Intra-host symbiont diversity in eastern Pacific cold seep tubeworms identified by the 16S-V6 region, but undetected by the 16S-V4 region
Intra-host symbiont diversity in eastern Pacific cold seep tubeworms identified by the 16S-V6 region, but undetected by the 16S-V4 region
Vestimentiferan tubeworms are key taxa in deep-sea chemosynthetic habitats worldwide. As adults they obtain their nutrition through their sulfide-oxidizing bacterial endosymbionts, which are acquired from the environment. Although horizontal transmission should favor infections by various symbiotic microbes, the current paradigm holds that every tubeworm harbors only one endosymbiotic 16S rRNA phylotype. Although previous studies based on traditional Sanger sequencing have questioned these findings, population level high-throughput analyses of the symbiont 16S diversity are still missing. To get further insights into the symbiont genetic variation and uncover hitherto hidden diversity we applied state-of-the-art 16S-V4 amplicon sequencing to populations of the co-occurring tubeworm species Lamellibrachia barhami and Escarpia spicata that were collected during E/V Nautilus and R/V Western Flyer cruises to cold seeps in the eastern Pacific Ocean. In agreement with earlier work our sequence data indicated that L. barhami and E. spicata share one monomorphic symbiont phylotype. However, complementary CARD-FISH analyses targeting the 16S-V6 region implied the existence of an additional phylotype in L. barhami. Our results suggest that the V4 region might not be sufficiently variable to investigate diversity in the intra-host symbiont population at least in the analyzed sample set. This is an important finding given that this region has become the standard molecular marker for high-throughput microbiome analyses. Further metagenomic research will be necessary to solve these issues and to uncover symbiont diversity that is hidden below the 16S rRNA level.
Breusing, Corinna
91adf7f8-3220-4e4b-b450-b0ac3d34d56a
Franke, Maximilian
26631ff8-2848-43e2-a32f-08b7cf25a579
Young, Curtis Robert
c15e536a-84a3-4e28-a8b1-ccea9a37b3cb
Montoya, Jose M.
7cd589ff-7cbc-4d26-b22d-2c160f447b45
15 January 2020
Breusing, Corinna
91adf7f8-3220-4e4b-b450-b0ac3d34d56a
Franke, Maximilian
26631ff8-2848-43e2-a32f-08b7cf25a579
Young, Curtis Robert
c15e536a-84a3-4e28-a8b1-ccea9a37b3cb
Montoya, Jose M.
7cd589ff-7cbc-4d26-b22d-2c160f447b45
Breusing, Corinna, Franke, Maximilian and Young, Curtis Robert
,
Montoya, Jose M.
(ed.)
(2020)
Intra-host symbiont diversity in eastern Pacific cold seep tubeworms identified by the 16S-V6 region, but undetected by the 16S-V4 region.
PLoS ONE, 15 (1), [e0227053].
(doi:10.1371/journal.pone.0227053).
Abstract
Vestimentiferan tubeworms are key taxa in deep-sea chemosynthetic habitats worldwide. As adults they obtain their nutrition through their sulfide-oxidizing bacterial endosymbionts, which are acquired from the environment. Although horizontal transmission should favor infections by various symbiotic microbes, the current paradigm holds that every tubeworm harbors only one endosymbiotic 16S rRNA phylotype. Although previous studies based on traditional Sanger sequencing have questioned these findings, population level high-throughput analyses of the symbiont 16S diversity are still missing. To get further insights into the symbiont genetic variation and uncover hitherto hidden diversity we applied state-of-the-art 16S-V4 amplicon sequencing to populations of the co-occurring tubeworm species Lamellibrachia barhami and Escarpia spicata that were collected during E/V Nautilus and R/V Western Flyer cruises to cold seeps in the eastern Pacific Ocean. In agreement with earlier work our sequence data indicated that L. barhami and E. spicata share one monomorphic symbiont phylotype. However, complementary CARD-FISH analyses targeting the 16S-V6 region implied the existence of an additional phylotype in L. barhami. Our results suggest that the V4 region might not be sufficiently variable to investigate diversity in the intra-host symbiont population at least in the analyzed sample set. This is an important finding given that this region has become the standard molecular marker for high-throughput microbiome analyses. Further metagenomic research will be necessary to solve these issues and to uncover symbiont diversity that is hidden below the 16S rRNA level.
Text
young
- Version of Record
More information
Accepted/In Press date: 11 December 2019
Published date: 15 January 2020
Identifiers
Local EPrints ID: 438049
URI: http://eprints.soton.ac.uk/id/eprint/438049
ISSN: 1932-6203
PURE UUID: 98ea7759-479d-4dea-abda-d1274a6d086e
Catalogue record
Date deposited: 26 Feb 2020 17:31
Last modified: 26 Apr 2022 20:17
Export record
Altmetrics
Contributors
Author:
Corinna Breusing
Author:
Maximilian Franke
Author:
Curtis Robert Young
Editor:
Jose M. Montoya
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.
View more statistics