
1

Hybrid Transceiver Optimization for Multi-Hop
Communications

Chengwen Xing, Member, IEEE, Xin Zhao, Shuai Wang, Wei Xu, Senior Member, IEEE,
Soon Xin Ng, Senior Member, IEEE, Sheng Chen, Fellow, IEEE

Abstract—Multi-hop communication with the aid of large-
scale antenna arrays will play a vital role in future emergence
communication systems. In this paper, we investigate amplify-
and-forward based and multiple-input multiple-output assisted
multi-hop communication, in which all nodes employ hybrid
transceivers. Moreover, channel errors are taken into account in
our hybrid transceiver design. Based on the matrix-monotonic
optimization framework, the optimal structures of the robust
hybrid transceivers are derived. By utilizing these optimal
structures, the optimizations of analog transceivers and digital
transceivers can be separated without loss of optimality. This
fact greatly simplifies the joint optimization of analog and
digital transceivers. Since the optimization of analog transceivers
under unit-modulus constraints is nonconvex, a projection type
algorithm is proposed for analog transceiver optimization to
overcome this difficulty. Based on the derived analog transceivers,
the optimal digital transceivers can then be derived using matrix-
monotonic optimization. Numerical results obtained demonstrate
the performance advantages of the proposed hybrid transceiver
designs over other existing solutions.

Index Terms—Hybrid transceiver optimizations, matrix-
monotonic optimization, multi-hop communication, emergence
communications, linear transceiver, nonlinear transceiver.

I. INTRODUCTIONS

Emergency communications are of critical importance in
managing emergency scenarios, such as natural disasters, anti-
terrorist wars, large-scale sport events [1]. Multi-hop commu-
nication is an important enabling technology for emergency
communications because it is less demanding on network
infrastructures. For example, multi-hop communications can
occur between multiple satellites or multiple unmanned aerial
vehicles or other high-latitude platforms [2]–[4]. Moreover,
multi-hop communication is also a promising technology to
overcome deep fadings over long distance for high frequency
band communications [5], such as millimeter wave communi-
cations or Terahertz communications [5]–[9].
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Generally, it is challenging to simultaneously guarantee
high reliability and high spectrum efficiency of multi-hop
communications [10]. Because of its high spatial diversity and
multiplexing gains, the large-scale antenna array technology
offers a promising candidate for this difficult task. It is worth
highlighting that different from cellular communications, the
physical-size constraints on emergence communication nodes
are less stringent. As a result, it is practical to apply multiple-
input multiple-output (MIMO) technology to overcome path
loss and to improve spectral efficiency simultaneously. For
MIMO multi-hop communications, various signal processing
strategies at relays can be classified into two categories,
i.e., regenerative operation and nonregenerative operation. For
regenerative schemes, the signal received at each intermediate
hop is decoded first, then a new transmission for the decoded
information is performed to the next hop. For nonregenerative
schemes, the received signal from the preceding hop is not
decoded but directly forwarded to the next hop after multi-
plying it with a forward matrix. Nonregenerative schemes are
characterized by their low complexity and high security [8].

In order to meet the demands of data-hungry applications,
the scale of MIMO has become increasingly larger, and the
cost of antenna arrays in MIMO systems has boosted dramat-
ically, correspondingly [11]. In particular, the deployment of
large-scale antenna arrays will inevitably be impeded by the
significant cost and complexity of emergence communication
nodes [12]. To get over the limitations due to the high cost and
implementation complexity, hybrid analog/digital structures
have been proposed, which have attracted lots of attention
[13]–[15]. Unlike the traditional full digital systems, in hybrid
transceivers, part of signal processing work is delegated to
radio-frequency (RF) devices, which could greatly reduce the
cost of MIMO transceivers [14], [15]. The subsequent chal-
lenges mainly come from the analog transceiver optimizations,
because the unit-modulus constraints on each element of the
analog transceiver matrices are nonconvex and difficult to
solve using existing algorithms [13], [15], [16].

The potential of hybrid transceivers in mmWave communi-
cations arouses a great passion in hybrid beamforming design.
Existing literatures mainly concentrated on the topic of explor-
ing and optimizing the hybrid beamforming strategies in varies
communication systems [13], [14], [17], [18]. The techniques
in compress sensing were firstly introduced to deal with the
point-to-point hybrid transceiver design in [15]. The authors in
[16], [19], [20] improved the performance of the point-to-point
hybrid communication systems with the sacrifice of higher
computational complexity. Then, MSE criterion based hybrid
design and selection based hybrid structure were investigated
in [21]–[23]. The investigations were not only limited to the
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point-to-point linear transceiver optimizations [24], [25]. In
fact, the nonlinear hybrid transceiver optimizations have drew
more attentions recently. The nonlinear hybrid transceiver with
vector perturbation for the point-to-point communication was
studied in [26]. A general nonlinear hybrid transceiver opti-
mization was discussed in [27]. Further, the hybrid transceiver
design in multi-user and multi-cell communications became
one of the major concerns in hybrid beamforming topic [28]–
[33]. The work in [34] proposed an analytical framework for
multi-cell hybrid communications, while only single stream
mmWave communications were thoroughly investigated. Af-
terwards, the hybrid precoding optimization was naturally
extended to the dual-hop relay communications [35]–[38]. In
[35], the authors also tried to use compress sensing based
algorithm to handle the analog relaying beamformer design
with limitation of mmWave channels. The work in [36]
considered the dual-hop relay system with two-hop relaying
strategy, which can be applied to the massive MIMO channels.
Other researchers investigated the full duplex two-hop relay
communications based on the nonconvex optimization algo-
rithms [38]. However, to the best of the authors’ knowledge,
few has taken into account the hybrid transceiver optimization
in relay communications, e.g., for emergency communication
scenarios. Neither the multi-hop hybrid relay communication
nor a general framework of hybrid relay communications has
ever been reported.

Different from these existing works, in this work, we
investigate the hybrid transceiver designs for a multi-hop AF
MIMO cooperative network [27], [39]. Furthermore, channel
errors are also taken into account [40]. More specifically,
we propose a comprehensive unified framework of robust
hybrid transceiver optimizations for multi-hop cooperative
communications. Our work is much more challenging than the
existing works. The main contributions of this work are listed
as follows, which differentiate our work from the existing
works distinctly.

• We consider a general multi-hop AF MIMO relaying
system, where multiple relays facilitate the communi-
cations between source and its destination. All nodes
are equipped with multiple antennas and multiple data
streams are simultaneously transmitted. In addition, both
linear transceivers and nonlinear transceivers are investi-
gated in our framework. The nonlinear transceivers inves-
tigated include Tomlinson-Harashima precoding (THP) at
the source or decision feedback equalizer (DFE) at the
destination [41]–[43].

• For the linear transceiver designs of the multi-hop AF
MIMO relaying network, two general types of perfor-
mance metrics are considered, namely, additively Schur-
convex function and additively Schur-concave function
of the diagonal elements of the data estimation matrix at
the destination. Different fairness levels can be realized
by using these two types of performance metrics.

• For the nonlinear transceiver designs of the multi-hop
AF MIMO relaying network, two general kinds of per-
formance metrics are considered, namely, multiplica-
tively Schur-convex function and multiplicatively Schur-

concave function of the diagonal elements of the data
estimation matrix at the destination. Different fairness
levels can be compromised by leveraging these two kinds
of performance metrics.

• In our work, correlated channel errors in each hop
are taken into account. The correlated channel errors
make the hybrid transceiver optimization for AF MIMO
relaying networks particularly challenging, and to the
best of our knowledge, this robust hybrid transceiver
optimization has not be addressed in existing literature.

• At source and destination, the hybrid transceiver consists
of two parts, i.e., analog and digital precoders as well
as analog and digital receivers, respectively. At each
relay, the hybrid transceiver consists of three components,
i.e., analog receive part, digital forward part and analog
transmit part. Based on the matrix-monotonic frame-
work [39], the optimal structures of these components
are derived. By exploiting these optimal structures, the
robust hybrid transceiver for multi-hop communications
is optimized efficiently. Our results can be applied to
many frequency bands, including RF, millimeter wave
and Terahertz bands.

Throughout our discussions, bold-faced lower-case and
upper-case letters denote vectors and matrices, respectively.
The Hermitian square root of a positive semi-definite matrix
M is denoted by M

1
2 . The expectation operator is denoted by

E{·} and Tr(·) is the matrix trace operator. While (·)T, (·)∗,
(·)H and (·)−1 denote matrix transpose, conjugate, Hermitian
transpose and inverse operators, respectively. The diagonal
matrix with the diagonal elements λ1, · · · , λN is denoted
as diag{λ1, · · · , λN} = diag

{
[λ1 · · ·λN ]T

}
, and I denotes

the identity matrix with appropriate dimension, while d[M ]
is the vector whose elements are the diagonal elements of
matrix M , and d2[M ] = d

[
diag{d[M ]}diag∗{d[M ]}

]
.

The real part operation is denoted by ℜ{·}, and the angle
of scalar a is denoted as ]a. The symbol PF{·} denotes
the angle projection operation, i.e., PF{a} = ej·]a, where
j =

√
−1, and ∥ · ∥F is the matrix Frobenius norm. Λ ↘

represents a rectangular or square diagonal matrix whose
diagonal elements are arranged in decreasing order, while
λ{M}=[λ1(M) λ2(M) · · ·λN (M)]T, where λn(M) is the
nth largest eigenvalue of the N ×N matrix M . Furthermore,
(a)†=max{0, a}. ‘Independently and identically distributed’
and ‘with respect to’ are abbreviated as ‘i.i.d.’ and ‘w.r.t.’,
respectively.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a general multi-hop (K-hop) AF MIMO relaying
network in which multiple (K−1) relay nodes (nodes 2 to K)
help a source node (node 1) to communicate with a destination
node (denoted as node K). At each relay, the received signal
vector is not decoded but is directly forwarded to the next node
after multiplying it with a forward matrix. All the nodes are
equipped with multiple antennas and multiple data streams are
simultaneously transmitted. Define the number of transmit and
receive antennas at the kth node as Nt,k and Nr,k, the number
of RF chains in the structure as NRF, and the number of data
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streams as N . Let the transmitted signal vector from the source
be x0 ∈CN with E

{
x0x

H
0

}
=σ2

0I . Then the received signal
vector at the kth node, where 1≤k≤K, can be expressed as

xk =HkFkxk−1 + nk, (1)

where Hk is the kth hop channel matrix, xk−1 is the trans-
mitted signal vector from the preceding node, and nk is the
additive white Gaussian noise (AWGN) vector at the kth node
with the covariance matrix σ2

nk
I , while the forward matrix Fk

satisfies the following hybrid structure

Fk =FAL,kFD,kFAR,k, (2)

in which FAL,k, FD,k, and FAR,k are the analog transmit
precoder matrix, digital forward matrix, and analog receive
combiner matrix for the kth hop or the (k − 1)th node,
respectively. In particular, FAR,1=I .

Owing to the time varying nature and limited training
resource, the channel state information (CSI) available at a
node is imperfect. Hence, we model the channel matrix Hk

by

Hk =Ĥk +HW,kΨ
1
2

k , (3)

where Ĥk is the estimated channel matrix available, and the
elements of HW,k are i.i.d. random variables with zero mean
and unit power. The positive semidefinite matrix Ψk is the
transmit correlation matrix of the channel errors. The detailed
derivation of Ψk is beyond the scope of this paper and readers
are recommended to referred to [6]. Basically, Ψk is a function
of training sequence.

At the destination, i.e., node K, the desired signal x0 may
be recovered from the noise corrupted observation xK via a
hybrid linear equalizer, which can be expressed as

x̂0 =GDGAxK , (4)

where GD and GA denote the digital and analog equaliz-
ers of the hybrid transceiver at the destination, respectively.
Given the hybrid linear equalizer and all the forward matrices
{Fk}Kk=1, the corresponding mean squared error (MSE) matrix
is defined by [44]

ΦL
MSE

(
GD,GA, {Fk}Kk=1

)
= E

{(
GDGAxK − x0

)(
GDGAxK − x0

)H}
. (5)

As there is no constraint for the digital equalizer, the optimal
GD can be derived in closed form [6]. Substituting this optimal
GD into (5), the data estimation MSE matrix can be expressed
as

ΦL
MSE

(
GA, {Fk}Kk=1

)
= σ2

0I − σ4
0

(
GAĤKFKĤK−1FK−1 · · · Ĥ1F1

)H
×
(
GAĤKFKRxK−1

FH
KĤH

KGH
A +KnK

)−1

×
(
GAĤKFKĤK−1FK−1 · · · Ĥ1F1

)
, (6)

where KnK
is the equivalent noise covariance matrix at

destination, which can be expressed as

KnK
=GARnK

GH
A +Tr

(
FKRxK−1

FH
KΨK

)
GAG

H
A, (7)

while the covariance matrix Rxk
of xk, for 1 < k ≤ K, is

given by

Rxk
=ĤkFkRxk−1

FH
k ĤH

k +Knk
, (8)

in which

Knk
=σ2

nk
I +Tr

(
FkRxk−1

FH
k Ψk

)
I. (9)

Note that Rx0
= σ2

0I .
Based on the hybrid linear data estimation, nonlinear

transceivers can further be implemented, for example, by using
the THP at the source or adopting the DFE at the destination.
Let the lower triangular matrix B be the feedback matrix
adopted in the THP or DFE. Then the corresponding data
estimation MSE matrix can be expressed as

ΦNL
MSE

(
B,GA, {Fk}Kk=1

)
= (I +B)ΦL

MSE

(
GA, {Fk}Kk=1

)
(I +B)H. (10)

Based on the data estimation MSE matrices (6) and (10) for
linear and nonlinear transceivers, respectively, the following
hybrid transceiver optimization problems can be formulated.
Specifically, the linear hybrid transceiver optimization for
multi-hop communications can be formulated as

min
GA,{Fk}K

k=1

fL
(
d
[
ΦL

MSE(GA, {Fk}Kk=1)
])
,

s.t. Tr
(
FkRxk−1

FH
k ) ≤ Pk, (11)

FAL,k ∈ FPL,k,FAR,k ∈ FPR,k,GA ∈ FG,

where Pk is the maximum transmit power at the kth node,
while FPL,k, FPR,k and FG denote the corresponding analog
matrix sets with proper dimensions and the elements of any
matrix in these sets have constant amplitude. The objective
function fL(·) can be an additively Schur-convex or additively
Schur-concave function of the diagonal elements of the data
estimation MSE matrix ΦL

MSE

(
GA, {Fk}Kk=1

)
[7], [45]. Sim-

ilarly, the nonlinear hybrid transceiver optimization for multi-
hop communications can be expressed as

min
GA,{Fk}K

k=1

fNL

(
d
[
(I+B)ΦL

MSE(GA, {Fk}Kk=1)(I+B)H
])
,

s.t. Tr
(
FkRxk−1

FH
k ) ≤ Pk, (12)

FAL,k ∈ FPL,k,FAR,k ∈ FPR,k,GA ∈ FG,

where the objective function fNL(·) is a multiplicatively
Schur-convex or multiplicatively Schur-concave function of
the diagonal elements of ΦNL

MSE

(
B,GA, {Fk}Kk=1

)
[45], [46].

III. PROBLEM REFORMULATION

To simplify the derivations for transceiver designs, we
introduce the auxiliary variables

F̄1 =F1Q
H
0 , (13)

F̄k =FkK
1
2
nk−1Σ

1
2

k−1Q
H
k−1, 2 ≤ k ≤ K, (14)

where Qk for 0≤k≤K − 1 are unitary matrices with proper
dimensions, and for 2≤k≤K,

Σk−1=K
− 1

2
nk−1Ĥk−1Fk−1Rxk−2

FH
k−1Ĥ

H
k−1K

− 1
2

nk−1+I. (15)
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Therefore, the linear data estimation MSE matrix can be
reformulated as

ΦL
MSE

(
GA, {F̄k}Kk=1, {Qk}K−1

k=0

)
= σ2

0I − σ4
0Υ

HΥ, (16)

where

Υ=
(
Σ

− 1
2

K K
− 1

2
nKGAĤKF̄KQK−1Σ

− 1
2

K−1K
− 1

2
nK−1ĤK−1F̄K−1×

· · · ×Q1Σ
− 1

2
1 K

− 1
2

n1 Ĥ1F̄1Q0

)
, (17)

in which

ΣK =K
− 1

2
nKGAĤKF̄KRxK−1

F̄H
KĤH

KGH
AK

− 1
2

nK + I. (18)

Based on the reformulated data estimation matrix
ΦL

MSE

(
GA, {F̄k}0k=1, {Qk}K−1

k=0

)
, the linear transceiver opti-

mization problem (11) can be re-expressed as

min
GA,{F̄k},{Qk}

fL
(
d
[
ΦL

MSE(GA, {F̄k}, {Qk})
])
,

s.t. Tr
(
F̄kF̄

H
k ) ≤ Pk, FAL,k∈FPL,k,

FAR,k∈FPR,k,GA∈FG,

(19)

where for notational simplification, we have dropped the
ranges of {F̄k} and {Qk}.

Similarly, the nonlinear transceiver optimization problem
(12) can be rewritten in the following form

min
{F̄k},

GA,{Qk}

fNL

(
d
[
(I+B)ΦL

MSE(GA, {F̄k}, {Qk})(I+B)H
])
,

s.t. Tr
(
F̄kF̄

H
k ) ≤ Pk, (20)

FAL,k∈FPL,k,FAR,k∈FPR,k,GA∈FG.

The optimal lower triangular matrix B satisfies [8], [42]

I +Bopt =diag{d[L]}L−1, (21)

where L is the lower triangular matrix of the following
Cholesky decomposition

ΦL
MSE

(
GA, {F̄k}, {Qk}

)
=LLH. (22)

As a result, the general nonlinear transceiver optimization
problem (20) can be rewritten as

min
{F̄k},GA,{Qk}

fNL

(
d2[L]

)
,

s.t. Tr
(
F̄kF̄

H
k ) ≤ Pk,

ΦL
MSE

(
GA, {F̄k}, {Qk}

)
= LLH, (23)

FAL,k ∈ FPL,k,FAR,k ∈ FPR,k,GA ∈ FG.

In the following sections, it is shown that the optimal {Qk},
{F̄k} and GA can be derived separately for both linear and
nonlinear transceiver designs of the multi-hop AF MIMO relay
system with different objective functions.

IV. OPTIMAL UNITARY MATRICES

Since {Qk} do not appear in the constraints, based on our
previous works [7], [8], we can easily derive the optimal Qk

for 1≤k≤K−1, as summarized in the following conclusion.

Conclusion 1 Define the following singular value decompo-
sitions (SVDs)

Σ
− 1

2

k K
− 1

2
nk ĤkF̄k = UkΛkV

H
k , 1 ≤ k < K, (24)

Σ
− 1

2

K K
− 1

2
nKGAĤKF̄K = UKΛKV H

K . (25)

Then the optimal Qk for 1 ≤ k ≤ K − 1 are given by

Qk,opt =Vk+1U
H
k . (26)

The optimal Q0 depends on the objective function, and it
is discussed case by case.

A. Linear Transceiver Designs

Consider the additively Schur-convex objective function for
fL(·), namely,

Obj.1 : fConvex
A-Schur

(
d
[
ΦL

MSE(GA, {F̄k}, {Qk})
])

. (27)

Then according to [39],

Q0,Opt =V1Ū
H
DFT, (28)

where the unitary matrix ŪDFT is the discrete Fourier transform
(DFT) matrix of appropriate dimension, which ensures that all
the diagonal elements of the data estimation MSE matrix are
identical. On the other hand, when the objective function is
additively Schur-concave, that is,

Obj.2 : fConcave
A-Schur

(
d
[
ΦL

MSE(GA, {F̄k}, {Qk})
])

, (29)

we have [39]

Q0,opt =V1. (30)

It can be seen that with the additively Schur-concave objective
function, the matrix version of the signal-to-noise ratio (SNR)
is a diagonal matrix at the optimal solution of Q0,opt.

Based on the optimal
{
Qk,opt

}K−1
k=0

, the linear transceiver
optimization problem (19) becomes

min
GA,{F̄k}

fL

({
λ
{
F̄H
k ĤH

k K−1
nk

ĤkF̄k

}})
,

s.t. Tr
(
F̄kF̄

H
k ) ≤ Pk, FAL,k ∈ FPL,k,

FAR,k ∈ FPR,k,GA ∈ FG,

(31)

where again for notational simplification, we have dropped the
range of

{
λ
{
F̄H
k ĤH

k K−1
nk

ĤkF̄k

}}
.

B. Nonlinear Transceiver Designs

For the nonlinear transceiver designs with THP or DFE,
when the objective fNL(·) is multiplicatively Schur-convex
w.r.t. the diagonal elements of the data estimation MSE matrix,
namely,

Obj.3 : fConvex
M-Schur

(
d2[L]

)
,

with ΦL
MSE

(
GA, {F̄k}, {Qk}

)
= LLH, (32)

the optimal solution of Q0 is given by [39]

Q0,opt =V1Ū
H
GMD, (33)

where the unitary matrix ŪGMD makes sure that the lower tri-
angular matrix L has the same diagonal elements. On the other
hand, when the objective function is multiplicatively Schur-
concave w.r.t. the diagonal elements of the data estimation
MSE matrix, i.e.,

Obj.4 : fConcave
M-Schur

(
d2[L]

)
,
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with ΦL
MSE

(
GA, {F̄k}, {Qk}

)
= LLH, (34)

the optimal solution of Q0 is given by [39]

Q0,opt =V1. (35)

It is obvious that when the objective function is multiplica-
tively Schur-concave, the matrix version SNR is a diagonal
matrix at the optimal solution of Q0,opt.

Based on the optimal solution of
{
Qk,opt

}K−1

k=0
, the nonlin-

ear transceiver optimization problem can be rewritten as

min
GA,{F̄k}

fNL

({
λ
{
F̄H
k ĤH

k K−1
nk

ĤkF̄k

}})
,

s.t. Tr
(
F̄kF̄

H
k

)
≤ Pk,FAL,k ∈ FPL,k,

FAR,k ∈ FPR,k,GA ∈ FG.

(36)

In a nutshell, for linear transceiver optimization and nonlin-
ear transceiver optimization, the optimal solution is a Pareto
optimal solution of the following optimization problem

max
GA,{F̄k}

{
λ
{
F̄H
k ĤH

k K−1
nk

ĤkF̄k

}}
,

s.t. Tr
(
F̄kF̄

H
k

)
≤ Pk,FAL,k ∈ FPL,k,

FAR,k ∈ FPR,k,GA ∈ FG.

(37)

Therefore, the common structures of all the Pareto optimal
solutions of this vector optimization problem are the structures
of the optimal solutions of our linear transceiver optimization
problem and nonlinear transceiver optimization problem. In
the following, we will derive the optimal structures of the
Pareto optimal solutions. Since for multi-hop AF MIMO com-
munications, the hybrid transceiver optimizations are different
in the first hop, the intermediate hops, and the final hop, we
will investigate these hybrid transceiver optimizations case by
case.

V. OPTIMAL STRUCTURES OF HYBRID TRANSCEIVERS

A. First Hop

The first-hop communication occurs between the source,
node 1, and the first relay, node 2. By defining

F̄D,1 =FD,1R
1
2
x0 , (38)

the vector optimization problem (37) for the first hop can be
expressed in the following form

max
F̄1

λ
{
F̄H
D,1F

H
AL,1Ĥ

H
1 K−1

n1
Ĥ1FAL,1F̄D,1

}
,

s.t. Tr
(
FAL,1F̄D,1F̄

H
D,1F

H
AL,1

)
≤ P1,

FAL,1 ∈ FPL,1.

(39)

Noting the equivalent noise covariance matrix in the first hop

Kn1
=
(
σ2
n1

+Tr
(
FAL,1F̄D,1F̄

H
D,1F

H
AL,1Ψ1

))
I , η1I, (40)

it is obvious that the forward matrix optimization in the first
hop is challenging to solve, and some reformulations are
needed.

Note that the following power constraint

Tr
(
FAL,1F̄D,1F̄

H
D,1F

H
AL,1

)
≤ P1 (41)

is equivalent to the following one

Tr
((

σ2
n1

I + P1Ψ1

)
FAL,1F̄D,1F̄

H
D,1F

H
AL,1

)
η1

≤ P1. (42)

Hence the optimization problem (39) is equivalent to

max
F̄1

λ
{
F̄H
D,1F

H
AL,1Ĥ

H
1 K−1

n1
Ĥ1FAL,1F̄D,1

}
,

s.t.
Tr

((
σ2
n1

I+P1Ψ1

)
FAL,1F̄D,1F̄

H
D,1F

H
AL,1

)
η1

≤ P1,

FAL,1 ∈ FPL,1.

(43)

By defining the following auxiliary variables

F̃D,1=η
− 1

2
1

(
FH
AL,1

(
σ2
n1

I + P1Ψ1

)
FAL,1

) 1
2

F̄D,1, (44)

Π1=
(
σ2
n1

I+P1Ψ1

) 1
2FAL,1

×
(
FH
AL,1

(
σ2
n1

I+P1Ψ1

)
FAL,1

)− 1
2, (45)

the vector optimization problem (43) can be rewritten in the
following form

max
F̄1

λ
{
F̃H
D,1Π

H
1

(
σn1I + P1Ψ1

)− 1
2 ĤH

1

× Ĥ1

(
σn1

I + P1Ψ1

)− 1
2Π1F̃D,1

}
,

s.t. Tr
(
F̃D,1F̃

H
D,1

)
≤ P1, FAL,1 ∈ FPL,1,

(46)

which is equivalent to the following matrix-monotonic opti-
mization problem

max
F̄1

F̃H
D,1Π

H
1

(
σn1

I + P1Ψ1

)− 1
2 ĤH

1

× Ĥ1

(
σn1I + P1Ψ1

)− 1
2Π1F̃D,1,

s.t. Tr
(
F̃D,1F̃

H
D,1

)
≤ P1, FAL,1 ∈ FPL,1.

(47)

From (45), it is obvious that Π1 is determined by the
singular matrices of analog transmit precoder FAL,1 and
the nonzero singular values of Π1 are all ones. In other
words, we only need to analyze the SVD unitary matrices
of Π1. Furthermore, in the optimization problem (47), the
constraint is unitary invariant to the digital forward matrix
F̃D,1. This means that we only need to analyze the left SVD
unitary matrix of Π1, which is equivalent to the left SVD
unitary matrix of

(
σ2
n1

I+P1Ψ1

) 1
2FAL,1. Then the following

conclusion obviously holds.

Conclusion 2 The singular values of
(
σ2
n1

I+P1Ψ1)
1
2FAL,1

do not affect the system performance. The left eigenvectors of
the SVD for

(
σ2
n1

I +P1Ψ1)
1
2FAL,1 have the maximum inner

product with respect to the eigenvectors VH1
, defined by the

following SVD

Ĥ1

(
σ2
n1

I+P1Ψ1

)− 1
2 =UH1

ΛH1
V H
H1

with ΛH1
↘ . (48)

The optimal structure of F̃D,1 is readily derived in the
following conclusion [6], [7].

Conclusion 3 Based on the SVD

Ĥ1

(
σ2
n1
I+P1Ψ1

)− 1
2Π1=UΠ,1ΛΠ,1V

H
Π,1 withΛΠ,1↘ (49)
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for given FAL,1, all the Pareto optimal F̃D,1 of the optimiza-
tion problem (47) satisfy the following structure

F̃D,1 = VΠ,1ΛF̃D,1
UH

Arb, (50)

where ΛF̃D,1
is a rectangular diagonal matrix, and UArb is

an arbitrary right unitary matrix with proper dimension.

Based on Conclusion 3 and the definition (44), when the
optimal F̃D,1 is given, the optimal F̄D,1 is readily computed
as

F̄D,1 =

√
P1

α1

(
FH
AL,1

(
σ2
n1

I + P1Ψ1

)
FAL,1

)− 1
2

F̃D,1, (51)

in which α1 is given by

α1 =Tr
((

FH
AL,1(σ

2
n1

I+P1Ψ1)FAL,1

)− 1
2FH

AL,1FAL,1

×
(
FH
AL,1

(
σ2
n1

I+P1Ψ1

)
FAL,1

)− 1
2 F̃D,1F̃

H
D,1

)
. (52)

B. Intermediate Hops

First define

F̄AR,k = FAR,kR
1
2
xk−1 , 2 ≤ k ≤ K. (53)

Then the optimal forward matrices in the intermediate hops,
namely, the hops 2 ≤ k ≤ K − 1, are the Pareto optimal
solutions of the following optimizations

max
F̄k

λ
{
F̄H
AR,kF

H
D,kF

H
AL,kĤ

H
k K−1

nk
ĤkFAL,kFD,kF̄AR,k

}
,

s.t. Tr
(
FAL,kFD,kF̄AR,kF̄

H
AR,kF

H
D,kF

H
AL,k

)
≤ Pk, (54)

FAL,k ∈ FPL,k, FAR,k ∈ FPR,k.

Noting the equivalent noise covariance matrices

Knk
=
(
σ2
nk

+Tr
(
FAL,kFD,kF̄AR,kF̄

H
AR,kF

H
D,k

× FH
AL,kΨk

))
I , ηkI, (55)

the power constraints

Tr
(
FAL,kFD,kF̄AR,kF̄

H
AR,kF

H
D,kF

H
AL,k

)
≤ Pk (56)

are equivalent to

Tr
((
σ2
nk
I+PkΨk

)
FAL,kFD,kF̄AR,kF̄

H
AR,kF

H
D,kF

H
AL,k

)
ηk

≤Pk.

(57)

As a result, after replacing the original constraint, the opti-
mization problem (54) is equivalent to

max
F̄k

λ
{
F̄H
AR,kF

H
D,kF

H
AL,kĤ

H
k K−1

nk
ĤkFAL,kFD,kF̄AR,k

}
,

s.t.
Tr

((
σ2
nk

I+PkΨk

)
FAL,kFD,kF̄AR,kF̄

H
AR,kF

H
D,kF

H
AL,k

)
ηk

≤Pk,

FAL,k ∈ FPL,k, FAR,k ∈ FPR,k.
(58)

By defining the following auxiliary variables

F̃D,k =η
− 1

2

k

(
FH
AL,k

(
σ2
nk

I + PkΨk

)
FAL,k

) 1
2

FD,k (59)

×
(
F̄AR,kF̄

H
AR,k

) 1
2 ŨH

k , (60)

ΠR,k =
(
F̄AR,kF̄

H
AR,k

)− 1
2 F̄AR,k, (61)

ΠL,k =
(
σ2
nk

I + PkΨk

) 1
2FAL,k

(
FH
AL,k

×
(
σ2
nk

I + PkΨk

)
FAL,k

)− 1
2

, (62)

where Ũk is a left unitary matrix of appropriate dimension
yet to be determined, the optimization problem (58) can be
reformulated into

max
F̄k

λ
{
ΠH

R,kŨ
H
k F̃H

D,kΠ
H
L,k

(
σ2
nk

I+PkΨk

)− 1
2 ĤH

k

×Ĥk

(
σ2
nk

I+PkΨk

)− 1
2ΠL,kF̃D,kŨkΠR,k

}
,

s.t. Tr
(
F̃D,kF̃

H
D,k

)
≤ Pk,

FAL,k ∈ FPL,k, FAR,k ∈ FPR,k.

(63)

Similar to point-to-point MIMO systems [27], we have the
following two conclusions.

Conclusion 4 Based on the definition of ΠR,k in (61), it can
be concluded that the singular values of F̄AR,k do not affect
the system performance. The right singular vectors of the
optimal F̄AR,k correspond to the left singular vectors of the
preceding-hop channel, i.e., UH

Hk
.

Conclusion 5 Based on the SVDs

Ĥk

(
σ2
nk
I+PkΨk)

− 1
2ΠL,kF̃D,k=ŨkΛ̃kṼ

H
k with Λ̃k↘, (64)

ΠR,k = UΠR,k
ΛΠR,k

V H
ΠR,k

with ΛΠR,k
↘, (65)

the optimal Ũk equals to

Ũk,opt =ṼkU
H
ΠR,k

. (66)

Based on Conclusions 4 and 5, the optimization problem
(63) is equivalent to the much simpler one as follows

max
F̄k

λ
{
F̃H
D,kΠ

H
L,k

(
σ2
nk

I + PkΨk

)− 1
2 ĤH

k

×Ĥk

(
σ2
nk

I + PkΨk

)− 1
2ΠL,kF̃D,k

}
,

s.t. Tr
(
F̃D,kF̃

H
D,k

)
≤ Pk,

FAL,k ∈ FPL,k, FAR,k ∈ FPR,k,

(67)

which further equals to the following matrix monotonic opti-
mization problem

max
F̄k

F̃H
D,kΠ

H
L,k

(
σ2
nk

I + PkΨk

)− 1
2 ĤH

k

×Ĥk

(
σ2
nk

I + PkΨk

)− 1
2ΠL,kF̃D,k,

s.t. Tr
(
F̃D,kF̃

H
D,k

)
≤ Pk,

FAL,k ∈ FPL,k, FAR,k ∈ FPR,k.

(68)

Similar to the matrix monotonic optimization (47), we can
obtain the optimal solution of (68).

Conclusion 6 The singular values of
(
σ2
nk

I+PkΨk

) 1
2FAL,k

do not affect the system performance. The left eigenvectors of
the SVD for

(
σ2
nk

I+PkΨ1

) 1
2FAL,k have the maximum inner

product with respect to the eigenvectors VHk
defined by the

following SVD

Ĥk

(
σ2
nk

I+PkΨk

)− 1
2 =UHk

ΛHk
V H
Hk

with ΛHk
↘ . (69)
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Conclusion 7 Based on the SVD

Ĥk

(
σ2
nk

I+PkΨk

)− 1
2ΠL,k=UΠ,kΛΠ,kV

H
Π,k withΛΠ,k↘,

(70)

for given FAL,k, all the Pareto optimal F̃D,k of the optimiza-
tion problem (68) satisfy the structure:

F̃D,k =VΠ,kΛF̃D,k
UH

Arb, (71)

where ΛF̃D,k
is a rectangular diagonal matrix.

Based on Conclusion 7 and the definition in (60), after
computing the optimal F̃D,k, the optimal FD,k is given by

FD,k =

√
Pk

αk

(
FH
AL,k

(
σ2
nk

I + PkΨk

)
FAL,k

)− 1
2

F̃D,kŨk

×
(
F̄AR,kF̄

H
AR,k

)− 1
2 , (72)

where

αk=Tr

((
FH
AL,k

(
σ2
nk

I+PkΨk

)
FAL,k

)− 1
2

FH
AL,kFAL,k

×
(
FH
AL,k

(
σ2
nk
I+PkΨk

)
FAL,k

)− 1
2

F̃D,kF̃
H
D,k

)
. (73)

C. Final Hop

By noting the definition in (53), the optimization problem
(37) for the final Kth hop becomes

max
GA,F̄K

λ
{
F̄H
AR,KFH

D,KFH
AL,KĤH

KGH
AK

−1
nK

×GAĤKFAL,KFD,KF̄AR,K

}
,

s.t. Tr
(
FAL,KFD,KF̄AR,KF̄H

AR,KFH
D,KFH

AL,K

)
≤PK ,

FAL,K ∈ FPL,K , FAR,K ∈ FPR,K , GA ∈ FG,
(74)

where the equivalent noise covariance matrix is given by

KnK
=GA

((
σ2
nK

+Tr
(
FAL,KFD,KF̄AR,KF̄H

AR,KFH
D,K

× FH
AL,KΨK

))
I
)
GH

A , ηKGAG
H
A. (75)

Clearly, the power constraint in (74), namely,

Tr
(
FAL,KFD,KF̄AR,KF̄H

AR,KFH
D,KFH

AL,K

)
≤ PK , (76)

is equivalent to

1

ηK
Tr

((
σ2
nK

I+PKΨK

)
FAL,KFD,KF̄AR,K

× F̄H
AR,KFH

D,KFH
AL,K

)
≤ PK . (77)

By defining the following auxiliary variables

F̃D,K =η
− 1

2

K

(
FH
AL,K

(
σ2
nK

I + PKΨK

)
FAL,K

) 1
2

× FD,K

(
F̄AR,KF̄H

AR,K

) 1
2

ŨH
K , (78)

ΠR,K =
(
F̄AR,KF̄H

AR,K

)− 1
2

F̄AR,K , (79)

ΠL,K =
(
σ2
nK

I + PKΨK

) 1
2FAL,K

×
(
FH
AL,K

(
σ2
nK

I + PKΨK

)
FAL,K

)− 1
2

, (80)

ΠG =
(
GAG

H
A

)− 1
2GA, (81)

where ŨK is a left unitary matrix yet to be determined, the
vector optimization problem (74) can be reformulated as

max
GA,F̄K

λ
{
ΠH

R,KŨH
KF̃H

D,KΠH
L,K

(
σ2
nK

I+PKΨK

)− 1
2 ĤH

KΠH
G

×ΠGĤK

(
σ2
nK

I+PKΨK

)− 1
2ΠL,KF̃D,KŨKΠR,K

}
,

s.t. Tr
(
F̃D,KF̃H

D,K

)
≤PK ,

FAL,K ∈ FPL,K , FAR,K ∈ FPR,K , GA ∈ FG.
(82)

Then we readily have the following two conclusions.

Conclusion 8 Based on the definition of ΠR,K , it can be
concluded that the singular values of F̄AR,K do not affect
the system performance. The right singular vectors of the
optimal F̄AR,K correspond to the left singular vectors of the
preceding-hop channel, i.e., UH

HK
.

Conclusion 9 Based on the SVDs

ĤK

(
σ2
nK

I+PKΨK

)− 1
2ΠL,KF̃D,K

= ŨKΛ̃KṼ H
K with Λ̃K↘, (83)

ΠR,K = UΠR,K
ΛΠR,K

V H
ΠR,K

with ΛΠR,K
↘, (84)

the optimal ŨK is derived as

ŨK,opt =ṼKUH
ΠR,K

. (85)

Based on Conclusions 8 and 9, the optimization (82) can
be simplified into:

max
GA,F̄K

λ
{
F̃H
D,KΠH

L,K

(
σ2
nK

I+PKΨK

)− 1
2 ĤH

KΠH
G

×ΠGĤK

(
σ2
nK

I+PKΨK)−
1
2ΠL,KF̃D,K

}
,

s.t. Tr
(
F̃D,KF̃H

D,K

)
≤PK,

FAL,K ∈ FPL,K , FAR,K ∈ FPR,K , GA ∈ FG.
(86)

The optimization (86) is equivalent to the following matrix
monotonic optimization problem

max
GA,F̄K

F̃H
D,KΠH

L,K

(
σ2
nK

I+PKΨK

)− 1
2 ĤH

KΠH
G

×ΠGĤK

(
σ2
nK

I+PKΨK)−
1
2ΠL,KF̃D,K ,

s.t. Tr
(
F̃D,KF̃H

D,K

)
≤PK,

FAL,K ∈ FPL,K , FAR,K ∈ FPR,K , GA ∈ FG,

(87)

and we readily have the following three conclusions.

Conclusion 10 The singular values of the matrix
(
σ2
nK

I +

PKΨK

) 1
2FAL,K do not affect the system performance. The

left eigenvectors of the SVD for
(
σ2
nK

I + PKΨK

) 1
2FAL,K

have the maximum inner product with respect to the eigenvec-
tors VHK

defined by the following SVD

ĤK

(
σ2
nK

I+PKΨK)−
1
2 =UHK

ΛHK
V H
HK

withΛHK
↘ .
(88)

Conclusion 11 The singular values of GA do not affect the
system performance. The right eigenvectors of the SVD for
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GA have the maximum inner product w.r.t. the eigenvectors
UHK

.

Conclusion 12 Based on the SVD

ΠGĤK

(
σ2
nK

I+PKΨK

)− 1
2ΠL,K

= UΠ,KΛΠ,KV H
Π,K with ΛΠ,K↘, (89)

for given FAL,K , all the Pareto optimal solutions F̃D,K of the
optimization problem (87) satisfy the following structure

F̃D,K = VΠ,KΛF̃D,K
UH

Arb, (90)

where ΛF̃D,K
is a rectangular diagonal matrix and UArb is

an arbitrary unitary matrix with a proper dimension.

Based on the definition in (78), when the optimal F̃D,K is
given, the optimal FD,K can be computed according to

FD,K =

√
PK

αK

(
FH
AL,K

(
σ2
nK

I + PKΨK

)
FAL,K

)− 1
2

F̃D,K

× ŨK

(
F̄AR,KF̄H

AR,K)−
1
2 , (91)

where αK is given by

αK=Tr
((

FH
AL,K

(
σ2
nK

I+PKΨK

)
FAL,K

)− 1
2

FH
AL,KFAL,K

×
(
FH
AL,K

(
σ2
nK

I+PKΨK

)
FAL,K

)− 1
2

F̃H
D,KF̃D,K

)
. (92)

VI. ANALOG TRANSCEIVER OPTIMIZATIONS

In the previous section, the optimal structures of the hybrid
transceivers are derived. Due to the physical limitations of
analog transceivers, the processing factors corresponding to
individual analog antenna elements are constrained to be unit-
modulus. Thus, it is the primary concern to derive an efficient
algorithm to design analog transceivers based on the obtained
optimal structures. In addition, for multi-hop AF MIMO
relaying systems, the low complex analog beamforming is of
practical interest as well. This section focuses on these critical
issues.

A. Proposed Analog Beamformer Design

1) Analog Transmit Precoder Design: Start from the analog
precoder design. In Section V, it is shown that the auxiliary
variable of the beamformer at the kth relay takes the following
form

ΠL,k=DkFAL,k

(
FH
AL,kD

H
k DkFAL,k

)− 1
2 , 1 ≤ k ≤ K,

(93)

where Dk is any invertible matrix with appropriate dimension,
and FAL,k is the analog transmit precoder to be designed.
It is interesting to point out that (93) is actually a general
form of analog beamformer design problem, and thus can
also be utilized to other beamformer design situations. In
Section V, it has been proven that only the left singular matrix
of ΠL,k, which is also equivalent to the left singular matrix
of DkFAL,k, should correspond with the eigenvectors of the
channel. More specifically, given the following SVD

DkFAL,k =UL,kΣL,kV
H
L,k, (94)

the optimal solution of UL,k is VHk
.

Instinctively, the angle matrix of the desired value of
ΠL,k, namely, VHk

, could be used to compose the analog
beamformer, which is denoted as PF

(
D−1

k VHk

)
. However,

as the amplitude information is missing by this method, the
performance of transceivers designed by such rudimentary
idea could be poor. An improved design is to minimize the
Frobenius norm of the error between the desired full digital
solution and the unit-modulus beamformer.

Different from the previous work [27], we consider a more
general design form to further improve the performance.
Note that the system performance can be guaranteed if the
first N channel eigenvectors are perfectly matched. However,
due to the limitation of hybrid structure, there is always a
performance gap between the optimal full digital transceivers
and the hybrid transceivers. On the other hand, in practice,
the number of RF chains is often larger than that of data
streams. A reasonable instinct is to utilize extra design freedom
offered by these extra RF chains to enhance the matching
accuracy. Moreover, in this paper, a weighted norm is utilized
to account for the varying influence of different bases in the
signal space. In this way, the associated optimization problem
can be formulated as

min
ΣL,k,VL,k,FAL,k

∥∥∥W 1
2

k

(
VHk

ΣL,kV
H
L,k−DkFAL,k

)∥∥∥2
F
,

s.t. VL,k ∈ U ,FAL,k ∈ FPL,k,
ΣL,k = diag{σL,1, · · · , σL,K},

(95)

where U = {U |UUH =UHU = I} is the unitary matrix set.
We can choose the weight matrix as Wk=VHk

ΛWk
V H
Hk

in
which ΛWk

is a diagonal matrix. Then, denote

VHk
=
[
ṼHk

V̂Hk

]
, (96)

ΣL,k =

[
Σ̃L,k

Σ̂L,k

]
, (97)

VL,k =
[
ṼL,k, V̂L,k

]
, (98)

where Σ̃L,k ∈ RN×N and Σ̂L,k ∈ C(N−NRF)×(N−NRF)

are diagonal matrices, while ṼHk
∈ CNt,k×N , V̂Hk

∈
CNt,k×(NRF−N), ṼL,k∈CNRF×N and V̂L,k∈CNRF×(NRF−N)

are complex matrices. Thus the objective function of (95) can
be transformed into∥∥∥W 1

2

k

(
VHk

ΣL,kV
H
L,k−DkFAL,k

)∥∥∥2
F

=
∥∥∥W 1

2

k

(
ṼHk

Σ̃L,kṼ
H
L,k+V̂Hk

Σ̂L,kV̂
H
L,k−DkFAL,k

)∥∥∥2
F
.

(99)

It is worth highlighting that there is no constraint imposed
on the matrix variable ΣL,k in the optimization (95). As a
result, the optimal Σ̃L,k and Σ̂L,k can be derived in closed-
form as

Σ̃L,k =
(
diag

{
d
[
Ṽ H
Hk

WkṼHk

]})−1

×ℜ
{
diag

{
d
[
Ṽ H
Hk

WkDkFAL,kṼL,k

]}}
, (100)

Σ̂L,k =
(
V̂ H
Hk

WkV̂Hk

)−1
V̂ H
Hk

WkDkFAL,kV̂L,k. (101)
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Algorithm 1 Analog Beamformer Optimization Algorithm
Input: Left singular matrix VHk

, weight matrix Wk, invert-
ible matrix Dk, iteration threshold ε

1: Set initial objective function of (95) to ∆ = ε+ 1 > ε
2: Set initial FAL,k = PF

(
D−1

k VHk

)
, then calculate initial

VL,k from SVD (94)
3: while ∆ > ε do
4: Update matrix Σ̃L,k and Σ̂L,k using (100) and (101)
5: Compute unitary matrix VL,k using (103)
6: Calculate analog beamformer matrix FAL,k by solving

(105) using phase projection
7: Compute ∆ with new Σ̃L,k, Σ̂L,k, VL,k and FAL,k

8: end while
9: Return: Optimal analog beamformer FAL,k

Given the optimal ΣL,k, the task is to find the optimal unitary
matrix VL,k. For the optimization

min
Q

∥BQ−A∥2F ,

s.t. Q ∈ U ,
(102)

the optimal solution is Q=UV H [47], in which the unitary
matrices U and V are given by the SVD BHA=UΣV H.
Thus, for the optimization problem (95), the optimal VL,k is
given by

VL,k =UH
V VV , (103)

where the unitary matrices UV and VV are defined based on
the following SVD(

VHk
ΣL,k

)H
WkDkFAL,k =UV ΣV V H

V . (104)

Our analog beamformer design based on the weighted
Frobenius norm minimization is very general. The different
weight matrices can be utilized to realize different performance
trade-offs. However, due to this weight matrix in the objective
function, in most case, it is challenging to compute the analog
beamformer in a closed-form. To overcome this difficulty,
the analog beamformer optimization problem may be further
transferred into the following optimization

min
FAL,k

∥∥∥D−1
k VHk

ΣL,kV
H
L,k − FAL,k

∥∥∥2
F
, (105)

whose optimal solution can be directly computed by angle
projection. In general, the weight matrix Wk is not an identity
matrix, and in this case, the optimal solution of the analog
beamformer is much more complicated. But it is also interest-
ing to note that the solution of (105) offers an ‘upper bound’
to the general optimal analog transmit precoder as shown in
[27].

Given Wk and Dk, our algorithm to design the optimal
analog transmit precoder for multi-hop AF relaying systems
is summarized in Algorithm 1, where the objective function
of (95) is ∆ =

∥∥W 1
2

k

(
VHk

ΣL,kV
H
L,k −DkFAL,k

)∥∥2
F

[27].
It is worth noting that concerning the high computational
complexity of matrix inversion and singular value decom-
position, the complexity of step 4 and step 5 is given by
O
(
(NRF −N)3

)
and O(N3

RF), respectively. Since matrix D

in (105) does not change in iterations, it can be calculated off-
line. Thus, for each iteration, the computational complexity of
Algorithm 1 is O(N3

RF). On the other hand, the calculation of
analog precoders requires the knowledge of channel singular
matrices. Therefore, the overall computational complexity of
the proposed analog precoder design is O(N2

r,k+1Nt,k+N3
t,k)

[48].
2) Analog Receive Combiner Design: Next we look into

the receiver design for hybrid transceivers. Based on Con-
clusions 4, 8 and 11, the auxiliary variables ΠR,k for relays
and ΠG for destination can be unified into a single form.
To be more specifically, according to the definition (53), the
receiving auxiliary matrix ΠR,k of (61) for a relay node is

ΠR,k =
(
FAR,kRxk−1

FH
AR,k

)− 1
2FAR,kR

1
2
xk−1 . (106)

The auxiliary matrix of destination ΠG can be obtained by
simply substituting FAR,kR

1/2
xk−1 with GA in (106). Thus, we

only need to discuss the design of analog receive combiner for
a relay node. According to Section V, the main task here is to
optimize the analog receive combiner FAR,k so that the right
singular matrix of the auxiliary variables ΠR,k can match the
right singular matrix of the preceding-hop channel.

Interestingly, it can be seen that by implementing the
conjugate transpose operation on the both sides of (106), the
analog combiner design problem can be transformed into a
similar form to the analog precoder design problem which
has already been solved. Thus, by defining the SVD of the
analog receive combiner

FAR,kR
1/2
xk−1

= UR,kΣR,kV
H
R,k, (107)

and based on the previous work [27], the analog receive
combiner design problem can be formulated as

min
FAR,k,

ΣR,k,UR,k

∥∥∥W 1
2

k

(
UHk

ΣR,kU
H
R,k−R

1/2
xk−1F

H
AR,k

)∥∥∥2
F
,

s.t. UR,k ∈ U ,FAR,k ∈ FPR,k,
ΣR,k = diag

{
σR,1, · · · , σR,K

}
.

(108)

Following the above discussions, it is clear that the analog
receive combiner design for multi-hop AF relaying systems
can also be completed using Algorithm 1.

3) Proposed Hybrid Transceiver Design: From the preced-
ing discussions, it can be found that the multi-hop hybrid
transceiver design is fundamentally different from the previous
studies on point-to-point hybrid beamforming, e.g., [19], [20],
[28], since there are basic differences on the system structures,
resulting in, distinctive mathematical expressions between the
multi-hop hybrid communications and the point-to-point hy-
brid communications. Correspondingly, the multi-hop hybrid
communication system design faces different challenges to
be addressed. Based on the conclusions given in Section V
and the above proposed analog design algorithm, the analog
beamformer design problem for multi-hop communications
can be solved directly. The pseudo algorithm for the designing
procedure of our proposed hybrid transceiver optimization
in the multi-hop communication system is summarized in
Algorithm 2. Observe from Algorithm 2 that because of
the requirement of Rxk−1

in the calculation of the analog
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Algorithm 2 Pseudo Algorithm for Hybrid Design for Multi-
Hop Communications
Input: Channel matrices {Hk}, maximum transmit powers

of nodes {Pk}, standard deviations of noises at nodes
{σnk

}, positive semidefinite matrices {Ψk}, maximum
repeat counter R

1: Set repeat counter r = 0
2: Calculate analog precoder FAL,1 at source (1st hop) based

on Conclusion 2
3: Calculate digital precoder FD,1 at source based on Con-

clusion 3
4: for kth node (1 < k < K) do
5: Compute analog combiner FAR,k based on Conclu-

sion 4
6: Calculate analog precoder FAL,k based on Conclu-

sion 6
7: Derive digital beamformer FD,k according to Conclu-

sion 7
8: end for
9: Calculate analog combiner FAR,K for Kth node based on

Conclusion 8
10: Calculate analog precoder FAL,K for Kth node based on

Conclusion 10
11: Calculate analog combiner GA for destination based on

Conclusion 11
12: Compute digital beamformer FD,K for Kth node accord-

ing to Conclusion 12
13: for kth node (1 < k ≤ K) and repeat counter r < R do
14: Update analog combiner FAR,k based on latest Rxk−1

15: Update digital beamformer FD,k based on latest FAR,k

16: Update correlation matrix of received signal Rxk−1

based on latest FD,k and FAR,k.
17: end for
18: Derive digital combiner GD for destination based on

WMMSE criterion
19: Return: Analog and digital beamformer for each node

in multi-hop communication

combiner at the kth node as well as the unit-modulus con-
straints on the analog beamformers FAL,k and FAR,k, an
iterative process is necessary. Specifically, the analog combiner
FAR,k, the digital beamformer FD,k and the correlation matrix
of the received signal Rxk−1

at the relay are computed
sequentially and repeatedly. It can be shown that for digital
beamformer design the computational complexity is given
by O(N2

r,k+1NRF ). Based on the complexity analysis for
Algorithm 1, the complexity of Algorithm 2 can be directly
written as O(KRN2

r,k+1Nt,k +KRN3
t,k). In particular, for a

small number of hops, K, and repeat counter, R, the compu-
tational complexity of Algorithm 2 can also be formulated as
O(N2

r,k+1Nt,k +N3
t,k).

B. Unit-Modulus Alignment Design

The previous subsection has discussed an effective algo-
rithm for the hybrid transceiver design, which considerably
improves the achievable system’s performance. This perfor-

mance enhancement is of course achieved by sacrificing the
computational complexity, see the loop of lines 13 to 17 in
Algorithm 2. In practice, low complexity is also a major
criterion measuring transceiver designs. Based on the results of
Subsection VI-A, a low complex hybrid transceiver design is
proposed here to handle the unit-modulus beamformer design
in multi-hop communications.

In particular, the analog beamformer design problem with
the weight matrix chosen to be the identity matrix is consid-
ered, i.e., Wk=I . Again, we only need to discuss the analog
transmit precoder design, since the analog receive combiner
design problem can be obtained by transforming it into an
analog precoder design. From Section V and (93), it can
be seen that the main task of the analog precoder design
is to ensure the left singular matrix of ΠL,k corresponding
to the eigenvectors of the channel VHk

. Noting the SVD of
DkFAL,k given in (94), the associated optimization problem
can be formulated as

min
FAL,k

∥∥∥(UL,kΣL,kV
H
L,k−DkFAL,k

)∥∥∥2
F
,

s.t. FAL,k ∈ FPL,k.
(109)

However, as FAL,k is tangled with positive semidefinite matrix
Dk, the problem (109) is difficult to handle. Therefore, it is
further transformed into its upper bound problem [27], which
is

min
FAL,k

∥∥∥(D−1
k UL,kΣL,kV

H
L,k−FAL,k

)∥∥∥2
F
,

s.t. FAL,k ∈ FPL,k.
(110)

Instinctively, the most effective way to obtain a unit-modulus
matrix is to get the matrix’s phase projection. Thus, the unit-
modulus analog beamformer FAL,k is given by

FAL,k = P
(
D−1

k VHk

)
. (111)

Note that the analog receive combiner FAR,k is still tangled
with the correlation matrix of received signal Rxk−1

. Here, it
is further assumed that {Rxk−1

} are all identity matrices to
simplify the design. With this assumption, the analog combiner
FAR,k can be found in a similar way to (111). The digital
beamformer can be designed based on the results of Section V.

It is clear that there is no iteration involved in the pro-
posed unit-modulus alignment design. Thus, compared with
the algorithm of Subsection VI-A, this algorithm has much
lower computational complexity. This benefit is achieved by
sacrificing the achievable system’s performance.

VII. NUMERAL RESULTS AND DISCUSSIONS

In order to assess the performance of the proposed solu-
tions, several numerical results are presented. Without loss
of generality, we investigate a three-hop AF MIMO relaying
network. Unless otherwise stated, the source and destination
are equipped with 32 antennas and 16 antennas, respectively,
while there are 4 RF chains involved in both the source and
destination. The two relay nodes are both equipped with 32
antennas and 4 RF chains. From the source node, N = 4 data
streams are transmitted. It is worth noting that our derivation
does not rely on a particular channel model. To demonstrate
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this, in the simulation both the millimeter wave (mmWave)
channel and RF Rayleigh channel are considered. In the
simulations, without loss of generality, the noise power is the
same at every node, and the system’s SNR is defined as the
radio of the transmit signal power at source over the noise
power at destination, i.e., SNR = PTx/σ

2
n. In addition, the

weight matrix in (95) is set to be an identity matrix.
Four hybrid transceiver designs with unit-modulus con-

straints are compared, and they are our proposed robust
hybrid transceiver optimization design of Subsection VI-A
(denoted by Proposed Alg.), our low-complexity unit-modulus
alignment based design of Subsection VI-B (denoted as UMA
Alg.), and two orthogonal matching pursuit (OMP) based
designs [15], [35]. The OMP algorithm, originated from [15],
is widely used in point-to-point or one-hop hybrid transceiver
designs, and it is extended to two-hop relay systems in [35].
To the best of our knowledge, the OMP algorithm applied
to multi-hop (K > 2) scenarios has not been discussed in the
existing literature. Based on the optimal structures presented in
this paper and the previous discussions on the OMP algorithm
given in [15], [35], we extend this algorithm to multi-hop
scenarios. More specifically, we implement two OMP based
algorithms in our simulations. The first one is referred to as
the full digital based OMP algorithm, denoted as FD-OMP
Alg., which is designed based on the optimal full digital
solution as given in [6]. The second one is known as the SVD
based OMP algorithm, denoted as SVD-OMP Alg., which is
designed based on singular matrices of channels. Specifically,
define the SVDs of the channel matrices as

Hk =UkΣkV
H
k , 1 ≤ k ≤ K. (112)

Then the input beamformer required by the SVD-OMP Alg.
for the kth node is given by

FOMP
in,k = VkU

H
k−1, 1 ≤ k ≤ K, (113)

where U0=I . Then the traditional OMP algorithm is involved
to compute analog and digital beamformers [15], [35]. The
codebook of the two OMP algorithms for a mmWave channel
is given by the channel steering vectors, and the codebook
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Fig. 1. Comparison of spectral efficiency for the four linear hybrid transceiver
designs and the full digital design based on capacity maximization. The
mmWave channel with Npath = 10 paths is used in the simulation.
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Fig. 2. Comparison of spectral efficiency for the four linear hybrid transceiver
designs and the full digital design based on capacity maximization. The
mmWave channel with Npath = 10 paths is used in the simulation.

of the OMP algorithms for a RF channel is the same as that
given in [27]. Furthermore, the powerful full digital transceiver
design [6] (denoted as Full Digital) is used as the ultimate
benchmark. Note that for the full digital design, the number
of RF chains must match the number of antennas.

Initially, we assume that there is no channel estimation error
for hybrid transceiver designs, and the results obtained are
presented in Subsections VII-A and VII-B. However, we also
consider the case where the channel estimation error is not
negligible in Subsection VII-C.

A. MmWave Channel Case

Fig. 1 compares the spectral efficiency performance of
the four designs under the mmWave channel environment.
Observe from Fig. 1 that the performance of our proposed
robust hybrid transceiver design is very close to the optimal
performance of the full digital design, which is significantly
better than the other four hybrid transceiver designs. It is worth
noting that the performance of the both OMP Algorithms are
equally poor for this three-hop AF relay MIMO system with
NRF = N . This is contrast to the traditional point-to-point
MIMO systems, where the original OMP algorithm performs
well [15], [35]. The results of Fig. 1 therefore show that the
hybrid transceiver design based on the OMP Algorithm is not
suitable for complicated multi-hop communication systems.
As expected, the simulation results indicate that our proposed
lower-complexity UMA Alg. suffers observable performance
loss compared to our Proposed Alg. but crucially, it signifi-
cantly outperforms the two OMP Algorithms. This indicates
that if the low complexity is a critical performance measure,
our UMA Alg. offers a suitable design choice.

Further, in Fig. 2, the comparison of the spectral efficiency
of the five designs in the massive MIMO communications is
presented. MmWave channel is utilized in the simulation. The
source, two relay nodes, and the destination are all equipped
with 256 antennas. From Fig. 2, it can be seen that the
performance of the proposed algorithm outperforms the other
four hybrid transceiver designs, which is nearly the same
with the full digital transceiver. It is also shown in Fig. 2
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Fig. 3. Comparison of transmitted signal MSE for the four linear hybrid
transceiver designs and the full digital design based on MSE minimization.
The mmWave channel with Npath = 10 paths is used in the simulation.

that the sum rate of the UMA Alg. is quite close to that
of the full digital design. This is because the extra antennas
provide more spatial diversity and multiplexing gain for the
hybrid transceivers. In addition, the spectral efficiency of the
two OMP algorithms improves as well, but still falls largely
behind of the proposed hybrid design. Therefore, the result
indicates that the proposed algorithm retains its superiority in
the channel scenario with 256 antennas, and it also shows the
capability of the proposed hybrid design in massive MIMO
channels.

Fig. 3 compares the MSE minimization performance of the
five designs under the mmWave channel senario. The results
obtained again demonstrate that the achievable performance
of our robust hybrid transceiver design is very close to the
powerful full digital design, namely, it is near optimal, while
imposing substantially lower hardware costs in comparison
with the optimal full digital design. The results of Figs. 3
also show that hybrid transceiver design based on the two
OMP Algorithms are similarly very poor, and this indicates
that the OMP based design is not suitable for multi-hop
AF MIMO relaying networks under the MSE minimization
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Fig. 4. Comparison of spectral efficiency for the four linear hybrid transceiver
designs and the full digital design based on capacity maximization. The
mmWave channel with Npath = 10 paths is used in the simulation, and
the number of RF-chains in each node is set to NRF = 6.
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Fig. 5. Comparison of spectral efficiency for the four linear hybrid transceiver
designs and the full digital design based on capacity maximization. The RF
Rayleigh channel is used in the simulation.

criterion too. Observe that our UMA Alg. is capable of
achieving considerably lower computational complexity by
trading off some achievable MSE performance, compared with
our near optimal robust hybrid transceiver design. In particular,
it outperforms the OMP based design considerably.

In addition, the communication scenario with extra RF-
chains is tested in Fig. 4. Specifically, in the simulation, the
number of data streams remains N = 4, and we set the
number of RF-chains to NRF = 6, which means there are
2 extra RF-chains that can be used to enhance the system
performance. By comparing Fig. 4 with Fig. 1, it can be
seen that with more RF-chains than data streams, the hybrid
transceiver system performance can indeed be improved. In
particular, from Fig. 4, it is clear that the performance of
the Proposed Alg. is almost identical to that of the optimal
full digital design, and the performance of the UMA Alg. is
also improved slightly. Furthermore, the performance of the
SVD-OMP Alg. is also improved, but it remains significantly
worst than our low-complexity UMA Alg. design. However,
for the FD-OMP Alg., increasing NRF to more than N actually
degrades the system performance considerably. The reason is
as follows. The need of Rxk

in the FD-OMP Alg., required
by the input full digital solution, naturally leads to mismatch
between the optimal full digital transceiver and the FD-OMP
Alg. based transceiver. The extra RF chains will magnify this
mismatch, and results in a worse performance.

B. RF Channel Case

The simulation results for the RF Rayleigh channel are
depicted in Fig. 5. It can be seen that under the RF Rayleigh
channel environment, our robust hybrid transceiver design
only suffers from very slight performance degradation, in
comparison to the optimal full digital design. Furthermore,
our low-complexity UMA Alg. now attains a performance
close to that of the Proposed Alg., since the rich scatters in
the RF channel environment provide much more tolerance to
mismatch between the theoretical optimal analog beamformer
and the actual analog beamformer. It is worth pointing out
again that the two OMP Algorithms have a design challenge
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based on MSE maximization with αe = 0.6. The RF Rayleigh channel is
used in the simulation.

for Rayleigh channels, owing to the lack of steering vector
based codebooks. Therefore, similar to [27], we have to use the
phase matrix of the Rayleigh channel as the OMP codebook.

C. Robust Design with Channel Estimation Error

In the above simulation investigation, there exists no chan-
nel estimation error in hybrid transceiver designs. In practice,
however, the channel estimation error always exists and cannot
be neglected. Thus, the channel estimation error is considered.
Specifically, the transmit correlation matrix of the channel
error is defined based on the exponential model with the ith-
row and lth-column element of the correlation matrix Ψk

given by

[Ψk]i,l =σe,kα
|i−l|
e,k . (114)

Without loss of generality, it is assumed that the correlation
coefficients {σe,k} and the variances {αe,k} of the transmit
correlation matrix of channel error are the same for every
channel, and they are denoted by σe and αe, respectively.
In the simulation, αe = 0.6 is adopted. We consider our
robust hybrid transceiver design, Proposed Alg., under this
imperfect channel condition. Additionally, the counterpart of
our Proposed Alg., which treats the estimated but inaccurate
channel as the perfect one [7], is used for comparison, and it
is denoted as Non-Robust Alg.

Only the RF Rayleigh channel senario is considered. Fig. 6
compares the performance of the proposed robust hybrid
transceiver design, the full digital robust transceiver design [6]
and non-robust hybrid transceiver design [7], in terms of MSE,
under different channel estimation errors. From Fig. 6, it can
be seen that the proposed robust hybrid transceiver design is
very close to that of the optimal full digital robust transceiver
design, and it achieves better performance than the non-robust
hybrid transceiver design. Moreover, as the channel estimation
error, i.e., σe, increases, the performance gap between our
proposed robust hybrid transceiver design and the non-robust
hybrid transceiver design becomes larger.

VIII. CONCLUSIONS

In this paper, we have investigated robust hybrid transceiver
optimization for multi-hop AF MIMO relaying networks, in
which all nodes employ hybrid transceivers and multiple data
streams are transmitted from source node simultaneously. A
unified design framework has been proposed for both hybrid
linear and nonlinear transceivers under generic objective func-
tions, which also takes into account channel estimation error.
Based on the proposed framework, it has been shown that the
analog transceivers and digital transceivers can be decoupled
without loss of optimality. Using matrix-monotonic optimiza-
tion framework, the optimal structures of the analog and digital
transceiver designs have been derived, which greatly simplify
the hybrid transceiver optimizations. Based on the derived
optimal structures, both analog precoders and combiners as
well as digital forward matrices can be optimized separately
and efficiently. Simulation results obtained have demonstrated
that our proposed robust hybrid transceiver design only suffers
from a very slight performance loss compared to the powerful
full digital design. This confirms that our hybrid transceiver
design attains near optimal performance, while imposing sub-
stantially lower hardware cost than the full digital design.
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