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Internal resonances in suspension springs can result in significantly increased vibration 

transmission at the corresponding natural frequencies. Particularly for the case of metal coil 

springs used in vehicle suspensions, these internal resonances can be as low as 50 Hz and can 

lead to increased structure-borne noise in certain frequency bands. Although, in practice, this 

can be mitigated to some extent by using rubber pads in series with the coil springs, high 

vibration transmission in the vicinity of the internal resonance frequencies remains an 

important issue. In this paper, a mechanism is identified that can overcome the increased 

vibration transmission due to the internal resonances. This involves the use of a pivoted arm 

with a pivot bushing that is relatively stiff for translational motion. The quasi-static load is 

primarily carried by the suspension spring but the dynamic load at higher frequencies is also 

transmitted through the pivot bushing. By appropriate selection of parameters, in particular the 

moment of inertia of the pivoted arm and the stiffness of the pivot bushing, it can be arranged 

that the dynamic loads acting through the spring and the bushing largely cancel each other out 

at the spring natural frequency. It is shown that this mechanism is contained within common 

designs of railway vehicle primary suspension. Nevertheless, their design is largely based on 

their quasi-static behaviour and this principle of dynamic load cancellation has not previously 

been explained. The dynamic behaviour of different suspension arrangements is compared and 

the selection of suitable parameter values that can achieve this dynamic load cancellation is 

explained. Field measurements are also presented which confirm this behaviour. 

Keywords: Coil springs; dynamic stiffness; vehicle suspension; vibration transmissibility; 

internal resonance. 
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1 Introduction  

Metal coil springs are commonly used for isolating the vibration of mechanical 

structures, including within the suspension systems of railway and automotive vehicles. They 

provide a high load-bearing capacity for the static support of the vehicle and a sufficiently low 

stiffness to achieve low frequency isolation for improved ride quality. Compared with rubber 

springs, they are stable, not suffering from creep deformation, and can be used in a wide range 

of environments, such as over wide temperature differentials or under corrosive conditions. 

However, metal coil springs are lightly damped and their internal resonances [1] can degrade 

the isolator performance at higher frequencies, significantly increasing the force 

transmissibility and structure-borne noise [2]. This degradation can be as high as 20–30 dB in 

the force transmissibility at the internal resonance frequencies and 10–20 dB in the overall 

noise radiation [3]. These dynamic effects in resilient elements are also often referred to as 

wave effects [1, 4].  

Ungar and Dietrich [5] discussed the standing waves in resilient elements in relation to 

vibration isolation. They noted that the wave effects are more important in heavier and larger 

isolators. Yan et al. [6] studied the isolating performance of a helical spring as a distributed 

isolator and compared the results of theoretical analysis and experiments. They showed that 

the transmissibility at high frequencies contains many peaks not found for a massless isolator. 

Douville et al. [7] presented a methodology to identify structure-borne noise transmission paths 

for an automotive suspension assembly. Their results showed that the most significant transfer 

path was in the vertical direction through the suspension; peaks were found in the transfer 

functions corresponding to natural frequencies of the coil springs. Dylejko et al. [8] studied the 

effects of internal resonances in machinery mounts on the noise radiation of ships. In other 

studies it has been shown that internal resonances of coil springs may also result in large 

amplitude vibration of the spring itself, leading to fatigue failure [9, 10]. 

To suppress the influence of internal resonances, various techniques have been 

considered. Du et al. [3] used passive and hybrid active-passive dynamic vibration absorbers 

to control the internal resonances in rubber vibration isolators. Yan et al. [11] used an active 

control method to suppress the effects of internal resonances on the vibration transmissibility 

from coil springs. Dylejko and MacGillivray [12] introduced a transmission absorber, based on 

the concept of an inerter, to suppress internal resonances with inertial forces. Michalczyk [13] 

applied a highly-damped coating to the end coils of a coil spring to reduce the amplification 

due to resonance.   
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Many rail vehicles use metal coil springs in their suspension system. Rail vehicles 

running on bogies usually have two levels of suspension, intended to isolate the vehicle 

structure from the vibration generated at the wheel/rail contact. The secondary suspension, 

between the bogie and the car body, isolates the car body from vibration above 1-2 Hz, whereas 

the primary suspension, between the wheelsets and the bogie frame, isolates the bogie from 

wheel/rail vibration above about 10 Hz. At higher frequencies, flexible modes of the whole car 

body, as well as local vibration modes of parts of the car body can have a significant influence 

on passenger comfort [14] and can also generate structure-borne noise [15]. Coil springs are 

commonly used in the primary suspension for isolating vibration in this frequency range. 

Usually, these are installed as two concentric springs in series with a rubber pad; the latter is 

intended to avoid excessive stiffening at the internal resonances [10]. Also for freight vehicles, 

various different primary suspension designs are used, many of which also contain coil springs 

[16]. 

Normally, in vehicle dynamics studies the suspension springs are modelled as simple 

frequency-independent stiffness elements [17]. This is an acceptable approximation at very low 

frequencies, but as the influence of the internal resonances of the spring grows at higher 

frequencies, this assumption becomes invalid. The first internal resonances of coil springs in 

the primary suspension of rail vehicles can be as low as 50 Hz. Thus, it can be expected that 

the dynamic stiffening effect will influence the structural vibration and noise transmission. Sun 

et al. [18] built a vertical dynamic model of a high speed railway vehicle with a simplified 

model of the primary suspension that included a dynamic model of the coil springs. The results 

showed that dynamic stiffening effects increased the vibration of the bogie and car body above 

about 50 Hz.  

Two examples of primary suspensions from metro vehicles are shown in Figure 1. Such 

designs involve the use of a pivoted arm with a relatively stiff pivot bushing [19] (at the left of 

the photographs). In the arrangement in Figure 1(a) the coil springs are located directly above 

the axle box. In Figure 1(b), however, the hydraulic damper, and also the springs, are located 

between the pivoted arm and the bogie frame, on the opposite side of the axle box to the pivot. 

Due to the lever-arm effect, the coil springs in Figure 1(b) take a smaller static load and can 

have a lower static stiffness than those in Figure 1(a). These radial arm designs allow more 

compact bogie frames as the spring can sit alongside the wheel bearing rather than being 

mounted directly above it. The longitudinal and lateral stiffnesses of the pivot bushing are 

considered more critical in their design and have been studied for better curving performance 
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[20]. In contrast, the vertical vibration isolation performance of primary suspension structures 

with a radial arm has not been investigated in detail. 

                     

(a)                                                           (b) 

Figure 1. Examples of different designs of metro vehicle primary suspension with radial arm. 

(a) Centrally placed coil spring set; (b) side-placed coil spring set. 

In the present paper, motivated by these radial arm suspension designs of rail vehicles, 

a pivot arm mechanism is investigated to determine its potential for controlling the dynamic 

amplification associated with coil spring internal resonances. In Section 2 the transmissibility 

of such pivot arm arrangements is investigated. The dynamic amplification due to the spring 

internal resonances is introduced into this model in Section 3 by using a simple model of a 

distributed parameter isolator and the effects of various parameters are investigated. In Section 

4 the particular case of the rail vehicle suspension design is discussed and the effect of the coil 

springs and the pivot arm on the vehicle and track dynamic response is investigated. 

 

2 Comparison of different arrangements for suspension system 

2.1 Model 

Three different suspension arrangements are shown schematically in Figure 2, each of 

which is intended to provide isolation from a base input z1. In the first arrangement, in Figure 

2(a), the suspension spring of stiffness k and viscous damper c are mounted directly above the 

base input. The spring is considered as massless in this section and for simplicity the damper 

is represented by a constant viscous damping coefficient. In the second arrangement, in Figure 

2(b), a pivoted arm is introduced, similar to the arrangement in Figure 1(a). In the third 

arrangement, in Figure 2(c), the spring is located on the pivoted arm at a distance ls to one side 

of the base input point, similar to the arrangement in Figure 1(b). In both of these latter 

arrangements a flexible bushing is included at the pivot, with vertical stiffness kp; it is assumed 

that the rotational stiffness of the pivot is negligible. In each case the suspension is supporting 
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a mass, m2. The base input point has a mass m1 and the pivot arm, where present, has a moment 

of inertia I about the base input point. The distances ls, ld and lp represent the lateral distances 

from the input point to the spring, damper and pivot point respectively. The suspended mass, 

m2, is assumed not to rotate. In practice, this could be achieved by mounting two pivot arms 

symmetrically; such an arrangement is found for a railway bogie supported by two wheelsets. 
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Figure 2. Different suspension arrangements. (a) Centrally placed spring without pivot arm; 

(b) centrally placed spring with pivot arm; (c) side-placed spring with pivot arm. 

If a harmonic force of amplitude F at circular frequency  is applied to the mass m1 

(with implied time dependence eit), the equations of motion for these three arrangements can 

be written as 

 (–2M + iC + K) z = F  (1) 

where, for the system in Figure 2(a), z = [z2  z1]
T, and 

                          2
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whereas for the system in Figure 2(b) and Figure 2(c), T

2 1[ ]z z z , and 
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where ls is zero for Figure 2(b). The force vector F is set to have the component corresponding 

to z1 equal to F and other components equal to 0. To find the displacement transmissibility, the 

ratio of the responses z2 and z1 is formed, which is then independent of F. To obtain the force 

transmissibility, the force in each component should be determined from the relative 

displacement (or velocity) and the corresponding spring or damper coefficient.  

 

2.2 Results for constant spring stiffness 

Example calculation results are presented in this section for the parameters listed in 

Table 1, which are chosen to be typical of a rail vehicle suspension without representing any 

particular vehicle. Three models are considered, corresponding to the cases shown in Figure 2. 

In the second and third models, for convenience the offset distance of the spring and damper 

are selected to be equal. Moreover, in the third model the stiffness of the suspension spring and 

the damping coefficient of the damper are reduced to 30% of their original values to allow for 

their offset position while retaining the same overall static stiffness (and corresponding 

damping). Internal damping of the spring and pivot bushing is introduced by making their 

stiffness complex with the form k(1+i) where  is the corresponding loss factor (this is 

included in the stiffness matrix, not the damping matrix).  

Table 1. Initial parameters used for the three models 

Parameters Model 1 Model 2 Model 3 

Suspended mass  m2  600 kg 600 kg 600 kg 

Unsprung mass m1  1000 kg 1000 kg 1000 kg 

Moment of inertia of pivot arm I – 10 kgm2 10 kgm2 

Static stiffness of suspension spring k 1.0 MN/m 1.0 MN/m 0.3 MN/m 

Damping loss factor of suspension spring  0.01 0.01 0.01 

First fixed-fixed natural frequency f1 95 Hz 95 Hz 50 Hz 

Damping coefficient of damper  c 10 kNs/m 10 kNs/m 3 kNs/m 

Vertical stiffness of pivot bushing kp – 20 MN/m 20 MN/m 

Damping loss factor of pivot bushing p – 0.25 0.25 

Distance from input point to pivot bushing lp  0 0.4 m 0.4 m 

Distance from input point to damper ld  0 0  0.33 m 

Distance from input point to spring  ls  0 0  0.33 m 

 

For each of these arrangements, Figure 3(a) shows the displacement transmissibility 

from the unsprung mass m1 to the suspended mass m2 and Figure 3(b) shows the transmissibility 
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to the pivot point (the bottom of the spring kp). In each case the fundamental suspension 

resonance, at which the transmissibility has a peak, occurs at about 6 Hz. For model 1 this is 

given by 
2/

2

1
mk


 whereas for model 2 this expression holds only approximately due to the 

influence of the pivot arm moment of inertia. For model 3 the reduced value of stiffness k has 

been chosen to ensure that this resonance occurs at the same frequency as model 2. Comparing 

Figures 3(a) and (b), for models 2 and 3 the pivot location has the same vibration amplitude as 

the suspended mass below 20 Hz. However, there is also a second resonance caused by the 

rotation of the pivot arm, which occurs at about 95 Hz for the current parameters. This can be 

found approximately from Ilk pp /
2

1 2


. It is seen in Figure 3 as a peak in the displacement of 

the upper mass as well as the pivot location. At this frequency the transmissibility to the 

suspended mass is more than a factor of 10 greater than for the simple arrangement without the 

pivot arm.  

 

Figure 3. Displacement transmissibility from the input point to (a) suspended mass; (b) pivot. 

Results for static spring stiffness. 

Figure 4 presents the ratios of the forces transmitted through the spring, damper and 

pivot bushing to the applied force F, as well as the total force transmissibility. At low 

frequencies this is less than unity due to the influence of the unsprung mass m1 (it is given by 

m2/(m1+m2)). For the conventional arrangement without the pivot arm, as is well known, the 

force is mainly transmitted through the spring at low frequencies, whereas the damper force, 

which is proportional to velocity, becomes larger at high frequencies. However, for the 

arrangements with the pivot arm, the force transmitted through the pivot bushing becomes the 

largest component above about 20 Hz and increases to a peak at 95 Hz. Moreover, this force is 
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out of phase with the force transmitted through the spring, at all frequencies for the central 

spring and above 20 Hz for the side-placed spring. 

 

  

Figure 4. Force transmissibility from the input force to the force transmitted by each 

component. (a) No pivot arm; (b) central spring; (c) side-placed spring. Results for static 

spring stiffness. 

3 Inclusion of spring with distributed mass 

3.1 Model for spring with distributed mass 

To include the dynamic effects of a coil spring, it is possible to use analytical methods 

[21] or numerical approaches such as the finite element method [10, 22]. However, for 

simplicity, in this section a simple unidirectional model of an isolator with distributed mass is 

used [23]. This has been shown to give acceptable results for a coil spring [6]. 

The dynamic stiffness matrix of the spring (at each frequency) can be expressed in the 

form: 

 22 21 2 2

12 11 1 1

k k z F

k k z F
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where z2 is the displacement at the top of the spring; z1 is the displacement at the bottom of the 

spring, and F1 and F2 are the forces acting at each end. This dynamic stiffness matrix is 

introduced into the models of Section 2.1 by replacing the terms k in the matrix K in Equations 

(2) and (3) by the corresponding terms. Assuming an equivalent elastic modulus E, density , 

cross-sectional area A and height h, the point and transfer stiffnesses are given by [23] 
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where E/   is the wavenumber of compressional waves in the spring. Damping can be 

included by making E complex with the form E(1+i), where  is the damping loss factor. At 

low frequencies, both these stiffnesses tend to the static stiffness k = EA/h. To select the 

parameters it is sufficient to know the static stiffness k, the damping loss factor and the first 

fixed-fixed natural frequency f1, at which h = , giving 
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For the parameters listed in Table 1, the dynamic stiffnesses of the two different springs 

are shown in Figure 5. As indicated in Table 1 the first fixed-fixed natural frequency for the 

central spring is selected to be 95 Hz and that for the side-placed spring is 50 Hz. The reason 

for selecting these frequencies will become evident below. At these frequencies both point and 

transfer stiffnesses have a peak, which for the assumed value of damping loss factor (0.01) is 

more than 100 times the static stiffness. This value of loss factor is greater than the actual 

damping of a metal coil spring but is chosen to approximate the effect of the rubber pad seen 

in [10]. 

 

Figure 5. Dynamic stiffness of simple spring model for (a) central spring (models 1 and 2); 

(b) side-placed spring (model 3). 
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3.2 Results for spring with frequency-dependent stiffness 

Figure 6 shows the displacement transmissibility obtained when the dynamic spring 

model is included in the three suspension arrangements. Compared with the results for the static 

stiffness in Figure 3, a large amplification is seen for model 1 with no pivot arm, in this case at 

95 Hz. However, for the two cases with the pivot arm, the displacement is similar to that in 

Figure 3 and no large amplification is seen. Particularly for the case with the side-placed spring, 

model 3, there is actually a dip in the response at the spring natural frequency of 50 Hz. For 

the central spring case, there is no peak in Figure 6 at the spring resonance, but also no dip.  

To help explain these results, Figure 7 shows the transmitted forces for models 1 and 3. 

In both cases, the spring force has a sharp peak at the corresponding spring natural frequencies. 

However, for the case of the side-placed spring, the force transmitted through the pivot bushing 

also has a sharp peak at this frequency and, as noted previously, this is out of phase with the 

force transmitted through the spring. Consequently, the total force acting on the suspended 

mass is not amplified by the spring resonance and even has a dip at the spring natural frequency 

for these parameter values. A similar phenomenon occurs for the central spring of model 2 (not 

shown). 

 

Figure 6. Displacement transmissibility from the input point to the suspended mass for 

dynamic spring stiffness. 
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Figure 7. Force transmissibility from the input force to the force transmitted by each 

component. (a) No pivot arm (model 1); (b) side-placed spring (model 3). Results for 

dynamic spring stiffness. 

3.3 Parametric study 

The parameter values in Table 1 have been chosen to show maximum cancellation at 

the spring natural frequencies. Practical railway vehicles can vary, with different values of 

pivot stiffness and pivot arms with different moments of inertia. The dependence on each 

parameter will be illustrated in this section by varying each one separately within a range that 

is wide enough to see clear trends, while not being unrealistic. Figure 8(a,b) shows the effect 

of varying the pivot bushing stiffness of the central and side-placed models (models 2 and 3) 

with static spring stiffness. As expected, the rotational natural frequency shifts in proportion to 

kp
1/2. Figure 8(c,d) shows the effect of including the dynamic spring model for these two cases. 

For the central spring, in Figure 8(c), there are peaks at the spring resonance for larger or 

smaller values of kp than previously. For the side-placed spring in Figure 8(d), although there 

are dips in the results for 6.3 and 63 MN/m, these are not at the spring natural frequency 

whereas for 20 MN/m the dip is close to the spring resonance. 
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Figure 8. Effect of pivot bushing stiffness on displacement transmissibility from the input 

point to the suspended mass. (a) Central spring, static spring stiffness; (b) side-placed spring, 

static spring stiffness; (c) central spring, dynamic spring stiffness; (d) side-placed spring, 

dynamic spring stiffness. 

Figure 9 shows the effect of varying the pivot arm moment of inertia. The rotational 

natural frequency shifts in proportion to I–1/2, but the transmissibility amplitude also changes. 

Figure 9(c) shows the effect of including the dynamic spring model for the central spring. There 

are peaks at the spring resonance for larger or smaller values of I. For the side-placed spring, 

in Figure 9(d), there is also a dip for 30 kgm2 but the value at the dip is lowest for 10 kgm2. 
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Figure 9. Effect of pivot arm moment of inertia on displacement transmissibility from the 

input point to the suspended mass. (a) Central spring, static spring stiffness; (b) side-placed 

spring, static spring stiffness; (c) central spring, dynamic spring stiffness; (d) side-placed 

spring, dynamic spring stiffness. 

To show the effects of various parameters on the dynamic amplification at the spring 

natural frequency, Figure 10 shows the ratio of the transmissibility with the dynamic spring 

stiffness to that with the static spring stiffness. The results in Figure 10(a,b) are determined at 

95 Hz for the central spring or at 50 Hz for the side-placed spring. They confirm that the chosen 

values of pivot stiffness and pivot arm moment of inertia correspond closely to minima in the 

dynamic amplification at the spring natural frequency, as seen in Figures 8 and 9. Figure 10(c) 

shows the effect of varying the spring natural frequency on this ratio. Again, the minimum 

values occur close to the chosen values of 95 Hz for the central spring and 50 Hz for the side-

placed spring. 
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Figure 10. Ratio of transmissibility with dynamic spring stiffness to that with static spring 

stiffness at the corresponding spring resonance frequencies (95 Hz for central spring, 50 Hz 

for side-placed spring). (a) Plotted against pivot stiffness; (b) plotted against pivot arm 

moment of inertia; (c) plotted against spring natural frequency. 

Comparing the results for the different models in Figure 6, it can be noted that, although 

the pivot arm arrangement overcomes the high transmissibility at the spring resonance, it leads 

to a higher transmissibility than the simple arrangement of model 1 at other frequencies. The 

overall isolation is therefore not necessarily improved by the pivot arrangement. The relative 

importance of these other frequency components depends on the application, so it is difficult 

to give a general conclusion. For example, in Figure 9(c,d) it can be seen that a reduced moment 

of inertia gives a lower transmissibility over a broad frequency range even though there is a 

peak in the amplitude at the spring resonance.  

Additionally it should be noted that, although the transmissibility at the spring natural 

frequency is improved by the pivot arm, the stresses in the spring will not be significantly 

affected as the force transmitted through the spring remains high (see Figure 7). 
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4 Application to rail vehicles 

4.1 Vertical vehicle-track coupled dynamic model  

In this section the dynamic behaviour of metro rail vehicles containing a radial arm 

suspension is studied to show how the phenomena described in the previous section occur in 

practice. A two-dimensional vehicle model is considered, with four wheelsets coupled to the 

track and excited by the track unevenness; only motions symmetric about the track centreline 

are considered, with only motion in a vertical plane included. Flexibility of wheelset, bogie 

frame and car body is neglected. This model is shown schematically in Figure 11(a). Two 

variants are considered, as shown in Figure 11(b), one with the primary suspension spring set 

directly above the axlebox and the other with a side-placed spring set (see also Figure 1). Figure 

11(c) shows details of the primary suspension arrangement schematically. The vehicle model 

has a total of 14 degrees of freedom, including the vertical displacement and pitch of the car 

body, the two bogie frames and the axle boxes/radial arms. Both models include the coil spring 

set with rubber pad, the rubber bushing at the radial arm pivot point and the hydraulic damper. 

The damper is mounted in series with a spring representing the rubber bushings installed at its 

ends. Although more complex models could be considered for the hydraulic damper [17], it 

has already been shown in Figure 4 that the force from the damper is less than that from the 

other components above 20 Hz. The model used for the damper is therefore expected to have 

little influence on results of interest around the internal resonance frequencies of the coil 

springs. The model includes the dynamic stiffness matrix of the coil spring set (two concentric 

coil springs with rubber pad) which has been calculated using a finite element model. The 

corresponding properties of the coil springs are listed in Table 2. The first fixed-fixed natural 

frequencies of the side-placed spring set are 51.9 Hz and 58.2 Hz [10], corresponding to modes 

of the outer and inner springs, whereas for the central spring set these are found around 80.8 

and 97.0 Hz. Models representing the coil springs only by their static stiffness are also 

considered for comparison.  

The track is modelled by a continuously supported rail, as shown in Figure 11(a). The 

rail is represented by an infinite Timoshenko beam; damping of the rail is considered by 

introducing a loss factor ηr=0.01 into the Young’s modulus and shear modulus. The foundation 

consists of a single-layer fastener system on a concrete slab, which is a typical track form used 

for metro systems. The slab is assumed to be rigid. The wheel and track models are coupled 

together in terms of their Green’s functions using the approach described in [24]. 
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The parameters of the vehicle and track used in the simulations are listed in Table 3. 

The masses are given in the table in terms of the whole vehicle, although in the following only 

the responses at a single rail are considered. The suspension parameters are given per 

component. The mass, stiffness and damping matrices are assembled and then, applying a unit 

amplitude force at each of the four wheels in turn, the point and transfer mobilities (velocities 

for a unit force) of the wheels can be found. The excitation is given by the track unevenness 

(or roughness), which is introduced between the wheels and the rail. Each wheel/rail contact is 

assumed to be excited by the same unevenness spectrum apart from a phase lag introduced by 

the time delay between the different wheels passing over a point on the track [24]. The AAR 

class 4 unevenness spectrum is assumed [25].  

- + 

x
z

Zr(x,t)

Zc

Rail

θb1

Ks2 Cs2 Ks2 Cs2

Mb1Mb2 θb2

Mc

θc

Zb1Zb2

Mw1

Bogie

Car body

Wheel

Secondary 
suspension

Normal slab track
Fastener

Bed

kf  , A, E, I

Primary 
suspension

Wheel

Primary 
suspension

Wheel

Primary 
suspension

Wheel

Primary 
suspension

Wheel

(a) 

l s

l d

θ w

mw , Iw

k dk s

Mt

mb

c s1

Zw

Zb

w θ b θ b

k p

l p

 

                                       (b)                                                                         (c) 

Figure 11. Vehicle dynamic model with different primary suspensions. (a) Vehicle-track 

coupled model; (b) overview of primary suspension arrangements; (c) schematic arrangement 

of primary suspension. 
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Table 2.  Parameters of coil spring set for side-placed and centrally-placed arrangements 

Parameter Centrally-placed springs Side-placed springs 

Outer Inner Outer Inner 

Orientation right left right left 

Number of active coils n 3.4 6.3 4.7 7.2 

Wire diameter d (mm) 39.5 25.5 31.2 21.6 

Spring diameter D (mm) 206 116 207.8 133.3 

Preloaded static height H0 (mm) 256 256 289 289 

Shear modulus G (GPa) 78.5 78.5 78.5 78.5 

Density ρ (kg/m3)  7950 7950 7950 7950 

Poisson’s ratio λ 0.3 0.3 0.3 0.3 

loss factor η 0.001 0.001 0.001 0.001 

Static spring stiffness ks (kN/m) 804 422 220 120 

Distance from axle box centre to 

coil spring centre, ls (m) 
0 0.27 

Distance from axle box centre to 

vertical damper, ld (m) 
0.27 0.475 

Distance from axle box centre to 

pivot bushing, lp (m) 
0.4 0.4 

 

Table 3. Vehicle and track parameters  

Parameters Value Description 

mc 22100 kg Car body mass (whole vehicle) 

mb  2530 kg Bogie mass (whole bogie) 

mw  1800 kg Wheelset mass 

Iw 9 kg.m2 Moment of inertia of radial arm 

kpz 17 MN/m Vertical stiffness of radial arm pivot bush 

krub 7.0 MN/m Vertical stiffness of rubber pad 

kβ 8800 N.m/rad Torsional stiffness of radial arm rubber bushing 

cs1 5 kN.s/m Vertical damping coefficient of hydraulic damper  

kd 50MN/m Vertical stiffness in series with hydraulic damper 

ks2 0.24 MN/m Vertical stiffness of secondary suspension 

cs2 20 kN.s/m Vertical damping coefficient of secondary suspension 

lb 6.3 m Half distance between bogies 

lw  1.15 m Bogie half-wheelbase 

v 75 km/h Vehicle speed 

EI 6.45 MN.m2 Vertical bending stiffness of rail 

G 0.77×1011 N/m2 Rail shear modulus  

ρ 7850 kg/m3 Rail density  

A 7.69×10-3 m2 Rail cross-section area  

κ 0.45 Shear coefficient 

ηr 0.01 Rail damping loss factor 

kf 60 MN/m Fastener stiffness  

ηf  0.25 Fastener damping loss factor 

d 0.595 m Sleeper spacing 
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The point mobilities of the wheel and rail are shown in Figure 12. The mobility of the 

leading wheel of the vehicle model is shown for the cases including the dynamic stiffness of 

the side-placed spring and the centrally-placed spring. There are differences between the two 

wheel mobilities around the natural frequencies of the spring sets. In the frequency range 

considered, the track mobility is stiffness-controlled and the wheel mobility is predominantly 

mass-controlled. The frequency at which the wheel and rail mobility curves intersect can be 

identified as the so-called P2 resonance frequency [26] of the wheel/rail system at which the 

wheelset mass bounces on the track stiffness. This frequency depends on the track support 

stiffness and lies between 50 and 60 Hz for the current value of 60 MN/m. In the case of the 

side-placed spring, the P2 resonance occurs close to the internal resonances of the coil springs.  

  
Figure 12. Mobility magnitude and phase of rail and wheel for different models. (a) Mobility 

magnitude; (b) phase. 

4.2 The influence on vehicle-track dynamic responses  

The responses of the leading wheel are shown in Figure 13(a) for the vehicle models 

with central and side-placed spring set. These results are given in the form of vibration 

transmissibilities from the roughness, i.e. vibration displacement for a unit roughness. The 

wheel responses have peaks at the corresponding P2 resonance frequency, as identified from 

Figure 12; that is because the wheel/rail contact force reaches a maximum at this frequency. 

Due to the inclusion of the dynamic properties of the springs, peaks and dips occur in the wheel 

responses; these occur at or close to the natural frequencies of the spring set. These features 

are more pronounced for the side-placed spring than for the central spring, as seen previously 

in the mobility in Figure 12, because the natural frequencies are lower in this case. Figure 13(b) 

shows the ratio between the wheel response obtained using the model with the dynamic spring 

model relative to that for the model with the static stiffness. The minima in the wheel response 
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occur at 51.9 and 58.2 Hz, which correspond to the fixed-fixed natural frequencies of the spring 

set. 

   

Figure 13. Wheel response for different models. (a) Transmissibility from roughness to wheel 

of dynamic stiffness models; (b) the response ratio of wheel between dynamic and static 

stiffness model. 

The responses of the rail at the position of this wheel are shown in Figure 14(a). Results 

are again shown for the two suspension arrangements. The rail responses have broad peaks at 

the P2 resonance frequency, similar to the result for the wheels above. Figure 14(b) shows the 

ratio between the responses of the dynamic and static stiffness models. As above, it can be seen 

that dips occur at the frequencies corresponding to the spring set natural frequencies. The 

influence of the side-placed spring set is much more than that of the central spring set due to 

its lower resonance frequencies. 

   
 

Figure 14. Rail response for different models. (a) Transmissibility from roughness to rail of 

dynamic stiffness models; (b) the response ratio of rail between dynamic and static stiffness 

model. 
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Figure 15 shows the vibration of the leading bogie at the mid-point between the two 

wheelsets for the side-placed spring model. Due to the time delay between the different wheels 

passing over a point on the track, there are dips in the response when the two wheels are in 

anti-phase and broad peaks when they are in phase. These peaks and dips shift in frequency as 

the train speed varies so it is instructive to consider the envelope of the response, which 

corresponds to the result with no time delay. This is also shown in Figure 15. 

 

Figure 15. Response at the centre of the leading bogie for the side-placed spring model with 

phase lag between different wheels on the track at speed 75 km/h and corresponding response 

envelope. 

Figure 16(a) shows the envelope of the transmissibility from the roughness to the centre 

of the bogie frame for both models. The transmissibilities decrease sharply around the spring 

set natural frequencies for both models. The ratios of the bogie frame responses between 

dynamic and static stiffness models of the coil springs are shown in Figure 16(b). This again 

shows the dips at the spring set natural frequencies.  
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Figure 16. Bogie response for different models. (a) Transmissibility from roughness to bogie 

of dynamic stiffness models (based on response envelope); (b) the response ratio of bogie 

between dynamic and static stiffness model. 

4.3 Comparison with measurements 

Measurements of vibration on the axle box and the bogie frame of a metro vehicle with 

side-placed springs are used to verify the calculations from the dynamic model. The parameters 

in Tables 2 and 3 were chosen to correspond to this vehicle. The measurement was taken at a 

running speed of around 75 km/h. The track unevenness is unknown so it is only possible to 

make a qualitative comparison with the results from the model. Figure 17 shows the calculated 

and measured vibration power spectral density (PSD) of the vehicle. Vibration is shown on the 

axle box and on the bogie frame at a position midway between the two wheelsets. Despite the 

fact that the unevenness spectrum is unknown, and the model neglects the flexibility of the 

wheelset and bogie frame, quite good agreement is seen between the measurements and 

predictions. Clear dips are seen in the response of both the axle box and the bogie frame at the 

natural frequencies of the spring set between 50 and 60 Hz. In addition, peaks can be seen in 

the measured axle box vibration at multiples of 8 Hz, which corresponds to the wheel rotation 

frequency at this speed. These are caused by out-of-roundness of the wheels, which have a 

radius of 0.42 m; this is not taken into account in the model.  

In these results, the axle box response has a dip at the spring set natural frequencies in 

both the measurements and predictions. The bogie vibration also has a dip, although it is larger 

in the prediction than the measurement (partly because a finer frequency resolution is used). 

These results confirm the behaviour described by the model in which there is no amplification 

associated with the spring natural frequencies. 
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Figure 17.  Comparison between calculated and measured vibration PSD of vehicle with side-

placed spring set on slab track with fastener stiffness 60 MN/m. (a) Axle box; (b) bogie frame 

(calculated results based on response envelope).   

5 Conclusions 

A mechanism has been identified by which dynamic amplification in the vibration 

transmission caused by the internal resonances of isolators can be minimised. This is based on 

a pivot arm with a flexible pivot bushing. The presence of a rotational resonance of the pivot 

arm causes the forces transmitted through the pivot bushing to be out of phase with the force 

transmitted through the main spring above a certain frequency. Selection of appropriate 

parameter values for the pivot arm moment of inertia and pivot bushing stiffness can lead to 

these two forces having similar magnitudes and therefore cancellation occurs in the total 

transmitted force. The total force, and therefore the response of the suspended mass, can have 

a minimum at the spring natural frequency instead of a peak. Nevertheless, some amplification 

in the transmission can occur at other frequencies. Moreover, the response of the isolator itself 

at its internal resonance is not attenuated so this mechanism is not suitable for mitigating 

against fatigue failure of the springs.  

Through predictions and measurements, it has been shown that this mechanism occurs 

in practice in the response of a metro rail vehicle with metal coil springs in the primary 

suspension. For the designs of vehicle considered, the forces transmitted through the coil spring 

set and the pivot bushing largely cancel with each other at the spring natural frequency, thus 

avoiding a peak in the transmitted vibration. 
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