 4.2 are followed for R = {1}. The classification
accuracy obtained by using only intensity features is 68.75%
as presented in Table 5 (H). This accuracy is much less than
the accuracy with full texture model 90.63% presented in Table
5 (A). This clearly demonstrates the importance of the texture
features forming our descriptor to distinguish between healthy
individuals and COPD patients.

B. Comparison with density-based method



In this experiment, our method is compared with a density-
based method on COPD detection to emphasize the importance
of texture compared with intensity. The presence of COPD (i.e.
emphysema) can be detected by quantifying the low attenuation
area (LAA) in CT images of lungs attributable to the abnormal-
ities and destruction of the lung tissues (Muer et al., 1988; Mas-
calchi et al., 2017) . Computing the histogram of LAA in the
CT images of the lung can lead to the detection of the disease
(Sorensen et al., 2010). There are different measurements de-
rived from the histogram of LAA such as mean density, relative
area (RA) and the percentile of LAA distribution (Mascalchi
et al., 2017) . We select the percentile of LAA distribution as
a measurement derived from the histogram of LAA to com-
pute the lung density based only on the intensity values of the
VOIs. The percentile of LAA distribution is defined as the dis-
tribution of all values in Hounsfield units (HU) under a specific
threshold (Mascalchi et al., 2017). The 15th percentile has been
used practically as an optimal threshold (Stoel and Stolk, 2004;
Lynch, 2014), therefore it is chosen in this experiment where
a threshold of -950 HU is selected for density quantification
(Lynch, 2014). The classification is performed according to the
percentage of voxels under -950 HU in the VOIs. If the 15th
percentile of a given VOI is -950 HU or less, then it indicates
the presence of emphysema, otherwise the subject is healthy.
The classification accuracy of this experiment is 71.88% as pre-
sented in Table 5 (I). Such a result supports the outcomes of
previous research indicating the advantages of texture analysis
over the intensity analysis for COPD detection.

5.1.3. Comparison with deep-learning-based methods

Deep learning approaches such as CNN have demonstrated
a magnificent performance in many fields of machine learning,
including image classification. However, the size of training
data plays a vital role in the performance of the CNN models.
Therefore, in this experiment we aim to compare the perfor-
mance of our method with CNN based methods when the size of
the training data is small . Such a scenario is prevalent in medi-
cal domain where only a small size of training data is available
for many reasons discussed earlier. We employ two pre-trained
CNN models; Residual Network architecture with 50 layers
(ResNet-50) (He et al., 2016) and AlexNet (Krizhevsky et al.,
2012) trained on the ImageNet database and have rich feature
representations for various image classes. We adapt those net-
works to our classification problem by replacing the last fully
connected layer and the final classification layer, with new lay-
ers to have a two classe output to match the number of classes in
the COPD dataset. The size of the images is also adjusted to fit
into the input layer of the networks. The 2D slices are extracted
from each VOIs across the third dimension and then randomly
split into training and validation data sets where 90% of the data
is used for training. During the training, images are randomly
augmented to increase the size of the training set. The adjusted
networks are then fine-tuned for 20 epochs with a learning rate
set to 0.0001 and employed for COPD classification. The re-
sults presented in Table 6 are the mean and standard deviation
of classification accuracies of each network running ten times
independently. It can be noticed that our method performs bet-
ter in comparison to the pre-trained ResNet-50 and Alex-Net.
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Table 6. Comparison of our method with deep learning-based methods on
the COPD dataset.

Method Classification accuracy [%]
1 GMRF fé)j" 90.63
2 ResNet-50 87.50+0.09
3 AlexNet 85.94+.05

Fig. 11. VOIs sample taken from HRCT images of lungs in the clinical
dataset.

However, it is important to mention that the relativly low per-
formance of the deep learning methods is most likely due to the
insufficient dataset involved in this expreiment. Nevertheless,
our proposed method here is not affected by the small size of
the dataset. These results suggest that our proposed method can
be used in medical applications where the datasets usually have
small sizes.

5.2. Application to Lung Nodule Classification

The dataset used in this experiment is the Lung Image
Database Consortium and Image Database Resource Initiative
(LIDC-IDRI), which is publicly accessible for medical imag-
ing research (Armato III et al., 2011). The database contains
1018 clinical chest CT scans, each of which is associated with
an XML file that involves detailed information about each case,
such as nodules locations and annotations. Each nodule in the
(LIDC-IDRI) database is rated by a 5-point scale of its level of
malignancy by up to four experienced thoracic radiologists. We
extract the nodules with their associated centres according to
the nodule collection report (A. P. Reeves, 2011). We compute
the median malignancy level (MML) of each nodule to annotate
its level of malignancy. Each nodule with MML> 3 is labelled
as malignant whereas a nodule with MML< 3 is labelled as
benign. A nodule with MML=3 is regarded as uncertain and is
excluded from this experiment. Therefore, after removing some
nodules with ambiguous information and nodules with missing
slices, we end up with 884 benign and 514 malignant nodules
included in this experiment. A cube with a size of 64 X 64 x 64
centred at each extracted nodule is considered to capture the
majority of the nodule, and then we place an adaptive sphere
inside the cube to include only the nodule and exclude the sur-
rounding tissue based on the information provided by the re-
port (A. P. Reeves, 2011), and then we apply our method on
extracted patches of the nodules. Figure 12 depicts some exam-
ples of benign (left) and malignant (right) lung nodules in chest
CT scans visualized in the 3D space. Results are reported as
the mean, standard deviation, sensitivity/recall and specificity
of 10-fold cross-validation. Our proposed method is compared
with two CNNs based methods (Shen et al., 2017) and (Hussein
et al., 2017) . Since their datasets are different in the number of
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Table 7. Comparison of our method with deep learning-based methods on the (LIDC-IDRI) database.

Number of Nodules Results [%
No. | Method B M Accuracy Sensitivity/[Re]call Specificity
A GMRFiQTi 884 514 91.45+0.10 83.48+0.02 96.07+0.01
B GMRFEZD,’I’i 528 297 92.63+1.51 87.27+0.03 95.66+0.01
C Multi-crop CNN 528 297 87.14 77.00 93.00
D GMRF?@{" 635 509 91.57+1.43 87.86+0.03 94.55+0.01
E 3D CNN 635 509 91.26 - -

Fig. 12. 3D visualization of benign (left) and malignant (right) lung nodules
in chest CT scans.

nodules, our dataset is adjusted to match the same number of
nodules reported in those methods for a fair comparison with
methods. The reduction of the dataset is performed through a
random selection of nodules from the dataset repeated ten times
to ensure an unbiased selection of data. Table 7 presents the
classification performance of the methods involved in this ex-
periment. In row A of this table, our proposed method uses
all extracted nodules ( 884 benign and 514 malignant) while a
part of the dataset is employed in rows B and D of Table 7. It
can be seen from Table 7 that our proposed method performs
well in classifying the lung nodules in comparison to the other
methods.

6. Conclusion

In this paper, a 3D-GMRF-based rotation invariant method is
proposed for volumetric texture classification by exploiting the
rotation invariance property of the spherical harmonics. The
function that defines the estimated parameters @, on the sur-
face of the neighborhood sphere is decomposed into its spheri-
cal harmonics with multiple bands. The harmonics within each
band are then accumulated and an L,-norm is computed for fre-
quency components. A histogram of each component is then
computed over the volume in addition to the histograms of o
and A. These histograms are concatenated to construct the ro-
tation invariant descriptor. The classification performance of
the descriptor is examined by classifying the rotated subset of

various datasets in the RFAI synthetic database for volumetric
textures. Our descriptor demonstrates good classification per-
formance by achieving high classification accuracy with vari-
ous sampling rates and a reduced number of histogram bins. To
demonstrate the classification performance of our descriptor,
we present various experiments to compare our method with
the state-of-the-art methods on synthetic and medical datasets
of COPD and LIDC-IDRI. The results presented here demon-
strate the excellent classification performance achieved by our
proposed descriptor in comparison with the methods investi-
gated here. Our descriptor also demonstrates good performance
in comparison with a 2D-GMRF based method to discriminate
COPD patients from healthy individuals in a clinical dataset to
indicate the importance of extracting features from the struc-
ture of 3D volumetric data. To examine the significance of the
texture features, additional experiments are discussed here by
considering only the intensity features. The results show the
superior performance of the texture features for COPD detec-
tion.
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