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Abstract—Given the requirements of increased data rate and
massive connectivity in the Internet-of-things (IoT) applica-
tions of the fifth-generation communication systems (5G), non-
orthogonal multiple access (NOMA) was shown to be capable
of supporting more users than OMA. As a further potential
enhancement, the faster-than-Nyquist (FTN) signaling is also
capable of increasing the symbol rate. Since NOMA and FTN
signaling impose non-orthogonalities from different perspectives,
it is possible to achieve further increased spectral efficiency by
exploiting both. Hence we investigate the FTN-NOMA uplink in
the context of random access. Although random access schemes
reduce the signaling overheads as well as latency, they require
the base station to identify active users before performing data
detection. As both inter-symbol and inter-user interferences
exist, performing optimal detection requires a prohibitively high
complexity. Moreover, in typical mobile communication environ-
ments, the channel envelope of users fluctuates violently, which
imposes challenges on the receiver design. To tackle this problem,
we propose a joint user activity tracking and data detection
algorithm based on the factor graph framework, which relies
on a sophisticated amalgam of expectation maximization (EM)
and hybrid message passing algorithms. The complexity of the
algorithm advocated only increases linearly with the number
of active users. Our simulation results show that the proposed
algorithm is effective in tracking user activity and detecting data
symbols in dynamic random access systems.
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I. INTRODUCTION

Wireless communications has played an increasingly impor-
tant role in modern society. The rapid development of commu-
nication technologies has fueled the roll-out of the Internet-of-
things (IoT) in 5G wireless systems [1]–[3]. In particular, low-
cost mobile devices with considerable computational capabil-
ities facilitate the massive deployment of machine-type com-
munications (MTC) or machine-to-machine (M2M) commu-
nications. Unlike conventional human-type communications,
MTC involves a massive number of devices. Thus, massive
connectivity should be supported in next-generation mobile
communications. In conventional orthogonal multiple access
(OMA) [4], [5], each user is assigned with an orthogonal
radio resource element for avoiding inter-user interference.
However, due to the limited radio resource elements and an
increasing number of devices, traditional OMA may not be
able to support massive access in MTC.

Recent investigations on non-orthogonal multiple access
(NOMA) have shown that it is capable of supporting massive
connectivity [6]–[8]. By introducing controllable interference,
multiple users can share the same orthogonal radio resource
elements, which allows a communication system to support
more users relying on the same amounts of orthogonal radio
resource elements as OMA. Therefore, NOMA has been
recognized as a promising 5G candidate. The existing NOMA
techniques can be classified into power-domain based [9], [10]
and code-domain based methods [11], [12]. In power-domain
based NOMA, users are multiplexed over several resources
by employing superposition coding with proper power [13].
In code-domain based NOMA, the signals of users are spread
over the radio resource elements with predefined codebooks. In
general, the code-domain based scheme achieves better perfor-
mance by exploiting the shaping gain [14]. The code-domain
NOMA schemes include the low density signature (LDS)
based scheme [15], sparse code multiple access (SCMA) [16],
pattern division multiple access (PDMA) [17], and multi-
user shared access (MUSA) [18]. To elaborate, LDS adopts
sparse sequences to spread the data symbols of users over all
radio resource elements. Besides, SCMA can be regarded as
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an extension of the LDS based scheme, in which the bit-to-
symbol mapping and spreading operations are amalgamated.
As for MUSA, the transmitted symbols of a user are multiplied
with the same spreading sequence. On the other hand, PDMA
is similar to the LDS based schemes where the low density
sequences of LDS are replaced by non-orthogonal patterns.
In this paper, we apply a simple LDS-based NOMA scheme
since we mainly aim for designing iterative receivers for
FTN-NOMA systems.On the other hand, although NOMA
is capable of accommodating massive number of devices
and of increasing the spectral efficiency, the demand for
further increasing the spectral efficiency is still growing. In
accordance with IMT-2020, the data rate of 5G is required to
be ten times higher than that in 4G. Faster-than-Nyquist (FTN)
signaling, proposed by Mazo in 1970s [19], has attracted
substantial interests, since it can transmit at a symbol-rate
beyond the Nyquist rate. It was shown that the symbols’
minimum Euclidean distance is preserved, provided that the
FTN rate is not substantially higher than the Nyquist rate [20].
However, FTN signaling intentionally introduces inter-symbol
interference (ISI).

Then the judicious question arrives, whether amalgamating
the NOMA and FTN principles allows us to improve the
bandwidth-efficiency of both in isolation? More explicitly,
having increased the Nyquist-rate by FTN signaling, can we
glean further gain by additionally multiplexing the FTN users
employing the popular NOMA principles? Hence naturally,
both inter-user interference (IUI) as well as inter-symbol in-
terference (ISI) would co-exist in the FTN-NOMA systems. It
is widely recognized that the optimal receiver’s complexity
grows exponentially both with the number of ISI taps
and with the number of users. Hence, several authors have
developed low complexity receivers for FTN signaling [21]–
[24] and NOMA [25]–[30]. To elaborate, in [21], an M-
algorithm based Bahl-Cocke-Jelinek-Raviv (BCJR) detector
was proposed by Prlja and Anderson for eliminating the ISI
imposed by FTN signaling. Based on the Fast Fourier Trans-
form (FFT), frequency domain (FD) equalizers were proposed
in [22] and [23] for FTN signaling. However, the insertion of
cyclic prefices reduces the effective throughput. As a further
result, in [24], the state space model of the received signal was
represented by a Forney-style factor graph, which conveniently
lent it self to the employment of the classic Gaussian message
passing algorithm to detect the FTN symbols. Upon invoking
multi-user detection (MUD) for NOMA, the conventional min-
imum mean squared error (MMSE) detector suffers from an
excessive complexity due to the inversion of high-dimensional
matrices. To circumvent this problem, successive interference
cancellation (SIC) based MUDs were developed for attaining
near-optimal performance at low complexity [25]. However,
in SIC, the users are detected one by one, hence resulting
in certain delay in massive-connectivity scenarios. Moreover,
a frequent assumption is that the information from the high-
power users has been perfectly removed from the received
signals, which is impractical. Motivated by the power of
iterative ‘turbo’ receivers, several iterative methods based on
the classic message passing algorithms (MPA) were proposed
for MUD. To elaborate, in [26], a partial marginalization

based MPA detector was proposed for the NOMA uplink. The
authors of [27] developed a Monte Carlo Markov Chain based
MUD for large-scale networks. A factor graph based linear
MMSE (LMMSE) detector exhibiting rapid convergence was
proposed in by Liu et al. [28] for multiple-input multiple-
output (MIMO)-NOMA systems. Then, by exploiting the ‘con-
vexified’ variational free energy, the authors of [29] proposed
a guaranteed-convergence-MPA receiver for MIMO-NOMA
systems. In [30], an energy minimization based detector re-
lying on ‘potential-cliques’ factorization was proposed and
the algorithm’s convergence behaviors was analyzed. Despite
this research-momentum, there is no literature considering the
receiver design problem of the proposed systems.

As a further challenge, the large number of connected users
in MTC makes the conventional ‘handshaking’-based access
control impractical owing to its high communication overhead
and due to the resultant signal latency [31]. As a remedy,
random access control schemes dispensing with handshaking
have received intense attention in NOMA scenarios [32]. As a
benefit of random access schemes, users can instantly transmit
their signals to a base station (BS) in any available time slots
without waiting for access grant by the BS. In order to cor-
rectly decode the information corresponding to different
users, the BS has to uniquely and unambiguously identify
the active users before data detection can take place.
Moreover, it was shown by Hong et al. that only a fraction
of users are active concurrently in wireless networks even
during the rush-hour [33]. Therefore, the sparsity of the user-
activity may be beneficially exploited to reduce the receiver’s
complexity. Motivated by this, Wang et al. [34] employed
compressive sensing (CS) for identifying the active users and
then designed a powerful MPA based MUD. To mitigate the
performance degradation imposed by suboptimal two-stage
user-activity and MUD, an MUD based on a sophisticated
combination of approximate message passing and the least
square (LS) algorithm was developed by Wei et al. in [35].

Despite the above rigorous attempts to improve the
receiver design of NOMA relying on random user access,
all contributions have stipulated the idealized simplifying
assumption that the channel is perfectly known. Naturally,
in practical applications, the channel fluctuates quite violently
and it has to be estimated before detection. Channel estimation
is an extensively investigated problem in wireless communica-
tions, which typically relies a sequence of pilot symbols [36].
Furthermore, by taking the equalization problem into account,
several joint channel estimation and data detection schemes
were proposed in the literature [37]–[39]. The benefits are
two-fold: only a few pilot symbols are needed, which reduces
the signaling overhead; the performance may approach the
‘perfect-knowledge’ performance. By invoking the heuristic
iterative receiver, an MPA and factor graph based joint channel
estimation and decoding algorithm was proposed in [40].
Its extension to FTN signaling was then considered in [41],
where the generalized approximate MPA was employed. For
NOMA relying on random access, the authors of [42] and
[43] assumed the user activity to be static and constructed
factor graph models for simultaneously solving the channel
estimation as well as data and user activity detection problem.
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In practice, user activity in networks fluctuates over time.
Some active users may become inactive in the next few time
slots, while several sleeping users may become active. Hence,
the BS has to determine the user activity in real time, tracking
the user activity. The channel envelope is also fluctuating,
especially in high mobility scenarios. Therefore, joint user
activity tracking, channel estimation and data detection has
to be designed for FTN-NOMA systems relying on random
access. Instead of relying on precision parameter of [42] and
[43] to capture the user activity, we introduce a binary variable
to represent the user activity. By employing the autoregressive
moving average (ARMA) model of [44] for approximating
the correlated noise samples imposed by FTN signaling, we
arrive at the factorization problem of the joint a posteriori
distribution. Then a factor graph is conceived for representing
the factorization and a message passing algorithm (MPA) can
be used for user-activity detection. Since the binary variable
representing user activity makes the MPA updating on the
multiplier node unavailable, we construct the log density
based on the beliefs obtained and then derive an expectation
maximization (EM) [45] algorithm for estimating the user
activity. Upon approximating the data symbols by Gaussian
variables, only the corresponding means and (co)variances
are updated, which results in closed-form solutions of the
messages and beliefs of the variables. Overall, the complexity
of the proposed EM-MPA algorithm only scales linearly with
the number of users. Our simulation results will demonstrate
the efficiency of using FTN signaling in NOMA systems and
show that the data rate is increased by 87.5% over that of
its orthogonal counterpart. Moreover, the proposed algorithms
are efficient in tracking the user activity and in detection in
dynamic environments.

In a nutshell, our contributions in this paper are as follows.

• In contrast to [42], [43] assuming static user activity in
random access, we study dynamically fluctuating user ac-
tivity and channel envelopes. We intrinsically amalgamate
FTN signaling with random access NOMA systems and
demonstrate that their throughput gains may be combined.

• Based on an ARMA model of the correlated noise sam-
ples, we can fully factorize the joint a posteriori distri-
bution. The factor graph representation is then derived
and a bespoke message passing algorithm is constructed
for determining the beliefs of variables. To avoid leav-
ing an exponentially escalating complexity, expectation
propagation method is employed to obtain the Gaussian
approximations of the data symbols.

• An EM-MPA algorithm is proposed for iteratively es-
timating both the user activity as well as the channel
coefficients, and for detecting the data symbols. Since all
messages defined over the factor graph and the solutions
of the M-step of the EM are obtained in closed forms,
the complexity of the proposed algorithm only increases
linearly with the number of users.

The remainder of this paper is organized as follows. In
Section II, the model of the FTN-NOMA system relying on
random user access is introduced. Section III formulates our
statistical model and derives its factor graph representation.

The EM-MPA receiver proposed for low complexity joint user-
activity tracking and data detection is presented in Section IV.
The results of our Monte Carlo simulations are provided in
Section V. Finally, our conclusions are drawn in Section VI.

Notations: We use a boldface letter to denote a vector. The
superscripts (·)T , (·)∗, and (·)−1 denote the transpose, con-
jugate, and the inverse operations, respectively; G(mx,Vx)
denotes the Gaussian distribution of variable x having a mean
vector of mx and covariance matrix of Vx; E represents the
expectation operator; J0(·) denotes the zeroth-order Bessel
function of the first kind; diag{a} denotes a diagonal matrix
with the diagonal elements a; � is the component-wise
product; | · | represents the modulus of a complex number
or the cardinality of a set; ‖ · ‖2 denotes the `2 norm; k! is
the factorial of k; In denotes an identity matrix of dimension
n; 0n repreesnts a n dimensional column vector with entry
0; the superscript n in (·)[n] denotes the time slot index n
while the subscript in (·)n denotes the user and/or resource
element index; ∝ represents both sides of the equation are
multiplicatively connected to a constant; x\x denotes all
variables in x except x; the big O notation O asymptotically
describes the order of computational1 complexity.

II. SYSTEM MODEL

Throughout this paper, we consider a practical uplink sce-
nario supporting a large number of users, which is more
than the available orthogonal radio resource elements. LDS-
based NOMA relying on random access is employed, which
is eminently suitable for future IoT applications supporting
massive access. Additionally, it is intrinsically amalgamated
with FTN signaling for further improving the data rate. Since
the user states and channel envelopes vary with time, the BS
has to keep tracking both the channel coefficient as well as
the user activities based on the received signals. For ease of
exposition, we focus on baseband signals.

A. Faster than Nyquist Signaling

Considering a sequence of data symbols {x[n]} from a
transmitter, the ISI-free Nyquist signaling is formulated as

s(t) =
∑
n

x[n]q(t− nT0), (1)

where q(t) is a bandlimited signaling pulse and the symbol
duration is T0. Using the same signaling pulse, the FTN
signaling is characterized by [20]

s(t) =
∑
n

x[n]q(t− nτT0), (2)

where 0 < τ ≤ 1 defines the ‘packing factor’. Naturally,
setting τ < 1 transmits more data symbols within the same
bandwidth and time period at the cost of imposing intentional
ISI. Then the modulated signal is transmitted through a time-
variant fading channel h(t) and it is impaired by additional
Gaussian noise w(t).
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Fig. 1. Block diagram model of an FTN-NOMA system. LA
k and LE

k denote the extrinsic log likelihood ratio feed to and output from the channel decoder
of user k, respectively.

The received signal y(t) is then detected by a matched filter
q∗(−t) and sampled at the sampling rate of 1

τT0
, yielding

r[n] = h[n]
L∑

i=−L
gix

[n−i] + ω[n], (3)

where L denotes the number of one-sided ISI taps induced by
FTN signaling, h[n] is the channel coefficient at time instant
n, while the variables gi and ω[n] denote the FTN-induced ISI
taps and noise samples, respectively, obeying

gi =

∫
q(t− iτT0)q∗(t)dt, (4)

ω[n] =

∫
w(t)q∗(t− nτT0)dt. (5)

However, temporally correlated noise emerges, since the sig-
naling pulse is no longer orthogonal to the Nyquist symbol
period T0, yielding E(ω[n]ω[n+i]) = N0gi, where N0 is the
power spectral density of w(t).

B. Non-orthogonal Multiple Access

Again, the NOMA uplink system is considered where K
simultaneous users transmit their information to the BS relying
on J orthogonal radio resource elements, where J < K and
ρ = K

J is the normalized user-load. The coded bit stream
corresponding to the kth user is first mapped to a sequence
of data symbols and then spread over J resource-slots using a
low-density signature (LDS) sequence x

[n]
k = [x

[n]
k,1, ..., x

[n]
k,J ]T .

For any two different users, the positions of non-zero entries
in the LDS sequences x

[n]
k are different for avoiding potential

packet collision.
Then the signal received within the jth resource element at

the BS at time instant n can be expressed as

y
[n]
j =

K∑
k=1

h
[n]
k,jx

[n]
k,j + w

[n]
j , ∀j ∈ {1, ..., J}, (6)

where h
[n]
k,j denotes the channel gain of the jth resource

element between the kth user and the BS, while w[n]
j denotes

the noise samples.

C. FTN-NOMA System with Random Access

To employ FTN signaling in a NOMA system, the transmit-
ted sequences, x[n]

k of different users pass through the shaping
filter q(t), having a symbol period1 of τT0, yielding

sk(t) =
∑
n

x
[n]
k q(t− nτT ), (7)

where sk(t) = [sk,1(t), ..., sk,J(t)]T . As shown in Fig. 1, the
transmitted signals of all users are multiplexed over J radio
resource elements and passed through the time-variant fading
channel hk(t) = [hk,1(t), ..., hk,J(t)]T . Assuming perfect
synchronization between the BS and the users, the signal
received at the BS obeys:

y(t) =

K∑
k=1

diag{hk(t)} · sk(t) + w(t), (8)

where y(t) and w(t) are both J-dimensional vectors with
the jth entries being the received signal and noise at the jth
resource element, respectively. Then y(t) is processed by a
matched filter q∗(−t) which yields the corresponding discrete
time model:

r
[n]
j =

K∑
k=1

h
[n]
k,j

L∑
i=−L

gix
[n−i]
k,j + ω

[n]
j . (9)

Moreover, given that random access is used for reducing
both the signaling overhead and the latency, we use K+ to
denote the set of active users. Then r[n]

j can be expressed as

r
[n]
j =

∑
k∈K+

h
[n]
k,j

L∑
i=−L

gix
[n−i]
k,j + ω

[n]
j . (10)

To distinguish the active/inactive users, we introduce a binary
variable λ[n]

k = {0, 1} to denote the activity state of user k at
time instant n, where λ[n]

k = 1 represents an active user and

1For simplicity, we assume that the same shaping filter q(t) and packing
factor τ are used for all the users.
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vice versa2. Consequently, we arrive at a general form of r[n]
j ,

given as

r
[n]
j =

K∑
k=1

λ
[n]
k h

[n]
k,j

L∑
i=−L

gix
[n−i]
k,j + ω

[n]
j . (11)

Note that the signal received at the BS is the summation of
all users’ transmitted signals. If all users are inactive, the
receiver’s noise does not exceed the threshold used for identi-
fying if the received signal contains desired information. In the
following sections, we will design low-complexity receivers
for active user identification and data symbol detection based
on a graphical model, which can fully exploit the sparsities of
both the spreading sequence and of theuser activity.

III. STATISTICAL FORMULATION AND FACTOR GRAPH
REPRESENTATION

We aim for inferring the channel taps and decoding all
users’ information bits from the received signal samples.
From a statistical inference perspective, this corresponds to
determining the a posteriori distributions of the corresponding
variables.

A. Bayesian Estimator

Again, in FTN signaling, the noise samples of different
time slots are correlated, which imposes challenges on the
receiver design. According to [46], the correlation of additive
noise can be incorporated into the general auto-regressive
moving average (ARMA) model. For the noise sample ω[n]

j ,
the ARMA model having an MA order of na and AR order
of nb is given by [46]

ω
[n]
j = ε

[n]
j +

na∑
i=1

aiε
[n−i]
j −

nb∑
i=1

biω
[n−i]
j , (12)

where ε[n]
j is the random Gaussian impairment having zero-

mean and variance of σ2
ε , while ai and bi are the MA

coefficient and AR coefficient, respectively. To derive a more
compact form, we set e[n]

j =
∑na

i=0 aiε
[n−i]
j , which is still a

zero-mean Gaussian variable with variance of σ2
e = σ2

ε

∑
a2
i .

Then the covariance function of ω[n]
j is given by

N0gn =

{ ∑nb

i=1 bign−i for n > 0,
σ2
e +

∑nb

i=1 bign−i for n = 0.
(13)

Since the coefficients {gn} are already known, the parameters
{bi} and σ2

e can be estimated by solving equation (13). Then
the correlated noise samples ωnj can be iteratively approxi-
mated by the ARMA process.

By stacking all transmitted symbols, received samples,
channel taps, user states and noise samples into vectors, i.e.,
x, r, h, λ, and ω, the joint a posteriori distribution reads
p(x,h,λ,ω|r). In particular, for any unknown variable z, we
aim for deriving its marginal distribution p(z|r) and estimating

2Here, we propose a generalized model that the user activity varies per
symbol. In practical, the user activity is more likely to be static in a sequence
of symbols. In this case, the state transition of λ for two time instants in one
sequence is λ[n]

k = λ
[n−1]
k .

it via the MMSE or maximum a posterior (MAP) estimators
formulated as

z = Ez(z|y) or z = arg max
z
p(z|r). (14)

Nevertheless, the derivation of the marginal distribution is
usually intractable due to the associated high-dimensional
integration. The factor graph framework is capable of circum-
venting this problem by exploiting the conditional indepen-
dence of variables given the observations. In what follows,
we will formulate the probabilistic model and the factor graph
representation.

B. Probabilistic Model

A factor graph provides a convinient a graphical model
representing the factorization of a function. Since x, h, λ,
and ω are independent of each other, the joint distribution
p(x,h,λ,ω|r) can be factorized as

p(x,h,λ,ω|r) ∝ p(x) · p(h) · p(λ) · p(ω) · p(r|x,h,λ,ω).
(15)

•Factorization of p(x):
The transmitted symbols of different users at different

instants are independent, hence p(x) can be fully factorized
as

p(x) =
∏
k,j,n

p(x
[n]
k,j), (16)

where p(x[n]
k,j) is the a priori distribution of x[n]

k,j , which can be
determined based on the log-likelihood ratios (LLRs) output
by the channel decoder.
• Factorization of p(h):

According to Bello’s model [47], the time-varying channel
taps obey a wide-sense stationary random process and their
time-domain (TD) correlation is characterized by the Doppler
rate fDτT0, where fD is the Doppler spread. However, it is
quite a challenge to model the time evolution of channel taps
exactly. Since it is physically plausible that the adjacent sample
tends to have the highest correlation for practical correlation
functions [48], we characterize the channel taps h

[n]
k,j by a

Gauss-Markov model, given by

h
[n]
k,j = αh

[n−1]
k,j + ε[n], (17)

where the coefficient α obeys the zero-order Bessel function
of the first kind [48]

α = E[h
[n]
k,j(h

[n]
k,j)
∗] = J0(2πfDτT0), (18)

and ε[n] is a zero-mean Gaussian distributed variable with
variance 1−|α|2. Consequently, the joint a priori distribution
of h may be expressed as

p(h) =
∏
k,j

p(h0
k,j)

∏
n

p(h
[n]
k,j |h

[n−1]
k,j ), (19)

where p(h
[0]
k,j) ∝ G(m

h
[0]
k,j

, v
h
[0]
k,j

) is obtained by performing

channel estimation via a few pilot symbols and p(h[n]
k,j |h

[n−1]
k,j )

is a Gaussian distribution of h[n]
k,j as G(αh

[n−1]
k,j , 1− |α2|).
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• Factorization of p(λ):
In a dynamically fluctuating environment, the evolution of

the user-activity state λ can be modeled by a Markov chain,
i.e., the current activities of the users depend on the previous
states. Hence, the pdf p(λ) can be factorized as

p(λ) =

K∏
k=1

p(λ0
k) ·

∏
n

p(λ
[n]
k |λ

[n−1]
k ). (20)

Depending on the previous state of user k, the state transition
function p(λ

[n]
k |λ

[n−1]
k ) has different expressions. If at time

instant n − 1 user k is inactive, the probability that user
k becomes active at instant n is given by the user-birth
probability of p[n]

bk
. Therefore the probability that the user

remains inactive is 1 − p
[n]
bk

. By contrast, if λ
[n−1]
k = 1,

the probability that user k is inactive at instant n is its
mortality probability, given by p

[n]
mk . Then p(λ

[n]
k |λ

[n−1]
k ) can

be expressed as

p(λ
[n]
k |λ

[n−1]
k ) =

{
(p

[n]
bk

)1−λ[n−1]
k (1− p[n]

mk)λ
[n−1]
k λ

[n]
k = 1,

(1− p[n]
bk

)1−λ[n−1]
k (p

[n]
mk)λ

[n−1]
k λ

[n]
k = 0.

(21)

It is widely acknowledged that the Poisson distribution
accurately model the probability of a given number of events
occurring within a fixed time interval or space. Therefore, we
assume that at each time instant n the number N of new active
users satisfying k ∈ K+ and k /∈ K+ at time instant n − 1
obeys the Poisson distribution of

p(N) =
ΛN

N !
e−Λ, (22)

where Λ is the average number of events. Hence, we set
p

[n]
bk

= pb = Λ/K as the birth probability of a user. Next, we
consider the mortality probability p

[n]
mk . In general, an active

user has a high probability of being active in the next few
time instants. However, establishing an accurate model of the
transition probability requires a large amount of data and it is
beyond the scope of this paper. Here we employ a fair scheme
assuming that p[n]

mk = 0.5.
• Factorization of p(ω):

Based on the ARMA model (12) of the noise sample ω[n]
j ,

we can factorize p(ω) as

p(ω) =
∏
j

p(ω0
j )
∏
n

p(ω
[n]
j |ω

[n−nb]
j , ..., ω

[n−1]
j ), (23)

where p(ω0
j ) ∝ G(0, σ2

e) and p(ω
[n]
j |ω

[n−nb]
j , ..., ω

[n−1]
j ) for-

mulated as

p(ω
[n]
j |ω

[n−nb]
j , ..., ω

[n−1]
j ) ∝ exp

(
−

(ω
[n]
j − bTω

[n]
j )2

σ2
e

)
,

(24)

with the notations b = [b1, ..., bnb
]T and ω

[n]
j =

[ω
[n−1]
j , ..., ω

[n−nb]
j ]T . We can write furthermore the evolution

model of ω[n+1]
j as

ω
[n+1]
j = B1ω

[n]
j + b1ω

[n]
j , (25)

where B1 =

[
0Tnb−1 0
Inb−1 0nb−1

]
and b1 = [1,0Tnb−1]T .

• Factorization of p(r|x,h,λ,ω):
Based on (11), we use a Dirac delta function δ(·) for

representing the relationship between the received signal sam-
ple and the unknown variables. Therefore, p(r|x,h,λ,ω) is
factorized as

p(r|x,h,λ,ω) =
∏
j,n

δ(r
[n]
j −

K∑
k=1

λ
[n]
k h

[n]
k,j

L∑
i=−L

gix
[n−i]
k,j − ω[n]

j ).

(26)

Note that in (11), when calculating r[n]
j , 2KL multiplications

are required. According to the associative law, we introduce
an auxiliary variable s

[n]
k,j =

∑L
i=−L gix

[n−i]
k,j = gT x̃

[n]
k,j

to ensure that the number of multiplications is reduced to
K, where g and x̃

[n]
k,j denote the vectors [g−L, ..., gL]T and

[x̃
[n+L]
k,j , ..., x̃

[n−L]
k,j ], respectively. Consequently, we can for-

mulate the factorization of the joint likelihood function as

p(r|x,h,λ,ω) =
∏
j,n

δ(r
[n]
j −

K∑
k=1

λ
[n]
k h

[n]
k,js

[n]
k,j − ω

[n]
j )

· δ(s[n]
k,j − gT x̃

[n]
k,j), (27)

where x̃
[n]
k,j follows a similar evolution model as in (25),

x̃
[n]
k,j = B2x̃

[n−1]
k,j + b2x

[n+L]
k,j , (28)

where B2 =

[
0T2L 0
I2L 02L

]
and b2 = [1,0T2L]T .

C. Factor Graph Representation

Based on the factorizations of the joint a priori distributions
and likelihood function (16)-(27), we now have the factor-
ization of p(x,h,λ,ω|r) and represent it by a factor graph,
as depicted in Fig. 2. On this factor graph, the factor nodes
denoted by squares represent the functions while the variables
are denoted by edges. An edge is connected to a factor node
if and only if the variable is an argument of the function.
Equality factor nodes represented by the symbol = for
variable ‘cloning’ are introduced to enforce the condition that
a variable may only appear in a maximum of two functions.

IV. EM-MPA BASED ITERATIVE RECEIVER DESIGN

In this section, we aim for designing a low complexity
receiver for joint user activity tracking as well as channel
estimation and data detection. An amalgamated expectation
maximization (EM) aided message passing algorithm (MPA)
method is proposed on the factor graph to determine the beliefs
of all unknown variables. To simplify the notations, we use
−→µ (x) and←−µ (x) to denote the messages of the variable x that
flow in the same and in the opposite the direction as the edge.

We use the block diagram of Fig. 3 for portraying the
proposed EM-MPA method. In an iterative receiver extrinsic
soft information is exchanged between the detector and the
channel decoder. The soft outputs of the channel decoder are
approximated using a Gaussian distribution by invoking the
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(a) Factor graph representation of the joint distribution (15). The notations φ[n]
k ,

ψ
[n]
k,j , and Ω

[n]
j represent the function p(λ

[n]
k |λ

[n−1]
k ), p(h[n]

k,j |h
[n−1]
k,j ) and

p(ω
[n]
j |ω

[n−nb]
j , ..., ω

[n−1]
j ); For sequence based user activity identification,

the factor node φ[n]
k denotes an equality node if indices ·[n−1] and ·[n] belong

to the same sequence of symbols.
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(b) Subgraph for the multiuser detection and decoding part.

Fig. 2. Factor graph for joint user activity tracking and data detection.
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Fig. 3. Block diagram of the proposed EM-MPA.

expectation propagation (EP) method, which will be detailed
in Section IV-B. The receiver is constituted of three blocks,
namely the channel estimation, detection and user-activity
identification. The message derivations in each block are based
on the conventional MPA rules, as shown in Section IV-C,
while the messages exchanged among the three blocks are de-
termined by the EM algorithm, as discusseed in Section IV-D.

A. Brief Review of the Message Passing Algorithm

The MPA aims for efficiently computing the marginals of
variables on the factor graph. For each edge on the factor
graph, there are messages gleaned from and entered into
the adjacent factor nodes. According to the MPA rules, the
message passing from a factor node to a connected factor node
via an edge is computed by integrating all other variables in
this factor [49]. Considering the factor node ψ[n]

k,1 connected
with ḣ

[n−1]
k,1 and h̃

[n]
k,1 in Fig. 2 as an example, the message

−→µ (h̃
[n]
k,1) is given by

−→µ (h̃
[n]
k,1) =

∫
p(h̃

[n]
k,1|ḣ

[n−1]
k,1 )−→µ (ḣ

[n−1]
k,1 )dḣ[n−1]

k,1 . (29)

Having determined all messages on the factor graph, the belief
of a variable x is simply calculated by the product of the
forward and backward messages, which is formulated as

b(x) = −→µ (x)←−µ (x). (30)

B. Detection and Decoding Part

Based on Lek output by the channel decoder, we can
calculate the corresponding a priori distributions p(x[n]

k,j) of
user k’s transmitted symbols, which is given by the intrinsic
information −→µ (x

[n]
k,j). Since x[n]

k,j is discretely distributed, the
MPA exhibits an excessive complexity. Instead of applying the
central limit theorem, we project −→µ (x

[n]
k,j) onto the Gaussian

distribution by using the expectation propagation method.
As an approximate inference method, EP aims for finding a

Gaussian belief b̃(x[n]
k,j) for approximating the original belief

b(x
[n]
k,j) by minimizing the relative entropy between the two

distributions. Assuming that the extrinsic message ←−µ (x
[n]
k,j)

obeys the Gaussian distribution of G(←−m
x
[n]
k,j

,←−v
x
[n]
k,j

), we can

readily obtain the mean and variance of b(x[n]
k,j) by moment

matching and then determine the Gaussian belief b̃(x[n]
k,j) ∝

G(m
x
[n]
k,j

, v
x
[n]
k,j

). Hence we have the message −→µ (x
[n]
k,j) ex-

pressed as

−→µ (x
[n]
k,j) =

b̃(x
[n]
k,j)

←−µ (x
[n]
k,j)
∝ G(−→m

x
[n]
k,j

,−→v
x
[n]
k,j

). (31)

Having obtained −→m
x
[n]
k,j

and −→v
x
[n]
k,j

, we can readily drive the

mean vector and covariance matrix of −→µ (x̃
[n−L]
k,j ) as

−→m
x̃
[n−L]
k,j

=b2
−→m
x
[n]
k,j

+ B2
−→m ˙̃x

[n−L−1]
k,j

, (32)
−→
V

x̃
[n−L]
k,j

=b2
−→v
x
[n]
k,j

bT2 + B2
−→
V ˙̃x

[n−L−1]
k,j

BT
2 . (33)
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By employing the MPA rules, we can determine the mean vec-
tor and covariance matrix of message −→µ (ẋ

[n−L]
k,j ). Therefore

the message output by the multiuser detector and by the FEC
decoder can be assumed to be Gaussian and formulated as

−→µ (s
[n−L]
k,j ) ∝ G(gT

−→m
ẋ
[n−L]
k,j

,gT
−→
V

ẋ
[n−L]
k,j

g). (34)

Finally, we are interested in calculating the extrinsic mes-
sage ←−µ (x

[n]
k,j), whose mean and variance obey

←−m
x
[n]
k,j

= bT2

(←−m
x̃
[n−L]
k,j

−B2
−→m ˙̃x

[n−L−1]
k,j

)
, (35)

←−v
x
[n]
k,j

= bT2

(←−
V

x̃
[n−L]
k,j

+ B2
−→
V ˙̃x

[n−L−1]
k,j

BT
2

)
b2, (36)

where ←−m
x̃
[n−L]
k,j

and
←−
V

x̃
[n−L]
k,j

are expressed as

←−m
x̃
[n−L]
k,j

=
←−
V

x̃
[n−L]
k,j

(←−
W ˙̃x

[n−L]
k,j

←−m ˙̃x
[n−L]
k,j

+ g←−w
s
[n−L]
k,j

←−m
s
[n−L]
k,j

)
,

(37)
←−
V

x̃
[n−L]
k,j

=
(←−
W ˙̃x

[n−L]
k,j

+ g←−w
s
[n−L]
k,j

gT
)−1

. (38)

C. MPA for Message Calculations in Fig. 2(a)

This subsection aims for calculating the messages in the
channel estimation block and the user-activity identification
block of Fig. 3.

1) Channel Estimation: Let us commence the discussion
with the message calculations related to channel estimation.
Provided that the message −→µ (ḣ

[n−1]
k,j ) is available in Gaussian

form, by applying the MPA rules, the message −→µ (h̃
[n]
k,j) is

expressed as

−→µ (h̃
[n]
k,j) ∝ G

(−→m
h̃
[n]
k,j

,−→v
h̃
[n]
k,j

)
∝
(
α−→m

ḣ
[n−1]
k,j

, 1 + |α|2(−→v
ḣ
[n−1]
k,j

− 1)
)
. (39)

Then, we are able to derive the message −→µ (ḣ
[n]
k,j), given by

−→v
ḣ
[n]
k,1

=

−→v
h̃
[n]
k,1

+←−v
h
[n]
k,1

−→v
h̃
[n]
k,1

←−v
h
[n]
k,1

, (40)

−→m
ḣ
[n]
k,1

= −→v
ḣ
[n]
k,1

−→mh̃
[n]
k,1

−→m
h̃
[n]
k,1

+

←−m
h
[n]
k,1

←−v
h
[n]
k,1

 . (41)

In (40) and (41), we have assumed that ←−µ (h
[n]
k,j) follows

G(←−m
h
[n]
k,j

,←−v
h
[n]
k,j

).
Next, we consider the process of colored noise. Since the

ARMA process given by (12) is causal, the messages are only
propagated forward along the arrow’s direction. Provided that
the means of the noise parameters are 0, we can readily derive
the corresponding messages as follows

−→v
ω

[n]
j

= bT
−→
V

ω
[n]
j
b, (42)

−→
V

ω
[n+1]
j

= B1
−→
V

ω
[n]
j
BT

1 + b1
−→v
ω

[n]
j
bT1 . (43)

Consequently, we can calculate the message ←−µ (r
[n]
k,j) ∝

G
(←−m

r
[n]
k,j

,←−v
r
[n]
k,j

)
with

←−m
r
[n]
k,j

= r
[n]
j −

∑
k′ 6=k

−→m
r
[n]

k
′
,j

, (44)

←−v
r
[n]
k,j

= −→v
ω

[n]
j

+
∑
k′ 6=k

−→v
r
[n]

k
′
,j

, (45)

where the messages −→µ (r
[n]

k′ ,j
), ∀k′ 6= k will be determined in

(56) and (57).
2) User-activity Idenfitication: For the discrete random

variable representing a user-activity state at time instant n−1,
we have λ̇[n−1]

k , and the message −→µ (λ̇
[n−1]
k ) is the belief of

user k’s state at time instant n− 1, given by

−→µ (λ̇
[n−1]
k ) = (−→p

λ̇
[n]
k

)λ
[n−1]
k · (1−−→p

λ̇
[n−1]
k

)1−λ[n−1]
k , (46)

with −→p
λ̇
[n−1]
k

being the probability of λ[n−1]
k = 1. Motivated

by the fact that −→µ (λ̇
[n−1]
k ) is fully characterized by −→p

λ̇
[n−1]
k

,
passing the user-activity probability −→p

λ̇
[n−1]
k

instead of the
message can simplify the expressions. Hence, we arrive at the
forward message −→p (λ

[n]
k ) as

−→p
λ
[n]
k

= (1− p[n]
mk

)−→p
λ̇
[n]
k

+ p
[n]
bk

(1−−→p
λ̇
[n]
k

). (47)

The equality node is equivalent to the product of messages.
Therefore the message updating concerning λ̇[n]

k is derived as
as

−→p
λ̇
[n]
k

=

−→p λ[n]
k
←−p
λ̇
[n]
k,1

1−−→p λ[n]
k −

←−p
λ̇
[n]
k,1

. (48)

The message −→p
λ
[n]
k,j

forward to the multiplier node can be
obtained similarly.

Note that the above message calculations depend on the
assumption of having known backward messages from the
multiplier node. According to the conventional update rules,
the messages derived at the multiplier node × are non-
Gaussian. Hence we invoke the expectation maximization
algorithm for the multiplier node.

D. Modified EM Algorithm for ‘×’ Node

The conventional EM algorithm aims for finding the maxi-
mum likelihood estimates of parameters in a statistical model
that has unobserved latent variables [45]. In the E-step, the
expected log-likelihood function is evaluated based on the
beliefs of the latent variables. Then in the M-step, the estimates
of the parameters are found by maximizing the expected
log-likelihood. Without loss of generality, we consider the
multiplier node connected with r[n]

k,j and the joint distribution
p(λ

[n]
k,j , s

[n]
k,j , h

[n]
k,j |r

[n]
k,j).

We first define λ
[n]
k,j as the unknown parameter and

{h[n]
k,j , s

[n]
k,j , r

[n]
k,j} as the complete data set associated with

incomplete data r[n]
k,j and latent variables h[n]

k,j , s
[n]
k,j . Assuming
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that the beliefs b(s[n]
k,j) and b(h[n]

k,j) are available, the expecta-
tion of the complete-data log augmented density is calculated
as

q(λ
[n]
k,j) ∝

∫
b(s

[n]
k,j)b(h

[n]
k,j) ln p(λ

[n]
k,j , h

[n]
k,j , s

[n]
k,j |r

[n]
k,j)dh[n]

k,jds
[n]
k,j

= −
∫ (←−m

r
[n]
k,j

− λ[n]
k,js

[n]
k,jh

[n]
k,j

)2

←−v
r
[n]
k,j

· b(s[n]
k,j)b(h

[n]
k,j)dh[n]

s,jdh
[n]
k,j

+ ln−→µ (λ
[n]
k,j) + C, (49)

where C is a constant that is irrelevant to λnk,j . Maximizing
(49) yields the estimate λ̂[n]

k,j which is equivalent to the solution

of
∂q(λ

[n]
k,j)

∂λ
[n]
k,j

= 0. However, note that (49) only considers the jth

resource element, while the user activity applies to all radio
resource elements. The maximization should be performed by
obtaining the necessary information from all J radio resource
elements, i.e., with respect to the variable λ̇nk . To this end, the
multiplier node will feed back the message ←−µ (λ

[n]
k,j) to the

equality node of Fig. 2(a). Having q(λ[n]
k,j) in hand, we have

←−µ (λ
[n]
k,j) ∝

exp
[
q(λ

[n]
k,j)
]

−→µ (λ
[n]
k,j)

. (50)

Similar to the forward message −→p (λ
[n]
k ), we can simply pass

on the normalized probability ←−p
λ
[n]
k,j

since ←−µ (λ
[n]
k,j) depends

on the normalized probability of λ[n]
k,j = 1, which is given by

←−p
λ
[n]
k,j

=
(1−−→p

λ
[n]
k,j

)q(1)

(1−−→p
λ
[n]
k,j

)q(1) +−→p
λ
[n]
k,j

q(0)
. (51)

The probability ←−p
λ
[n]
k,j

is used for calculating ←−p
λ
[n]
k,j−1

, then
←−p
λ
[n]
k,1

and finally −→p
λ̇
[n]
k

.

To obtain the beliefs of s[n]
k,j and h[n]

k,j , we apply the concept
of EM again, so that s[n]

k,j becomes the unknown parameter
and h[n]

k,j remains the latent variable. In this way, the belief of
s

[n]
k,j is updated as follows,

b(s
[n]
k,j) ∝ (52)

−→µ (s
[n]
k,j) · exp

(∫
b(h

[n]
k,j) ln p(r

[n]
k,j , s

[n]
k,j |h

[n]
k,j , λ̂

[n]
k,j)dh[n]

k,j

)
,

where λ[n]
k,j is replaced by the estimate λ̂[n]

k,j obtained from the
maximization of (49), expressed as

λ̂
[n]
k,j =

←−m
r
[n]
k,j

m
s
[n]
k,j

m
h
[n]
k,j

+←−v
r
[n]
k,j

(1− 2−→p
λ
[n]
k,j

)

(|m
s
[n]
k,j

|2 + v
s
[n]
k,j

)(|m
h
[n]
k,j

|2 + v
h
[n]
k,j

)
. (53)

Since we have b(s[n]
k,j) = −→µ (s

[n]
k,j) ·
←−µ (s

[n]
k,j), it is natural to de-

fine the second term on the righthand side of (52) as←−µ (s
[n]
k,j).

Assuming that b(h[n]
k,j), it follows that G(m

h
[n]
k,j

, v
h
[n]
k,j

),←−µ (s
[n]
k,j)

can be modeled by a Gaussian PDF having the mean and
variance of

←−m
s
[n]
k,j

=

←−m
r
[n]
k,j

m
h
[n]
k,j

|m
h
[n]
k,j

|2 + v
h
[n]
k,j

, (54)

←−v
s
[n]
k,j

=

←−v
r
[n]
k,j

|m
h
[n]
k,j

|2 + v
h
[n]
k,j

. (55)

Consequently the belief b(s[n]
k,j) is readily obtained. By ex-

changing the roles of s[n]
k,j and h[n]

k,j , we have the updating rules
of the message←−µ (h

[n]
k,j) and belief b(h[n]

k,j). After obtaining the
beliefs b(s[n]

k,j) and b(h[n]
k,j), we can now determine Q(λ

[n]
k,j) in

the next iteration following (49).
Let us now consider the forward message −→µ (r

[n]
k,j). Since

the variables λ[n]
k,j , s

[n]
k,j and h[n]

k,j are independent, the moments
of r[n]

k,j are given by the product of the moments of the above
three variables. Consequently, we have
−→m
r
[n]
k,j

= λ̂nk,jmh
[n]
k,j

m
h
[n]
s,j
, (56)

−→v
r
[n]
k,j

= λ̂nk,j
(
(1− λ̂nk,j)|mh

[n]
k,j

|2|m
s
[n]
k,j

|2 + |m
h
[n]
k,j

|2v
s
[n]
k,j

+ |m
s
[n]
k,j

v
h
[n]
k,j

+ v
h
[n]
k,j

v
s
[n]
k,j

|2
)
. (57)

Above, we have obtained −→p
λ̇
[n]
k

and b(h[n]
k,j). Then we can

compare −→p
λ̇
[n]
k

to a specific threshold to decide whether the

user k is active, while the estimate of the channel tap h[n]
k,j is

given by

ĥ
[n]
k,j = Eh

[
b(h

[n]
k,j)
]

= m
h
[n]
k,j

. (58)

E. Algorithm Summary

We have derived the beliefs concerning the unknown vari-
ables and message updatings on factor graph in closed forms.
The detector and decoder exchange extrinsic information and
iteratively update their corresponding messages. To start the
iterative algorithm, the user state, channel taps and noise
samples are predicted based on state evolution functions and
the previously obtained beliefs. Then the proposed EM-MPA
algorithm is employed for updating the messages and for
calculating the extrinsic information for the channel decoder.
After channel decoding, the extrinsic information generated
is transformed to a Gaussian prior via EP approximation.
The priors are again fedback to the detector for refining the
parameters using our EM-MPA algorithm. This process will
be repeated for several times for refining the beliefs of channel
taps and user states. By using appropriate estimators, we arrive
at the estimates of channel information and user activities.

In each iteration, the complexity of the proposed algorithm
is dominated by the integrations.For a conventional MPA
receiver, the computations of the integration for obtaining the
messages involve multiple variables and the discrete priors
make the optimal detection excessively complex due to the
associated multi-dimensional search, leading to an exponential
order of complexity as a function of the number of users and
the number of ISI taps. Explicitly, we have a complexity order
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of O(|χ|2|K
+|L

) with χ representing the set of constellation
points. The block orthogonal matching pursuit (BOMP) algo-
rithm of [42] is a prominent method of sparse signal estima-
tion, which has a complexity increasing with the cube of the
number of active users. By contrast, in the proposed algorithm,
the messages are represented in a parametric form. Hence
the integrations are simplified to addition and multiplication
operations, which dramatically reduces the complexity of the
receiver. Explicitly, the complexity only increases linearly
with the number of active users and with the FTN-induced
ISI length, according to O(2|K+|L). This clearly shows the
superiority of the proposed algorithm in handling massive
MTC scenarios relying on random access. On the other hand,
bearing in mind the complexity escalation imposed by the
further increase of active users, we can specifically design the
LDS codewords for further exploring the sequence sparsity,
which will reduce the IUI and control the complexity of the
receiver.

V. SIMULATION RESULTS

In this section, our simulation results are discussed. We
adopt a 1/2-rate low density parity check (LDPC) code having
a length of 2,160, which has been optimized for FTN signaling
according to the criteria in [50]. The number of users and radio
resource elements is K = 180 and J = 120, respectively,
leading to the normalized user-load of ρ = 150%. The low-
density signature scheme of [51] is employed as the spreading
matrix and Quadrature Phase Shift Keying (QPSK) is used for
constellation mapping. We assume that 5 sequences of symbols
are transmitted for each user and each sequence has a length
of 1080. The symbols corresponding to different users are
shaped by a root raised cosine (RRC) filter conceived with
FTN packing ratio of τ = 0.8 and Nyquist roll-off factor
of α = 0.4. According to [20], the interfered symbols that
are ‘far’ from the current transmitted symbol have negligible
effects. Therefore, we set the number of ISI contributions
engendered by FTN signaling to L = 10. The channel obeys
Rayleigh fading and the taps are generated by Jake’s model
with a fading rate of fDτT0 = 0.005. The initial channel
information is obtained via coarse channel estimation using
as 5 pilots. The parameter Λ is set to 20, which indicates that
approximately 11% of users are active. Again, the mortality
probability was set to p[n]

mk = 0.5. The user activity is assumed
to remain static for a sequence of 1,080 symbols. The threshold
of 0.5 is employed for user activity identification. Finally, we
set the maximum number of ‘turbo’ iterations to Lturbo = 10
and the maximum number of decoding iterations to Ldec = 20.

We first compare the BER performance of the proposed
FTN-NOMA system and the FTN-OMA, Nyquist-NOMA and
orthogonal systems in Fig. 4. For fair comparison, we assume
that all in these four cases the number of active users is fixed
to u = 20 and their activity-states are known at the BS.
In other words, we do not have to estimate the user states.
For the orthogonal system, interference free transmission is
achieved. Hence, a simple linear minimum mean squared error
estimation is employed at the BS. For the other three non-
orthogonal systems, the proposed EM-MPA algorithm is both
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Fig. 4. BER performance comparison of orthogonal and non-orthogonal
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Fig. 5. BER performance of the proposed algorithm and exiting ones with
known user activities.

used for eliminating the interferences and for estimating the
channels. As observed from Fig. 4, the orthogonal system has
the best BER performance. The FTN-OMA system attains
similar performance to the orthogonal system with a receiver
complexity of O(2L). The Nyquist-NOMA system exhibits a
0.2 dB performance loss, but the number of users supported is
increased by 180−120

120 ×100% = 50%, at the cost of a compu-
tational complexity of O(|K+|). The proposed FTN-NOMA
scheme suffers from a slight Eb/N0 degradation compared
to the orthogonal system due to the introduction of both ISI
and IUI. Nevertheless, the proposed FTN-NOMA scheme is
capable of increasing the data rate by ρ · 1

τ − 100% = 87.5%,
given the same number of radio resource elements and a
slightly higher receiver complexity of O(2|K+|L).

In Fig. 5, we compare the proposed receiver design to
some existing reference algorithms in terms of its BER perfor-
mance, when the user-activities are perfectly known. We also
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Fig. 6. BER performance of the proposed algorithm and exiting ones with
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include the ‘Genie-aided’ method as the ultimate bound, which
assumes having perfectly known channel information. The
MMSE-PIC method estimates the channel information using
the MMSE method and iteratively detects the data symbols
using parallel interference cancellation (PIC), which is seen to
suffer from error propagation. Compared to the conventional
MPA algorithm relying on the MAP criterion, the proposed
EM-MPA algorithm slightly degrades the performance, but
its complexity is low. Finally, the performance for the GA-
EM-MPA method is also shown, which approximates all non-
Gaussian messages by Gaussian distribution using the moment
matching. The proposed FTN-NOMA algorithm outperforms
the GA-EM-MPA method, since the EP exploits the extrinsic
information gleaned from the MUD.

In Fig. 6, we consider a practical random access scenario.
The BER performances versus Eb/N0 of the proposed al-
gorithm as well as of the MPA-APP, BOMP-MPA and LS-
AMP-MPA methods are illustrated. The BOMP-MPA and LS-
AMP-MPA are two-step methods which firstly identify the
active users and then perform MPA based MUD. It can be
observed from Fig. 6 that BOMP-MPA achieves a beneficial
performance gain compared to the LS-AMP-MPA method by
exploiting the sparsity of the spreading matrix. However, the
BOMP method requires the number of active users |K+| to
be known at the BS, which limits its application in practical
MTC relying on random access. Moreover, since the two-
stage methods only provide the estimates of user-activities
for data detection, considerable performance loss can be seen
compared to the proposed EM-MPA algorithm. The FTN-
NOMA system relying on the MPA-APP detection method
that assumes all users to be active suffers from a significant
performance degradation. To show the efficiency of the pro-
posed user activity identification method, we also include the
curve corresponding to the EM-MPA algorithm in Fig. 5 (EM-
MPA-Ideal) here.

Fig. 7 and Fig. 8 depict the equivalent spectral efficiency
versus Eb/N0 parameterized by different values of the packing
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factor τ and normalized user-load ρ, respectively. The equiv-
alent spectral efficiency is defined as

η =
ρ

τ
∗ (1− BER), (59)

which indicates the tradeoff between the spectral efficiency
and the BER performance. Observe from Fig. 7 that when the
packing factor decreases, the equivalent spectral efficiency gap
between the FTN signaling and the classic Nyquist scenario
becomes wider. This is because more data symbols can be
transmitted within the same time period. However, we can
see the gain of η becomes marginal when we further reduce
the packing factor τ . This is because a lower value of τ
lead to more severe interference and result in worse BER
performance. Fig. 8 illustrates equivalent spectral efficiency for
four cases with the number of users being K = 120, 160, 180,
and 240, leading to different levels of normalized user-load,
ρ = 100%, 125%, 150%, 200%. As expected, increasing
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the user-load results in higher equivalent spectral efficiency,
showing its potential in supporting massive connectivity in
future IoT applications. Observe form both 2 figures that
we can indeed further increase the throughput at the cost of
some BER performance degradation and increased receiver
complexity. In our future work, we aim for jointly designing
the FTN-NOMA system to strike an improved throughput
versus decoding performance tradeoff.

We plot the normalized minimum mean squared errors
(NMSE) of the channel estimate based on the proposed
algorithm as well as on the GA-MPA and on the full pilot
based sparse Bayesian learning (SBL) [52] method in Fig.
9. The initial channel estimation result using 5 pilots is
also depicted. Compared to the pilot based initial channel
estimation, the GA-EM-MPA and the proposed algorithms are
observed to have improved performance by exploiting the data
symbols for channel estimation. Moreover, the comparison of
the GA-MPA and of the the proposed EM-MPA algorithm’s
curves demonstrates the benefits of using the EP method
for Gaussian approximation. It is also worth noting that the
NMSE performance of the proposed algorithm has only 0.3
dB performance loss compared to the full-pilot based method,
which demonstrates the powerful capability of the proposed
algorithm.

To show the user activity tracking accuracy, we depict the
cumulative distribution functions (CDFs) of the user iden-
tification errors for different values of Λ in Fig. 10. We
conclude that a higher value of Λ leads to better user-activity
identification. Considering the extreme case, when all users
are active, the identification error will drop to 0. Moreover,
it is seen that for all four levels of user-activity, only a very
small fraction of the users’ states are mis-determined. Finally,
we consider the impact of the number of active users on the
decoding performance for the FTN-NOMA system. The BER
performance versus the parameter Λ at Eb/N0 = 5.75 dB is
plotted in Fig. 11, where the performance of the EM-MPA-
Ideal method that assumes perfect user-activity identification is
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Fig. 11. Impact of number of active users on BER performance.

depicted as a performance upper bound. It is interesting to see
that when Λ increases, the proposed algorithm is approaching
the bound, because user identification becomes more accurate
for more active users. A higher Λ results in more active users
to be supported by the FTN-NOMA system. Hence, the IUI
becomes more severe, degrading the BER performance, which
can be observed for both the proposed method and the EM-
MPA-Ideal method. We can also observe that the proposed
algorithm has a modest performance erosion compared to the
EM-MPA-Ideal method, which indicates that user-activity can
be accurately identified.

VI. CONCLUSIONS

In this paper, an FTN-NOMA system relying on random
access was presented, which can support massive connectivity
and high throughput in machine-type communications. Dy-
namically fluctuating environments were considered, where
both the user states and channel coefficients varied with
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time. By employing an AMRA process for modeling the
colored noise, we formulated the factor graph representation
of the system considered based on the factorization of the a
posteriori distribution. Then a new expectation maximization
- message passing algorithm combination was proposed for
joint FTN symbol detection, channel estimation and user-
activity tracking. It was shown that the complexity of the
proposed receiver increases linearly with the number of active
users, which is significantly reduced compared to that of
the conventional message passing receiver. Our simulation
results demonstrated the compelling benefits of the FTN-
NOMA system considered and of the proposed algorithm.
The proposed method advocated can accurately identify active
users and decode the information bits.

REFERENCES

[1] C. X. Mavromoustakis, G. Mastorakis, and J. M. Batalla, Internet of
Things (IoT) in 5G mobile technologies. Springer, 2016, vol. 8.

[2] M. R. Palattella, M. Dohler, A. Grieco, G. Rizzo, J. Torsner, T. Engel,
and L. Ladid, “Internet of things in the 5G era: Enablers, architecture,
and business models,” IEEE J. Sel. Areas. Commun., vol. 34, no. 3, pp.
510–527, Mar. 2016.

[3] M. Alioto, Enabling the Internet of Things: From Integrated Circuits to
Integrated Systems. Springer, 2017.

[4] H. G. Myung, J. Lim, and D. J. Goodman, “Single carrier FDMA for
uplink wireless transmission,” IEEE Veh. Technol. Mag., vol. 1, no. 3,
pp. 30–38, May 2006.

[5] H. Holma and A. Toskala, LTE for UMTS: OFDMA and SC-FDMA
based radio access. John Wiley & Sons, 2009.

[6] L. Dai, B. Wang, Y. Yuan, S. Han, I. Chih-Lin, and Z. Wang, “Non-
orthogonal multiple access for 5G: solutions, challenges, opportunities,
and future research trends,” IEEE Commun. Mag., vol. 53, no. 9, pp.
74–81, Sep. 2015.

[7] Z. Ding, Y. Liu, J. Choi, Q. Sun, M. Elkashlan, I. Chih-Lin, and H. V.
Poor, “Application of non-orthogonal multiple access in LTE and 5G
networks,” IEEE Commun. Mag., vol. 55, no. 2, pp. 185–191, Mar.
2017.

[8] Z. Wei, L. Yang, D. W. K. Ng, J. Yuan, and L. Hanzo, “On the
performance gain of NOMA over OMA in uplink communication
systems,” IEEE Trans. Commun., pp. 1–1, early access, 2019.

[9] L. Dai, B. Wang, Z. Ding, Z. Wang, S. Chen, and L. Hanzo, “A survey
of non-orthogonal multiple access for 5G,” IEEE Commun. Surveys &
Tutor., vol. 20, no. 3, pp. 2294–2323, 2018.

[10] S. R. Islam, N. Avazov, O. A. Dobre, and K.-S. Kwak, “Power-domain
non-orthogonal multiple access (NOMA) in 5G systems: Potentials and
challenges,” IEEE Commun. Surveys & Tutor., vol. 19, no. 2, pp. 721–
742, Feb. 2016.

[11] Y. Liu, Z. Qin, M. Elkashlan, Z. Ding, A. Nallanathan, and L. Hanzo,
“Nonorthogonal multiple access for 5G and beyond,” Proc. IEEE, vol.
105, no. 12, pp. 2347–2381, 2017.

[12] S.-Y. Lien, S.-L. Shieh, Y. Huang, B. Su, Y.-L. Hsu, and H.-Y. Wei,
“5G new radio: Waveform, frame structure, multiple access, and initial
access,” IEEE Commun. Mag., vol. 55, no. 6, pp. 64–71, Jun. 2017.

[13] Z. Wei, L. Zhao, J. Guo, D. W. K. Ng, and J. Yuan, “Multi-beam NOMA
for hybrid mmwave systems,” IEEE Transactions on Communications,
vol. 67, no. 2, pp. 1705–1719, Feb. 2019.

[14] M. Moltafet, N. M. Yamchi, M. R. Javan, and P. Azmi, “Comparison
study between PD-NOMA and SCMA,” IEEE Trans. Veh. Technol.,
vol. 67, no. 2, pp. 1830–1834, Feb. 2017.

[15] R. Hoshyar, F. P. Wathan, and R. Tafazolli, “Novel low-density signature
for synchronous CDMA systems over AWGN channel,” IEEE Trans.
Signal Process., vol. 56, no. 4, pp. 1616–1626, Apr. 2008.

[16] H. Nikopour and H. Baligh, “Sparse code multiple access,” in Proc. 2013
IEEE Int. Symp. Person., Indoor., Mobile Radio Commun. (PIMRC).
IEEE, 2013, pp. 332–336.

[17] S. Chen, B. Ren, Q. Gao, S. Kang, S. Sun, and K. Niu, “Pattern
division multiple access—a novel nonorthogonal multiple access for
Fifth-Generation radio networks,” IEEE Trans. Veh. Technol., vol. 66,
no. 4, pp. 3185–3196, Apr. 2017.

[18] Z. Yuan, G. Yu, W. Li, Y. Yuan, X. Wang, and J. Xu, “Multi-user shared
access for Internet of things,” in Proc. IEEE 83rd Veh. Technol. Conf.,
May 2016, pp. 1–5.

[19] J. E. Mazo, “Faster-than-Nyquist signaling,” The Bell System Technical
Journal, vol. 54, no. 8, pp. 1451–1462, Aug. 1975.

[20] J. B. Anderson, F. Rusek, and V. Öwall, “Faster-than-Nyquist signaling,”
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