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UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF SCIENCE

PHYSICS

Doctor of Philosophy

SECOND QUANTISED STRING THEORY

by David Laurence Gee

An attempt is made to construct a non-perturbative, second quantised framework for
string theory by describing worldsheets implicitly as the solution surfaces of D — 2
functions on D-dimensional space-time. The formalism in fact generalises to extended
objects of arbitrary dimension. The worldsheets are not parameterised and hence mod-
ular invariance and duality should be incorporated at a fundamental level, thus avoiding
the overcounting of vacuum graphs encountered with string field theory. Couplings to
background fields are introduced which reduce to the usual Polyakov couplings on choos-
ing a parameterisation of the worldsheet. The formalism has a natural GL(D — 2,R)
gauge invariance which is awkward to fix owing to the existence of a delta function
in the action. BRST ghosts can be introduced however it is not clear how to remove
all the gauge invariance while the delta function remains in the action. Replacing the
delta function with a more general function of the D — 2 implicit functions yields gauge
fixed equations of motion however it is no longer clear how to introduce ghosts. A
hamiltonian quantisation is presented however ambiguities arise for cases of greater
complexity than the particle in two dimensions. The formalism appears to furnish a
topological field theory for vanishing metric and may prove useful in investigating the

conjectured unbroken phase of general relativity.
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The most merciful thing in the world, I think, is the inability of the human mind to
correlate all its contents. We live on a placid island of ignorance in the midst of black
seas of infinity, and it was not meant that we should voyage far. The sciences, each
straining in its own direction, have hitherto harmed us little; but some day the piecing
together of dissociated knowledge will open up such terrifying vistas of reality, and of
our frightful position therein, that we shall either go mad from the revelation or flee

from the deadly light into the peace and safety of a new dark age.
H.P. Lovecraft
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INTRODUCTION

The origin of string theory (the study of one dimensional extended objects) in the
dual resonance model of hadrons and the discoveries which led to its candidature as a
theory of everything are well documented.™'? Briefly, it was the appearance of tachyons,
the identification of the graviton in closed string spectra and the fact that unphysical
degrees of freedom only decoupled in 26 or 10 space-time dimensions (for bosonic and
fermionic strings respectively) that suggested this reinterpretation of string theory. It
has been vigorously studied as a theory of everything ever since the discovery by Green
and Schwarz of consistent supersymmetric theories, with phenomenologically sound
gauge groups, which were free from anomalies and divergences (up to at least one loop
order).m

Despite all the attractive features of string theory, however, there are many prob-
lems that it does not and cannot address largely due to the fact that it is defined
perturbatively. This leads one to believe that it is just an approximation to some
deeper and more fundamental theory. It may be that string theory is not the correct
route along which to proceed in order to find the ultimate theory of nature—it might
in the end just provide some useful insights into the quantisation of gravity. Such a
conjecture is not productive; more knowledge can be gained by building on established
foundations. In accordance with this philosophy, this work describes an attempt to
construct a second quantised string theory which can, in principle, explore some of the
avenues closed to the first quantised theory.

In chapter 1 some of the major phenomenological and theoretical triumphs of first
quantised string theory are briefly mentioned. More attention is paid to the failures
of string theory and it becomes clear that a non-perturbative, second quantised frame-
work is required. Various attempts at such a framework are described along with their
drawbacks however particular attention is paid to the main contender, the naive gen-
eralisation of string theory; string field theory. Accordingly particular attention is paid
in showing that field theory is not the answer either. The chapter concludes with a
summary of some of the properties that a fundamental theory of everything ought to
encompass.

Chapter 2 reviews and discusses a particular proposal for second quantised string

theory which describes worldsheets implicitly as the solutions to certain functions. Con-



sistency with the standard sigma model is extended to include all massless background
field couplings and those at the first mass level. A prescription is given for computing
higher mass couplings in the formalism. Partly as a check on the formalism and partly
because it is not obvious at first sight, the constant dilaton coupling is explicitly shown
to be a topological invariant.

Gauge fixing is investigated in chapter 3 using BRST methods and a rather un-
conventional one made possible by discoveries in chapter 2. The measure is discussed
in detail and it is shown how the theory generates the usual first quantised partition
function. A hamiltonian quantisation of the model is briefly attempted.

Some speculative ideas are presented in chapter 4 along with some conclusions.
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CHAPTER 1

FIRST QUANTISED STRING THEORY

String theory has generated considerable interest in recent years because it appeared to
provide for the first time a theory unifying all the forces of nature. However evidence
is mounting which suggests that, in its perturbative formulation, string theory cannot
fulfill this promise. This chapter reviews the rise and fall of perturbative string theory
and discusses some of its successors.

In section 1 some of the successes of string theory are noted briefly, the intention
being to give some idea of why it is worth pursuing string theory into a non-perturbative
and second quantised regime. The major reason for the interest in string theory is that
it seems to provide for the first time a theory of quantum gravity. In preparation
for some work in section 4 on the one loop string vacuum graph, a (non-covariant)
quantisation of the free bosonic string is presented.

The shortcomings of string theory as a theory of everything are detailed in sec-
tion 2. Different viewpoints are considered and they point unanimously to a second
quantised theory.

Some of the alternative proposals to perturbative string theory, all of which are
still connected with strings (or at least two dimensional surfaces), are mentioned in
section 3. These satisfy to a greater or lesser extent some of the objections raised
in section 2. The most popular approach has been to follow the particle analogy and
construct a string field theory. Some of the more widely studied versions are considered,
particularly that due to Witten!"?! which, in its cubic form,®! comes close to satisfying
some of the philosophical criticisms raised in section 2.

Section 4 is devoted to yet more criticisms, this time of string field theory. Some
of the reasons why field theory may not be the answer are presented and one of the
more persuasive, the infinite overcounting of the torus contribution, is dwelt on.

A summary of the criteria a would-be theory of everything should satisfy is given
in section 5 and the way is paved for the introduction of a candidate second quantised

string theory in chapter 2.



1.1 Successes of String Theory

Probably the most important property which recommends string theory as a theory of
unification, and justifies the thorough investigation it has enjoyed, is that it incorporates
gravity at a fundamental level. In fact, of the two types of string theory, open and
closed, open strings contain closed ones (in for example the one loop non-planar diagram
(Fig. 1.1.1)) and the closed string spectrum contains the graviton (strictly speaking it
contains a massless spin 2 symmetric tensor which has a coupling consistent with general
covariance). Hence string theory not only includes gravity but is inconsistent without
it. Indeed it contains gravity in a finite and anomaly free way thus yielding a viable
theory of quantum gravity. This is remarkable considering that string theory is just
a conservative extension of the relativistic quantum mechanics of particles in which it
is very hard, if not impossible, to consistently incorporate gravity. String theory also
correctly contains the gauge structure of Yang-Mills, necessary to describe low energy
physics, and therefore makes it inseperable from gravity. String theory also predicts

the dimension of space-time.

il

Fig. 1.1.1

While this all looks very promising, the important question of whether it in fact
describes the real world must be addressed. Not long after Green and Schwarz sparked
off the current interest in string theory the heterotic string!” was formulated. This is
a hybrid consisting of the right moving modes of the closed D = 10 superstring and
the left moving modes of the D = 26 closed bosonic string. Sixteen of the twenty-six
bosonic dimensions are compactified on a sixteen dimensional torus producing a ten
dimensional theory with gauge group Ey ® F,. Realistic compactifications were soon
found® yielding the familiar four dimensional space-time with six of the original ten
dimensions belonging to a compact manifold; i.e., M'® — M* x K . The curvature

of this compact manifold broke the gauge group to one in which the Standard Model
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and quarks and gluons could be identified.'®! Further it was found that the topology
of the internal space determined things like the number of generations and Yukawa
couplings.m For the heterotic string many solutions were found by compactifying on
Calabi-Yau spaces[sl or on orbifolds.’”! Attempts at constructing realistic models based
on the type II string (purely closed) were doomed after it was shown that no classical
vacua of the type II superstring could reproduce the Standard Model. Therefore, at
least at the classical (tree) level, the heterotic string is of the most interest. All that
then remained was to find a special solution out of the many possibilities and introduce
supersymmetry breaking.

It is quite remarkable that, merely by considering the fundamental objects of
nature to be extended and string like rather than point like and by proceeding in the
same manner as for particles, such a rich structure can be obtained. In fact, as shall
be seen later, some of this structure suggests that investigations beyond the standard
conceptual framework of physics may be fruitful.

The first quantisation of the free bosonic string is presented here partly for com-
pleteness but mainly because it will be required in the calculation of the one loop
vacuum graph later. Although the BRST approach in conformal field theory is proba-
bly the most elegant method of quantising the string and does not need zeta function
regularisation, the staid old hamiltonian method will be employed here. This choice is
made since it easily lends itself to the light-cone gauge in which all the symmetry is
completely fixed and no Fadeev-Popov ghosts are required.

The quadratic action for the free string propagating in D-dimensional space-time
is

§ = —-Z- [ @0 Jig™ 8, X#0,X" G, (X) (1.1.1)
where g,, is an auxiliary field which plays the réle of a two dimensional metric. T' =
1/27d’ is the string tension. X* are the space-time coordinates of the string and
are functions of the worldsheet parameter ¢ = (7,0), a = 0,1. Flat space-time is
considered where G, = 7,, with positive signature. Varying (1.1.1) with respect to

the auxiliary metric g , yields the field equation
8(1X M abX - %gabgc‘iacX > adX = 0. (1.1.2)

This will be imposed as the constraint 7,, = 0 where the energy momentum tensor is

defined by
2 6L

T, = oo
ab Tﬁ6g“”
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Defining
Gab = aaX ‘abX = %gabngacX ‘adX = )\gab

where A = 1tr(g™'G), the determinant of G, is
ldet G,,| = G = X?|detg,,| = Ng.
Therefore the string lagrangian density can be rewritten
%\/EgabGab =G

and the action (1.1.1) becomes

S = ~—T/dza\/X2X'2 —(X-X)?

where dot and prime refer to differentiation with respect to r and o respectively. This

is the action originally proposed by Nambu.['

Action (1.1.1) has the following local invariances:

Reparameterisations: §X* =¢€°9, X" (1.1.3)
6gab = Vagb + vbé—a (1'14)
Weyl scaling: 69° = A(o)g®. (1.1.5)

These invariances can be used to fix the three components of the worldsheet metric
leaving a residual symmetry generated by a combined reparameterisation and Weyl
scaling for which

Vi + Vita = Aday- (1.16)

This is conformal invariance. The constraints (1.1.2) can be incorporated by introduc-
ing ghosts or by explicitly solving them in for example the non-covariant light-cone
formulation. It is the latter approach that will be used here.

Choosing the gauge where g,, = 7,, = diag(—1,1), the equation of motion for

X*(o) is found to be the two dimensional wave equation
OX* = (02 - 93)X* =0. (1.1.7)
This implies that X*(o) can be expanded as the sum of left and right moving modes

XH(o) = X[(07) + Xp(o™)
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where 0 = 7 + 0. In these coordinates 8, = (9, £9,) and n,_ = n_, = —%

with the other components zero. Before a general solution to (1.1.7) (which becomes
d,0_X" = 0 in the above coordinates) is written down, a few comments are needed
about boundary conditions. Invariance of (1.1.1) under small changes of X demands

that X'| = 0 for open strings. Such boundary terms vanish automatically for

o=0,7

closed strings due to their periodicity condition X*(r,0) = X*(r,0 + 7). The closed

string solutions to (1.1.7) (compatible with these periodicity requirements) are

u
Xp = %:};“ + %lzp“a‘ + %lz fyn_ne-zina‘
e (1.1.8)
X}j = -;-m’" -+ %lzpl‘O-‘F + %lz 9{_1_1__6-21'116*'
n#0
and for open strings the solution is
a? .
XH = gt 12 b 1 n ,—in7r o 1.1.9
$+PT+ZZne cos(no) ( )

n#£0
which is compatible with the open string boundary conditions. A length parameter,
I = 1/+/nT, has been included on dimensional grounds. Hermiticity of X implies
T —
al =a_,.

Introducing the conjugate momentum P, (7,0) = 6L/ X" enables Poisson brackets

to be calculated and hence canonical commutation relations to be inferred:
[P*(r,0),X"(7,0")] = —i6(0 — o' )p** (1.1.10)

with others zero. This relation implies the following non-zero commutation relations:

[p*,2"] = —in*” (1.1.11)
lof, o] = [ah, &) = b, ., 1" (1.1.12)

The constraint equation (1.1.2), T, = 0, can be imposed as a condition on physical
states in the quantum theory, analogous to the Gupta-Bleuler mechanism in QED, i.e.,
T |phys) = 0 where the plus sign refers to the positive frequency modes. Tracelessness

of T,, implies T, _ =T_, = 0 and so the constraint (1.1.2) becomes

It is easiest, however, to solve these constraints at the classical level and then quan-
tise. This can be achieved by using the residual diffeomorphism invariance (1.1.6). In

worldsheet light-cone coordinates the action is

S = —2T/d206+X L0_X (1.1.14)

7



where the measure d%o = %da*‘da‘. The action is invariant under of — o'F =

fir (0%) for a general function f as a consequence of Weyl invariance (since the above
transformation is conformal). Space-time light-cone coordinates are now introduced

(so that this remaining symmetry can be removed) by defining the choice:

X# - (X£,XY) i=1,...,D-2 (1.1.15)
where for a general vector V¥ = J=(V° £ VP~!). The residual conformal invariance
can be used to choose the functions fL’R(O‘i) to be

QXZ',R (ai) —z¥
I2p+

frr(o®) = (1.1.16)

The =+ indices on the o refer to the worldsheet and correspond to left and right moving
modes whilst the index on X, p and z is a space-time light-cone index. Equation

(1.1.16) corresponds to the choice

1 - 1
T — 5(0”" +0'7)= iyt (X + Xt —zt)
_ 1 +_ ot
A
which implies
X* (o) =zt +1%ptr. (1.1.17)

This is conceptually satisfactory since it means that every point on the string has the
same value of ‘time’.

In these coordinates the constraints (1.1.13) become

T,, =0,X-0,X
=9, X'0, X' — 20, X0, X~
=0, X0, X~ Ip*8, X~ =0
T__=0_X'0_X'—1%p*a_X" =0

so that

- 1 i yi

When this is solved both Xt and X~ will have been determined in terms of X* and
hence eliminated leaving only the transverse oscillations. Integrating (1.1.18) with

respect to o from 0 to = gives
wl?

T = / do (0, X')? = / do(d_X')?
0 0

8



which is satisfied automatically for open strings but yields the constraint
N-N=0 (1.1.19)

for closed strings. N = 1 3 o' o (and similarly for N) is the number operator
n£0
measuring the excitation of the string.

The closed and open string hamiltonians are

H, =2xT? /:da(TJrJr +T__)

= —2p*p~ + (p')? + 47T (N + N)
p'p, +4rT(N + N) (1.1.20)
H, =p'p, +2xTN (1.1.21)

respectively. In order to solve the constraint equation, H|¥) = 0, and find the spectrum
of states, the hamiltonian must be normal ordered to isolate the zero point energy.
(|®) will be discussed below). Inserting the commutation relations for the a’s (1.1.12)

between vacua gives (in light-cone coordinates)

D=2 D—2
2 (Olajal, ~af, o) =n = = le4l0)P)
i=1 i=1
and similarly for &@. Assuming that o) and o', annihilate different states then for
n > 0 this implies o’ [0) = 0. Hence ! can be regarded as annihilation operators for

n > 0 and creation operators for n < 0. A Fock space vacuum will be used such that

{0y = IT |0), where &} |0), = 0. The number operators can now be normal ordered:
n>0

e L H i
N = Eza—nan

n¥o

1 i (1 1 it
2 Z a_,a, + 2 Z a,a_,

n>0 n<0

doalal + Dz_ 2% n. (1.1.22)

n>0 n>0

It

The anomalous term in (1.1.22) can be regularised using the Riemann zeta function.
¢(s) = 3 mn~" is valid for Re(s) > 1 however it has an analytic continuation to
s= -1 Wnieore ¢(=1) = —1/12. The need for this regularisation only arises when dealing
explicitly with oscillators and is unnecessary when using, for example, conformal field

theory. Inserting this value into the expressions for the hamiltonians (1.1.20, 1.1.21)
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gives

o . D2
H =p' +47T(} ol ol + ) &, &,
n>0 n>0
2 g i ‘D_2 — 2
H =p +21rT(Za_nan— 51 )= -0+ M
n>0

for closed and open strings respectively. The normalisation implied in (1.1.12) is rather
unusual so operators a; and aif are introduced which satisfy the usual harmonic oscil-

lator like commutation relations. Defining

:\/_T;ai“ 7'L>0
L =+vnadl,  n>0

gives the more familiar commutation relations

[al,ail] =6, . 69

nY’m n-—1m

with others zero. ai and a“ are annihilation and creation operators respectively.
States are now constructed from the vacuum by acting on it with a, for example
the first excited state of the open string is a}'|0). A momentum label is to be understood
in the vacuum, i.e., |0) = |0;p). This first excited state is a D — 2 component vector
of SO(D — 2) and should be massless (so that it transforms correctly under a Lorentz

boost). Acting on this state with the open string mass operator yields

D -2

-----—M2 oy = 2> nailldl,,ai']|0) — 5 ai'|o)
n>0 1
_ (D=2)\ i

which vanishes for D = 26. Therefore the light-cone treatment gives a Lorentz invariant
quantum theory if D = 26. Now that this famous result has been obtained, open strings
will no longer be considered since they are not required in the calculation of the torus
vacuum graph.

The string state |¥) mentioned earlier can be expanded (for closed strings) as a

sum of component fields acting on the Fock space vacuum:

W) = ¥,|0) + ¥, ;ai'alT]0) + ¥, ;a5 @31 |0) + zzjkalTa” 3+ (1.1.23)

1,ij 2,4j

where the component fields depend on the string coordinate. |¥) can thus be thought

of as a functional of the string coordinate, ¥[X(o)]. Terms in just a'! or @' and

mixed terms such as a'a@l’ are eliminated from (1.1.23) by the (quantum) constraint

10



N — N|¥) = 0. Under SO(D —2) ¥, ;. transforms as a traceless symmetric tensor @

1,ij

antisymmetric tensor @ scalar. These are massless fields since (in D = 26)
M2aitat|o) = 4nT((14 1) — 2)ait @’ |0) = 0.

The first of these is the graviton, the antisymmetric tensor field is B,, and the scalar
is the dilaton field.

Although string theory appears to be an infinite tower of excitations, it will become
clear later that it cannot just be represented by an infinite tower of fields with an infinite

gauge invariance.
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1.2 Failure of Perturbative String Theory

The inadequacies of first quantised string theory, as defined perturbatively, as a theory
of everything fall into three main categories; phenomenological, theoretical and philo-
sophical. Although presented separately, the criticisms mentioned are not all entirely
unconnected. Some of the arguments below, particularly those in the final subsection
are rather vague and qualitative but are underpinned by the more concrete ones; the
less well defined objections are included as they tend to be of a more physical nature.
Although most of the following complaints are directed at string theory some are in fact
general and thus must be addressed by any fundamental theory be it string oriented
or not.

i. Phenomenological Considerations

Working under the assumption that string theory is weakly coupled (i.e., it is in the
perturbative regime) and that there is a realistic vacuum, Dine and Seiberg'!! have
shown that the nonlinear sigma modell'? corresponding to the string theory is strongly

[13] concerning the dilaton field (which determines the

coupled. Further considerations
string coupling) indicated that the full string theory must also in fact be strongly cou-
pled. The arguments revolved around the dilaton effective potential and required that
the theory did not describe 10-dimensional flat space and that there was no massless
dilaton. The existence of a massless dilaton would give rise to an infinite range force
and such a force (mediated by a scalar) does not appear to have been observed. It
would also imply that all string theories had degenerate vacua which were therefore
indistinguishable. This leaves two possibilities; either the effective potential is nega-
tive, in which case the theory is strongly coupled anyway, or there is a minimum at
finite dilaton expectation value in the positive potential. However such a minimum
would arise in a region in which the lowest (non-trivial) order calculation does not give

the shape of the potential correctly. Therefore higher orders are at least as important

implying that such a vacuum is strongly coupled.

ii. Theoretical Considerations
Further arguments for the invalidity of string perturbation theory came from Gross

Ml who demonstrated that, by considering the behaviour of the string

and Periwall
integrand with genus compared to that of the volume of moduli space, not only did
string perturbation theory diverge but that it was also not even Borel summable. This
was triumphed as very good news since if the perturbation series was summable then

effects that were true order by order would also be true of the full theory. This would
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imply the existence of a massless dilaton and that supersymmetry could not be broken.
Thus even a sum to all orders of string perturbation theory is ruled out and so a non-
perturbative framework must be sought. A very interesting development arose out of
considerations of the close connection between conformally invariant 2-dimensional non-
linear sigma models describing string propagation on some background and classical
string physics. The condition for conformal invariance (vanishing of the renormalisation
group beta functions) can be expressed as the equations of motion of a space-time

(15] Such actions and beta functions have been

effective action for the background fields.
calculated, in the bosonic case,[*®! up to 3 and 4 loop order. The background equations
of motion will be altered by quantum string loop effects and it is not unreasonable to

expect that they will have an expansion in e™?%°

(for closed strings) and that they
will be derivable from a space-time effective action. @, is the constant background
dilaton field. If these are the conformal invariance conditions of some generalised 2-
dimensional field theory then this may give insight into the deeper symmetries of string
theory. The renormalisation group beta functions have been generalised to include the

{17

torus (e°) contribution?” and it was found that divergences obstructing, for example

BRST invariance, cancelled between inequivalent worldsheets (e.g., a torus divergence

~2%0)  This implies a new

is cancelled by a counterterm on the sphere weighted by e
family of string theories consistent only on all worldsheets at once which suggests the

need for a second quantised string theory.

iii. Philosophical Considerations

The beauty of general relativity is that Einstein built it on a priori physical principles
and it would be very satisfying to build the ultimate theory describing nature in such
a way. Attempts have been made to do this, for example Kaku*® proposed invariance
under Diff§'/§" (diffeomorphisms of strings into themselves) as a fundamental prin-
ciple. This however presupposes that the fundamental objects are strings. Perhaps
the only requirement is that nature be predictable which might lead to ideas such as
the space-time invariance of physical laws. It is much more likely that, should the
ultimate theory be found, it will require a posterori justifications and understanding.
For example the symmetry underlying invariances such as BRST and general covari-
ance promises to be very deep and perhaps inconceivable outside 10 or 26 dimensions.
Perhaps a much deeper theory is required in any case to explain the origin of the huge
gauge invariance of string theory (and the possibly even larger one of string field the-

ory). More reasonable demands of any theory claiming to be fundamental are that it
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should not presuppose any particular background geometry or indeed topology.[lgl For
example, it is unsatisfactory for a theory of closed strings to depend on a background
generated by a condensate of gravitons. The geometry and topology of space-time (and
also perhaps even its dimension) should emerge as solutions to the equations of motion;
they should become dynamical variables. String theory has taken a first step towards

this goal by predicting the dimension of space-time (albeit at first sight incorrectly).

iv. Consequences for Couplings, Confinement and SSB

The success of QCD suggests that at some level any theory which purports to be fun-
damental must describe its confining nature. Being non-Borel summable, like string
theory, an accurate theoretical description of QCD effects will probably only be ob-
tainable from a non-perturbative theory. This rules out perturbative string theory
and indeed on physical grounds it is hard to imagine a perturbative theory being able
to accurately reproduce all the structure of strongly coupled effects. On a similar
note, it has been conjectured®® that there might exist a confining phase of general
relativity in which general covariance is unbroken. Such a phase is only likely to be
accessible from a non-perturbative framework. Incidentally, the investigation of exact
solutions to Einstein’s equations in the classical limit of general relativity (for example
the Schwarzschild solution) would probably require the use of non-perturbative tools.
Spontaneous symmetry breaking, in for example the Glashow-Salam-Weinberg model
of electro-weak interactions, occurs due to an incorrect choice of vacuum. The ‘correct’
vacuum cannot be reached by perturbing about an incorrect one; its discovery lies in the
non-perturbative sector. A serious theory must also address the breaking of supersym-
metry and perhaps the breaking of general covariance, as noted above. Another issue
concerning vacua and peculiar to strings is that, from a phenomenological viewpoint,
there are many different string theories (corresponding to quantisation about different
classical solutions) not all of which can be fundamental. The problem is not to find
more solutions but rather to find the dynamics which chooses a particular vacuum
(and hence solution). If these are indeed just perturbations of the same underlying

21,22

theory®!??] then the need for a non-perturbative theory of strings (assuming that the

string route is correct) is obvious.

The arguments presented in this section should leave one in no doubt that some
sort of non-perturbative theory is required if the above problems are to be resolved.
The theory should also be second quantised to get away from the single string descrip-

tion which is probably just a convenient way of expressing the deeper structure sought.
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A first quantised approach is intuitively inappropriate for describing condensates (of
gravitons) and hence for describing gravity. Also, to describe an infinite number of
worldsheets (as is necessary if the theory is to be consistent on all of them simultane-

ously) a single string picture is hopelessly inadequate.
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1.3 Alternatives to Perturbative String Theory

i. Universal Moduli Space

Much of the beauty of string theory is due to conformal geometry. String processes are
described in terms of functional integrals over Riemann surfaces of increasing topolog-
ical complexity, only a few dual diagrams contributing at each order of perturbation
theory. After gauge fixing Weyl rescalings and diffeomorphisms, one only wants to
integrate over metrics inequivalent under these symmetries; i.e., moduli space. Letting

G5 = {space of all metrics on a Riemann surface ¥}, one can write moduli space as

%>

~ Weyl x diffeomorphisms

My

Non-perturbative effects might be be incorporated by considering universal moduli
space®®l which not only includes the Riemann surfaces that correspond to the com-
plete perturbation expansion but also infinite genus Riemann surfaces. It is these latter
surfaces which contain the non-perturbative information. Such an extension was con-
sidered since in the above formalism one is only required to integrate over the moduli
space of the correct genus to describe a certain process.[“] The simplicity in having
to consider only a few diagrams for a particular genus surface is lost in for example
string field theory where the surface is seemingly arbitrarily sliced up into vertices and
propagators. It then requires of the order of n! Feynman diagrams to describe an n-
loop process. Closed strings are more difficult to describe however, since a natural cell
decomposition of Riemann surfaces without boundaries or marked points is less obvi-
ous. At present universal moduli space seems to provide a rather abstract statement

of what non-perturbative string theory should be.

ii. Kihler Geometry of Loop Space

Yet another interesting development was the interpretation of the (doubled) string
Fourier components as the coordinates of an infinite dimensional Kahler space.?®! The
space of all maps of the circle into space-time can be interpreted as the configuration
space of the closed string. The subset of this space corresponding to strings which
begin and end at the origin is a Kéhler manifold. The Kahler potential, K, describes
the geometry of this space and plays the rdle of a closed string field. Loops should be
invariant under differentiable mappings into themselves (i.e., invariant under the group

DiffS'). Pure rotations (corresponding to o — o 4 constant) are trivial and so one only
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need consider the quotient space
S = Diff§t/§?

which is generated by the Virasoro operators. The importance of S (which is also
Kahler) in string theory has been noted™® for example it has an invariant cohomology,
the BRST cohomology. Bowick and Rajeev proposed as a fundamental principle the
requirement that the Kihler space given as the sum of bundles over § be Ricci flat.
This is reminiscent of the Einstein field equations, however the space in question is
now infinite-dimensional and complex. For flat space-times D = 26,10 is regained for
bosonic strings and superstrings respectively. Perhaps the requirement of Ricci flatness
is equivalent to the conformal invariance of an associated two-dimensional sigma model
(and hence plays the role of classical field theory equations of motion). This formalism

does not however incorporate interactions and is hence intrinsically limited.

iii. Renormalisation Group

The sigma model approach to string theory is based on the observation that the equa-
tions of motion require conformal invariance of the background 2-dimensional quantum
field theory. Since the configuration space of string theory is maybe, in some sense,
the space of all 2-dimensional field theories, it seems natural to formulate string theory
on this space.?] This “theory space” should necessarily contain the generalised 2-D
field theory alluded to in subsection 1.2.ii, the conformal invariance conditions of which
should correspond to the loop corrected equations of motion of a space-time effective
action. Such effects have been investigated by generalising the renormalisation group

beta functions to

B=0,+hf +0* 6, + -

where (3, is the classical (tree level) beta function. Cutoffs must be incorporated since
the space will contain non-renormalisable field theories. Theory space is believed to
be an infinite dimensional smooth ‘manifold’ and different cutoffs are thought to cor-
respond to different parameterisations of the space. The reason for this latter point
is that most cutoffs make reference to a particular point in theory space and hence a
choice of cutoff corresponds to a choice of coordinate patch. Different cutoff theories are
related by the renormalisation group and in order to study its flow in theory space, the
symmetries and structure of the space must be understood. Knowledge of these are also
required to find transition functions between different coordinate patches and hence do

more than just generate perturbation theory in the vicinity of classical solutions. Such
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a non-perturbative framework is necessary in order to search for candidate vacua which
is related to the global aspects of theory space. A good enough understanding of theory

space is still lacking.

iv. String Field Theory

Initial attempts at formulating string field theory were in connection with dual reso-
nance models and were hence essentially aimed at hadronic physics.’”] The light-cone
method, in which strings join at their ends, was used since it overcame some of the
problems associated with string field theory such as the overcounting caused by sum-
ming diagrams equivalent under a duality transformation. This method was introduced

8] who built on the light-cone quantisation of the Nambu string.l?”!

by Mandelstam
Another problem (of covariant second quantisation) was how to define a canonical mo-
mentum, II[ X (o)], conjugate to the string field ®[X(o)]. In the light-cone formalism
II[X(0)] can be unambiguously defined whereas in the covariant approach the conju-
gate fields are not in one to one correspondence.

After string theory came to be viewed as (a stepping stone towards) a theory of
everything, however, a covariant formulation of string field theory became essential in
order that it could describe effects such as spontaneous symmetry breaking. Such a
formulation was introduced by Siegel[‘%] and was based on the previous light cone work.
It was unsatisfactory for a number of reasons (for example loop integrals were more
infra-red divergent) and so, in line with more recent methods, he derived a free gauge-

Bl ysing the BRST transformations obtained

fixed second quantised open string action
for the first quantised string by Kato and Ogawa.® In the closed string casel®® he
found that the extra fields needed to fully describe the classical covariant theory were
contained in the BRST-quantised string field (for example the trace of the graviton was
in the normal statistics part of the ghost sector).

The gauge invariant free string action has been determined to be generally of the

form[34,35]

S = (8]Q]@) (1.3.1)

for some appropriate . The inner product assumes integration and multiplication

laws. This style of action has the gauge invariance
6P = QA (1.3.2)

for nilpotent Q. The content of (1.3.1) was hinted at when Banks and Peskin®® dis-

covered that their open string action (with @ the BRST charge) contained a linearised
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Fig. 1.3.1
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Fig. 1.3.2

version of Yang-Mills and that their closed string action contained a linearised form

(151 (giving the classical conformal invariance conditions

of the classical effective action
on the background fields). The corresponding gauge invariances were found in (1.3.2).
This is encouraging indeed and suggests that string field theory may lead in the right
direction. This is probably to be expected since string field theory is effectively just
a rewrite of string theory anyway. In depth treatments of light-cone based interacting

(36 43]

open and closed string field theories revealed much of interest. For example it was

found that symmetries such as BRST and gauge invariance were indeed connected®’]

[37.38] in unifying space-time

and that the ortho-symplectic group may be significant
and gauge invariances. Despite these discoveries, problems remained with the light-
cone derived theories such as their complexity and in particular the necessity of having
a string length parameter, o1 Although it has been shown!®"41) that on-shell physical

amplitudes are independent of the string lengths (up to a conservation factor 6(3_ a,))

and that they are thought to be purely gauge artifacts,***? there are still §(0) type
divergences in the closed string sector®® which require regularisation. These are in
fact ‘avoided in the OSP(26,2/2) formalism®®® where the string lengths are cancelled
by fermionic degrees of freedom.

A more geometric formulation for open string field theory, without the need for
a string length parameter, was proposed by Witten.) As can be seen from fig. 1.3.1,

closed string interactions are commutative (since there is only one way to join two closed

19



strings) but can be non-associative. Thus for closed strings A-(B-C) = A- (C-B) +#
(A-C)-B = 0. On the other hand, fig. 1.3.2 illustrates that open string interactions are
non-commutative but associative (unless the strings are parameterised). This is because
the two ways of joining two open strings are not necessarily equivalent (U-V#£V.U).
Based on this observation, Witten, generalising Yang-Mills, proposed the following

gauge invariance on the (open) string field ®[X (o), ghosts]:
6 =QA+P*xA~Axd. (1.3.3)

A is the gauge parameter and the * operation can be viewed as a generalisation of
matrix multiplication and wedge product. The only (non-topologically invariant) action

consistent with (1.3.3) and the axioms of non-commutative geometry:

Q@ +T)=Q8+T + (-)®d+QV (1.3.4)
/@ « U = (=)o / Uxd (1.3.5)
/Q@ =0 V@ (1.3.6)

is the Chern-Simons three-form action:
S=%/<I>*Q<I>+%Q>*<I>*¢>. (1.3.7)

Here [ is a map from string fields to the complex numbers (a sort of combined matrix
trace and integral). |®| = 0,1 for Grassman even and odd @ respectively which is just
like introducing a Z,, grading. Incidentally the above axioms (1.3.4 to 6) were also used
in ref. [44]. A closed string field theory would require a non-associative geometry.
The radical difference between this and the old light-cone based approaches to
string field theory is in the form of the interactions. Reparameterisation invariance is
discarded in favour of BRST invariance (which has already been seen to be relevant )i
and the mid-point of the string, 0 = I, is singled out. The definition of ¢ in this
theory has deliberately been left until now; it is the usual BRST charge. The new type
of interaction considers the string as two halves, left and right. The star operation
merges the left half of one string with the right half of another to produce a third
string again with left and right pieces (fig. 1.3.3). It is clear that the length of the
string is irrelevant, thus avoiding the need for an extra length parameter. The kinetic
part of action (1.3.7) is of the same form as (1.3.1) and is thus consistent with previous

work, however there are intriguing differences between Witten’s action and light-cone
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ones. Since physical states have ghost number —% and the BRST operator @ has ghost

number 1, (1.3.7) implies that the star operation and the integral have ghost numbers

2 and —2 respectively. Hence there can be no quartic interaction (as this would have

[27

non-zero ghost number) unlike in the light-cone theory. 1 The ghost number for the

physical states comes from the physical state condition Q|phys) = 0 which, when

(4] implies ¢, |phys) = 0 for n > 0. In general ¢, _,|p—3) =0

expressed in oscillators,
for a ghost number p —  vacuum and this implies that the physical vacuum has ghost

number —-%.

Fig. 1.3.3

Despite the absence of manifest duality and the existence of a preferred point,
the string mid-point, it has been explicitly demonstrated that Witten’s string field
theory reproduces the correct dual amplitudes and is reparameterisation invariant and
BRST gauge-invariant.*® At the quantum level it has been shown that closed string
poles appear correctly,[47“52] however this then raises the question of the existence of
external closed strings as required by unitarity.

Most of the several attempts at constructing closed string field theorjes!t?~4451-57]
fall foul of the problem mentioned in the previous section of dependence on the back-
ground. Simply generalising the usual Chern-Simons type action to closed strings by
reinterpreting the opén string fields as closed ones leads to problems with ghost number.
One finds that unless everything has twice the ghost number as for the open string case,
the integral and multiplication law depend on the surface for their definition.[®® This
can Be overcome by modifying the kinetic operator to have ghost number 2,[43,44,53,54]
however since the new kinetic operator still contains the BRST charge, the problem of

background dependence persists.

There have been attempts to remove the explicit background dependence contained
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in the BRST charge[3’58] by transforming the string fields in such a way that only an

interaction part remains in the action. In general this leaves a cubic action of the form:
S:%/@*@*@ (1.3.8)

with equation of motion

dx®=0. (1.3.9)

Another method!°~*% used a mechanism involving 0§ P(26,2/2) to remove the closed
string vacuum graphs (which generate the full effective action for the background fields).
Closed strings could presumably then be incorporated in a way which does not permit
a background field interpretation. The light-cone style formulation of ref. [58] suffers
from that old bane the string length parameter, o. This time ambiguities arise in taking
the limit o — 0 in expressions such as ® x ®.

The cubic version of Witten’s string field theory™™ has been more widely studied
and has in fact been shown to be free of any background dependence.{‘r’g] Its large
symmetry structure has also been investigated.[48'6°'61] It was suggested that closed
string effects might be included in the open string action without the need for explicit

[2,51,52

closed string fields or extra open string interactions. ! This was verified and it

was also shown that general covariance could be identified in the open string gauge

50-~-52

invariance and that closed string backgrounds could be created.! J Purely closed
interactions described in such a theory are of O(A\*) instead of O(A*) indicating that
a separate closed string theory is required. Here X is the cubic open string coupling
constant and is related to the cubic closed string coupling, g, by A* = g. The non-
associative behaviour®!) of closed string interactions was exploited to construct a purely
closed string action from open string fields.[®) The open string sector was eliminated
by only considering the parts with associativity anomalies.

Despite all this progress, a really satisfactory closed string field theory is still lack-
ing. String field theory is still under investigation and, although progress has been made
towards a theory independent of the geometry and topology of space-time,'**) there

is increasing evidence that such a conservative extension of string theory is insufficient.

This is the subject of the next section.
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1.4 Failure of String Field Theory

Attempts to gain insight into the underlying symmetries of string theory have suggested
that field theory is not in fact a suitable framework in which to describe it. Investi-
gations of the high energy scattering of strings,’®” motivated by the assumption that
certain effects, for example a broken symmetry, should be easier to recognise at high
energy, revealed that all non-vanishing fixed angle scattering amplitudes were equal
up to a constant. The emergence of this strange symmetry, relating every particle
to every other, suggests that some sort of phase transition might occur in entering a
high energy regime. Moreover it was found that the behaviour of these amplitudes fell
off too fast to be described by an effective local field theory.®® Considerations of the
thermal ensemble,!®4] again in an attempt to investigate deeper symmetry structures,
have revealed that the number of degrees of freedom of string theory is much less than
that for any field theory. It also appeared that above a certain temperature, analogous
to the deconfining temperature in QCD, the notion of strings propagating on smooth
surfaces must be forsaken. Worldsheets should be replaced by some sort of discrete
surface. In fact it has been shown that continuum strings can be described by discrete
field theory.l®®!

String theory cannot naively reduce to a sum of field theories because processes
inequivalent in field theory are equivalent in string theory due to duality. Thus field
theory suffers from an immediate overcounting of scattering amplitudes. Further evi-
dence to support the idea that string theory is more than just a sum of field theories
comes from calculations of the first contribution to the second quantised closed string,
the torus vacuum graph. This contribution will be calculated in field theory using re-
sults derived earlier in the light-cone gauge and will then be compared to the answer
obtained directly from the Polyakov path integral ¢!

As noted earlier, string theory is equivalent to an infinite tower of fields ¥ ,, where
the index A not only stands for labels distinguishing the different fields but also the
SO(D ~ 2) indices which are obtained in the light-cone gauge. In this gauge the action

for these fields can be written
§= ——;-Z/d% Y, (-0+ M2)¥, (1.4.1)
A

which yields the correct equation of motion, the first quantised Schrédinger equa-
tion. The calculations will be done in euclidean space since considerable simplification

is afforded by this choice. Being a purely free action, (1.4.1) does not suffer from
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the problems associated with introducing interactions into closed string field theory.

Treating (1.4.1) as a quantum field theory, the generating functional can be written
z=]] /D\IlAe‘S =T (1.4.2)
A

where T is the effective action (generator of one particle irreducible diagrams). Usually
(1.4.2) would be written Z = ™" where W is the generator of connected graphs
however it is related to T’ by a term involving sources of which there are none in this
case. Since there are no interactions either, the only contribution to I' is the Feynman

diagram:
(1.4.3)

which corresponds to a sum of particle loops each representing a string going round a
loop with a particular excitation. This is expected to be equivalent to a closed string
going round a loop with all fluctuations being considered at once. This is what the
Polyakov path integral measures; the integral of all maps of the torus into space-time.

‘The above diagram has meaning in terms of background fields. When the metric
is expanded around flat space, G, = n,, +h,,, the 0 =V, V¥ term in (1.4.1) gener-
ates graviton interaction terms which cause coupling to the background. Taking these
into account, I' can be shown to give the one loop contribution to the cosmological
constant.!™ (1.4.3) can be regarded as the unexpanded diagram immersed in the full
background metric.

As in normal field theory, (1.4.2) can be rewritten

e T =[] Det~3(-0+ M2)

A

and hence

[ =1 InDet(-0+ M2)

A

1> Trin(-0O+ M2)

= %/d’)x > [in(~o+ M2)] . (1.4.4)
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Here Det (Tr) stands for the determinant (trace) of an infinite dimensional operator.

The Fourier transform of (1.4.4) is

d’p
(2m)P

_ 1 ﬂ/wiﬁze-u@’wi)
S (@2m)pJy T 1

Zln(p + M3)

where the logarithm has been expressed as an integral over the (conventionally named)
parameter 7,. Also a factor [dPz | the space-time volume, has been factored out. Since
the exponent in the above expression is negative definite (due to working in euclidean
space) the momentum integral factorises into D Gaussian integrals which are easily

performed giving

A
= -é'/ 2 (42 3 (Al ). (1.4.5)

The exponent has been rewritten as the mass operator M* acting on the excited Fock
space state |A) related to the field ¥,. These states have the normalisation (A|B) =
6,5 and are subject to the constraint N — N|A) = 0. It is convenient to incorporate
this constraint explicitly and to sum over all possible Fock space states. Inserting the
relation

1

Sy_n = 2117'162””‘(‘7\"1\7) (1.4.6)

|
W

into (1.4.5) with M replaced by 47T(N + N — (D ~ 2)/12) and 7, rescaled to 7,/2T

produces the following expression

D
T= d ) o
=- 5 /0 TZ/ dr,(271,) %Z Ale?mit(N=8) g2mir(N =) 4) (1.4.7)
- A

where the complex number 7 = 7, + i7, and 8 = (D — 2)/24 have been introduced. It
is evident from (1.4.7) that the left and right moving sectors factorise and can thus be

treated separately. Also since

27rn'N _ H H e27rzrna ay,

i=1 n>0
each mode (i.e., each n,1) can be considered separately too. The sum ) then corre-

A
sponds to a sum over all possible contributions of the form |r) = (alf)"|0), restriction
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(1.4.6) ensuring the correct number of left and right movers. Hence

Z(AieiszrN iA H H Z 27rer|

A i=1 n>0r>0

D2
DIRIO

i=1 n>0r>0

— H 27rm'r) -(D-2)

n>0

Inserting this into (1.4.7) along with the left moving contribution yields

d _ —_ D -2
S / - / dr, (2mm,) B[] (1 = minn)| 20D e SR (148)

1
-7 n>0

This can be expressed more concisely in terms of the Jacobi theta function

9,(0r) = 2z’ ([] (1 = 2777))°.

n>0

Inserting this into the above equation for I' gives

L
173 _D-s . RiE2 _2D~-2)
—-—2—-/? d’r(2r)" " 1, 2 |6,(0]T)|" 3 (1.4.9)
where the region of integration, F, (shaded part of fig. 1.4.1), is defined as

1
I < 5 T, > 0.
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Expression (1.4.9) is invariant under 7 — 741 (i.e., 7, — 7, + 1) as a consequence
of (1.4.6). In D = 26 it is also invariant under a new, unexpected symmetry; 7 — —1/7.
These two transformations generate the modular group, a general transformation being

of the form
- AT+ A
Mgy T+ Az
A € SL(2,2). Therefore (1.4.9) is an infinite-fold copy of the integral restricted to the

smallest region consistent with these symmetries, the fundamental region F, (shaded

part of fig 1.4.2) defined by
1
|| < 3 T, > 0, 7| > 1.

The above field theory result will now be compared to the string theory result(®®]
obtained directly from the Polyakov path integral

DXuDgab e——S
VWeyl‘/diff

torus

where § = L fdQU\/ZJ'g“baaX“abX“. The volumes of the local Weyl and diffeomorphism
groups have been factored out. Working in D = 26 (so that the Weyl symmetry is still

exact) the contribution to the cosmological constant is

d*r o _ xing\|—48
—1 [ e (enn) | TLa - )|
2 2

n>o0

27



which is the same as (1.4.8) but integrated over F,. Thus the field theory calcula-
tion infinitely overcounts the string theory result due to the fact that the r — —1/7
symmetry is not evident when starting from (1.4.1).

This symmetry is evident in the calculation of torus embeddings from the dou-
bly periodic boundary conditions used when representing the torus by a square with
opposite sides identified:

X#(0% + m,o + n) = X#(0°, o)
(1.4.10)

9as(0° +m, 0! 4 1) =g, (0% 0")
(m,n € Z) which define a unit cell 0 < (¢°,0") < 1. With these periodicity require-
ments a metric cannot be brought to a diagonal form by a diffeomorphism and Weyl

rescaling but can be rewritten in the form

“<1 TI)
9= Ty tT|2 '

T = 7, + i1, and without loss of generality the choice 7, > 0 can be made. This has
fixed the local invariances but there are still global diffeomorphisms (ones which cannot
be produced by continuous deformations from the identity) to be considered. These
will generally be of the form

o' = Ao +c¢

where A and ¢ have constant elements. The periodicity (1.4.10) constrains 4 and
¢ to have integer entries and det A = 1 (i.e., A € SL(2,Z)). ¢ just corresponds to
translations required to bring o’ back into the unit cell. In the coordinate system

o' = A~ 1o, ¢’ can be brought to the form

(3 )
g9 = 7_; IT'|2

where

which is just the same as before.

Thus the modular group arises out of considerations of global deformations of the
torus. The generator 7 — 7+ 1 corresponds to a Deyn twist o' — o' + 27 under which
one would expect a closed string wavefunction to be invariant (being constrained by N —
N|¥) = 0). However the transformation 7 — —1/7 corresponds to the interchange of o°

and o' and has no analogue in particle theory which is the reason for the overcounting
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noted above. Considering the torus as T2 = §' x S' shows that the transformation
is quite reasonable, it being just the interchange of the S, The fact that field theory
overlooks this suggests that string theory must be fundamentally ‘stringy’ i.e., that it
should not be describable in terms of particles or indeed some particle analogue such
as an infinite tower of fields. The generalisation of modular invariance to higher genera
involves more complicated groups generated by twists round and interchange of non-
contractable cycles. Each order of perturbation theory generates a different group which
suggests that these invariances should be included at a fundamental level if calculations
are to avoid infinitely overcounting vacuum graphs. Indeed the transformation 7 —
—1/7 interchanges heavy and light particles which violates usual effective field theory

notions.
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1.5 Summary of Chapter 1

Prescriptions for calculating string scattering amplitudes have been extensively studied
and are all based on (some generalisation of) the first quantised description which is
to integrate over configurations of a world sheet with fixed topology weighted by e,
where S is the Nambu action.'® These are presumed to be the perturbation expansion
(in the string coupling constant) of some deeper system of rules but at present only a
few tantalising clues as to what this might be have been discovered.?¢%645] A deeper
system of rules is needed at least in the sense that they do not require a perturbation
expansion in order to be defined. Technically this is required to be able, for example,

[13]

to determine whether the ground state of a string theory is a compactification"™ and

whether any of the myriad of alternative perturbative string theories are in fact different
non-perturbatively (rather than just different perturbations of the same theory).{zl‘m
Indeed it is not even known how consistently to define the theory when a background
solution of the full quantum equations of motion does not obey the classical (tree
level) equations required for worldsheet (super) conformal invariance. It would be
very surprising if this situation did not occur in general and it is very likely that
the solution to this question lies outside the present realm of perturbation theory.
Within first quantised perturbation theory, some fascinating but incomplete intuitive
understanding of this last question has been gained.l'”!

Any quantum theory that can be defined independently of its first quantised ex-
pansion has a right to be called “second quantised.” An alternative but equivalent
definition is to regard a theory where the number of particles (or strings) is not a priori
specified but becomes a quantum variable as second quantised. But for strings it seems
that such a theory will not be in the traditional form of quantum field theory. There
are many reasons for suspecting that a string field theory is not the answer. First of
all, it appears that string field theory offers no solution to the problem of backgrounds
that do not satisfy the tree level consistency equations. Perhaps only the Witten open
string field theory action!! can be consistently defined away from flat space but even
here any background must satisfy the tree level equations of motion.P®®) In fact a more

(3551 bhut here also it is not yet known

general cubic action formulation has been derived
how to define it in a phase where the background fails to satisfy the classical conformal
invariance conditions. Another, well known, problem is the one loop vacuum contribu-
tion which is given by integrating over configurations of a torus in the first quantised

formulation. This automatically has meaning in a non zero background as the first
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quantum correction to the background field effective action, however the result from
closed string field theory is a sum over its component modes and infinitely over-counts
the first quantised result.[°® In first quantised language this can be traced to an igno-
rance of some world sheet global diffeomorphisms (modular transformations) which is
unfortunate since without identification under modular transformations non-zero closed
string vacuum contributions cannot be finite. This last problem will be encountered
with any local field theory which uses as quantum variables the component fields of the

string, thus a proper theory will have to choose some other form for quantisation.

It was seen in section 1 that first quantised string theory comes fairly close to
fulfilling the phenomenological requirements of a theory of unification. Modulo the
inclusion of supersymmetry breaking it is possible to construct a model, the heterotic
string, that contains the Standard Model. String theory also satisfies one of the philo-
sophical requirements mentioned in section 2, namely that it predicts the dimension of
space-time (albeit to be 10 or 26). The property which makes string theory so exciting
is that, at the very least, it provides a consistent theory of quantum gravity. Coupled
with the above observations, it was this that led people to consider it a theory of every-
thing. However this turned out to be a little premature since there are areas, such as
confinement, that perturbative string theory cannot hope to describe, its perturbation
series being non-summable. String theory should be viewed as a low energy, perturba-
tive limit of some deeper theory. This theory would inherit the beneficial aspects which
string theory enjoys.

It should have become clear that, in addition to being non-perturbative, a second
quantised theory is needed. A theory describing single strings would never be able
adequately to describe the infinite condensates necessary to determine (i.e., generate) its
own space-time geometry and topology. A second quantised theory should in principle
be able to do this (and indeed in the case of string field theory it comes remarkably
close).[lg's‘g] The fascinating suggestion that string theory should be consistent on all

worldsheets (i.e., all topologies) simultaneously*”

encourages the pursuit of a second
quantised theory and in fact implies that a theory where the number and topology
of worldsheets become quantum variables may be appropriate. This is reminiscent of
topological invariants such as the Euler number which has meaning independent of the

metric used to construct it. Perhaps the same is true for worldsheets and strings.

It is desirable, at least in retrospect, that the ultimate theory can be derived

from a few fundamental physical or philosophical principles. This would suggest that
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one should start by considering a fundamental object of arbitrary dimension (i.e., a
p-brane) or its trajectory and let the theory determine that dimension. Hence whether
the fundamental ob jects of nature can be considered as particles, strings or membranes
etc., may well appear as a solution to some equation of motion or as some consistency
condition.

As was noted in the previous section, the downfall of string field theory stemmed
from its ignorance of modular invariance. Therefore, in order to avoid the same prob-
lems of over counting, a second quantised theory must incorporate modular invariance
(and duality) at a fundamental level. This can be achieved by forgoing the introduction
of a worldsheet parameterisation.

Although it seems that second quantised string theory will not use the traditional
form of quantum fields (otherwise it would suffer the same problem of overcounting
as string field theory), provisionally it is necessary to be able sometimes to express
the background (especially space-time) in the traditional form if there is to be any
hope of understanding the results. Rather than aim at an all encompassing theory
of everything immediately, it is probably more useful to find one which makes such
contact with previous knowledge yet still incorporates some of the above criteria. Such

a dichotomous theory is presented in the next chapter.
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CHAPTER 2

FrROM FIRST TO SECOND QUANTISED STRING THEORY

In [1] a description of bosonic orientable closed string worldsheets in flat D-dimensional
space-time was given in terms of the simultaneous zeroes of D — 2 functions f'(z)
(where z is the space-time coordinate). The functions can describe any number of
worldsheets simultaneously, however the worldsheets are hidden from view allowing the
theory to be defined independently of the first quantised expansion (see chapter 3)
and thus satisfying the conditions necessary for a second quantised theory. Indeed
once properly quantised, the functions f* will no longer have precise zeroes and the
description in terms of worldsheets dissolves. Note that a parameterisation of the
worldsheet is avoided (this is to be contrasted with string field theory). Thus the
theory manifestly incorporates duality and identifications under modular invariance.
Also it is difficult to see how this formulation could do other than solve the problem
of consistency on all worldsheets simultaneously. This is because, provided that the
description can be consistently quantised, one cannot avoid considering all topologies
simultaneously. This is a bona fide second quantised string theory unlike string field
theory where one first constructs a classical field action by requiring consistency with
first quantised string tree level and then one attempts to second quantise.

In this formulation the functions’ dynamics are governed by a space-time action
which possesses a local GL(D — 2,R) invariance. It reduces to the Nambu action for
each worldsheet, together with any couplings to background fields. In ref. [1] couplings
to a general background metric and massless antisymmetric tensor (B,,) were given.
The dilaton coupling and the coupling to any of the massive component fields were
not given. The primary purpose of this chapter is to fill this gap. Unfortunately
this is not straightforward since the standard couplings of these fields are given in
the Polyakov[zl description in terms of an auxiliary worldsheet metric (or equivalent
definitions through gauge fixing). However with just a general background metric,
massless antisymmetric tensor and constant dilaton field the auxiliary worldsheet metric
may be equivalently replaced by the induced metric in the sigma-model action. In
section 2 an expression for the constant dilaton coupling is found (in terms of the

background space-time metric and the functions f*) by solving for the worldsheet locally
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in terms of worldsheet coordinates o®(a = 0,1) and constructing the induced metric.
As is well known, the constant dilaton couples via the Euler number and is thus a
topological invariant independent of the space-time embedding and space-time metric.
This is far from obvious in the expression derived in section 2. Thus in section 3
independence under perturbations of the f* (corresponding to small changes in the
embedding) and independence of small changes in the space-time metric are explicitly
demonstrated.

Although no more than the above may be deduced by a direct comparison with
the Polyakov action, the result of section 2 suggests a simple proposal for the general
dilaton coupling which is given in section 4. The coupling possesses local GL(D — 2,R)
invariance and is readily generalised to local GL(D — 2,R) invariant expressions for all
other couplings as well. However it is argued that the correct method for coupling the
non-constant dilaton and massive modes will involve an explicit breaking of GL(D —
2,R). Section 4 demonstrates that all local worldsheet functionals of string position
and induced metric may be turned into local functionals of f.

In section 5 the results are summarised. First however, in section 1, the results
derived in [1] are reviewed and various points mentioned only briefly there are expanded
upon, in particular the analysis in a general background metric is completed and a
worldsheet projector, which plays an important rdle in the coupling of other background

fields, is introduced.
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2.1 Implicit Function Approach

In this section the method of describing bosonic closed string worldsheets as the solu-
tions of implicit functions is described. The discussion will be for p-branes where ‘brane’
is just a term for a general extended object and p is the dimension of the brane’s tra-
jectory. The string case can be obtained by setting p = 2. For simplicity (arbitrary)
closed D-dimensional (euclidean) space-time manifolds, A, will be considered.

It was originally shown in [1] that the flat space action
S = /\/dD:z: S(F)dfA -+ A dfP-P| (2.1.1)
A

reduced (for p = 2) to the Nambu action on choosing a parameterisation of the world-
sheet. In the case of strings, A = 1/2ra’. The proof will be generalised to arbitrary

p < D and a general metric later. In curved space with metric G,

[dfin - NdfP=P = {fL .. fPo fL PR G GRerreer}E (2.12)

BD-p VDuwp

where f, =V, f = 0f/8z" and in general f, , = V,...V, f. No factorial weighting
is implied in (anti)symmetrisation.

The D —p f* are smooth functions on D-dimensional space-time, the simultaneous
solutions of which define p-dimensional worldsurfaces, M where a labels disconnected

topologies. The p-brane worldsurface is hence defined by
fi(z)=0 i=1,...,D-p. (2.1.3)

It is of some concern as to whether all surfaces, even disconnected ones of any topology,
can be described in the above manner however this follows from two theorems of Whit-
ney. The first® states that any closed set in R™ occurs as the solution set f~1(0) for
some smooth function f : R® — R while the second, the famous embedding theorem,

allows any submanifold of A to be considered a submanifold of R” for sufficiently large

n.
The f*(z) are restricted by the important condition

df'A---ANdfP~P £0  when fi=0 (2.1.4)

which ensures that the df' are non-vanishing and linearly independent at f = 0

(and hence that the delta function &(f) = [1277 6(f') is well defined under the

space-time integral). f without indices is used to denote the column vector with
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elements f, fy,..., fp_,. The condition also restricts the surfaces to be orientable
non-intersecting p-dimensional manifolds without boundary. This follows because the
(Hodge) dual of (2.1.4) is a p** rank totally antisymmetric tensor perpendicular to all
the df’(z) which may be used to define a unique p-dimensional oriented tangent space
to the solution set {z|f(z) = 0} at each point z. This is not possible if any of the
above conditions are relaxed. Note also that the description (2.1.3) of the surface is
degenerate, there being many equivalent functions f that have the same zeroes. If f
is another such vector it must vanish when f vanishes and therefore without loss of

generality the relation
f(z) = Qz)f(z) (2.1.5)

may be written where  is a (D — p)-dimensional real matrix valued smooth function
of z. Tt must also satisfy det Q(z) # 0 for & away from the surface in order that f’
have only the zeroes of f. In addition, requiring that (2.1.4) holds for f’ implies that
det Q(z) # 0 when f(z) = 0 and hence det Q(z) is non-vanishing everywhere and
is invertible. Thus (2.1.5) satisfies the properties of an equivalence relation f' ~ f as
indeed it should. Physically (2.1.5) implies that there is a natural local GL(D - p,R)
gauge invariance inherent in this description. Next it will be shown that the action
(2.1.1) respects this gauge invariance.

The action (2.1.1) can be written in a more useful form by noticing that, after

antisymmetrising over internal rather than space-time indices in (2.1.2),

|df*A - AdfPP| = /det(f,Gw fT) = Vdet M = VM (2.1.6)

where M = f*f7. The action can now be written
5= [aPe VGV 8(f). (2.1.7)

In this form the action is readily seen to be GL(D — p,R) invariant by noticing that
any undifferentiated f* that is integrated against the §(f) can be ignored. Thus under
f=Qf, f, — Quf + Qf, and the action becomes

S - ,\/d% VG det Q-1 6(f) det(QTQ)F \/det(f7 fT)
- ,\/d% VL 6(f).

The general curved space p-brane action (2.1.7) can be shown to be equivalent to a sum

of Nambu actions (one for each surface M) by changing to a local coordinate system
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consisting of 0%, local coordinates for one of the worldsurfaces described by f, and D~p
other linearly independent coordinates. For these D — p coordinates the functions
themselves may as well be used since (2.1.4) guarantees their linear independence.

Transforming all tensors in the standard fashion (and using 8, f* = 0 in the presence

of 6(f)) gives

S =\ / PodP=7f §(f)V/'G det(GY).

Using the general relation derived in the appendix, G may be factored into a p-

dimensional and (D — p)-dimensional determinant:
G = det(9,2*G , 0,2" ) det(G, — Gjb(Gab)‘lGak)

where (G,,)”" is the inverse of the p x p matrix G,,. Now G; — Gkb(Gab)'lGaj can
be shown to be the inverse of the (D — p) x (D — p) matrix G* by remembering that,

since G¥ is the (i)™ component of G**, G” Gy = (5; - G**G,, . Hence one obtains

5= [ #0\/det(8,24G,, 8,2").

which equals the usual Nambu action when p = 2.

Varying (2.1.7) with respect to f gives
68 = ,\/dD VG(VM §f7 =22 aé(f) — V(WM §(f)fI N )6f)
= _A/d% \/Z;"\/A'H(f)PWf;;VN 5f

where N = M~! and P,, = G,, — f/ N f,. Notice that the §'(f) terms cancel and
that the properties of the delta function were not explicitly utilised in the above. This
also happens later when the equations of motion for the constant dilaton action are
derived (in order to prove that it is topological) and will prove useful in section 2 of
the next chapter in the context of gauge fixing. The equations of motion for f take the
form

§(f)P* f,, = 0. (2.1.8)

Note that (2.1.6) implies M is invertible if and only if df'A--- A df®~? # 0 and hence
(2.1.4) ensures that the equations of motion and P,, are well defined. When the above
condition is satisfied, P,, is a projector onto the p-dimensional subspace orthogonal
to all the f; and in particular projects onto the tangent space of the worldsurface
when f = 0. The properties of P, are listed in the appendix along with some useful

identities.
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At first sight the equations of motion (2.1.8) look quite different from those derived

in [1] (for strings), the covariantised form of which are

1 4 - v [ R— tpy £1
6 - A AP (xd A AP0, 9,9, 1 = B(P L, = 0.
(2.1.9)
A proof that these are equivalent to (2.1.8) appears in the appendix at the end of this
chapter. Henceforth only strings (p = 2 and A = 1/2ra’) will be considered unless

otherwise stated.
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2.2 Constant Dilaton Coupling

The first step towards writing down a generalisation of the Polyakov couplings in the

above formalism was made in [1] for the antisymmetric tensor, B,,, and the metric.

uv
These will be reexpressed in terms of the worldsheet projector P,, in section 4 along
with some other couplings. In this section an action for the constant dilaton field is

calculated in terms of the functions f*(z) which reduces to the usual action
Sg, = %/d% VIR® (2.2.1)

on parameterising the worldsheet. R® is the worldsheet curvature in terms of the
induced metric g,,. This action governs the string theory coupling constant since in

—(2-2L) where L is the number of

the Polyakov loop expansion graphs are weighted by g
loops of a particular order of perturbation theory. This weighting can be incorporated
as an additional term in the action by writing g7* = exp(—XIng) where x = 2~ 2L is
the Euler number of the L loop worldsheet. Interpreting Ing as the constant part of a
field @,Ing = —®,, the weighting becomes exp(—S4_ ) with S5, = —x®, which is just
(2.2.1). The convention R*, , = I‘f,‘[p’a] ~-TI, FZ]V is adopted.

Recalling the proof of equivalence between (2.1.7) and the Nambu action, the

dilaton action can be shown to be of the form
Sa, = %’/d% VGVM §(f) R (2.2.2)

where R is the worldsheet curvature which will be written in terms of f and P,,.
Such an expression for R = R(z) will be arrived at by changing to space-time normal
(geodesic) coordinates at the point @ (which lies in M) and requiring a proximate
point, X* = 2" + y*(o), to also lie in M. ¢® (a = 0,1) are two parameters for this
solution and may be used as local worldsheet coordinates with y*(0) = 0. X* and 2*

are solutions to (2.1.3) and therefore
fX) = f@) =y fu+ 39"y f +---=0. (2.2.3)
Resolving y* into components normal and tangent to M enables one to write
y* = o’ 4 AT fH (2.2.4)

with 0¥ = V#0® and V' f, = 0. The o” lie in the tangent space to M at 2, V" is a
D x 2 matrix and A is a D — 2 vector. Substituting (2.2.4) into (2.2.3) determines the

parameters A to be

N
A = ~7f"“’0”0‘/ + 0(03)
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and hence one finds

Xt =a*+ot —LfT N flo*a” + %Aé‘,\pn)a’\a”a" + O(o*). (2.2.5)

where a general third order term has been introduced. The next step is to calculate the
worldsheet induced metric, g,, = G, (X)X, X", and thence R(z) = R(X)|,=,- The

expansion of G, (X) in the normal coordinates y* (o) = o* + O(c?) is
Guu (X) = Guu (:II) + %UEGAGuu,nA +e
which coupled with (2.2.5) gives
gab = ‘/a“Vub + (f,;u Nf,m/ + %Guu,m\ + Ay()u/n) +Au(Apn))a,€a/\‘{z#%” +0(03) (226)

Since R, = %R[ab][cd], there will always be two indices in the symmetrised part
of A,,x) that are antisymmetrised over when calculating R to zeroth order (terms
arising from the part of the Riemann tensor bilinear in the connection will be of order
0?). Therefore the leading contribution to R from this term is zero. From the above

convention for the Riemann tensor it is clear that at 0 = 0

Rabcd = %(ga[c,d]b - gb[c,d}a)
= ‘/a”VZ;VV::n‘/dA( ,;ANf,un - ,;an,u)\ + R;wn/\ )’

As a consequence of V. f, = 0 and the fact that (as shown in the appendix) P*” is a

projector and hence unique, one can write (at o = 0) V*V** = P*”. Therefore
R = Rabab — p#s Puk(f;';[/\Nf;K]” + Ruum\) (227)

where the connections and a general coordinate system have been restored. After

rearranging (2.2.7) (see appendix) the constant dilaton action can be written
P . x pv
Sa, = o2 / dPx VGVM 6(f)(V, PN, P*P Py, + P* PR, ) (2.2.8)

where P}, =G, —~ P,, projects orthogonal to the P,,.
In the next section it is directly verified that the action (2.2.8) is topological, i.e.,
independent of small changes of f and the metric, and that the new dilaton coupling

is indeed the same topological invariant as (2.2.1).
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2.3 Topologicality

In the previous section a dilaton coupling was derived which, although it reduces to
the usual coupling (2.2.1), it is not manifestly invariant under small changes of f (i.e.,
embedding). It is also not obvious that it is independent of small variations of the
metric as it should also be if it is to be a topological invariant. This section addresses
both of these points, proving them by explicit calculation. Prodigious use is made of
the identities in the appendix throughout this section. The section is concluded with
an example which illustrates that our coupling is the expected topological invariant,
the Euler number.

Firstly the contribution to the f equation of motion from (2.2.8) is proven to be
identically zero (i.e., that (2.2.8) is invariant under small variations of f). Varying

(2.2.2) with respect to f one finds
8y = %g / dPz 6(f)VGVM (6R — 6f"N f* R, — 6f "N f,., P**R). (2.3.1)
With R as defined in (2.2.8), the first term in the brackets is

6R =2V, 6PV, P pr — v, PV PH° 6P, +25P*P"°R,,,,
= - 2{V,(P'V, P fTN 6f) = V, PPV, P P fTN §f7}

~ 6P [V, V| P Py,
= — 2{(P""§fT N f'N, P 4+ §fT N fr PV, PV P~ 6P PR, .}
= - 2{V, (PN, P fT N éf )+ P°?§fT N f*P*" R

TV

+ 8§fTN (f¥v, pre prTY P~ f,V*P, V, P P} (2.3.2)

where [V, V, ]P? = PT("Rp)TW has been used and it has been noted that

[v opT v 4 - o vir
£,ypley piopr — fepley pley p o= V0P, Y, PP
Similarly for the second, R.,, term in (2.3.1) one has

V\R = 2{V,(P"V, P’ VP )+ V,P"VV PP’V P
-V, P,,v*P, V,Plpir 4 plpity poeR

oT R

+ P,° P¥"V, P" R + PP P°* R (2.3.3)

oTV U ponA;p}‘

This follows from (2.3.2) however an extra Riemann tensor arises when the V, is com-

muted through the V,. The Bianchi identity, R ] = 0, was used to rewrite the

polv ;A
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last term of (2.3.3). Integrating 8( f)v/G+v/M 6R by parts gives

§(f)VGVM éR =
2VG{V,(8(f)VM ) P** v, PH’ fT N §f,
+ 6"V (6(f)VM N (f¥'N,P¥ P"V,P,, - f, VP, N, PP
+8fTV,(N f*8(f)VM P*° P*")R,.,,
+8fTN f8(f)VM P P*" R, .. + total derivatives} (2.3.4)

Integrating the first term in (2.3.4) by parts again cancels the third term and the
Riemann derivative cancels that in (2.3.3) (when substituted into (2.3.1)). Under the
integral the total derivatives in (2.3.4) can be converted into surface contributions and
ignored.

Further manipulations yield

6R—6f"N f*R, = 26f"N(f,,P""P*"P*R, . — f, P, PV,P V. P)

oTV

Thus the bracketed term in (2.3.1) becomes
6N f e (F50N oy = §R, ., )(2P7 PR PHo _ por polo piiv)
Rewriting this and substituting it into (2.3.1) gives
8Sg, = %;-/d% S(FIVGVM 6N f,*(f1"N f,* — LR, **)P,"P,"P,°. (2.3.5)

Equation (2.3.5) involves triple antisymmetrisation over projector indices, however
these are effectively two dimensional (since P,, projects into a 2-dimensional tangent
space), and hence the equation vanishes. Thus it has been proven that action (2.2.8)
is invariant under small changes in f.

Action (2.2.8) should also be independent of small variations of the space-time
metric, G, and this is now demonstrated explicitly and hence it is proven that (2.2.8)

is a topological invariant. Noting the following will facilitate the proof:
§(VGVM ) = LVGVM P* §G,,
6P = PP P76G,,
8

-or4, f,

6R = 6Gu‘r RTun/\ + Gu'r(v,\(sr;n - VIC(SF;)\)

HVRA
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where the last of these is the Palatini identity. Rewriting the curvature, (2.2.7), as
R = PV pHlx fisN fo,. + PP R, .\
and varying with respect to G, gives

6R = — 2P Pl pur g7 N £, 6G , + PN PHs f1 N fPfT N f76G,,
— 2Py pHIR§TT fT N f, — 2P** P* P**6G,, R

LY REA

+ P P 6G, R, , + V6T4, Pl P, (2.3.6)

In the following analysis the [d”z/Gv/M 6(f) will be omitted for clarity but accounted
for implicitly when integrating by parts. Thus integrating the last term of (2.3.6) by
parts and adding the third term to it gives

[IAN feppl=prq 617, . (2.3.7)

It is now possible to change to geodesic coordinates and write G, 6Ty, = é{p,vx}.
From (2.3.7) one can clearly see that only the (uv) symmetric part of é{u,vx}, the

Christoffel symbol, will survive and so it can be replaced by 146G When this is

17779

integrated by parts again and gathered up with the remaining terms of (2.3.6) one gets
6R = “'(Pp[,\PE]H ;;an;a/\ P77 + P> per Pnupr/\n )6G,uu°

Notice how all derivatives of the delta function, obtained when integrating by parts, are
removed by projectors. It is interesting that the properties of the delta function were

not explicitly used in any of the above manipulations. Therefore under the integral

§(VGVM 6(f)R) = 3VAVM §()6G ., (F1u N fon + R pons)

x (P PA prle _ o pro polh pelu )
and finally one has
@ TK I o
65y = ﬁ/d% VGVIL §(f)6G,, G™ (fT*N [, + LR, )P, *P,"Py"  (2.3.8)

which vanishes for the same reasons as (2.3.5).
This completes the proof that the constant dilaton coupling derived in the previous
section is a topological invariant i.e., that it is independent of small fluctuations in both

fand G,,. All that remains is to verify that it is indeed the Euler number.
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Example: 2-sphere in 4 flat dimensions.
There will be two f* and the worldsheet is to be described as the intersection of a
3-sphere at the origin of radius @ and the plane X' = b. The solution f = 0 describes

a 2-sphere when |a] > |b|; there are no solutions for |a| < |b|. Writing
X2 - az)
f= ( Xt -t

one finds that R = —2/Y? where Y* = X*|,,_,. The X' integral can be done
X1=0

immediately and one can perform the remaining one by changing to ‘hypercylindrical’

coordinates, Y? = r%;

= —Sg [, = —}/d“X 1%;'5()(2 —a®)6(X —b)

>
[

= Q/wdrz §(r* + 0% — a?)

=0 Oif la| < |b]

=2 if |a| > |b].
This gives the correct value of the Euler number for the sphere. Similar analysis yields
S, = 0 for the torus. Thus in this example the equivalence of the actions (2.2.1) and

(2.2.8) has been demonstrated. Note that det M = 4Y? is non-zero as required by

(2.1.4) and (2.1.6) except when a = b, where the 3-sphere degenerates to a point.
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2.4 More Backgrounds

In this section couplings for a general metric G, (z) and massless antisymimetric tensor
B, (z) are given!! along with the couplings for the dilaton and fields at the first mass

level. The coupling to the metric is:
So= 5o [ @z §(5VEVIT. (2.4.1)

This is equivalent to a sum of Nambu actions in a general background metric (one for

each worldsheet):

1
So = 5o [ #0/3e4(8,24G,,8,27) (2.4.2)

which in turn is equivalent to the usual kinetic term in the Polyakov action. The

coupling to B, is
1 D 1 D=2
= - Ad . 2.4.3
Sg - /d z §(f)df'A---NdfP*AB ( )

It is clear from integration by parts that this has the same linear gauge invariance

8B = dA as the worldsheet coupling. (2.4.3) may conveniently be rewritten
Sp = [ a2z 65 WEHT B, (2.4.4)

where

e = (GM)~servirbo=2g f1...9,  fP-2

Taking into account the fact that ¢“#!#P~2 transforms as a density it is readily seen
that ¢*” is a pseudotensor (i.e. axial). This implies, for consistency of (2.4.3 and 4),
that B, is also axial. " is a pseudoscalar under the internal GL(D — 2,R) in the
presence of §(f). Under the change of coordinates described in section 1, in proving
equivalence of (2.4.1) to the Nambu action, (2.4.3) becomes

aff do°
det(—gg‘?%;') (2.4.5)

afi dos

1
4o’

B

/d% €*d,z"0,2" B

uy

which is the usual B, coupling up to a sign depending on the relative orientation of z*
versus (¢*, f* ). Comparison of (2.4.5) with (2.4.1,2 and 4) shows that, up to a possible
sign, €’ reduces to ﬁs“bﬁa z*d,z” on the worldsheet (where g is the determinant of
the induced metric). Note that, by the analysis in the appendix, ic"” is a ‘square root’
of the worldsheet projector:

P = €“>‘Ey'\
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which is consistent with the fact that P*" reduces to 8,z" 3,z ¢** on the worldsheet.
For the sake of completeness the B, contribution to the f equations of motion
will be derived. Perturbing by 8f and integrating by parts terms involving derivatives

of éf, (2.4.3) becomes

855 = = [P (8,(FHEF AN - N dfP=AB — S dFAAPA -+ N dfP=AB
— o= §fP-24fIN ... A df'AB}
+ (=12 6(F){6F df*A - - A dfP~*NdB

— o= (=1)PEfP-2df'A ... A dfP-3AdB}}

where 6,(f) = 86(f)/0f. The first two lines vanish while the last two provide the
corrections to the equations of motion for each component of f. Note that no properties
of §(f) were used in deriving these equations.

The B,, and G, couplings, together with the constant dilaton coupling, obtained
in section 2, are the only ones obtainable from the Polyakov description; any other
couplings would not allow a consistent (classical) elimination of the auxiliary worldsheet
metric. Nevertheless it is tempting to speculate on the form that such couplings would
take in the worldsheet description. Taking into account the form of the constant dilaton

coupling in section 2 (2.2.8) one might expect in general:
1 rLY * K DV
= Z?r'/db”” §(S)VGVM (V, PV, P* Py + PP R, )®(z).  (2.4.6)

It is certainly this plus possible terms containing derivatives of . (Problems of mixing
between ® and the metric will be ignored). Note that the worldsheet projectors and
0(f) ensure that this more general coupling still has local GL(D - 2,R) invariance.
(2.4.6) reduces to the worldsheet formula

! / &0, /GR®(2(0))

where g, is the induced metric. This is just the general Polyakov coupling of the
dilaton with the auxiliary metric replaced by the induced metric. Using the same
prescription on the other Polyakov couplings one may generate couplings for all the
massive fields. For example using the fact that V,8,2*9%2"0"z” is the worldsheet
reduction of —P°* P** fo,N f* (which may be proved by manipulations similar to

those in section 2) together with the worldsheet reductions of P**, ¢** and (2.2.7), one
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finds that the first massive mode couplingsm
' 1 a v 7 a, v s
S = Y /dzaﬁ{aam”a 2" 8,2*0'¢"B,,, () + g\/oTVaa,,x“a z 8"3:’\B[W]/\
+Va'V0,2"8,2" 0"2* B, ()
+a'V49,2#V*9,2* B, (2) + o' RO,2" 02" C,, (2)
+ a’%RV“(?aa:"C'“(:c) +a’RC(z)+ -}

are the worldsheet equivalents of

§' = o [P 8(/)VGVH (P PV B,,,, + ValV, P F;* P B,
+ Vel P?'V, PP P2* By, 1,
+a'V,P°*V. P P;* P B, + o' RP*C,,,
+ o RV P PC, + P RIC -} (247

where “4...” stands for terms containing an odd number of €** or ¢** factors as
appropriate. One may readily verify that (2.4.7) has local GL(D — 2,R) invariance.

A consideration of the perturbative arguments (in o) presented in section 2 makes
clear that all higher mode couplings can be similarly built from terms in N, G, and
polynomials of higher derivatives of f. Since these couplings refer only to a surface ex-
pression they will automatically have GL(D—2,R)invariance: the equivalence structure
discussed in section 1 must be preserved. This requires appropriate contractions of ¢**
and P*¥ with multiple derivatives of f and thus always allows integration by parts of
all but one of the derivatives of f onto ¢*” or P*. Thus, as illustrated in (2.4.7) the
higher mode couplings may be always given as GL(D — 2,R) invariant contractions of
the component fields with polynomials of P*”, ¢#” and their derivatives. The above is
a prescription for turning local worldsheet expressions of * (o) and the induced metric
d,, (polynomial in their derivatives) into expressions in this formalism. In fact there
is a one to one correspondence between gauge invariant local expressions in ¢ and f
and gauge invariant local expressions on the worldsheet. The implications of this will
be discussed in section 3 of the following chapter in connection with the measure. The
action (equations (2.4.1,4,6 and 7) and all higher order terms) inherit an additional
local symmetry:

et — et 4 fTeM (2.4.8)

where e*” is an arbitrary smooth antisymmetric tensor field transforming contragredi-

ently under GL(D —2,R). ¢** can be defined to be invariant under local GL(D - 2,R)
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in the presence of §(f). Some of the ways of writing the background couplings (par-
ticularly R) are not invariant under (2.4.8). The reason is that the different ways of
writing the couplings use identities (given in the appendix) which do not hold when &**
is only the usual expression up to terms of order f. The couplings given here are those
obtained directly from the worldsheet expressions by the methods of section 2 however
they have been integrated by parts just the necessary number of derivatives to turn
multi-derivative terms in f into singly derivated f’s and hence into P}, or other undif-
ferentiated expressions in ¢,,,. It is conjectured that all such couplings have invariance
(2.4.8). (This appears to require that couplings when written explicitly in terms of
€,, have differentials of £, only in the form £”"V, ¢, as is indeed the case with those
couplings already mentioned). A proper understanding of whether these are in fact
couplings (perhaps with some mixing) of the massive modes requires an understanding
of gauge fixing and quantisation. This is the subject of the next chapter. There are
perhaps two reasons to suspect that the couplings given are not correct for the massive
modes: According to the prescription given above, the coupling of the tachyon would

be
S, = % / Pz 6( VGV t(z)

which is worryingly close to the metric coupling (2.4.1), for example a non-zero tachyon
background would be equivalent to a zero tachyon background by a rescaling of the
metric (at least in the case where all the other massive backgrounds vanish). There
is no analogue of this in other formulations of string theory and it suggests that the
prescription given for deriving the massive field couplings is too limited for a one-
one correspondence between these couplings and the component fields. In all other
formulations there are conformal anomalies or their analogues which are responsible
for example for forcing D = 26 in flat space-time. (In string field theory this is an
anomaly in its gauge invariance). The anomalies, if non-zero, destroy the equivalence
to the Nambu worldsheet description. It is natural to expect that this réle will be played
here by the local GL(D — 2,R) invariance, especially since it is directly responsible for
equivalence to the Nambu description. Presumably, in analogy, the couplings of non-
constant dilaton and massive fields will be through explicitly non-GL(D -2, R) invariant

counterterms, or by direct coupling to the Fadeev-Popov ghosts.
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2.5 Summary of Chapter 2

In this chapter an approach to second quantised string theory using implicit functions
to describe worldsheets, originally proposed in ref. [1] has been reviewed and extended

to more general backgrounds. In section 2 the constant dilaton action
@ 14 g
S‘bo = Z;%/ de(S(f)\/é\/M_P“ Pl\ {f;;,[/\Nf;y]a + Ru)\ya} (251)

was derived where M, N and P* (the worldsheet projector) are expressions con-
structed from f and discussed in sections 1, 4 and the appendix. It is tempting to
comment on the similarity between S and the Einstein action and it is not incon-
ceivable that quantum corrections to this action will yield the Einstein equations. The
constant dilaton action is ®, multiplied by minus the sum of Euler numbers for each
worldsheet described by f. This is the same as including a string coupling constant
g = exp(—9®,). Thus, once the quantisation of this system is properly understood, the
above action will play an important réle in comparing this non-perturbative formula-
tion with first quantised string theory. In particular for large ®, it should be possible
to derive a perturbative expansion in g equivalent to the first quantised results.

In order to make explicit such a comparison it is necessary to compute S matrix el-
ements. One can generate these by coupling the system to the appropriate background
fields which then act as sources. In sections 1 and 4 the couplings of the background
metric G, , and B,, were derived and it was discussed how the non-constant dila-
ton and massive component fields may couple. As a by-product this enabled it to be
shown that all local worldsheet expressions in z#(¢) and the induced metric, which are
polynomial in their derivatives, can be turned into local expressions involving P, , ¢,
and the background fields, polynomial in their derivatives. This may be important for
identifying those requirements on the functional measure which ensure the preservation
of unitarity, a point which is addressed in the following chapter. An interesting point
uncovered in this chapter, which will also prove useful in chapter 3, is that the vari-
ations of S, S and S, do not contain derivatives of §(f). In fact the same results
would be obtained if §( f) were replaced by any other function of f (provided that the
constraint (2.1.4) hold wherever the function is non-vanishing). It is expected that this
phenomenon holds for all the other couplings given in section 4, and is presumably
yet another reflection of the fact that classically only the zeroes of f have physical
significance.

The constant dilaton coupling (2.5.1) is topological: In section 3, it was directly
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proven that it is independent of small variations in f and G - 1t has already been
noted that the familiar string perturbation theory should be regained as ¢, — 0.
From the point of view of this formulation this would most naturally be achieved by
perturbing about a theory described purely by (2.5.1). Such an action would yield a
topological field theory. This may have relevance to recent speculations on the true

degrees of freedom for string theory. This conjecture is considered in chapter 4.
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Appendix

In the appendix the projector P,, is investigated in more depth and the equivalence
of the equations of motion (2.1.8) and (2.1.9) is demonstrated. Firstly, however, the
relationship used to factorise the determinant in section 1 is derived. The starting
point is the definition of determinant as the integral over (not necessarily conjugate)

Grassman odd vectors  and 7:
det G = /dﬁdnexp(-ﬁGn). (A1)
Writing

o=(8) v=()) w emcn

where the dimension of the Grassman parameters ¢ and € is the same as the dimension
of the square matrix A (and similarly for b, b and B), allows the exponent in (A1) to
be written

nGn = ¢Ac+eBb+bCc+bDb

=bDb+&(A - BD7'C)e. (42)
In the last line the replacements
b—b-D"'Cc
b—b-ecBD™!
have been made. Inserting (A2) into (A1) shows that

det G = det D det(4 — BD "' C).

Returning now to the projector, it is assumed that df*'A--- A dfP~? # 0 so that N =

M ™! is well defined. P,=G, - f;N f, is symmetric and is a projector because
P*,P¥, = P*, (A3)
It projects onto the maximal subspace perpendicular to the df*’s as evidenced by

P* fi =0 for i=1,...,D~p (A4)

and Pt =p (for a p-brane). (A5)

Some useful properties of the P, , all of which follow straightforwardly from the above,
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are listed below;
P,“,f;up = _VPPpuf”

_8p PHy fy

I

also P f,,
pwfl N f,=~P*VP,

=GP fN fa,

V.P,, VPP, = P, VuP“ V, P,

il

Voo

P,V,P°P, =0
v,pP,, P =PV P

where P}, = G,, — P,, is a projector onto the D —p dimensional subspace spanned by
the f,. It is expressions such as the last one above which invalidate symmetry under
Y — M +f'repu.

Finally a proof that P, = e (kdf'A - A de‘2)u"(*df1/\ -~ AdfP-?),, intro-
duced in section 1 equals P,, is presented. In order to do this it need only be shown
that P, possesses properties (A3 —5) since these uniquely determine the pro jector. It

is convenient to start with (44). Now

(*dfl/\ e A de—Z);w — 5#1--~#D-2#"f;1 .. D -2

TYUp_z

where £#1#P is the totally antisymmetric tensor density in D dimensions. When this
is contracted with an f; it vanishes since there is a combination fij f; for some 7 = i

which gets antisymmetrised over by the epsilon tensor. Hence it follows that
Prfi=0 for 1=1,...,D -2
which is property (A4) for p = 2. Noticing that

By HD = Gk bD
€ €yrvp = G’(Sylm,,D

implies that

/ oo
PWP p

— G;lz(*dfl/\ “./\de—2)u0 651*~/’D«2‘”c

1 Vpoabo

X frn. . fP=2wos 1 D=2 (WifIA L A dFP2),,

PD -2

All but one of the terms generated by the contraction of the epsilon tensors can be
ignored by a similar argument to that used in verifying (A4), being killed against one

of the two bracketed terms, i.e.,

Pr--PD-2K — SKLP1- - PD o2 K S0Py PD-2 1
01 po-28 = §E§0ro-2 — (§5 §61Pb-2 4 other discardable terms).
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Therefore

1
/ o _ - pt PL-PD-2 £ Vvp-2 g1 fD-2 _ p
P;“/P T MPup5V1---VD_z 1 "'fD—2 PP "Pu/)

using (2.1.5) and (A3) is verified. A more straightforward analysis verifies (A5),
P# =2
Hence P,, = P,, and the equations of motion (2.1.8) and (2.1.9) are the same.
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CHAPTER 3

GAUGE FIXING AND QUANTISATION

This chapter addresses the gauge fixing and quantisation of the candidate second quan-

tised string theory introduced and developed in chapter 2. A discussion of the need for

a second quantised string theory and the motivation behind this particular formulation

was given in chapter 1. The candidate theory has action (2.1.1) (with p = 2) and at

first sight quantisation of the system with this action looks hopeless, some of the major
problems being:

(a) It does not have a kinetic term at most quadratic in derivatives.

(b) The action contains the distribution §(f) which of course cannot be expanded
perturbatively for small fields f.

(c) The local GL(D — p,R) invariance must be gauge fixed but there does not appear
to be a sensible gauge fixing constraint which can be applied to the functions f.

(d) Some way of incorporating the constraint (2.1.4) is needed.

(e) The naive functional measure ([] df(z)) in the Feynman path integral is not local
GL(D - p,R) invariant. Some oxther definition of the measure is required which is
invariant, and leads to a local unitary quantum theory.

In section 1 it is shown how problem (a) is readily solved by introducing auxiliary fields
and also that an action at most quadratic in derivatives may be derived from a partial
conventional gauge fixing. A byproduct of this approach is a satisfying solution to
problem (d). In section 2 it is shown that replacing 6(f) with a general function of f
leads to an action with gauge fixed equations of motion. Hence this procedure solves
both problems (b) and (c), however it is not as yet known how to include the requisite
ghosts. The procedure may be applied to the action including auxiliary fields and to
actions including the background field couplings introduced in chapter 2. In section 3
the definition of the functional measure is considered. It is shown how to define the
measure so that it is local GL(D — p,R) invariant up to possible anomalies. This is
done by obtaining a simple fully gauge fixed partition function and then proving that
it is independent of gauge fixing parameters. Thus a complete solution to problem (c)
is demonstrated. Some arguments are presented for the case of strings which suggest

that the full action is renormalisable and unitary if coupled to all the background fields,
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provided a certain auxiliary field is introduced. The functional measure can only be
completely defined by comparison with the hamiltonian approachm and therefore this
formalism is considered in section 4. Problem (b) is more acute here because §(f)
enters in the expression for the conjugate momentum which then appears squared in
the hamiltonian. However it turns out that, at least in the simplest case of p = 1,
D = 2, the §(f) may be completely excised from the formulation while still describing
the full gauge invariant equations of motion. The system is subject to only first class
constraints which, with a simple ordering prescription, remain first class at the quantum
level. The functional form of the physical states is derived and discussed. The case of
general p and general D is much more complicated and is not completely understood.
The problems are briefly described and some suggestions are made for their solution.

Section 5 is a summary of the results together with an evaluation.
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3.1 Auxiliary Fields and Conventional Gauge Fixing

In the previous chapter it was shown that equation (2.1.1) may be rewritten
5= A/d%é(f)\/éx/ﬁ (3.1.1)

where M = detM and M =0, fG"9,f" =08, f0* f7. Condition (2.1.4) corresponds
to det M # 0 at f = 0. General p is being considered. A is a parameter of dimensions
(mass)” and is the mass for a massive particle (p = 1) or the string tension 7" = 1/27a’
for p = 2. An auxiliary (D — p) x (D — p) symmetric matrix field g may be introduced

and the action written
5= 1 [ @ 6(/WE (V) (04598, 5 - ) (3.1

where A = (D —p— 2)A"YP-P=2 4 — det g and it is assumed for the moment that
D # p+ 2. Some restriction on g is required in order for equation (3.1.2) to be well
defined. A sufficient condition is that g be positive definite (and hence invertible) when
f = 0. Action (3.1.2) is classically equivalent to action (3.1.1) by elimination of g via

its equation of motion. Its equation of motion implies

5(f)(g-" — Bj—f:ﬁa”fauf) ~ 0. (3.1.3)

Thus classically the requirement that g be invertible at f = 0 incorporates the con-
straint (2.1.4) since this constraint is equivalent to requiring that 8 f0, f* be invertible
at f = 0 (i.e., that det M # 0). Action (3.1.2) still has local GL(D - p,R) invariance
which may be incorporated as (Q(z) € GL(D — p,R)):
f(z) = Q(z)f(=)
(3.1.4)
g9(z) = Q77 (2)g(2)Q7" (2)

where 277 means the transpose of the inverse of . In addition, the formulation

inherits a new gauge transformation
9:;(2) “’gij(m)‘*“hijk(m)fk(x) (3.1.5)

where h,;, (z) is any smooth 3™ rank GL(D — p,R) tensor field (with the restriction
that it be symmetric over its first two indices).

Some alterations are required if D = p + 2. Action (3.1.2) is replaced by

S = —g—/d%é(f)«/@(\/g')‘la”f*g@uf. (3.1.6)
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This system has, in addition to gauge invariances (3.1.4 and 5), a further local invari-

ance:

g(z) — w(z)g(z) (3.1.7)

where w(z) is any scalar field restricted to be positive when f = 0. (This invariance
is not independent of (3.1.5) when f # 0). Once again this system is equivalent to
equations (2.1.1 and 2.1.4).

This completes the solution of problem (a). Many similarities will have been
noticed in this discussion to the introduction of worldsheet auxiliary metrics in strings
and membranes however they are only similarities. Following the analysis given in
chapter 2, actions (3.1.2 and 6) have been reduced to worldsheet actions. They are not
found to reduce to natural worldsheet actions since the field g(z) is not related to a
worldsheet auxiliary metric.

It is interesting to note that the restriction on g and the gauge invariance (3.1.4)

are sufficient to gauge fix ¢ = 1 when f =01i.e,
§(f)(g —1)=0.

This fixes the gauge group only at f = 0 and fixes it down to a local SO(D — p) there.
Essentially the same effect can be gained from the original action (3.1.1) by gauge fixing

to

§(F)(M — 1) =0 (3.1.8)

This neatly incorporates the restriction (2.1.4) on the original formalism. Standard
methods of BRST?! will be used to simplify the action. In this approach the first step
is to replace the gauge transformation by a nilpotent BRS transformation generated
by a general anticommuting ghost field ¢. The gauge fixing constraint, G = 0, is then
introduced as the equation of motion of a Lagrange multiplier § via the addition of the
lagrangian
Ly = t1pG.

Writing this as —;—{6trég+tré(5§} implies that in order to keep the total lagrangian BRS

invariant, an additional (ghost) term

L, =~ %tréﬁg

gh
must be added. ¢ is an antighost field and é¢ = 2/ (and hence 64 = 0).

61



In the case of (3.1.1) the BRS transformations are
of = cf, be=¢?

where ¢ is a Grassman odd matrix field and its BRS transformation ensures nilpotency
of § on f. Also G = 6(f)(M — 1) which implies that ¢ is a symmetric matrix antighost
field. Thus (3.1.1) can be written

S = /d%é(f)\/@{/\\/ﬁ +tr[f(M — 1)+ te(M ~ 1)tre - Le(eM + McT)]}.
Integrating out 3 (amounting to setting M = 1) gives the much simplified action
S = /dD:c §(IVG(X — trée). (3.1.9)

The constraint (3.1.8) will appear as a delta function in the functional integral. Now
that 3 has been eliminated the BRS transform of ¢ will no longer be é¢ = 23 but can
be found by insisting that 69 = 0. The remaining local invariance of GL(D — p,R)
acts on ¢ and ¢ in the same way as on g in equation (3.1.4). ¢ has a linear gauge
invariance of the form d¢ = w where w is antisymmetric expressing the fact that (3.1.9)
is independent of any antisymmetric component of ¢. In addition ¢ and € inherit gauge
invariances of the form of equation (3.1.5).

In order to calculate the gauge fixed equations of motion it is helpful to include

the gauge fixing term explicitly in (3.1.9) and write
§ = /dDzé(f)\/a{)\ +tr[B(M — 1) — &c]}.

With the ¢, € and 8 equations of motion enforced, the BRS transform of the antighost
¢ now changes to

de = A+ 205.
Condition (3.1.8) implies that

M =1+ Af+0(f%

where A is a rank 3 tensor symmetric on its first two indices. Differentiating this at

f = 0 enables A to be determined and hence that

M =14+ (f"f7+ 7)) f+0(f). (3.1.10)
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The classical gauge fixed equations of motion of (3.1.9) can now be calculated. Enforc-

ing the (anti)ghost equations of motion leaves the f equation

& (N +te[B(M — 1)]} ~20,(8(f)BS*) = 0.

Substituting in the expression for M given by (3.1.10) yields

§'(f)(A = 2B) - 28()){0,(BS*) - £i £, Bf }-

The antighost equation of motion implies ¢ = 0 which in turn implies that A = 28.

Hence the above gauge fixed equations of motion take the correct form:

s(af - Ui f)ff =0 (3.1.11)

where Of = V#d,f. It is not clear how to make further progress with this action
however. It is necessary to understand how to deal with the é(f) in performing the
functional integral and one is still left with a large gauge invariance which will require
further gauge fixing. It does not seem possible to find a sensible further gauge fixing

which will remove all the gauge invariance.
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3.2 Unconventional Gauge Fixing

An intriguing direction for avoiding the problem with é6(f) is to formulate an action
with functions f and auxiliary fields, but without the §(f), in such a way as to respect
the GL(D — p,R) invariance on the functions f (at least on-shell). Only the zeroes of
f will then have physical significance and the action will be classically equivalent to a
worldsurface action. Unfortunately attempts in this direction have only led to actions
with inconsistent or over constrained equations of motion.

It is however possible to formulate actions that do not contain §(f), whose equa-
tions of motion are gauge fixed versions of the equations that follow from action (2.1.1).
This possibility arises because, as noted in chapter 2, the derivation of the equations

of motion from equations (2.1.1) or (3.1.1);

%}i =0 = §fIVGVMNP*"f, =0, (3.2.1)
where N = M~' and P, = G,, — fi N f,, do not require the use of any of the
properties of §( f). Thus

S = A/d% A(fIVGVM, (3.2.2)

where A(f) is any function of f, gives
A(fWGVMNP* [, =0. (3.2.3)

However the equations of motion (3.2.3) are more specialised than equations (3.2.1)

which, local to f = 0, imply
VGVM NP [, =Af (3.2.4)

where A is some matrix field. Globally this equation is ill defined because M cannot
in general be invertible for all z. (M vanishes for example whenever one of the f*
has a maximum, which will always occur for bounded functions on a closed space-time
manifold. Even on open manifolds, M will vanish somewhere if the surface described
by f = 0 has topology other than R”). For the same reason some constraint on A(f) is
required so that equation (3.2.3) has global solutions. It is clear that this requires A(f)
to vanish for some value of f. A(f) will be chosen to be any function with support
in some bounded region R in R®~? enclosing the origin. This will turn out to be a
sufficient condition for equation (3.2.3) to have globally well defined solutions which

are gauge fixed solutions of equation (3.2.1). Equation (3.2.3) implies equation (3.2.4)
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with 4 vanishing whenever A(f) # 0. Under a general infinitessimal GL(D — p,R)

gauge transformation, with Q(z) = e?, equation (3.2.4) generates terms of the form:
VGVM (tr¢ - $T)N P** f,, + B()S.

Since there are no local restrictions on B and since it has the same number of degrees
of freedom as 4, (D — p)?, it follows that ¢ can be chosen such that the extra terms
generated can be absorbed into the left or right sides of (3.2.4) in such a way as to
(locally) gauge fix A to zero. Again, global restrictions arise from points where M = 0
and these can be moved about but not in general all removed by a gauge transformation.
To remove them all in general requires a singular gauge transformation which instead
causes f to diverge at some points. However, with the above definition of A(f) and
restriction (2.1.4), it is always possible to ensure that M = 0 only when A(f) =0
(e.g., by a global scaling of the f’s) while keeping A zero when f € R. Thus equations
of motion (3.2.3) are partially gauge fixed versions of the gauge invariant equations of
motion (3.2.1). They are only partially gauge fixed because equations (3.2.2 and 3)
are independent of f(z) when f(z) ¢ R. It may be possible to give definitions of A
which much further constrain the remaining (non-linear) gauge invariance (for example
if f is allowed to diverge at some points and A is required to vanish sufficiently fast as
f — o0, equation (3.2.3) will be a globally well defined completely gauge fixed version
of equation (3.2.1)). Also, for any definition of A there is some on shell non-linear gauge
symmetry. It can be shown that equation (3.2.3) is also solved by an f transformed in

the following manner:

f=UNf Af)eGL(D-p,R)

where  is any smooth invertible matrix function of the f’s. This is because, under a
similar analysis given above for (3.2.4), the terms in B not proportional to (3.2.3) are
removed, i.e., §(AVGVM N P* f. ) « VGVM N P* f,,,. The fact that a A’ term
is generated does not matter since it is non-zero in the same region as A. Thus the
content of (3.2.3) is unaltered by the above transformation however it is not a symmetry
of the gauge fixed action (3.2.2).

It has been shown that action (3.2.2) is classically equivalent to a gauge fixed
action (3.1.1) and it is therefore suspected that action (3.1.1) (possibly reformulated
with auxiliary fields) may be gauge fixed to an action proportional to (3.2.2). Indeed

formally one can display the general action (3.2.2) as the gauge invariant action plus
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an infinite number of gauge constraints, each of which gauge fixes only partially (gauge
transformations of the form of a field contracted into a high enough number of f’s

remain un-gauge fixed by any finite number of terms), by writing
1 .. 1 ..
A(f)=6(f)+ 5‘,“” 6,;(F)+ Z{a”kléijkl(f) +-

where the coefficients a”/ " are real numbers and 6;;(f) = 3*6(f)/0f'0f etc. This may
be shown by Fourier transforming with respect to f and noting the invariance A(f) =
A(~f) which A inherits from action (3.2.2). It is also required that [dP-PfA(f) = 1.
It has not yet been figured out how to add the required BRST ghosts to action (3.2.2)
however the above equation may help in solving this problem.

One way of thinking of action (3.2.2) is as an average over actions S;:
S = / -7k A(K)S,

(3.2.5)
S, = ,\/dD:cé(f— WG VI

where k is a constant (D — p)-vector. S, gives the Nambu action for surfaces f = k. In
order for these actions S, to be well defined constraint (2.1.4) needs to be extended to
hold also at f = k € R. It was also seen that this is required for well defined equations
of motion (3.2.3), and that it may be ensured that the additional constraints hold by

appropriate gauge transformations. Therefore (2.1.4) is extended to
df'A---AdfP~? £0  when A(f)#0 (3.2.6)

as part of the gauge fixing constraints.

Similarly the actions (3.1.2 and 6) may be gauge fixed by including the auxiliary
field g. A gauge choice on invariances (3.1.4 and 5) ensures that equations of motion
following from these actions depends only &(f) multiplicatively (cf. equation (3.2.1)).
Remaining gauge invariances may be used to locally fix terms of order f (as in equation

(3.2.4)) to zero. Thus gauge fixed equations of motion follow from (D # p + 2)
1 h
5=1 /d% AFWG (/3 (8" 790, f — A). (3.2.7)

In particular equation (3.1.3) is replaced by

D-p-2

A(f)(g™ - 21

9" f0,f7) = 0.

The gauge invariance (3.1.4 and 5) has been used to fix g to be positive definite when

A(f) # 0. Similar arguments apply for equations (3.1.6 and 7).
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In fact for p = 2 (strings) the analysis may be extended to all background field
couplings. By comparison with the Polyakov action a massless antisymmetric tensor

field B, («) and dilaton ®(z) can be coupled in as in chapter 2, section 4:

S = E%/d% VGVM §(f){2+e" B,, +' ®(z)(V, PV, PP} Py, + PP R, )}

(3.2.8)
As noted in chapter 2 the equations of motion that follow from this action again only
contain 8(f) multiplicatively, and if 6( f) is replaced by A(f), the same equations re-
sult with 6(f) replaced by A(f). No specific properties of §( f) are required in their
derivation. The analysis below equation (3.2.4) may thus be used again to show that
action (3.2.8) with §(f) replaced by A(f) yields gauge fixed equations of motion. Pre-
sumably this gauge fixing procedure works when all the other gauge invariant couplings
in section 4 of the previous chapter are included. The averaging interpretation (3.2.5)

extends to these more general actions (including (3.2.7)).
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3.3 The Measure

The intention is to use action (3.1.1) (or its extensions as discussed) as the exponential
weighting factor in a functional integral representation of the partition function (over
f’s plus other fields as appropriate). No attempt has yet been made to define the
functional measure which is clearly required to be local GL(D —p, R) invariant. However
the naive functional integral, [Df, is not invariant. For the moment the case where
the only quantum fields are f’s is considered. If auxiliaries such as g of section 1
are introduced then it is straightforward to include e.g., [] g(z) to a suitable power
to ensure invariance of the measure). Some functional of xf must be included in the
measure in order to generate a functional determinant which cancels that of 2 arising
from equation (3.1.1). It is straightforward to show that only [T 6(f(z)) will do this.
Intuitively such an incorporation makes sense because only the zexroes of f have physical
significance; it is enough in calculating the partition function to integrate over functions
whose variations away from zero are arbitrarily small. This cannot however be simply
included in the measure since that would make the partition function ill defined. Thisis
so because the action is ill defined for f = 0 and constraint (2.1.4) will not be obeyed.
What is required is to define the order in which the implied limits are taken which
define the 6(f) in the action and the functional [] §(f(z)) in the measure. Clearly the
limit defining [T 6(f(z)) should be left till last. Arconvenient limit is that of a gaussian,

and so the measure dp[f] is taken to be given by

4l o lim Df(Dete) 4 exp(~ [P 57E71 ). (3.3.1)

Here £(z) is a positive definite symmetric matrix field, Det is a functional determinant
and the limit as £ — 0 is to be taken at the end of the calculation of the partition
function. What is meant for example is a limit as ¢ — 0 with £ = ¢f and ¢ a small

positive number. Writing (Detf)“% as a gaussian integral with real bosonic ghosts b

one has
Z = lim 218 ¢ (3.3.2)
Z[€) = / D fDbe~ 5ot (3.3.3)
S, = / Pz (NS(FWG VI + fTE~1 f + b7 €b}. (3.3.4)

The measure in equation (3.3.3) is now manifestly invariant. However the action S, [¢]

is no longer gauge invariant, instead it changes to S, [¢']. Thus the gauge invariance
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has been lost (even in the limit € — O since this limit is to be taken after the calculation).
£ may be identified as the gauge fixing parameter (in fact an infinite set with (D —
p)(D — p+ 1) parameters for each point z). This is a valid gauge fixing since by noting
that under a gauge transformation @ € GL(D - p,R), f, b and £ become

fr=qf
b =Q-7b (3.3.5)
¢ = Qe .

The gauge invariance is sufficient to transform the field € to any other positive definite
symmetric field and on substituting equation (3.3.5) into equation (3.3.3) one obtains
Z[€] = Z[¢']. Thus Z[€] is actually independent of £ and the limit in equation (3.3.2)
is superfluous. It is not too hard to understand why Z[£] should be independent of &.
The point is that for each integration df(z) in the functional integral, the §(f) term in
S,

L
a factor of (det £(2))* times this local contribution. But the gaussian integral over b(z)

o contributes only at f(z) = 0. So the result is the gaussian integral over f yielding
cancels the £ dependence. Of course the properties above may be subject to anomalies—
causing Z[£] to depend on £. This is equivalent to a loss of local GL(D —p, R) invariance
at the quantum level.

It has been stated that the measure is required to be local GL(D — p,R) invariant
but it is also required that it can be defined in a way that leads to a unitary and
renormalisable quantum field theory. Providing some working rules for a sufficient
definition of the measure is not necessarily a straightforward application of the rules of
renormalisable quantum field theory. This is because the functions f (and auxiliaries
and ghosts) are not fields in the usual sense. (For example they do not asymptotically
represent first quantised wavefunctions). A proper proof of these properties in this
case is surely at least as difficult and subtle as it is in general for interacting quantum
field theory. Some heuristic arguments for the case of strings (p = 2) will be presented
which nevertheless indicate how to incorporate the above requirements for p = 2. (From
first quantised string theory these properties are expected in general to be violated by
anomalies).

A GL(D - 2,R) invariant measure may be reduced to one that integrates over
equivalence classes of functions f identified up to multiplication by any element of
local GL(D — 2,R). These classes are uniquely labelled by the worldsheets obtained
from the functions’ zeroes. Thus the measure depends only on worldsheet embeddings.

It is generally covariant with respect to the surface (because no parameterisation of
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the worldsheet has been introduced). This measure may be thought of as being the
Polyakov measure but with any number of generally covariant counterterms depending
on the worldsheet metric and the string position. However these counterterms, provid-
ing they are local (meaning also that only polynomials of derivatives appear and for
example no inverses of derivated fields), are vertex operators for various backgrounds
(including higher mass modes). The Polyakov measure with all such backgrounds in-
cluded is unitary and renormalisable because divergences appear as generally covariant
local functionals of the worldsheet metric and position and may thus be incorporated
into wavefunction renormalisation of the backgrounds. In order for our GL(D - 2,R)
invariant measure to be equivalent to this measure, it is required that the divergences,
which will be GL(D — 2,R) invariant local expressions in the quantum fields, be ab-
sorbable into renormalisations of local GL(D — 2, R) invariant couplings of background
fields, and that these couplings correspond to the couplings for backgrounds in the

Polyakov theory. In chapter 2 it was demonstrated that local invariant expressions in
M = (GM)~ervm v#p-3g fl...9, fP-2, (3.3.6)

P* = ¢¥ €7 and f are reduced to (all) generally covariant local expressions of the
worldsheet metric and position. Thus the above arguments suggest that the local
GL(D - 2,R) invariant measure may be assumed to be renormalisable and unitary if f
and the antisymmetric tensor ¢#” are taken as quantum fields, and all independent local
GL(D - 2,R) invariant expressions involving these fields are coupled to background
fields (as in equation (3.2.8) plus similar higher mode couplings). Some local terms

depending on auxiliary fields whose equations of motion identify e** with its expression

in terms of f must be added to the action:
Sy = / Pz 5(fIVG VM {YTe" 0, f + X ("¢, —2)} (3.3.7)

where Y, (2) and X(z) are auxiliary fields. X is invariant under gauge transformations
whereas Y, transforms contragrediently like b: Y, — Q77Y,. At f = 0Y, forces e*”
to be orthogonal to the 8, f* which determines it to be proportional to the alternating
tensor in the remaining two dimensions. X fixes the proportionality factor (at f = 0).
The result is (3.3.6) (up to a sign) at f = 0. Thus (3.3.7) identifies ¢** with (3.3.6) up

to terms of order f. This is consistent with the gauge invariance

el — gt 4 fTe!” (3.3.8)
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noted in section 2.4.

Now consider the partition function

Z= / dulf1De,, e (3.3.9)

where § is the action including all the massless and massive backgrounds plus the
extra terms (3.3.7). The functional integral over ¢,, is trivially invariant under its
gauge invariances which are just equation (3.3.8). Thus equation (3.3.9) is a gauge
invariant partition function for both of the quantum fields f and ¢,,,.

There now follows an indication of how, for large constant dilaton expectation value
®,, (3.3.9) reduces to the first quantised perturbation expansion with all the correct
combinatorics. By factoring out the GL(D - 2,R) gauge invariance the functional inte-
gral becomes an integral over equivalence classes labelled uniquely by the configuration
of the worldsheets; the action becomes a sum of first quantised actions, one for each
worldsheet. Thus the functional integral splits into a sum of products of first quantised
partition functions, one for each worldsheet. (Overlapping worldsheets are forbidden
by equation (2.1.4). This would stop the integral factorising completely into products
of first quantised partition functions, but in D > 4 dimensions the overlapping contri-
butions can be expected to be of zero measure). In addition there is an initial term in
the sum corresponding to an integral over functions with no simultaneous zeroes (no
worldsheets). For this case the action vanishes (because of the §(f)) and the integral
just gives unity (because all such functions define just one equivalence class). Thus Z

reduces to

221+ exp(®, Y n, ) [T —{200)™. (3.3.10)

X€E x€E X
Here the sum runs over all disconnected topologies Z = {(x, A)}, each connected topol-
ogy uniquely specified by its Euler number x. Extra labels A = 1,2,---,n, distinguish,
for the purposes of this first quantised expansion, disconnected pieces with the same
connected topology. g = e~ ®° is the string coupling constant, the expansion parameter.
Z(x) is a first quantised integral for a string worldsheet with Euler number x. The
factorial term that appears in (3.3.10) is a symmetry factor arising from the indistin-
guishability of worldsheets with the same topology. The symmetry factor is required
because, for n, worldsheets with the same topology X, the product of first quantised in-
tegrals {Z(X)}"* counts n ! times the same configuration of worldsheets i.e., the same

equivalence class. Equation (3.3.10) is exactly the form expected (from quantum field
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theory) for the vacuum diagram perturbation series of the second quantised partition
function. Indeed (3.3.10) may be rearranged so that, in analogy with quantum field

theory,

Z=é"

where

W = Z exp{Xx®,}Z(x)

X

i.e., W is the generator of connected string Greens functions (obtained by differentiating
with respect to background fields). Z does not have to expanded in terms of first
quantised integrals however. Indeed this is the motivation for the present formalism:
The string theory is required to be well-defined without reference to any expansion
but such that, when expanded for small g, it yields just the familiar first quantised
contributions. Thus the formalism will also give further non-perturbative contributions,
which are not calculable from string worldsheets, but which are necessary for the theory
to be well defined.®! (However, it is conceivable that there exists more than one non-
perturbative string theory with the same perturbative contributions). To demonstrate
that the theory is well defined without expanding for small g, it is necessary to show
that one may completely gauge fix the partition function in some other way than the
perturbative factorisation which leads to equation (3.3.10).

It has been shown that Z is independent of gauge fixing parameters (up to anoma-
lies) and that it yields the required first quantised integrals on expansion. Thus the
existence of an appropriate gauge fixed measure has been demonstrated. A gauge in-
variant partition function may be trivially obtained from this by integrating Z[€] over
& with an invariant measure Df(Det{)I%:—‘. This integral is infinite and proportional

to the product of GL(D — p,R) group volumes for each point z.
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3.4 Hamiltonian Quantisation

Finally, a hamiltonian framework for the quantisation of the equations of motion fol-
lowing from action (3.1.1) will briefly be considered. For simplicity’s sake flat eu-
clidean space G, = ¢,, will be used. Let Greek indices c, B represent spacial indices

(a,8=1,...,D ~1) and indices p,v = 0,..., D — 1 represent space-time. First note

that
M=2te . A
- 7! iy Thy e dndyy ey Sy
= fir fir {mgixminehmh f(;’-; . ;'; ffz N i:}
1 iy in fir fin
+ mgzlingjljn oy "oy, fa’l TtiJay
=fTIf+ K (3.4.1)

where n = D — p and the dots above f denote differentiation with respect to time.
Introducing K = f,f, one has K = det(K) and J is the matrix of cofactors, so
J = KK~' when K is invertible.

The lagrangian density £ = A§(f)v/M and so from equation (3.4.1) one finds the

canonical momentum

T = A(f)(VM )T f. (3.4.2)
Writing
nTI T = MTINER(F) fT T f

implies that
M(NE (K ="K 7) = K2X26%(f).

Hence the hamiltonian density H = 7" f — £ becomes

H=-M(FWM K
= -/ A282(f)K —n K. (3.4.3)

Following the methods of Dirac it is noted that equation (3.4.2) implies the primary

constraints:

T(z*)f (z%) = 0. (3.4.4)

In agreement with general principles, these constraints applied as contact transfor-
mations generate the infinitesimal GL(D — p,R) gauge transformations, and form a

representation of the local GL(D — p,R) algebra. Specialising to the case D =2, p =1
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(corresponding to a free particle in two dimensions) affords considerable simplification
over the general case which will be commented on later. It turns out that in this simple

case the hamiltonian density may be written
= —Vm2F2(f) - n2 f' (3.4.5)

where A = m, the mass of the particle, and prime denotes differentiation with respect
to position. 6(f) has been changed to a general function of f, F(f). It will be shown
that this has no effect on the equations of motion so that a gauge invariant system
of equations can still be described. The hamiltonian density (3.4.5) now appears well
defined however the weak equation (3.4.4) is still required. There are no secondary

constraints since

Lnf) = (), H)

= 5 (= 4 £ R - [y 08 - ) f(a)

- Wr:._j( £y (3.4.6)

where the derivative has been integrated off the delta function in the second line. This
vanishes by equation (3.4.4). {, } are Poisson brackets such that {f(z), 7(y)} = é(z—v).
Thus the system only has these first class constraints. The full hamiltonian density is

then

H=-Vm?F2 -2 f +wrnf (3.4.7)

where the constraints multiplied by an arbitrary field w(z) have been added. Using

this hamiltonian one finds:

0H . T ,
o = F Yy (3:45)
oH . !

._-5-7 =T~ —\-/—(—n—ﬁz-}z;—-:——m — WT. (34.9)

Computing f ~ {f, H} (in order to find the classical equations of motion) produces

the following;:

f= ;f+ 0f 4
Tm FF'ff . Frm2F y
~J/(m2F? stwf+ J(m?F? — g2y + NI (3.4.10)
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where the last term arises from integrating df'/df by parts. Using equation (3.4.8)
to define 7 classically and hence to find 7’ enables the F”’ term to be eliminated from

(3.4.10) giving (after some rearrangement)

N A T
s s VO Ra e

The last term vanishes by constraint (3.4.4) leaving (after multiplying through by f*)

pi-aisg s =5 ( L) s
which are the gauge invariant equations of motion (cf. equation (3.2.4)). Note that
F(f) does not appear in the equations of motion, nor does it affect the equations of
motion in any way.
Using equation (3.4.8) to solve for 7 (classically) one may show that the constraint
7 f = 0 implies that F(f) « 8(f). However the weak constraint is only applied at
the end of the calculation by which time, at least for the equations of motion, it is

unnecessary. Also, once quantised, one cannot solve for 7. Instead the constraints

(3.4.4) vanish on physical states:
7 flphys) = 0 and (phys|rf = 0. (3.4.11)

Nevertheless the full gauge invariant quantised equations of motion are obtained for any
function F'. A particularly convenient choice would appear to be F(f) = 1. In this case,
at least naively, there are no operator ordering problems. For example one may define
the ordering to be such that all 7 terms occur to the left of all f terms: The hamiltonian
density is as given in equation (3.4.5) with F(f) = 1. The primary constraints (3.4.4)
remain first class at the quantum level and are still the only constraints because the
ordering of operators in (rf) = —i[rf, H] is that of equation (3.4.6). Note that an
ordering has been chosen which causes H and the constraints not to be hermitian.
Hermitian definitions can be chosen by for example taking the symmetric combination
of half the sum of two orderings, one with all 7’s to the left and the other with all
7’s to the right. However one then runs into operator ordering problems; for example
d(m f+ fr)/dt is not weakly zero without unwanted further constraints. The constraints
equation (3.4.11) may be solved to obtain the form of the physical states. Note that
the constraints, being non-hermitian, have different solutions for bras and kets. Us-

ing an f(z) representation 7(z) = —16/6 f(z), and imposing the requirement that the
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states be integrable (so that a scalar product using [Df(z) exists) one finds that the
physical states are determined uniquely as (phys| = 1 and |phys) = [T é(f(z)), up to
multiplication by a constant. This is not surprising since equation (?f.4.11) is equiva-
lent to ensuring that expectation values be local GL(D — p,R) invariant and, as has
already been seen in discussing the measure in the lagrangian formulation, (naively)
this requires an insertion of [J&8(f(z)) in the measure. The []é(f(z)) must again
however be treated with care, gtherwise with F(f) continuous (z:t f = 0) the theory is
presumably trivial, and with F(f) = é(f) it is not well defined. Presumably what is
required is to find a hamiltonian analogue of the arguments given defining the measure
in the functional integral approach.

Generalising to general space-time dimension D and general p and replacing 6(f)

by F(f) in equation (3.4.3) one finds

. Kr
f = {f?H} = __fi_{——
and
(K ! '
i =m0y = ep(ny( DK Loy (TLT)

Not all the differentials have been expanded for the sake of compactness. If one expands
all the differentials one finds that, unlike equation (3.4.9), terms depending explicitly
on F(f) and dF/df remain. From the above equations one finds

L) = tng7 0}
F(HKK™,

z/\z( 7

)aF(f)fT. (3.4.12)

So consistency with equation (3.4.4) now also requires F(f)f = 0. Now both classically
and quantum mechanically this new constraint determines F(f) «x 6(f) at the end of
the calculation. However if this is substituted into the right hand side of the above (or
similar) equations they become ill-defined. The need for the extra constraint F/(f)f = 0
stems from the fact that dF/df appears explicitly in the expanded expression for 7. (In
the special case D — p = 1 (general D) the explicit dF/df terms cancel but consistency
in this case requires H f ~ 0 which has the same effect as F(f)f = 0).

Thus in this gauge invariant hamiltonian framework in the general case it appears
that one has to deal directly with expressions involving products and ratios of 6( f) and
§'(f). Some further structure is necessary to ensure that these expressions have limits

that are unambiguous. At the quantum level one must also solve problems with
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operator ordering. This is necessary to ensure that one retains a reasonable set of first
class constraints.

One strategy for solving both of the above problems could be to consider gauge
fixing the classical system (and then quantising). For example gauge fixing M = 1
at f = 0 (cf. lagrangian system) may prove convenient. This will neatly incorporate
the constraint M > 0 when f = 0, which is required to ensure that the hamiltonian
expression is well defined. (In the present variables M > 0 if and only if the following
holds:

J#£0 and if K =0 then K =0).

Gauge fixing M = 1 is equivalent to requiring
TTKr = (1~ K)KXN6&(f)

which simplifies the hamiltonian density so that it is well defined and without operator

ordering problems:

H = -M(f)K.

This must be supplemented with ghost and constraint terms.
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3.5 Summary of Chapter 3

In this chapter some progress has been made towards a tractable gauge fixing and
quantisation of the model second quantised string theory outlined in chapter 2. The

starting point was the action
S = __1__/de VGS(HfA- - A dfP-2
2o’

and a local GL(D - p,R) gauge invariance. In the introductory section to this chapter
the immediate problems that the quantisation of this system poses were listed. It
turns out that the multi-derivative term in the action does not appear of itself to
pose a problem because it can simply gauged away, leaving an action with at most
two derivatives. Alternatively the full gauge invariance can be kept and auxiliary
fields introduced which transform the action into one with at most two derivatives as
explained in section 1.

The §( f) is much more difficult to deal with and it is clear that standard methods
of perturbation theory cannot be applied whilst the 6( f) remains in the action. On the
other hand it is not clear how to make progress without perturbation theory. Connected
to this is the problem of finding a complete gauge fixing of the local GL(D - p,R)
invariance. In order to follow standard procedures a constraint on the functions f
(or auxiliaries) must be found that completely fixes the gauge invariance. It would
appear that there is no tractable conventional gauge fixing procedure (i.e., proceeding
from a constraint on the functions f (or auxiliaries) which completely fixes the gauge
invariance). For the above reasons an unconventional gauge fixing was formulated in
section 2. This procedure is particularly suited to this system because it was possible to
replace the troublesome §(f) with a general function A(f) which may be amenable to
perturbation theory. It was shown that such an action (with or without auxiliary fields
or background couplings) gave gauge fixed equations of motion. In order to complete
this programme it will be necessary to find the ghost action and the corresponding
BRST invariance.

Section 3 concentrated on the functional measure. At first sight there is a problem
with quantisation because the measure Df = [] df(z) is not even naively invariant
under gauge transformations. Inserting a funct?ional delta function in the measure
cures this problem and is also physically reasonable but now the partition function is
ill defined. However it was shown that, by introducing an infinite set of gauge fixing

parameters of the form of a field £(z), one can construct a well defined measure and
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a completely gauge fixed action. The partition function is formally independent of
the gauge fixing parameters £ and yields the required first quantised integrals upon
expansion. A breakdown of this independence of £ is equivalent to an anomaly in
the gauge invariance. In the latter half of that section some arguments were provided
suggesting that the string theory (p = 2) was renormalisable and unitary for any gauge
invariant measure if the gauge invariance suffers no anomalies, the quantum fields are f
and ", (¢"” identified with its expression in terms of f through equations of motion),
and provided all gauge invariant background field couplings are included.

Finally in section 4 a hamiltonian formulation for the quantisation of the model
was investigated. The fact that the conjugate momentum is proportional to §(f) leads
to a simple set of primary constraints which generate the local GL(D - p,R) gauge
invariance. In the special case of a particle in two dimensions (p = 1, D = 2) there
are no secondary constraints and this remains true even if 6( f) is replaced by a general
function F(f). Surprisingly this replacement has no effect on the gauge invariant
equations of motion since the expressions are all well defined with a general function
F(f). Choosing F' to be identically unity allows one to give a simple prescription for
operator ordering in the quantum theory which ensures that the constraints remain first
class. The constraints appear to enforce a unique solution on the physical states which
includes a functional §-function on the functions f. This is the hamiltonian analogue of
the analysis of the functional measure in section 3. The hamiltonian formalism in the
case of general p would appear to require one to deal directly with expressions involving
products and ratios of §(f) and é'(f). This is necessary at least in terms of imposing
the constraint F(f)f = 0 and further structure is necessary if such expressions are to
be unambiguous. At the quantum level the case of full gauge invariance and general p
also has operator ordering problems. It was suggested that some partial gauge fixing
might solve these problems.

In summary a number of methods have been developed to tackle various aspects of
the implementation of our proposed second quantised string theory. All of the methods
appear promising however some of them are not yet complete. It is not believed that
there are any fundamental problems in performing the quantisation of this theory. In
particular it should be possible to prove the equivalence of the theory to free particles
when p = 1 and to string perturbation theory for p = 2 and large positive dilaton

expectation value.
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CHAPTER 4

SPECULATION AND SUMMARY

Although quantisation of the formalism is incomplete, there are indications that the
implicit function method may be useful for describing some interesting ideas at the
classical level. In section 1 it is shown how the method may yield a topological field
theory, where the metric can be set to zero, when the dilaton expectation value becomes
large.

Section 2 reviews the work done in chapters 1 to 3 and attempts to draw some

conclusions. Some of the more pressing areas where further work is required are noted.
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4.1 Speculation

It is tempting to speculate on the possible consequences of being able to perform de-
tailed calculations in the implicit function formalism. In particular could any simpli-
fication result in the high energy regime of string theory? A number of authors have
suggested that at high enough energies a new phase of string theory may take over
with far fewer degrees of freedom than field theory.! =2 It is worth noting that, at least
formally, our model already has less degrees of freedom than are required to describe
free particles. (The latter requires D ~ 1 functions). Witten has speculated on the
existence of a phase where in some sense general covariance is unbroken and the metric
vanishes,?! leaving a topological field theory. It can be shown that these ideas fit neatly
within our framework. Within the renormalisation group approach our various back-
ground field couplings can be expected to depend on some energy scale p. In particular
the very soft behaviour of string scattering amplitudes at high energy implies that the
string coupling constant g = exp{—®,} renormalises to zero as the energy increases
indefinitely, i.e., the constant part of the dilaton ®;, — 0. In such a regime, from the
point of view of action (3.3.8), it seems natural to perturb about an action consisting

purely of the @, term:
Ss, = Z%/d”z\/@x/ﬁé(f)éo{V”P“[" VPP + PPAR,, L (4.11)

(plus auxiliary terms (3.3.7)). Such an action yields a topological field theory, i.e., a
theory with no local degrees of freedom. The action is independent of small variations in
f (see section 2.3). Thus the topological theory requires the far larger gauge invariance
df = anything (subject to constraint (2.1.4)) which identifies all string configurations
with the same disconnected topology (in the first quantised expansion) providing that
the configurations can be deformed into one another on the space-time manifold. The
partition function can therefore be expected to be sensitive to the connectivity of the
manifold and one can expect more subtle smooth topological invariants to also play
a role.”) The above action (4.1.1) can be obtained from the original by setting all
other background fields including the space-time metric to zero. This seems a natural
description for a fundamental string phase since all possible symmetries are restored
in the process. In setting the background space-time metric to zero note that it is
unnecessary in the part of the action containing the constant part of the dilaton. This
is because that part is independent of variations in the metric as shown in section 2.3

(so if one likes, one can unambiguously take the limit G,, — 0). Note also that the
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remaining metric term (the first term in equation (3.3.4), or equation (3.1.1)) can be

rewritten:[*

1 D _ -
%2\/5,”0‘, /d :1;(‘)‘(f)\/glhwl‘DEl/x‘..lJDG'}MVIGM:‘V2 ;3 ___fl?D 2 ‘}3 T 2.

Thus setting G, to zero is unambiguous. This same phase also results from taking the
limit entertained by Gross and Mende.[!) They took a background consisting only of
flat space-time with large ®, (small string coupling constant), and considered the limit
a’ — oo (which eventually kills the above term, leaving (4.1.1)). They showed that
for all genus and all states the string scattering amplitudes vanish in this limit while
simultaneously gaining new perhaps infinite dimensional symmetries.! This may be
a consequence of entering this topological phase, with the symmetries arising through
the enlarged gauge invariance. If this is the fundamental high energy phase of string
theory then the lack of any local degrees of freedom would ensure and explain the
finiteness properties. How might one recover the usual world with propagating degrees
of freedom? The form of the action (4.1.1) suggests that quantum corrections might
well contain the Einstein action (in the background field effective action). This would
however signal a break-down of topological phase symmetries (e.g., 6G,, = anything).
It would also introduce a scale parameter (none being present in (4.1.1)) which can be
identified with @’. Thus dynamical gravity and its coupling would arise spontaneously
in the quantum corrections. Technically it should be possible to derive the finiteness
properties and relations between different string amplitudes™™ by studying the broken

topological phase Ward identities.
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4.2 Summary and Conclusions

This final section reviews and draws some conclusions from the work presented in previ-
ous chapters. The work describes a formulation of second quantised string theory which
attempts to overcome some of the drawbacks inherent in the perturbative framework.
It was also hoped that the theory might incorporate some of the philosophical ideals
that a fundamental theory of nature may be expected to encompass. Phenomenological
considerations of perturbative string theory indicated that it was strongly coupled and
this was reinforced by evidence that its perturbation series diverged and was not even
Borel summable. However, considering that at present string theory seems to be the
only theory that might yield a consistent theory of quantum gravity, it is worth trying
to extend it into the non-perturbative regime. String theory also has the philosophi-
cally encouraging property of predicting the dimension of space-time. Other interesting
and important evidence that a non-perturbative, second quantised string theory was
required came from the implication that it must be consistent on all worldsheets simul-
taneously. This last point can probably be most easily addressed by having a sort of
‘worldsheet field theory’ and indeed in some sense the candidate theory introduced in
chapter 2 can be considered as such. Thus the main criticisms of perturbative string
theory are that it is so defined. It is not known for sure whether perturbative string
theory encompasses the philosophical criteria mentioned in chapter 1, such as requir-
ing that it generate the geometry and topology of space-time, however it does seem
intuitively unlikely that the natural description of such effects will be in terms of the
scattering of an infinite number of strings.

Some of the alternatives to perturbative string theory were briefly discussed in
section 1.3 and it seems that in general they are probably not well enough understood to
provide a constructive base from which to launch an investigation into non-perturbative
string theory. The most popular approach, string field theory, has however enjoyed some
success in areas concerning the independence of the theory on background geometry
and topology. There are several reasons why a field theoretic description of string
theory is inappropriate. The overcounting of vacuum graphs in field theory suggests
that modular invariance and duality ought in fact to be incorporated at a fundamental
level. Other reasons for searching for something other than a field theory are that
string theory has too few degrees of freedom and that the high energy behaviour of its
scattering amplitudes is too soft to be described by a field theory.

It would be of great asthetic appeal to be able to derive a fundamental theory
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describing all of nature from a few general physical or philosophical principles. Our
approach however was to make modest extensions of previous work and perhaps even-
tually identify some deep underlying principle. In chapter 2 an approach to second
quantised string theory was presented which describes worldsheets implicitly as the so-
lution surfaces of D — 2 functions on space-time. This allows any number of surfaces of
any topology to be described thus yielding a fully interacting second quantised string
theory. It therefore appears to be some way towards being consistent on all worldsheets
simultaneously. Indeed the treatment generalises to surfaces of arbitrary dimension thus
yielding second quantised membrane theories. Perhaps some consistency condition will
naturally select strings. Also the theory is not defined by a perturbation expansion.
The worldsheets are not parameterised and so modular invariance and duality should
be inherent in the formalism. Strings are not mentioned explicitly and so this formalism
may be a step away from the notion of scattering infinite numbers of strings, which
is intuitively unpleasant. The worldsheet description may also facilitate discussions of
physics above the Hagedorn temperature where worldsheets are thought to break down.
It has in fact been suggested that the formalism may yield a topological field theory, for
large dilaton expectation value, and that it may even generate the dimension, topology

and geometry of space-time dynamically.l®!

It was also shown in chapter 2 that the proposed action (2.1.1) for the candidate
second quantised string theory reduced to a sum of Nambu actions (for p = 2) and
was hence not entirely inconsistent with previous work. Further it was shown that
the action had a local GL(D — 2,R) gauge invariance and that the massless fields the
metric, the antisymmetric tensor and the dilaton could be coupled in a gauge invariant
manner. GL(D — 2,R) invariant expressions corresponding to those at the first mass
level in the Polyakov approach were written down in the formalism. A prescription was
given for writing down the couplings of higher mass modes however it is not in fact
clear whether these couplings should be GL(D — 2,R) invariant. As a check on some of
the methods used to derive these couplings, the constant dilaton action was explicitly

verified to be a topological invariant.

Gauge fixing and quantisation of the model were attempted in chapter 3 however
progress was hampered by the delta function in the action. This was removed using a
rather unconventional gauge fixing which yielded gauge fixed versions of the equations
of motion. Unfortunately it is rather unclear how to introduce ghosts into such a gauge

fixed action. Ghosts can easily be introduced when employing a more conventional
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gauge fixing however one is left with the problem of an incomplete gauge fixing. A gauge
invariant measure was introduced and it was shown how the theory yielded the correct
first quantised integrals on expansion. A hamiltonian quantisation was attempted in
section 3.4 which yielded the correct gauge invariant equations of motion. An ordering
of the conjugate variables could be defined when the delta function was replaced by
unity however the case of general p and general D however led to expressions involving
ratios of delta functions and derivatives of delta functions and to ordering problems.
Thus although quantisation looks feasable it is as yet incomplete.

The implicit function approach to second quantised string theory appears to in-
corporate some fundamental principles yet still makes contact with established ideas.
Although the model in theory has a lot of scope, some method of dealing with the delta
function in the action must be found before there can be any hope of performing de-
tailed calculations. Real tests of the formalism, such as reproducing the standard result
D = 26, await a tractable quantisation. At the quantum level, consistency of the theory
on all worldsheets must be verified, the measure must be shown to be free from gauge
anomalies and the model must be shown to reproduce the correct perturbation theory
for strings (at large ®,). A pressing problem is to find a supersymmetric generalisation
so that fermions can be introduced. Although there is evidence that supersymmetry is
no longer required to explain the vanishing of the cosmological constant,[”) it is required
to cancel the tachyon and provide fermions.

A lot of work is required before it can be determined whether or not the implicit
function approach is an important step towards a non-perturbative string theory. Most
urgently required are a complete quantisation and supersymmetrisation of the model.
None the less it is hoped that the reader has been convinced that the formalism is
simple and flexible enough to encompass the exciting phenomena that lie beyond in

non-perturbative string theory.
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