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Abstract: The knowledge of soil environmental quality and its changing trends is important 

for safe and sustainable land utilization. However, comprehensive information on soil 

environment carrying capacity, involving environmental, economic and social pressures, is 

relatively rare. In this study, a modified dynamic capacity model is developed to estimate soil 

environment carrying capacity in terms of a combined consideration of soil environment 

capacity, cumulative input/output rate and risk characteristics. Based on the method proposed, 

this paper demonstrates the current pollution status and remaining soil capacity of the Beijing 

urban area, and establishes a conceptual “early warning” model for soil environmental quality, 
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to predict time-dependent changing patterns of soil pollutants under different accumulation 

scenarios. The results showed that for Beijing soil environmental carrying capacity varied 

with land use type and pollutant. Compared with Cu, Zn and Pb, Cd posed the greatest threat 

to soil environmental carrying capacity in both residential areas and green parks. Heavy metal 

carrying capacity in soils in built-up areas in Beijing was not overloaded currently, and will 

not deteriorate significantly over the short- to medium-term in a hypothetical “decreased 

input” scenario. The method proposed provides a simple, cost-effective, and quantitative tool 

for mapping soil quality level, and assessing the need for risk management measures, in China 

and elsewhere.  

Key words: Environmental capacity; Risk management; Prediction and early warning; Soil 

pollution prevention and control 
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1. Introduction 

Urban soils are a significant component of the urban environment, on one hand, provide 

invaluable ecosystem services (e.g., habitat provision, element cycling and biological 

regulation), and contribute to sustainable development (Aldieri et al., 2019; Legaz et al., 2017; 

Morgado et al., 2018); on the other hand, form critical sinks and sources of pollution affecting 

urban agro-ecosystem stability by input-output of pollutants e.g., via atmospheric 

precipitation, direct spillage and water runoff (Brtnický et al., 2019; Gu et al., 2016). Due to 

the intensification of human activity in urban areas soil pollution has increased dramatically, 

and is ubiquitous globally (Chen et al., 2020). In order to effectively manage soil pollution 

and mitigate soil environmental risks, the evaluation framework of soil environment carrying 

capacity is in pressing requirement to understand soil pollution level and its remaining 

capacity, based on which early warnings system can be established to predict pollution 

changing trends in time before soil environmental quality deteriorated. 

1.1 Soil environment carrying capacity (SECC) 

The concept of carrying capacity has been widely discussed and used in many fields of 

ecosystem management, including water environmental carrying capacity, vulnerability 

assessment of atmospheric environments, and land/soil carrying capacity (Zhang et al., 2016). 

SECC can be regarded as a complex function which not only assesses contamination risks in 

view of food quality and eco-toxicological effects on organisms in soils, but which also 

considers the maintenance of soil structure and capacity to support human socioeconomic 

activities (Li 2016; Zeng 2014). In 2016, the State Council of China issued a Soil Pollution 

Prevention and Control Action Plan, which stated that universities, research institutions and 

enterprises should cooperate to carry out basic research on soil environment quality standards, 

soil carrying capacity and environmental loading capacity, based on which policy and 

management methods could be developed at a local and regional scale (the State Council, 

2016). In response, the study of SECC, and especially interrelated theory studies on soil 

environment capacity, soil environment quality standards and soil contamination prediction, 

has become a topic of significant focus for Chinese soil scientists. Especially, the definition  
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of SECC, its evaluation methods, study frameworks and indicators have been primarily 

assessed (Wang et al., 2019; Zhou et al., 2017). Even with such efforts, the evaluation of 

SECC is still fraught with uncertainties and ambiguities constrained, in part, by 1) lack of an 

overall consideration of attributes reflecting soil multi-functionality; 2) difficulties in 

comprehensively assessing the interrelationships between anthropogenic land management and 

soil quality dynamics; 3) model deficiencies in measuring both quantitative and qualitative 

indicators; and 4) defining an acceptable and operational concept of SECC.  

1.2 Soil environment capacity 

Soil environment capacity can be an index for SECC evaluation, which shares 

dissimilarities as well as commonalities with SECC. Three key aspects - soil environmental 

quality standard, soil attenuation capacity and the evaluation method used - are consistently 

believed to be the most critical for studies on both soil environment capacity and SECC (Fu et 

al., 2014; Ma et al., 2016).  

First, Soil Environmental Quality Standard (SEQS) of chemicals determine the degree of 

soil pollution, hence an important decision-support tool to understand soil environmental 

quality and capacity (Chen et al., 2018; Turan et al., 2019). The geochemical background 

values of chemicals in different regions (where available) and the national SEQS are usually 

used as the common soil evaluation standards (Kong et al., 2018; Zeng et al., 2019; Zhang et 

al., 2019), while different terminology is used, such as soil screening levels in the USA, target 

values in the Netherlands, (former) soil guideline values in the UK, investigation levels in 

Australia, and trigger values/levels in Germany, as these all display multi-objective functions 

or a range of values based on scientific research on the mutual interactions between soil 

pollutant concentrations and ecological or human health effects (Zhou et al., 2011).  

Second, the tolerable level of soil pollutants is spatio-temporally dynamic due to both 

natural and socioeconomic factors (Chen et al., 2015; Chen et al., 2018; Song and Pijanowski, 

2014). The pollutant removal/mitigation processes naturally occurring within soil ecosystems 

constitute Natural Attenuation Capacity (NAC), cause changes in distribution and 

accumulation of contamination, and eventually affect the range of soil dynamic capacity. 
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Previous studies have shown that soil NAC is sensitive to at least two factors: (a) the 

physico-chemical properties of the soil, e.g. soil organic carbon accessibility may affect 

pollutant stabilization or sorption processes (Gan et al., 2019), and (b) the physico-chemical 

properties of the pollutant itself (Martz et al., 2019; van Wijnen et al., 2012). In addition, 

natural environmental and human-induced changes in the soil, such as rainfall, land cover, 

topography, geology, land management and pollution control interventions, can also help 

explain the variance of NAC (Kheir et al., 2014; Razanamahandry et al., 2018).  

Third, according to the categories of soil environment capacity, there are two parallel 

ways to estimate the safe soil capacity before irreversible damage occurs, through a static 

capacity model or through a dynamic capacity model. The static capacity model has the 

advantage of using readily available parameters and being relatively easy to apply. However,  

static capacity model can greatly underestimate the result based on the hypothesis that no 

external or internal behaviors can occur to change the fate of pollutants (Li 2019). The 

dynamic capacity model is essentially an improved static capacity model, which expresses the 

spatiotemporal variability of soil environment capacity by simulating a dynamic interaction 

between socioeconomic systems and natural systems at the macroscale. Moreover, it can be 

applied to predict the content trend (i.e. temporal pollutant loading trend) and distribution 

pattern of pollutants in soil. 

1.3 Early warning for soil environmental quality 

Soil quality determines ecosystem functions, and so information on the magnitude, 

location and direction of soil quality changes is critical for strategizing remedial measures 

before irreversible damage occurs (Obade 2019). Considerable efforts have been made to 

develop methods and models to predict the spatio-temporal dynamics of pollutants in soil, and 

propose early warning measures preventing pollutant accumulation that exceed soil quality 

standards, food security standards or health risk thresholds. The employed methods including 

logistic regression (Guan et al., 2019; Kumar et al., 2019; Zhang et al., 2019), risk/pollution 

index (Cachada et al., 2016; Chon et al., 2017; Malina and Mazlova, 2017); gray prediction 

models (Wang 2018), index frameworks (Gao et al., 2015), STEM-profile models (Zhao et al., 
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2012), mass balance models (Peng et al., 2016; Shi 2019; Zhang et al., 2019), cumulative rate 

model (Zhao et al., 2019), and geostatistical interpolation (Fan et al., 2019; Sun et al., 2019). 

These methods perform very differently, but all can meet the demand to predict the temporal 

or spatial variation of pollutants in soil. However, these methods may be limited by data 

availability, are often time consuming and labor intensive, and are subject to individual 

preference and other factors.  

In order to choose a simple and effective method to comprehensively evaluate SECC and 

predict soil environmental quality, in this study, the dominant factors that SECC is susceptible 

to are identified covering soil properties, land function, pollutants, risk characteristics and 

social-economic activity; consequently, a new dynamic model is provided to depict the 

interaction between relevant indicator sets and SECC. Based on SECC approach and health 

risk level, an early warning model for soil environmental quality for development land is 

further build to classify the quality level of the soil environment, and predict changing trends 

of pollutants in soil under different accumulation scenarios. Finally, the effectiveness of the 

proposed method, framework and model are verified by applying it to soils in the Beijing 

urban area, China.  

2. Methodology  

2.1 Methodology for SECC 

2.1.1 Indicator system 

Based on the concept of SECC, a comprehensive evaluation indicator system for SECC 

should cover multidimensions of land function, soil pollution, social economy and land spatial 

planning to reflect the impacts of human socio-economic activities on the soil environment. In 

principle, indicators should be sensitive to changes over time, refer to benchmark or threshold 

values, be predictive or anticipatory and convey relevance to the stated objectives of the 

assessment (Obade 2019). According to expert preferences and literature review, the selection 

of SECC evaluation indicators here was based on conformance to being 1) comprehensive 

and systematic; 2) representative and simple; 3) applicable to both static and dynamic 

situations/modelling; and 4) feasible and operable. In this sense, a conceptual framework for 
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SECC is depicted in Fig. 1, in which NAC of soil provided the basis. Sixteen dominant 

factors affecting soil environmental load were selected and categorized into three indicator 

sets, referring to soil environment capacity, cumulative rate and risk characteristics.  

Soil environment carrying capacity

Soil 

environment 

capacity
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rate
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characteristics
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• Atmospheric deposition
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Fig. 1. Tree diagram of a comprehensive evaluation indicator system for SECC. 

 

As shown in Fig. 1: 

(1) Indicator set of soil environment capacity 

Soil environment capacity is the key component for SECC evaluation, which is 

increasingly used to reflect the extreme or threshold value that can be reached while still 

maintaining the normal structure and function of the soil ecosystem. Basically, the higher the 

soil environment capacity, the higher the SECC. In this study, two sub-categories of (a) soil 

quality (as soil static capacity, defined as the remaining concentration when comparing the 
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current concentrations of pollutants with the related SEQS) and (b) soil attenuation capacity 

are taken into consideration to measure the dynamic processes of input, output and 

accumulation of pollutants in soil over time, which means a wider boundary covers both the 

status of soil environmental quality and the soil’s ability to “accommodate” pollutants. 

However, NAC varies greatly due to the nature of the pollutants, the soil heterogeneity, and 

the complexity of soil biogeochemical processes, and how to quantify soil NAC and with 

which indicators is still debated (Calzolari et al., 2016; Thomsen et al., 2012). Considering (a) 

the dominant role that soil physical and chemical properties play in the ecological process of 

pollutants (i.e. dissolution, sorption, sequestration and precipitation processes) in urban soil, 

and (b) ease of measurement, four summary parameters are included here as proxy indicators 

for NAC in urban soil, namely soil organic matter (SOM), clay content (Clay), soil pH and 

cation exchange capacity (CEC).  

(2) Indicator set of cumulative rate 

The action of soils as sinks or pathways for potential pollutants, and their response to 

human social and economic activities, are crucial elements when assessing the cumulative 

increase (or decrease) of pollutants in soil. Among possible sources of soil contamination 

caused by anthropogenic behaviors, atmospheric deposition and traffic emission are the 

dominant sources for urban soil pollution (Chai and Cui, 2019; Peng et al., 2012 and 2017), 

which therefore are used as input indicators in the cumulative rate indicator set (Figure 1). 

While soil-pollutant interaction processes incorporate a diversity and complexity of 

mechanisms, the route (from source to fate) of pollutants in soil can however be summarised 

by a few main processes (Durães et al., 2018; Wuana et al., 2014). In term of urban soil, four 

output indicators are preferred here, corresponding to (Csavina et al., 2012; Durães et al., 

2018; Prokop et al., 2016): 1) runoff: a physical process whereby the transport of pollutants 

occur either by soil erosion or via surface water bodies; 2) leaching: the vertical migration of 

pollutants from subsoil to deeper layers or groundwater; 3) volatilization: the chemical release 

of a pollutant from a liquid or a solid matrix into a gaseous phase, or into the atmosphere; 4) 
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degradation: a physical, chemical, biological or combined process which changes the 

available content of pollutants in soil.  

(3) Indicator set of risk characteristics 

Even with the same soil environment capacity and cumulative rate, SECC varies 

spatially due to differences in pollutant properties, the type of land use, contaminant pathways 

or linkages, risk receptors, and natural conditions in the investigated sites. From the 

perspective of risk function mechanism, risk indicators are identified as: 

⚫ Physicochemical characteristics of pollutants: Different pollutants show different toxicity 

characteristics and risk exposure pathways. For example, heavy metals can be classified 

as extremely poisonous, moderately poisonous and relatively less poisonous according to 

their level of toxicity on soil microorganisms (Ashraf et al., 2019; Mukherjee et al., 2019). 

At high concentration Zn causes toxicity in plants, while Cd rarely causes phytotoxicity 

(Ryzhenko et al., 2017). The concentration of ionic Cu in soil solution is typically very 

low but the form of hyperoxide radicals for example is carcinogenic when interacting 

with thiol compounds in cell membranes (Lockwood et al., 2015). 

⚫ Vegetation coverage: The vegetation coverage rate is on one hand closely relevant for the 

type of land use, on the other hand, impacts air deposition, retention and release processes 

based on air-soil or soil-water exchange (Li et al., 2018; Luo et al., 2019). Atmospheric 

pollutants are primarily scavenged and stored by vegetation, then transferred into soil 

through falling litter, or back into the air by re-volatilization (Bao et al., 2016; Terzaghi et 

al., 2017). By initially intercepting and retaining pollutants (e.g. on foliage and root), 

plants are often used as biological filters, to some extent, determine the level of 

contamination that can be expected in soil (Gonze and Sy, 2016; Luo et al., 2019).  

⚫ Land use: The SECC under different land use patterns can be further affected by the 

heterogeneity of risk expressions, which is fundamentally determined by toxicity of 

pollutants, exposure pathways and risk receptors. Firstly, the same pollutant in soils of 

different land uses can show a changing toxicity (Islam et al., 2017), because of the 

different soil physicochemical properties (SOM, pH, etc.) and the diversity of the soil 
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microbial community under various land use types and soil depths (Simon et al., 2013; 

Zhao et al., 2019). Secondly, as the significant exposure media in urban areas, soils of 

different land uses can deliver pollutants to receptors through different pathways, 

including ingestion, dermal contact or inhalation (Bright et al., 2006; de Miguel et al., 

2007). Additionally, ecological elements and human beings exposed to pollutants vary 

significantly from residential use to commercial land, suggesting a considerable to very 

high degree of exposure risk. 

⚫ Population density: Pollutants in contaminated soil may have serious impacts on human 

health. Population density and growth are closely related to accumulation patterns of 

pollutants in soil, and in turn, higher potential health risk implies a higher population 

density of exposed inhabitants close to contaminated sites (Acosta et al., 2015; Li et al., 

2019). Typically, children are more sensitive and easily exposed to high non-cancer risk 

than adults (Zeng et al., 2019). 

⚫ Dietary structure: Soil contamination has historically impacted food safety which poses 

an important threat to human health (Ramón and Lull, 2019). The public health risk will 

be more severe if there is dietary exposure to food and drinking water from contaminated 

land, especially the increasing problem of contamination of farmland and crops by heavy 

metals (Islam et al., 2017; Wei and Yang, 2010). Compared with a sole intake of food or 

drinking water from a contaminated site, a diversity of food (and water) supply will offset 

the health risk conveyed by the food chain, which allows a relative high SECC by 

protecting risk receptors.  

2.1.2 Evaluation method 

The calculated SECC value based on soil environment static capacity is theoretically the 

maximum pollutant load that can be borne by the soil before an unacceptable health risk 

occurs. In a more realistic manner, for the safe and sustainable utilization of urban land, safety 

coefficients should be set up to correct the upper limit of SECC to incorporate data 

uncertainties and safety margins, within the prevailing acceptable risk and risk management 

framework of an area. To capture the SECC safety margin, the attenuation coefficient, 
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cumulative coefficient and risk coefficient are defined on the basis of three sub-categories and 

sixteen indicators proposed in Figure 1. The evaluation model for SECC is expressed in the 

following equation:  

SECC=d×ρ×A×（Si-Ci）×F1×F2×F3                             (1) 

Where: d represents soil depth (in m - 0.2 meter of topsoil is usually applied); ρ 

represents bulk density (kg m-3); A represents the area of the studied land or region (km2); Ci 

represents the concentration of pollutant i (mg kg-1); Si represents the evaluation standard of 

soil environmental quality for pollutant i (mg kg-1). F1, F2, and F3 are the attenuation 

coefficient, cumulative coefficient and risk coefficient, respectively. The value of safety 

coefficients are all between 0 and 1. 

(1) Attenuation coefficient (F1) 

This study applied NAC of soil to describe the soil attenuation coefficient, which has 

been widely calculated using the ecosystem-service performance index (EPX) (Rutgers et al., 

2012; Wang et al., 2015; Xie et al., 2018). As discussed previously, in the context of urban 

soil and key pollutants, here we utilize four dominant parameters (SOM, Clay, pH and CEC) 

as core evaluation variables to quantify the performance of NAC. The modified equation is 

shown as: 

NAC=











+++

refpH

obspH
log

4
refCEC

obsCEC
log

3
refCLAY

obsCLAY
log

2
refSOM

obsSOM
log

1
-10

ωωωω

              (2) 

Where: Subscripts “obs” and “ref” denote the observed and reference values of 

corresponding parameters; and the entropy weight ωi (i =1, 2, 3, or 4) denotes the contribution 

of the corresponding parameters to NAC, whereby a higher weight coefficient means greater 

significance. Note that the most important parameters affecting NAC and their contributions 

vary with changes in soil properties and pollutant features. Thus, the adjustment of parameters 

and weights is necessary and vital in specific studies.     

(2) Cumulative coefficient (F2) 
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 The cumulative coefficient is determined by the ratio of the annual cumulative amount 

of pollutants in soil to the soil environment static capacity, and is estimated by the following 

equation： 

F2=1-
)C-(SAρd ii

Δacc


                              (3) 

Where:  acc is the annual cumulative amount of pollutants in soil (kg a-1), controlled 

by the dynamic balance of input (Iin) and output (Iout) pathways. Here we assume atmospheric 

deposition (Iatm) and traffic emission (Itraf) provide the main input flux for the increase of soil 

pollutants, meanwhile, pathways such as soil erosion and surface water runoff (Irun), leaching 

(Ilea), volatilization (Ivol) and degradation (Ideg) take elements out of the soil ecosystem. The 

total flux is formulated as follows: 

 acc=Iin-Iout=Iatm+Itraf -(Irun+Ilea+Ivol+Ideg)                          (4) 

There are many studies that aim to predict the cumulative increments of pollutants in soil 

by establishing innovative models (Franco-Uria et al., 2009; Huang et al., 2018; Peng et al., 

2017; Zhang et al., 2019). However, the dynamic processes related to the accumulation, and 

input and output, of specific pollutants are diverse and complicated. To simplify the 

calculation, the residual rate (K) is usually assumed as the percentage of pollutants remaining 

in the soil ecosystem after a variety of input and output pathways, especially, in scenarios of 

heavy metal accumulation (Li et al., 2011). Thus, acc can be expressed as the multiple of 

input intensity and residual rate (K). The K value can be experimentally determined, empirical, 

or defined from literature.  

(3) Risk coefficient (F3) 

The risk coefficient is characterized as the reciprocal of the total potential risk of 

exposure to pollutants in the soil. The lower the risk coefficient, the smaller the SECC. The 

Analytic Hierarchy Process (AHP) approach can be effective in calculating risk coefficients 

because of its ability to integrate qualitative and quantitative information into a 

comprehensive evaluation (Li et al., 2018). The total potential risk (R) is the sum of the 

determinants of seven factors, but each factor has its own weight. R is expressed in the 

following relationship: 
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=
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3

1
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j

2j Sω 
=

）               (5) 

Where: Sij (i=1 or 2; j=1, 2, or 3) represents the determinant of each factor; ω represents 

the weight specified for each factor, generally through expert consultation. 

2.2 Methodology for early warning 

2.2.1 Early warning system 

In terms of denotation of an early warning system for soil environmental quality, SECC 

is used here as the theoretical basis for evaluating soil environmental quality and predicting its 

time-dependent changing pattern. Influencing factors of soil pollution as well as input-output 

fluxes analysis play critical roles in simulating long term trends for pollutant accumulation in 

soil. A set of other attributes, e.g. regional policies, industrial planning, environmental 

protection measures and social awareness, help to construct possible future scenarios for soil 

pollution. However, soil function causes significant differences in soil quality and pollution 

accumulation, which indicates that the diverse elements constituting early warning models 

rely on land use type. For an overall consideration, soil environmental quality, the quality of 

agricultural products and the sustainable use of land resources should all be included to 

establish a management mechanism supporting an early warning system for agricultural land. 

In contrast, for development land human exposure is the domain risk receptor (Fig. 2). 
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Fig. 2. Early warning system for soil environmental quality. 

Given SECC as the upper limit of soil environmental quality at an acceptable level, for 

simplicity we assume that the cumulative rate under different scenarios remains steady. The 

time period of exceeding the specific standard (Y) is predicted by a reduced equation: 

Y=
Δacc

SECC
                                                      (6) 

Where: SECC and  acc are both defined in the above equations. According to the 

assumption of different soil pollution scenarios, acc is modeled differently based on the 

environmental processes of soil pollution. 

2.2.2 Early warning level 

Regarding pollution levels for human health concern, a national standard for soil 

environmental quality was jointly launched by the Ministry of Ecology and Environment of 

the People’s Republic of China and the State Administration for Market Regulation in 2018 – 

Soil Environmental Quality Risk Control Standard for Soil Contamination of Development 

Land (for Trial Implementation) (GB 36600-2018). By comparing the current concentration of 

pollutants with screening levels or control levels defined in GB 36600-2018, the application 
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of this standard is expected to declare whether the soil is polluted, whether the health risk is 

unacceptable and whether the land requires remediation actions. Corresponding to GB 

36600-2018, three generic reference levels of screening level, carcinogenic level and control 

level are considered here as threshold values for soil environmental quality of development 

land to divide the early warning classification. As a result, five grades are grouped in Fig. 3, 

implying that a generally higher health risk is reflected in a higher early warning level. 

Specifically: 

⚫ The low level of early warning: comprising the 1st level and the 2nd level, where the 

pollutant concentration in soil is below the screening level. The difference between the 1st 

level and the 2nd level depends on the predicted time within which the pollution content 

reaches the screening level. The predicted timespan in the scenario of the 1st level is more 

than 50 years, whereas in the scenario of the 2nd level this is less than 50 years. 

⚫ The medium level of early warning: comprising the 3rd level and the 4th level, where the 

pollutant concentration in the soil surpasses the screening level but is below the control 

level. The difference between the 3rd level and the 4th level depends on the threshold 

value of carcinogenic risk. Generally, a carcinogenic risk of 10-6~10-4 is widely 

considered acceptable, whereas surpassing 10-4 or falling below 10-6 is respectively 

regarded as significant hazard or negligible risk (Li et al., 2014). According to the 

derivation method for risk management and control levels defined in GB 36600-2018, 

and conforming to the current environmental management requirements in China, we 

employ a carcinogenic risk of 10-5 to distinguish the 3rd level and the 4th level. 

⚫ The 5th level is ranked as the highest level of early warning, whereby the pollutant 

concentration in soil surpasses the control level and may generate significant health 

effects, and remediation projects are mandatory to address the soil pollution issue. 
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Fig. 3. The early warning level for soil environmental quality. 

3. Case study 

3.1 Study area 

Beijing is the capital of China with a population of 21.73 million people (BJ Stats 2017).  

The built-up area of Beijing is divided by five concentric ring roads covering about 670km2 in 

2012. Heavy metals, especially Pb, Cd, Cu and Zn, are widespread pollutants in the built-up 

area of Beijing, moreover, the overall pollution level is increasing gradually year by year (Cao 

et al., 2014; Wang et al., 2012a and 2012b). Based on the theoretical framework and 

methodology proposed previously, residential areas and green parks within the 5th ring road 

were selected to verify the effectiveness of SECC model and early warning system: 1) 

evaluate the SECC for Pb, Cd, Cu, and Zn; and 2) predict their changing pollutant loading 

trends at different accumulative rates, and the “safe lifespan” regulated by SECC.  

3.2 Data collection 

Land uses were delineated from high-resolution remote sensing images of IKONOS (Liu 

et al., 2016), among which, the area of residential and green parks are respectively 536.65 

km2 and 80.68 km2. In Table 1, according to the latest soil quality standard, the baseline 

concentration of Pb, Cd and Cu refers to GB 36600-2018, while, that of Zn refers to 

Screening Levels for Soil Environmental Risk Assessment of Sites (DB11T811-2011). The 

observed concentration of pollutants and soil property indicators (including pH, Clay, SOM 

and CEC) are average values acquired from the experimental results published by Liu et al., 
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2016 (Table 1, Table 2), in which the study area was divided into 1 km × 1 km sized grids on 

Google Earth, and then sample sites were selected from each grid based on the land use and 

topographic conditions (some grids were unavailable for sampling). Finally, 106 sample sites 

were selected (Fig. 4) and surface soil (0–20 cm depth) samples were collected. 

 

Fig. 4. Study area and soil sampling sites, after Liu et al., 2016. 

For indicators where the higher the value, the greater the soil attenuation capacity, the 

maximum values are suggested as the reference (e.g. Clay and SOM), while for other 

indicators (e.g. CEC), the median value is used (Peng et al., 2017; Xie et al., 2018). The 

weights of pH, Clay, SOM and CEC variables are calculated applying the entropy-weight 

method proposed by Xie et al., 2018, following 3 steps: firstly, standardize the original data of 
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all indexes to eliminate influences of different dimensions; secondly, define the entropy of 

each index; and thirdly, calculate the divergence degree of the intrinsic information of each 

index. 

 

Table 1  

Baseline and observed concentrations of heavy metals. 

Elements 

 

Baseline (mg kg-1) Max (mg kg-1) Min (mg kg-1) Mean ± S.D. 

Residential 

area 

Green 

parks 

Residential 

area 

Green 

parks 

Residential 

area 

Green 

parks 

Residential 

area 

Green 

parks 

Cd 19 36 0.486 0.370 0.074 0.077 
0.131 ± 

0.055 

0.133 ± 

0.056 

Cu 2000 18000 44.093 57.309 9.685 9.464 
18.623 ± 

6.728 

21.695 ± 

9.927 

Pb 400 800 135.371 133.494 12.638 13.744 
24.059 ± 

15.400 

31.608 ± 

22.48 

Zn 3500 5000 184.388 136.696 35.221 29.698 
78.063 ± 

28.062 

78.859 ± 

24.006 

 

Table 2 

Related values for attenuation indicators. 

Elements 

 

Observed value Reference 

value 

Weight 

Residential area Green parks 

Bulk density 

(g cm-3) 
2.91 2.84 - - 

pH 8.265 8.247 7.5 0.25 

Clay (%) 6.232 6.616 17.669 0.32 

SOM (%) 1.18 1.103 5.272 0.27 

CEC 

(cmol kg-1) 
18.129 17.621 17.936 0.16 

 

The disturbances to urban soil caused by rapid urbanization and intensive human 

activities accelerate the process of environmental degradation. Air pollution generated by the 

combustion of biomass fuels as well as traffic emission and industrial production has become 

an emerging environmental issue that directly contributes to soil degradation by means of 

atmospheric precipitation at both regional and global scale (Pan and Wang 2015). Additionally,  

traffic emission of wear particles of tires and brake pads is proven to be an important soil 

pollution input source in the built-up area in Beijing, which increase by 373.1% and 298.4% 
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during 2002 to 2012, respectively (You 2017). In this work, we assume that atmospheric 

precipitation and tyre and brake pad wear are the two main sources of heavy metal pollution in 

the study area. 90% of heavy metals from these two approaches will flow into the soil 

ecological system within the 5th ring road. We estimated the average annual atmospheric input 

and average annual traffic input of heavy metals in soil within the 5th ring road in Beijing 

from atmospheric deposition flux and traffic emission data for heavy metals in the literature 

(Pan and Wang 2015; You 2017). The residual rate (K) is suggested as 0.95 to discern the 

average annual accumulation of Cd, Cu, Pb and Zn. Table 3 shows the data collection for the 

cumulative coefficient.  

 

Table 3 

Related values for cumulative indicators. 

 Cd Cu Pb Zn 

Atmospheric deposition flux (mg m-2 a-1)a 0.460 19.800 19.600 86.500 

Average annual atmospheric input 

(t a-1) 

 

Residential area 0.198 8.529 8.443 37.262 

Green parks 0.0045 0.193 0.191 0.842 

Traffic emission (t a-1)b 0.030 7.120 0.830 19.600 

Average annual traffic input (t a-1) 0.027 6.408 0.747 17.640 

Average annual total input (t a-1) 0.304 18.322 12.54 69.687 

K-value 0.950 0.950 0.950 0.950 

Average annual accumulation (t a-1) 0.289 17.405 11.913 66.202 

a Pan and Wang 2015; b You 2017 

 

The values used for risk indicators are based on the biogeochemical characteristics of Cd, 

Pb, Cu and Zn, as well as the population, social and natural background of Beijing. Through 

face to face interviews, five professional experts were asked to provide comments on the 

weightings allocation to two sub-categories and five indicators. Average values from this 

process are shown in Table 4. The main basis for scoring each indicator is tabulated in the 

“reason” column. The score of each indicator is in line with Beijing’s situation. 
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Table 4 

Related values for risk indicators.  

Sub-categories Weight Indicators Weight Score  Reason 

Risk transfer 

(ω1) 

 

0.5 Pollution 

characteristics 

(ω11) 

0.8 Cd: 2; Pb: 3; 

Cu: 1; Zn: 1 

The scores of 1, 2, 3 are assigned according to the 

overall evaluation of pollution toxicity, diffusion 

paths and potential risks. 

Vegetation 

coverage ratio 

(ω12) 

0.2 2 

 

The scores of 1, 2, 3 are assigned according to the 

ranges of vegetation coverage ratio from low to high: 

<20%, 20~50%、>50%. 

Risk receptor 

(ω2) 

0.5 Land use (ω21) 0.4 2 

 

According to the land use type defined in GB 

36600-2018, score of 1 represents the second 

category while score of 2 represents the first 

category.  

Population 

density (ω22) 

0.4 3 

 

The scores of 1, 2, 3 are assigned according to the 

ranges of population density from low to high: <5000 

persons, 5000~10000 persons, >10000 persons per 

square kilometer.  

Diet structure 

(ω23) 

0.2 1 

 

The diverse sources and safe management of drinking 

water and food is assigned the score of 1, while the 

opposite situation is assigned the score of 2. 

 

3.3 Scenario analysis 

We designed two representative scenarios to predict long-term change of heavy metal 

concentration in soil following different accumulative rates. The scenarios are briefly 

described below. 

(1) no intervention: A hypothetical scenario that pollution behavior caused by 

transportation, human activities and industrial production continues without any intervention, 

which assumes the observed input and output fluxes of heavy metals remaining at the current 

level. Considering the heterogeneity of soil pollution, given the maximum concentration of 

Cd, Cu, Pb and Zn as the safe threshold value and the screening level in GB 36600-2018 as 

the upper limit, we predicted the time span over which pollution concentration approached 

SECC.  

(2) decreased input: Since the implementation of the Air Pollution Prevention and 

Control Action Plan in 2013 and Clean Air Action Plan in Beijing from 2013 to 2017, various 

efforts including adjustment of energy structure, control of dust pollution, promotion of clean 
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production and optimization of traffic planning have led to a significant reduction in pollution 

emissions and air quality improvement. As a result, various pollutants in the atmosphere have 

reduced by an average of 30% by the end of 2015. Therefore, in our “decreased input” 

scenario, we assume that Cd, Cu, Pb, and Zn are input at a constant rate of 70% of the current 

level. 

4. Results and discussion  

Differing from previous evaluations, the SECC indicator system established in our work 

defines a comprehensive set of elements to straightforwardly link multidimensions of land 

function, soil properties, risk mechanism, pollution characteristics and socio-economic 

activities to soil environment quality. Based on the traditional static capacity model, a 

modified dynamic capacity model expressing the influence of soil attenuation capacity, 

cumulative processes and risk characteristics on the dynamic variability of SECC was 

generated and verified using data from the Beijing urban area, for a more refined assessment 

of soil environment quality. SECC was estimated in the studied area based on two different 

accumulative scenarios.  

4.1 SECC of heavy metals 

In terms of the methods shown in Section 2, the first step is to calculate the attenuation 

coefficient, cumulative coefficient and risk coefficient to match different pollutants and soil 

function. In the ultimate aggregation step, by launching Eq. (1), the SECC as well as the total 

environment carrying capacity of Cd, Cu, Pb and Zn in residential areas and green parks 

within the 5th ring road in Beijing can be evaluated. The parameters involved and final results 

are listed in Table 5. 
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Table 5  

Parameters and result for SECC.  

Parameters 

Cd Cu Pb Zn 

Residential 

area 

Green 

parks 

Residential 

area 
Green parks 

Residential 

area 

Green 

parks 

Residential 

area 

Green 

park 

Static soil capacity (t) 2946.680 821.825 309422.037 411938.945 58708.883 411711.922 534387.304 112758.69 

Attenuation 

coefficient 
0.478 0.477 0.478 0.477 0.478 0.477 0.478 0.477 

Cumulative 

coefficient 
1 1 1 1 1 1 1 1 

Risk coefficient 0.513 0.645 0.426 0.645 

SECC (t) 722.933  201.238  95446.211  126825.364  11960.825  83717.566  164840.370  34715.491  

Total environment 

carrying capacity (t) 
924.171 222271.575 95678.391 199555.861 

 

The results in Table 5 show that significant differences in estimated soil environmental 

carrying capacity occur between land use types and between different pollutants. The total 

environment carrying capacity of heavy metals in residential areas is slightly higher than that 

in green parks, at 273 kt and 245 kt, respectively. But, considering the differing total areas of 

sampled residential areas and green parks, the soil environmental carrying capacity per km2 of 

green parks is much higher than that of residential areas, whereby respective average values 

are about 3000 t km-2 and 500 t km-2. This difference in SECC per km2 between green parks 

and residential areas is mainly driven by differences in static capacity (Table 5), and is 

enhanced by the adopted evaluation levels, whereby the baseline concentration for green 

parks is much higher than that for residential areas. In fact, the observed concentrations of 

heavy metals between residential area and green parks are similar. The attenuation 

coefficients, cumulative coefficients and risk coefficients are also similar between residential 

areas and green parks, suggesting similar performance of factors influencing SECC, such as 

disturbances, exposure paths and affected population. 

In terms of the different pollutants examined, the total environment carrying capacity 

follows the order Cu > Zn > Pb > Cd. This varies between residential and green park areas: 

The carrying capacity of heavy metals in residential areas is Zn > Cu > Pb > Cd, while in 

green parks the order is Cu > Pb > Zn > Cd. The divergence between maxim and minim for 



 23 

soil environmental carrying capacity is several orders of magnitude. It is logical that the 

SECC of different pollutants is highly dependent on their physical and chemical properties, 

toxicity and availability. Cd displays the greatest threat to soil environmental carrying 

capacity in both residential areas and green parks, with a total SECC of only 924 t. However, 

as its average annual accumulation (0.289 t a-1) is the lowest amongst all the studied metals, 

the time taken to exceed its critical point at its present cumulative level is significant (see 

below). 

4.2 Early warning for heavy metals 

As assumed in the “no intervention” scenario and “decreased input” scenario, the 

average annual accumulation of Cd, Cu, Pb and Zn were calculated as shown in Table 6. By 

launching Eq. (6), the time periods to exceed SECC for Cd, Cu, Pb and Zn can be projected. 

According to the classification standards of early warning applied in Figure 3 and our results, 

the soil quality in the studied area belongs to the 1st early warning level under both the “no 

intervention” and the “decreased input” scenarios, which means that all metals examined need 

more than 50 years to reach their grade threshold values i.e. to pose potential health risks. It is 

clear that the soil heavy metal pollution pressure in Beijing is not overloading carrying 

capacity currently, and soil capacity will not deteriorate significantly over the short- to 

medium-term under the scenarios assessed. The principles of present soil management should 

be consistent with recently issued policies, such as the Soil Pollution Prevention and Control 

Law of the People's Republic of China, focusing on prevention of emerging pollution, with 

priority given to protection of unpolluted soil, and enhancing the monitoring of hot spots and 

key sites. 

Table 6  

The prediction for SECC of heavy metals. 

  Cd Cu Pb Zn 

Average annual 

accumulation (t a-1) 

No intervention scenario  0.289 17.405  11.913  66.202  

Decreased input scenario 0.202 12.184 8.339 46.342 

The predicted 

period (a) 

No intervention scenario  17507~17676 30059~30833 7735~8763 13672~14123 

Decreased input scenario 25010~25252 42942~44048 11050~12518 19531~20176 
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4.3 Uncertainty analysis 

All simulations have some degree of uncertainty, either random or systematic, no matter 

how accurate the assumptions or models used are. Uncertainty analysis is a critical part of 

understanding evaluation results and improving models. By analyzing the major sources of 

uncertainty and evaluating the significance of an input on model outputs, the critical drivers 

of uncertainty in our model can be found to generate a more precise analysis. In this paper, 

uncertainties can be framed as having four broad causes:  

⚫ Indicator uncertainty: the indicators that have significant contribution are considered as 

model inputs. Unavoidably, limited by evaluators’ knowledge, the indicator framework 

may include irrelevant or exclude relevant indicators. 

⚫ Method uncertainty: the method to quantify SECC indicators, including scoring and 

weighting, is not unique. Each can generate discrepancies or biases on account of the 

subjectivity that the methods carry.   

⚫ Data uncertainty: the data applied in our case study are mostly referring to data sets in the 

literature without uncertainty information. However, model inputs may vary compared to 

real world performance due to experimental uncertainty for data and informational 

uncertainty for scenarios, that limit the applicability of evaluation results to effective 

decision making. 

5. Conclusions 

Developing a rigorous framework and method for both SECC and early warning is 

challenging, particularly given the complexity of the soil system, and pollutant 

biogeochemical processes. In this study, an initial but meaningful exploration to develop a 

novel conceptual framework for SECC and early warning has been made and applied to soils 

in the Beijing urban area, which are transferable and modifiable for use in other international 

urban settings. This simple, cost-effective, and quantitative tool has promising application in 

supporting safe and sustainable soil management measures according to the results of SECC 

evaluation and prediction of soil pollution trends under differing scenarios.  

However, aim at supporting optimal decisions on soil management policies, more work 
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needs to be done in future research to improve the accuracy of the SECC method and early 

warning system. In terms of policy implications for future soil management: (1) to clarify 

SECC, improve the evaluation framework and enact technical guidelines. As pointed 

previously, many aspects could influence SECC, so the selection of influencing factors based 

on soil load of pollutants, stress on the soil environment system by social economic activities, 

and soil carrying capacity for potential risks should be representative depending on land use 

types and the specific context of the studied sites. (2) to establish an information database for 

SECC. By an in-depth investigation on soil environment quality at national scale and 

information sharing among multi-sectors, more precise input data can be collected to support 

more reliable evaluation results. (3) to implement pilot projects for SECC. By launching an 

evaluation of SECC at different spatial scales (site, local and regional) in both agricultural 

land and development land, the theoretical evaluation system of SECC will be constantly 

optimized to get a clearer understanding of pollution levels and their spatial distribution. (4) 

to implementing classified and graded soil risk management measures. Based on the 

prediction of soil pollution changing trends and early waning level in empirical implications, 

policy decisions will be made in priority of protection, prevention, remediation or monitoring. 
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