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ABSTRACT 
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Master of Philosophy 
A PLANE WAVE BASIS METHOD FOR 

THE VIBRATION ANALYSIS OF MEMBRANES AND PLATES 
by Laurent Jacques Willocq 

A new boundary method for modelling structural vibrations, called the Plane Wave 
Basis Method, is developed to estimate the natural frequencies and mode shapes of 
membranes and plates with various boundary conditions. 

Since its formulation may be derived from the Indirect Boundary Element Method, 
this method is studied and applied to the vibration of arbitrary shaped membranes 
and clamped plates. Furthermore, a new boundary element technique that deals 
with equations of the type JCU = b{x, y) is presented. Based on the spatial Fourier 
transform, it may be used with any type of fundamental solution and does not need 
any domain integration. This approach has been applied to determine the forced 
response of membranes to surface waves. 

The alternative formulation using the plane wave basis method is based on use 
of the Trefftz functions or T-function. Thus, the Trefftz methodology is introduced 
and one of its application, called the Exterior Boundary Element Method or 
Modified Trefftz Method, is applied to the vibration of clamped membranes. 

In both cases, the plane wave basis formulation expresses the transverse displace-
ment as a superposition of propagating waves and evanescent waves. This method is 
highly effective in simplifying the programming and reducing the computational ex-
pense. The vibration of clamped membranes and of square, triangular, trapezoidal, 
rhombic and elliptical plates with different boundary conditions such as clamped, 
simply supported, sliding clamped, point supported, free and combinations of the 
aforementioned, are analysed. In most of the cases, the results agree well with 
the exact values or the values which have been found so far by various other ap-
proximate methods. However, problems are encountered when dealing with free 
polygonal plates; it is thought that the reason for this is attributable to the corner 
points. Although several different models of corners were studied, none of them was 
found to be satisfactory. 
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1. Introduction 

1. Introduction 

1.1 General remarks 

Since the early days of manned flight, the importance of structural analysis has been 
recognised from the design stage through to full scale testing. In particular, the 
dynamic response of the airframe to external loading actions must be appreciated 
in order to ensure its structural integrity - the literature is full of accounts of system 
failures brought about by resonance and excessive vibration of components [2, 1,3]. 
Till the 1950s, such studies were done by using gross models, with only a few degrees 
of freedom. However, the advent of high-speed digital computers made it possible 
to analyse moderately complex systems and to generate approximate solutions. The 
introduction of the Finite Element Method (FEM) enabled aeronautical engineers 
to use digital computers to conduct numerically detailed vibration analysis of com-
plex mechanical and structural systems displaying many thousands of degrees of 
freedom. This technique discretizes the domain of the problem under consideration 
into a number of elements or cells. The governing equations are then approximated 
over the region by functions which fully or partially satisl^ the boundary conditions. 

Alternative procedure is to use approximating functions that satis^ the governing 
equations in the domain but not the boundary conditions. These techniques are 
called boundary methods. Although they have developed slowly up to the present 
time, they are now being re-examined, mainly because they o&r an elegant 
and economic alternative to the domain methods such as the FEM. One major 
advantage of the boundary methods over the FEM is a significant reduction of 
dimensionality, i.e. in the BEM, a two-dimensional region is quantiEed by its 
one-dimensional boundary or perimeter. Consequently, the discretization is much 
simpler. The computer programs require much less memory space, and are generally 
easier to develop. However, both approaches - domain and boundary ones - should 
be considered to be complementary more than exclusive, and there are already 
several examples of mixed methods based on the simultaneous use of a boundary 
method and the FEM. 

There are two main approaches for the formulation of boundary methods: one is 
based on the use of boundary integral equations (BIE) and the other one on the 
use of complete systems of solutions. In numerical applications, the first method 
has received most of the attention. 

It has been known for a long time that it is possible to formulate boundary 
integral equations with singular kernels (due to the use of Green's functions or 
fundamental solutions) to solve a boundary value problem. However, the BIE 
as a numerical technique has its origin in the 1960s. It was called the bound-
ary element method (BEM) in order to emphasise the boundary discretization 
character of the method in contrast with the FEM. The BIE used at that time 
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were primarily formulated from Green's formula, which is commonly referred to as 
the direct approach or Direct Boundary Element Method (DBEM). However, an 
alternative approach to the BIE, the indirect approach or IBEM, using ideas from 
Potential Theory to represent the solution as a superposition of layer potentials, 
leads to greatly simplified systems, and, as a consequence, is much easier to compute. 

The second type of boundary method, based on the use of complete systems 
of solutions is frequently associated with the name of Trefftz, who first described 
such a boundary method in 1926. Though this type of boundary method avoids 
the use of singular integrals, unlike the BIE, it has received less attention. This 
situation may be due to the common, but false, belief that complete systems of 
solutions have to be constructed specifically for a given region. However, frequently 
systems of solutions are completely independent of the detailed shape of the region 
considered, and this method has recently been used in many fields by choosing 
different sets of complete functions. 

1.2 Literature survey 
The origin of integral equation approach to boundary value problems in elasticity is 
closely related to the work done in the latter half of the 19th century on potential 
theory [43]. It also borrows greatly from the work on integral equations reported 
by Fredholm [23], published in 1903. With aid of digital computers, it became 
possible to solve non-trivial, engineering-type problem using their numerical 
implementation. Pioneering work in this direction was done by Jawson [41] and 
Symm [41] in Potential Theory and elastostatic. However, all these works were 
based on the direct approach. Indeed, the Indirect Boundary Element Method 
(IBEM) has always been less popular, despite its closer link with Potential Theory. 

Furthermore, applications of the BEM to the vibrations of structures are scarce. 
Since, in the frequency-domain, the dynamical equation of the membrane reduces 
to the Helmholtz equation, the works done on the eigenvalues and eigenmodes of 
the Helmholtz equation [13, 73, 57], published in the mid 1970s, can be considered 
to be first results of such a application. 

Among them, the work by Cassot and Extremet [13] is probably the first 
application of the BEM to treat this problem. They used the indirect approach to 
express not only the distribution of the sound field inside a circular cavity, but also 
to determine the eigenfrequencies of the Neumann problem associated with this 
circular shape. To do so, they use the complex determinant in order to obtain the 
eigenfrequencies, and they concluded that the eigenvalues should be determined as 
the local minima of the determinant. 

On the other hand, Tai and Shaw [73] used the direct approach to find the 
eigenfrequencies and the eigenmodes of a triangular domain associated with the 
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Neumann problem. Instead of using the complex determinant, they preferred to 
search for common roots of the determinant for the real and imaginary parts of the 
complex matrix. 

The first directly applicable result to a clamped membrane is found in the work 
by De Mey [57]. The author of this reference used the indirect approach to calculate 
the eigenfrequencies of circular and rectangular domain for the Dirichlet problem, 
e.g. with a clamped boundary. However, he noticed that looking for common root 
of the determinant of the real and imaginary part can lead to discrepancies between 
the results, and hence less accurate results. 

Hutchinson [37] employed the direct BEM with only the real part of the Green's 
function. Although such a procedure greatly simplified the calculation, it produced 
spurious roots which complicate the determination of the eigenvalues because of 
the need to look at the modal shapes. 

The first application of the boundary integral equations to the vibration of plates 
is usually credited to Vivoli and Filippi [82] in which they used the indirect method 
of solution employing layer potentials up to the third order. By determining 
the minima of the complex determinant, they obtained the eigenfrequencies of 
an arbitrary shaped plate with a clamped and partially clamped-partially free 
boundary. Comparing the results with experimental ones, they concluded that 
even if the relative error is quite high (up to 6% in the case of the mixed boundary 
conditions), such results are still valid for engineering purpose. That work was 
preceded by a series of papers by Vivoli [79, 81, 80] and by Vivoli and Filipi [22, 21]. 

The direct approach was implemented by Hutchinson and Wong [38] who applied 
this method to clamped and simply supported plates. As in the membrane problem, 
they used only the real part of the fundamental solution which led to spurious 
roots. However, they concluded, by comparing their results with known finite 
elements solutions, that the BEM leaded to greater accuracy at higher frequency, 
but because of the greater computational complexity, it was not a superior method. 

Niwa, Kobayashi and Kitahara [62] formulated the plate boundary element 
equations using both layer potentials (indirect method) and the Green's formula 
(direct method) using the classical fundamental solution. In doing so, they used the 
complex determinant and studied two types of element, the straight line segment 
and the curved line segment. 

A more detailed study of all these eigenvalue problems, and more general 
elastodynamic eigenvalue problems, can be found in the book by Kitahara [47]. 

Finally, the special indirect BEM of Heuer and Irschik [35] developed for frequency 
analysis of polygonal membranes and plates should also be mentioned. In this 
work, the authors used a finite-domain Green's function so that only part of the 
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boundary has to be discretized. The dynamic analysis of parallelogram plates is 
then obtained by considering the analogous membrane problems. 

However, in all the previous work, the singular character of the integrals used, due 
to the fundamental solution, incurred a sizeable computational overhead. Hence, 
some derived methods which eliminated these singularities were investigated. In the 
case of the indirect approach (which is the one studied in this work), the Exterior 
Indirect Boundary Element Method (EIBEM) is one of them. In this technique, the 
source points are located not on the boundary of the domain but outside it, on an 
imaginary exterior boundary, thus suppressing the singularities. This simple idea 
was discovered independently by several researchers who, sometimes not quoting 
each other, gave it different names. Thus, it was called regular Indirect Boundary 
Element Method (RIBEM) [85], method of fundamental solutions [55, 8], source 
function method [19], exterior collocation boundary element method [7], charge 
simulated method exterior collocation method and modified Trefftz method 

In fact, the EIBEM is closely related to the other approach cited previously, 
namely the Trefftz method. The difference between these two methods is chiefly 
dependent upon the choice of the trial functions. But, since the fundamental 
solutions used in the EIBEM are part of Kupradze's functions (the Kupradze 
functions, introduced by Kupradze [48] in the middle 1960s, are fundamental 
solutions with concentrated forces applied to a surface exterior to the investigated 
region and modelling the unknown solution inside it), one can the use the standard 
Trefftz method. 

No work can be found which applies this method to the study of eigenfrequencies 
of membranes and plates. However, some results obtained by researchers in other 
fields, such as stress analysis [66, 84], fluid flow problems [66], propagation of waves 
in structures [24], elastostatic [87], thermal analysis [85, 30], study of magnetic 
fields [36] and waveguides [42] can be used to validate this work, especially regarding 
the study of the most two important parameters in the EIBEM: the shape of the 
exterior surface holding the source points, and its distance from the surface of the 
original problem. 

Until now, the most common way to define the exterior shape was the homothetic 
contour of the original boundary, and many authors [42, 24, 87, 36, 30] situate the 
sources on straight lines perpendicular to the surface. Wearing and Sheikh [85] 
defined an optimised contour for the corner zone. However, some authors such 
as Bogomolny [8] proposed a circular exterior boundary and others [55] gave the 
algorithm for optimising the contour by the mean of the least squares and the 
theory of approximation by 7-polynomials. According to Heise [31], the profile of 
the imaginary boundary placed on the source points can be taken regardless of the 
real boundary profile, but the accuracy of the results and the conditioning of the 
matrices are very dependent on the type of profile chosen. The distance between 
the imaginary and the real boundary can also greatly influence the efficiency of the 
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method. Most of the researchers [42, 55, 24, 87, 85, 36, 30] agree on the presence of 
a range of acceptability for this parameter. This range is problem-dependent but if 
the distance is too small, the problem becomes singular and if the distance is too 
big, the matrices become linearly dependent, hence singular and ill-conditioned. 
Several ways to overcome the distance dependency were investigated. Thus, 
Mathon and Jonhston [55] used a scaled fundamental solution and noticed a better 
convergence of their results. Fu et al. [24] used a coarse discretization of the 
boundary to reduce the number of exterior points and to have a better conditioned 
matrix, and Honma et al. [36] preferred to use smaller elements to overcome the 
ill-conditioning. 

However, Zielinski [89] observed an increase in the solution accuracy but simulta-
neous deterioration of the matrix conditioning with the increase of the distance. 

As it has just been seen, the distinction between the Trefftz method and the BEM 
may be less obvious than it first appeared, since the latter can lead to a trefftzian 
formulation. However, the set of functions used in the Trefftz method fulfill the 
governing equations inside the domain and on its boundary. This particularity 
eliminates the standard BEM approach which applies functions fulfilling the 
differential equations everywhere but the boundary. 

In the case of the classical Trefftz method, few results concerning its application 
to the eigenvalues problems have been published. Herrera [32] gave it a sound 
mathematical background and he derived the complete systems of solutions, which 
were latter called T-functions, for bounded and unbounded regions, for the reduced 
Helmholtz equation [33] in two- and three-dimensional problems in the late 1970s. 
Similar systems were also derived by the same author for the Laplace equation [32] 
and the biharmonic equation [32]. There are two approaches for using these 
systems, namely the direct and the indirect approaches. In the direct formulation, 
which is relatively new [15, 16], the weighted residual expression of the governing 
equation is derived by taking the T-functions as the weighting functions, and then 
the boundary integral equation is obtained by applying twice the Gauss-Green 
formula to it. Such a method was applied to the study of water wave diffraction 
around a structure [15] (modelled by the Helmholtz equation) and to Kirchhoff 
plate bending [16]. 

The indirect formulation of the Trefftz method, which is considered to be the 
original one presented by Trefftz, approximates the solution of the problem by the 
superposition of the T-functions and then the unknown parameters are determined 
so that the approximate solution satisfies the boundary condition by means of 
collocation, the least squares or the Galerkin method [46]. Hence, in the case of 
vibration of structures, the eigenfrequencies are obtained by a determinant search 
similar to the one encountered in the BEM. Although this method is fairly old and 
the question of completeness for the plate is still not settled, the first application 
of this method to the problem of plate vibrations was undertaken by Conway [17], 
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and Conway and Farnham [18] in the early 1960s. In these articles, Conway 
al. satisfied an equation verified by the moment quantity which is similar to the 
Helmholtz equation, and then, using the well-known solutions of the plate vibration 
in polar co-ordinates (which was latter proven to be T-functions by Herrera [33]) 
and the collocation method, they obtained the classical eigenvalue problem to 
be solved by the eigenfrequencies, i.e. the eigenfrequencies being the roots of a 
determinant. 

A series of articles [60, 61, 58, 59] by Nagaya on the vibrations of plates must also 
be noted. The author of these references used the same solution as Conway [18] 
to express the displacement for an arbitrary shaped plate. However, unlike in 
the Trefftz method, the unknown coefficient were determined by applying to the 
resulting boundary conditions the method of Fourier expansion. 

One of the first applications of the Trefftz method to the vibration of membranes 
was realised by Urata and Nakagawa [78] in 1993. Indeed, without acknowledging 
the similarity with the Trefftz methodology, they expressed the displacement of 
the membrane by a system of propagating plane waves. By applying the weighted 
residual method and the collocation method, they derived the eigenfrequencies of 
rectangular and circular membranes for the Neumann and Dirichlet problems. It 
must be remarked that such a system of plane waves had already bee proposed as 
alternative T-functions for the Helmholtz equation by Herrera [34] in 1981. 

A subsequent article by Urata [77] (in Japanese) expressed of the transverse 
displacement of a plate as the sum of propagating and evanescent waves. However, 
instead of using this expression, he derived four expressions using sinusoidal 
functions and hyperbolic functions to represent the different symmetries of the 
modes. Then applying the collocation method and the method of weighted residuals 
(or more precisely, the method of virtual work), he was able to determine the 
natural frequencies of clamped circular, elliptic, square and rhombic plates and of 
square and rhombic plates with free edges. 

In a recent article [75], Urata used another expression of the transverse displace-
ment, which had already been used by Nagaya, e.g. the polar co-ordinate solution 
of the plate equation, to examine the lateral vibrations of different plates. In doing 
so, he applied the collocation method and remarked that, although this method 
is one of the simplest, the accuracy obtained was perfectly acceptable. However, 
Urata encountered several problems with the modelling of corners, and offered some 
improvements in another article [76]. 

1.3 IVEotivation 
As just seen, the application of boundary methods to the study of vibrations are 
scarce, despite the fact that such methods have been widely applied in other areas. 
Furthermore, the simplest formulation - the indirect approach - has known little 
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success. Hence, this thesis describes a computational and theoretical investigation 
of the application of indirect boundary methods to the vibration of two types of 
structure: membranes and plates, and a new and simpler method is proposed. This 
method can be derived from the two formulations of the boundary method, the BIE 
approach or the Trefftz method. 

1.4 Scope 
In this work, the emphasis is laid on the indirect formulation of the boundary 
methods, and the classical formulation of the IBEM is assessed for both membranes 
and plates. In doing so, a simple technique which enables the forced response of 
these structures to be determined is implemented. 

Then, in order to improve the computer efficiency of this method, the application 
of the EIBEM to the vibration of membranes is studied. Since such an application 
is new, some difficulties to optimise the parameters are encountered. It also 
appears that such a method may lack the versatility of the IBEM. Hence, a derived 
formulation is investigated. 

This derived formulation is obtained by considering the asymptotical form of 
the EIBEM, which aims to express the displacement field inside the structure 
by a superposition of plane waves. Such a formulation can also be derived 
from the Trefftz method, as it was shown by Herrera [33] for the case of the 
Helmholtz equation. This formulation is then applied to several different plates 
and some results are presented for different planforms typically encountered in 
aeronautics. Although this formulation has already been applied to membrane 
vibration [78], its application to plate vibrations constitutes an original contribution. 

1.5 Organisation of the dissertation 
This dissertation is divided into five chapters, a list of references and seven 
appendices. 

Chapter 2 presents the Indirect Boundary Element Method and its application 
to the vibration of damped and undamped clamped membranes and of clamped 
plates. A new technique to determine the forced response of a membrane is also 
presented, and two types of excitation are considered, a point force and a plane 
wave force. 

Chapter 3 presents the Exterior Indirect Boundary Element Method and the 
principle of the Trefftz methodology. In order to highlight the main characteristics 
of the EIBEM, the simple case of the membranes is considered. Comments are 
included on the different ways to optimise the parameters introduced by this 
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method. The Trefftz method is then briefly described and the usual T-functions, 
for the problems of membrane and the plate vibrations, are presented. Since these 
T-functions have already been applied to the study of vibration of these two struc-
tures [17, 18, 77, 75, 76], the reader is referred to these works for further information. 

Chapter 4 introduces the new set of functions used in this work. Based on the 
work by Herrera [32], they represent propagating and evanescent plane waves, thus 
the name given to this derived Trefftz method, the Plane Wave Basis Method. By 
applying the discretization used in the Trefftz methodology and the collocation 
method, it is shown that such functions can be applied to the analyses of vibrations 
of membranes and plates with various shapes and boundary conditions. Although 
most of the eigenfrequencies and the modes obtained by using this method are 
found to be accurate, problems with ill-conditioning and with free corner points 
are encountered. Hence, other discretization methods, such as the weighted 
residual method and the Galerkin method, along with different models of free 
corner points are investigated. Since none of them lead to satisfactory results, a 
derived formulation of the PWBM is studied. It is shown that such a formulation 
constitutes an approximation of the Bessel functions used in the usual T-functions. 
However, such a method did not give accurate values but for free rectangular plates. 

Chapter 5 presents the final conclusions of the current research. 

Appendix A presents the special functions used in this research and some useful 
relations between them. 

Appendix B presents some results concerning the matrix algebra. 

Appendix C presents the modal expansion of a vibrating damped square mem-
brane. Such expressions are used to assess the accuracy of the forced response 
technique developed in Chapter 2. 

Appendix D presents the derivation of the new set of functions for the case of the 
plate from the solution of the differential equation in polar co-ordinates. 

Appendix E introduces the different expression of the boundary quantities for a 
plane wave. Such expressions are used while implementing the new method. 

Appendix F presents an application of the weighted residual method and the 
Galerkin method to the new method. It is shown that care must be taken when 
using these methods because of the spurious roots they introduce. 

Appendix G presents the boundary condition which should be implemented for a 
discontinuous point along a free edge. 

Finally, a list of technical references is presented. 
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2. The boundary element method 

The boundary element method (BEM) is based on the discretization of the integral 
equations representating the system. There are two types of boundary element 
methods: the indirect method and the direct method. The first technique is the 
oldest and comes from the potential theory. It employs fictitious quantities (source 
densities) to express the integral equations [47, 14]. The second one only employs 
quantities that have a clear physical meaning (displacement, stress, etc.) [11, 9, 52]. 

2.1 Principle 
2.1.1 The Indirect Boundary Element Method (IBEM) 

Integral formulation 

Let Q be an open domain of with smooth boundary dQ (more precisely, a 
Lyapunov surface as defined in [41]). Let £ be a differential operator on fl and 

be m differential operators giving the homogeneous boundary condi-
tions of the problem. A boundary value problem is represented by the following 
system: 

j Cu + b = 0 on [2 . s 
[ Bi{u) = 0 {i = l,...,m) on dCl 

where the body force b is given. 

A aoWioM, G(x,y), of (2.1) is by definition a solution (in the sense 
of distributions) of the equation: 

Z:G(x, y) + J(x - y) = 0, x, y e (2.2) 

where 6(x, y) is a Dirac delta function which goes to infinity at the point x = y and 
is equal to zero elsewhere. It has the following property: 

j^t/(y)(^(x-y)(f;Sy = M(x), VxER" (2.3) 

Physically, G(x, y) is the response at x to a concentrated unit source located at y 
and generated in an infinite medium. 

The indirect formulation of (2.1) is obtained by using layer potentials. In the clas-
sical potential theory for Laplace's equation, harmonic functions can be represented 
by layer potentials and it has been shown that analogous results to the classical po-
tential theory can be deduced for steady-state elastodynamics [47, 14]. Here, using 
the formulation of Vivoli [81], a layer potential of order g, [7^, is a solution of: 

(2.4) 
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where fig is the source density of the layer, is the qth derivative in the direction 
of the unit outward normal to the boundary dQ, n, and Sau is the Dirac measure 
with support dQ: 

can be written as in [82]: 

f/'W = (-1)" (2.6) 

where G(x,y) is a fundamental solution previously defined. 

Hence, the indirect formulation of (2.1) is: 

t/(x) = / 6(y)G(x, y) + ^ ( - 1 ) " / //g(y)a^G(x, y) c(Cy (2.7) 
vn g g ; van 

with / C N. 

In the following, the body force b is assumed to be zero. By applying the m 
boundary conditions Bi to (2.7), the following system of integral equations with 
respect to /i^ is derived: 

^ ( - l ) n i m g J / / , , ( y ) a ^ G ( x , y ) c ( C y ] = 0 , (̂  = l , . . . , m ) , V X e ^ n (2.8) 
gef :^^X \Vr / 

Since the fundamental solution presents a discontinuity at x = y, some care must 
be taken when dealing with the integrals. It may be required to use the Cauchy 
Principal Value and a free term representating the "jump" on the boundary. A 
rigorous treatment of these singularities can be found in the book by Chen and 
Zhou [14] and in the series of articles by Vivoli et al. [81, 21, 82]. 

Having m boundary conditions to satisfy, m potential layers will be taken. 
Furthermore, as a lower order potential is preferable from the computational point 
of view [47], it is customary to have I = {0 , . . . , m — 1}. 

Numerical Analysis 

For the purposes of numerical computation, the boundary dO, is divided into n 
suitable intervals Tj so that 5Q = Fi U Fa U . . . U r„ . The points that subdivide 
the boundary will be referred as interval points and will be denoted . It is 
important when choosing the interval points that any corners of dfl are included, 
which ensures that each interval Fj is smooth. The source densities /ig are then 
approximated by step-functions: 

//g(x) = Vx € Fj, (; = ! , . . . , 7i), 
{q — 1, . . . , Ml), 

(2.9) 
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where are constant. Hence, the system (2.8) is approximated by 

It, lu—i. l r \ 

^ ^ ( - l ) n i m B J ^ / a^G(x,y)(fCy = 0 , (2 = l , . . . , m ) , V X ^ E r j 

(2 .10) 

To solve this equation, the method of collocation or point-matching is used, and 
(2.10) is applied at one particular point in each interval Tj of d^l. These points are 
called nodal points and will be denoted x \ as shown on Figure 1. 

As it was remarked by Jawson et a/. [41], this method of discretizing an integral 
equation is a particular case of the method of moments, and more generally of the 
weighted residual method. 

Hence, (2.10) is approximated by a system of homogeneous linear equations: 

(2 .11) 

n m—1 

E 2 ] = 0, (z = 1 , . . . , m), 
j=l g=0 

(I = 1,... ,n) 

with 

Afi = f ^,,(y)cP„G(x,y)dCy), x'6 T, (2 .12) 
•' x-^x' \ vr, / 

All integrals are then evaluated numerically with respect to the remark stated 
previously. 

2.1.2 The Direct Boundary Element Method (DBEM) 

An exhaustive presentation of this method is beyond the scope of this work. 
For further information, reference should be made to any of the following refer-
ences [52, 11, 12, 10, 47] 

In elastodynamics, the DBEM can be derived from the dynamical reciprocal 
theorem (Somigliana's Formula) [47], the weighted residuals method [11] or from 
the Green's function method [52]. It makes use of the fundamental solution to 
obtain an integral representation of the system inside the domain Q with respect to 
u and to its boundary data. The integral equation is then taken to the boundary 
and a system of constraint equations between the boundary quantities is derived. 
The last step of this method is a numerical discretization of the domain and the 
evaluation of the integrals. 

- ^ 
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2.2 Application of the IBEM to a membrane 
A membrane is a continuum possessed of axial stiffness in tension, but offering no 
Eexural resistance. Membranes are extensively used in machine design for pumps, 
compressors, pressure regulators, etc. 

Membrane vibration have been subjects of many investigations as special cases of 
plate vibrations. Indeed, in the case of the IBEM, the formulation of the problem 
for a membrane is closely related to the one of a plate. 

2.2.1 Case of a vibrating undamped membrane 

In the derivation of the differential equation of the equilibrium of a membrane occu-
pying the area it is aasumed that the lateral displacements t; are small and thus 
the tensile force per unit length acting on the middle surface = a A) is 
constant. Furthermore, the displacement on the boundary is assumed to be zero 
(homogeneous Dirichlet condition). From [72], the following differential equation of 
motion is obtained for the free transverse vibration of a membrane: 

— ahV'^v = 6, X G n (2.13) 
o^t 

where p is the mass of the membrane per unit area and b is the distributed transverse 
load per unit area. The boundary of the membrane being fixed, v satisfies: 

JB(W)(X, t) = 0, X G dQ, t >0. (2.14) 

where B is the differential operator introduced in Section 2.1.1. In this case, B is 
defined by 

B{w) = w (2.15) 

Through out this work, the time dependency will be removed by assuming har-
monic motions with an angular frequency w, i.e. 

^;(x, (2.16) 

6(x,() = e-^*g(x) (2.17) 

where i denotes \ / ^ when it is not used as an index in the subscripts. Furthermore, 
in order to simplify the formulation of the problem, the following reduced force p 
will be used 

p(x) = ^ (2.18) 

Hence, the following Dirichlet problem is derived: 

( A:̂ w(x) + V^u;(x) = -p(x) , x € . 
1 w ( x ) = 0 , X e a n ^ ^ ^ 
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where the wave number k is related to the angular frequency w by 

k — — (2.20) 

where c, the velocity of transverse waves in the membrane, is defined by 

c = ^ (2,21) 

Indirect integral representation for the free vibrations of a membrane 

By replacing p in (2.19) by the Dirac delta function introduced in Section 2.1.1, 
the equation satisfied by the fundamental solution of the Helmholtz equation is 
obtained. In this case, there are an infinity of fundamental solutions: 

G(x, y) = - y||) + - y||), A, ( e C (2.22) 

where A and ( are arbitrary constants independent of x and y, and is the 
Hankel function of order 0 of the first kind (see Appendix A for definition). In 
order to distinguish between the solutions, the radiation condition introduced by 
Sommerfeld [70] is used thus: 

G{kr) = 0(|r|3/^), when r -4- oo (2.23) 

That means that only outgoing waves are present in the infinite membrane or, from 
the point of view of energy, that no energy is reflected by points at infinity. 

The asymptotical expressions of the Hankel functions introduced in (2.22) are [4]: 

^ g+^(z-V4)_ for 1̂ 1 00^ (2.24) 

and 

for |z| -4. oo (2.25) 

Hence, Hq^\z) and H'q\z) represent outgoing waves and in-going waves respec-
tively. Therefore, according to the Sommerfeld condition (2.23), the fundamental 
solution can uniquely be determined and written as [14]: 

G(x, y; A;) = (A;||x - yH) (2.26) 

Since there is only one boundary condition to fulfill, the transverse displacement, 
w, is represented by a simple-layer potential [14]: 

w(x) = ^ //(y)G(x, y; A;) (fCy (2.27) 



2.2 Application of the IBEM to a membrane 14 

Numerical solution 

As explained in Section 2.1.1, the boundary dQ is divided into n elements Tj. Here, 
the elements are straight line segments and the n nodes x-̂  are the centre points of 
these segments. Hence, (2.11) can be written as: 

Y^Aij(k)iij = 0, = (2.28) 
i—1 

with 
lim / G(x, y;A:)dCy, (2.29) 
x->x' JVj 

When i and j are different, G ( x \ y ; k) does not contain a singularity on Tj. Hence, 
the integral in Aij can be approximated by the mid-ordinate rule for integration: 

/ G(x, y; A;) (fCy % Z,jG(x, x ;̂ A:) (2.30) 

where Lj is the length of the segment Fj. Thus, 

yl^j(A:)%i;,G(x\x^';A:), (2.31) 

But, if % and j are equal, (?(x', y; A) becomes singular for y = x̂ ' . However, according 
to [14], the following results can be obtained: 

/" 9 /"Kli j|/Z . 
= n^)('r)(f'r (2.32) 

For z e C, 

nf) (T) (fT = zjf(')(z) + Y [%(z)n;')(z) - '^i(z)7f^')(z)] (2.33) 

where Tio and Tii are respectively the Struve functions of order 0 and 1 (see Ap-
pendix A for definition). 
Hence, Aii(k) can be written as: 

Au(k) = (2.34) 

- « i (^*; |r . | ) f f j"( i t |r . | ) ]} (2.35) 

The set of equations (2.28) can be expressed in matrix form as: 

[A(A:)]/Z = 0 (2.36) 

where 
[^(A;)] = [Aj(^)]nxn (2.37) 

/ m \ 
/%= : (2.38) 

\ Mn / 
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From the eigenvalues A; of the boundary value problem (2.19), the eigenfrequencies 
A = ka, where a is a reference length dimension of the vibrating membrane, are 
obtained. 

The necessary and sufficient condition for which (2.36) has a non-trivial solution 
is the well-known 

det[v4(A;)] = 0 (2.39) 

Approximate eigenfrequencies can be obtained by computing the roots of this de-
terminant. 

Numerical tests 

The previous method was implemented in FORTRAN-77 on a SPARC station 2. 
Two techniques for solving (2.39) were investigated. In the first one, the real and 
the imaginary part of the determinant were solved separately. This method was first 
used by De Mey [57]. However, it was noticed that the roots of the real part and the 
imaginary part never coincided perfectly, because of the approximations introduced 
by the numerical procedure. Indeed, some discrepancies were found between the two 
roots when using this method. This problem was remarked by Kitahara [47] and he 
proved that the search of the local minima of the absolute value of the determinant 
instead of its root was preferable from a computational point of view. Therefore, 
the second method, which consisted in finding the minimum of: 

f(A;) = |det[v4(/u)]| (2.40) 

was preferred. The determinant was calculated by Croutz factorisation implemented 
in a NAG subroutine [64]. The minimum was determined by plotting the curve of 
f(/c) using the software package MATLAB [54]. 

Through all this work, the dimensionless eigenfrequency parameter A — ka, where 
a is a reference length, will be used when possible. However, it must be noted that 
all the calculations were conducted for the parameter k. 

Three types of membranes were investigated: a skew membrane, a pentagonal 
membrane and an arbitrary quadrilateral membrane. 
For the skew membrane shown in Figure 9, the eigenfrequencies \ — ak, where 
a the edge length of the skew membrane, were tested for various skew angle ip 
and compared with the ones obtained by Durvasula [20] using the Rayleigh-Ritz 
method. The average relative error was 0.4% as shown in Table 1. 
The eigenfrequencies k for the pentagonal membrane shown on Figure 10 were 
compared with the ones found by Kim [45] using the software ANSYS^ and 1114 
finite elements. Again, as shown in Table 2, the results are in perfect agreement 
with those reported in [45]. 
The last case to be examined was an arbitrary quadrilateral membrane shown in 

commercial Finite Element package developed by Swanson Analysis System, Inc. 
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Figure 11. The results were again compared to the ones in [45] (see Table 3), and 
the average relative error was found to be slightly superior to the previous ones and 
equal to 0.72%. 

2.2.2 Case of a vibrating damped membrane 

Here only linear damping will be considered. The linear damping force is rdv/dt, 
proportional to the velocity. It is also known as the viscous damping force and r as 
the coefficient of damping. 

Hence, (2.13) becomes: 

+ T— - = 6, r > 0, (2 41) 

In the steady-state regime, the following Helmholtz equation is obtained: 

+ (A;̂  + z/cy)!!; = —p, (2.42) 

where p, k and w are given by (2.18), (2.20) and (2.16) respectively, and the coeffi-
cient 7 is given by 

^ (2.43) 

where c is the velocity of the wave motion in the undamped membrane. The 
Dirichlet condition for this problem is again w(x) = 0, x G dQ.. 
This Helmholtz equation (2.42) is similar to the previous one (2.13), and hence the 
same type of layer potential and fundamental solution can be used. 

Furthermore, the radiation condition (2.23) ensures that the trans-
verse wave introduced by the damping decays at infinity. 

The discretization of Section 2.1.1 was adopted and a complex equation similar 
to (2.39) was obtained. 

The effect of damping on the forced response of a square membrane will be shown 
in Section 2.2.3. 

2.2.3 Forced response of a membrane 

For boundary problems with body force, the full form of (2.7) must be considered. 
Because of the domain integral 

^6(y)G(x,y)(f^y, (2.44) 

its discretization is no longer restricted to the boundary dCl. The simplest way to 
deal with this integral is to subdivide the region Q into a series of internal cells 
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Qg, and a numerical integration performed on each of them. In this case, for each 
collocation point x \ the domain integral (2.44) can be written as: 

= Ky)G'(3c\y)(^'^y, (2-45) 

where K is the total number of cells describing the domain Q. However the 
subdivision of the domain into cells is cumbersome and time-consuming. Moreover, 
the integration over the whole domain has to performed as many times as the total 
number of nodes. This not only affects the efficiency of the method and but also 
causes the BEM to lose its main advantage which is the boundary-only formulation 
problem. 

Hence, several methods to transform the domain integral occurring in (2.7) into 
its equivalent boundary form have been proposed [5, 65, 63]. They can be classified 
into two categories: the particular solution method and the Galerkin vector method. 
The former was proposed by Azevado and Brebbia [5] and used in conjunction with 
the DBEM. It consisted in splitting the solution u of (2.1) into a particular solution 
and the solution of the associated homogeneous equation: 

u = u + u (2.46) 

where u is the solution of the homogeneous equation and 6 is a particular solution 
such that: 

^ 6 = 6, i n n (2J[7) 

Then, by integrating by parts, the domain integral is reduced to an integral 
computed only along the boundary dQ, which is similar to the direct boundary 
formulation. 

In the case where the particular solution was not known (and this occurs in 
the majority of cases), thus it was proposed to interpolate the body force b with 
some interpolation functions for which particular solutions were available and then 
proceed as before. This method was called the Dual Reciprocity method 

The latter method is related to the Galerkin technique and permits conversion of 
domain integrals to boundary integrals for a restricted selection of body force terms, 
i.e. those obeying the Laplace equation 

== 0 (2.413) 

The transformation to the boundary is accomplished through integration by parts 
and the use of higher fundamental solutions derived from a recurrent relation 
involving the Laplace equation [63]. The Multiple Reciprocity Method, developed 
by Nowak and Brebbia [63], generalises this concept. 



2.2 Application of the IBEM to a membrane 18 

Because the previous methods can be cumbersome to implement, a new technique 
has been investigated. This method is based on the particular solution method. 
However, instead of looking for a particular solution over the domain Q, this 
approach makes use of the particular solution for the whole space As a result, it 
is relatively easy to find this type of particular solution through the use of a spatial 
Fourier transform. The method is described in detail in the remainder of this section. 

General Theory 

In the case of the membrane vibration, the transverse displacement w is expressed 
as: 

tu == tD 4-tu (2.4U3) 

where w is the solution of the homogeneous Helmholtz equation (2.19) and is equal 
to (227^ 

'w{-x) = J^^G{x,y;k) dCy, (2.50) 

and tl) is the particular solution for an infinite membrane: 

V^w(x) + A;̂ u)(x) = —p(x), X G (2.51) 

Let JF be the spatial Fourier transform defined over such as: 

1 fOO fOO 
:F(w) = = — / / (fzicfzz (2.52) 

ZTT J— OO V —00 

and, 

^(p) = f (f/) = (2.53) 
ZTT J — OO J — OO 

Hence, (2.51) is written as: 

(z/̂  + 2/^)#(%/) - A:^#(i/) = P(z/) (2.54) 

Alternatively, (2.54) can be rearranged to give: 

The required particular solution of (2.51) is therefore: 

where is the inverse spatial Fourier transform. Substituting w in (2.19) and 
applying this result to all the collocation points produces the following system: 

[A{k)]fl = F (2.57) 
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where [A{k)] is the matrix defined in Section 2.1.1 and F is defined by: 

/ —w(x^) \ 

F (2.58) 

Hence, mu is uniquely determined and the transverse displacement of the membrane 
is easily computed. 

For the sake of simplicity, this technique will be applied to a point force and to 
a surface force but it can easily be generalised to describe several other types of force. 

Point force 

A point force is defined by 

Pz(x) = v4^(x — z) (2.59) 

where A is the amplitude of the reduced force. 
Since the particular solution for a point force is the fundamental solution of the 
Helmholtz equation, the following equation can also be derived from the results 
presented in Section 2.2 and written as: 

w(x) = ^ ;^(y)G(x, y)(fCy - ylG(z, x) (2.60) 

This result can easily be obtained by replacing 6(x) by Pz{x) in the integral over 
the domain O. 
Using this technique, it was possible to determine the point force response of an 
undamped and a damped square membrane shown in Figure 15. These results were 
obtained for n = 56 boundary elements, a step-size AA equal to 0.005 and 7 = 0.01. 
The point force was applied at the point (0.2,0.2) and the response was observed 
at the point (0.5,0.5). The amplitude of the reduced point force was equal to 1. 

In the case of an undamped membrane, the forced response should be infinite, 
which is not the case here. This suggests that the numerical method has introduced 
a numerical damping, a phenomenon that will be studied later. 

Surface force 

A time-harmonic surface force is a plane propagating wave acting on the entire 
membrane. Its reduce expression is: 

p ( x ) - v 4 e - ' " " ' (2.61) 

where A represents the amplitude of the exciting wave, which has the wavelength 

2^/\ /( '" i + ^2)- The tangent of the direction of propagation is given by the ratio 
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ui/u2 of the wavenumber. 

Hence, the spatial Fourier transform of this force is the well-known formula 

P{v)=^S{u-v) (2.62) 

Substituting the above relation in (2.56) gives an equation satisfied by the particular 
solution w, namely 

tD(]c) = ylJF--! ) (2^53) 

Hence, the following expression is obtained: 

= ^ul + ui~e 

Figure 16 shows the forced response of a square membrane to a plane wave force. 
The wavenumbers ai and are both taken equal to 20 and the amplitude A is 
equal to 1. The number of boundary elements and the step-size of the mesh were 
chosen to include at least 4 points on each half sine-wave. Using this technique, the 
first five modes of the pentagonal membrane, shown on Figure 17, were determined. 

2.2.4 Numerical damping 

The presence of numerical damping was quite obvious from some of the previous 
results. Further tests were conducted in order to investigate it. 

Using a modal expression of the transverse displacement, the relation between 
the magnitude of the modal participation factor Ai of a square membrane of unit 
edge length and the damping coefficient 7 was studied at the first eigenfrequency. 
The case of a uniform pressure load was considered and the reduced force p was 
taken to be unity. 

It can be shown (see Appendix C) that, in that case, 

Hence, 

(2.6(3) 

From Figure 18, it can be seen that the linearity is preserved by the numerical 
application, and it is found that the slope of the numerical curve is equal to 2.71, 
thus the relative error is equal to 1.09%. Hence, it can be concluded that the 
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numerical damping has almost no effect when some physical damping is added. 

In fact, it can be inferred from before that the paradoxical damping observed 
when plotting the force response of an undamped membrane is mainly due to the 
difficulty of exactly pinpointing the eigenfrequency. Indeed, if k = ki + e, the 
theoretical expression of the force response of an undamped membrane will become 
(Appendix C) : 

Hence, even small values of e will greatly decrease the value of the amplitude of the 
transverse displacement. 

2.3 Application of the IBEM to a plate 
In this section, the free vibration of an undamped plate will be studied. It was not 
the purpose of this work to carry out an exhaustive study of the application of the 
IBEM to a plate; an excellent monograph by [47] has already been published on this 
subject. However, this section will highlight the particularities of the application of 
the IBEM to a free vibrating plate. 

After showing the governing equations for the plate vibration, the fundamental 
solution along with the plate potentials will be given. The boundary integral for-
mulation will then be applied to the case of clamped plates. 

2.3.1 Governing equation of thin plates 

In what follows, the small deflection plate theory will be applied. This theory is 
based on the KirchoE and Love assumptions as stated by Szilard [72]: 

1. The material of the plate is elastic, homogeneous, and isotropic. 

2. The plate is initially flat. 

3. The thickness of the plate is small compared to its other dimensions. The 
smallest dimension of the plate is at least ten times larger than its thickness. 

4. The deflections are small compared to the plate thickness, i.e. the maximum 
deflection is less than one fiftieth of the small span length. 

5. The slopes of the deflected middle surface are small compared to unity. 

6. The deformations are such that straight lines, initially normal to the middle 
surface, remain straight lines normal to the middle surface. 

7. The deflection of the plate is produced by displacement of points of the middle 
surface normal to its initial plane. 
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8. The stresses normal to the middle surface are of negligible order of magnitude. 

Under these assumptions, the following governing equation of vibration is derived: 

where v is the lateral displacement, b is the load per unit area, p is the density per 
unit area, h is the thickness and D is the flexural rigidity of the plate and is equal 

« = E M -

where E denotes the Young's modulus and v is the the Poisson's ratio. 

In the steady-state domain, assuming the notations introduced in Section 2.2.1, 
(2.68) becomes: 

(x) —/c^w;(x) = p(x), Vx e 0 (2.70) 

where k satisfies: 

= (2.71) 

and, 

p(x) = ^ (2.72) 

In order to define the different boundary conditions, let n, s, and s be the unit 
outward normal vector to 50, the counterclockwise unit tangential vector and the 
arc length parameter along respectively. Unless stated otherwise, the boundary 
conditions are derived for straight segments, i.e. the radius of curvature of the 
boundary curve is infinite. 

The boundary conditions may be prescribed as deflection, slope, bending moment 
and equivalent shear force, thus [56] 

w (2.73) 

(2.74) 

= Aw - (1 - z/)̂ sW (2.75) 

= JnAw + (1 - z/)^, (2.76) 

where the moment and the equivalent shear and are so defined as multiplying 
the ones usually defined by —l/D. Using the notations introduced in Section 2.1.1, 
the homogeneous boundary conditions are expressed as the combination of these 
quantities as follows: 

B^(w)(x) = 0, (z = 1,2) Vx e an (2.77) 
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Here, Bi {i = 1,2) have the following meanings: combinations of (2.73) and (2.74), 
(2.73) and (2.75), (2.75) and (2.76) and (2.74) and (2.76) mean the clamped, 
simply supported, free and sliding-clamp boundary conditions, respectively. The 
last boundary condition is rarely seen but will be used later, and brief description 
of it can be obtained in [141. 

2.3.2 Integral equation for a clamped plate 

The fundamental solution of (2.70) is [82, 47, 62]: 

G(x,y;A:) = [jf^(%A:||x-y||) -^^(A: | | x -y | | ) ] . (2.78) 

with the notations previously introduced. 

It can be easily shown that this fundamental solution satisfies the Sommerfeld 
condition (2.23) which ensures its uniqueness. 

Noting that the boundary conditions enforce two conditions on dQ., the lateral 
displacement w can be represented as the sum of two layer potentials, of order zero 
and one [62]: 

w (x) = / G(x, y; A:)/io(y) (fC'y - / ^nyG(x, y; A:)//i(y) (fCy, Vx E O (2.79) 
J J dVt 

As stated previously, the potentials may become discontinuous on the boundary 
dVL. However, in the case of a clamped plate, no jump conditions are introduced [81] 
and the integrals are convergent. Hence, the following system is derived from (2.8): 

lim / G(x, y; A;)^o(y) c(Cy - / G(x, y; A:)/^i(y) dCy = 0 

v x e a n 

/ G(x, y; A;)m(y) - / 9nyG(x, y; A:)//i(y) cfCy 
J on J dvi i s ® " -

(2.80) 

2.3.3 Numerical Procedures 

Using the collocation method introduced in Section 2.1.1, the following linear system 
is obtained for a clamped plate: 

;=1 
(z = l , . . . , n ) (2.81) 

i i (A:)X = 0 
;=1 
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with 

yioi == lini / (?()[, y; &) d(7y, (2.82) 
•' x->-x' JTi 

4 ' = lim / G(x ,y ;A: ) ( -^)c (Cy , (2.83) 
X->'X' JVj Ully 

= lim / G'(x,y;A:)(-^)(fCx, (2.84) 
•' x-fx' JTj OHx 

G'"(x, y; k) - -G ' (x , y; + -G"(x,y; A:)(ny • n . 

(2.85) 

where C = ||x —y|| In these expressions, the prime indicates the differentiation with 
respect to the argument; dr/driy^ and dr/dxiy mean the differentiation with respect 
to the outward normal direction on the points x and y respectively of ||x — y||. 
The expressions of the derivatives of G can be found in the book by Kitahara [47]. 

In the case in which i and j elements do not coincide with each other, the 
approximation of Section 2.2.1 is used. For the case i = j, the Bessel functions 
included in the fundamental solution G are approximated at a point y by the series 
expansion up to the appropriate power of ||x - y||, these series are then integrated 
term on the segment Fj under consideration and differentiated at an interior point 
of X G Tj up to the required order, and, finally, the limit x -4 xMs taken. The 
resulting formulae can be found in [47, 81]. 

2.3.4 Numerical results 

The present method was applied to a clamped square plate and a clamped skew plate 
with a skew angle = 45°. Table 5 and Table 4 show the different eigenfrequencies 
A = ka, with a being equal to the edge length as shown in Figure 9, along with the 
results obtained by Bardell [6] who used the Hierarchical Finite Element Method. 
Figure 19 shows the general trend of the logarithm of the absolute value of the 
determinant for the square clamped plate. 
A brief inspection of the absolute relative errors in Table 5 and Table 4 shows that, 
although the relative errors are well within 1%, the accuracy of the results begins 
to deteriorate for higher eigenfrequencies. 

2.4 Conclusion 
In this chapter, the Indirect Boundary Element Method has been presented. This 
method was then applied to the vibration analysis of different types of membranes 
and of clamped plates. Furthermore, a new and simple method for determining 
the forced response of such structures was introduced. Through this method, the 
modes and the forced response of a damped and undamped membrane of arbitrary 
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shape wag determined. This method can easily be extended to the case of a plate 
as it will be shown in Chapter 4. 

However, the purpose of this chapter was not only to introduce some techniques 
which will be used later in this work, but also to specify some of the drawbacks of 
the Indirect Boundary Element Method. 

The construction and the use of a fundamental solution can become very tedious. 
Indeed, even for the simple case of the clamped plate, the treatment of the singularity 
required some lengthy calculations. Moreover, it has been remarked in the work of 
Kitahara [47] that the IBEM is not efficient for mixed boundary conditions. 



3. The EIBEM and other related TrefFtz methods 26 

3. The EIBEM and other related Trefftz methods 

In this chapter a derived version of the IBEM, called the Exterior Indirect Boundary 
Element Method or EIBEM, will be presented. This method was pioneered by 
Kupradze [48], and was shown to be part of the family of Trefftz methods [32]. 
Hence, the Trefftz method will also be introduced. 

However, far from being a detailed presentation of the EIBEM and of the Trefftz 
methodology, the objective of this chapter is to highlight some particularities of 
these methods by some simple examples. Hence, the EIBEM will be applied to the 
vibrations of simple membranes. 

3.1 The Exterior Indirect Boundary Element 
Method (EIBEM) 

3.1.1 Principle 

As has been seen in Chapter 2, one of the major drawback of the IBEM, and 
the boundary element methods in general, is the use of singular fundamental solu-
tions. Indeed, since the fundamental solutions are dependent upon the inverse of 
the distance between Geld and source points, the integrals become singular when 
the location of the field and source points coincide. In the EIBEM, such problems 
are eliminated by moving the source points to a position outside the field boundary. 
In this work, this method is studied by applying it to the vibration of clamped mem-
branes. In Section 2.2, the transverse displacement w of a membrane was expressed 
by the following integral equation: 

w(x) = At(y)G(x, y; /=) (3.1) 

where G is the fundamental solution, x is the load point, y are the source points 
and /2(y) is the source density of point y. 
In the EIBBM, the source points y are moved to an imaginary source boundary 8 
enclosing the physical boundary of the problem as shown on Figure 2. 
Hence, (3.1) is rewritten as 

w(x) = f /i(y)G'(x, y; k) dCy, Vx G Q = U dCl, (3.2) 
J 0 

Obviously, the integral in (3.2) is no longer singular. 
By applying the boundary condition for a clamped membrane, the source density fi 
can be determined by: 

I Xy)G(X,y;A;)(fCy = 0, (3.3) 
@ 
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3.1.2 Numerical analysis 

The equation (3.3) is treated numerically in a way similar to the one presented 
in Section 2.1.1. Hence, the boundary which holds the source points, here 0 , is 
discretized in M elements and an equation similar to 2.10 is obtained. To solve 
this equation, the collocation scheme is applied at n nodal points x-' chosen on dVL. 
Hence, an equation similar to (2.28) is deduced 

= 0, = 1 , . . . , n) (3.4) 
3 = 1 

with 
A ( ^ ) = / G(x\y;A;)dCy (3.5) 

J&j 
Furthermore, the 8 ; will be taken as straight segments and v4̂ j(&) will be approxi-

mated by the mid-ordinate rule of integration, hence 

A:/A;);;.Z,,G(x\y;;A;) (3.6) 

with Yj the mid-point of segment 6 j and Lj is the length of the element Fj. 
Thus, (3.4) can be expressed in matrix form as: 

[A'(A;)]/Z=0 (3.7) 

where 

/ \ 
At (3.8) 

V l̂ n / 

Therefore, it can be seen that the EIBEM greatly simplifies the numerical calcu-
lation by avoiding singularities in the fundamental solution. However, two new 
parameters are introduced: the shape of the exterior boundary 6 and its distance 
from the physical boundary. As it was remarked by [89] and as it will be seen in the 
next section, these free parameters inAuence the convergence of the solutions and 
determine the effectiveness of the method. 

3.1.3 Application to a membrane 

When using the EIBEM, it has been common [24, 89, 36, 67] to assess the effects 
of the shape of the exterior boundary and its distance from the real one upon 
the accuracy of the solution. These effects can be classified into two categories 
depending on the values computed. The first category concerns the effects of 
these parameters upon the determination of the eigenfrequencies. The second 
category includes their eEects upon the forced response of the membrane, thus the 
determination of the mode shapes. 
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The Condition number and its influence upon the force response 

In the present case, the forced response is determine by the technique presented in 
Section 2.2.3. Hence, a linear system similar to one previously seen can be deduced: 

= F (3.9) 

where [A'{k)] is the matrix defined in previously and F is the defined by: 

/ —w(x^) \ 

F (3.10) 
\ -u)(x") / 

where w is a particular solution of the problem. 

To measure the sensitivity of such system which respect to changes in the matrix 
[A'{k)] and the right-hand side F, it is usual to use a criterion based on the condition 
namber [86]. It must be noted that the use of such a 
criterion is frequently encountered in works on the EIBEM [24, 89, 36, 67]. 
Usually, the condition number of the matrix [B]nxn is defined by [86]: 

c([B]) = !|[Bllb||[i3r'|b (3.11) 

with 11 - II2 is the 2-norm defined in Appendix B. If c([B]) is large, then [B] is said to 
be ill-conditioned, i.e. the linear system is very sensitive to small changes. Although 
c(-) depends on the underlying norm, if [B] is ill-conditioned in an a-norm, then 
[B] will also be ill-conditioned in a /?-norm because all the norms are equivalent on 
M". Hence, the norm || • ||i will be chosen, because of its availability in the NAG 
subroutines [64]. A more detailed description of the condition number can be found 
in books by Wilkinson [86], Golub [26] or Stewart [71]. 

Study on the accuracy of the eigenfrequencies 

It would be interesting to use also the condition number to evaluate the effect of 
the parameters upon the accuracy of the eigenfrequencies. 

It has been said in Section 2.2.1, that the eigenfrequencies of the problem are the 
local minima of the following function of k 

I det[A'(A:)]| (3.12) 

Unfortunately, as remarked by Golub [26], there is little correlation between 
det([B]) and the condition number c{[B]), thus, the condition number does not 
give any indication of the sensitivity of the determinant. Furthermore, even if 
the matrix [A{k)] is ill-conditioned, i.e. nearly singular, and its determinant is 
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very small, e.g. the order of it might still be possible to identify accu-
rately the local minima. This is indeed the case, as will be shown in the next section. 

Therefore, it is thought that one of the criteria which can be used when studying 
the accuracy of the eigenfrequencies is the "smoothness" of the curve |det[^'(A;)]|. 
Indeed, if the value of the determinant reaches the machine precision, the curve will 
present some oscillations which will render the determination of the eigenfrequencies 
impossible. 

Another criterion applicable here is the absolute relative error of the eigenfrequen-
cies. However, this assumes that the accurate values for the problem are known, 
which is rarely the case. Hence, this criterion will seldom be used. 

Applications 

As it will be seen later, by varying the two parameters, i.e. the shape of the exterior 
boundary and its distance from the physical one, it is possible to increase the 
condition number of the matrix. Hence, in order to show the effect of the condition 
number of the matrix the forced response at an arbitrary point of a clamped 
square membrane to a plane wave travelling in the direction ( -10.0 , -10.0) was 
determined for two di&rent values of c([A'(A)]). Figure 20 (a) and on Figure 20 
(b) show the real part of the forced response of such a membrane. In the case of 
Figure 20 (a), the condition number is the order of 10\ Figure 20 (b) was obtained 
for a condition number c([A'(A;)]) % 10 .̂ A simple look at Figure 20 (b) shows that 
this latter response is incorrect on account of the high condition number. However, 
by plotting the determinant of the same ill-conditioned matrix, it was found that the 
Arst two eigenfrequencies were not only easy to distinguish but also accurate as it 
may be seen on Figure 21, thus conBrming what has been said in the previous section. 

The two parameters which are thought to affect the condition number were 
then studied. First, the relation between the condition number and the distance 
between the two boundaries, 6, was examined, with regard to a square membrane 
and an homothetic exterior boundary 0 as shown on Figure 3. Figure 22 shows 
the results of the analysis for 6 in the range [0.001,1.000] and for two different 
values of the eigenfrequency A. From this figure, it is possible to conclude that 
having the sources too far away from the boundary 9̂ 1 will destroy the linear 
independence in the matrix and increase its condition number. It may also 
be remarked that for a given 6, the condition number is lower for a higher value of A. 

The influence of the distance 6 upon the accuracy of the eigenfrequencies was 
then investigated. Using again an homothetic exterior boundary, the hrst and 
the sixth eigenfrequencies A of a circular membrane were determined for diEerent 
values of S and compared with the theoretical values found in Zhou [14]. The 
absolute relative error is shown on Figure 23. It can be seen from this Bgure that 
when the imaginary boundary is too close to real boundary, the singular nature 
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of the fundamental solution necessitates special treatment of integration in the 
neighbourhood of the source points so as to ensure the accuracy of the results. 
Since the EIBEM was used to avoid such case, it is necessary to locate the exterior 
boundary further away from the real boundary. 

Hence, from the previous examples, it may be concluded that if the exterior 
boundary is too far away from the real boundary, the forced response of the 
membrane will be misleading, and if it is too close to the real boundary, the 
eigenfrequencies will be inaccurate. Therefore, a region must be sought between 
the two extremes which yields a stable solution. For example, in the case of the 
square plate, such a region is obtained for S 6 [0.09,0.18]. 

The influence of the shape of the boundary upon the condition number was 
then examined. It was chosen to evaluate the condition number of the matrix 
for a square membrane and for an exterior boundary of circular shape as shown 
on Figure 4 (a) and (b). Two methods to locate the collocation points x-' on the 
real boundary were investigated: Method (a) (see Figure 4 (a)), an homothetic 
collocation of the load points on Method (b) (see Figure 4 (b)), an equidistant 
collocation of the load points on dQ. 

The condition number was then plotted for different values of the radius R of a 
circular exterior boundary and for A = 4.0. The results are shown on Figure 24. 
When comparing Figure 24 and Figure 22, it is obvious that the shape of the 
exterior boundary influences the condition number. Furthermore, from Figure 24 
it may be inferred that the way of fitting the collocation points (equidistant or 
homothetic collocation) also influences the condition number. Such phenomenon 
hag already been noticed by Zielinski [90] for Laplace's equation = 0. In 
Table 6, the absolute relative errors of the first seven frequencies of this square 
plate is determined for the two different shapes of exterior boundary 6 along with 
the results obtained by using an homothetic exterior boundary 9 . The results are 
compared with the theoretical values and the absolute relative error is indicated in 
parenthesis next to each value. As can be seen, using the circular exterior boundary 
together with the homothetic collocation gives the best results. Note that this type 
of collocation was seen to have the highest condition number, thus confirming that 
the matrix may be ill-conditioned but still yields accurate results. 

3.2 The TrefFtz methodology 
In section 3.1.2, by applying a discretization of the boundary along with the mid-
ordinate rule of integration, the following equation was obtained 

w(x) = Y2(^(x,y'';A)/^j, VxeO, y- 'eQ (3.13) 
i=i 
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This equation was then applied to the collocation points x ' on the boundary dQ to 
determine the values of the source density. 
The representation of w in the EIBEM (3.13), is very similar to the one obtained 
by another method known as the Trefftz method. 

In this section, the indirect formulation of this method will be presented. The 
aim of this presentation is to highlight the close links between the existing indirect 
boundary methods such as the IBEM, and more precisely the EIBEM, and the new 
method which has been developed in this work and which will presented in the next 
chapter. 

3.2.1 Principle 

In the indirect formulation Trefftz method, the solution of the problem is approxi-
mated by the superposition of the functions satisfying the governing equation in the 
domain 0 (including its boundary ^0), and the unknown parameters are determined 
so that the approximate solution satis&es the boundary conditions by means of the 
collocation or other weighted residual methods. Hence, in the case of the membrane, 
the transverse displacement at an arbitrary point x will be written as: 

w(x) — diW* + O2W2 + . . . + OnW* (3.14) 

where the Wj satisfies exactly the Helmholtz equation in the domain O and the a j 
are the unknown parameters. 
Hence, if the functions w* are taken equal to the fundamental solutions appearing 
in the discretized formulation of the EIBEM of (3.13) 

Wj = G(x,y:';A;), € 8 (3.15) 

and if the unknown parameters dj are considered to be the unknown source densities 
Hj, it is obvious that the discretized EIBEM represents an indirect Trefftz formula-
tion. Indeed, the n fundamental solutions G{-x,y^;k) satisfy exactly the Helmholtz 
equation in Q since the source points are placed on the imaginary boundary © 
surrounding Q. Because of the similarities between these two formulation, the 
EIBEM was given the name of modified Trefftz method by Patterson et al. [66]. 

When using a system of solutions to treat differential equations, a major require-
ment is that the system be complete. The most direct criterion of completeness for 
such systems is completeness with respect to the metric of the space in which the 
differential operator is defined. For application to boundary value problems, this 
must be related to the metric of suitable spaces of boundary values. A criterion 
of completeness possessing these properties was proposed by Herrera [32] and waa 
called c-completeness or T-comp/efeMegg. The system of functions which satisfy the 
T-completeness are called T-functions. The same author has also shown that under 
general conditions a system which is T-complete for a region has this property for 
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any region which contains the first one. However, it is outside the scope of this 
work to present the T-completeness criterion and its algebraic formulation, and 
reference should be made to the book by Herrera [32]. It must be noted that the 
highly abstract mathematical formulation of this criterion renders it difficult to use. 

3.2.2 Application of the TrefFtz method to the membrane 

As has been seen earlier, the system of fundamental solutions used in the discrete 
EIBEM can be used as a system of solutions in the Trefftz methodology. The proof 
of its completeness was given by Kupradze [48]. Herrera [32] presented another 
version of the proof by using the T-completeness. It is worth noting that a set of 
T-functions for a particular problem are not necessarily unique. Hence, in the case 
of the reduced Helmholtz equation + w = 0), another set of T-functions was 
derived by Herrera [33], who applied the separation of variables in a unit circle and 
obtained the following T-complete system 

I J ,+i(r)s in;g 

Such system can easily be extended to the standard Helmholtz equation [15]. 

3.2.3 Application to a plate 

In the case of a vibrating plate and its related boundary value problem, no work can 
be found on T-complete systems. However, by using the separation of variables in 
the unit circle, which is considered to be a powerful procedure for obtaining systems 
of functions which are T-complete in arbitrary regions by Herrera [32], it is possible 
to obtain the following classical system of functions which satisfy the equations of 
motion of a plate in polar co-ordinates: 

Jj{kr) cos j6 

/;+i(A:r)sin(j -t- l)g 

These functions will be called Heuristic T-functions. The terminology was first used 
by Zielinski [89] to characterise the functions which fulfill the governing differential 
equations, but the T-completeness of which is not proved. 

3.3 Conclusion 
In this chapter, the Trefftz method, along with one of its application, the EIBEM or 
modified Trefftz method, has been presented. Some applications of the EIBEM to 
the vibration of membranes were presented, and it was found that this method was 
simpler to implement and more efficient than the IBEM (a comparison of the CPU 
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execution time is given in Chapter 4). However, it was remarked that the additional 
parameters introduced, such as the distance between the two boundaries, the shape 
of the imaginary boundary, and the location of the load points, could influence 
the accuracy of the solutions. Therefore, as it was remarked by Zielihski [89], the 
EIBEM cannot be applied directly without earlier numerical tests, and that such 
optimisation can result in final higher computational costs than the IBEM. The 
link between the Trefftz method and the EIBEM was then described, and a brief 
presentation of the general indirect Trefftz method was given. 

Two sets of functions which satisfied the Helmholtz equation and the dynamic 
equation of the plate were given. In the case of the Helmholtz equation, the system 
of functions was said to be T-complete, i.e. to represent completely the transverse 
displacement in a vibrating membrane regardless of its shape. However, in the case 
of the plate, the system was not found to possess such a property, and the functions 
were considered to be heuristic T-function. 
As mentioned earlier, such systems are not unique, and the in next chapter, two 
new simpler systems of such functions will be derived. 
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4. The Plane Wave Basis Method (PWBM) 

4.1 Principle 
In this section, a method to represent the general solutions of the membrane 
equation and of the plate equation as a linear combination of plane waves which 
have the same wave number and travel in different directions will be presented. 
Since this technique, called the Plane Wave Basis Method or PWBM, can either be 
viewed as a version of the classical TreEtz method or as an extension of the EIBEM, 
the two ways to formulate it will be presented for the membrane equation. The 
case of the plate equation will then be straightforward to derive from the results 
for the Helmholtz equation. 
In all the following, the domain H occupied by the membrane or the plate will 
be considered as a bounded and simply connected region. Therefore, ring-shaped 
domains and deeply concave domains will be excluded. 

4.1.1 Plane waves basis for a membrane 

It was shown in Section 3.2.2 that the transverse displacement w of a membrane at 
X can be expressed by the system of T-complete functions: 

f - ^ N c o s j g M i l 
^ Jj+i(A;r)8injg 

where r, 0 are the polar co-ordinates of x and A: is wave number introduced in 
Chapter 2. 
Using this property, the following proposition can be stated [32]: 

Let {ei, 62, . . . } be a system of unit vectors in which is dense in 
the unit circle. Then the system 

5m = . . . } (4.2) 

of plane waves which propagate in the directions 61,62,..., is T-complete 
for the Helmholtz equation. 

A complete proof of this statement can be found in the work by Herrera [32, 33]. 
By writing 

( sin& ) = " 

where the sequence of angles { 6 , 6 , - - } is dense in the interval [-7r, 7r[, the following 
system of functions can be derived 

, '^6, ' } with (x) = 



4.1 Principle ^ 

This system is equivalent to the system Hence, the general expression of the 
solution w of the Helmholtz equation can be written [78]: 

w(x) = r (4.3) 
J — TT 

Or, in the Cartesian co-ordinates system, 

w(x) = r (4.4) 
J —TT 

where D(^) is the amplitude of the plane wave travelling in the ^-direction. 

The plane waves can also be regarded as an approximation of the circular wave 
emitted from a very far point source. Indeed, from the BIBBM formulation (see 
Section 3.1), w can be expressed as: 

w(x) = ^ //(y)G(x, y; A:) dCy (4.5) 

where // is the source density and 8 is the exterior boundary. Since, the exterior 
boundary can have any shape [89], let 8 be a circle of radius R. Furthermore, when 
R tends to infinity, the asymptotical form of the Hankel function of first order is 
found to be: 

W (4.6) 

where (" = ||x — y|| 

Hence, if x = {r,9) and y = (A, ^), (4.5) can be rewritten as: 

2 W[X I //(A, 0 ) e+^(tA-;r/4) I g-ikrco8((-e) y) 

where 
(̂  = — rcos(^ — 0) + 0 ( 1 / ^ ) , when J? r 

and it is now obvious that (4.7) is equivalent to (4.3). 

4.1.2 Plane wave basis for a plate 

As remarked by Manolis and Beskos [52], the question of T-completeness is still not 
settled. However, by using the following heuristic T-functions, seen in Section 3.2.3: 

Jj(A;r)cosj^ 
^ + i ( M s i n ( j + l)^ 
Ij{kr) cosjd 
7;+i(A;r)sin(; + l)g 
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a new T-heuristic system of propagating and evanescent plane waves can be obtained 
(see Appendix D for its derivation): 

), (^(2, ^6), " with (x) = 
and 

where the sequence of angles { 6 , 6 , -. } is dense in the interval [-vr, 7r[, and % 
represent the propagating and the evenascent waves respectively travelling in the 
direction 6-
As before, the transverse displacement w can be written as: 

w (x) = r (^ + r (4.9) 
J—TT J—TT 

where and D^(() are the amplitudes of the propagating wave and evanescent 
wave travelling in the ^direction respectively. 
In Cartesian co-ordinates, (4.9) becomes 

J — 7T J — TT 
w X 

4.1.3 Numerical analysis 

Cartesian co-ordinates will be used in what follows. 
Since the PWBM is closely related to the Tregtz method, the integral equations 
(4.4) and (4.10) may be approximated in the same way [46], i.e., for the membrane, 
w may be written as: 

w(x) % with e 5 ^ (4.11) 
i=i 

For the plate, a similar expression may be obtained: 

^ W - 4- ^ with e (4.12) 
i=i i=i 

(4.11) and (4.12) represent a discrete superposition of the plane wave travelling in 
the M different directions The set of angles should contain the pair 
of waves that travel in opposite directions because no energy Eow in any direction 
exists in any eigenvalue problems. Thus, as it was remarked by Urata [78], M must 
be even. 
By enforcing the homogeneous boundary conditions, introduced in Chapter 2, the 
following expression is obtained for the membrane: 

B(W(x) = EDjB( i / ( , ) (x ) = o, v x e a r i (4.13) 
i=i 
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with B{w) = w for the case of the clamped membrane. 
And, for the plate, 

= y : W + E = 0, 
j=l J=1 

B2(^/;)(x) = E 4 ^ 2 K , ) ( x ) + E 4 ^ 2 ( % ) ( x ) = 0 

> y x e d Q (4.14) 

where Bi and Bg are the two boundary quantities used to enforce the desired 
boundary condition (see Chapter 2 for their deSnition). 

The unknown parameters Dj or D j and D j are determined by the means of the 
collocation method presented in Section 2.1.1. However, when using the plane wave 
functions, there are several ways to chose the collocation points at which 
the equations (4.13) or (4.14) are enforced. 
In this work, two types of collocation scheme have been investigated: 
Method (a): and x ' are defined by (see Figure 5 (a)): 

27r(; - 1) 1 

( x \ X i ) = & j 

It may be remarked that this method is an extension of the homothetic collocation 
seen in Section 3.1.3. 
Method (b): and x ' are defined by (see Figure 5 (b)): 

( 1 Q — 

n 

' ( ^J = 1, " ,f^) 

where L is the length of dVt. 
Note that this method is basically equivalent to the equidistant collocation scheme 
seen in Section 3.1.3. 

Using the matrix expression, the following linear system is obtained: 

[A(A:)]D = 0 (4.15) 

where, for the membrane, 

[A(A:)] = [ B(M(J(x') 

and, 
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Whereas, for the plate, 

2nx2n 

and, 

D 

jDf 1 

Dl 

Dl 

D2 
2n 

The eigenfrequencies k of the structure are solution of the following complex equa-
tion: 

det {[A{k)]) = 0, 

which is solved by using the method presented in Chapter 2. 

4.2 Application to a membrane 
4.2.1 Numerical results 

In this section, the method is applied to the vibration of various membranes. The 
determination of the matrix [A{k)] is straightforward and the implementation of 
this method is simple. 

The accuracy of the eigenfrequencies of a membrane is confirmed by a simple 
example problem such as a clamped circular membrane. Indeed, as it is shown 
in Table 7, the results are very accurate. However, this is due to the fact that 
the plane wave functions have approximated exactly the solutions of that simple 
benchmark, which are known to be the positive roots of Jn{k) = 0. 

Figure 25 shows the general trend of the absolute values of the inverse of the 
determinant for a square clamped membrane for different values of n and for 
AA = 0.001. The dotted lines indicate the theoretical values of the eigenfrequencies. 
From this figure, it is understood that n = 20 is sufficient to obtain appropriate 
eigenfrequencies. It may seem obvious that the greater the number of plane waves, 
the more higher-order eigenfrequencies can be obtained - however, this is not the 
case on account of the increasingly singular character of the matrix [A(A:)], ag it 
will be seen in Section 4.4.2. 

The relative error induced by this method was compared with the one induced 
by the IBEM. The reference values used to compute it were found in [20] and [45]. 
Figure 26, Figure 27 and Figure 28 show the results for three different types of 
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membrane. The PWBM is not only more accurate than the IBEM, but it also 
needs less collocation points to reach this accuracy. 

The CPU execution time of the IBEM, the EIBEM and of this method were 
compared for these three examples, and the results are displayed in Table 8. The 
latter was found to be ten times quicker than the IBEM and five times quicker 
than the EIBEM. Such differences are mainly due to the complex calculation of the 
fundamental solution used in the IBEM and in the EIBEM, 

4.3 Application to a plate 
In this section, the PWBM is applied to the vibration of plates with various 
boundary conditions, and some judicious examples will highlight the versatility of 
the method. The matrix [A(A:)] is relatively simple and the expressions of these 
different boundary conditions for the propagating and evanescent waves are given in 
Appendix E. Furthermore, all the following results were obtained with the second 
collocation method because of the higher accuracy obtained. 

Due to the different literature source references used, all the results presented in 
this section are expressed through the use of nondimensional eigenvalue or eigen-
frequency A. For each case, the results from the reference are converted to the 
corresponding eigenfrequencies by using the relation 

A' = ^ (4.16) 

where a is a reference length of the plate. 
Almost always the number of significant figures was kept the same as it was in 
the original publication. In no case were significant figures added. In some few 
cases the number of significant figures was reduced because the accuracy of the 
calculations presented in this work did not justify the numbers given. 

Unless stated otherwise, the Poisson's ratio v will be equal to 0.3. 

4.3.1 Case of clamped plates 

In order to compare this technique with the IBEM, the sample case of a clamped 
square plate of edge length a was studied. The first five eigenvalues A obtained 
by using both methods are shown in Table 9. The accuracy of these results was 
established by comparison with the work of Bardell [6] who used the hierarchical 
finite element method. The corresponding relative error is quoted in parentheses 
next to the current results; three-figure agreement is obtained for all the modes 
when using the PWBM, while the relative error committed using the IBEM 
averages 0.46%. Furthermore, the CPU execution time was found to be equal to 
1110 s with the PWBM and to 5103 s with the IBEM. 
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This method was then applied to a fully clamped symmetrical trapezoidal plate 
shown on Figure 12. The aspect ratios b/a and c/a are equal to 0.8 and 0.75 respec-
tively. The eigenvalues A for the this plate are classified into mode shapes, being 
correspondingly indicated by in which a and give the number of anti-nodes 
in the horizontal and vertical directions respectively. In addition, the numerical 
values were compared with the experimental ones obtained by Maruyama et al. [53] 
as shown in Table 10. In their investigation, the authors of this reference used the 
real time technique of time averaged holographic interferometry to determine the 
natural frequencies and the corresponding mode shapes for the transverse vibrations 
of clamped trapezoidal plates. A simple look at Table 10 shows a good agreement 
between the numerical results and the experimental results of the reference [53]. In-
deed, the absolute relative error is at most 1.61% and that the average error is 0.70%. 

Using the force response technique presented in Chapter 2 and the contour plot 
capabilities of the software MATLAB [54], the first eight mode shapes of this 
trapezoidal plate were obtained. As Figure 29 shows, they agree well with the 
experimental in [53]. 

4.3.2 Case of simply supported plates 

Two different fully simply supported plates have been examined. The first 
plate is a skew plate of skew angle •0 = 30° shown on Figure 9. The first five 
eigenvalues A of it are shown in Table 11. Once again, excellent agreement 
is observed with the work of Bardell [6]. Several other skew angle were tested 
and it was found that the eigenvalues were reliable enough for skew angles up to 75°. 

The second type of plates tested was a simply supported elliptical plate of aspect 
ratio a/b = 2.0 shown on Figure 13. The eigenfrequencies A for this plate are given 
in Table 12, together with the results obtained by Lam et al. [49], who used a new 
set of orthogonal plate functions as the admissible functions in the Rayleigh-Ritz ap-
proach. As the relative error shows, the agreement between the results is quite good. 

By determining the eigenvector for each eigenfrequency, it was possible to plot 
the mode shapes for this elliptical plate; these are presented in Figure 30. They 
were compared with the ones presented in [49], and although they presented the 
same pattern, it was found that the location of the nodes and anti-nodes differed. 
However, a closer inspection of the modes shown in the reference [49] reveals that 
they violate the boundary conditions, and hence it is thought that the present modes 
are more accurate. 

4.3.3 Case of free and sliding-clamped plates 

When applying the PWBM to a free plate in combination with any of the collocation 
methods presented earlier, poor results were achieved. Indeed, even for the case of 
a square and circular plate, none of the results showed any reasonable agreement 



4.3 Application to a plate 41 

with other work. 

The reasons for this apparent anomaly were not obvious, and initially suspicion 
fell on the implementation of the free boundary condition. To verify this, a square 
plate with sliding-clamped edge conditions was investigated. As has been seen in 
Chapter 2, the sliding clamped condition is obtained by prescribing the slope and 
the equivalent shear force: 

{y:H = o 
In the cage of a square plate of edge length a, when equations (4.17) are used it is 
seen that: 

WA/3 = COS — ^ COS L^.LKJ 

satisfies the boundajry conditions, where is an amplitude coefBcient determined 
from the initial conditions of the problem and a and b are respectively the width 
and the length of the plate. Substituting (4.18) into (2.70) gives the frequency 

\ ph 
(4.19) 

where a and [3 are integers which can take all values from 0 to oo. 
Using this expression, the accuracy of the numerical results was assessed. The 
relative error, together with the values of the eigenfrequencies are shown in Table 13, 
and, from the high degree of exactness of the computed values, it can be inferred 
that the expression of the equivalent shear force is adapted. The good agreement 
observed when studying simply supported plates ensures the correctness of the 
expression of the bending moment M„. Thus, the free boundary condition may be 
considered to be accurate. 

However, since the expressions for the free boundary are usually given for a smooth 
boundary [14, 74], the effect of a discontinuous boundary such as a corner point was 
studied. As it is shown in Appendix G, the boundary conditions for corner points 
differ from the usual ones. For example, in the case of a square plate, they can be 
represented in the following form [51]: 

Mn(w) = 0, 
_ (4.20) 

dxdy 

It was found that implementing this new set of equations gave more sensible re-
sults shown in Table 14 along with the values from the work of Gorman [27], who 
obtained the eioct for a free square plate by using the method of su-
perposition. However, the relative errors in Table 14 show that the accuracy is still 
poor. This type of corner condition was also implemented for skew plates by using 
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the formulation given in Appendix G 

f ^n{w) = 0 / . 211 
I - A%;(w )=0 I - J 

where M+ and represent the right-hand and the left-hand limit of the twisting 
moment at the corner point. This limit is determined by calculating the twisting 
moment at two points in the neighbourhood of the corner. However, no sensible 
results were obtained for this type of plates. 

Therefore, to further investigate the inSuence of the corner points, the case of a 
free circular plate was studied. As said earlier, there was no agreement between the 
computed frequencies and the ones available in literature. It is believed that this 
deterioration in agreement is attributable to the fact that the boundary conditions 
used approximate the circular plate by a polygonal plate. Indeed, they have been 
derived for straight boundary, i.e., they did not take into account the curvature of 
the boundary. Hence, a new set of boundary conditions which took account of the 
curvature of the circle was used. To implement it, polar coordinates are used and 
the transverse displacement w becomes 

w(r, 22) 
i=i i=i 

The free boundary condition is now obtained by prescribing the radial bending 
moment Mr and the radial equivalent shear force [51] 

/ Mr{w) — 0, / . 
I %.(w) = 0 ^ ^ ^ 

where Mr and are given by 

V,(m) = |-V^m + 
G or 

where Mre is the twisting moment defined by 

(4.24) 

Mr. = (1 - f ) | : (4-25) 

with a the radius of the circle. 

The collocation method is used but, instead of enforcing the boundary conditions 
at the n points x' of a M-polygonal plate aa it waa done before (see Figure 6 (a)), 
they are now enforced at n points x' of the circular plate (see Figure 6 (b)). 
Using this type boundary conditions in this manner improved greatly the accuracy 
of the eigenfrequencies. The results for a circular plate with a Poisson's ratio 
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z; = 0.33 are given in Table 15. The eigenfrequencies A, taken from Leissa [51] are 
also given, and close agreement can be observed. 

The response of a free circular plate to a pressure load was then determined. 
Therefore, it was possible to plot the first seven modes of this plate and the results 
are shown on Figure 31. The validity of these results is established by comparison 
with the experimental work of Waller [83]. For every mode shape reported here, 
excellent agreement with Waller's pictures is observed. 

Hence, from these two examples, it may be concluded that when applying 
the PWBM to the case of free plates, care must be taken with the method of 
discretization used. Indeed, in the case of the square plate, it has been shown 
that the method of approximation had to include comer points; in the caae of the 
circular plate, it was found that a polygonal approximation was not appropriate 
for this kind of shape. Such problem might be due to the fact that the given set of 
heuristic T-functions may not be T-complete for a boundary value problem which 
includes free corners. 

To overcome the problem of discretization, two other numerical methods were 
investigated. The hrst one is the weighted residual method and the second one is 
the Galerkin method. These two techniques are presented in Appendix F together 
with the different trial functions employed. However, the added complexity 
they introduce makes their implementation less easy. Furthermore, no major 
improvement was noticed for any type of boundary conditions. Therefore, the 
technique of collocation is thought to be the best compromise between simplicity of 
implementation and accuracy. 

4.3.4 Case of plates with mixed boundary conditions 

In this section, the PWBM is applied to the vibration of plates which may have 
any combination of the previous boundary conditions (free, simply supported or 
clamped). 

The first example is a point supported square plate. This type of mixed boundary 
condition is realised by having all the edges free and all the corners simply sup-
ported. The point supports at each corner are easily incorporated in the analysis, 
and the first four eigenfrequencies A for a square plate, are presented in Table 16. 
The relative errors, determined by comparison with the work of Bardell [6], are well 
within 2%. 

Three other types of mixed boundary conditions are also presented. They involve 
the triangular plates with the different planforms shown in Figure 14. Letter F, 
C or SS located along an edge indicates free, clamped or simple support. For 
convenience, the plates will be referred to by means of a three-letter group, following 
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established convention [29]. The first letter indicates the type of support along the 
left edge as shown in the figure. The remaining letters indicate the types of support 
encountered in moving counterclockwise around the plate. The triangular aspect 
ratio is determined by 6/a where a and b are the length of the base and the height 
of the triangle respectively. 

The first case considered is a SS-C-SS right triangular plate of aspect ratio 
a/b = 1.0 (see Figure 14 (a)). Computed eigenvalues are tabulated in Table 17. 
These results are compared with the ones obtained by Saliba [68] who used the 
method of superposition for right triangular plates developed by Gorman [28], and 
excellent agreement is obtained. Using the corresponding eigenvectors, the first 
four contour plots of the mode shapes for this plate are shown in Figure 32. Good 
agreement with the mode shapes in Saliba's work is obtained in term of general 
proportions and of the shape. 

The second case considered is a C-SS-C right triangular plate of aspect ratio 
b/a = 2.0 shown on Figure 14 (b). The corresponding eigenvalues A are presented 
in Table 18. Once more, excellent agreement is observed with the work of Saliba [68]. 

In Table 19, the lowest six frequencies are given for the last case studied, a C-F-C 
isoceles triangular plate of aspect ratio 6/a = 1.0 (see Figure 14 (c)). Inspection of 
the tabulated relative errors shows quite good agreement with the results of Kim 

oZ. [44], who used the Rayleigh-Ritz method with simple polynomials as trial 
functions. Note that the introduction of a free edge does not alter greatly the 
accuracy of the results. Such a accuracy corroborates the previous study on the 
exactness of the expression of this boundary condition. 

4.4 Corner points and conditioning 
When using this method, two problems have been encountered. The first one is 
the effect of discontinuities of the boundary on the solution, and the second one 
is the severe singular character of the matrix A[(A:)]. A description of both these 
problems is given in this section. 

4.4.1 Corner points 

All the boundary methods presented in this work sufi'ers from a common drawback: 
problems with corners. Indeed, in the case of the BEM applied to the biharmonic 
equation, Jawson of. [40] observed that if the boundary 9̂ 2 had corners, the 
numerically determined source densities tended to oscillate. They concluded that 
this trouble could to a large extent be eliminated by rounding off the corner: replace 
the corner zone by a quadrant of an inscribed circle (see Figure 7 (b)) . Bannerjee 
et al. have proposed a similar solution to the problem by modelling corners by two 
independent nodes placed slightly away from the actual corner (see Figure 7 (a)); 
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such model was used in the IBEM presented in Chapter 2. 

In the EIBEM, Zielihski remarked that that the smoothness of the exterior 
surface 0 may be dependent on the discontinuities of the boundary dfl, and that 
many authors omitted the zone of the corners. Others, such as Wearing et al. [85] 
proposed their optimised position of the source points in the corner zone. 

When using the Bessel expansion method, Urata [76] noted that 

It remains unknown how to treat reasonably the boundary conditions at 
corner. 

He proposed different calculating procedures concerning this problem [75, 76]. 
Among them were a discretization [75] similar to the one proposed by Jawson et 
al. [40], and another one which took the corner condition [76] in consideration. 

In this work, several problems with corner points were encountered. They can 
be classified into two types. The first type regroups the problems which affect the 
values of the eigenfrequencies. The second type is typified by the problems which 
modify the modes. 

In the case of the membrane, problems of the second type were encountered. 
When plotting the mode shapes of membranes with sharp corners, it was remarked 
that the displacement around the corners tended to infinity. An example of 
this situation can be seen on Figure 33, which represents the forced response 
of a skew membrane of skew angle ip — 70° to a pressure load. Note that the 
problem is localised at acute corners. Such phenomenon may be associated to the 
one arising the IBEM when the source densities tend to infinity at some corner 
points. If, for the first few modes, the effects of this type of problem are usually lo-
calised and easily identified, they may interfere with the modes of higher frequencies. 

In the case of the plates, both types of problems were also encountered. The 
second type of problem was dealt with in a way similar to the one used for mem-
branes. Furthermore, in most of the cases, i.e. clamped, simply supported and 
sliding clamped boundaries, the corner point was modelled by using a single node. 
Such technique was used by Zabaras and Mukherjee in work on the application of 
the BEM to the solidification of pure metals [88]. Such modelling consist in repre-
sentating the corner point by a single node x ' and by averaging the normal n ' at 
this point by n® = 4- (see Figure 8 (a)). However, in the 
case of free plates, it has been seen that corner points greatly influence the accuracy 
of the results, and it was found that this model was not adapted for this type of 
problem. Hence, two other types of discretization were tried. The first one (see 
Figure 8 (b)) has been described in Section 4.3.3 and consists in including a corner 
condition in the boundary conditions by using the set of two different normals 
and The second one, which was used by Jawson et al. [40] and Urata [75], 
rounds the corner by replacing the two intervals adjoining the corner by a quadrant 
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of an inscribed circle of radius R, and to introduce a nodal point into the middle of 
the arc (see Figure 7 (b)). The corner can then be approximated by a sequence of 
circular quadrants of decreasing radius. Two new formulations of the free boundary 
condition, which took in account the radius of curvature at the corner point, i.e. R, 
were used. They are written as [56] 

M „ » = - (1 - + 1 ^ ) (4.26) 

v „ » = + 

However, when using the PWBM, it was found that this discretization gave very 
poor results. The effect of rouuding off corners on the accuracy has already been 
noted by Wearing aZ. [85] when applying the EIBEM. According to the authors of 
this reference, the disadvantages of this approach are poor solutions at the corners 
and edges for all problems, irrespective of their field behaviour, and difEculty in 
modelling the corners when dealing with problems having regular field behaviour. 
In the case of the PWBM, it is thought that these conclusions remain valid. Hence, 
it is still unknown how to model accurately corners in the PWBM, and a modified 
version of this method, presented in Section 4.5, was studied and was seen to give 
better results in some cases. 

4.4.2 Study of the conditioning of the problem 

As it hag been said earlier, the accuracy of the results improves with the number 
of plane wave components. However, when increasing n, the plot of the inverse 
of the determinant presents some "noise" which renders the determination of the 
eigenfrequencies impossible. This noise is due to the fact that the value of the 
determinant of has reached the machine precision. Furthermore, it was 
also remarked that the conditioning of the same matrix could become extremely 
high. Hence, in this section, a study of the singularity of this matrix along with its 
conditioning is presented. 

For the sake of simplicity, the special case of a clamped circular membrane of unit 
radius will be considered. It must be noted that this study on the condition number 
of the resulting matrix will still be valid for the case of other planforms. 

Using the formula for the condition number, introduced in Chapter 3, it was 
found that the matrix becomes ill-conditioned for large values of n. Indeed, 
in the simple case of the circular membrane, from Figure 34, it can be deduced that 
the conditioning is linked to the value of the frequency: the higher the frequency, 
the better conditioned the matrix gets. 

To explain this problem, the linear dependency of the columns j and j + 1 of the 
matrix is studied. In the case of a circular membrane of unit radius, these 
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columns, denoted A, and A + i , can be expressed as: •j+i) 

- i f c c o s ( f j - 0 i ) > f - i f e c o s ( ? j + i - 0 i ) > 

-ik C03((j -On) ,-itcoa((;+i-6n) 

and 

0+1 
w 
n 

Therefore, Aj^i can be rewritten as 

A, •i+i 

-jk cos(f j ^ - f 1) ' 

-jk COS(̂ j - ^ —0n) 

Since 

co8(^j - ^ = cos(^; - gf) C08(^) + sin(^j - s i n ( ^ ) , 
M ' n 

the following approximation can be obtained 

n 

: ? ) • 

Substituting (4.32) in (4.30), can be written 

Oil 0 • • • 0 

^ j+ i — A' + 
2mk 

n 
0 

0 

with 

Ai = sin(^j - ^i) + O 

• • • 0 

0 An 

$ ) 

4 

(4.28) 

(4.29) 

(4.30) 

(4.31) 

(4.32) 

(4.33) 

(4.34) 

A more detailed study of the conditioning of this matrix was realised by Lang-
ley [50] who found that the condition number is given by: 

c([A(A:)] % ^7^/4 (n/eA:)'̂ '̂ ^ (4.35) 

In both cases, it can be deduced that the singularity of the matrix, thus its 
condition number, increases with n and 1/k, as was seen in Figure 34. 
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A physical explanation of this phenomenon was proposed by Langley [50]: two 
neighbouring waves become very closely aligned with n increasing and start to in-
teract with a very long beat wavelength. Since the plate or membrane appears 
relatively small on the scale of this beat wavelength, the two waves produce near 
identical motion, which gives rise to ill-conditioning. 

4.5 The approximate Bessel-function method 
(ABF) 

In order to overcome the problem with free boundary plates, a derived method of 
the PWBM, called the approximate Bessel functions, wag studied. In this method, 
the amplitude of the waves and are expanded as 6nite Fourier series, and 
it is shown that the transverse displacement w can be written in terms of a series 
which approximates to the Bessel function. 

4.5.1 Principle 

In Appendix D, it is shown that the formulation of the displacement w using plane 
waves and the one using Bessel functions are equivalent. To do so, the following 
form of w is used 

=—oo 

+ Z (4.36) "J 

The expressions in braces in (4.36) represent the amplitude D^(^) and D^(^) 
introduced earlier. These functions are unknown periodic functions of ^ with the 
fundamental period 2it. 

If D^{^) and D^(^) are considered as the unknowns of the problem, the PWBM 
formulation is obtained, with them being the amplitudes of the plane waves. How-
ever, if the series expansions of D^^) and D^(^) are retained, the unknowns of the 
problem become and the classical Bessel expansion formulation is directly de-
duced by using the integral representation of the Bessel functions. 
By writing 

OO 
£"(«) = E cj (4.37) 

j=:—OO 
OO 

D'iH) = E (4.38) 
] = -00 

with and — c f \ it becomes obvious that the series expansions of 
DXC) and D^(^) represent the Fourier expansions of these two 27r-periodic functions. 
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In this technique, this formulation is considered but the infinite series are approxi-
mated by N-terms series, hence the name BegaeZ In 
the following, the Fourier's formulation involving sin and cos is preferred. Hence, 
D^{^) and become 

^ (4^^ cos + 6^) s in j^) 
2 .=1 

(4.39) 

(4.40) 
i=i 

where and 6̂ '̂ ^ are linked to by the following expressions: 

(1,2) ^ . ( 1 , 2 ) . ( 1 , 2 ) ^ 

jf.,2) _ 2) I (i = 0, 1, 2, . . . , N) 

Therefore, (4.12), which gives the approximated transverse displacement w of a 
plate, becomes 

(4.41) 

a (1) Af 

w '0 W = Z < ^ + 
(=1 I ^ j=l 

cos ;6 + 6( ')sin;6] 

n I (2) N 

+ E < ^ cosj^z + sinj^z 
(=1 i=i 

k̂{xi C08(i+Z2 sin /̂) (4.42) 

where and constitute the unknowns of the problem. They are determined 
in a manner similar to that outlined of Section 4.1.3, i.e. by enforcing the corre-
sponding boundary conditions of the problem Bi and Bg, and by using an n-point 
collocation scheme. Hence, the following linear system is obtained: 

[A(A;)][g]F = 0 

where [A{k)] is the matrix defined by (4.1.3), F is 

F 
F^ 
^2 

(4.43) 

(4.44) 
4 N + 2 

with 
/ ao'" \ 

a -1,2 
N 

b\'^ 
(4.45) 

\ 6^' / 
2N+1 

And [5"] is defined by: 

[5] Ml 
W J 2MX(4JV+2) 

(4.46) 
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with 

1/2 co8(^i) . . . cos(N^i) sin(^i) . . . sin(7V^i) 

1/2 cos(^n) . . . cos(jV(n) sin((n) - - - sin(N(n) 

(4.47) 

nx(2Ar+l) 

In order to use a determinant search, a (4jV + 2)^ square matrix is obtained by 
multiplying the left-side of (4.43) by the transpose of [S], [5"]̂ : 

[g]*[A(A:)]MF = 0 (4.48) 

4.5.2 Application 

The case of a clamped square plate was first considered in order to assess the 
accuracy of this method. The eigenfrequencies A are tabulated in Table 20 along 
with the ones obtained by Urata [75] who used a Bessel expansion of the transverse 
displacement. Since the average relative error, indicated in parentheses and 
determined by comparison with the results in [6], is equal to 0.08%, the ABFM can 
be considered to be very accurate. 

The next cage considered was a free square plate. Table 21 shows the eigenvalues 
A obtained with the ABF method and with the Bessel expansion method used 
by Urata [75]. Both methods are compared with the values from the work of 
Gorman [27], who obtained the exact eigenvalues for a free square plate by using 
the method of superposition. From the relative errors quoted in parentheses, it 
is seen that in every case the ABFM gives more accurate results than the Bessel 
expansion method, and, by comparison with the results in Table 14, the PWBM. 

This method was then applied to the vibration of a free skew plate of angle 
ip = 15°. Unlike the PWBM which did not give any sensible results, the results 
obtained here have a relative error within 3%, as it shown in Table 22 are accurate. 
However, for free plates with higher skew angles, no sensible results were obtained 
and it is thought that it is again due to the presence of acute corners. 

4.6 Conclusion 
In this chapter, the numerical analysis of eigenfrequencies and modes not only of 
membranes but also of plates with several different planforms has been carried out 
and the efficiency and the versatility of the PWB method has been demonstrated. 
The following may be concluded: 

1. In most of the cases, eigenfrequencies obtained by the present method are 
sufficiently accurate for engineering purposes. 
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2. Modes can be obtained effectively by either considering the forced response 
of the structure or by determining the eigenfunctions, or eigenvectors, of the 
problem. 

3. Although the collocation method is the simplest discretization method, it is as 
efficient as the more complex methods such as the weighted residual methods. 

4. The loss of accuracy due to corner points and the ill-conditioning are the two 
major drawbacks of the PWBM. Hence, this method wag found less accurate 
when applied to free plates. Furthermore, no general solution has been found 
to cope with these problems. 

5. A derived method, called the ABFM, was implemented to overcome the difh-
culties with free plates, and it has been shown to give better results for plates 
with simple planform. 



5. Conclusions 52 

5. Conclusions 

5.1 General remarks 

In this work, three boundary methods have been applied to eigenvalue problems 
of membranes and thin plates. The feasibility and versatility of all three methods 
have been verified from a numerical point of view. 

The first method is the well-known Indirect Boundary Element Method, which 
is based on the use of boundary integrals. In order to assess its efBciency, this 
method was applied to the vibration of clamped membranes and clamped plates. It 
was found that this method suffered from very complex calculations involving the 
boundary integrals. Although its application to the determination of eigenfrequen-
cies of structures has previously been demonstrated, a new technique to determine 
the dynamical forced response of a structure was studied. This technique was seen 
to produce accurate results for both damped and undamped membranes and was 
found to be easier to implement than other methods, such as the dual reciprocity 
method and the multiple reciprocity method. 

The second method studied was derived from the IBEM formulation and is called 
the EIBEM. The main characteristic of this method is to relocate the curve of 
the source distribution on an imaginary boundary, at a certain distance outside 
the physical domain of the problem, resulting in a system of regular integral 
equations, unlike in the IBEM. Though such a technique has previously been 
applied to different types of problem, it has not been used to solve the resulting 
eigenvalue problem. It was found that criteria, such as the condition number 
of a matrix, used to optimise the exterior boundary by other researchers, were 
not efficient in the present study. Indeed, it was proved that the matrix used 
in the eigenvalue problem could be severely ill-conditioned but still yield correct 
eigenfrequencies. Some qualitative criteria were then given but none of them was 
found to lead to a rigorous treatment of the optimisation of the imaginary boundary. 

The third method, called the PWBM, was presented as a Trefftz method with 
a new set of functions which represent plane waves. However, it was also shown 
that this method could be derived from the EIBEM formulation by moving the 
imaginary boundary toward infinity. Hence, some results, such as the technique 
to determine the forced response and the discretization methods used in the 
EIBEM were found to be applicable in this case. This method was then applied 
to the vibration of membranes and plates. In both cases, this method was found 
to be in perfect agreement with the results found in the literature for most of 
the cases considered. Not only did it yield accurate results for several different 
planforms encountered in typical aeronautical applications, such as trapezoidal 
plates and triangular plates, and for different boundary conditions, but it was also 
easier to implement and quicker to execute (in average, ten times quicker than 
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the IBEM and five times quicker than the EIBEM). However, it was shown that 
this method suffered from two major drawbacks: a severely singular matrix for 
relatively small numbers of plane waves, and major difficulties when dealing with 
free corners, thus making it inappropriate to the study of polygonal plates with 
free boundaries. Such problems were investigated, and a derived method of the 
PWBM, the ABFM, was studied. This derived method was shown to give better 
results in the case of free rectangular plates but was not eGicient for other plan-forms. 

5.2 Suggestions for further research 
No general criterion for assessing the accuracy and the robustness of boundary 
methods when applied to eigenvalue problems has been found; for example, the 
condition number haa not been found to be aji adequate meaaure. Hence, a more 
detailed study of this aspect is needed. 

Although some work has been done on the modelling of corners [76] for the 
dynamic case, no general results have been derived. Thus, a detailed evaluation of 
the discontinuities introduced by the corner in the PWBM needs to be addressed. 
Furthermore, the need to add new terms in the PWBM formulation to represent 
such discontinuities may be required. 

As said earlier, no work has yet been reported on the derivation of a T-complete 
system for the case of a plate. Therefore, further work in this area would be worth-
while. Indeed, as remarked by Zielihski [89], without any precise mathematical 
background, the use of heuristic T-functions, such as the ones used in the case of 
the plate, could be unreliable. Furthermore, such a study would also clarify the 
effect of corners. 
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A. Special functions 

In this Appendix, the different special functions used in this work are presented 
briefly. 

A . l The Hankel functions 
and are the Hankel functions of the Hrst and the second kinds of order a 

respectively. They are defined through [4]: 

I ^ p c (A 1) 

where 

a ™ ( —ly 
= (ij 

—[(cos7ra)Ja(z)-Ja(z)] (A.2) 
SinTTCK 

are respectively Bessel and Neumann functions of order a . (When a is an integer, 
(A.2) is taken in the sense of limit.) 

A.2 Struve function 
and "Ki are respectively the Struve functions of order 0 and order 1, satisfying [4] 

9 4 1 
= - [1 - Jo(z)] + - 1 ] .,2 _ 1 (-^ 4 

^ ^ 1=0 
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B. Some results on linear algebra 

In this Appendix, some results on linear algebra from [26] and used to introduce the 
condition number are presented. 

B . l Vector norms 
A useful class of vector norms on C" is the Holder or p-norms defined by [26] 

X + + P > 1 (B.l) p 

of which 

||x||i — + . . . + l̂ n̂l) 
II II /i t2 I |2\ 
j j x j | 2 — ^ 1^11 . . . ~j~ \ X f i \ J 

and 
||x|LOO = max|a;i | (B.2) 

i 

are the most important. All norms on C" are i.e., if || - ||a and || - ||̂  are 
norms on C", then there exist positive constants ci and C2 such that 

Cl | |x | |a<| |x | |^<| |x | |a (B.3) 

for all x e C" 

B.2 Matrix norms 
Since is isomorphic to C"", the definition of a matrix norm should be equiv-
alent to the definition of vector norm. The most frequently used matrix norms in 
numerical analysis are the p-norms 

= (B-4) 
x̂ O ||X||p 

A useful relationship, found in [86], is 

||[A]||2 = (Zi (B.5) 

where ai is the smallest ampWor of [A], i.e. the smallest eigenvalue of [v4]^[A], 
where [A]^ is the Hermitian transposed matrix defined by 

[yl]^ = (B.6) 
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C. Derivation of the modal expansion for a 
vibrating damped square membrane 

In this Appendix, the harmonic response of a damped square membrane of unit edge 
length is derived through the use of normal modes, and a relationship between the 
response and the damping coefficient is shown. 
When using the spectral representation or modal expansion, the general solution of 
(2.41) is expressed as an infinite series: 

OO 
- E W (C. l ) 

1=1 

where the V;(x) are the natural mode components and the modal participation factor 
'r]i{t) are the unknown and have to be determined in the following. Substituting (C.l) 
in (2.41) gives: 

OO 

17:14 -- -- = --6 ((:.2) 
1=1 

However, by definition. 

Hence, (C.2) can be written as: 

00 
(p7% 4- = 9 ((3.4) 

1—1 

Multiplying both sides of (C.4) and applying the orthogonality of the natural modes 
Vi gives the following equation known as the modal participation factor equation 

-K ((3.5) 

where 

JF, == (C.6) 

TV; === 1̂ 2 dj? ((].?) 

In the case of steady-state harmonic excitation, the load can be written as: 

6(x) = g(x)e-^* (C.8) 

Thus, 
((].9) 

with 
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while the modal participation factor will also be harmonic but lagging behind by a 
phase angle 

Hence, the amplitude of the modal participation factor satisfies: 

F,* 
A; == , ' ((3.12) 

y{cof — a;2)2 4- (wr/py 

Using the notations introduced in Chapter 2, (C.13) can be written as 

F,* 
v\, = , ^ ' ((:.i3) 

If a spatially uniform pressure load is considered, q is constant and F;* is re-written 

Jo. 

Hence, if the reduced force p — q/ah is used, (C.13) becomes 

A, = , p T4 "W; (C.15) 

In the case of a square membrane of unit edge length, the natural modes are ex-
pressed by the well-known formula: 

^ = sin(o!7rz) sin(^7r2/) (C.16) 

Therefore, (C.15) can be written as: 

/L =; 4p ( l - c o s a 7 r ) ( l - c o s / ) 7 r ) 

Hence, for the first natural frequency, a and (3 are both equal to 1 and ki = 7r\/2. 
Thus, Ai is equal to: 

A. = (C.18) 
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D. Derivation of the plane wave expansion for the 
plate 

In this Appendix, the plane wave expression of the transverse displacement for a 
plate is derived by using the heuristic T-functions for a plate. It has been seen in 
Chapter 3 that w can be expressed: 

00 

w{r,9) = Jj{kr) + aIj{kr)'j cosn9 (D.l) 
i=o 

OO 
+ J;(A:r) + bf^Ij{kr)'^ sin n9 

i=i 

where and are complex, J,- and L are the Bessel and 

modified Bessel functions of integer order j respectively. The complex equivalent 

form of (D.2) can be derived 
00 

w ( r , g ) = E + (D2) 
j=-oo 

with given by 

(1,2) = ga,2) _ 1 
- 2 r J 

One of the integral representations of Bessel functions gives [4]: 

JTT V—jT 

1 r 

For the modified Bessel functions: 

-JT 
or 

27r J—TT 

27r J —TT 

Substituting (D.5) and (D.7) in (D.2) gives 

/;(A;r)e'^ = e ^ (D.6) 

^ g[u(+trco8((-g)] ̂  
J — TT 

fTT f OO 
= / < Z (D.7) 

The expressions in the braces in (D.8) are two unknown periodic functions of ^ 
with the fundamental period 27r. Let these functions be denoted D^(^) and D^(^). 
Therefore (D.8) is rewritten as: 

w(r, g) = r + T D^(^)etrcos((-e) 
J— TT J— TT 
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E. Expressions for the boundary conditions for 
the P W B M 

In this Appendix, the expressions for the boundary quantities Bi {i 
in Chapter 2, will be derived for a function / of the form 

f(x) 

1,2) presented 

(13.1) 

Thus, their corresponding expressions for the propagating and evanescent waves used 
in the PWBM will be deduced easily by substituting the appropriate expressions for 
a and /? in the formulae. 
In what follows, x = (a;i,a;2) denotes the point of the boundary 9(1 at which the 
boundary quantity is enforced, n = (^1,712) is the unit outward normal on at x 
and s = (—n2,ni) is the counterclockwise tangential derivative along dO. at x 

E. l Boundary quantities for straight element 

In this section, the boundary quantities for a straight element, i.e. the radius of 
curvature of the boundary curve is infinite, are derived. 

Transverse displacement 

dn 
(xi, X2) = {ani + (in2) 

(E.2) 

(E.3) 

Bending moment 

= 

Equivalent shear force 

A / - (1 - f/) 
ds'^ 

(a:i,a;2) (B.4) 

+ /3̂ ) + (1 - z/)(7iia^ 4- + 2niM2a^)] 

a . . . a / a y \ 

4- CK;9̂ ) + 7 2 2 + Ẑ )̂ 

(3=1,3:2) 

axi+0x2 

(E.5) 

(E.6) 

+ | ( 1 - i^) nin2(a^ - a/3^) - (n^ - n\)0a^ Ma j 

- { ( 1 - I/) i i i i !2{/3a^ - fi) - (n f - n | ) a / 3 ^ ] n i } e " - ' * ! ' " 
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E.2 Boundary quantities for curved element 
In this section, the boundary quantities for curved element, i.e. the radius of cur-
vature is finite and equal to i?, are derived. 

Transverse displacement 

/ ( u . x , ) (E.7) 

| i ( i , , i 2 ) = ( o n . + / 3 n 2 ) e " ' + ' ' " 

Bending moment 

A / - (1 - ' ' j 

(E.8) 

(E.9) 

1 
+ (!-%/) + 712̂ ^ + 2ni)32a!/3 - ^ 

Equivalent shear force 

dn 
(21,22) 

+ j ( l - I/) ^1^2(0:^ - M2} 

- {(1 - z/) ni7T,2(/)cK^ - - ()ii - ^1} 

(E.IO) 

(E.ll) 

(1 

R 
^axi+px2 

E.3 Boundary quantities for free corner points 
In this section, the expression of the twisting moment Mns, used in the formulation 
of the boundary condition for corner points of a free polygonal structure (see 
Appendix G), is derived. 

(E.12) 

{ - ( 1 - z/) [aiM2(a^ - - (/ii - } gari+/3i2 
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F. Application of the Weighted Residual method 
and the Galerkin method to the P W B M 

F . l General remarks 
The PWBM has been numerically implemented by applying the collocation method. 
However, it was seen that this technique was less efficient in the study of the vibra-
tions of plates with free edges. In this Appendix, two other approximate methods, 
namely the Weighted Residual method and the Galerkin method, are presented. 
As seen earlier, the PWBM approximate the solution of the plate vibration problem 
by the superposition of propagating and evanescent plane wave functions, i.e. 

tu(]c) = ][] 4- i i ; (If.l) 
i=i i=i 

where u^. and are the propagating and evanescent waves introduced in Chap-
ter 4 respectively. The unknown parameters D j and are determined so that the 
approximate solution satisfies the boundary conditions. There are several different 
technique to determine them but all of them try to minimise the errors £i and £2 
on the boundary: 

f (Ti = -- 0, c)n X 
|[ 62 == -- 0, CHI cNl 

where B2 and B2 represent the boundary quantities, introduced in Chapter 2, that 
realize the boundary condition enforced along the edges of the plate. 

The weighted residual techniques consists in distributing the errors with m weight-
ing functions denoted The distribution of the errors is carried out by 
writing: 

/ for z = 1, 2 , . . . , n 

/ e2ipidS = 0 for i = 1, 2 , . . . , n 
Jdn 

For example, when the weighting functions ipi are taken as: 

(F.3) 

^i(x) = 6(x — x'), with x' e dQ (F.4) 

where S is the Dirac delta function, (F.3) becomes 

: = ( ) , f o r % == 1 , 2 , . . . 

:= :0 , f o r % == 1 , 2 , . . . 
(1P.5) 

The above formulation gives the same numerical results as the collocation method 
with the points x ' being the nodal points. Hence, the collocation method may be 
considered as a particular weighted residual method. This latter is however, more 
general as other types of ipi functions can be used. 
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F.2 The Weighted Residual method 
The conventional weighted residual method was applied to a square plate. The 
weighting functions ipi were composed from two sets i p j and ?/)? defined as: 

/I - 2 ^ ^ - 1 /o 
w- — sin —r—) % = n/2 

i/;^ = c o s — 2 = 1 , . . . , n / 2 

where L is the perimeter of the plate and s is the arc length along the boundary, 
such tha t : 

2 , = / ds (F \^ 
Van 

Substituting (F.6) in (F.3) yields: 

dS + [ eiipidS = 0, for i = 1, 2 , . . . , n /2 
jn J dfi 

g2V'^<^'^4-/ = 0 for 2 = 1 , 2 , . . . , n / 2 
Ida. Jaa. 

(F\gO 

The boundary dO, is then discretized in N segments. On each of these segments, 
the integrals in (F.8) are approximated by using a mid-ordinate rule at the middle 
of the segment x^. Hence, a linear system similar to the one obtained by using the 
collocation method is derived: 

= 0 (F.9) 

where [A'^(k)] is the resulting matrix and D is the vector constituted by the 
coefficient Dj and D j introduced in (F.l). The eigenfrequencies are determined by 
solving det^4^(&0] = 0. 

F.3 The Galerkin method 
The only difference between the previous weighted residual method and this method 
consists in the choice of the weighting functions. Indeed, in the Galerkin method, 
the same functions are used to approximate the solution w and to act as weighting 
functions. Here, only the propagating waves are used as trial functions, thus 

GJGp (F.IO) 

The rest of the process of the Galerkin method is similar to the one of the weighted 
residual method, and a new linear system is obtained 

== 0 (If.11) 

where [A'^{k)] is the resulting matrix used to compute the eigenfrequencies. 
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F.4 Application 
Both methods were first applied to a clamped square plate in order to evaluate 
their accuracy. The results are given in Table A. As can be seen, the Galerkin 
method introduced three spurious roots marked by the signf. In the other cases, 
the agreement between the three method is obvious. 

Mode no. Collocation WRM Galerkin 
1 6.0 6.0 6.0 

7.0t 
2 8.6 8.6 8.6 

8.9t 
3 1&4 1&4 1&4 

11.4t 
4 1L5 1L5 1L5 

False eigenfrequencies 

Table A: Comparison of the eigenfrequencies A for a clamped square plate obtained 
with the collocation method, the weighted residual method (WRM) and the Galerkin 
method (n = 20, TV = 40, AA = 0.05) 

To explain the cause of these spurious roots produced by the Galerkin method, the 
matrix [A'^{k)] is written as the product of the matrix [A{k)] used in the collocation 
method and a matrix holding the different values of the weighting functions: 

[* (&)] 

where [-0] is the following matrix: 

M 1 

1 M (2nx2W) 

- ^6 (x#) 

{nxN) 

It can easily be shown that 

Thus, 

lA°{k)] = X | / t ( t ) | 

{F.12) 

(F.13) 

(F.14) 

det[A'^(/s)] = det[^(fc)] det[74(A;)] (F.15) 

A quick look at shows that this matrix represents the matrix [A{k)] used for 
a clamped square membrane. Hence, the spurious eigenvalues are in fact the eigen-

o/ o cZompej sguore membrane. If the propagating and the evanescent 
waves had been used, the situation would have remained the same but the spurious 
eigenvalues would become the eigenfrequencies of a square clamped plate. Hence, 
this method is unreliable. 
Furthermore, the weighted residual method and the Galerkin method when applied 
to the case of a free square plate did not improve the poor accuracy of the results. 
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G. Boundary conditions at corner points of a free 
plate 

One way to derive these expressions is to apply the principle of virtual work [25]. 
Thus, if w represents the equilibrium state of the plate and if there is no boundary 
stress acting on dQ, the following expression can be derived for a free plate [25]: 

1 (G.l) 
D Jdfi on OS ' 

for all virtual displacements bw. Qn and Mns are the shear force and the twisting 
couple respectively. They are defined by 

Qn ~ % Atf 

As stated before, multiplying these expressions by —1/D produces the usual expres-
sions. Using (G.2), Vn can be written as 

( G 3 ) 

Thus, (G.l) becomes 

cgy (G.4) 
Jdo. on vn \ ^ 

Therefore, in the case of a smooth boundary, the previously found boundary con-
ditions and governing equation of vibration are obtained. But, if the boundary 
presents a discontinuity at the point P, (G.4) implies that a different boundary 
condition must be enforced at P, which prescribes the bending moment and a 
concentrated force equal to: 

[MnXw)]p+ - [Mn,(w)]p- (G.5) 

S+ P "p 

"s-

Figure A: Definition of S+ and S" 



G. Boundary conditions at corner points of a free plate 72 

where P+ and P are respectively defined by 

13+== Hni (C;.6) 
HS+-PWH.0 

and, 
1)-== Hni S - (G.7) 

||S--P||->0 

with S+ and S" defined as shown in Figure A. 
Therefore, two different boundary conditions will be encountered in the case of a 
free plate. Along a free edge, the boundary condition will be 

1 K{w) = 0 

and, at a corner point, it will be written as 

j Mn{w) = 0 /(-I q\ 

1 M:,(w) - M-,(w) = 0 ^ ' 

where and represent the right-hand and the left-hand limits defined earlier. 
In practice, and will be determined by evaluating the twisting moment at 
two points placed slightly away from the corner point. 
In the case of a square plate, the corner condition can be rewritten [51] 

Mn(u;) = 0, 
_ ((;.!()) 

dxdy 
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Figure 1: Approximation of the boundary dO. by straight line segments F; with the 
interval points and the nodal points x-' in the IBEM 

Figure 2: Location of the imaginary source boundary 0 in the EIBEM with x being 
the load point and y being the source point 
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®j 

Figure 3: The position of the source points and the collocation points when 
using an homothetic exterior boundary in the EIBEM 

(a) 

Figure 4: The two methods used to collocate the points on a square membrane 
in the EIBEM 

Figure 5: The two types of discretization used in the PWBM 
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(a) (b) 

Figure 6: The polygonal and the circle-specific discretizations used in the PWBM 
for a free circular plate 

X 

X i+1 n i+1 

(a) (b) 

Figure 7: Types of discretizations used for a corner point which round the corner 
point 
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j-i n 

j+i 

n 

n ,i+l 

,i-l n 

^i-l x' 

X' 

n ,1+ 

n 

n ,i+l 

(a) (b) 

Figure 8; Types of discretizations used for a corner point which take the corner 
point into account 

X, 

Figure 9: Parameters for the skew planform 
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L. 

Figure 10: The geometry of the pentagonal membrane 
(1,1 = 2 .0 , ^̂ 2 = 1.0, = \ / 5 ) 

Figure 11; The geometry of a quadrilateral membrane with unequal edges 
(1,1 = 2.7, iLg = 3.08,1,3 = 2.5, Z,4 = 15) 
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Figure 12: Parameters for a symmetrical trapezoidal plate 

2a 

Figure 13: Parameters for an elliptical plate 
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C 

Figure 14: The three types of triangular plates with mixed boundary conditions 

4.9 5 

7=0.01 

4.9 5 

Figure 15: Forced response of a clamped square membrane to a point located force 
for different damping coefficients 7 determined with the IBEM 
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% 

Figure 16: Forced response of a clamped square membrane to a surface wave deter-
mined with the IBEM 

O 

Mode No. 1 Mode No. 2 

Mode No. 3 Mode No. 4 

Figure 17: The first 4 modes of the pentagonal membrane shown in Figure 10 
determined with the IBEM 



Figures 81 

0.25 

0.15 

Num. curve 
Theor. curve 

0,05 

0.07 0.08 

Figure 18: Magnitude of the inverse of the modal factor Ai for different values of 
the damping coefficients 7 determined with the IBEM 
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Figure 19: Eigenfrequencies A 
|det([A(A:)])| in the IDEM 

ka of a clamped square plate as the minima of 
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0.3 

0.2 

0.1 

I 

S. 0 

- 0 . 1 

- 0 . 2 

-

1 1 1 1 1 1" 

J 
1 

i 1 1 1 1 1 

r 
1 

4.5 5.5 6.5 7.5 

(b) 

Figure 20: Real part of the forced response of a square membrane to a surface 
wave travelling in the direction (-10.0,-10.0) for two different condition numbers, 
determined by using the EIBEM (n = 24, AA = 0.005) 

g -110 

- 1 3 0 

5 5 . 5 6 6 . 5 7 7 . 5 8 

Figure 21: Eigenfrequencies of a clamped square membrane determined with an 
ill-conditioned matrix and the EIBEM (n = 24, AA = 0.005) 
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Figure 22; Condition number for a square membrane and an homothetic exterior 
boundary shown in Figure 3 in the EIBEM 

— — AXL405 A;=5j20 

Figure 23: The absolute relative error of the first and sixth eigenfrequencies of a 
clamped circular membrane when using the EIBEM with an homothetic imaginary 
boundary (n = 20) 
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— — Method b 

Figure 24: Condition number for a circular exterior boundary of radius R and for 
the two different types of collocation point shown in Figure 4 in the EIBEM 



Figures 86 

150 

n=24 x 

- 2 0 0 

Figure 25: Influence of n upon the eigenfrequencies of a clamped square membrane 
(AA = 0.0001) in the PWBM; dotted lines indicate the theoretical values 
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IBEM - n=56 
PWBM - n=36 

Mode no. 

Figure 26: Relative errors on each mode of a clamped skew membrane {%l} = 35°) in 
the PWBM and the IBEM 
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0.6 

0.5 -

'0,4 

•0.3 

0.2 

0.1 

IBEM - n=56 
PWBM - n=30 

Mode no. 

Figure 27: Relative errors on each mode of the clamped pentagonal membrane, 
shown in Figure 10, in the PWBM and the IBEM 
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IBEM - n=56 
PWBM - n=32 

Mode no. 

Figure 28: Relative errors on each mode of the clamped quadrilateral membrane 
with unequal edges, shown in Figure 11, in the PWBM and the IBEM 
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a = 2 , ^ = 1 

a = 3, p = 1 

Q! = 1, p = 3 

a = 3 , # 0 = 2 

C X i C o 

Q; = 2, /? = 2 a = 3, p = 3 

Figure 29: The first 8 mode shapes of a symmetrical trapezoidal clamped plate with 
b/a = 0.8 and c/a = 0.75 obtained with the PWBM 
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Mode No. 1 

Mode No. 4 

Mode No. 2 

Mode No. 5 

Figure 30: Modes of a simply supported elliptical plate {a/b 
the PWBM 

Mode No. 3 

Mode No. 6 

2.0) obtained with 
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ct = 0, /3 = 2 

a = 1, /? = 0 

a = 0, /5 = 3 

Of = 0, p = 4 

a = 2, p = 0 

a = 1, /) = 2 

a = 2, ^ = 2 

Figure 31: Examples of modes of a free circular plate obtained with the PWBM and 
the forced response technique {u = 0.33) 
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Mode no. 1 Mode no. 2 

Mode no. 3 Mode no. 4 

Figure 32: The first 4 modes of a clamped-simply supported-simply supported right 
triangular shown plate in Figure 14 (a) obtained with the PWBM 

Figure 33; Forced response to a pressure load of a clamped skew membrane of skew 
angle i p = 70° obtained with the PWBM 
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X;=6.0 

Â IO.O 

Figure 34: Influence of n upon the condition number for a clamped circular mem-
brane in the PWBM 
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Skew Angle Method Mode No. 

ip 1 2 3 4 5 
15° IBEM 

Rayleigh-Ritz [20] 
4.586 
4.568 

6.967 
6.943 

7.526 
7.493 

8.928 
8.894 

10.234 
10.201 

20° IBEM 
Rayleigh-Ritz [20] 

4.690 
4.672 

7.024 
7.025 

7\7gO 
7.750 

8.971 
8.941 

10.451 
10.418 

30° IBEM 
Rayleigh-Ritz [20] 

5.016 
4.992 

7.283 
7.257 

8.531 
&473 

9T98 
9J^1 

11.127 
11.087 

35° IBEM 
Rayleigh-Ritz [20] 

&253 
&225 

7.500 
7.480 

&040 
8.976 

9.402 
9.371 

11.298 
11.278 

45° IBEM 
Rayleigh-Ritz [20] 

5.944 
5.900 

8.179 
8.146 

10.072 
10.025 

10.476 
10.358 

11.924 
11.875 

Table 1: Comparison of eigenvalues A for skew membranes with various skew angles 
(n = 56, AA = 0.0005) 

Mode No. IBEM FEM [45] 
1 2.316 2.300 
2 3.442 3.424 
3 3.730 
4 4.515 4.493 
5 4.896 4.876 
6 5.227 5.208 
7 5.580 5.560 
8 5.983 5.959 

Table 2: Comparison of eigenvalues A; for the pentagonal membrane shown on Fig-
ure 10 (n = 56, AA — 0.0005) 
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Mode No. IBEM FEM 45 
1 1.939 L926 
2 2.956 1941 
3 3.091 3.074 
4 3.903 3.886 
5 4.171 4157 
6 4.236 4.224 
7 4.828 4.811 
8 &164 &149 

Table 3: Comparison of eigenvalues k for a quadrilateral membrane shown on Fig-
ure 11 (n = 56, AA — 0.0005). 

Mode No. IBEM HFEM [6] Relative error 
(in %) 

1 6.009 5.999 0J7 
2 8.583 8.567 &19 
3 10.424 10.403 0.20 
4 11.495 11.471 0.21 
5 11.522 11.498 0.21 

Table 4; Comparison of the eigenvalues A for a clamped square plate (n 
0.001) 

54, ZiA 

Mode No. IBEM HFEM [6] Relative error 
(in %) 

1 &144 8J^2 0.52 
2 10.349 10.320 0.28 
3 12.224 12.178 0.38 
4 12.644 12.539 0.83 

Table 5: Comparison of the eigenvalues A for a clamped skew plate of skew angle 
ip — 45° (n = 54, AA = 0.001) 



Figures 97 

Mode No. Shape of the exterior boundary 6 
nomothetic Circle Circle 

square Method a Method b 

1 4.450 (0.16) 4.443 (0.00) 4.450 (0.16) 
2 7.043 (0.25) 7.025 (0.00) 7.043 (0.25) 
3 8.939 (0.60) 8.886 (0.00) 8.939 (0.60) 
4 9.934 (0.01) 9.935 (0.00) 9.935 (0.00) 
5 11.410 (0.73) 11.330 (0.06) 11.410 (0.73) 
6 12.984 (0.24) 12.953 (0.00) 12.983 (0.24) 
7 13.474 (1.08) 13.327 (0.01) 13.472 (1.06) 

Table 6: Comparison of the eigenfrequencies A for a clamped square plate, 
24, AA = 0.0005) in the BIBEM; the relative error is shown in parentheses 

Mode no. Exact Solution [14] Numerical solution 

1 2.405 2.405 
2,3 3.832 3.832 
4,5 5.136 5.136 
6 5.520 5.520 

7,8 6.380 6.380 
9,10 7.016 7.016 
11,12 7.588 7.589 
13,14 8.417 8.417 

15 8.654 8.654 
16,17 8.771 8.772 
18,19 9.761 9.761 
20,21 9.936 9.936 

Table 7: Exact and computed eigenfrequencies A of a clamped circular membrane 
using the PWBM = 36, AA = 0.0005) 

Membrane 
CPU execution time 

(in seconds) Membrane 
For the PWBM For the IBEM For the EIBEM 

skew ^ = 35° 
(n — 36) 

674 6304 3815 

pentagonal 
(n = 30) 

200 1962 1230 

quadrilateral 
(n = 32) 

233 2163 1499 

Table 8; Comparison of the CPU execution time for the PWBM, the IBEM and the 
EIBEM on a SPARC station 2 
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Mode No. PWBM IBEM 
1 5.999 (0.00) 6.019 (0.34) 
2 8.567 (0.00) 8.603 (0.42) 
3 10.402 (0.00) 10.461 (0.56) 
4 11.471 (0.00) 11.524 (0.46) 
5 11.498 (0.00) 11.568 (0.61) 

Table 9: Comparison of eigenvalues A for a clamped square plate (a 
0.0005); the relative error is shown in parentheses 

32, AA 

Number of anti-nodes PWBM Experimental [53] Relative 

a error (in %) 
1 1 2.358 2.320 1.60 
2 1 3.173 3.180 0.22 
1 2 3.533 3.530 0.09 
2 2 4.084 4.100 0.39 
3 1 4.153 4.220 1.61 
1 3 4.790 4.810 0.42 
3 2 4.885 4.889 0.08 
2 3 5.176 5.237 1.18 

Table 10: Comparison of eigenvalues Â ^ of a fully clamped symmetrical trapezoidal 
plate; symbols are as shown on Figure 12 with b/a = 0.8, c/a = 0.75, (n = 32, AA = 
0.001) 

Mode No. PWBM HFEM [6] Relative error 
(in %) 

1 4.96 4.992 0.64 
2 7.255 7.255 0.00 
3 8.428 8.472 0.52 
4 9.154 9.156 0.02 
5 11.083 11.083 0.00 

Table 11: Comparison of the eigenvalues A for a clamped skew plate of skew angle 
1/, = 30°, (M = 36, AA = 0.0005) 
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Mode No. PWBM Orthogonal Relative 
Polynomials [49] error (%) 

1 3.635 3.635 0.00 
2 4^162 4.862 0.00 
3 &192 &191 0.02 
4 6.793 0.01 
5 7.582 7.591 &12 
6 7.922 7.7922 0.00 

Table 12: Eigenfrequencies A for a simply supported elliptical plate shown on Fig-
ure 13 (n = 30, a/h = 2.0) 

Mode PWBM Theory 

a k 

1 0 &142 &142 
1 1 4.443 4.443 
2 0 6.283 &283 
2 1 7.025 7.025 
2 2 8.886 &886 
3 0 9.425 9.425 
3 1 9.932 9.935 

Table 13: Comparison of the eigenvalues A for a sliding-clamped square plate, (m 
36,/\A== 0.001) 

Mode No. PWBM Superposition Relative 
Method [27] error (in %) 

1 3.86 3.67 4^2 
2 4.43 4.43 0.00 
3 4.98 4.93 LOO 
4 &06 5.90 2.64 
5 7^6 7.82 0.51 

Table 14: Eigenvalues A of a free square plate obtained with the PWBM (n 
32, z\A==(1005) 
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Mode No. PWBM Reference Relative 
a ^1] error (in %) 
0 2 &32 2.29 L29 
0 3 3.53 3.50 &85 
0 4 4.67 4.65t &43 
0 5 &78 5.75t &52 
0 6 &89 6.80t L31 
1 0 3.00 3.01 &33 
1 1 4.53 4.53 &00 
1 2 &94 5.94 &00 
1 3 7 j # 7 j ^ &14 
2 0 6.20 &21 a i 6 

tValues true within 2 percent [51] 

Table 15: Eigenfrequencies for a free circular plate {u — 0.3Z)] a represents the 
number of nodal circles and (5 the number of nodal diameters 

Mode No. PWBM HFEM [6] Relative 
error (in %) 

1 272 2.67 1.87 
2 4.04 3.97 L76 
3 4.04 3.97 L76 
4 4.43 4.43 &00 
5 6.340 6.2 2.26 

Table 16: Comparison of the eigenvalues A for a point-supported square plate, (n 
3 2 , 0 . 0 0 5 ) 

Mode No. PWBM Superposition Relative 
Method [68, 29] error (%) 

1 &11 &11 0.0 
2 11.00 22.00 0.00 
3 12.42 1243 0.06 
4 14.01 LiOl 0.00 

Table 17: Comparison of the eigenvalues A for the SS-C-SS right triangular plate 
shown in Figure 14 (a), (n = 36, AA = 0.005) 
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Mode no. PWBM Superposition Relative 
Method [68] error (%) 

1 6.43 6.43 0.00 
2 8.21 8.21 0.00 
3 9.79 9.78 0.06 
4 10.17 10.17 0.00 

Table 18: Comparison of the eigenvalues A for the C-SS-C right triangular plate 
shown in Figure 14 (b), (n = 36, AA = 0.005) 

Mode no. PWBM Rayleigh-Ritz Relative 
Method [44] error (%) 

1 5.80 5.80 0.00 
2 8.87 8.88 0.11 
3 9.43 9.44 0.11 
4 11.93 11.91 0.15 
5 12.90 12.92 0.15 
6 13.18 13.19 0.11 

Table 19: Comparison of the eigenvalues A for the C-C-F isosceles triangular plate 
shown in Figure 14 (c), (n = 36, AA = 0.005) 

Mode No. ABFM Bessel 
expansions [75] 

1 6.00 (0.00) 6.00 (0.00) 
2 8.57 (0.00) 8.57 (0.00) 
3 10.43 (0.25) 10.40 (0.00) 
4 11.47 (0.00) 11.47 (0.00) 
5 11.51 (0.09) 11.50 (0.00) 

Table 20: Comparison of the eigenvalues A for a free square plate (n = 32, TV = 
40, AA = 0.005); the relative error is shown in parentheses 

Mode No. ABFM Bessel Superposition 
n — 32, TV = 40 expansions [75] Method [27] 

1 3.71 (1.08) 3.73 (1.61) 3.67 
2 4.43 (0.00) 4.43 (0.00) 4.43 
3 4.93 (0.00) 4.94 (0.20) 4.93 
4 5.91 (0.17) 5.95 (0.84) 5.90 
5 7.85 (0.38) 7.82 (0.00) 7.82 

Table 21: Comparison of the eigenvalues A for a free square plate (AA = 0.005); the 
relative errors is shown in parentheses 
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Mode No. ABFM Superposition Relative 
Method [6] error (in %) 

1 &47 3.57 &88 
2 4.51 4.50 &22 
3 &29 5.21 1.51 
4 5.50 5.50 &00 

Table 22: Eigenvalues A of a free skew plate of skew angle xp 
40, AA = 0.005); the relative error is shown in parentheses 

15° (M = 32, TV 
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