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Abstract Computation of normalizing constants

is a fundamental mathematical problem in various

disciplines, particularly in Bayesian model selection

problems. A sampling based technique known as bridge

sampling (Meng and Wong 1996) has been found to

produce accurate estimates of normalizing constants

and is shown to possess good asymptotic properties.

For small to moderate sample sizes (as in situations

with limited computational resources), we demonstrate

that the (optimal) bridge sampler produces biased

estimates. Specifically, when one density (we denote

as p2) is constructed to be close to the target density
(we denote as p1) using method of moments, our

simulation based results indicate that the correlation

induced bias through the moments-matching procedure

is non-negligible. More crucially, the bias amplifies as

the dimensionality of the problem increases. Thus, a

series of theoretical as well as empirical investigations

is carried out to identify the nature and origin of

the bias. We then examine the effect of sample size

allocation on the accuracy of bridge sampling estimates

and discovered that one possibility of reducing both

the bias and standard error with little increase in

computational effort is by drawing extra samples from

the moments-matched density p2 (which we assume
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easy to sample from), provided that the evaluation

of p1 is not too expensive. We proceed to show how

the simple adaptive approach we termed “splitting”

manages to alleviate the correlation induced bias at the

expense of a higher standard error, irrespective of the

dimensionality involved. We also slightly modified the

strategy suggested by Wang et al. (2019) to address

the issue of the increase of standard error due to

splitting, which is later generalized to further improve

the efficiency. We conclude the paper by offering

our insights of the application of a combination of

these adaptive methods to improve the accuracy of

bridge sampling estimates in Bayesian applications

(where posterior samples are typically expensive to

generate) based on the preceding investigations, with

an application to a practical example.

Keywords Normalizing constants · Bridge sampling ·
Method of moments · Correlation induced bias ·
Bayesian applications.

1 Introduction

Estimating normalizing constants is a well-known prob-

lem, solutions of which often revolve around developing

new or modifying current numerical computational al-

gorithms to circumvent this issue that hinders subse-

quent statistical/scientific inferences. To give a few ex-

amples: likelihood inference in the presence of missing

data where computation of the observed-data likelihood

is essentially the problem of estimating the normalizing

constant of the complete-data likelihood, a rather com-

mon application in genetic linkage analysis (see Irwin

et al. 1994, Augustine Kong et al. 1994, Jensen and

Kong 1999 etc. ); computation of free energy differ-

ences (e.g. Bennett 1976, Frenkel 1986, Neal 1993 etc.
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); estimation of marginal likelihoods and Bayes factors

within the Bayesian framework (e.g. Kass and Raftery

1995, Carlin and Louis 2000, Sinharay and Stern 2005

etc. ).

In Bayesian computations, evaluation of the nor-

malizing constant, known as the marginal likelihood,

can initially be avoided during the parameter estima-

tion stage using Markov Chain Monte Carlo (MCMC)

sampling methods since it is not the parameter of inter-

est. However, this very quantity plays a central role in

Bayesian model comparison and model averaging. To be

exact, denoting θ as the parameter and M as the model

parameter, Bayes theorem stipulates that the posterior

distribution given data, X, is

fM (θ|X) =
fM (X|θ)fM (θ)

fM (X)
, (1)

where fM (X|θ) is the model likelihood and fM (θ) is

the prior distribution of θ. It is clear that the numera-

tor of Equation (1), fM (X) =
∫
fM (X|θ)fM (θ)dθ (the

marginal likelihood), does not depend on θ and is re-

garded as the normalizing constant of the posterior

distribution. The Bayes factor, defined as the ratio of

marginal likelihoods of two competing models, is the

key quantity in Bayesian model selection because it en-

codes the evidence of model preference given by the

data (Kass and Raftery 1995). Computing Bayes factors

is extremely challenging, and is the primary reason why

Bayesian inference was not popular (since exact poste-

rior computations are prohibited) until the discovery of

MCMC methods. Therefore, it is crucial to be able to

estimate the aforementioned quantities to carry out a

fully Bayesian computational approach. Typically, pos-

terior samples are very expensive to generate (mostly

using MCMC methods) given the actual computational

constraints. Occasionally, the evaluation of likelihoods

can also be rather costly (e.g. in the presence of la-

tent data/parameters). Hence, the aim in this context

is often to maximize the statistical efficiency of the esti-

mates produced, given a fixed number of posterior sam-

ples.

A range of possible computational techniques are

available for computing marginal likelihoods/Bayes fac-

tors; see Carlin and Louis (2000) for a comprehensive

review. Simulation based (Monte Carlo) approxima-

tion is commonly used by most statisticians due to its

general applicability and their knowledge of sampling

based inference. Some examples include the importance

sampling method (e.g. Geweke 1989), Chib’s method

(Carlin and Chib 1995), harmonic mean estimator

(Newton and Raftery 1994), generalized harmonic

mean estimator (Gelfand and Dey 1994), reversible

jump MCMC method (Green 1995), path sampling

(Gelman and Meng 1998) etc. In this paper, we focus

on the bridge sampling method, which is a technique

originally developed by Bennett (1976) in the specific

context of free energy estimation. This technique was

later refined and formulated by Meng and Wong (1996)

into a more general setting involving estimation of

ratio of two normalizing constants, which can also be

constructed to estimate a single normalizing constant

when one of the densities is normalized. The bridge

sampling technique has been widely applied in various

research areas including: missing data analysis (Jensen

and Kong 1999, Lee et al. 2003), factor analysis (Meng

and Schilling 1996, Lopes and West 2004), statistical

regressions (Mira and Nicholls 2004, Bartolucci et al.

2006, Overstall and Forster 2010 etc.), Markov mixture

models (Frühwirth-Schnatter 2004) etc. More recent

applications include Guy et al. (2013), Tan (2013),

Wong et al. (2018), Gronau et al. (2017a). The package

“bridgesampling” in R (Gronau et al. 2017b) can now

be used to implement the bridge sampling estimation

conveniently. We also provide our version of R code

(see Appendix) which focuses on estimating marginal

likelihoods using the bridge sampling technique,

with various algorithms to increase efficiency (to be

introduced in the paper), given a set of posterior

samples.

Bridge sampling estimates are empirically found

to be rather accurate (e.g. Sinharay and Stern 2005,

Frühwirth-Schnatter 2004), leading to its popularity.

While known to be asymptotically unbiased, bridge

sampling technique produces biased estimates in

practical usage for small to moderate sample sizes.

Meng and Schilling (1996) carried out an empirical

analysis of the optimal bridge sampling estimator

and illustrated that the estimator yields positive bias

that worsens with increasing distance between the two

distributions. The second type of bias arises when the

approximation density is determined from the poste-

rior samples using the method of moments, resulting

in a systematic underestimation of the normalizing

constant due to the correlation induced through

the moments-matching procedure, as demonstrated

by Overstall and Forster (2010). Wong (2017) also

showed how the issue of underestimation worsens in

high-dimensional problems. Additionally, Wang et al.

(2019) pointed out a similar issue of using the sample

moments of the U-warped distribution to construct a

mixture Gaussian approximation resulting in biased

bridge sampling estimates. They proposed a similar

approach as Overstall and Forster (2010) to eliminate

the bias, and also suggested a modification to avoid

an increase in the estimates’ standard errors. In

this paper, we perform a bias analysis on the bridge

sampling estimator by breaking it down into smaller
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components, providing some theoretical insights of the

origin of the two types of biases. We then focus on

the correlation induced bias. The effect of sample size

allocation on bridge sampling estimates is examined,

which lead to reduced bias and standard error when

applied appropriately in certain scenarios. Several

alternatives capable of improving bridge sampling

estimates (either by mitigating the bias or reducing

the standard error) are then presented and explored in

detail. A series of simulation studies is conducted to

ascertain our conjecture, putting emphasis on not just

the relative mean square error as an overall measure

of efficiency, but also on a detailed analysis of the

empirical bias and standard error separately.

The rest of the paper is structured as follows. First,

we introduce the bridge sampling estimator and de-

scribe some examples to showcase the empirical bias of

bridge sampling estimates. We proceed to identify the

source of the bias by breaking down the bridge sam-

pling estimator into smaller components for ease of ex-

planation (Section 2). Secondly, we examine the effect

of different allocation of sample sizes on the behaviour

of bridge sampling estimates (Section 3). We then de-

scribe and extend the idea of splitting, which alleviates

the correlation induced bias, but at the same time result

in an increased standard error (Section 4). Our inves-

tigation also reveals the optimal way of applying the

partitioning based on various situations. The approach

by Wang et al. (2019) to avoid an increase in standard

error due to splitting is modified and extended (Sec-

tions 5 and 6). Finally, some matters of consideration

during the practical implementation of the bridge sam-

pling method in Bayesian computations are presented

on the basis of the preceding investigations, and con-

cluded with an illustrative example (Section 7).

2 The Bridge Sampling Estimator

Suppose that pi(θ) (i = 1, 2) are two densities with pa-

rameter spaces Θi ⊂ Rd respectively, where d is the

dimension of θ, and are known up to a normalizing

constant, i.e. pi(θ) = qi(θ)
ci

, with ci as the correspond-

ing normalizing constants of the unnormalized densi-

ties, qi(θ). The fundamental usage of bridge sampling

is based on the following key identity,

r ≡ c1
c2

=
E2[q1(θ)ω(θ)]

E1[q2(θ)ω(θ)]
, (2)

where ω(θ) is the so called bridge function (de-

fined on the common support Θ1 ∩ Θ2) satisfying

0 <
∣∣∣∫Θ1∩Θ2

p1(θ)p2(θ)ω(θ)dθ
∣∣∣ < ∞, so that the ratio

in Equation (2) is well defined (Meng and Wong 1996).

According to Meng and Wong (1996), the existence of

ω() for Equation (2) (and hence the bridge sampler to

be valid) is ensured as long as the two densities have

non-trivial common support (which is almost always

satisfied in practice). Given that the above condition

is satisfied, the Monte Carlo estimate of r is simply

r̂ =
1
N2

∑N2

i=1 q1(θi2)ω(θi2)

1
N1

∑N1

j=1 q2(θj1)ω(θj1)
, (3)

where {θ1:N1
1 } ≡ {θ1

1, . . . , θ
N1
1 } and {θ1:N2

2 } ≡
{θ1

2, . . . , θ
N2
2 } are sets of random (possibly dependent)

realizations from p1(θ) and p2(θ) respectively. Under

certain regularity conditions, r̂ converges asymptoti-

cally to the true value, r (i.e. the sample averages in

Equation (3) converge to their respective population

averages). It is also worth noting here that the bridge

sampling estimate is essentially a maximum likeli-

hood estimate under the interesting semi-parametric

formulation by Kong et al. (2003).

The choice of the bridge function, ω(), is arbi-

trary, but defines the resulting estimator formed. For

instance, choosing ωI(θ) = 1/q2(θ) leads to the well

known importance sampling estimator,

r̂I =
1

N2

N2∑
i=1

q1(θi2)

q2(θi2)
. (4)

While choosing ωRI(θ) = 1/q1(θ) leads to the so-called

reciprocal importance sampling estimator (Gelfand and

Dey 1994),

r̂RI =

[
1

N1

N1∑
i=1

q2(θi1)

q1(θi1)

]−1

. (5)

Additionally, the estimation method developed by Chib

(1995) is also a special case of the bridge sampling esti-

mator (see Gelman and Meng 1998 for more examples).

Thus, the bridge sampling estimator is a generalization

of several algorithms that encompass a wide range of

sampling-based normalizing constants estimation meth-

ods.

Meng and Wong (1996) proposed that an optimal

choice of ω(), in the sense of minimizing the asymptotic

Relative Mean Square Error (RMSE), is given by the

reciprocal of a mixture between the two densities,

ωO(θ) ∝ 1

N1q1(θ) + rN2q2(θ)
, (6)

provided draws from both distributions are indepen-

dent. Since ωO() still involves the unknown r, Meng and

Wong (1996) suggested the following iterative compu-

tational procedure:

r̂
(t+1)
O =

1
N2

∑N2

i=1

[
l(θi2)

N1l(θi2)+N2r̂
(t)
O

]
1
N1

∑N1

j=1

[
1

N1l(θ
j
1)+N2r̂

(t)
O

] , (7)



4 Jackie S. T. Wong a,∗ et al.

where r̂
(t)
O is the tth iteration of the estimator and l(θ) =

q1(θ)
q2(θ) . Starting with an initial guess, r̂

(0)
O , the optimal

bridge estimate, r̂O, can be obtained by iterating (7)

until convergence.

2.1 The Empirical Bias of Optimal Bridge Estimates

Meng and Wong (1996) only considered the asymptotic

behaviour of r̂O in terms of the RMSE. However, the

practical behaviour of r̂O computed using finite number

of samples (due to limited computational resources) is

often of significant interest too. Moreover, it is also in-

sightful to investigate the bias and standard error of r̂O
separately rather than using the RMSE as a measure of

overall efficiency, which considers the bias and standard

error altogether, where

RMSE =
E[(r̂ − r)2]

r2
=

[E(r̂)− r]2

r2
+

E[(r̂ − E(r̂))2]

r2

= (Relative Bias)2 + (Relative standard error)2.

The existence of the non-negligible bias of r̂O can

be illustrated using a toy example as described below.

Suppose that we are interested in evaluating the in-

tegral
∫
q1(θ)dθ, given that we are able to generate a

sample of size N from q1(), {θ1:N
1 }. In order to use the

optimal bridge sampling estimator, we would choose a

normalized density, q2(θ) = p2(θ), so that the answer

to the above integral is intended to be c1 (unknown).

According to Meng and Wong (1996), the efficiency of

the bridge sampling estimator will be minimized when

the area of “overlapping” (the “harmonic” divergence

in their definition) is large. An immediate choice of q2

for this purpose is then a normal distribution with mo-

ments chosen to match the sample moments of {θ1:N
1 },

or more generally, denoting {θ1} as {θ1:N
1 }, we write

q2 = q
{θ1}
2 and p2 = p

{θ1}
2 as densities that depend on

the sample from p1. Throughout, we also use the nota-

tion p2 ← {θ1} to denote the case when p2 is dependent

on the samples from p1, while p2 8 {θ1} indicates that

p1 and p2 are independently chosen. Making use of the

information contained within the samples from p1 to

derive p2 guarantees that the “overlapping” between

p1 and p2 is large. However, as we demonstrate in the

simulation study below, this also introduces bias to the

corresponding estimate, r̂O, due to the correlation in-

duced between the samples from p1 and p2.

As an illustration, let p1 be the density of a univari-

ate standard normal distribution, N(0, 1) with {θ1:N
1 }

as the corresponding sample. Then let p2 be the den-

sity of N(θ̄1, σ̂
2
1), where θ̄1 and σ̂2

1 are the sample mean

and variance derived from {θ1:N
1 }, i.e. θ̄1 =

∑N
i=1 θ

i
1

N

and σ̂2
1 =

∑N
i=1(θi1−θ̄)

2

N−1 . A sample of size N , {θ1:N
2 }, is

0.
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Fig. 1: Plot of the mean estimates of the ratio of normalizing
constants, r, against sample size using r̂O, accompanied by
the associated 95% intervals.

then generated from p2. For simplicity, we assume that

q1 = p1 and q2 = p2 so that the true value of r is known

a priori to be one. We then evaluate Equation (7) at the

entirety of samples from p1 and p2 (whence N1 = N2 =

N), and consider the behaviour of r̂O with varying sam-

ple sizes from the set N ∈ {100, 200, . . . , 10000}. Each

computation is also replicated R = 10 000 times to learn

about the underlying distribution of r̂O for each N .

Figure 1 depicts the mean and 95% intervals (con-

structed from the sample percentiles) of r̂O, plotted

against N . Evidently, there is a systematic underesti-

mation of the value of r = 1, where the bias slowly

diminishes as N increases, confirming the assertion by

Meng and Wong (1996) that the bias term is asymp-

totically negligible. However, it is clear that for small

to moderate N , the bias is non-negligible. Even though

the magnitude of the bias appears to be non-significant

in this uni-dimensional case, the negative bias will be

further amplified as the dimension of the parameter in-

creases. To put this into perspective, performing the

bridge sampling on a 100-dimensional standard normal

distribution with a sample size of 10,000 yields an esti-

mate of r̂O ≈ 0.77, which is considerably lower than the

actual value. Therefore, it is imperative to understand

the behaviour of the bias so that we could identify the

optimal bridge estimate produced in a specific practical

application with certain level of confidence.

2.2 Investigating the Origin of the Bias of r̂O

It is challenging to derive theoretical properties of

the iteratively produced r̂O. Thus, the bias analysis

is achieved by breaking r̂O down into smaller compo-

nents, r̂I and r̂RI , the biases of which are analysed

separately. r̂I is shown to produce unbiased estimates,

and hence, the bias of r̂O can be traced from r̂RI . There
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are two types of biases for r̂RI , which we attempt to

describe in two steps: first, Taylor expansion is used

to show that the (positive) bias of r̂O depends on the

distance between p1 and p2 when p2 8 {θ1}; second,

we demonstrate that even when p2 is constructed to

resemble p1 using samples from p1 (using method of

moments), i.e. p2 ← {θ1}, the correlation induced

bias through the moments-matching procedure (as

observed in Section 2.1) is of negative magnitude and

is amplified in high-dimensional problems.

Recall from Equation (6) that ωO is essentially the

reciprocal of a mixture between the two densities, q1

and q2, which can be alternatively expressed as

ωO(θ) ∝
(

N1

ωRI(θ)
+

rN2

ωI(θ)

)−1

. (8)

In other words, r̂O is essentially formed from a com-

bination (in some way) between r̂I and r̂RI . Hence,

we expect r̂O to inherit some properties from both

r̂I and r̂RI , even though r̂O is regarded as an im-

proved version in the sense of having a smaller RMSE

than both, as proven by Meng and Wong (1996).

On a side note, this is the reason why the bridge

sampling technique is robust with respect to the tail

behaviour of q2 as compared to r̂I and r̂RI , because

the requirements of heavier-tailed and lighter-tailed

important sampling densities respectively (as explained

by Frühwirth-Schnatter 2004) counteract each other

upon “averaging”.

As a crude indication of the above relationship be-

tween r̂O, r̂I and r̂RI , Figure 2 is created, where the

estimates of r̂I and r̂RI (computed in similar set up as

in Section 2.1) are included as a comparison. Clearly,

the estimates of r̂O lie within those of r̂I and r̂RI (in-

cluding the percentiles). Thus, it is a plausible strategy

to break down the problem of investigating the bias of

r̂O into investigating the bias of r̂I and r̂RI separately,

which is much easier.

Importance sampling estimates are known to be

unbiased (Chen et al. 2000, p. 127). Even in the

case where p2 ← {θ1}, it can be shown that the

resulting r̂I is unbiased (visibly evident in Figure

2). To see this, we note that conditional on {θ1},
p
{θ1}
2 is just an ordinary density function, then

E[r̂I ] = 1
N

∑N
i=1 Eθ1

[
Eθi2|θ1

[
q1(θi2)

q
{θ1}
2 (θi2)

]]
= c1

c2
(see

Appendix A for proof).

On the contrary, r̂RI , is notorious for producing bi-

ased estimates (e.g. Neal 1994). r̂RI belongs to the ratio

estimator, which is known to overestimate the normal-

izing constant when p2 8 {θ1}. In particular, using
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Fig. 2: Plot of the mean estimates (solid lines) of the ratio of
normalizing constants against sample size using r̂O, r̂I , and
r̂RI , accompanied by the associated 95% intervals (dotted
lines).

Jensen’s inequality, it can be shown that

E[r̂RI ] = E

( 1

N

N∑
i=1

q2(θi1)

q1(θi1)

)−1
 ≥ ( 1

N

N∑
i=1

E
[
q2(θi1)

q1(θi1)

])−1

=
c1
c2
.

More specifically, we can derive the approximate

magnitude of the overestimation by using a Tay-

lor expansion. If η̄ = 1
N

∑N
i=1

q2(θi1)

q1(θi1)
, then we have

η ≡ E[η̄] = c2
c1

when p2 8 {θ1}. Applying a Tay-

lor series expansion about η = E[η̄] gives E[r̂RI ] ≈
c1
c2

+
(
c1
c2

)3

×Var[η̄]−
(
c1
c2

)4

×E[(η̄−η)3] to the third or-

der approximation (see Appendix B). When p2 8 {θ1},
and {θ1

1, . . . , θ
N
1 } are random independent realizations

from p1, then Var[η̄] = 1
NVar

[
q2(θi1)

q1(θi1)

]
= O

(
1
N

)
and

E[(η̄ − η)3] = 1
N2E

[(
q2(θi1)

q1(θi1)
− η
)3
]

= O
(

1
N2

)
. The

term E[(η̄−η)3] typically possesses negligible value and

can be ignored. Therefore, r̂RI carries a positive bias of

magnitude
(
c1
c2

)3

× Var[η̄] (order 1/N) approximately,

which vanishes as N → ∞. Note that Var[η̄] can be

expressed as

Var[η̄] =
1

N

(
c2
c1

)2(∫
p2

2(θ)

p1(θ)
dθ − 1

)
=

1

N

(
c2
c1

)2 [
Ep2

[
p2

p1

]
− 1

]
,

where Ep2
[
p2
p1

]
resembles the Kullback-Leibler diver-

gence (Kullback and Leibler 1951), Ep2
[
log
(
p2
p1

)]
, to

a certain degree. This implies that Var[η̄] measures the

divergence of p2 from p1, which is an indication of how

much they overlap. The smaller the overlap between p1

and p2, the larger the value of Var[η̄], and hence, the
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larger the bias (see Appendix C). Of course, Ep2
[
p2
p1

]
is not always finite as p2

p1
is not always square inte-

grable with respect to p1 as pointed out by Meng and

Wong (1996), but the multiplicative factor of 1
N en-

sures that the practical bias vanishes as N increases.

This phenomenon can also be observed from Meng and

Schilling (1996), where the positive bias of r̂O in their

simulation increases as the divergence between p1 and

p2 (measured in Hellinger distance) increases.

The above derivation does not explain the under-

estimation in Figure 2 when p2 ← {θ1}. Again, we fo-

cus on situation where p
{θ1}
2 is constructed to be close

to p1 (using method of moments). Intuitively, this is

due to the correlation between the samples from p1 and

p2 through the sample moments, which then manifests

itself in the form of a systematic bias. More specifi-

cally, the bias switches sign because the term Var[η̄]

becomes smaller when p1 and p2 are close. Hence, the

supposedly positive bias of r̂RI is dominated by another

source of bias, which originates from 1
η , where η =

1
N

∑N
i=1 Eθ−i1

[
Eθi1|θ−i1

[
q
{θ1}
2 (θi1)

q1(θi1)

]]
6= c2

c1
with {θ−i1 } =

{θ1
1, . . . , θ

i−1
1 , θi+1

1 , . . . , θN1 }. It is difficult to derive a

simpler mathematical expression for η here, even in

a very simple case involving normal distributions (a

sketch proof when p1 and p2 are both exponential is

provided in Appendix D). But empirically, it has been

found that η > c2
c1

, resulting in an underestimation of

the true value of r = c1
c2

, i.e. E[r̂RI ] <
c1
c2

(as observed

in Figure 2).

Using the delta method, the variance of r̂RI (to the

second order) can be expressed as

Var

[
1

η̄

]
≈ c22
N2η4c21

Var

[
N∑
i=1

p
{θ1}
2 (θi1)

p1(θi1)

]
. (9)

3 The Effect of Sample Size Allocation on the

Accuracy of r̂O

N1 and N2 appear in ωO() as the mixture proportions

of q1 and q2 respectively (see Equation (6)). Given that

ωO() plays the role to provide an optimal linkage be-

tween the two densities, it is logical that the allocation

of samples sizes directly influences the efficiency of the

resulting bridge sampling estimate. To the best of our

knowledge, the effect of relative sample sizes on the effi-

ciency of r̂O has yet to be investigated. Although Chen

et al. (2000, p. 129) vaguely stated that the optimal

choice of ω() is more vital than the optimal allocation

of sample sizes, a more thorough study on the effect of

relative sample sizes could potentially lead to ways of

improving the efficiency of r̂O.

By inspecting Equation (8), we note that the rel-

ative sizes of N1 and N2 determine the resulting be-

haviour of r̂O based on the weights given on the mix-

ture components. Allocating a larger N1 relative to N2

corresponds to prioritizing the ωRI component, imply-

ing that the resulting r̂O behaves more similarly to

r̂RI . By contrast, allocating a smaller N1 relative to N2

corresponds to prioritizing the ωI component, meaning

the behaviour of r̂O is more inclined towards r̂I . Using

N1 = N2 corresponds to the original bridge sampling

estimate recommended by Meng and Wong (1996). In

the extreme case where N1 = 0 (where none of the sam-

ples from p1 is used to evaluate the estimator), then the

bridge sampling procedure produces r̂I exactly.

Since it was discovered from Section 2.1 that r̂I is

unbiased, while r̂RI produces biased estimates, the rel-

ative values of N1 and N2 indirectly govern the bias of

r̂O. Here, we focus on a scenario where it is computa-

tionally expensive to simulate from p1, while it is rela-

tively cheaper to simulate samples from p2 and to evalu-

ate these samples at p1. Thus, we investigate the possi-

bility of using N2 > N1 = N to improve the efficiency of

r̂O with little increase in the computational effort, un-

der the computational constraint that N could not be

freely increased. Generally speaking, using a larger N2

corresponds to allocating more weight to ωI (and hence

the unbiased r̂I), which then reduces the associated bias

for r̂O since less weight is given to the biased r̂RI when

N1 is relatively small. Moreover, using a larger N2 re-

duces the standard error of r̂O since the estimator is

evaluated at a greater number of samples. Therefore,

in theory, we expect that using a larger N2 not only di-

minishes the bias, but also decreases the standard error

of r̂O.

Returning to the simulation study in Section 2.1,

rather than only setting N2 = N , three different sample

size allocations are examined:

i. Naive approach, N2 = N .

ii. A constant multiple of N , N2 = 10N .

iii. Some relatively large number, N2 = 50 000.

r̂O is then evaluated at the entire samples from both

p1 and p2, so that N1 = N and N2 is from one of the

above.

As shown in Figure 3, a larger N2 generally leads

to better estimates by reducing both the bias and stan-

dard error as hypothesized. For N2 = 50 000 (blue),

the bias remarkably shrinks to almost zero for all N .

For N2 = 10N (red), the performance of r̂O with re-

spect to N is consistently better relative to using N2 =

N (black), overtaking that of using N2 = 50 000 at

N = 5000 (when blue and red lines cross each other),

where the red outperforms the blue by having a larger
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Fig. 3: Top panel shows the mean estimates of r̂O plotted
against N for various N2, accompanied by the associated 95%
intervals (dotted lines). The bottom panel shows the corre-
sponding log RMSE.

N2. The RMSE for N2 = 10N also appears to de-

crease indefinitely as N increases, while the improve-

ment for N2 = 50 000 slowly decelerates with increasing

N (mainly because its standard error does not reduce

considerably towards the end). This indicates that the

efficiency of r̂O could be further improved by using an

even larger N2. Therefore, it is clearly possible to im-

prove the efficiency of r̂O (by reducing both the bias

and standard error) by using a relatively larger N2 in

this particular example.

The previous result is to be expected since using a

relatively large N2 implies that r̂O behaves more closely

to r̂I . Using a normal distribution as an important sam-

pling distribution to compute the normalizing constant

of another normal distribution is certainly going to be-

have well as they possess similar tail behaviour. It is

perhaps more interesting to consider a heavier tailed p1

(where importance sampling procedures are known to

be less efficient) and assess if the improvement due to

a larger N2 is as apparent as it was previously. Sup-

pose now that p1 and q1 are densities of Student’s t-

distribution with three degrees of freedom (t3), using a

similar set up as before, the behaviour of r̂O in response

to N is examined (refer to Figure 4). Remarkably, simi-

lar patterns are observed even though the improvement

is less substantial when compared to the previous case.

The bias and standard error of r̂O are now larger due to

the difference in nature between p1 and p2 (mostly due

to different tail behaviours), resulting in a larger overall

RMSE than the previous case. In conclusion, it can be

deduced that it is generally beneficial to use a larger

N2 given a fixed samples from p1 during the evalua-

tion of r̂O if p2 is the sample moments-matched normal

density, since this reduces both the bias and standard

error of r̂O with little increase in computational effort

(assuming that p1 is quick to evaluate). More specifi-

cally, using a relatively larger N2 corresponds to alter-

ing the priority between the importance sampling and

reciprocal importance sampling method with which the

evaluation of r̂O is based upon, favouring the unbiased

importance sampling method more while partially re-

taining the good behaviour of the reciprocal importance

sampling method.
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Fig. 4: Top panel shows the mean estimates of r̂O plotted
against N for various N2, accompanied by the associated 95%
intervals (dotted lines), when p1 is the density of t3. The
bottom panel shows the corresponding log RMSE.

4 The Splitting Approach

The splitting approach is first introduced and applied

to r̂RI , where the results are examined as motivation
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for r̂O in the next subsection. Since the negative bias

of r̂RI originates mainly from using p
{θ1}
2 through the

moments-matching procedure, the easiest method to

mitigate this issue is to compute the sample moments

using only a portion of the sample from p1, and then

evaluate the estimator at the remaining sample. More

formally, suppose k is the proportion of the samples

from p1 where the moments are computed, where we

then write ps2 = p
{θ1:kN1 }
2 as the resulting density. In

what follows, for ease of exposition, we assume that

kN is an integer. Where kN is not an integer, it should

be replaced by the largest integer not exceeding kN .

For example, in our simulation study before (see Sec-

tion 2.2), ps2 is the density of N(θ̄s1, (σ̂
s
1)2), where θ̄s1 =∑kN

i=1 θ
i
1

kN and (σ̂s1)2 =
∑kN
i=1(θi1−θ̄

s
1)2

kN−1 . Equation (5) is then

appropriately evaluated at the remaining samples from

p1 to give r̂sRI , i.e.

r̂sRI =

[
1

(1− k)N

N∑
i=kN+1

qs2(θi1)

q1(θi1)

]−1

, (10)

where N1 = (1−k)N here and qs2 is defined analogously

as ps2. As an illustration, the splitting approach can be

represented by the diagram in Figure 5.

Compute θ̄s1 and (σ̂s1)2︷ ︸︸ ︷ Evaluate Equation (10)︷ ︸︸ ︷−→ r̂sRI
θ11, . . . . . . . . . . . . . . . . . . , θ

kN
1 , θkN+1

1 , . . . . . . . . . . . . . . . , θN1

Fig. 5: A summary of the splitting approach, where the first
subset of the samples from p1 is used to derive moments for
constructing p2, while the second subset is used to evaluate
the estimator.

This technique has been applied by Overstall

and Forster (2010), Wong (2017), and Wang et al.

(2019), but the underlying mathematical principles

were not discussed in detail. To see how the split-

ting approach manages to alleviate the bias, we let

η̄s = 1
(1−k)N

∑N
i=kN+1

qs2(θi1)

q1(θi1)
. Then, it can be shown

that ηs = E[η̄s] = c2
c1

, implying that r̂sRI is unbiased

to the second order (see Appendix E for technical

details).

Unfortunately, the elimination of bias occurs at the

expense of yielding a larger standard error for the re-

sulting estimate. The primary intuition behind this is

the fact that r̂sRI is only evaluated at a shorter portion

of the original sample. More specifically, the variance of

r̂sRI can be approximated (see Appendix E) as

Var[r̂sRI ] ≈
c21

(1− k)Nc22

× Eθ1:kN1

[
VarθN1 |θ1:kN1

(
p
{θ1:kN1 }
2 (θN1 )

p1(θN1 )

)]
. (11)

It is then of interest to compare Var[r̂RI ] (in Equation

(9)) with Var[r̂sRI ] (in Equation (11)). The following

crude calculation is presented to illustrate the approx-

imate increase in the variance due to the splitting ap-

proach (exact calculation involves intractable expres-

sions). Firstly, we momentarily assume that η ≈ c2
c1

(even though we know η > c2
c1

) since the misestima-

tion is relatively small here. Secondly, for the purpose

of illustration, we assume that

Var

[
N∑
i=1

p
{θ1:N1 }
2 (θi1)

p1(θi1)

]
≈

N∑
i=1

Var

[
p
{θ1:N1 }
2 (θi1)

p1(θi1)

]

= N ·Var

[
p
{θ1:N1 }
2 (θN1 )

p1(θN1 )

]
,

i.e. the individual components within the sum-

mation are independent (which is generally not

true in practice). Expression in (9) then be-

comes Var
[

1
η̄

]
≈ c21

Nc22
× Var

[
p
{θ1:N1 }
2 (θN1 )

p1(θN1 )

]
. Fi-

nally, we note that the terms Var

[
p
{θ1:N1 }
2 (θN1 )

p1(θN1 )

]
and

Eθ1:kN1

[
VarθN1 |θ1:kN1

(
p
{θ1:kN1 }
2 (θN1 )

p1(θN1 )

)]
carry similar

interpretation of being the average of the condi-

tional variance of p2
p1

over the samples involved in

constructing p2, and hence, we have
Var[r̂sRI ]
Var[r̂RI ] ≈

1
1−k ,

which means that the splitting approach increases

the variance of the resulting estimate by a factor

of 1
1−k approximately. Crudely speaking, the ratio

of the variances is approximately the ratio of the

proportion of samples used to evaluate the estimators

(which is what we observed empirically), e.g. when

k = 1/2, then Var[r̂sRI ] ≈ 2Var[r̂RI ]. The crude

calculation above does not hold in general due to

the simplifying assumptions used, but nevertheless, it

provides an intuition of how the splitting approach

leads to increased standard error. Regardless, it is

evident that the splitting approach manages to correct

the bias by avoiding the use of the same samples for

moments-matching and evaluation of the estimator,

but at the same time introduces more variations to the

resulting estimates (by having a smaller sample size

to work with). Therefore, the efficacy of the splitting

approach in improving the estimator is dictated by the

trade-off between the bias and variance.
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Now, consider simulation study similar to that con-

ducted in Section 2.1, except now we are interested in

investigating the empirical behaviour of r̂RI and r̂sRI .

Suppose p1 and q1 are densities of N(0, 1), with a sam-

ple of size N , {θ1:N
1 }, being made available. We assess

the following two approaches of constructing p2.

1. Approach 1 (naive): p2 is the density of N(θ̄1, σ̂
2
1),

where θ̄1 =
∑N
i=1 θ

i
1

N and σ̂2
1 =

∑N
i=1(θi1−θ̄1)2

N−1 . Hence,

the reciprocal importance sampling estimator is eval-

uated at the entire samples, {θ1:N
1 }, where N1 = N ,

producing r̂RI .

2. Approach 2 (splitting): p2 is the density of

N(θ̄s1, (σ̂
s
1)2), where θ̄s1 =

∑kN
i=1 θ

i
1

kN and (σ̂s1)2 =∑kN
i=1(θi1−θ̄

s
1)2

kN−1 . Hence, the reciprocal importance

sampling estimator is evaluated at the re-

maining samples from p1, {θ(kN+1):N
1 }, whence

N1 = (1− k)N , producing r̂sRI .

Again, we set q2 = p2 so that the true value of

r is one. We consider N ∈ {100, 200, . . . , 10000},
with each computation replicated R = 10 000 times.

We also examine six different splitting proportions,

k = 1/10, 1/5, 1/3, 1/2, 4/5, 9/10.

Figure 6 illustrates how the mean estimates and the

associated 95% intervals of r̂RI and r̂sRI (for various

splitting proportions) vary against N . As expected, the

naive approach systematically underestimates the true

value, where the bias is a decreasing function of N (we

hypothesize that it is of order 1/N but this remains to

be proven). On the other hand, the splitting approach

produces unbiased estimates for all k considered. This

approach also yields comparatively wider (but symmet-

ric) intervals than the naive approach (which yields

asymmetric intervals), as consistent with our mathe-

matical derivation above. Among the different splitting

proportions, k = 1/2 appears to be the best by produc-

ing narrowest intervals. Interestingly, r̂sRI with k = 1/10

and k = 9/10 produce intervals of similar width, while

those produced with k = 1/5 and k = 4/5 are similar

too. This signifies that the variance of r̂sRI decreases as

k increases until k = 1/2, and then begin to increase

again until k = 1 in a symmetrical manner.

With reference to the bottom panel of Figure 6, r̂sRI
with k = 1/2 possesses the lowest RMSE at each N ,

but is exactly the same as r̂RI , implying that the trade-

off between the bias and variance does not particularly

favour either of them in this context. Hence, it is a

matter of preference, whether one prefers to deal with

biased estimates, or estimates with larger uncertainty.

Despite having the same RMSE, r̂sRI with k = 1/2 is

arguably better than the naive approach as it alleviates

the bias completely and has lower computational cost

since the estimator is only evaluated at a smaller por-
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Fig. 6: Top panel shows the mean estimates (solid lines) of
r̂RI and r̂sRI with various k plotted against N , accompanied
by the associated 95% intervals (dotted lines). The bottom
panel shows the corresponding log RMSE.

tion of the sample (this could be beneficial in scenario

where the evaluation of p1 is slow).

As mentioned before, the negative bias of the

naive approach worsens as dimensionality increases. To

explicitly explore the behaviour of r̂RI and r̂sRI with

respect to the dimensionality involved, we consider

the case when p1 and q1 are both densities of a 10-

dimensional standard normal distribution: N(0, I10).

A sample of size N is generated from this distribution

to form {θ1:N
1 }. Then let p2 and q2 be the densities of

normal distributions with mean and variance derived

from {θ1:N
1 } in a similar set up as described previously,

except each computation is only replicated R = 1000

times for computational feasibility (producing more

erratic curves).

According to Figure 7, similar patterns are ob-

served: that r̂RI systematically underestimates the true

r, while r̂sRI yields unbiased estimates at the expense

of larger standard errors. A closer inspection revealed

that the underestimation of r̂RI is much more apparent

than the uni-dimensional case, confirming that the

bias of r̂RI is amplified by the dimensionality involved.

The ranking performance of k is preserved, in that the

closer k is to 1/2, the better the resulting estimate.

Notice also that r̂sRI now outperforms r̂RI for all k
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considered in terms of the RMSE (the bottom panel

of Figure 7). This is primarily because the splitting

approach still manages to alleviate the bias despite

the higher dimensionality, whereas the bias produced

by the naive approach scales up substantially with

increasing dimensionality. The increase in standard

errors due to the splitting approach no longer offsets

the reduction in the bias as in the uni-dimensional

case, implying that there is an overall gain in efficiency

by performing the splitting for higher dimensional

problems. This renders the idea of splitting more

valuable, since it corrects for the correlation induced

bias irrespective of the dimensionality involved.

However, one has to be cautious when N is rela-

tively small because there appears to be a threshold

before the bias elimination by r̂sRI operates for all k,

as indicated by the idiosyncratic behaviour in Figure 7

for all k (which is also discernible in Figure 6). Intu-

itively, this is because a minimum number of samples is

required to effectively learn about p1 for the estimation

procedure to work properly. Knowing that k determines

the amount of samples used to derive moments, it is

clear that the threshold sample size for the bias elimi-

nation to take effect is larger for smaller k, as evident

in Figure 7.

4.1 Applying the Idea of Splitting on r̂O

Since it was demonstrated that r̂RI is the key compo-

nent leading to the bias of r̂O, it is anticipated that im-

plementing the splitting approach also eliminates the

bias of r̂O. Motivated by the bias analysis in Section

2.2, we write r̂sO =
η̄s2
η̄s1

, where

η̄s1 =
1

N1

N∑
i=N−N1+1

qs2(θi1)

N1q1(θi1) + rN2qs2(θi1)
,

and

η̄s2 =
1

N2

N2∑
i=1

q1(θi2)

N1q1(θi2) + rN2qs2(θi2)
,

with N1 = (1−k)N and N2 = N . When draws are ran-

dom and independent, and conditional on the samples

for moments estimation, we obtain

ηs1 ≡ E
θ
(kN+1):N
1 |θ1:kN1

[η̄s1] =
c2
c1

∫
p1(θ)ps2(θ)

N1p1(θ) + rN2ps2(θ)
dθ,

and

ηs2 ≡ Eθ1:N2 |θ1:kN1
[η̄s2] =

∫
p1(θ)ps2(θ)

N1p1(θ) + rN2ps2(θ)
dθ.

0
.9

4
0

.9
6

0
.9

8
1

.0
0

1
.0

2

Sample Size, N

E
st

im
a

te
d

 N
o

rm
a

liz
in

g
 C

o
n

st
a

n
ts

0 2000 4000 6000 8000 10000

Naive
Splitting,k=1/10
Splitting,k=1/5
Splitting,k=1/3
Splitting,k=1/2
Splitting,k=4/5
Splitting,k=9/10

−
1

2
−

1
0

−
8

−
6

−
4

−
2

Sample Size, N

L
o

g
 R

e
la

tiv
e

 M
e

a
n

 S
q

u
a

re
 E

rr
o

r

0 2000 4000 6000 8000 10000

Naive
Splitting,k=1/10
Splitting,k=1/5
Splitting,k=1/3
Splitting,k=1/2
Splitting,k=4/5
Splitting,k=9/10

Fig. 7: Top panel shows the mean estimates (solid lines) of
r̂RI and r̂sRI with various k plotted against N , accompanied
by the associated 95% intervals (dotted lines), for the 10-
dimensional case. The bottom panel shows the corresponding
log RMSE.

Thus, it can be shown that (see Appendix F)

E[r̂sO] = Eθ1:kN1

[
E
θ
(kN+1):N
1 ,θ1:N2 |θ1:kN1

(
η̄s2
η̄s1

)]
≈ c1
c2

+
c1

c2(ηs1)2
× Eθ1:kN1

[Var(η̄s1)]. (12)

As before, the second term in Equation (12) is going

to be small when p2 is constructed to be close to p1

implying that E[r̂sO] ≈ c1
c2

.

The simulation study in Section 2.1 is revisited,

where we now set ps2 = qs2 as the density of N(θ̄s1, (σ̂
s
1)2)

with θ̄s1 =
∑kN
i=1 θ

i
1

kN and (σ̂s1)2 =
∑kN
i=1(θi1−θ̄

s
1)2

kN−1 . The bridge

sampler in (7) is then evaluated at the remaining sam-

ples from p1, {θ(kN+1):N
1 }, and the entire sample from

p2, {θ1:N
2 }. The iterative formulae is now

r̂sO
(t+1) =

1
N2

∑N2

i=1

[
ls(θi2)

N1ls(θi2)+N2r̂sO
(t)

]
1
N1

∑N
j=kN+1

[
1

N1ls(θ
j
1)+N2r̂sO

(t)

] , (13)

where r̂sO
(t) is the tth iteration of the estimate, N1 =

(1 − k)N and N2 = N , while ls(θ) = q1(θ)
qs2(θ) . Equa-

tion (13) is then iterated until convergence to yield the

estimate, r̂sO. Figure 1 is reconstructed, including r̂sO
for various k ∈ {1/10, 1/5, 1/3, 1/2, 4/5, 9/10}, forming
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Figure 8. Note that a similar simulation study has been

performed by Overstall and Forster (2010), but only

k = 1/2 was considered and they focused mainly on

the bias correction. They also simulated a shorter sam-

ple size from p2 (N2 = 1
2N), which can be improved

with no substantial additional computational cost (rel-

ative to the naive approach) based on the results from

Section 3, where the increase in standard error due to

the splitting approach is slightly compensated by a re-

duction due to allocating a larger N2.

As expected, similar phenomena are observed from

Figure 8, that r̂sO alleviates the bias at the expense of

having a larger standard error for all k. In terms of the

RMSE, the performance of r̂sO with k = 1/2 is similar

to r̂O, as before. Interestingly, the ranking of the perfor-

mance of r̂sO with respect to k is altered slightly when

compared with that for r̂sRI . This is because the com-

putation of optimal bridge sampling estimates requires

samples from both p1 and p2, whereas for reciprocal im-

portance sampling estimates, samples from p1 are only

involved in the construction of p2, but not in the evalu-

ation of the associated estimator. In other words, there

is an extra influence on the overall efficiency of r̂sO by

using different k through the allocation of N1 and N2

(see Section 3). This highlights the difference between

r̂sRI and r̂sO, that both samples from p1 and p2 play a

direct role in the evaluation of the estimator for the

latter, but not for the former. It appears that the best

performing proportion is no longer k = 1/2, but rather

k = 9/10, closely followed by k = 4/5. Or more specifi-

cally, the larger the value of k, the better the resulting

estimate in this particular instance.

For the 10-dimensional case (see Figure 9), the bias

of r̂O is considerably larger than the uni-dimensional

case as expected, while r̂sO is unbiased for all values of

k. The ranking of r̂sO in terms of k is preserved, such

that the closer the value of k is to one, the better the

resulting estimates. r̂sO also outperforms r̂O for all val-

ues of k, as the former alleviates the bias irrespective

of the dimensionality involved while the latter has an

amplified bias, confirming that the splitting approach

is more advantageous in higher-dimensional problems.

4.2 The Optimal Choice of k for r̂sO

The choice of 0 < k ≤ 1 has a two-fold effect: it deter-

mines the amount of samples used for computing sam-

ple moments (the larger the k, then more samples are

used to estimate the moments of p1, the more the p2

constructed resembles p1, resulting in a higher accuracy

for r̂sO); and the amount used to evaluate the estima-

tor (the larger the k, the smaller the number of samples

used to evaluate r̂sO and thus a less precise estimate). An
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Fig. 8: Top panel shows the mean estimates (solid lines) of
r̂O and r̂sO with various k plotted against N , accompanied
by the associated 95% intervals (dotted lines). The bottom
panel shows the corresponding log RMSE.

interesting question then is whether it is more impor-

tant to obtain a more accurate estimate of the moments

(larger k), or it is more important to prioritize the eval-

uation of r̂sO (smaller k). The experiment in Section 4.1

may indicate that it is more crucial to maximize the

area of overlap between p1 and p2, than having more

samples from p1 to evaluate the estimator. However,

this may not be true in general because if the experi-

ment is repeated, but with p1 replaced by the density

of (t3), then the ranking of k is reversed, that smaller

k results in better estimates (see Appendix G).

Recall from Equation (8) that the relative sizes of

N1 and N2 determine the resulting behaviour of r̂O
(see Section 3 for a detailed description). In our exper-

iments, N2 = N is fixed so k is inversely related to N1.

For instance, using a larger k effectively means a smaller

N1 is allocated for evaluating the estimator, yielding

r̂sO that behaves more similarly to the importance sam-

pling estimate. On the contrary, using a smaller k corre-

sponds to a larger N1 for evaluating the estimator, with

N1 approaching N2 = N as k tends to 0, producing

estimates that behave like the original bridge sampler

(with increasingly poorer estimate of the moments of

p1). The boundary value of k = 1 is equivalent to set-
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Fig. 9: Top panel shows the mean estimates (solid lines) of r̂O
and r̂sO for various k plotted against N , accompanied by the
associated 95% intervals (dotted lines), for the 10-dimensional
case. The bottom panel shows the corresponding log RMSE.

ting N1 = 0, which leads to r̂I using moments-matched

normal distribution.

To study the influence of k, the simulation study

in Section 4.1 is repeated, but with log RMSE plotted

against k ∈ {0.01, 0.02, . . . , 0.99}, fixing N = 1000, and

with computation at each k replicated 10 000 times. We

exclude k = 0 in our investigation because the resulting

estimates become aggressively volatile when none of the

samples from p1 is used for constructing p2, i.e. a normal

density with any parameters could be used as p2. We

have also included several cases, each with different p1

and p2:

1. Case 1: p1 is the density of N(0, 1), p2 is the sample

moments-matched normal density;

2. Case 2: p1 is the density of t3, p2 is the sample

moments-matched normal density;

3. Case 3: p1 is the density of a Laplace distribution

with location and scale parameters given as 0 and

1 respectively, i.e. p1(θ) = 1
2 exp(−|θ|), p2 is the

sample moments-matched normal density;

4. Case 4: p1 is the density of N(0, 1), while p2 is

the density of a non-standardized t3 (Johnson et al.

1995, Chapter 28), constructed using samples of p1

through method of moments;

5. Case 5: p1 is the density of t3, while p2 is the density

of a non-standardized t3, constructed using samples

of p1 through method of moments.

According to Figure 10, the RMSE of cases 1 and

5 appear to be decreasing functions of k generally. The

reason why a larger k is beneficial in cases 1 and 5

is perhaps not so surprising since p1 and p2 belong to

the same family of distributions, and hence, prioritiz-

ing the importance sampling component due to using a

large k (see above) will not be problematic. It is then

more crucial to obtain a more accurate estimate of the

moments to maximize the overlap between p1 and p2,

which is achieved by using large k. In other words, when

p1 and p2 are from the same family of distributions, the

gain in statistical efficiency of r̂sO through maximizing

the overlap between p1 and p2 outweighs the loss due

to having less samples to evaluate the estimator. The

reverse is true for cases 2-4, where prioritizing the im-

portance sampling component is detrimental when p2 is

lighter-tailed (see Frühwirth-Schnatter 2004 for expla-

nation), which is especially apparent when the RMSE

is observed to increase drastically as k approaches 1 for

cases 2 and 3. The same phenomenon is not observed for

case 4, as p2 is more heavy-tailed there. Notice also that

similar characteristics are observed at small k for all

cases, that the RMSE increases sharply as k approaches

0. This is an indication that there are insufficient sam-

ples to learn about p1 through the moments estimated,

prohibiting the bridge sampling procedure from oper-

ating efficiently. Once the threshold value is exceeded

(around k = 0.05 according to Figure 10), then the

behaviour of r̂sO begin to show consistent patterns. To

conclude, the optimal value of k for r̂sO depends on the

nature of p1 and p2: if p1 and p2 belong to the same

family of distributions, then it is more favourable to pri-

oritize accurate moments estimation (large k); whereas

if p1 and p2 are from different families (which is more

common in practice), it is more crucial to have more

samples for evaluating the estimator, correspondingly

using less samples for moments estimation (small k),

provided that the minimum threshold of having suffi-

cient samples for moments estimation is surpassed.

5 The Cross-Splitting Approach

In this section, we investigate a method of further re-

ducing the RMSE of r̂sO, given a sample of size N from

p1. Notice that while computing r̂sO, the estimator in

(13) is only evaluated at a portion of the samples from

p1 because the first subset is required for constructing

p2. This results in an increased variance for r̂sO due to

having less samples to evaluate the estimator (Section
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Fig. 10: Plot of the log RMSE of r̂sO against k under Case 1
(black), Case 2 (red), Case 3 (blue), Case 4 (green), and Case
5 (yellow).

4). Wang et al. (2019) suggested a sub-sampling strat-

egy, which makes full use of the entire set of sample

from p1 to ensure statistical efficiency. In particular, a

proportion, k, of the samples from p1 up to the first

half (where they have 0 < k ≤ 1/2), is used to compute

sample moments, while Equation (13) is evaluated at

the remaining half of the samples, {θ(N/2+1):N
1 }, pro-

ducing r̂s1O . The above procedure is then repeated in

the reverse direction, where sample moments are de-

rived from a portion of the second half of the sample

(of proportion k), {θ((1−k)N+1):N
1 }, while Equation (13)

is evaluated at the first half of the samples, producing

r̂s2O . The cross-splitting optimal bridge sampling esti-

mate, r̂csO , is then formed by averaging between the two,

i.e. r̂csO = 1
2 (r̂s1O + r̂s2O ). Given that Equation (13) is eval-

uated at half of the samples from p1 (i.e. N1 is fixed at

N/2) each time, it is obvious that the larger the k the

better the estimate since a larger k ensures a better esti-

mation of the underlying moments (which increases the

overlap between p1 and p2). Moreover, when k < 1/2

is implemented, part of the samples from p1 is not in-

volved during the individual calculation of r̂siO (i = 1, 2).

Even though this is no longer an issue when they are

averaged to form r̂csO , the remaining samples from p1

could have been better utilized in the calculation of

each of the r̂siO .

Therefore, we propose to use a proportion, k, of

the samples from p1 to compute the sample moments,

while Equation (13) is evaluated at all of the remain-

ing samples, yielding r̂s1O . Then, the above procedure is

repeated in the reverse direction while maintaining the

partitioning of the samples, yielding r̂s2O . See Figure 11

for a graphical summary of our approach. That way,

we ensure that the samples from p1 are fully utilized

during the cross computation, while avoiding samples

from being used twice for the evaluation of the estima-

tor. It is then of interest to investigate the impact of k

Derive Moments︷ ︸︸ ︷ Evaluate Eqn. (13)︷ ︸︸ ︷−→ r̂s1O

θ11, . . . , θ
kN
1 , . . . , θ

N

2
1 , θ

N

2
+1

1 , . . . , θ
(1−k)N+1
1 , . . . , θN1︸ ︷︷ ︸

Evaluate Eqn. (13)

︸ ︷︷ ︸
Derive Moments

−→ r̂s2O

Derive Moments︷ ︸︸ ︷ Evaluate Eqn. (13)︷ ︸︸ ︷−→ r̂s1O

θ11, . . . , θ
kN
1 , θkN+1

1 , . . . , θ
N

2
1 , . . . , θ

(1−k)N+1
1 , . . . , θN1︸ ︷︷ ︸

Evaluate
︸ ︷︷ ︸

Derive Moments

−→ r̂s2O

Eqn. (13)

Fig. 11: A diagram to summarise and distinguish between
the two cross splitting approaches (estimates computed by
r̂csO = 1

2
(r̂s1O +r̂s2O )), where the approach by Wang et al. (2019)

is presented at the top panel and our suggested approach at
the bottom.

on the efficiency of r̂csO , where it is sufficient to consider

the range 0 < k ≤ 1/2 (the behaviour for 1/2 ≤ k < 1

would be identical). Note that our approach is the same

with that of Wang et al. (2019) when k = 1/2. We fo-

cus on our proposed approach for the remaining part of

this paper.

It is not possible to completely nullify the correla-

tion between r̂s1O and r̂s2O since the samples used to con-

struct p2 (through moment estimation) technically still

appear in the estimator in the form of the parameters

for p2. Wang et al. (2019) claimed that the correlation

between r̂s1O and r̂s2O is empirically found to be rather

small, implying that the cross-splitting approach is ca-

pable of reducing the variance of r̂siO (i = 1, 2) by almost

half. We demonstrate that this is not always true, es-

pecially when the two densities involved have similar

functional forms. Returning to our case study in Sec-

tion 4.1, the correlation between r̂s1O and r̂s2O is com-

puted for k = 1/10, 1/5, 1/3, 1/2, with varying sample

sizes N ∈ {100, 200, . . . , 10000} (see Figure 12). The

estimated correlations seem to have converged to the

true underlying values for all N (subject to fluctua-

tions), where the converged values (mostly non-zero)

vary across k such that the larger the k the larger the

correlation. For example, the correlation between r̂s1O
and r̂s2O is around 0.33 at k = 1/2 (as implemented by

Wang et al. 2019), which is most likely due to p1 and p2

both being normal densities. However, r̂csO with k = 1/2

also appears to result in the lowest RMSE despite hav-

ing the highest correlation.

To pin down situations where the magnitude of the

correlation between r̂s1O and r̂s2O is negligible, we repeat

the above study with various p1 and p2 under four dif-

ferent scenarios:
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N for various k (top panel), and plot of the log RMSE of
the resulting r̂csO (bottom panel), when p1 is the density of
N(0, 1) and p2 is the moments-matched normal distribution.

1. Case 1: p1 is the density of Exp(λ1), where λ1 = 0.5

and p2 is the density of Exp(λ2), where λ2 is derived

from the samples from p1 by method of moments;

2. Case 2: p1 is the density of t3, while p2 is the den-

sity of the sample moments-matched normal distri-

bution;

3. Case 3: p1 is the density of a standard normal distri-

bution, while p2 is the density of a non-standardized

t3, constructed using samples from p1 using method

of moments;

4. Case 4: p1 is the density of t3, while p2 is the density

of a non-standardized t3, constructed to possess mo-

ments that equate to those of the sample moments

from p1.

[Note that in cases where p1 is multi-modal, it may

be more efficient to use a Gaussian (mixture) ap-

proximation in conjunction with Warp-U transfor-

mation (Wang et al. 2019), but will not be consid-

ered here as the influence of relative tail behaviours

is of interest.]

Knowing that the correlation does not vary against N ,

we fix N = 1000 as an illustration and the results are

summarized in Table 1. As consistent with Wang et al.

(2019), there are certain situations where the correla-

tion is close to being negligible, i.e. cases 2 and 3 here

for all k. This implies that the cross splitting proce-

dure is able to yield r̂csO with half the variance of r̂siO .

We hypothesize that this is because p1 and p2 have

different tail weights due to them being densities of dif-

ferent functional forms. In case 4, the correlations are

slightly larger than zero, again, likely due to p1 and

p2 both being densities of t3. It is also evident from

Table 1 that r̂csO with k = 1/2 is consistently outper-

forming other k across all four cases considered (which

is in agreement with Wang et al. 2019), despite consis-

tently having the highest correlation between r̂s1O and

r̂s2O . This could be linked to the result in Section 4.1,

where we note that r̂csO for a given k is essentially the

average of r̂sO given k and 1−k. From Table 1, we learn

that averaging between both r̂sO with k = 0.50 is bet-

ter than averaging between k = 1/10 (the worst) and

k = 9/10 (the best). Therefore, this suggests that the

cross-splitting approach not only reduces the large stan-

dard error caused by applying the splitting approach,

but also negates the need to determine the optimal

splitting proportion (as studied in Section 4.2), given

that r̂csO with k = 1/2 is the most optimal irrespective

of the nature of p1 and p2.

Even though r̂csO with k = 1/2 proved to be the

best choice from our experiments, technically, r̂csO with

any 0 < k ≤ 1/2 is guaranteed to further improve the

bridge sampling estimator in the sense of RMSE at a

cost of a slightly higher computational effort relative

to the splitting approach. This is particularly benefi-

cial in scenarios where the main concern is to optimize

the efficiency of bridge sampling estimates given a fixed

number of samples from p1, since no sample is wasted

purely for the construction of p2 and the resulting esti-

mate is unbiased with low standard error.

Table 1: The correlation between r̂s1O and r̂s2O for various
cases considered, with the corresponding log RMSE shown
in parentheses.

Case 1 Case 2 Case 3 Case 4
k = 1/10 0.1890 0.0199 -0.0047 0.0623

(-13.2204) (-9.3313) (-9.4601) (-11.2439)
k = 1/5 0.2696 0.0073 0.0072 0.0726

(-13.6600) (-9.4672) (-9.5395) (-11.5274)
k = 1/3 0.3005 -0.0058 0.0122 0.0740

(-13.8829) (-9.5771) (-9.5711) (-11.6442)
k = 1/2 0.3364 -0.0044 0.0260 0.0785

(-13.9197) (-9.5984) (-9.5693) (-11.7372)
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6 Extending the Idea of Cross-Splitting

The cross-splitting approach can be extended by bor-

rowing the idea from the n-fold cross-validation (Ko-

havi 1995). In particular, the original sample is par-

titioned into n subsets, where a single subsample is

retained for moments estimation, while the remaining

subsamples are then used to evaluate the optimal bridge

sampling estimator, together with using a large N2.

This process is then repeated n times, with each of

the subsamples used exactly once for moments estima-

tion, producing r̂s1O , . . . , r̂
sn
O . The resulting n-fold cross-

splitting estimate, r̂ncsO , can then be formed by taking

the average of the n estimates produced in each individ-

ual repetition, i.e. r̂ncsO =
∑n
i=1 r̂

si
O

n . A graphical example

when n = 3 is provided in Figure 13. Technically speak-

ing, the n-fold cross splitting approach is anticipated to

further improve the bridge sampling estimate, the jus-

tification of which can be formulated based on our pre-

vious findings. Firstly, partitioning the samples from p1

into multiple smaller subsets before evaluating the esti-

mator corresponds to the splitting approach with small

k, which was discovered to be optimal (since typically p1

and p2 are of different functional forms) in Section 4.2.

In particular, repeatedly evaluating the optimal bridge

sampling estimator separately for the individual sub-

samples and then averaging (as in r̂ncsO ) is a way to

evaluate the estimator at a larger number of samples

while avoiding using a larger N2 relative to N1 in a sin-

gle computation. Secondly, averaging across all the esti-

mates produced from each of the subsets corresponds to

a multiple application of the cross-splitting approach.

The expectation is that the standard error of the re-

sulting bridge sampling estimate is further reduced due

to evaluating Equation (13) at more posterior samples

(around n − 1 times more evaluations than the cross-

splitting approach). Indeed, this implies that the n-fold

cross-splitting approach is computationally more costly

to execute than the cross-splitting approach because the

bridge sampler is required to be evaluated at more pos-

terior samples. However, the additional computation is

close to negligible since posterior samples are evaluated

at the Gaussian approximation densities, which is cheap

to carry out. The combination of these two features

should be capable of improving the efficiency of r̂ncsO .

As an illustration, we set n = 3 and consider a simi-

lar simulation study as in Section 5, where p1 is now the

density of t3, while p2 is the moments-matched normal

density, with moments computed from different subset

of the samples from p1. The algorithm for computing

the 3-fold cross-splitting estimate is in accordance with

that depicted in Figure 13. Computationally speaking,

r̂ncsO is surely going to yield better estimates than r̂siO

Eqn. (13)︷ ︸︸ ︷ Derive Moments︷ ︸︸ ︷ −→ r̂s3O
Eqn. (13)︷ ︸︸ ︷ Derive Moments︷ ︸︸ ︷ Eqn. (13)︷ ︸︸ ︷−→ r̂s2O

Derive Moments︷ ︸︸ ︷ Eqn. (13)︷ ︸︸ ︷ −→ r̂s1O

θ11, . . . . . . . . . , θ
1

3
N

1 , θ
1

3
N+1

1 , . . . . . . , θ
2

3
N

1 , θ
2

3
N+1

1 , . . . . . . , θN1︸ ︷︷ ︸
Subset 1

︸ ︷︷ ︸
Subset 2

︸ ︷︷ ︸
Subset 3

Fig. 13: A diagram to summarise the 3-fold cross-splitting
approach (estimates computed by r̂ncsO = 1

3
(r̂s1O + r̂s2O + r̂s3O )).

(for any i = 1, . . . , n) if we only simulate N2 = N

samples from p2 for each of the repetitions, since this

implies that we effectively have more samples (three

times when n = 3) from p2 to work with collectively.

To demonstrate that the improvement of r̂ncsO is not

entirely due to using a larger N2 and to ensure simi-

lar computational costs are incurred, we fix the total

number of samples generated from the Gaussian ap-

proximation density to be 3N for a fair comparison.

Specifically, we simulate N2 = 3N samples from p2 and

ps2 respectively for the naive approach and the split-

ting approach with k = 1/3. On the other hand, for

the cross-splitting approach with k = 1/3, we simulate

N2 = 1.5N samples from each of ps12 and ps22 (so in

total we have 3N samples from the Gaussian approx-

imation densities) for the purpose of comparison. Fi-

nally, we also include the cross-splitting approach with

k = 1/2 (the optimal k from Section 5), all of which

are depicted in Figure 14. It is evident that r̂ncsO for

n = 3 is the best estimate out of its counterparts, with

an apparent outperformance observed over the naive

and splitting approaches. The improvement of r̂ncsO for

n = 3 over r̂csO with k = 1/3 and k = 1/2 is not substan-

tial, but is still discernible. Intuitively, this is because

the reduction in standard error (since Equation (13) is

evaluated at more posterior samples in total) is less ap-

parent due to the correlations among r̂siO (i = 1, . . . , n).

However, it can still be deduced that the gain in effi-

ciency of the 3-fold cross-splitting approach over other

approaches is recognizable, and is not entirely due to

evaluating the estimator at a larger N2. Nevertheless, it

is ill-advised to use a very large n in high-dimensional

problems. This is because the samples are segregated

into subsets which contain limited amount of samples,

the moments derived from each subset would then be

inadequate to summarize p1 (each p2 constructed has

small overlap with p1), resulting in poor estimates.
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Fig. 14: Plot of the log RMSE of r̂ncsO for n = 3 (red), against
N . Also included are the log RMSE of r̂O (black), r̂sO with
k = 1/3 (green), and r̂csO with k = 1/2 (yellow) as well as
with k = 1/3 (blue).

7 Implication of Our Results on Bayesian

Computations

As mentioned previously, marginal likelihoods and

Bayes factors are quantities of interest in Bayesian

model selection. One can use the bridge sampling

approach to estimate the marginal likelihood by

setting q1(θ) = fM (X|θ)fM (θ), with q2(θ) = p2(θ)

conveniently chosen as the moments-matched normal

distribution. Assuming that a fixed number of samples,

{θ1:N
1 }, is available from the posterior distribution, the

aim is to formulate an algorithm of computing bridge

sampling estimates with maximal statistical efficiency.

We have demonstrated that naively evaluating the

bridge sampling estimator leads to biased estimates.

Here, we describe some plausible strategies of achieving

the aim based on our preceding studies.

Our recommended algorithm for efficiently applying

the bridge sampling approach is as follows:

1. Partition the posterior samples into n (the choice of

which will be commented later) subsets:

Subset 1︷ ︸︸ ︷ Subset 2︷ ︸︸ ︷ Subset n︷ ︸︸ ︷
θ1

1, . . . , θ
N
n
1 , θ

N
n +1
1 , . . . θ

2Nn
1 , . . . . . . , θ

(n−1)N
n +1

1 , . . . , θN1 .

2. Set m = 1.

3. Compute the mean and covariance of subset m of

the posterior samples to form the moments-matched

normal distribution, i.e. qsm2 = psm2 is the density of

N(θ̄sm1 , (σ̂sm1 )2), where θ̄sm1 =
∑mN/n

i=(m−1)N/n+1
θi1

N/n and

(σ̂sm1 )2 =
∑mN/n

i=(m−1)N/n+1
(θi1−θ̄

sm
1 )2

N/n−1 .

4. Generate a sample of size N2 from N(θ̄sm1 , (σ̂sm1 )2)

to form {θ1:N2
2 }, where N2 is chosen to be moder-

ately large.

5. Using the remaining subsets and {θ1:N2
2 }, evaluate

the optimal bridge sampling estimator. Specifically,

Equation (13) is modified to form

r̂smO
(t+1)

=

1
N2

∑N2

i=1

[
lsm (θi2)

N1lsm (θi2)+N2r̂
sm
O

(t)

]
1
N1

∑
j 6=(m−1)N/n+1,...,mN/n

[
1

N1lsm (θj1)+N2r̂
sm
O

(t)

] ,
where N1 = N − N/n, N2 = N2, lsm(θ) =
fM (X|θ)fM (θ)

qsm2 (θ)
, and is iterated until convergence to

yield r̂smO .

6. Set m = m+ 1 and repeat steps 3-5 until m = n.

7. Calculate the estimate r̂ncsO =
∑n
m=1 r̂

sm
O

n .

It is desirable to use a large n. However, users should

also be warned that partitioning the posterior samples

into more subsets may not be ideal when the number

of parameters is large, as more samples are required to

estimate their moments (particularly when serially cor-

related MCMC samples are used). A general strategy

is to choose n such that it is reasonable in the context

of the problem, properly considering the sample size

relative to the dimensionality of the problem. A rule

of thumb to check if the n chosen is reasonable is to

repeat the above algorithm for n − 2 or even n/2, a

large discrepancy in their values indicates that smaller

n should be used. If it is believed that the posterior

samples are not sufficiently long, then it is still advis-

able to use n = 2, corresponding to the cross-splitting

approach with k = 1/2, which has been shown in Sec-

tion 5 to produce estimates with good properties and

is the most optimal among various k.

The use of a large N2 is recommended primarily for

the purpose of reducing the overall standard error (as

demonstrated in Section 3) and the ease with which

samples from normal distributions can be generated.

However, using an astronomically large N2 has the in-

herent risk of producing estimates that behave similarly

to the importance sampling estimates, meaning that we

do not benefit as much from the additional computation

devoted, particularly when the posterior density has a

heavy tail or is costly to evaluate. In some Bayesian

applications though, especially when data size is large,

this is not a major problem since the posterior distri-

bution is approximately normal (Gelman et al. 1995,

Chapter 13). Also note that the mixture coefficients

in Equation (8) are in fact N1 and rN2, where r (the

marginal likelihood here) also plays a role in determin-

ing the estimate’s behaviour. So far, we have only con-

sidered r = 1 in our simulations for simplicity so the

values of N1 and N2 directly reflect the mixture propor-

tion used. In typical Bayesian applications, r is numer-

ically small, so using N1 = N2 does not imply that an
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equal mixture proportion is assigned as in previously,

rather, rN2 would be considerably smaller than N1 (im-

plicitly favouring the biased reciprocal importance sam-

pling behaviour). Using a larger N2 could potentially

counterbalance this effect, even though this can alter-

natively be circumvented by multiplying r with a large

constant (to be readjusted once r̂ncsO is computed). The

sequence with which the posterior subsets are used (for

moments estimation and evaluation of the estimators)

could also be permutated if one prefers to further mini-

mize the effect of the serial correlations of MCMC sam-

ples.

7.1 A Practical Example

We illustrate our computational strategies for marginal

likelihoods on the Natural Selection Study Data (see

for example Sinharay and Stern 2005, Overstall and

Forster 2010). The data contain the survival indica-

tor (0: died, 1: survived), birth-weight (in grams) and

clutch (family) membership of n = 244 newborn tur-

tles from G = 31 different clutches. The scientific inter-

est is to determine the effects (if any) of birth-weight

and clutch membership on the survival of newborn tur-

tles (response variable). Let yij and xij denote respec-

tively the survival indicator and birth-weight of the

jth turtle in the ith clutch, i = 1, 2, . . . , G = 31, j =

1, 2, . . . , ni, where ni is the number of turtles in clutch

i with
∑31
i=1 ni = n. We fit the probit regression model,

i.e. yij |pij ∼ Bernoulli(pij), where pij = Φ(ηij), and

consider two models with latent variables as follows:

– Model A: ηij = β0 + β1xij + ui, where ui
iid∼ (0, σ2);

– Model B: ηij = β0 + (β1 + vi)xij + ui, where

(ui, vi)
> iid∼ (0,D).

Here, β0 and β1 are regression parameters, while ui’s

and vi’s are random effects for clutch membership. The

default priors as proposed by Overstall and Forster

(2010) are adopted, i.e.
(β0, β1)> ∼ N(0, nπ2 (X>X)−1),

σ−2 ∼ Gamma( 1
2 ,

π
4 ),

D ∼ Inverse Wishart(2, Gπ ×
[∑G

i=1
1
ni
Z>i Zi

]−1

),

where X = (Z>1 . . . Z>G)> and Z>i =

(
1 . . . 1

xi1 . . . xini

)
for i = 1, . . . , G.

To obtain posterior samples from both models, we

run OpenBUGS (an open source variant of WinBUGS

(Lunn et al. 2000)) from the statistical software R us-

ing the package “R2OpenBUGS” (Sturtz et al. 2010).

In particular, the supplementary R codes provided by

Overstall and Forster (2010) are modified as appro-

priate to produce a total of 200000 posterior samples

for both models, after a burn-in phase of 20000 itera-

tions. The posterior samples generated are then used to

compute the “true” log marginal likelihoods (assuming

that the corresponding MCMC schemes have achieved

convergence) of Models A and B, given respectively as

−156.70 and −158.44. For more technical details on the

computation of marginal likelihoods of both models,

readers are referred to Sinharay and Stern (2005) and

Overstall and Forster (2010).

Posterior samples of sizes 1000 are then used to esti-

mate the marginal likelihoods under each of the models

to illustrate the efficiencies of various bridge sampling

computational strategies under situation with “limited”

posterior samples. Specifically, we compare the follow-

ing strategies:

1. Naive: Derive sample moments from the entire pos-

terior samples to form the Gaussian approximation

density p2, and generate 3000 samples from p2.

Then, evaluate the bridge sampler at the entire

posterior samples and the samples from p2 to form

r̂O, where N1 = 1000 and N2 = 3000.

2. Splitting: Derive sample moments from the first half

of posterior samples to form the Gaussian approxi-

mation density ps2, and generate 3000 samples from

ps2. Then, evaluate the bridge sampler at the second

half of the posterior samples and the samples from

ps2 to form r̂sO, where N1 = 500 and N2 = 3000.

3. Cross-splitting: Derive sample moments from the

first half of posterior samples to form the Gaus-

sian approximation density ps12 , and generate 1500

samples from ps12 . Then, evaluate the bridge sam-

pler at the second half of posterior samples and the

samples from ps12 to form r̂s1O , where N1 = 500 and

N2 = 1500. Repeat in the reverse order to form r̂s2O ,

from which we obtain r̂csO = 1
2 (r̂s1O + r̂s2O ).

4. n-fold cross-splitting: As an illustration, we let n =

3. Divide the posterior samples into three subsets of

sizes 333, 333, and 334 respectively. Derive sample

moments from the first subset to form the Gaussian

approximation density ps12 , and generate 1000 sam-

ples from ps12 . Then, evaluate the bridge sampler

at the remaining posterior samples and the sam-

ples from ps12 to form r̂s1O , where N1 = 666 and

N2 = 1000. Repeat the procedure for the second

and third subsets to form r̂s2O and r̂s3O , from which

we obtain r̂ncsO = 1
3 (r̂s1O + r̂s2O + r̂s3O ).

Note that we fix the total number of samples from the

Gaussian approximation densities to be 3000 for all of

the above strategies to ensure approximately similar

computational costs are incurred, as mentioned in Sec-

tion 6. Each computation is replicated 100 times to ob-
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tain empirical properties of the estimates. Table 2 shows

the estimated log RMSE of the competing strategies un-

der Models A and B, with relative biases (see Section

2.1) included in parentheses as percentages.

Table 2: The log RMSE for various bridge sampling computa-
tional strategies under Models A and B, with the correspond-
ing relative biases (in percentages) shown in parentheses.

Strategies Model A Model B
Naive −3.48 −0.50

(−17.52%) (−77.68%)
Splitting −6.89 −2.63

(0.21%) (2.12%)
Cross-splitting −7.18 −2.80

(0.26%) (1.81%)
3-fold cross-splitting −7.22 −2.86

(0.35%) (3.13%)

According to Table 2, it is evident that the naive

approach underestimates the marginal likelihoods by

a considerable margin, resulting in the largest RMSE

relative to other strategies for both models. Crucially,

the magnitude of the bias increases for the higher-

dimensional Model B. The splitting, cross-splitting,

and 3-fold cross splitting approaches seemingly produce

unbiased estimates of marginal likelihoods (subject to

Monte Carlo error). The 3-fold cross-splitting approach

also appears to be the best strategy in terms of having

the lowest RMSE under both models, although the

improvement over the cross-splitting approach is not

substantial. Overall, the result from this practical

example is as expected from our preceding investi-

gations, that all three splitting approaches manage

to mitigate the negative bias of the naive approach

regardless of the dimension of the problem. Among the

three splitting approaches, the n-fold cross-splitting

approach is the best computational strategy, with a

slight edge over the cross-splitting approach.

8 Conclusion

This paper investigates the bridge sampling estimator

developed by Meng and Wong (1996) for estimating

normalizing constants. Specifically, we highlight its po-

tential in Bayesian computation, where marginal likeli-

hoods/Bayes factor are core model selection quantities.

First, it was illustrated that naively applying the bridge

sampling estimator leads to biased estimates. Theo-

retical calculations are then presented to identify the

sources of bias. We classify the bias of bridge sampling

estimator into two categories: one originates from the

distance between p1 and p2, while another is induced

from the correlation due to the moments-matching pro-

cedure, where we proceeded to focus on the latter. The

effect of sample size allocation was discovered to have

an impact on both the bias and standard error of bridge

sampling estimator. We demonstrated how the splitting

approach (partitioning posterior samples for moments

estimation and evaluation of estimator separately) elim-

inates the correlation induced bias at the expense of a

larger standard error. The optimal way of partitioning

the posterior samples for splitting (controlled by k) was

also examined and found to be dependent on the nature

of p1 and p2. Next, the cross-splitting approach was

described as a method capable of lowering the larger

standard error due to splitting. We also shed light on

the fact that it is not crucial to determine the opti-

mal k for splitting when the cross-splitting approach

is implemented because the influence of k is dimin-

ished through averaging. The cross-splitting approach

was then extended to form the n-fold cross-splitting to

further improve the bridge sampling estimator. Finally,

we presented an algorithm for efficiently implementing

the bridge sampling approach to estimate marginal like-

lihoods in a Bayesian context based on our findings

(where posterior samples are expensive to generate),

and concluded with a practical illustration.
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Appendix: Supplementary Material

Supplementary material related to this article can be found
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bridge sampling procedures described in the article is in
“optimal bridge MCMC.R”.
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