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ABSTRACT

In this paper, we relate influence maximisation (IM) for the voting
dynamics to models of network control in which external con-
trollers interact with the intrinsic dynamics of opinion spread. In
contrast to previous literature, which has mostly explored the dis-
crete setting, our focus is on continuous allocations of control. We
develop an algorithm to numerically solve our IM problem via gradi-
ent ascent. We explore optimal allocations for leader-follower type
networks for different budget scenarios and observe that optimal
allocations do not systematically target hub nodes, as it has been
found in previous literature. Conversely, strategies are strongly
opponent-depend, avoiding nodes targeted by the opponent if the
opponent has a larger budget, while shadowing the opponent’s
allocation otherwise, i.e. targeting the same nodes as them.
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1 INTRODUCTION

Studies of influence maximisation (IM) cover a wide range of ap-
plications, such as marketing [7, 11], policy making [17, 18, 21],
political campaigning [9, 19], or guidance of technological innova-
tion [1]. In this field, societies are typically modelled as collectives
of agents who hold opinions that may be represented by binary,
discrete or continuous variables. Agents are considered connected
by social networks and opinion change is modelled through peer-
influence between connected neighbours (see [5] for a review).
Much of the study on IM has been performed on static models de-
rived from the independent cascade model (IC), where propagation
occurs as a one-off process [10, 11, 13]. In these contexts, the goal of
an external influencer is to choose the subset of initial active nodes
(seeds) for which the number of converted nodes is maximised at the
end of the cascading process. Models like the IC are only suitable
for capturing opinions that remain unchanged once individuals
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commit to them (e.g. adhering to a telecommunications supplier,
or buying a car). However, in many settings, opinions can be fast-
changing (e.g., political stances or fashion trends) and models like
IC fail to efficiently address these situations. Dynamic models, on
the contrary, consider stochastic flips of opinions in both directions
and can capture better fast changes in volatile situations.

In this work, due to its prominence in the literature and concep-
tual simplicity which allows for analytical approaches, we focus on
the voter model (VM) [6]. In the simple VM with finite, connected
networks, a population asymptotically reaches a consensus. This
situation changes with the inclusion of zealots, i.e. nodes that don’t
change opinion, leading the population to a fragmented steady-
state with both opinions present [16]. Opinions at the steady-state
depend on the number of zealots backing each opinion, the network
topology, and the positions of the zealots in it [15].

Previous work has analysed IM for the voter model in terms
of either finding optimal placements of zealots on a given social
network [12, 20] —similar to seeding on the IC— or considering
zealots as outside controllers with unidirectional influence links
that can be distributed at will [2—4, 15]. Different from the seed-
ing approach, agents targeted by the external controller are not
assumed to be automatically “convinced" and control over them
can only be obtained provided the controlling link is strong enough.
The works above mainly found that optimal allocation strategies
tend to target high-degrees nodes, with deviations to low-degree
nodes only observed when a high level of noise is injected in the
dynamics [2, 4] or when IM is sought before the dynamics reach the
steady-state [3]. Importantly, all of the mentioned studies assume
a discrete targeting of the controller: a node is either a zealot or
not [12, 20], or a link from the controller to a normal agent is built or
not [2-4, 15]. However, controllers may want to split their budgets
unevenly between nodes to achieve a higher impact, e.g. weakly
targeting one group of nodes while focusing strong controlling
power on another subset of targeted nodes. This approach provides
a more suitable model to describe mixed modes of influence cam-
paigns, which typically combine generic messages directed to a
broad public (through radio, television, billboards, etc.) with intense,
bespoke promotion to specific groups of the population.

To bridge the gap of continuous influence allocations in the VM,
we make the following contributions: (i) opinion control for the
VM is generalised to the case of continuous allocations of control;
(ii) exploiting the smoothness of the continuous setting we gen-
eralise gradient ascent to find optimal allocations; (iii) we show
that optimal allocation strategies are strongly opponent-dependent,
avoiding nodes targeted by the opponent when in resource disad-
vantage and chasing them when in resource superiority.



2 FORMALISATION OF THE MODEL

Opinion dynamics models typically assume a graph where agents
are identified with nodes, i=1, ..., N, and edges are influence links
between them. Agents can hold one of two possible opinion states
(A or B), with opinion dynamics following the classic voter model.
The controlling framework employs two external controllers that
hold fixed opinions A and B, respectively, each aiming to spread
their opinion in the network. Both controllers have unidirectional
influencing links of non-negative strength a; > 0 (or b; > 0), to
agents in the network. A budget constraint limits the sum of all
link weights for each controller to a certain total, amgx > ZIN aj,
bmax 2 Z{V bi .

A common approach to this type of problem is observing the
average behaviour of the system by considering the evolution of
the probability x; € [0,1] of nodes to adopt opinion A via rate
equations [8, 16]. As Masuda [15] has shown, this system has exactly
one equilibrium point (attractor), which can be found via the linear
relationship

[L + diag(a; + bi)]x = a, (1)
where L is the weighted Laplacian of the network and bold symbols
are Nx1 vectors. The total vote share of nodes holding opinion A
in the system is finally obtained from X = ﬁ Zl{i 1 %Xi-

In the IM problem, the A-controller aims to find her budget
allocation, a*, that maximises her vote share. We set the B-controller
to be static, i.e. with a fixed allocation strategy, so the A-controller
attempts to solve the optimisation problem

a* = arg maxq X(W, a, b), vaai < amax, ai =2 0. (2)
This maximisation can be performed by solving the system of equa-
tions derived from VX = 0, with

VaX =4 [17-[L + diag(a; + b;)] " diag(1—x;)] T (3)

The system of equations V4X = 0 is generally nonlinear in a
and thus becomes analytically intractable. Since gradients can be
computed analytically via (3), we generalise the gradient ascent
(GA) approach of [14] to the VM.

Algorithm 1: GA approximation for IM

input :amax,L, b, 1
1 repeat
2 a=a+pvyX;
3 a=a-1/N1Ta-apmax)1;
4 for aj < 0do

Gradient step
Proj. to constraint plane

5 ‘ a=a- %1; aj = 0; Projection to N-simplex edge
6 end

7 if X < prevX then

8 ‘ a=preva; = %; Backtracking

9 end
10 until a = prev a;

3 RESULTS

Figure 1-a shows a sample run of the gradient ascent algorithm on
a network with bimodal degree distribution. At the first iteration,
the A-controller starts distributing the budget equally among all
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Figure 1: (a) Improvements in vote share throughout the iter-
ations from a single sample run of the gradient ascent algo-
rithm (log scale). (b) Optimal allocations for the A-controller
for various strategies of the B-controller, §, and budget ra-
tios, r on leader-follower type networks. Networks are of
size N = 1000 with nodes of degrees 3 and 10 equally present.
The budget of the A-controller is an,qox = N(k)/3.

nodes. The difference in the resulting vote share between this initial
strategy and the final strategy found by the GA accounts for 0.0154.

We explore optimal allocation strategies for different scenarios
in which the A-controller has larger or smaller budgets than the
opponent. We define the ratio of budget availability of both con-
trollers as r = amax/bmax. Figure 1-b summarises the variations
in optimal allocation strategies in networks with bimodal degree
distribution (leader-follower type). For a particular budget ratio, r,
we explore optimal A-allocations, a*, for different B-allocations, f3,
where o and  represent the fraction of budget given to low-degree
nodes in the network. In the figure, we observe that, when the
A-controller is in large budget disadvantage (r < 1), she avoids
direct confrontation with the B-controller, i.e. targets the nodes
that have the least B-allocation. The avoiding behaviour damps
down as the A-controller’s disadvantage decreases (increasing r)
and completely disappears when both budgets match (r = 1). In
this scenario of equal budgets, the A-controller’s optimal strategy is
targeting nodes of low and high degree equally, largely unaffected
by the strategy adopted by the B-controller. When the A-controller
has an advantage of resources (r > 1), she devotes more resources
to the group being targeted by the B-controller, but never as much
as her.

We have analysed patterns of optimal influence allocation for
varying budget availability in leader-follower networks. Apart from
the absence of hub preferences in optimal allocations, we note
that optimal strategies are strongly opponent-dependent. More
specifically, the active controller always avoids the nodes targeted
by the opponent when in budget disadvantage while shadowing
nodes targeted by the opponent otherwise. Such a strong opponent
dependency has barely been observed in previous literature, where
the tendency to target high-degree nodes is prevalent.
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