

1

A Novel Methodology for Creating an Interactive Non-Linear Space in an Eye

Tracking Environment

Gemma Fitzsimmons
University of Southampton

Gemma.Fitzsimmons@soton.ac.uk

Abstract

This paper aims to explain the purpose and creation of a novel methodology for creating an

interactive non-linear space for exploring reading on the Web using eye tracking. Currently

there is no easy way to explore how people read on the Web using an eye movement

methodology. There are ways that we can make assumptions through gaze tracking and

observe what part of a screen someone is looking, but no easy way to create a highly

controlled experimental environment that can replicate results seen in traditional eye

movements and reading research. In order to understand how people read on the Web we

need two key elements: Firstly, we need a well-controlled stimulus set to be able to explore

how people read; Secondly, we need the eye tracking technology to be highly accurate, such

as that observed in eye movement and reading research using eye trackers with a high

sample rate. This paper describes a new methodology for creating a highly controlled

stimulus set of Webpage text which satisfies these two elements. This methodology can

customise and control all of the text on the Webpages, allowing for the creation of hyperlinks

and experimentally manipulated target words. This can be used with an SR Research EyeLink

1000 (an eye tracker with 1000 samples a second accuracy), which is often used in traditional

eye movements and reading research.

Funding: This research was funded by an EPSRC grant for the Doctoral Training Centre in Web

Science: EP/G036926/1. This work formed a part of a PhD completed in the Web Science

DTC.

mailto:Gemma.Fitzsimmons@soton.ac.uk

2

Introduction

In order to explore how people read in a non-linear space, such as when we read on

the Web, the first task is to design an experiment where the user can navigate a Web-like

environment while experimental control is still maintained.

There are currently no software solutions that can create a navigable Web

environment while maintaining the control observed in traditional eye movements and

reading experiments. Eye trackers cannot simply track a readers’ eyes while displaying

content in a Web browser, as they are often not connected to the Internet as this can slow

down the sampling rate at which eye tracking samples can be collected, for numerous

reasons. Furthermore, eye trackers often only collect data within their own experimental

software, so you cannot record eye movements in a browser window. If you can record any

screen based eye movements it will usually be with a reduced sample/accuracy rate, which is

problematic for reading research that requires spatial accuracy of individual letters, or at

least words and temporal accuracy to a millisecond level.

This paper focuses on the SR Research EyeLink 1000 eye tracker. The Eyelink 1000

records up to 1000 samples a second, optimum for conducting reading research. SR Research

do have a system for tracking eye movements on the Web, but it has some limitations. It is

essentially a screen recording, where the screen display is recorded and the eye movements

on the screen are also recorded, but then the those two datasets need to be joined together

to draw conclusions about what the user looked at. Although this could be used to conduct a

reading experiment that explores navigation, it would be very time intensive. All of the

content on the screen would have to be mapped after the experiment to work out what the

user looked at for each moment. Also, experimental control would be reduced by using real

websites, where other variables can influence reading behavior.

What is ideally needed to experimentally explore reading on the Web are Webpages

designed for experimental control and the ability to record the eye movements in a process

as similar to traditional eye movements and reading studies as possible. That way we can

draw conclusions from the decades of previous research in the area and build our

understanding of how people read on the Web in a navigable environment, with relevance to

3

previously found reading effects and models. This paper explains the process of creating

experimental stimuli in this way.

If we want to create an interactive website, it needs to be displayed in a way that is

compatible with the eye tracking system, such as the EyeLink 1000. Essentially, the webpages

need to be displayed as individual images with locations in pixel co-ordinates for the reader

to click and navigate. Therefore, the aim of this paper was to create subsections of Wikipedia

(which we refer to as hubs), that contain enough articles that the reader could navigate

through the Web environment without running out of articles so that the experience feels

like a real Web environment.

Creating a realistic Web browsing environment that possesses the required

experimental control demands a large amount of design and planning. There were a number

of issues that needed to be addressed in order to create this experiment and those are also

discussed in detail in this chapter.

Traditional Eye Tracking

Traditional eye movement and reading experiments tend to follow a similar pattern of

design and analysis. A set of stimuli is created, with various spatial and linguistic controls, and

then displayed in a pseudo random order. The readers will read all of the stimuli presented to

them and they have no interactive options as they can only read in the pre-specified order

and then answer comprehension questions about the stimulus that has just been presented.

This is relatively straightforward to create in current eye tracking software such as

Experiment Builder. However, once the experimental design becomes more complex,

particularly in terms of navigation, like when investigating Web reading behavior, this

procedure can be insufficient, and a new methodology needs to be created. A new

methodology was devised in this paper based on maintaining the positive points that the

traditional methodology offers and we try to build on this to make a new methodology to

explore reading on the Web.

The positive aspects of traditional eye tracking and reading research include:

Accuracy and linked to cognitive processes: The EyeLink 1000 eye-tracker has high

speed and accuracy. It records a sample every millisecond and participants are calibrated to

within a third of a degree of visual angle, which roughly translates to the size of a single

4

character. Moreover, this very detailed track record of eye movement data gives us a good

indication of moment-to-moment cognitive processes during reading [1–3].

Well tested and established methodology: There are a number of eye movement

measures (e.g. first fixation duration, go-past reading times, etc.) that have been developed

to investigate and understand reading behaviour that are well understood and can help us

represent not only the presence of effects, but also the time course of effects [2].

Easy to use software for experiment creation and data analysis: The current eye

tracking software for the Eyelink 1000 such as Experiment Builder and Data Viewer are

adequate to create and analyze simple, static reading experiments. Interest areas and

experimental design are easy to establish and implement and the eye tracking data is simple

to output and statistically analyse.

There are, however, also a number of drawbacks to the traditional

methodology/software:

Complexity ceiling: When experimental design becomes more complex, the

Experiment Builder software on its own may not be adequate. It is designed to make the

creation of simple, single target word, reading experiments. Therefore, in order to represent

an environment that resembles the Web, and can be interactively interacted with, additional

software is required. This software needs to create the images and interest areas on-line and

integrate additional clicking functionality in order to create a realistic, interactive website

environment.

Analysis issues: A large amount of traditional eye tracking measures can also be used

in the analysis of more complex passages of text. However, they need to be modified to work

in this new scenario. For example, most of the ways data can be output from Data Viewer

results in simple, first-pass reading measures for the purposes of target word analysis.

However, when reading a website, participants may scan the page before engaging in

reading, thus resulting in interest areas on the entire page being marked as re-reading

(because they have supposedly been skipped during first passage). Trials where this occurs

render all first-pass measures void, reducing the power of traditional reading measure

analysis.

Given these positive and negative points about eye tracking research, we wish to

maintain the positive points, while addressing the negative aspects. Therefore, a new

methodology was devised, with software created specifically to address the required

5

complexity and data analysis issues discussed above. Essentially, an additional stage took

place before the experiment was put into Experiment Builder such that we could insert an

extra level of complexity into the experimental design, while maintaining the accuracy of

traditional eye tracking methodology.

New Methodology

The new methodology required us to first consider the problems with implementing

our experimental design into the current eye tracking software. The current software does

not allow a website-like environment to be created easily. Although code can be

implemented to be able to click a region and it presents an appropriate image linked to that

region, it is difficult to keep track of previous pages and practically impossible to have the

functionality of a website that includes making any previously visited links purple. Essentially,

we needed to add additional functionality that is not covered by default in Experiment

Builder. These are:

Clickable regions for navigation: The location of each word and size needs to be

identified and monitored such that when a word is linked, the clickable region is known and

can be utilized. This allows a user to click the word and navigate to a linked page.

Interest areas: Each word location needs to be known such that fixations within

interest areas can be monitored. In Experiment Builder, interest areas can be created, but

they tend to be created by hand, drawing each one on the stimulus image. This is time

consuming (especially as the number of stimuli increases) and human error could easily

occur. For a clickable Web environment, a number of interest areas need to automatically

created, ideally one for each word. The interest area file needs to also contain the details

about each word such that during analysis each word can be distinguished and its variables

are known, such as whether it is linked or not and whether it is a target word.

Visited links: When navigating on the Web, we commonly click blue links that turn

purple when they are visited links. The program needs to be able to keep track of the links

that have been clicked and the revisited pages and the visited links need to change in color

from blue to purple. This adds to the ecological validity of the website experience.

Manageable hubs with no dead links: Each hub needs to have links in the articles that

link to other, separate articles. All links need to be functional (i.e. they need to have a

6

location that they link to when clicked) and we need to be programmed in a way to check the

web environment is complete in that it has no dead links that lead to nowhere. If a link is

clicked and it has no page linked to it then the experience is devalued and the program might

crash.

The Web is an expansive, non-linear space: The Web is large and expansive and if the

reader is going to feel like they are actually browsing the Web, they need the environment to

feel large and expansive. There needs to be enough pages and links present in those pages

that the user feels like they are browsing Wikipedia, without the need to re-make Wikipedia

with the 39,468,450 pages it has (as of June 2016). Due to the nature of this research, target

words need to be inserted into the articles which could be very labor intensive.

Part 1: Software to make images and interest areas

The first task was to create custom software that can be used to create Wikipedia

articles with defined and constrained target words, which can be manipulated. The text

within a Wikipedia article then needed to be turned into images that can be displayed by

Experiment Builder with matching interest areas. Two versions of each article were created,

one with all blue links and one with all purple links, representing the visited links (see Figure

1).

The custom software was created in C# and was named The Clicking Gemerator. It

imports data from a specifically created input document (Figure 2) and generates images,

interest areas and files necessary for creation of the subsequent Experiment Builder

experimental set up.

This input document (See Figure 2) contains information for generating each

individual Wikipedia article. Each row corresponds to single article. Each page needs the

information listed in Table 1. The text that is shown in each article is defined in the “TEXT”

column. In order to manipulate the target words and what words are linked, we defined our

own markup for target words and whether a word is linked and what corresponding page will

be presented when that link is clicked on. This input file is imported into the Clicking

Gemerator program (Figure 3)

In Figure 4, we see the example of the article labelled “Fish”. Triple hash signifies the

start and end of markup, similar to < and > in HTML. In the example in Figure 4, we see the

text “A fish is a ###fish_gill###gill”. This signifies that the word gill is a linked word and the

7

link goes to the page “fish_gill” which is specified as a unique identifier in the “PAGE_NAME”

column. A paragraph break is signaled by the markup “##NEWLINE##”. Finally, target words

are signaled with the markup “##A##”, “##B##”, “##C##” or “##D##”, dependent on how

many target words are in a particular article. In this example there are two: “##A##”,

“##B##”. The target words are defined by the following columns of the input file:

“X_TARGETS”, “X_TARGET_LINKS” and “X_TARGET_PAGES”. The X can either be A, B, C or D

dependent on the counterbalancing condition. These columns represent the target word,

with the character given in place of X referring to whether that word should be linked or

unlinked, and what page the target word links to when it is linked.

This input is then imported into the Clicking Gemerator program and the markup is

interpreted resulting in the creation of images and interest area files from the text input. The

interest area files are generated by creating an interest area around each word and marking

up each interest area in the file with what the word is, whether it was linked or not and

whether it was a target word. It also includes the sentence number and word number in the

article (see Figure 5).

The program also creates some input files that are put into Experiment Builder. One

file is a list of all the links in the experiment and links to the image that has the visited version

of the page where all the links are purple (see Figure 6). The second is a region list that lists

out the co-ordinates of every linked word so that when a mouse cursor is inside one of these

co-ordinates and is clicked, Experiment Builder can know to present the appropriate

corresponding linked page the participant wanted to navigate to (see Figure 7). These co-

ordinates are also used to display the purple, visited links.

The visited links are worked out from a mixture of these two files that define what

words are links, the co-ordinates for those linked words and the image of the visited linked

version of that article. In Experiment Builder, a variable is created to keep track of what

articles have been visited and if the article has been visited before. If so, Experiment Builder

can use the co-ordinates and the link to the visited version of the article to show the visited

link in purple.

8

Figure 1 Unvisited and visited links an article. The top article is the unvisited article where all the links are blue.

The bottom article is the visited version of the article where all the links are purple.

9

Table 1

All of the columns in the input file that is imported into the Clicking Gemerator and a description of what the role

of each variable is.

Column name Description

PAGE NAME Unique identifier

TITLE The title displayed at the top of the article

SITE The hub the article belongs to

IS ENTRY POINT If TRUE then this is the first page in the hub

TEXT

The text displayed in the article including code for signalling

links and target words

A_TARGETS What target words to display for counterbalancing group A

A_TARGET_LINKS

Whether the target words are linked (TRUE) or unlinked (FALSE)

for counterbalancing group A

A_TARGET_PAGES

The pages each target word should link to for counterbalancing

group A

B_TARGETS What target words to display for counterbalancing group B

B_TARGET_LINKS

Whether the target words are linked (TRUE) or unlinked (FALSE)

for counterbalancing group B

B_TARGET_PAGES

The pages each target word should link to for counterbalancing

group B

C_TARGETS What target words to display for counterbalancing group C

C_TARGET_LINKS

Whether the target words are linked (TRUE) or unlinked (FALSE)

for counterbalancing group C

C_TARGET_PAGES

The pages each target word should link to for counterbalancing

group C

D_TARGETS What target words to display for counterbalancing group D

D_TARGET_LINKS

Whether the target words are linked (TRUE) or unlinked (FALSE)

for counterbalancing group D

D_TARGET_PAGES

The pages each target word should link to for counterbalancing

group D

10

QUESTION_TEXT

The comprehension question for the article if it has one or not

(NONE)

EXPECTED_ANSWER

The expected answer for the comprehension question, either

true (T) or false (F)

NUMBER_OF_TARGETS Number of target words in the article

TARGET_ONE First target word pair (high frequency_low frequency)

TARGET_TWO Second target word pair (high frequency_low frequency)

TARGET_THREE Third target word pair (high frequency_low frequency)

TARGET_FOUR Fourth target word pair (high frequency_low frequency)

11

Fi
gu

re
 2

 In
pu

t f
ile

 th
at

 is
 c

re
at

ed
 in

 E
xc

el
 a

nd
 im

po
rt

ed
 in

to
 th

e
Cl

ic
ki

ng
 G

em
er

at
or

. O
ne

 ro
w

 c
or

re
sp

on
ds

 to
 a

 s
in

gl
e

ar
tic

le
.

12

Figure 3 The interface for the Clicking G
em

erator. The input file has already been im
ported and there are a num

ber of variables that can be

m
anipulated such as font size, interest area height, starting location (in pixel co-ordinates) and line height for the text to be displayed.

13

Figure 4 An example of the “TEXT” column in the input file. This includes the text that will be displayed on the

article page including custom markup that will be interpreted by the Clicking Gemerator program in order to

understand what words are linked and where to display target words.

14

Figure 5 Example of an interest area file creating by the Clicking Gemerator.

15

Figure 6 One of the two additional files created by the Clicking Gemerator. This file lists all of the links in each

article, one row per link. It also contains the name of the image that displayed all of the links as visited. This file is

used by Experiment Builder to display the visited links.

16

Figure 7 One of the two additional files created by the Clicking Gemerator. This file contains all of the links

present (one row per link) and their pixel co-ordinates in each article. This file is used to detect whether a mouse

click is within a linked region and also to assist with showing visited links in the correct location.

17

Part 2: Code to manage hubs and visited links

The input needs to be checked to ensure that there are no dead-end links that could

crash the experiment. Each link needs to have a unique identifier and any link needs a

corresponding article to exist. This is important for tracking which pages people have already

seen and making sure the visited links appear when appropriate. An R script was created to

go through the input file and check whether every link in the ‘X_TARGET_PAGES’ column

exists in the ‘PAGE_NAME’ column, which is the unique identifier for each page. If there are

any links to pages that do not exist, the script flags up any of these instances of broken links.

These were usually simple typographical errors that were easily corrected.

Part 3: Combine in Experiment Builder to get a complex, interactive Web browsing

environment

Taking the images and interest areas and putting them into Experiment Builder is the

final step towards building an interactive Web environment. We defined earlier that we

would need four issues addressed if we wanted a well-controlled, interactive Web

environment. These were:

Clickable regions for navigation: We have a list of all of the regions of each linked

word and these can be fed into Experiment Builder and the experiment program can be

created to respond to a mouse click in these regions.

Interest areas: We have created our own interest area files that contain the location

for every word in the display. These interest area files also contain additional information

about every word, i.e., whether it is linked, whether it is a target word and its sentence

number and word number in the article.

Visited links: This issue requires a few steps to solve, in order to include visited links in

the experiment. Firstly, we need to be able to monitor which pages have been visited and

display those links in purple. Therefore, we need the location of all links and the ability to list

all the pages the reader has already visited. Secondly, we need to have a way of displaying

the articles including purple links.

Solving the first problem is simple, given the fact we already have a list of links and the

regions they occupy. The only additional programming required in the Experiment Builder

experimental file is to include a function that adds each article that is visited to a list. When a

18

new article is visited/generated that list is checked to know whether to display the link as

blue (unvisited) or purple (visited).

Figure 8 An example of how the visited and unvisited links are created. The visited page (with all purple links) is

the default page. The linked regions of the unvisited page containing blue links is shown on top of the visited

page unless that particular link has been visited. In this example, we can see that the regions for the linked words

‘gill’ and ‘aquatic’ have the unvisited linked words laid on top of the default visited image (black border is only

present to illustrate the edges of the link region).

The second problem of actually displaying the visited links is slightly more

complicated. From the Clicking Gemerator, we generated two versions of each article, one

where all the linked words were blue and one where all the linked words are purple.

Experiment Builder runs using Python and there is the ability to insert custom classes into the

experiments. In this case, custom classes were created to display the visited version as the

default image for the display of each article. The link co-ordinates are known from the region

file (see Figure 7) that was generated by the Clicking Gemerator. Experiment Builder is

instructed in the custom Python class to display the linked regions of the unvisited version of

19

the page on top of unvisited version of the article. If the page has been visited before,

Experiment Builder is instructed to not display the unvisited region for that particular link

(see Figure 8).

Manageable hubs with no dead links: This issue was resolved by checking that all page

links existed as actual pages. This was completed via the creation of the R script mentioned

in: Part 2: Code to manage hubs and visited links.

Part 4: The final issue: The Web is an expansive, non-linear space

Finally, we need to address the, non-software based issue with the following

experiment:

The Web is an expansive, non-linear space: This issue is essentially a time-based

problem. There was a need to create enough articles that the reader could navigate and read

articles with target words, but still had the freedom and range of articles to still feel like they

are in an expansive space. This was addressed by creating four hubs rather than one giant

website. This way the reader could have four unique starting pages that all readers would

have and then the hubs were made to only go 4 levels deep from these starting pages.

The reason for limiting the number of levels is to limit the expansiveness of each hub.

The top level of the hub is the starting page and any link on that page links to a page with its

own links, which in term link to pages with their own links (see Figure 9). Quickly, the amount

of pages that need to be created can expand to an exponential amount. Therefore, the

number of levels was restricted and at level four most of the links must link back to articles

that already exist in the hub. Through this process, the creation of additional articles can be

avoided. On average, the first page had ten links and the pages those linked to would also

attempt to have ten links, but after that the number of links was dependent on the article

length. Some dead-end pages (pages with no links where the reader would have to press the

back button to go to the previous article) were also included to limit how expansive each hub

could be. There were 843 articles created in total across four hubs. In terms of target words,

out of the 843 wiki pages, 326 contained target words and these were mostly focused on the

top three levels of the hubs. Some pages had multiple target words: 191 pages contained 1

target word; 124 contained 2 target words and 11 contained 4 target words. There were 472

target word pairs used, but only one target word per experimental sentence. Each article

ranged between 1 and 14 sentences long; on average there were 5.44 sentences in the

20

articles. Some of the dead-end articles contained a single sentence to reduce time spent of

them when there was no links or target words that would be of interest to analyze. Each

reader needed to look at ten unique pages in each hub to end the experiment so that each

participant had read 40 articles.

In conclusion, this paper outlines the creation of a stimuli set for use in a pseudo-Web

environment that allows for navigation of a non-linear space while controlling the

characteristics of the text on each page and what words are hyperlinked. This methodology

allows the creator to create custom Web hubs that the user can navigate and allows the

creator to control the stimuli text and target words to the same degree as in traditional eye

movement and reading experiments. The analysis of the data can be run in a similar way to

that completed in traditional eye movement and reading studies, where each page is a trial

that can contain target words that can be identified from the tags on the interest area report.

As with most eye movement and reading experiments the bulk of the work is related to the

preparatory work related to creating the stimuli text. For the running and analysis of the

data, however, the work is similar to that observed in other reading experiments.

21

 Fi
gu

re
 9

 A
 s

im
pl

ifi
ed

 e
xa

m
pl

e
of

 a
 h

ub
 a

nd
 th

e
nu

m
be

r o
f l

ev
el

s.
 Y

ou
 c

an
 c

le
ar

ly
 s

ee
 h

ow
 fr

om
 a

 s
in

gl
e

pa
ge

 o
f ‘

Fi
sh

’
 th

e
nu

m
be

r o
f a

rt
ic

le
s

ne
ed

ed
 d

ra
m

at
ic

al
ly

in
cr

ea
se

s
at

 e
ac

h
le

ve
l.

Th
is

is
w

hy
 w

he
n

le
ve

l 4
 is

 re
ac

he
d,

 th
e

m
aj

or
ity

 o
f l

in
ks

 s
ho

ul
d

lin
k

ba
ck

 to
 o

th
er

 a
rt

ic
le

s
th

at
 a

lre
ad

y
ex

ist
 in

 th
e

hu
b

an
d

th
e

cr
ea

tio
n

of
 n

ew

ar
tic

le
s

is
av

oi
de

d.
 T

hi
s

sim
pl

ifi
ed

 e
xa

m
pl

e
do

es
 n

ot
 in

cl
ud

e
al

l l
ev

el
 4

 li
nk

s f
or

 th
e

pu
rp

os
es

 o
f c

la
rit

y.

22

References

1. Liversedge SP, Findlay JM. Saccadic eye movements and cognition. Trends Cogn Sci.

2000;4: 6–14. doi:10.1016/S1364-6613(99)01418-7

2. Rayner K. Eye movements in reading and information processing: 20 years of research.

Psychol Bull. 1998;124: 372–422. doi:10.1037/0033-2909.124.3.372

3. Rayner K. Eye movements and attention in reading, scene perception, and visual

search. Q J Exp Psychol. 2009;62: 1457–1506. doi:10.1080/17470210902816461

	A Novel Methodology for Creating an Interactive Non-Linear Space in an Eye Tracking Environment
	Abstract
	Introduction
	Traditional Eye Tracking
	New Methodology
	Part 1: Software to make images and interest areas
	Part 2: Code to manage hubs and visited links
	Part 3: Combine in Experiment Builder to get a complex, interactive Web browsing environment
	Part 4: The final issue: The Web is an expansive, non-linear space

	References

