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Abstract In this work, the sensitivity-based virtual fields have been applied to identify
two anisotropic plasticity models (Hill48, Y1d2000-2D) using a deep-notched tensile test
performed on flat samples of cold-rolled sheet of DC04 steel. The material was charac-
terised using the standard protocol to obtain the reference sets of parameters. Deformation
data was obtained during deep-notched tests using stereo digital image correlation and the
virtual fields method was employed to identify material parameters. It was found that the
sensitivity-based virtual fields outperform the standard user-defined virtual fields in terms

of accuracy.
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1 Introduction

To describe material behaviour accurately, models have become increasingly complex and
involve more and more material parameters that need to be identified from mechanical tests.
Typically, parameters are measured with a number of simple homogeneous tests, where each
test provides limited information about the inferred model. As a result, many tests are gener-
ally needed to fully characterise such material models. On the other hand, developments in
full-field measurements offer the ability to collect large amounts of data with the potential to
improve identification of material properties. This can be used to design a new class of tests,
where deformation is heterogeneous, leading to a range of multi-axial stress states within
a single specimen. Probing material behaviour under such loading provides an opportunity
for a reduction of the number of tests needed for characterisation, and the development of

better models.

The problem of increasing amount of experimental effort needed to characterise a ma-
terial is an important one for the sheet metal forming community, where accurate char-
acterisation of plastic anisotropy is essential. For instance, the simplest anisotropic model,
Hill48 [1], requires three uniaxial tests performed at three distinct orientations (0°/45° /90°)
to be fully characterised for plane stress applications. The model however is well known to
be performing poorly, especially under biaxial loading where it cannot accurately represent
the behaviour of most commonly used alloys. Many improvements have been proposed,
often involving biaxial data in the formulation, significantly increasing the experimental
effort involved in identifying the models. Popular models that can accurately capture the
response of sheet metals, such as: Y1d89 [2], Stoughton’s model of 2002 [3], BBC2000 [4],
BBC2005 [5] and Y1d2000-2D [6] require four tests in total: three uniaxial and one equibi-
axial tests. Furthermore, there are even more complex material models such as CB2001 [7,8]
involving five uniaxial and one biaxial tests and Stoughton’s model of 2009 [9] or Y1d2004-
18p [10] that require seven uniaxial (performed in increments of 15°) and one biaxial tests.
Although these models improve the accuracy of numerical simulations, they often involve

an extensive experimental effort to characterise the material.
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A possible strategy to reduce the number of experiments to identify a given model is to
use full-field measurements and design heterogeneous tests from which more data could be
collected, compared to homogeneous counterparts. Standard tests produce uniform/simple
stress fields that can be analytically linked to the applied load, these are generally referred to
as ‘statically determinate’. This approach produces a single data point on the yield surface
per test. Heterogeneous, statically non-determinate tests on the other hand produce a cloud
of points in the stress space, each exhibiting a unique combination of stress/strain states,
to which the model can be matched. In this approach, test design and material parameters
extraction from the collected data represent specific challenges, as the stress field is not
known a priori. To identify material parameters from full-field data, inverse techniques need

to be employed.

Two of the most popular inverse techniques for extracting constitutive parameters from
full-field measurements are finite element model updating (FEMU) and the virtual fields
method (VEM). In the former, a model of the experiment is built up using finite element
method (FEM) and the experimental data are matched to their simulated counterparts. The
matching can be done based on the loading force, displacements, strains, or even the identi-
fied biaxial stress [11]. In the VFM, the stress equilibrium is enforced over the entire region
of interest (ROI). It depends on the stress field reconstructed from the measured deforma-
tion through the assumed constitutive law and the material parameters are found such that
they minimise the gap in the stress equilibrium. The method has successfully been applied
to metal plasticity [12—15], composites [16], concrete [17], elastomers [18-21] and biolog-
ical tissues [22, 23] to cite but a few. One of the advantages of the VFM over FEMU is
its computational efficiency; it was reported that it the VFM is 125 times faster when ap-
plied to anisotropic hyperelasticity [23] and approximately 300 times faster in the context
of metal plasticity [24]. Recently a new technique emerged, called integrated digital image
correlation (IDIC) which in essence combines the steps of DIC and FEMU into a single pro-
cedure to improve their metrological performance. It was applied to identification of plastic

parameters by Ruybalid ef al. [25], Mathieu et al. [26] and Bertin et al. [27,28].
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One of challenges in performing a successful statistically indeterminate test is to ensure
that it contains enough heterogeneity, i.e. a sufficiently large number of unique stress states
that describe the entire constitutive model. In practice, the test is usually performed on a
standard test machine and the heterogeneity is achieved by means of the geometry of the
specimen. Notched samples were proven to be particularly popular for testing ductile ma-
terials. With sufficiently deep notches it is possible to activate all stress components, which
is important when dealing with anisotropic materials [11, 15,29]. An alternative is to ma-
chine a special specimen such as X-shaped sample in [14]. A methodical approach to design
adequate heterogeneous tests is still an open problem. Recently, there were a few attempts
at using optimisation techniques that iterate through a number of design variables to im-
prove a measure for strain heterogeneity [30,31]. For other constitutive models, test design
optimization has been studied in more depth, initially using strain heterogeneity metrics
as well [32], then using balanced identification uncertainty over the whole set of parame-
ters [33, 34]. However, all failed to take into account the systematic error arising from the
finite spatial resolution of the camera. The next generation of test optimization procedures
relies on synthetic image deformation and minimizes the maximum identification error in-
cluding the systematic error [35,36]. Extending this strategy to elastoplasticity models is the

next step.

In terms of anisotropic plasticity, a number of different test configurations were used to
identify popular models, with most of the effort dedicated to Hill48, due to its popularity and
simplicity. The problem was tackled as early as in 1998 by the pioneering work of Meuwis-
sen et al. [37] who used a specimen with asymmetrically placed notches. They measured
displacements using a discrete number of trackers, and compared them with a numerical
model to fit the parameters. Since then, many approaches have been adopted to charac-
terise Hill48 [14, 15,27-29, 38-43], the Ferron model [44], Y1d96 [38], Bron and Besson
model [42,43] and Y1d2000-2D [11,15]. They included a mixture of tensile tests performed
on specimens including geometric features such as holes or notches and non-standard biax-
ial tests leading to a heterogeneous state of stress. However, Hill48 has proved inadequate

to accurately describe the behaviour of many anisotropic elastoplastic materials [9, 15,42].
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One of the challenges of fully characterising more advanced constitutive models such as
Y1d2000-2D is the activation and identification of all material parameters involved (eight or

more).

In the VFM the effectiveness of parameters extraction relies on using robust virtual fields
(VFs). These are spatial weight functions allowing to probe parts of the specimens for infor-
mation. Traditionally, they are defined manually by the investigator using analytical func-
tions such as polynomials, sinusoids, exponential functions efc. and are called user-defined
virtual fields (UDVFs). This approach was successfully applied to the case of anisotropic
plasticity by [14, 15,45]. However, it was noted that the choice of virtual fields was essential
for good accuracy. The choice is dependent on the expertise of the user, and might be time
consuming as it involves a trial-and-error procedure. Moreover, this intuition-led choice has
no reason to be optimal for the extraction of all parameters. This is particularly important for
less influential parameters which may only affect the deformation fields over certain time
steps and specific areas of the specimen. Recently, a new type of virtual field has been pro-
posed to address the limitations described above, namely the sensitivity-based virtual fields
(SBVFs) [46,47]. These fields are automatically generated for any constitutive model, and
any test geometry based on the sensitivity of the reconstructed stress field to each mate-
rial parameter. This framework provides enhanced flexibility and allows to tackle complex

constitutive models more effectively [48].

In this work, we present an experimental validation of the sensitivity-based virtual fields
for anisotropic plasticity. We have tested a cold-rolled sheet of DC04 steel and performed
standard characterisation to obtain material parameters for Hill48 and Y1d2000-2D models.
Then, heterogeneous tests (deep-notched specimens) were performed along different orien-

tations and the VFM with the SBVFs were used to characterise the models.
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2 Theory
2.1 Brief recall of the finite deformation framework

Let us consider a body %, where the position of particles in the reference configuration is
given by X and in the deformed one by x. The displacement field is defined as the difference

between the current and the reference positions:
uX;71)=x—-X )

The deformation gradient is defined as:

Jx Jdu

F:ﬁ:ﬁ‘i‘lv )

where I is the second order identity tensor. Using polar decomposition, the deformation

gradient can be written as the product of two second order tensors:
F=VR 3

where V is the left stretch tensor and R is the rotation tensor. The left stretch tensor can be

conveniently calculated as:

V = VFFT O]

where the root operator refers to the root of a matrix. A consequence of such mathematical
description is that for every point, a local coordinate system rotates during deformation, as
outlined in Fig. 1. This is an important feature to consider when the body includes a texture,
as its orientation will follow any local rotations.

A convenient measure of strain, called Hencky strain, can be constructed from the left
stretch tensor:

£L—InV 5)

This strain measure can be used to formulate constitutive laws within the finite deformation

framework. For further details on continuum mechanics the reader is referred to [49].
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Deformation

X, X

Fig. 1 Definition of coordinate systems, X is the initial position of a material point and X, its current position,
(i, ) is the initial orientation of the local coordinate system, (1,2) is the corotational system, (&£, H) is the
material coordinate system in the reference configuration and (&,n) is the material coordinate system in the
current configuration

2.2 Constitutive models

In this study we considered two different yield models suitable for cold-rolled sheets: Hill48
and Y1d2000-2D [1, 6]. The former is relatively simple extension of the von Mises criterion

to account for anisotropy and the equivalent stress can be expressed as:

Gelglill — \/G6121+F6222+H(0'“ *622)2+2N6122. 6)

The coefficients in this criterion can be defined in multiple different ways. Here, we follow
the convention used in finite element package Abaqus. For alternative ways of defining the

coefficients the reader can refer to the appendix. The plastic potentials (R;;) are generally
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used to obtain the governing parameters from an experiment [50]:

S
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where R;; = ?”, with o7, and 03, the yield stresses identified in planar uniaxial tests con-
0

ducted at 0° and 90° respectively and 6%5 the through-thickness yield stress. Finally, 6{2 is
the yield stress identified under pure shear. Although the model is defined for plane stress
and o33 = 0, the information about G%é can be obtained from the combination of associated
flow rule assumption and Lankford coefficients. The reference yield stress was assumed to
coincide with G]y |» l.e. 0 = Gly 1» as this reduces the number of variables to be identified by
one, and does not affect the formulation of the model. Additionally, plane stress was as-
sumed, as the tested samples were thin relative to their in-plane dimensions, and associated

flow rule was used.

Y1d2000-2D was developed strictly for plane stress condition for which the equivalent

stress can be calculated as:

1 1/a
oy = 5 (1X] — X351 + [2X5 + X{'|* + [2X]" + X7|) )

where a is an exponent based on the metal micro-structure (a = 8 for FCC and a = 6 for
BCC) and X/, X} and X{', X; are the principal values of two stress tensors X', X" which are

defined as linear combinations of the Cauchy stress:

X'=Lo
C))
X// — LNG
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Matrices L’ and L” are given by:

204 204
B 0
3 3
0 0 o

805 —203 — 206+ 201 74a6—4a4—4a5+a3

0
9 9
L' — _4a374oc5—4oc4+oc6 8oy — 2065 — 2053 + 205 0 (11)
9 9
0 0 (07

The model involves 8§ independent parameters, ¢&¢;—0g, which are generally obtained using
3 tensile tests performed at 0°, 45°, 90°, a biaxial test (bulge test), as well as a test for
measuring r, = % at balanced equibiaxial loading. In total, eight parameters have to be
measured to calibrate o parameters; four yield stresses: 0y, 045, 099, Op, and four Lankford

coefficients (r) characterising anisotropy in plastic deformation: ry, r45, 799, 7. Finally, the

associated flow rule was assumed here as well.

A non-linear isotropic hardening power law (Ludwik) was chosen with the following
form:

6 =0y +K(&")" (12)

where oy, K,n are material parameters and €7 is the equivalent plastic strain integrated

throughout the history of deformation.

Reconstruction of the stress tensor from experimentally measured strain data is per-
formed using a numerical implementation of the constitutive laws. These were based on the
radial-return algorithms developed by Koh et al. for plane stress Hoffman model (general-
isation of Hill48) and Yoon et al. for Y1d2000-2D [51, 52]. Note that the Hoffman model

simplifies to Hill48 when tension-compression symmetry is assumed.

The constitutive computations are performed in a material coordinate system (&,1)
which is initially aligned with manufacturing rolling (RD) and transverse (TD) directions.

Since the kinematic fields are computed in the global frame (i, j), for each data point strain
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and stress tensors need to be rotated to the material frame:
Ae &M =R'R?, Ael"R,uR. (13)

where R;,,; is a rotation tensor projecting the global frame onto the material frame in the
unloaded configuration (Fig. 1). Once the stress tensor is reconstructed it is rotated back to

the global frame in which the VFM equations are formulated.

2.3 Virtual Fields Method

The Virtual Fields Method is an inverse technique to identify material parameters from full-
field measurements. It relies on the force equilibrium through the principle of virtual work
(PVW). In the case of static loading and in absence of body forces, it can be expressed in

the reference body configuration as [53]:

— /P: %d%’(ﬁr / (PN)-U*dd %, =0 (14)
B 0B,

where % is the considered body in the reference configuration, d % its boundary, N is the

outward vector of d %, P is the 1% Piola-Kirchhoff stress tensor and U* is a vectorial test

function called virtual displacement. Virtual displacement fields need to be continuous and

piecewise differentiable.

The stress tensor (P) is directly reconstructed from measured kinematic fields by means
of the assumed constitutive law and a guessed set of material parameters ()). The validity
of the guess is assessed by the residual value evaluated with Eq. 14.

As the full-field measurements provide spatially rich data, the first integral in Eq. 14
can be replaced by a discrete sum of all points in the region of interest (ROI). By selecting
virtual displacements as constant across d %, the second integral in Eq. 14 can be replaced
by the product U* - F/*%¢ where F/** s the total load measured with the test machine load
cell. This procedure filters out generally unknown distribution of tractions over the loading

edges with a quantity easy to measure.
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Since the PVW has to be evaluated over the entire volume, but the measurements are
taken only at the surface of the specimen, it is necessary to make some assumption regarding
the variation of kinematic fields through the thickness. If the specimen is thin, plane stress

assumption is reasonable and the PVW can be expressed in terms of a cost function as:

w

int

nVF nTime | nPts 570 2
(p(x) = Z {1 Z |:Z (Pj(£L7X7t) . aUaJ)((t)th> —U*(i)(t)'Fload(t):| } (15)

(S R |

i=1
W*

ext

where ¢ is a scaling parameter to normalise the contribution of each virtual field and their
respective units, S/ is the surface area of each measurement point and 4 is the thickness of
specimen. This cost function can include a number of independent virtual fields and load
levels (time steps). The identification is carried out by minimising Eq. 15 with respect to the

sought material parameters.

It is worth noting that Eq. 14 is formulated in terms of the 1% Piola-Kirchhoff stress
tensor, while most constitutive laws relate kinematic fields to the Cauchy stress tensor. The

former can be obtained from the latter with:

P = det(F)oF T (16)

where F is the deformation gradient tensor. Since in reality the deformation is fully 3D, so is
the deformation gradient and this has to be reflected in the computation of its determinant.

By assuming negligible out-of-plane shearing, the determinant can be computed as:

det(F) = F33(F(1Fo —F12Fy). a7

Since the in-plane values are directly measured the only unknown is the out-of-plane compo-
nent. It can be estimated from the constitutive law (e.g. assuming plane stress elasticity and
isochoric plastic flow) [47], or can be directly measured by means of back-to-back camera

systems as shown in [54].
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The virtual displacements (and their spatial derivatives, later simply referred to as virtual
fields) spatially probe the reconstructed stress field for information. As a result, the choice
of VFs is crucial and has strong influence on identification quality. Ideally, VFs should be
focused on areas rich in information and minimize the influence of the measurement noise.
In the case of non-linear material models, selecting VFs usually relies on a manual definition
by means of simple mathematical functions, such as polynomials or sinusoids [14, 15]. The
effectiveness of these VFs called user-defined VFs (UDVFs) heavily depends on the exper-
tise of the investigator. It is worth noting that usually UDVFs are kept constant across the
history of deformation, whereas the information evolves as the loading changes. As a result,
a VF that is relevant e.g. for identification of yield-related parameters might not be as effec-
tive for identification of the hardening law. Recently, a new automated method for generating
high-quality virtual fields has been proposed [46,47]. These fields called sensitivity-based
virtual fields (SBVFs), are designed to highlight areas rich in information for each parameter
separately and for each time step, resulting in better identification, without significant input

from the investigator.

2.4 Sensitivity-based virtual fields

The sensitivity-based virtual fields [46,47] are automatically generated for every material
parameter. These fields are good at finding information about each parameter separately
and coupling them together in one cost function to identify all material parameters. Each
virtual field is constructed based on the sensitivity of the reconstructed stress field to a given
material parameter. The procedure for generating virtual fields is discussed in details in [46]
with the extension to large deformation framework in [47]. Here, we shortly summarize the

necessary steps to generate SBVFs.

For each material parameter a map of stress sensitivity is calculated through:

5P (x,1) =P(X +8x:,1) —P(%,1) (%)
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where 8y; is a small variation of parameter y;, typically 8y; is between -20% and -10% of
xi- The fields are calculated at all considered load levels, generating temporal maps of stress

sensitivities.

In plasticity, the response is history dependent with yield-related parameters being active
from the onset of plasticity throughout the whole history, while hardening parameters are
active only during accumulation of plastic deformation. In order to decouple the influence
of yield stress from that of hardening, an alternative stress sensitivity field is derived, called

the incremental stress sensitivity field:

. (i) — P _
5P(l)(x,l‘):6p (ZJ) AStP (va 1) (19)

These fields highlight the information about a given parameter in the test and are excel-
lent candidates for virtual fields. In order to apply them in the VFM, virtual fields are gen-
erated such that the spatial derivatives of virtual displacement fields match the incremental
stress sensitivity fields in a least-square sense. Additionally, the VFs need to be constructed
in a way that the corresponding virtual displacement field is known. To achieve that, a vir-
tual mesh is employed to express virtual fields using piecewise linear functions. It consists
of linear quadrilateral elements enclosing the ROI, which are used to express both virtual
displacement and virtual strains fields based on the nodal values through interpolation func-

tions.

To construct SBVFs, a virtual global strain-displacement map is constructed: for each
data point, the spatial derivatives of the virtual displacement at that point are written as
functions of the nodal virtual displacements through the element shape functions. All such
equations are concatenated in one matrix (B;,5). The matrix is then modified to account for
the wanted virtual boundary conditions (e.g. U* = const over d %), yielding the modified
virtual strain-displacement matrix: Bygjop. Then, the incremental stress sensitivity map is

projected in a least-square sense onto the virtual mesh, using a pseudo-inverse of Bg;o;,:

U (1) = pinv(Bgiop) P (2,1). 20)
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Finally, the identified virtual displacements are used to calculate virtual fields at all data

points:
U o(i
oX By U,

2

ode’

The procedure yields a separate virtual field for every material parameter, at every data point
and every time step which is then used to evaluate Eq. 15.

Eq. 20 leads to virtual displacements that have a unit of stress sensitivities multiplied
by length. However, it needs to be reminded that the virtual displacements have no physical
significance and the unit is unimportant. For a better illustration, one can imagine a separate
field is constructed, which is identical to the stress sensitivity field in terms of numerical
values but unit-less. This field is then projected onto the virtual mesh leading to virtual
strains with the unit of 1/length, which is consistent with the principle of virtual work.
When multiple virtual fields are combined in one cost function, virtual displacements need
to be normalised so that they have comparable weights. This can be done by tuning the ¢
parameter in Eq. 15 in a way to normalise the magnitude of e.g. the internal virtual work.
This was done previously based on the mean value of x% mostly contributing time steps as

described in [46,47].

3 Experimental procedure

3.1 Specimen preparation

Specimens were water-jet cut out of a cold-rolled sheet of DC04 low-carbon steel alloy
with a nominal thickness of 1.5 mm. Three geometries were tested: a standard dogbone
(DB) specimen, a rectangular specimen for bulge test and a deep-notched (DN) specimen
for heterogeneous test (Fig. 2). The specimens surfaces were first cleaned with sandpaper to
remove oxides and then coated with a rubber-based white paint (Rust-oleum Peel coat, white
matt finish) to provide good contrast for black speckles. An optimised speckle pattern [55]
was printed on the specimen using a flat-bed printer (Canon Océ Arizona 1260 XT) which
provided good consistency and reproducibility. An average speckle size of approximately

65 um was achieved (Fig. 3).
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(a) Dogbone (DB) specimen

Fig. 2 Geometry of the specimens used in the tests. Dimensions in mm.
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Fig. 3 Quality of the printed speckle pattern. Speckles are approximately 65 um across.
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Table 1 Summary of the tests performed.

Name of specimen  Angle () to the RD ~ Number of samples

DB-0 0 3
DB-90 90 3
DB-45 45 3
DN-30 30 3
DN-45 45 4
DN-60 60 3

3.2 Experimental set-up

3.2.1 Tensile testing

Both DB and DN samples were tested using a servo-hydraulic test machine with a 100kN
load cell and hydraulic grips. Deformation was measured using a stereo- digital image corre-
lation (DIC) set-up, with two digital Manta G-504b cameras (5 Mpx), equipped with 105 mm
Sigma DG Macro lenses and polarisers (Edmund optics). A LED light panel (Zaila, Nila)
equipped with a polariser was used to illuminate the samples. By setting cross-polarization
specular reflection was minimised which resulted in a grey-level histogram spread across
most of the dynamic range of the cameras [56]. The stereo-DIC setup was used following
the recommendation of the DIC Good Practices Guide, to account for test piece thinning, ro-
tation or translations induced by misaligned grips and other effects that may produce errors
in 2D-DIC [57]. The reference images for correlation were taken while maintaining zero
load; the specimen was loaded in displacement control divided into three phases: slow rate
(elastic range), medium rate (transition to high rate) and high rate where most of the plastic
deformation took place, as indicated in Fig. 5. The length and rate of displacement of each
phase was tuned in the preliminary phase of the testing campaign and were proven to give
a good compromise between the extent of collected data and the duration of the test. The
images were taken every 1s and synchronised with the force measured from the load cell.

The set-up is illustrated in Fig. 4. The summary of tested samples is presented in Table 1.
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Fig. 4 Experimental set-up.
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Fig. 5 Loading rate used in the tensile tests.

3.2.2 Bulge tests

Since the yield stress and r-value information in balanced biaxial state is required for deter-

mination of the anisotropic constitutive parameters, a hydraulic bulge test was carried out

using an Erichsen bulge/FLC tester model 161.
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Fig. 6 Schematic diagram of the bulge test.

A steel sheet specimen was mounted on the bulge test apparatus as in Fig. 6. Then
the specimen was clamped between the lower blank holder and the upper die. To prevent
slipping of the specimen during the test, plastic flow was restricted with a drawbead and
high blank holding force. The diameter of the area of interest in the test device was 200 mm.
The hydraulic pressure was applied on the bottom side of the specimen to produce bulging

and plastic deformation.

A stereo digital image correlation technique was used for measurement of curvature and
strain fields as shown in Fig. 7. Two 2448 x 2048 pixels 14 bit CCD cameras were used
for the measurement. The important correlation variables chosen in the DIC analysis were:
subset: 41, step: 7, object pixel size: 0.117 mm; for the details the reader is referred to the

DIC table in Appendix C.

In the bulge test, the biaxial stress-strain curve is derived from the membrane stress and
the through-thickness strain near the pole of the bulged specimen according to the procedure

outlined in [58].

In membrane theory of a thin-walled pressure vessel, the biaxial stress is calculated as:

PR
=— 22
o= (22)
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Fig. 7 View of the bulge test experimental set-up.

where p is the pressure obtained from a pressure sensor, R the current radius of curvature

and ¢ the current thickness. The current thickness is calculated from:
t=toexpg (23)

where 1y is the initial thickness and & the through-thickness strain, obtained from the in-
plane strains through: & = —&; — &, where € and & are major and minor strains. The

current radius of curvature R is obtained from:

1 1
Reomi 24)
Ko (ke t+Ky)

where K is the curvature. Both the in-plane strains and curvature were measured with Vic-3D
(Correlated Solutions). The in-plane strains were calculated by averaging major and minor

strains within the circle centred at the apex and with the radius , = 10mm. The curvature k



20 A. Marek et al.

was calculated by averaging curvatures K, and k, along the horizontal and vertical diameters
of a circle centred at the apex and with the radius r; = 20 mm respectively.
Two specimens were tested and it was found that the deviation was very small between

the two membrane stress-thickness strain curves.

3.3 Data processing

3.3.1 Dogbone specimens

Raw grey-level images were exported to a DIC package (MatchID 2018.2.2) and processed
using stereo-DIC. Due to significant plastic deformation of the specimen upstream of the
gauge section the small ROI that remained in the camera field of view for the whole test was
selected. The camera parameters and DIC settings are summarized in Table C.1 available
in Appendix, as per recommendation from the International DIC Society Good practice
guide [57]. The measured fields were used to reconstruct the stress-strain curve and identify
yield stress and hardening law for each of orientation (0° /45° /90°), using the uniform and
uniaxial stress assumptions. The average longitudinal plastic strain was plotted against the
average transverse plastic strain, and a straight line was fitted to the data in order to obtain
the Lankford coefficient [59]. The line passed through the origin and was fitted to the data

corresponding to 8—12% range of plastic deformation.

3.3.2 Deep-notched specimen

Raw grey-level images were exported to MatchID and displacements in the gauge section
were obtained using stereo-DIC, with the parameters presented in Table C.2 included in
Appendix C. The data was exported to Matlab, where displacements were temporarily and
spatially smoothed and then down-sampled to a number of load levels (time steps). Gaussian
filter (defined with the standard deviation Oy,,,.;, and the kernel size is chosen as the low-
est odd number that is larger than [6 X G0 |) With edge correction was used for spatial
smoothing and Savitzky-Golay filter was used for temporal smoothing, characterised with

two parameters: polynomial order mrg and the window size wrs. The down-sampling pur-
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Fig. 8 Stress-strain curves measured with the dogbone tests.

pose was to improve signal-to-noise ratio of strain increments and reduce the computational
effort. Central finite difference was used to compute kinematic data (deformation gradient,
rotation tensor, Hencky logarithmic strains), which were then passed to an in-house VFM

code to identify the material parameters.

4 Results and discussion
4.1 Dogbone testing

For each of the orientations (0°/45°/90°), three specimens were tested. The measured true
stress-strain curves are presented in Fig. 8. A visible bump around the strain value of 3% is
believed to be caused by the step change in the cross-head velocity as indicated in Fig. 5 and
is consistently seen in all collected data (including DN samples). The curves were used to
identify the hardening parameters (Eq. 12) and coefficients for Hill48 (Eq. 6) and Y1d2000-
2D (Eqg. 8). The hardening law was identified using strain of up to 10%, as at the higher de-
formation the assumed hardening model does not capture the material behaviour accurately.
This could be improved upon in the future, however the main objective of this contribution is

to demonstrate the effectiveness of the SBVFs, as opposed to improving the constitutive de-
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Fig. 9 Longitudinal versus transverse plastic strains measured using dogbone samples. The data was used to

calculate Lankford coefficients in the range of 8%—12%.

Table 2 Parameters identified using dogbone specimens. The uncertainty is presented as a single standard
deviation.

Specimen G} o, [MPa] [ K [MPa] n[-] 70.08—0.12 [-]
DB-0 203 +1 164 +2 459+4 0.43+£0.01 1.90+£0.08
DB-45 218+3 185+3 475+5 0.46+0.01 1.35+0.09
DB-90 217+2 185+1 445 +5 0.47+0.01 2.05+0.13

scription of the material. Apart from the yield stress defining the hardening law (0y), a 0.2%

offset yield stress (0} ),) Was identified to quantify the anisotropy between orientations.

Longitudinal plastic strain was plotted against transverse plastic strain as shown in
Fig. 9. The Lankford coefficients were identified in the range of 8%—12%. Across all sam-
ples the trend has shown good linear relationship with little variation between different sam-
ples. All of the identified parameters are presented in Table 2.

The reference hardening curve was constructed based on the average behaviour along
the RD:

G = 164 +459(")*4  [MPa) (25)

The ratios of flow stress in each direction to the flow stress in RD have been investi-

gated under different values of plastic work. This is now a standard practice in evaluating
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Fig. 10 Variation of flow stress ratios with plastic work (W,,)l.

anisotropy of metal sheets, as the ratios are difficult to identify reliably at low levels of plas-
tic deformation, especially when the bulge test is employed [10]. The obtained curves are

presented in Fig. 10.

Clearly, the anisotropy in yield stress changes rapidly at low deformation levels. This
has to be taken into consideration when selecting the reference parameters for comparison
with the DN results. It is reasonable to consider the average ratios based on plastic work
between 10 and 50 MPa: 1.014 for 90° and 1.040 for 45°. The approximate flow stresses
for 90° and 45° were then calculated based on the ratios and the value measured along 0°

resulting in: 045 = 1.040 x op = 170.56 MPa and 699 = 1.014 x 69 = 166.30 MPa.

The collected data was used to obtain Hill48 parameters in two ways: using all Lankford
coefficients, or using op from all tests and the Lankford coefficient from DB-90, for the
details the reader is referred to the appendix. The variation of the initial yield stress and
Lankford coefficient with material orientation is presented in Fig. 11. The corresponding
parameters are presented in Table 3. The two sets are different due to the limitations of the

model and its inability to describe different degrees of anisotropy of the yield stress and
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Table 3 Reference parameters for Hill48 identified from dogbone testing.

Model fitted to o7, [MPa] 03, [MPa]  ©}; [MPa] &}, [MPa]

Yield stresses 164.0 166.3 201.2 94.1
Lankford coefficients 164.0 166.1 201.2 104.6
1{——Hill48 - fit based on r Y1d2000-2D (W, =10 MPa) J——Hill48 - fit based on r Y1d2000-2D (W, =10 MPa)
- - -Hill48 - fit based on g § Exp data - - -Hil48 - fit based on 0y § Exp data

L

180

Initial yield stress [MPa]
Lankford coeficient |-

0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 80 90
Angle [°] Angle [°]
(a) Variation of the initial yield stress. (b) Variation of Lankford coefficient.

Fig. 11 Variation of yield stress and r parameter with orientation of the material obtained using Hill48 and
Y1d2000-2D models.

deformation at the same time [60]. Importantly, the two sets differ only by the magnitude of
Glyz which drives the values at 45°.

The biaxial flow stress (0j) and the strain ratio at balanced biaxial loading (r, = 0.77)
were measured in the bulge test. The ratio of o}, to the RD flow stress as a function of work
hardening is presented in Fig. 10. The equibiaxial yield stress varies significantly at low level
of deformation due to differential hardening [61]. This ultimately leads to a set of different
Y1d2000-2D surfaces identified from the standard tests, two of the surfaces identified (with
ratios taken at 10 and 25MPa) are presented in Fig. 12. The method used for fitting the
parameters is detailed in the appendix. As seen from the plot, the biaxial yield stress is
over-predicted when Hill48 is used, due to lack of flexibility of the model.

Naturally, Y1d2000-2D offers a much better fit to the experimental data as demonstrated
in Fig. 11, where the variation in both yield stress and Lankford parameters is captured
correctly with a single set of parameters.

The identified parameters for the Y1d2000-2D models are presented in Table 4 for two
different levels of work hardening (10 MPa and 25 MPa).

! Technically, this quantity is plastic work density and corresponds to the area under the stress-plastic
strain curve. Here, we use the term ‘plastic work” due to its popularity in literature.
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Fig. 12 Identified yield surfaces using the standard testing protocol using two models: Hill48 and Y1d2000-
2D.

Table 4 Reference parameters for Y1d2000-2D identified from dogbone testing and the bulge test.

Plastic work [MPa]  Corresponding strain at 0° [%]  oq [-] oo [-] o3[-] o4[-] os[-] osl-] oz7[-] ogl-]
10 44 1.071 1.000  0.774 0.899 0923 0.880 0975 1.010
25 9.7 1.061 0994 0.663 0.879 0.899 0.740 0964 1.092

4.2 Deep-notched test

Three directions were tested: (30°/45°/60°), so that different test configurations could be
combined together in a single cost function. For instance, by combining two tests performed
at 30° and 60°, richer data is available to identify the models, which should improve ac-
curacy of identification. Additionally, these other orientations may be used as a validation
tool for testing the performance of the model and the quality of identified parameters. As
indicated in Tables C.1-C.2, DN tests exhibited a smaller strain uncertainty. This is believed
to be caused by a better lighting set-up during DN experiments.

Figure 13(a) shows an image of a typical specimen in the unloaded configuration. Only
the region bounded by the solid box was correlated and the data corresponding to the dashed
box was then passed on to the identification routine. The magnification in the experiment

was chosen such that the field of view used in identification would be captured by both



26 A. Marek et al.

of the cameras, regardless of the deformation of the ROI or the rigid body motion due to
the deformation upstream the test piece. Additionally, if the cameras were positioned closer
to the test machine, obtaining sufficient depth of field would be challenging. The strain
fields obtained at 10.5 kN (45° specimen) are presented in Figs. 13(b)—13(d) and the force-
displacement curves are shown in Fig. 14. The displacements in that plot were first corrected
for rigid body motion and then measured at the point indicated in Fig. 13(a) with a red
dot. The figure demonstrates that consistent measurements were obtained with multiple test
specimens and that the variation in force measurements between the three orientation is
minor. Note, that although force-displacement curves for the three orientations are similar,

they correspond to different deformation fields.

Samples were strained until failure and the base of white paint did not fail during the
experiment, however it de-bonded from the specimen when the neck started to develop, see
Fig. 15. If observation of the strain localization was of interest, the base layer could be
removed, and white speckles could be used instead of black ones. In that case, the contrast
could be achieved by means of the material surface, combined with cross-polarization of

light to remove the specular reflection.

Displacements obtained in MatchID were exported to Matlab, temporarily smoothed
with mrs = 3 and window wrg = 11, then the data was down-sampled to the desired number
of load levels and spatially smoothed with a Gaussian of square kernel of 13 x 13 pixels

(corresponding to oo = 2).

A representation of the data in minor-major strain space is shown in Fig. 16. DN tests
occupy the space around uniaxial tension, with a large number of points lying in between
uniaxial tension and pure shear/plane strain. As expected, the data is contained in the second
quadrant and thus not representative of biaxial tension which is relevant to the Y1d2000-2D

model.

The kinematic data was fed to the in-house VFM program to identify the parameters
of Hill48 and Y1d2000-2D. For the identification, a virtual mesh of 10 x 10 elements,
a material variation of 15% (6); = —0.15%;) and a scaling parameter (see [47] for more

details) of 0.3 were used. As the baseline total stress sensitivities were used to construct



Experimental validation of SBVFs 27

(a) Raw image of a DN specimen with histogram (b) Horizontal strain at 10.5kN.
in the right bottom corner”. The solid box rep-

resents the correlation region, the dashed box

represents the region used in identification, the

red dot indicates the position at which the ver-

tical displacement was measured for the force-

displacement curves.

’ ‘ 0.04 I
0.02 ‘ -0.01
(c) Vertical strain at 10.5 kN. (d) Shear strain at 10.5kN.
Fig. 13 Image of a tested DN specimen. (a) is a grey level map with marked correlation region (solid box)

and region used in identifications (dashed). (b)—(d) represents strain maps obtained from the DIC using spatial
smoothing of Ggpeen = 2 and temporal smoothing of mrs = 3, wrg = 11.

SBVFs as they yielded better results, as shown later. Additionally, the elastic properties

were set a priori to the typical values for steel, i.e. E =200 GPa and v =0.3.

Minimisation of the cost function (Eq. 15) was carried out in Matlab, starting from four
points selected with a random number generator, from the region contained between 50%
and 200% of the reference values. Initially, the Levenberg-Marquardt algorithm was used
(1sqnonlin) but it was found that the algorithm could not converge to a unique global min-
imum. The method was then switched to fmincon with the sequential quadratic program-

ming algorithm (SQP) which was capable of converging to the same solution regardless
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Fig. 14 Force-displacement curves for all tested DN samples. The displacements were measured at the point
indicated with a red dot in Fig. 13(a).

Fig. 15 A deformed DN specimen. The white base paint has debonded over the area of strain localization.



Experimental validation of SBVFs 29

Uniaxial e Data points

tension

o
—

0.08

Major strain [-]

0.06

0.04

0.02

-0.06 -0.04 -0.02 0 0.02 0.04
Minor strain [-]

Fig. 16 Strain paths measured in a DN test shown in minor-major strain space.

of the starting point. The gradient of the cost function was calculated internally by Matlab

using the central finite difference scheme.

To quantify the identification accuracy a metric based on the reconstructed apparent
yield stress was used [47]. In this approach, instead of comparing parameters on a one-
to-one basis, the models are used to reconstruct the apparent yield stress that would cause
yielding at a given orientation in a 1D loading scenario (see Fig. 11(a)). Additionally, the
effect of hardening can be accounted for which results in a map of the apparent yield stress
as a function of orientation and level of plastic strain. The global mean error is constructed as
a mean difference between the map corresponding to parameters derived from the dogbone
tests and the map corresponding to the identified parameters. This procedure helps quantify
the identification error in a more meaningful way than the standard one-to-one parameter

comparison.

2 The spikes in the histogram were identified after the experiments were conducted and come from a (now
resolved) software issue when saving 8-bit images. Since the quality indicators (grey level noise, displacement
and strain noise-floors) seem to be reasonable it is suspected that those artefacts do not significantly affect the

measurements.
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Table 5 Identified parameters using DN test for Hill48 model.

VFs  Specimen o7 [MPa] 02 [MPa] o033 [MPa] o2 [MPa] K [MPa] nl[-] rol-] rol-] rss5[-] Mean difference [%]

@ DN-45-1 176.4 182.4 196.3 110.4 511.7 0.55 1.29 1.52 1.08 2.7
‘:>‘3 DN-45-3 174.3 176.7 190.5 106.3 504.4 0.51 1.31 1.40 1.10 1.4
n DN-45-4 177.7 177.3 190.0 106.2 534.0 0.51 1.30 1.28 1.10 1.2
& DN-45-1 179.1 218.4 199.0 109.0 525.4 0.57 0.76 1.18 1.79 6.2
E DN-45-3 130.4 229.2 164.0 111.8 317.0 0.57 0.53 0.58 -15.8 18.9
=) DN-45-4 169.9 100.0 145.9 115.7 480.5 0.53 -4.77 0.29 0.78 19.4

Reference 164.0 166.3 201.2 94.1 459.0 043 1.90 2.05 1.35 0.0

4.2.1 Identification of Hill48 with SBVF's

The first set of parameters was identified using specimens cut at 45° to RD. In total, four
different samples were tested and processed, but the data from DN-45-2 was discarded as
it was found that there was significant out-of-plane bending during the test which violates
the through-thickness homogeneity assumption. The data from the three successful tests
were passed to the in-house VFM code and the details regarding time steps included in
the identifications are presented in Table B.1. Note that frames were selected such that the
majority of points were within 10% of strain in the load direction so that the DN data were
consistent with the hardening law definition assumed for the dogbone tests. The criterion for
the final time step was that the strain corresponding to it + 26 was about 10%, with u being
the mean and o the standard deviation of the strain in the loading direction. This ensures
that about 98% of data is below 10% strain. On average each identification run took 3 hours
to complete.

The identified parameters were used to compute the mean error based on the apparent
yield stress metric. A typical map corresponding to DN-45-3 is shown in Fig. 17. The dashed
cut (Fig. 17(b)) shows how well the yield stress was reconstructed at equivalent plastic strain
of 0.002, and the solid cut shows the hardening behaviour along the orientation of 45°, indi-
cating good identification of both anisotropy and hardening. The identified parameters and
the corresponding mean error values for all samples are shown in Table 5, and graphically
in terms of the apparent yield stress and predicted Lankford coefficients in Fig. 18.

The results show that the parameters obtained with the DN tests are repeatable and in

good agreement with the dogbone data in terms of yield stress and hardening, however the
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Fig. 17 Difference between parameters identified in a single DN test compared to the reference data from 3
DB tests. (a) the difference map, (b) variation of yield stress with orientation at the plastic strain of 0.002, (c)
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Fig. 18 Reconstructed apparent yield stresses and Lankford coefficients using Hill48 and parameters identi-
fied with the DN tests performed at 45°.

Lankford coefficients are significantly lower than for the dogbone.The vertical position of
the reconstructed Lankford curves is driven by G3y3 which also controls how far the biaxial
part of the yield surface extends. As in the DN tests much richer information is available
in comparison the homogeneous counterparts, the limitations of the model become much
clearer. Because of the interactions between the yield surface, the flow potential and the
biaxial yield stress, it is impossible to match all the data at the same time with Hill48.
This signifies that more advanced constitutive models are required to accurately describe

the material under investigation.
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Fig. 19 The coordinate system used to define virtual fields manually within the region of interest.

4.2.2 Identification of Hill48 with UDVFs

An alternative to the SBVFs are the user-defined VFs. A set of viable virtual fields for
Hill48 and the geometry used in this test has been presented in [15] based on a trial-and-
error method and expertise of the lead author. The virtual displacements were defined in the
coordinate system presented in Fig. 19 and were constructed in a way to include all stress

components in the cost function. These fields are:

U, ' =0
(26)
*(1 y
Wi — 2
«2) _ X (bl =H)
* w H
27
M;(2> =0
«3)_ 1 x A
Uy sin (EW) cos <n2H> o8
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Fig. 20 Identification of Hill48 model using a single DN test at 45° and UDVFs. (a) reconstructed yield

stress variation with orientation; (b) reconstructed variation of Lankford coefficient with orientation; (c) re-
constructed loading force from stresses for Specimen 3.

The same data as used in Sect. 4.2.1 were fed to the VFM algorithm, however now the
UDVFs were used instead. The identified parameters were used to reconstruct the variations
of the yield stress and Lankford coefficient with orientation as shown in Fig. 20.

It is apparent from the figure that the UDVFs were not as successful at characterising
Hill48 model as SBVFs were. The yield stress was accurately predicted at about 45° which
corresponds to the orientation of the test specimen, however large differences were noted
elsewhere. By using the same metric as before, the global difference was calculated and was
found to be in the range 6%—19%. Judging on the Lankford coefficients it is clear that the
reconstructed parameters are not physical as they lead to a non-continuous distribution.

The first virtual field (Eq. 26) represents a uniform extension, which leads to a direct
comparison between the measured force and the force reconstructed from the stress field. In
the case of anisotropic properties this integral quantity is not sufficient to describe the model.
Although other virtual fields have been included in the cost function, they were formulated
in a way not to include the work of external forces. As a result, the residuals corresponding
to those fields are much smaller than the one of the first field and they are not very effective
at including the other two stress components in the cost function. These results highlight
the problem of manually defining virtual fields, as they need to be hand tailored to every
application with great care and expertise in order to be functional.

The parameters identified in DN-45 tests with both UDVFs and SBVFs were used to

predict the internal reaction forces based on the stress field reconstructed from the measured
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Fig. 21 Validation of the Hill48 parameters derived from the DN-45-4 test with SBVFs and UDVFs in terms
of the loading forces in DN tests. (a) DN-45-4, (b) DN-30-1, (c) DN-60-1.

strains. These forces were compared to the experimentally measured ones to give an inde-
pendent validation in terms of quality of the material model and the accuracy of identifica-
tion with the DN-30 and DN-60 tests. Fig. 21 shows the reconstructed forces corresponding
to the properties identified with DN-45-4 and strain measurements from DN-45-4, DN-30-1
and DN-60-1. In the case of DN-45-4 both SBVFs and UDVFs accurately reconstructed the
force measurement. When these parameters were used to predict the responses of DN-30-1
and DN-60-1 a large discrepancy was found with UDVFs, indicating poor identification of
anisotropy by UDVFs. On the contrary, the parameters derived from the same test, but using
SBVFs, lead to a much better prediction of the experimentally measured force-displacement
curves indicating that a single test performed along 45° is sufficient to identify the material

plastic anisotropy with the Hill48 model, which confirms the results obtained in [27].

4.2.3 Influence of data range on Hill48 parameters identification

In order to investigate whether the results depend on how much data is used in the iden-
tification, a study was performed where increasingly more time steps were fed to the cost
function. Specimen DN-45-4 was chosen as the baseline, which in the original study con-
tained the maximal strain of 14.0%.

Here, we investigated how the identified parameters depend on the number of frames
used in the identification. At the low end, the maximum strain in the load direction was
9.6%, and at the high end 20.3%, with the intermediate steps approximately every 1.4% of
additional strain, as indicated in Fig. 22. In principle, as larger deformations are supplied

to the identification, more emphasis should be put on the model to match the Lankford



Experimental validation of SBVFs 35

14000
12000
- 10000 All data
& Max ,, = 0.096
8 8000 Max e, = 0.114
8 Max e, = 0.130
0 Max e, = 0.147
5 6000 Max e, = 0.166
E Max e, = 0.183
= 4000 Max e, = 0.203
2000
0
0 0.2 0.4 0.6 0.8

Displacement, [mm)]

Fig. 22 Force versus the displacement of the bottom of the ROI for DN-45-3. Markers indicate data points
included in the identification.
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Fig. 23 Reconstructed apparent yield stresses and Lankford coefficients using Hill48 and parameters identi-
fied with a DN test performed along 45° using incremental stress sensitivities to generate SBVFs.

coefficients more accurately. However, the incremental stress sensitivities related to yielding
tend to filter out time steps at which most of the deformation takes place. To address that,
two studies were run: one in which incremental stress sensitivities were used as a base
for generating SBVFs, and another one where total stress sensitivities (Eq. 18) were used
instead. The findings of this study are presented in Figs. 23 and 24 for incremental and total
stress sensitivities respectively and the mean error as a function of maximal strain supplied
is presented in Fig. 25.

Surprisingly, the results obtained using the total (as opposed to incremental) stress sen-

sitivities are much more consistent and stable with respect to the total number of time steps

used, as indicated by the lower mean error over the range of maximal plastic strains. This
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Fig. 24 Reconstructed apparent yield stresses and Lankford coefficients using Hill48 and parameters identi-
fied with a DN test performed along 45° using stress sensitivities to generate SBVFs.
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Fig. 25 Variation of mean difference for Hill48 model identified using DN-45-4 specimen and SBVFs.

justifies using total stress sensitivity as the baseline in this contribution and comes as sur-
prise as previous studies showed that the incremental sensitivities generally yielded more
accurate parameters. These were however performed on synthetic data so did not include
any modelling errors [46,47]. Although the identification was improved when the SBVFs
were calculated with total stress sensitivities, no improvement in reconstruction of Lankford
coefficients was found, despite supplying total strain as large as 20%.

A possible explanation for the under-performance of the SBVFs based on incremental
stress sensitivities is due to filtering out large amounts of data from the cost function by the
fields. As mentioned in Sect. 2.4, the incremental form of stress sensitivities was introduced
to filter out history dependence of plasticity models and highlight transition zones between

elasticity and plasticity. As a result, when most of the field of view (FOV) is plastically
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deformed, the incremental stress sensitivity fields only cover a very small part of the FOV
and provide little information to the cost function. This might have a detrimental effect in
anisotropic plasticity, particularly when associated-flow models are used, as the information
about the anisotropy can be queried at different levels of plastic work, not only during initial
yielding, but also during accumulation of deformation. This shows that more research is
required into understanding of the benefits and limitations of incremental versus total stress

sensitivity for the SBVFs, so that optimal choices can be made.

4.2.4 Identification of Yld2000-2D with SBVF's

Y1d2000-2D model was identified using data from 3 experiments (DN-30, DN-45, DN-60),
split into two different sets: Set 1 (DN-30-2, DN-45-3, DN-60-2) and Set 2 (DN-30-1, DN-
45-1, DN-60-1), as the samples DN-30-3 and DN-60-3 were discarded due to violation of
the plane stress assumption, similar do DN-45-2. The combination of three tests improves
the range of stress states represented in the cost function leading to better accuracy. To
simplify the problem, the reference flow curve (Eq. 25) was used, so that only anisotropic
coefficients were identified. The total stress sensitivity fields were used to generate SBVFs
as there was no need to decouple yield and hardening related parameters. The cost function
was minimised using the fmincon function in Matlab with the SQP algorithm. An additional
constraint was added to the minimisation problem to ensure that the flow curve represented

the behaviour of the material along RD [11]:

6 6 6

200+ o _5 29)

3

203 — 20
3

dois — o
3

Four starting points were selected using a random number generator with a lower bound of
0.5 and an upper bound of 2.0. The identification procedure was restarted after it converged
for the first time to ensure that the global minimum was found. Two of the starting points
converged to the same solution, shown in Table 6, and in terms of the yield surface in Fig. 26.
Here, we present only results obtained with data from Set 1.

The identified yield surface shows a good agreement with the reference one in the re-

gions where data were present, however deviates significantly near the biaxial stress state.
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Table 6 Anisotropic parameters and the final value of cost function for Y1d2000-2D model identified with

DN tests.
Test configuration o [[] o [-] o[-l oal-] os[-] al-]l ozl ogl] Dfinal
Initial Guess
Set 1 0.870 1.204 1403 0945 0.888 0.500 1.012 0.805
Set 1+ 1.735 0.552  1.693 1470 1.520 1.248 0.836  1.549
Bulge
Set2+ 0.736  1.700 1.688 1.774 1.615 1.559 0.646 1.925
Bulge
Set 1+
Bulge 1.370 1433 0.614 0.860 1917 1.850 1.085 0.698
(UDVFs)
Final values
Set 1 1.120 0979 0913 0900 0930 1.067 1.009 0.857 0.175
S];Ellg; 1.090 0982 0.752 0.902 0.920 0.900 0.977 0.968 0.282
Set 2 +
Bulge 1.104 0945 0.752 0903 0922 0.894 0.981 0.979 0.233
Set 1+
Bulge 1.146 0939 0.843 0.860 0.892 0.951 1.003  1.009 8.3 x10°
(UDVFs)
Reference 1.071 1.000 0.774 0.899 0923 0.880 0975 1.010 -
350 14000

Identified surface
K- — - Reference surface
4 DN-30-2 data
50 DN-45-3 data
o DN-60-2 data
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Fig. 26 Identification of Y1d2000-2D using 3 DN tests. (a) Comparison of the identified Y1d2000-2D yield
surface and the references one (corresponding to 10 MPa of plastic work). The yield surface and the experi-
mental data points were plotted for equivalent plastic strain of 3% to represent only the load-paths achieving
significant plastic strains. The outlines are drawn for change in the shear stress corresponding to 5% of the
yield stress under pure shear. (b) Comparison between the experimental and the reconstructed forces using
identified material parameters and measured strains.
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In the region covered with data points, the difference between the two surfaces is less than
5% in terms of the shear stress. This is further confirmed by looking at the comparison be-
tween the experimental and reconstructed forces which match closely (Fig. 26(b)). The poor
description around the biaxial stress state indicates that the tests are not sufficiently hetero-
geneous for how flexible the Y1d2000-2D function is, i.e. the data used in the identification
is not diverse enough to constrain the shape of the yield surface over all possible loading
states. A similar observation was recently reported in [62], where the authors demonstrated
that their model was matched very well in the domain represented in the tests, however it
did not provide good predictions outside of it. They suggested that adding an additional in-
formation to the cost function (in their case a test at different load rate) could significantly
improve predictions over a wider domain and relieve the issue of non-uniqueness of the

material parameters.

To confirm this hypothesis another identification has been carried out, using exactly
the same test configurations as above, however adding an additional constraint to the opti-
misation problem. The optimisation function was constrained such that the identified yield
surface passed through o}, and r, measured in the bulge test. Four randomly selected starting
points were used, and at least two converged to a similar solution, with similar final values of
the cost function (Table. 6). The minimisation procedure took between 2-3 days depending
on the starting point, irrespective of whether UDVFs or SBVFs were used. The majority of
the computation time was taken by the stress reconstruction algorithm, due to the large num-
ber of data points and combination of three tests. The identified yield surface, apparent yield
stress and Lankford coefficients are presented in Fig. 27. The identified model matches the
reference well in terms of the yield surface and the Lankford coefficients, confirming that
the three deep-notched tests did not represent enough data to identify Y1d2000-2D, however
once the additional constraint was added to the optimisation the SBVFs did a good job at
identifying the correct parameters. Importantly, both data sets were reliable as they provide

consistent material parameters.

To get a further insight into the completeness of the test, the number of DN tests has

been gradually reduced, first to two tests (30° 4+ 60°) and then to a single test (45°), both of
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Fig. 27 Comparison of the identified Y1d2000-2D yield surface and the references one (corresponding to

10 MPa of plastic work). The yield surface was identified using three deep-notched tests and the data from
the bulge test.

which included information from the bulge test. The parameters were identified with these
reduced tests using the same methodology as described before. To quantify the accuracy
of identification, 3D yield surfaces were compared; each surface was reconstructed in the
spherical coordinate system consisting of three variables: the azimuth angle, 3, in 11-022
plane, the elevation angle, v, above the plane, and the radius d. For every combination of the
two angles, the distance from the origin to the yield surface was calculated and compared
between the reference and identified sets of parameters. We then used the relative difference

between the two distances to quantify the matching:

d™l (B, y, ™) —d (B, w, x')
dref (B, y, xrl)

rairr(Bow, ™) = (30)

The difference metric is convenient for comparing 3D yield surfaces as it offers an one-to-
one correspondence between the models. The difference maps associated with the three test
combinations are presented in Fig. 28. From the figure, it is clear that the larger the number
of tests included in the identification, the smaller the difference between the reference and
identified models. In general, the differences were small for three and two tests set-ups
(mean difference < 1%). Surprisingly, the discrepancies were most pronounced for the stress
states represented in the tests. Potentially, this might be due to better fitting of the yield
surface to those represented stress states, in comparison to the parameters derived from the
homogeneous tests. We hypothesise that the reference set of parameters is not optimal for

all stress states, since Y1d2000-2D is fitted to experimental data in a least-square sense.
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Thus, it is possible that the deep-notch tests actually do a better job at capturing the material
response under these multi-axial loading conditions. Significant differences were also found
close to the uniaxial tension at 90°. This however could be explained by the fact that the
reference set of parameters was generated with the average flow stress ratios; in reality, the
reference yield surface represents material behaviour approximately over a large range of
plastic work, whereas DN tests contain information corresponding mostly to the low plastic
work at which the ratios vary considerably (Fig. 10). In the case of the single test, the error in
this region is much larger, suggesting that the test is not sufficient to characterise all possible
orientation angles of the material. This was confirmed by reconstructing force-displacement
curves, similarly to the procedure employed in Fig. 21. The forces corresponding to 30° and
45° were reconstructed with high accuracy, as they were constrained with experimental data
and the optimisation constraint of Eq. 29. However, this was not the case for 60° test, in

which the force was predicted with an error of about 5% (data not shown).

To further elaborate on the viability of the three different test combinations, the corre-
sponding Lankford coefficients have been calculated and are presented in Fig. 28(d). Inter-
estingly, in spite of similar mean difference levels in terms of stress envelope (Figs. 28(a)-
28(b)), the two tests set-up experienced larger errors in terms of Lankford coefficients close
to 90° compared to the three tests combination. This is most likely due to the fact that plastic
flow is related to gradients of stress field, making it much more sensitive to the identified
parameters values and experimental noise as well. It must be noted however that the infor-
mation about 3D plastic deformation is present during the identification procedure as it is

encoded in the strain measurements when isochoric plastic flow is assumed.

The results presented in this contribution might seem inferior to those reported by Rossi
et al. [15] who used the same test to identify Hill48 and Y1d2000-2D models for a stain-
less steel alloy. However, under closer inspection this is not the case either for Hill48 or
Y1d2000-2D. In the former case, they managed to correctly predict experimental forces for
all three orientations only when all three tests were used to identify Hill48 parameters. As
shown in Fig. 21 SBVFs achieved that successfully with only a single test. In the case of

Y1d2000-2D, they demonstrated that the model significantly decreases the error on Lank-
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Fig. 28 Difference maps for combinations of DN tests used to identify Y1d2000-2D. The increasing number
of tests included in identification decreases the overall difference.

ford coefficients reconstructions, however the error on the values they reported is of similar
magnitude (Ar ~ 0.10) to that reported in this contribution. Finally, they did not measure
the reference behaviour under biaxial loading thus the quality of Y1d2000-2D identification
could not be fully judged. In terms of experimental forces they observed a good agreement
between the predicted and measured ones. In this report we were able to reproduce this ob-
servation even with the data set not including the bulge test (see Fig. 26(b)), indicating that
those quantities can be matched correctly while the biaxial response of the material is not
matched closely. Interestingly in that paper the authors used a direct method for integrating
plasticity equations which rely on the measured strains to estimate the flow direction. This
procedure might process the experimental noise, modelling errors and interact with virtual

fields differently leading to different results compared to the elastic predictor-plastic correc-
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tor schemes. In the future it would be interesting to investigate which of the two schemes is
more suitable for identifying plastic laws.

The results suggest that the DN tests alone are not rich enough to fully identify Y1d2000-
2D model. It may be possible to work on the specimen shape to improve the situation but
it is unlikely that this will ever be enough to place points close enough to the biaxial stress
state. However, using two axes for load introduction may lead to enough degrees of freedom
to obtain complete model. A test like that in [63], combined with non proportional loading
may populate the stress space widely enough to obtain all parameters in one test.

Full-field measurements give an insight into a large range of load paths which the model
is calibrated to. These identified parameters represent a more complete response of the mate-
rial, compared to the parameters derived from three uniaxial tests and a biaxial one. Further
work needs to be done to establish which of the two sets of parameters reflects the be-
haviour of materials more comprehensively. The validation procedure could be performed
by modelling an independent test using the two models, and comparing the predictions with

measurements. This is an exciting opportunity for future studies.

4.2.5 Identification of Yld2000-2D with UDVF's

To complete the evaluation of SBVFs performance an identification of Y1d2000-2D was
carried out using the UDVFs defined in section 4.2.2. In this experiment the data from Set 1
(including bulge test) were used to obtain Y1d2000-2D parameters. The identified parame-
ters are shown in Table. 6 and graphically in Fig. 27. Clearly, the obtained parameters with
UDVFs are not as good as the ones obtained with SBVFs, confirming that the proposed
virtual fields significantly improve the identification process. The final value of the cost
function is much larger compared to the SBVFs, however this was expected as the virtual

fields have completely different values and scale the stress fields differently.

5 Conclusions

In this work we have tested a sheet of DC04 steel alloy using the standard testing protocol

and experiments on deep-notched specimens to identify two constitutive models: Hill48 and
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Y1d2000-2D. The virtual fields method, combined with the sensitivity-based virtual fields,
has been employed to extract constitutive parameters from full-field measurements. The

main outcomes of this study can be summarized as follows.

— The results presented in this contribution suggest that the sensitivity-based virtual fields
are effective at extracting information about material parameters, particularly for ad-
vanced models such as Y1d2000-2D.

— When the heterogeneous tests were used to identify Hill48, the material parameters
matched the yield stress variation and the loading force well, however underestimated
the Lankford coefficients. We suggest that the underlying mechanism lies in the over-
constraining of the model, and that the biaxial behaviour influences the identified Lank-
ford coefficients. Overall, the three standard tests were successfully replaced with one
deep-notched test performed at 45°

— User-defined virtual fields, selected based on the recommendations of [15], were used
as an alternative to the SBVFs. It was found that the identified parameters were less
accurate compared to the ones obtained with the SBVFs. The behaviour of the material
was only matched along the orientation of the test used for characterisation (45°) and
experimental forces in other directions could not be predicted correctly.

— For Hill48 using total, as opposed to incremental, stress sensitivity fields to generate
SBVFS, improved consistency of the identification. This is most likely due to incremen-
tal stress sensitivity fields filtering out the majority of the supplied data, especially once
the entire ROI has yielded. On the contrary, when the total stress sensitivity fields are
used, time steps with larger plastic deformation have more impact on the cost function
and identification.

— The number of load levels included in the identification did not significantly influence
the values of identified material parameters for Hill48.

— Deep-notched tests were not rich enough to identify Y1d2000-2D over all possible load-
ing states. It was found that the identified and the reference yield surfaces matched well,

but only in the regions represented in the test. When data from the bulge test was used
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to constrain the cost function, the identified model matched the reference very well over
the entire stress space.

— It was found that the commonly used Levenberg-Marquardt algorithm was not capable
of finding the global minimum of the cost function. The sequential quadratic program-
ming algorithm was used instead as it was robust enough to converge to the global

minimum from a number of independent starting points.

The authors believe that the sensitivity-based virtual fields provide a significant step forward
to calibrate non-linear models with the VFM, but there are still problems worth investigat-
ing. In particular, there are no guidelines on how much data should be used in identification
(e.g. maximum strain, magnitude of strain increments). This should be studied rigorously,
particularly employing the procedure of image deformation to account for the DIC parame-
ters involved in the data processing [64].

Finally, the selection of the sample geometry still remains an open problem, and the
results could certainly be improved further if the test was richer in terms of load paths.
An important question to answer is how to design a better test that will contain sufficient
information about the model and reduce the number of tests involved. Currently, numerical
strategies are being developed, capable of optimising specimen geometries that promote
heterogeneity and particular strain states [30, 31]. They were applied to modify uniaxial
tension specimens and although greatly improved heterogeneity of the test, struggled to
produce data at biaxial tension thus had limited applicability to advanced constitutive models
such as Y1d2000-2D. Alternatively, a single modified cruciform specimen could be used,
which produces data covering a large portion of the yield surface, including equibiaxial
tension [63]. In future, the method presented in this contribution could be applied to those

test configurations to identify models such as Y1d2000-2D or Y1d2004-18p.
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Appendix A Identification of model parameters from the statically determinate tests

A.1 Hill48

There are multiple ways in which parameters involved in Eq. 6 can be identified. In this re-
port, two methods were applied following the guidelines reported in [65]. The first approach

involves three Lankford coefficients: rg, rop and r45:

HD
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An additional equation comes from assuming that the behaviour along 0° matches the hard-

ening law, which leads to G+ H = 1. The explicit forms of each parameters can be shown
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to be:
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The alternative involves three yield stresses corresponding the same level of plastic

work: 6y, Gyg and 045 and the Lankford coefficient for TD:
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Afterwards, the calculated parameters (F(2), G®), H?), N(?)) were multiplied by o2 to nor-
malise them to unit-less numbers.
Parameters F, G, H and N were identified with both of those methods and then used to

Y 5 o y ; :
calculate 67,, 03,, 033 and 67, for reporting using Eq. 7.

A2 Y1d2000-2D

The model is matched to 8 data points: ry, r9g, 745, 75, Cp, O9p, O45 and O} according to the
procedure outlined in [6]. In essence, experimental flow ratios are fed to the model and the
corresponding equivalent stresses and plastic flow ratios are calculated with Eq. 8 and the
associated flow rule under appropriate stress states (uniaxial, biaxial). These observation are
then compared against experimental measurements and the material parameters are adjusted

such that the two match in the least-square sense.
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Table B.1 Detailed information about images used to define data sets for each individual test.

Specimen  Image offset Load steps taken Image capture rate [Hz]
DN-45-1 20 [30:5:100, 110:10:360]

DN-45-2 20 [30:5:250] 0.5
DN-45-3 21 [90:10:200, 220:20:360, 370:10:550] 1
DN-45-4 15 [100:10:490, 495:5:525] 1
DN-30-1 20 [40:10:160, 190:30:370, 380:10:510] 1
DN-30-2 17 [80:10:180, 200:30:400, 390:10:520] 1
DN-30-3 11 [80:10:180, 200:20:360, 365:5:450, 455:10:515] 1
DN-60-1 21 [60:10:160, 190:30:460, 470:10:580, 585] 1
DN-60-2 12 [80:10:180, 200:30:400, 390:10:520] 1
DN-60-3 11 [80:10:180, 200:20:360, 365:5:450, 455:10:525] 1

Appendix B Raw data report

This appendix contains detailed information about the data used in the report. Table B.1
shows which images (available from the online repository) were used in the identifications
carried out. Image offset is the number of the first image correlated in the DIC software; load
steps taken indicate numbers of correlated images included in the identifications (notation

used here is consistent with the Matlab notation).

Appendix C DIC parameters
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Table C.1 DIC settings for a dogbone specimen.

Camera

Sensor (px) and digitization
Lens

Polariser

Field-of-view (mm)

Pixel to mm conversion
Stereo angle

Stand-off distance

Image acquisition rate
Patterning technique

Pattern feature size (approximate)
Camera noise (% of range)

Manta G-504b

2452 x 2056, 8-bit

105 mm Sigma DG Macro (F-mount)
Linear

12.5 x 38.0

1 px =20 ym

13°

1000 mm

1Hz

Rubber-based white base coat with printed black
speckles

3 pixels / 65 um

1.0

Technique used

DIC software

Image filtering
Subset size

Step size

Subset shape function
Matching criterion

Interpolant

Stereo transformation

Reference image

Edge data

Displacement noise-floor

Displacement spatial smoothing: filter,
standard deviation, window

Displacement temporal smoothing: filter,
order, window

Deformation gradient computation method
Strain (Hencky) noise-floor (smoothed)

Stereo Digital Image Correlation

MatchID 2018.2.2

Gaussian, 5 pixels

27 pixels / 0.54 mm

7 pixels / 0.14 mm

Affine

Zero-normalised sum of square differences
(ZNSSD)

Bicubic spline

Affine

Updated (incremental correlation)
Extrapolated from shape functions

0.02 px, 0.4 um (in-plane)

Gaussian (with edge corrections), 2, 13 x 13

Savitzky-Golay, 3, 11

Central finite difference
215 ue
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Table C.2 DIC settings for a deep-notched specimen.

Camera

Sensor (px) and digitization
Lens

Polariser

Field-of-view (mm)

Pixel to mm conversion
Stereo angle

Stand-off distance

Image acquisition rate
Patterning technique

Pattern feature size (approximate)
Camera noise (% of range)

Manta G-504b
2452 x 2056, 8-bit

105 mm Sigma DG Macro (F-mount)

Linear

30.0 x 18.0
1 px =16 um
15°

900 mm
1Hz

Rubber-based white base coat with printed black

speckles
4 pixels / 65 um
0.8

Technique used

DIC software

Image filtering
Subset size

Step size

Subset shape function
Matching criterion

Interpolant

Stereo transformation
Reference image

Edge data

Displacement noise-floor

Displacement spatial smoothing: filter,

standard deviation, window

Displacement temporal smoothing: filter,

order, window

Deformation gradient computation method
Strain (Hencky) noise-floor (smoothed)

Stereo Digital Image Correlation
MatchID 2018.2.2

Gaussian, 5 pixels

21 pixels /0.34 mm

7 pixels / 0.11 mm

Quadratic

Zero-normalised sum of square differences

(ZNSSD)

Bicubic spline

Affine

Fixed

Extrapolated from shape functions
0.01 px, 0.25 pm (in-plane)

Gaussian (with edge corrections), 2, 13 x 13

Savitzky-Golay, 3, 11

Central finite difference
100 ne
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Table C.3 DIC settings for the bulge test.

Camera

Sensor (px) and digitization
Lens

Polariser

Field-of-view (mm)

Pixel to mm conversion
Stereo angle

Stand-off distance

Image acquisition rate
Patterning technique
Pattern feature size (approximate)

Point Grey Grasshopper GRAS-50S5M-C
2448 x 2048, 14-bit

105 mm Schneider xenoplan 35 mm
Linear

286.0 x 240.0

I px=117um

12.4°

650 mm

1Hz

Matt white paint base coat with black speckles
7 pixels / 820 um

Technique used

DIC software

Image filtering

Subset size

Step size

Subset shape function

Matching criterion

Interpolant

Stereo transformation

Reference image

Displacement noise-floor

Displacement spatial smoothing: filter, or-
der, window

Displacement temporal smoothing
Deformation gradient computation method
Strain (Hencky) noise-floor (smoothed)
Curvature noise-floor (smoothed)

Stereo Digital Image Correlation

Correlated Solutions Vic-3D 8

Gaussian, 5 pixels

41 pixels / 4.8 mm

7 pixels / 0.82 mm

Quadratic

Normalised sum of square differences (NSSD)
Bicubic spline

Affine

Fixed

0.01 px, 0.3 um (in-plane), 1.0 um (out-of-plane)
Local polynomial regression, 2, 20 x 20

N/A

Local polynomial fit
50 ue
22x10"*mm™!
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