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ABSTRACT

Inverse Compton scattering dominates the high-energy part of the spectra of neutron star (NS)
low-mass X-ray binaries (LMXBs). It has been proposed that inverse Compton scattering also
drives the radiative properties of kilohertz quasi-periodic oscillations (kHz QPOs). In this
work, we construct a model that predicts the energy dependence of the rms amplitude and
time lag of the kHz QPOs. Using this model, we fit the rms amplitude and time lag energy
spectra of the lower kHz QPO in the NS LMXB 4U 1636 — 53 over 11 frequency intervals
of the QPO and report three important findings: (i) A medium that extends 1-8 km above the
NS surface is required to fit the data; this medium can be sustained by the balance between
gravity and radiation pressure, without forcing any equilibrium condition. (ii) We predict
a time delay between the oscillating NS temperature, due to feedback, and the oscillating
electron temperature of the medium, which, with the help of phase resolved spectroscopy,
can be used as a probe of the geometry and the feedback mechanism. (iii) We show that
the observed variability as a function of QPO frequency is mainly driven by the oscillating
electron temperature of the medium. This provides strong evidence that the Comptonizing
medium in LMXBs significantly affects, if not completely drives, the radiative properties of
the lower kHz QPOs regardless of the nature of the dynamical mechanism that produces the
QPO frequencies.
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The history of kHz QPOs begins with the launch of the Rossi

1 INTRODUCTION X-ray timing explorer (RXTE; Bradt, Rothschild & Swank 1993).

Kilohertz quasi-periodic oscillations (kHz QPOs) represent the
fastest variability observed in the X-ray light curves of neutron star
(NS) low-mass X-ray binaries (LMXBs) to date. van Doesburgh,
van der Klis & Morsink (2018), reported a QPO at 1267 Hz in the
NS LMXB 4U 0614 + 09, which is the highest ever observed in
such a system. A QPO is a narrow, albeit with finite width, peak
in the power density spectrum (PDS) of a light curve. See van der
Klis (1989) for more information on the timing techniques. QPOs
in LMXBs had been previously discovered at lower frequencies,
however, the timing resolution and large effective area of modern
instruments made it possible to also detect them at kHz frequencies.
Throughout this paper ,we refer to the kHz QPOs when the QPOs
appear between approximately 400 and 1200 Hz.
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The first detections and analyses of the newly discovered kHz QPOs
are presented in van der Klis et al. (1996), van Paradijs et al. (1996),
Strohmayer et al. (1996), Berger et al. (1996), Zhang et al. (1996),
and Ford et al. (1997). The kHz QPOs in NS LMXBs, which were
reported in the aforementioned papers, usually consist of a lower
and an upper QPO, separated by a few hundreds of Hz. Later, work
done by Wijnands & van der Klis (1997), Wijnands et al. (1997), van
der Klis et al. (1997), and Méndez & van der Klis (1999), Méndez
et al. (1998), Zhang et al. (2006) shed more light into the existence
of pairs of kHz QPOs, or twin as they are often called.

Theoretical models trying to explain the origin of the QPO fre-
quencies date back to 1985, before kHz QPOs were even detected.
Among the first attempts to link the low-frequency QPOs to a
physical mechanism, was the beat frequency model, as described in
Alpar & Shaham (1985), where the QPO frequency is a beat between
the spin of the NS and the Keplerian frequency of the accreting
material. Later, Hameury, King & Lasota (1985) connected the

Published by Oxford University Press on behalf of the Royal Astronomical Society

0202 YoIelN €0 U0 1s8nB Aq 011 6.9S/66€ L/ 1/261AVESqB-0]01LIE/SEIUW/WO0Y"dNO"ILISPEDE//:SAY WO PAPEOjUMO(


http://orcid.org/0000-0002-3371-745X
http://orcid.org/0000-0002-2985-6369
http://orcid.org/0000-0002-8082-4573
http://orcid.org/0000-0001-9072-4069
mailto:karpouzas@astro.rug.nl
mailto:mariano@astro.rug.nl
mailto:garcia@astro.rug.nl

1400 K. Karpouzas et al.

QPO frequency with the NS spin. More specifically, a magnetic field
driven mechanism was thought to be able to produce bright spots
on the NS surface, which rotate at the NS spin, causing brightness
oscillations to manifest themselves as QPOs.

Boyle, Fabian & Guilbert (1986), assumed for the first time a
spatially resolved Comptonizing medium, which we will hereafter
refer to as the corona, whose optical depth was linked to the QPO
frequency. In the model of Boyle et al. (1986), the corona can exist
on top of an accretion disc. The optical depth of this corona has a
spatial dependence and thus can be linked to a Keplerian frequency
associated to a certain distance inside the corona. The optical depth
is regulated by the incident flux, from the central object on to to the
outer surface of the corona, and for the first time is linked to the
QPO frequency. The aforementioned work models the intensity of a
source as a function of a Keplerian frequency, and a fit to the source
GX5-1 resulted in reasonable values for the spectral parameters.
Another pioneering QPO model was introduced by Fortner, Lamb &
Miller (1989), where the frequency of an oscillating radial flow of
material is associated to radiation—hydrodynamic overstability that
causes the observed QPOs.

Shortly after the discovery of kHz QPOs, the statistical properties
and dependence of these high-frequency oscillations upon observed
physical quantities became too complex to be explained by the
models that had been proposed to explain the low-frequency QPOs.
Without going into detail, Klein et al. (1996), Kaaret, Ford & Chen
(1997), Miller, Lamb & Psaltis (1998a), Stella & Vietri (1998),
Titarchuk, Lapidus & Muslimov (1998), Osherovich & Titarchuk
(1999), and Zhang (2004), proposed a new generation of models
that led to a more physically robust explanation of the observed kHz
QPO frequencies, based on their latest observational properties (see
van der Klis 2006 for a review of these models).

At the same time as their discovery, a lot of attention was given to
the energy resolved variability of kHz QPOs. By energy-resolved
variability, we mean the study of how the properties of the kHz
QPOs, namely the fractional root-mean-square amplitude (hereafter
RMS) and time (or phase) lags, depend on photon energy. For a
review on timing techniques, and derivation of RMS and lags, we
refer the reader to Uttley et al. (2014). The spectral analysis of a
source, combined with the study of energy resolved variability has
recently become famous as the spectral-timing approach.

Strohmayer et al. (1996) found, for the first time, that the rms
of the lower kHz QPO in the LMXB 4U 1728 — 34 increased
with energy from 3 per cent, at energies between 2 and 6 keV, to
~ 9.5 per cent at 12keV. Later, Berger et al. (1996) found that the
rms of the ~800 Hz QPO in 4U 1608 — 52 increased with energy
from 4 per cent at 2keV to 15 per cent at 12keV, while at higher
energies it remained constant within the uncertainties. Zhang et al.
(1996) suggested that the high values of rms, of the kHz QPOs
at high energies indicate that the QPOs originate either at the NS
surface or the corona, since the temperature of both is higher than
that of the disc. Méndez et al. (1997) carried out an interesting
analysis of the absolute RMS in multiple energy bands for the
source 4U 0614 + 09. More specifically, the absolute RMS in units
of counts (skeV)~! is a measure of the shape of the oscillating
spectrum that would be on top of a non-varying component (e.g. a
truncated accretion disc). Méndez et al. (1997) found that a Wien
spectrum of temperature ~1.56keV and radius of ~ 500m (at a
distance of 3 kpc) could explain the data. In the same work, the
fractional RMS spectrum is moderately well fitted by a blackbody
spectrum with a ~2.5 per cent variation in its temperature and by a
Comptonized spectrum with a ~ 5 per cent variation in its optical
depth.
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Later, Revnivtsev, Gilfanov & Churazov (1999) introduced a
technique called frequency resolved spectroscopy (FRS), in which
the spectrum of the absolute RMS is constructed in separate
frequency bands with the help of the energy-resolved PDS. An
application of the FRS technique was discussed by Gilfanov,
Revnivtsev & Molkov (2003), who showed that the spectral shape
of the absolute RMS, resolved around the QPO frequency for the
sources GX 340 + 0 and 4U 1608 — 52, is in very good agreement
with the average spectrum of the source if a disc blackbody
component is subtracted from the energy spectrum. These authors
claimed that the remaining energy spectrum, after subtracting the
disc blackbody, matches that of the boundary layer. A simple Wien
spectrum, representing the boundary layer, fits their data well,
but they note that, depending on the spectral state of the source,
taking into account thermal Comptonization might improve the fits
significanty.

At the same time, the study of the energy-dependent time lags
was added to the spectral timing approach. In particular, after the
discovery that, in the lower kHz QPOs, the soft photons lag behind
the hard ones, an effect that we will refer to as soft lags, by Vaughan
et al. (1998), Kaaret et al. (1999), de Avellar et al. (2013), the
study of time lags became an important part of any comprehensive
spectral-timing analysis. de Avellar et al. (2013) mentioned for the
first time that the energy-dependent time lags of the upper kHz QPOs
exhibit a behaviour significantly different to that of the lower kHz
QPO, such that the hard photons lag behind the soft ones, producing
the so-called hard lags. The findings presented in de Avellar et al.
(2013) suggest a different origin for the lower and the upper kHz
QPO.

Later, a detailed spectral-timing analysis of the NS LMXB 4U
1728 — 34, done by Peille, Barret & Uttley (2015), revealed that
although the RMS increased with energy, both for the lower and the
upper kHz QPOs, the time lags of the lower kHz QPOs were always
soft, whereas for the upper kHz QPO the time lags were mostly
hard. These authors also fitted the RMS, or covariance, spectra
of the sources 4U 1608 — 52 and 4U 1728 — 34 with a thermal
Comptonization model and obtained a very good fit. In agreement
with de Avellar et al. (2013), Peille et al. (2015) concluded that
the physical mechanisms driving the lower and upper kHz QPOs
must be different and that the oscillating component in the source
spectra, thus the QPO, must be associated with Comptonization.
A systematic study of multiple sources, presented by Troyer et al.
(2018), also verified the differences between upper and lower kHz
QPOs. However, the question of whether the kHz QPOs originate
in the accretion disc, the NS surface, the NS boundary layer, or in a
surrounding Comptonizing region remained unknown.

The explanation of the dependence of the time lags and rms upon
photon energy is still highly debatable. Predicting the energy depen-
dence of timing properties such as time lags, due to Comptonization,
dates back to Wijers, van Paradijs & Lewin (1987), who used a
Monte Carlo simulation to calculate the Comptonization of a black-
body spectrum inside a spherical homogeneous cloud, highlighting
the importance of energy-dependent time-delay measurements as
a probe for both the source of soft photons and the properties of
the Comptonizing cloud. Specific models trying to explain this
dependence were introduced by Lee & Miller (1998), Lee, Misra &
Taam (2001), and Kumar & Misra (2014). The models described
in the aforementioned papers assume that the flux oscillation of the
time averaged spectrum, which is modulated at the QPO frequency,
is produced by an oscillation in the thermodynamic properties of a
Comptonizing region, hereafter the corona, or of the seed photon
source, which can be either the NS surface, accretion disc, or
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both. More specifically, these thermodynamic properties are the
temperature and external heating rate of the corona, the electron
density of the corona and finally the temperature of the soft photon
source that provides the seed photons for Comptonization.

Lee & Miller (1998) assumed that, if thermal Comptonization
is responsible for the shape of the RMS spectrum (Méndez et al.
1997; Gilfanov et al. 2003; Peille et al. 2015), then thermodynamic
properties such as the heating rate and temperature of the corona
and seed photon source should be also oscillating. The simplest
case would be one in which the latter quantities oscillate exactly
at the QPO frequency. The novel idea presented in Lee & Miller
(1998) predicts the RMS and time lags due to Comptonization, of
a seed photon source in a homogenous and spherically symmetric
corona. Temperature oscillations of either the corona or the seed
photon source, but also the effect of an oscillating electron density,
are used to reproduce the RMS and time lag spectra. The authors
apply an empirical fit to RMS and time lag spectra of the source
4U 1608 — 52, with a model that uses a superposition of the three
oscillations mentioned above, and conclude that a time varying
coronal electron density is more likely to drive the observed
behaviour. They also find a size of around 6 km for the, assumed
spherical, corona, which reinforced the idea that the kHz QPOs are
either produced or radiatively enhanced in a region close to the NS.

The hard time lags of the source 4U 1608 — 52 initially reported
in Vaughan et al. (1997), which were used by Lee & Miller (1998),
were later on proven to have the opposite sign. After Vaughan
et al. (1998) clarified that the time lags of 4U 1608 — 52 were
actualy soft, a second work by Lee et al. (2001) assumed that an
oscillation in the temperature of the corona, which produces the
QPO, causes a delayed oscillation in the temperature of the seed
photon source through feedback. By feedback, we mean that a
fraction of the photons Comptonized in the corona return to the
seed photon source through random walks, and re-heat it. Because
of this delayed response of the seed photon source, the low-energy
photons are expected to lag behind the hard ones, thus explaining
the observed soft lags. However, in Lee et al. (2001) the QPO
amplitude is approximated as a linear combination of the amplitudes
of the corona and seed photon source oscillations. This ad hoc
method is used in order to connect the two amplitudes (corona
and seed photon source) through feedback and calculate one as a
function of the other. This approach succeeds in explaining, at least
qualitatively, the behaviour of the RMS and time lags. However,
the major disadvantage of this model is that the energy balance of
the corona, through Compton cooling, is not taken into account and
thus the amplitude of the temperature oscillations do not emerge as
natural consequences of a self-consistent physical process.

A self-consistent model, which takes into account the dynamic
cooling of the corona and the feedback on to the soft photon source
was proposed by Kumar & Misra (2014). Since the work presented
here uses, and builds upon, the aforementioned model, we will pro-
vide a detailed description of the model in the next section. Kumar &
Misra (2016a) used this model for a preliminary study of the RMS
and lag energy spectra of the NS LMXB 4U 1608 — 52. The authors
found that a small corona (~2-6km) and a significant amount of
feedback (20-80 per cent) are required to qualitatively explain the
observed behaviour. Finally, Kumar & Misra (2016b) used a Monte
Carlo method to estimate the expected amount of photons that would
impinge back on to the seed photon source during Comptonization.
They simulated different corona geometries and concluded that in
all cases a significant amount of feedback is justified.

Although self-consistent, the model of Kumar & Misra (2014)
failed to predict the flattening of the RMS energy spectrum above
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12 keV that was observed by Berger et al. (1996) in the NS LMXB
4U 1608 — 52. Attempts to explain the aforementioned flattening
were made before, initially by Miller et al. (1998a) and later by
Lee & Miller (1998), based on the assumption that the optical
depth is oscillating at the QPO frequency. The assumption of an
oscillating electron number density, and thus optical depth, allowed
the model of Lee & Miller (1998) to explain the flattening of the
RMS energy spectrum better. However, to explain the soft time
lags of 4U 1608 — 52 the model of Lee et al. (2001) introduced
the assumption of feedback and an oscillation in the temperature
of the corona instead of an oscillating optical depth. Particularly
interesting is the NS LMXB 4U 1636 — 53, for which spectral
analyses date back to 1986 (see Hirano et al. 1987 and Damen et al.
1990). Recently, Ribeiro et al. (2019) showed that the RMS energy
spectrum of the NS LMXB 4U 1636 — 53 depends highly on the
lower kHz QPO frequency and, on average, decreases at energies
above 12keV, a fact that might present an interesting challenge for
all of the aforementioned models.

Evidence that the properties of the corona undergo changes was
already given by Barret (2013). In the aforementioned work, the
optical depth, corona temperature, and seed photon temperature, of
the NS LMXB 4U 1608 — 52, appear to have a dependence on
QPO frequency. A similar dependence was reported, for the NS
LMXB 4U 1636 — 53, in Zhang et al. (2017) and Ribeiro et al.
(2017). Furthermore, phase-resolved spectroscopy of type B QPOs
in the black hole X-ray binary GX 339 — 4 and of kHz QPOs in the
NS LMXB 4U 1608 — 52, presented in Stevens & Uttley (2016)
and Stevens, Uttley & Altamirano (2018), respectively, revealed
that the corona temperature and seed photon source temperature
oscillate at the QPO frequency. Preliminary results indicate that
the properties of the corona and soft photon source, apart from
oscillating coherently at the QPO frequency, show systematic time
lags between them. All of the the above results prove the importance
of linking the variability of the photon number density (QPO) to the
spectral and geometric properties of the corona.

In this work, we reproduced the model of Kumar & Misra (2014)
with minor changes in the physical assumptions and a basic change
of the solving scheme. These changes are discussed in Section 2,
with the help of Appendix A. In Section 3, we discuss the process
of fitting our model to a set of frequency-resolved RMS and time
lag spectra of the lower kHz QPO, in the NS LMXB 4U 1636 — 53
(Ribeiro et al. 2019). Finally, in Sections 4 and 5 we summarize our
results and discuss our findings on the magnitude of the measured
quantities and their dependence upon frequency.

2 THE MODEL

In this section, we give a brief description of the model presented in
Kumar & Misra (2014) alongside the changes introduced by us. The
model assumes that the surface of a NS of radius a and temperature
T, injects photons inside a spherically symmetric medium of width
L, consisting of highly energetic electrons, the so-called corona,
centred at the NS, with a rate 71, . The photons are inverse Compton
scattered and, since the medium is finite, after a photon of energy E
undergoes certain number of scatterings it will escape the medium
with an energy E > E. The escape rate per unit volume is 7.
This symmetry, and the assumption that the density of the corona is
uniform, simplifies the definition of the (Thomson) optical depth,
which reduces to T = orn.L, where o1 is the Thomson cross-
section and n, the electron number density of the plasma. Schulz &
Wijers (1993) showed that theoretical spectra constructed with a
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simple geometry, such as the one described above, can yield good
fits to the data.

The time-dependent evolution of the spectrum, n, (E, 1), that
undergoes multiple inverse Compton scatterings is described by
the Kompaneets equation (Kompaneets 1957). We use the form of
the equation that was first presented in Psaltis & Lamb (1997), then
used by Lee & Miller (1998), Lee et al. (2001) and later by Kumar &
Misra (2014). This equation can be written as

m, 1 0 ) L
N = g ( — kT.En, + E'n, + KTeo (E ny))
+tcilsy - tcnf;SCs (1)

where t. = L/ctt is the Thomson collision time-scale, 7, the
temperature of the medium, k the Boltzmann constant, m. the
electron rest mass, and ¢ the speed of light. Assuming that the
soft photon source emits like a blackbody, the photon injection rate,
Tgy, 18

. 3a? 2l E? @)
Nsy = @+ L) —a’] Rt e _ 1 )7

where £ is the Planck constant and a the NS radius. We used the same
notation and symbols as in Kumar & Misra (2014) so far in order
to avoid confusion and built upon their model in a coherent way.
Equation (1) is subject to specific assumptions, some of which will
be summarized now for the sake of clarity. First of all, a uniform and
isotropic distribution of electrons and photons is assumed. We thus
ignore the spatial dependence of the photon phase space density and
also ignore any effects of electron bulk motion inside the plasma.
The seed photon source is the NS surface, which, combined with
the fact that the medium is a spherically symmetric shell, means
that each photon is emitted at equal distance from the surface of a
sphere with radius L + a.

We further assume that photons escape the medium at a constant
rate, 7.s.. According to equation (1), the number density of photons
with energy between E and E + dE at a given time is n, (¢, E).
After production, a photon undergoes a number of scatterings, N,
before it escapes from the medium. Assuming that each scattering
is an independent event, we can assign an escape probability per
scattering, Pese = 1/Nege. For Neg., we used the same formulation
as in Lightman & Zdziarski (1987), which is based on the solution
of the photon diffusion equation, under the assumption that the
intensity of the source inside the sphere is sinusoidally distributed
with radius, as presented in Sunyaev & Titarchuk (1980). Using the
Klein—Nishina optical depth, Ty, we can write

1
Nesc =17+ EITTKN(E)f(E)’ (3)
where
1 if E < 0.1lm.c?
f(E) = (1 — 2) /0.9 if 0.lmec® < E <mec?  (4)
mec
0 if E > mec?,

and given the Klein—Nishina cross-section, ogn(E), the Klein—
Nishina optical depth is

Trorn(E)

or

wN(E) = ®)

In order to calculate 7., Which according to equation (1) has
units of photons per unit volume per unit energy per unit time, we
must multiply n, (E, ) by the escape probability density function,
which is assumed as a constant number that represents probability
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per unit time. Thus, based on the fact that the average time a photon
takes to escape the medium is #.Neg, the escape probability per unit

. . 1 cTr
time is —— or 73—, 50 that

ctrny, (t, E) _c ny,(t, E)
LNee L1+ bu(B)/(E)

nesc -

(6)

Equation (6) is the same as equation (21a) of Lightman &
Zdziarski (1987). We must note that in Lightman & Zdziarski
(1987) the authors include a relativistic correction term, w(x), in
equation (22a) of their paper. Given that the majority of the spectral
analyses presented in the literature use nthcomp (Lightman &
Zdziarski 1987; Zdziarski, Johnson & Magdziarz 1996) to model
thermal Comptonization, we want our model for n, to resemble
that of nthcomp as much as possible for a given set of spectral
parameters. Therefore, in our approach for 7¢,c we include Klein—
Nishina corrections and the same form of N that is used in
Lightman & Zdziarski (1987) because the aforementioned paper
is the basis of the nthcomp model (Zdziarski et al. 1996) in XSPEC
(Arnaud 1996). To conclude with the assumptions, the electrons of
the plasma are hot, but not relativistic (k7. < < mec) in our case,
thus allowing for the use of the Thomson cross-section, o1, for the
scatterings. In spite of this, we use the Klein—Nishina cross-section,
o kN, to preserve generality throughout this work, but we note that
using ot would not change any of the results of this work because we
mainly work with energies £ < <mgc?. The steady-state solution

”;’—ry = 0, hereafter SSS) of equation (1) is the energy averaged
spectrum, 7,0, i.e. the Comptonized continuum of the observed
spectrum. Equation (1) is discretized and solved numerically as a
boundary value problem in order to obtain n,. In Appendix A, we
provide the reader with details on the solving scheme.

The model that we reconstruct in this work is based on the idea
that a QPO is modelled as a small oscillation of the SSS. Regardless
of whether the QPO is produced on the NS or accretion disc, or
whether it is the result of oscillations of thermodynamical and
physical properties of the corona, a perturbation of the SSS can
be linked to a perturbation in any physical quantity that appears
in equation (1). This concept was first introduced by Lee & Miller
(1998). We can write the perturbation as n, = n,o(1 + (Snye*"‘”’),
where  is the mean frequency of the QPO and dn, the complex
fractional amplitude of the QPO. We further assume that this
perturbation can be linked to a perturbation in the temperature
of the plasma, T, = Teo(1 + 8T.e~™"), that could be a product
of an oscillating external heating rate, H.y, which we write as
Heyg = Hexo(1 + 8 Heype™'"). The external heating rate is required
in order to account for the observational fact that the cooling of the
medium, through repeated scatterings, does not lead to an extreme
drop in the temperature of the medium. Finally, it is assumed that
a fraction, 7, of the Comptonized photons impinge back on to the
surface of the NS causing an oscillation in its temperature, 75 = T (1
+ 8Tge~™"). In principle, the NS, as a blackbody, could undergo
inherent oscillations on its own, on top of the oscillations caused by
this feedback loop.

All of the perturbations are written in the form X; = Xo(1 +
8X;e~") so that 8X; is a fractional variation of the equilibrium
value, Xj, and thus dimensionless. We must also note that in the
above, 8 Hey, 8Te, 8T, and dn, are complex quantities, while én,,
is a function of energy. After linearizing equation (1), we can form
a new differential equation for the complex amplitude. For the new
variables N = n, /n. and x = E/kT, (see Appendix A), the linearized
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form is
d*n,  dén, 2 dNdén, 1 on,
dx2 dx  Ndx dx @ NeT/h—]
icsén, LT, 2 1 &>N
x2 “\x2 N dx?
1 TeO X
- 8TSNE (e-XTCO/TSO —+ e_XTsO/TSO — 2) ’ (7)
where ¢5 = %’;‘2 The complex amplitudes 67, dn,,, and S Huy

are connected tﬁrough the first law of thermodynamics, and 67 is
related to én, through a feedback term added to the blackbody
spectrum such that the energy balance of both the corona and
seed photon source is taken into account (for more information
see Appendix A2).

In Appendix A2, we show that §75, §7, are integral functions of
dn, but are also present in equation (7), which we need to solve
in order to find n,, . The solution of equation (7), as presented in
Kumar & Misra (2014), requires an initial assumption both for §7,
and also 87;. The authors use the assumed values to calculate an
initial solution for én,,, which they afterwards use to update the
values of 87, and 67. This process is repeated a few times until the
temperature amplitudes converge. The final solution, én,, after the
required steps for convergence, is taken as the final QPO complex
amplitude whose modulus, |81, (E)|, and argument, tan™' ;’Zfﬁ::;,
will translate directly into RMS and phase lag, respectively. If the
external heating rate is assumed variable, then § H,y, can be factored
out of equation (7) and its modulus can be used as a normalization
for |én, |, which is the RMS. Thus, the argument, or phase, of
8H,y could be arbitrary. In Appendix A2, we discuss a different
mathematical approach to solve for én,, 6T., and 67 without the
need of a converging iterative scheme. Finally, we must note that
although our numerical solution, én,, is calculated at each energy
value of the selected grid, the actual quantity that we compare to
the data, eventually, is the ratio of the integrals [8n, n,odE/ [n,odE
where the integration is performed within the selected energy band
of the corresponding measurement.

3 APPLICATION TO THE LOWER KHZ QPO
OF THE NS LMXB 4U 1636 — 53

3.1 Data overview

Recently, Ribeiro et al. (2019) presented a detailed analysis of the
timing properties of the lower and upper kHz QPOs in the NS
LMXB 4U 1636 — 53. In particular, they studied the rms of both
the lower and upper kHz QPO as a function of photon energy and
frequency. In order to get a good signal-to-noise ratio for the rms
measurements, Ribeiro et al. (2019) averaged RXTE observations
with lower kHz QPOs, over narrow frequency intervals centred at
frequencies that span from 530 to 940 Hz. The observations that they
averaged were taken at different times, but correspond always to the
transition from hard to soft state (Zhang et al. 2017). Furthermore,
de Avellar et al. (2013) studied the time lags as a function of energy,
in 4U 1636 — 53, at different QPO frequencies and they concluded
that the time lags of the lower kHz QPO were soft and did not
depend on QPO frequency.

Ribeiro et al. (2019) found that, in all frequency intervals, the
RMS of the lower kHz QPO of 4U 1636 — 53 was an increasing
function of energy up to 12keV and then, in some cases, it
decreased. The authors therefore refer to the critical energy of
12keV as the break energy, Epreac. In the same work, it was also
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noted that the slope of the increasing (E < Ejpeax) part, of the rms
as a function of energy, initially increased with increasing QPO
frequency, until a critical QPO frequency of ~770Hz, while for
higher frequencies the slope decreased. The frequency at which the
slope is maximum coincides, more or less, with the frequency at
which the energy averaged rms is also maximum. Ribeiro et al.
(2019) also report that the energy-averaged RMS, measured for
the full energy band (nominally 2-60keV), exhibits the same
dependence with frequency as the slope of the RMS versus energy
for the lower kHz QPO. To conclude with the data overview, for
every frequency interval, defined in Ribeiro et al. (2019), we fit the
energy-dependent RMS, given in the aforementioned work, and the
energy-dependent time lags, given in de Avellar et al. (2013), which
according to their results are same for each one of the selected
frequency intervals.

3.2 Fitting the model

The model has eight free parameters, namely the size, L, of the
corona, the amplitude of the external heating rate, SH.y, the
feedback parameter, 7, the corona temperature, 7, the Thomson
optical depth, t1, the seed photon source (NS here) temperature,
T, the NS radius, a, and the frequency of the QPO, vj,,. The spectral
parameters 7, T, and T are the steady-state values corresponding
to the time-averaged spectrum. In principle, any fit of our model to
RMS and time lag spectra should fit the time-averaged spectrum at
the same time, so one would get a good constraint on the spectral
parameters. In this work, since the RMS and time lag spectra were
derived by combining observations and since the time averaged
model assumed in Zhang et al. (2017) is different than ours, we do
not fix T¢, t1, and 7 to the values reported in Zhang et al. (2017)
and Ribeiro et al. (2017), but instead treat them as free parameters
and expect to retrieve reasonable values for them. We kept the NS
radius, a, fixed at 10 km in every frequency interval. We note that
any value of the NS radius, in the 8-18 km range, does not change
the results presented here except for the external heating rate, Hovo,
which increases almost by a factor of 8 at a = 18 km.

Equation (AS) is used to describe the total, blackbody, luminosity
of the seed photon source as a superposition of a blackbody with
an inherent temperature 7 ;,, and a feedback-dominated term that
is associated with an assumed fraction of photons that would fail
to escape the medium and impinge back on to the NS increasing
its temperature. For a set of spectral parameters T, T., 71, and
size L, if feedback dominates the luminosity of the soft component,
we can assume the term associated with T ;,, on the right-hand
side of equation (AS) is zero and solve for 1 to find the maximum
feedback, nmax, that is allowed. Clearly, the value of 1. depends
on the parameters (75, T, T, and size L) and therefore if we use n
as a free parameter we would have to dynamically change its upper
value (through a uniform prior distribution) based on the values of
the other free parameters. Instead of using n directly, we define a
feedback fraction, f;, = 1/fmax, Which now takes values between
zero and unity, and use this as a free parameter, so that the model
calculates 7 internally using f, and the rest of the free parameters.
Since we fit our model to the data of the energy-dependent rms
and time lag simultaneously, we define two different likelihood
functions, one for the RMS and one for the time lag. Assuming that
the RMS and time lag are independent measurements, we define
our best fit as the set of parameters that minimize the product of the
two likelihoods.

We use the PYTHON implementation of the affine-invariant ensem-
ble sampler, introduced by Goodman & Weare (2010), as presented
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in Foreman-Mackey et al. (2013), to find the best-fitting parameters
given the data. We used 200 walkers in the 6D parameter space
of Te, Ts, T1, 8Hex, 1, and L, and allowed 1000 iterations, or
walks, for each walker on average. The QPO frequency, vjyy, in
our model was fixed to the mean of every frequency interval of the
data. After performing a 20-30 per cent burn-in on the total number
of iterations, we noticed that in all frequency intervals the posterior
distributions were bi-modal. In order to distinguish between the two
modes we chose a pair of free parameters, which were different at
each frequency interval, for which the two modes in their posterior
were well separated. After a pair was chosen, we applied the
Density Based Spatial Clustering Algorithm of applications with
noise (DBSCAN; Ester et al. 1996). After the clusters were detected
in the 2D density plot of a pair of parameters, we assigned an ID to
each member of each cluster. The IDs that we assigned correspond
to the position in the parameter space of a certain walker at a specific
iteration. By identifying the cluster, in any pair of parameters, and
assigning IDs to their members, one can distinguish between the
modes in the posterior of any parameter simply by isolating the IDs
of a single cluster. We chose DBSCAN as a clustering algorithm
for two reasons: The first, and most important, reason is DBSCANs
ability to deal with noise-like patterns, which contaminate the 2D
density plot of a pair of two parameters, caused by the fact that at
the end of the Markov chain Monte Carlo (MCMC) iterations not
all of the walkers have converged necessarily. The second reason is
that DBSCAN also works well in cases where the clusters are not
of the same size, which also happens in our case. We took as the
best-fitting value of each parameter the median of the corresponding
posterior of each mode. The median was used because the posterior
distributions were not strictly normal. Finally, we note that in the
cases where the data value of the RMS, in a certain energy band, was
taken to be zero (due to a large uncertainty as specified in Ribeiro
et al. 2019), we excluded the particular data point from the fit. To
get an estimate of the quality of our fits, we computed a common
reduced x? by combining the RMS and time lag measurements at
each frequency and for each one of the two modes, denoted by

D (d—e)?
x2. We used the general formula x2 = Z':})(%, where D —

6 is the total number of measurements of RMS and time lag that
were used in the fitting process minus the 6 degrees of freedom of
our model, d; and e; are, respectively, the data and the model esti-
mation. The subscript m denotes which mode of the posterior was
used.

To summarize, at each frequency interval we have two best-fitting
models, one for each one of the two modes of the posteriors. This
bimodality arises from the fact that, although we use the time-
averaged spectrum to generate the RMS and time lag spectra, we
do not directly fit it. As we discuss in the next section, one of the
two modes predicts a low temperature for the seed photon source,
T, while the other one predicts a significantly higher temperature.
Therefore, following Kumar & Misra (2016a,b), we will refer to one
mode as the cold-seed model and to the other one as the hot-seed
model.

4 RESULTS

In Figs 1 and 2, we plot our best-fitting cold- and hot-seed models
together with the data of 4U 1636 — 53 (Ribeiro et al. 2019) at each
frequency interval. As we described in the previous section, we fit
the model assuming that the external heating rate, H.y, is perturbed
with a fractional amplitude |§ Hex|. In Table 1, we summarize the
results of our model fit to every frequency interval and in Fig. 3, we
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plot the best-fitting parameters versus the frequency of the lower
kHz QPO. In each panel of the aforementioned figure, we plot
the best-fitting value of each one of the free parameters of both
our cold- and hot-seed model, alongside the corresponding lo
MCMC uncertainty, at each frequency interval. The asymmetric
uncertainties reflect the non-symmetric, in some cases, posterior
distributions.

The size, L, of the corona is larger in general for the cold-
seed model, with a minimum of about 3.9km at 574Hz and a
maximum of 8.7km at 765 Hz. In the hot-seed case, the size is
systematically smaller, staying below 2 km at almost all frequency
intervals. The amplitude of the external heating rate, 8 H.y, for the
cold-seed model increases with QPO frequency from approximately
8 per cent at 570 Hz, to a maximum of over 10 per cent at 730 Hz
and then decreases again to around 5 per cent at 890 Hz. In the
hot-seed case, although 8§ H., has the same behaviour as in the
hot-seed case, the maximum value of 13 per cent is found at
around 800 Hz. Nevertheless, the relatively large uncertainties of
8H.y, in the cold-seed case compared to those of the hot-seed
case, do not allow us to place a tight constraint on the exact
lower kHz QPO frequency at which § H.y exhibits its maximum
value. The feedback fraction, f;, is significantly different between
the cold- and hot-seed models. More specifically, in the hot-seed
model case f, is almost 100 per cent at all frequency intervals,
whereas in the cold-seed model case it stays more or less stable
around 50 per cent. In both model cases, the high values of f,
indicate that a significant amount of the NS luminosity is due to
feedback.

We also found reasonable values (compared to Zhang et al. 2017)
for the average corona temperature, k7. In Fig. 3, we plot the
predicted kT, for both the cold- and hot-seed model cases, together
with the values from Zhang et al. (2017). The electron temperature,
kT, decreases with QPO frequency in the cold-seed model case, as
reported in Ribeiro et al. (2017), but has a more complex behaviour
in the hot-seed model case. However, as we explain later, we did
not expect a perfect agreement between our fitted k7, values and
the values presented in Zhang et al. (2017), given that our time-
averaged spectral model is necessarily different from theirs, mainly
because we use a simple blackbody as the seed photon source.
Nevertheless, our predicted values of k7, for the cold-seed model
case agree at the lo level with the observed values from Zhang
et al. (2017), contrary to the hot-seed case. The temperature of
the NS, kT, decreases from around 1.8 keV at 570 Hz, to 1 keV at
610 Hz and then remains quite stable in the hot-seed model case,
while in the cold-seed model case kT is around 0.3 keV at all QPO
frequencies.

Finally, we find that in the cold-seed model case the optical depth,
77, slightly decreases from around 10.6 at 610 Hz, to 8.5 at 860 Hz.
These values are consistent with the observed values of Zhang et al.
(2017), but not with the increasing behaviour with QPO frequency
reported in the latter paper and also in Ribeiro et al. (2017). On
the other hand, in the hot-seed model case, the values of tr are
significantly smaller with no clear behaviour. The photon power-
law index, I', for the hot-seed model case is found to be above
5, on average. For the cold-seed case model, I" increases from
around 1.5 at 570 Hz to around 2.2 at 860 Hz and then decreased
to 1.7 at 920 Hz. In Fig. 4, we plot the observed I' values from
Zhang et al. (2017) and Ribeiro et al. (2017) together with the
predicted values of I, given the best-fitting values of kT, 1 and their
MCMC uncertainties. The values of I', alongside their propagated
uncertainties, are given in Table 2.
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Figure 1. Best fit of the cold- and hot-seed model to the lower kHz QPO rms and time lag spectra of 4U 1636 — 53, in the frequency range 574.1-732.1 Hz.
In the left-hand side panels, we plot the measured RMS as a function of energy (the grey circles and the shaded area; taken from Ribeiro et al. 2019) alongside
our best model fits. The red-dashed lines represent the best-fitting hot-seed model, whereas the blue-dotted lines represent the best-fitting cold-seed model. In
the right-hand side panels, we plot the time lag in ps (the grey circles and the shaded area; following de Avellar et al. 2013, we assumed that the time lags are
independent of QPO frequency) alongside the best-fitting models, in the same way as in the left-hand side.

4.1 The leading oscillation

Our solving scheme, described in detail in Section 2 and Ap-
pendix A2, solves for the complex amplitudes 6n, (E), 6T, and 87
self-consistently. Since no mathematical information about which
one of the two oscillations leads in time is put in equation (7), a
priori, the solution will dictate which of én,,, 6T, or 6T will be the
leading signal at the time of escape from the corona. At all QPO
frequencies, we find that the oscillation of the NS temperature, 57,
lags the oscillation of the corona temperature, §7., by ~150 pus
on average, both for the cold- and hot-seed model. In order to

visualize our result, we created a mock model for the temperatures
of the corona and NS, both for the cold- and hot-seed model
cases. We represent both of the temperatures 7. and 7 as simple
sinusoidal signals with amplitudes [67| and |§7|, and phases ¢r,
and ¢r,, respectively, normalized around zero. All the quantities
mentioned above are taken directly from our best-fitting cold- and
hot-seed model at the given frequency interval. Our wave-like mock
models are presented in Fig. 5 for three different QPO frequencies,
alongside the predicted time lags, Afr, between the leading and
lagging oscillations for the same QPO frequencies. We plot the
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Figure 2. Same as Fig. 1 for the lower kHz QPO in the frequency range 765.2-917.8 Hz.

time lag, Aty = tr, — tr,, between the response of the corona and
the NS, in the second panel of Fig. 5. We summarize the retrieved
values of Afy in Table 2, for each QPO frequency.

Based on our model, we can explain both why the oscillating NS
temperature leads in time, and the dependence of the time delay
between the two oscillations, Azy, upon QPO frequency. On the
first question, the high feedback fraction that we find in all our fits
means that a significant fraction of the emitted soft photons, from
the NS surface, is delayed because of the feedback mechanism. If
the temperature of the NS is not oscillating independently, then the
only allowed oscillation of the NS temperature would be the one
caused by the feedback photons, whose number density oscillates
at the QPO frequency. The time that it takes for a photon to impinge
back on to the NS surface is hard to calculate using random walk
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arguments. However, we can assume that it is of the order of #.Nec,
which is the average escape time from the corona. Thus, by the
time the QPO is produced, the NS temperature, through feedback,
responds after ~#.Nesc. If the QPO is produced by an oscillation
of the corona temperature, then 67, would naturally lead in time.
However, even if the corona responds to an already existing QPO
(8n,), through Compton cooling, the extremely short, compared to
f:Nesc ~107 s, electron—electron collision characteristic time-scale
(~1071°s) would make the corona temperature to respond almost
instantaneously to the presence of an oscillating photon number
density inside it.

From the above reasoning, one would expect Afy to be of the
order of 7.Nes. That brings us to the second question, about the
measured time delay Atr. This is well correlated (in the cold-seed
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Table 1. Best-fitting values of the model parameters for the RMS and time lag energy spectra of the lower kHz
QPO in 4U 1636 — 53 as a function of QPO frequency. At each line of the table, the first row corresponds to the
best-fitting cold-seed model and the second one to the best-fitting hot-seed model case.

Viow (Hz) L (km) 16 Hex| f KTe (keV) KTy (keV) 28 x*d.of.
574.1 3,932 0.08 +0.04 0.7+0.2 67+1.7 0.4+045 104723 14.2/6
2404  007+02  096+003 89742 1870, L4ty 11.5/6
6112  47+24  0.140.05 0.5+02 55104 0.3 102 10.6M1 28.2/6
1352 00647007 097+004 7977 1£0.1 L.1£05 16.5/6
6519  53%£22  0.14+£005  05+£008 4915 0370F 104+ 1 9.8/8
L1£03  0.08£0.02 0974002 58+15 103 L.6%03 14.8/8
698.3 6473, 0.12+0.06 05+£0.1  42+14 0370 10+1 22.6/8
L.1£03  0.08£0008 097+£002 74707 1£02 1.2£05 10.2/8
7321 75£26  0.13£0.06 05+£0.1  36%11 03£0.03 101 15.177
1.6+£06 014004  096+003 8777 1.5+0.4 12138 16.7/7
7652 87+28 0.094+004  06+02 2741 0.31004 9.8 +1 27.9/8
1.2+£05  0.1+£0.04 0967008 58+£26 12403 14758 31.4/8
809.1  54+16 0094003  05+009 29£09 031£003 103+£08 3258
13703 0.13+0.03 08+£009 4977 1£02 4943 55/8
838.8 74+2  0.08£0.03 0.6 0.1 2.8%0% 0.310:02 94+1 29.2/8
14+04 014003 0.95+£0.04  6.6%3, 1.3%03 1457, 31.7/8
864.3 541 0064002  07+008 29407 025709  85+07 7017
L1798 0.07£0.02 0.9870:01 6.5134 1+£02 61167, 41/7
8944  52+1.6 0.005+£0003  0.5870 0 27195 03+£003 99+1 53.8/8
12404 0074700 0.94+0.04 55733 1+02 2+ 52.8/8
917.8 5179 0.055£0.03  0.66+0.08 SH3 0 025£007 9209 55.5/8
1L5+£05 00487007 0.9710:52 6.7%15 1.3+02 5915, 78.8/8

model case) to the time 7.N,s., needed for photons, on average, to
escape the medium. We plot A#r and #.N.s. as a function of QPO
frequency in the second and third panels of Fig. 5, respectively. This
agreement between the time difference, Atr, and the factor 7. Negc,
predicted by random walk arguments, was expected and therefore
it serves as a sanity check of our model.

4.2 Thermodynamic properties of the corona

In our model, we can retrieve the average external heating that the
corona requires per unit time, per scattering and per electron, Hey,
in order to maintain equilibrium. This external heating rate can be
calculated from equation (A8) and the dependence upon energy,
through the Kein—Nishina cross-section, simply means that the
cooling is less efficient at higher energies (i.e. less external heating is
required). Based on our best-fitting parameters, we can estimate that
Heyy is, on average, below 2 per cent of the Eddington luminosity
both for the cold- and hot-seed model. In the hot-seed model case,
we find that H. is systematically larger than in the cold-seed
case by almost an order of magnitude. We plot the dependence of
Huo to QPO frequency, for the cold- and hot-seed model case,
in Fig. 6. In the cold-seed case, H,. is on average much smaller
than the observed luminosity of 4U 1636 — 53, which is around
0.1 Eddington, at the state where the kHz QPOs are observed. The
reason that we find low values of Hey is because we only study
the kHz QPOs that have time lags of the order of us, which in turn
means that the corona sizes are expected to be small as we find here.
In other words, we only study the inner part of the corona while the
full corona could be more extended, thus requiring a much higher
heating rate.

On top of the heating rate, H.,0, an oscillation of this heating
rate, 8 Hey, is used to explain the observations. Since 8§ Hey is a
free parameter in our model, we can assume that its complex
phase is zero, since it does not affect the phase (or time) delay
between 67, and 87 or the QPO time lags, given that they are
calculated with respect to a reference energy band. Given the fact
that |8 Hex| plays the role of a normalization for the modulus
of the QPO amplitude, |n, |, it is not surprising that |8 Hexe| is
correlated to the energy-averaged rms (Fig. 7), since the latter may
be thought of us approximately the area under the curve of RMS as
a function of energy. A direct comparison between our best-fitting
cold- and hot-seed model and the energy-averaged RMS and time
lags presented in Ribeiro et al. (2017) and de Avellar et al. (2013),
respectively, is shown in Figs 7 and 8. We calculated the energy-
averaged RMS in the full energy band (nominally 2-60keV). For
the comparison to the time lags of de Avellar et al. (2013), we
computed the time lag of the 12-20keV band with respect to the
4-12keV band using the best-fitting parameters in each frequency
interval.

Finally, the NS temperature oscillation amplitude, |57 |, remained
constant, within uncertainties, at 1 per cent both in the cold-
and hot-seed model case, at all QPO frequencies. However, the
oscillation amplitude of the corona temperature, |§7,|, in the cold-
seed model case increased from ~ 2.6 per cent at 574 Hz to around
7 per cent at 732 Hz, and then decreased again to 2.5 per cent at
918 Hz. In the hot-seed model case, |57 | was almost as low as the
NS temperature oscillation amplitude, |87/, at all frequencies albeit
a small range around 809 Hz were a maximum of 4 per cent was
found. In the bottom panel of Fig. 5, we plot these amplitudes as
a function of QPO frequency. We present the exact values of the
retrieved parameters |87, |, |87, and Hey in Table 2.
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Figure 3. Summary of the MCMC results for the fits to the rms and time lag energy spectra of the lower kHz QPO in 4U 1636 — 53 at all QPO frequency
intervals. We plot the best-fitting parameters of the size, L, amplitude of the external heating rate, |8H'exl|, feedback fraction, f;, corona temperature, k7., NS
temperature, kT, and optical depth, T, in panels (a), (b), (c), (d), (e), and (f), respectively, using the blue squares for the cold-seed mode and the red circles for
the hot-seed model, alongside their lo MCMC uncertainties, as a function of frequency of the lower kHz QPO. In the middle and bottom panels, alongside our
best-fitting values of k7, and t1, we plot the same best-fitting parameters (the grey shaded area) obtained by Zhang et al. (2017), through a slightly different

spectral model, as presented in Ribeiro et al. (2017).

5 DISCUSSION

We fitted the RMS and time lag spectra of the lower kHz QPO
of the NS LMXB 4U 1636 — 53 at different QPO frequencies
with a physical model for the variability. Our model assumes that
soft photons from the NS surface only, are up-scattered inside a
hot and homogeneous corona that is modelled as a spherically
symmetric shell that extends to a certain distance, L, from the NS
surface. In our simplified model, the accretion disc is technically
assumed to lie outside the corona. Furthermore, our corona is not
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associated with the boundary layer, although the latter might in
reality be included in what we call the Comptonizing medium. Our
model takes into account the fact that after an average number
of scatterings, a fraction of the hard photons, n, that have not yet
escaped the corona will return to the NS surface, forming a feedback
loop, and will cause a delayed heating of the NS up to a higher
observed temperature, 7. Our fits yield two statistically acceptable
solutions, one with a cooler (cold-seed) and another with a hotter
(hot-seed) NS surface. Through our fits, we can place a lower limit
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Figure 4. Observed (the black squares; Ribeiro et al. (2017)) values of
the photon power-law index, I', as a function of the frequency of the
lower kHz QPO for 4U 1636 — 53, and the predicted values based on
the hot- (the red-dotted line) and cold-seed (the blue-dashed line) model
cases.

to the size of the corona, L, between 1 and 8 km, in the sense that this
is the required corona size in order to explain the lower kHz QPO
properties based on inverse Compton scattering. Our fits indicate
that the fraction of the NS luminosity that is due to feedback from
the corona, f;, is more than 50 per cent in all model cases. We also
find that the oscillations of the NS temperature lag the oscillations
of the corona temperature by 150 us on average, due to the finite
traveltime of the feedback photons from the corona back to the NS
surface. Thus, the soft lags, as explained by our model, are due to
the finite escape time in the corona of photons illuminating the NS
surface. The oscillating thermodynamic properties of the corona,
namely the external heating rate, H., and corona temperature, 7,
exhibit a maximum variability when the lower kHz QPO frequency
is at 700 Hz, suggesting a resonance between the source of soft
photons (in our case the NS surface) and the corona. To address
the cold- and hot-seed model degeneracy that we encountered, we
note that in the cold-seed case the inferred values of the photon
power-law index, I", tend to be more compatible with the measured
values of Zhang et al. (2017). Furthermore, the inferred time delay
between the corona and NS temperature oscillations are in good
agreement with the photon diffusion time in the corona, deduced
by random walk arguments, only in the cold-seed model case. In
general, the corona appears to be the more active among the two
components, corona and NS, and our results suggest that the corona
is primarily responsible for the radiative properties of the lower kHz
QPOs in LMXBs.

5.1 Insight about the properties of the corona

We find a mean (over the different frequency intervals) electron
density of i, ~ 10 m™3 for both the cold- and hot-seed model
case, and an average electron temperature, k7., of around 4 and
6.8 keV for the cold- and hot-seed case, respectively. The resulting
Debye length, Ap, is ~8 X 10~3 m. The size of the corona that we
find here is significantly larger than this, i.e. Ap < <L, and therefore
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the corona can be treated as nearly charge neutral, which allows us
to assume that the number density of ions, #;, is equal to n.. We
also estimate a Coulomb mean free path of about 7 x 10~2 m for
the electron—ion scattering and so the average electron temperature,
T., can be taken as equal to the average ion temperature, 7;, assum-
ing thermal equilibrium has been achieved through ion—electron
collisions. We must note that since thermalization between ions
and electrons happens at a rate Tn—f times slower than the scattering
rate, the ‘thermal equilibration length’ will be ~123 m, which is
still small compared to the km wide corona. Finally, an estimate
of the outward radiation pressure in the corona, Pyq = 40 T /3c,
based on our estimated electron temperature, yields a value of
~10'® dynes cm~2, which agrees, to an order of magnitude, with the
pressure due to gravity, P, = n.m,gL, assuming a typical surface
gravity of around g = 10'2 — 10'3 m s =2 for the NS in 4U 1636 — 53.
This balance between gravity and radiation pressure emerges
without us forcing any condition for hydrostatic equilibrium and
thus supports the idea that a spherical corona can indeed be naturally
sustained.

5.2 On the corona geometry and seed photon source type

As discussed in Section 2, the current version of our model assumes
that the NS surface is the source of seed photons for Comptonization
and no extra component is added. However, Zhang et al. (2017) fitted
the spectra of NS 4U 1636 — 53, during the occurence of the kHz
QPOs, using the model nthcomp of XSPEC with a disc blackbody
seed source and a simple blackbody on top of that. The timing data
that are used in this work come from Ribeiro et al. (2017, 2019), the
first of which used the best-fitting specral parameters of Zhang et al.
(2017). Thus, any comparison between our best-fitting values of k7,
kT, and 77, or their dependence on QPO frequency, to the results
of Ribeiro et al. (2017) must take into account the different spectral
approaches. In fact, it is physically more accurate for our model to
use a factor of 1/2 instead of 1/3 in equation (3) because the former
is correct when the seed source intensity is a delta-like function at
the centre of the corona, while the latter is correct when the source
intensity is distributed sinusoidally from the centre of the corona, as
was suggested by Sunyaev & Titarchuk (1980). However, since our
variability model is constructed on top of an equilibrium solution,
we need this equilibrium solution to resemble the observed energy
spectrum as much as possible, thus the use of 1/3. In principle,
one should assume that the seed photons could come both from the
surface of the NS and part of the inner accretion disc, assuming the
corona is sufficiently large.

Another crucial factor when modelling thermal Comptonization
semi-analytically, is the corona geometry. The corona geometry is
regulated through the spatial dependence of the scattering optical
depth 7 (or 7). The simplest possible geometry is a spherical shell
and that is what we assume in this work. However, the geometry
of the corona of LMXBs is believed to be more complex and for
that reason it is very common to use Monte Carlo methods to model
thermal Comptonization, since there is freedom in choosing the
desired geometry. In timing analyses, such as the one presented in
Ribeiro et al. (2019), it would be nearly impossible to use Monte
Carlo methods to study the timing properties of the QPOs, so
semi-analytical models such as the one presented in Lee & Miller
(1998), Lee et al. (2001), Kumar & Misra (2014), and this work are
extremely useful.

Finally, in Fig. 9 we plot the feedback parameter, 7, retrieved for
both our cold- and hot-seed model through f;, against the measured
size, L, of the corona alongside their MCMC uncertainties. The
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Table 2. Physical parameters retrieved from our model after the fitting to the lower kHz QPO in 4U 1636 — 53,
at each QPO frequency interval. Each parameter is accompanied by the 1o uncertainty around the best fitting,

median, value.

Viow (Hz) [0T| [8T| Atr (ps) log chtO [Ledd] n r
574.1 0.02610:003 0.011 +0.003 135740 —23+17 0.1+096 15402
0.022 +0.01 0.011+£0.003  1627]; —13402 0.8510% 531
611.2 0.04270:07 0.012 £ 0.009 128712 —28+13 0.1794, 155402
0.004 0.001 0.02
0.0211)41 0.0170006 135 +68 —23409 0.8870% 6.2+2
651.9 0.05810:5) 0.01475:902 133718 3102 0.170:08 1.6£02
0.004 0.005 58 0.07 1
0.020 008 0.01470003 16542 -23+03 0.88%)0: 5571,
698.3 0.058 £0.01 0.0127000 151733 -32799 0.147508  17+02
0.02270:003 0.014 £ 0.002 16672 —2340.1 0.89£0.06 6242
732.1 0.066 003 0.0117+5:90¢ 162733 —32402 017400, 18402
0.007 0.002 22 0.08 6
0.044" 5000 0.0270 0% 15013 —1.7 £0.06 0.87 00 5.615
765.2 0.054 1052 0.00870.903 184718 -32+18 02770%  2.1£03
0.005 0.007 31 0.2 0.07 3.6
0'041—0,008 0.01 6-1—0.002 1221—42 _2'2t0A02 0'891—0‘5 6'31—23
809.1 0.05 +0.02 0.008 = 0.002 1317% —3.19+0.1 021+£0.1 19403
0.04700% 0.018 +0.005 59*12 —1.7 £0.005 0.5510%3 27+14
838.8 0.04610:02, 0.00875:901 17373 34103 0.3+0:03 214403
0.0479003 0.01879:00 126113 —1.9+0.01 0.87109° 5631
864.3 0.03170:003 0.007 9005 155712 37102 0.33102, 22403
0.01710008 0.013 +0.002 178735 -2.3M02% 0.88107 52128
894.4 0.031905° 0.006 100008 135718 —33+12 0.26107 2403
0.02515:009 0.01+0:003 100724 —2.14+0.01 0.83+0:03 4913
917.8 0.025T050L 10,0076 £0.0007 142738 —3.240.06 0.1610:0 17402
0.002 20 0.2 1.5
0.0095 £0.0002  0.0110005 14243 —140.02 05177 2453

same quantities were plotted by Kumar & Misra (2016a) for the
system 4U 1608 — 52 in the right-hand panel of fig. 8 in their paper.
Kumar & Misra (2016a), however, did not fit the energy-dependent
RMS and time lags at different frequencies but matched the data of
de Avellar et al. (2013) for the soft time lag between two energy
bands with the predictions of a cold- and hot-seed model. In other
words, at each lower kHz QPO frequency Kumar & Misra (2016a)
used only one data point for the time lag due to the lack of more
data, hence the large uncertainties in their work. Our detailed fits
result in significantly smaller uncertainities for 7 and L. Thus, a
comparison of our data to Monte Carlo simulations, such as those
presented in Kumar & Misra (2016b), that predicted the feedback,
n, given a specific size, L, and an assumed corona geometry, can
shed more light on what the most realistic geometry of the corona
of NS LMXBs is.

As it is apparent from Figs 1 and 2, show that our model does
not exhibit a break, and a subsequent drop, of the rms amplitude
above a certain energy, Epenx ~ 12keV, as reported in Ribeiro
et al. (2019). Mathematically, in order for the RMS amplitude
to decrease at a certain energy we need to add to our continuum
model an extra component, whose flux would exhibit a sufficient
incerase at around 12keV. If the corona is small and optically
thick, as we find in this work, the hard X-rays that leave the
corona will irradiate the accretion disc; This will increase the disc
temperature and produce a reprocessed component that peaks at
an energy that depends on the composition of the part of the disc
that is irradiated and the irradiating flux itself. Thus, a decrease
of the fractional RMS as a function of energy is to be expected
if we included a reflected component that was less variable in our
model.

MNRAS 492, 1399-1415 (2020)

Furthermore, since the flux that irradiates the part of the disc
that lies outside the corona is already varying, the reprocessed
component will also undergo oscillations. Finally, the inner parts
of the disc will be irradiated faster than the outer parts, due to
the finite light traveltime, which in combination with the already
varying incident flux will create a complex time lag as a function
of energy. The initial version of the model that we present here can
not yet capture all the physical processes that happen around the
NS. Although out of the scope of this paper, the next step is a model
in which a combination of reprocessed emission from the disc and
Comptonization in the corona can be implemented to improve fitting
of the timing properties of kHz QPOs, since reverberation alone can
not provide a satisfactory explanation to the energy dependence of
the time lags as has been shown by Cackett (2016) for the NS LMXB
4U 1608 — 52.

5.3 The size of the corona and the RMS amplitude of the
lower and upper kHz QPOs

In some models that provide an explanation of the dynamical origin
of both the lower and upper kHz QPO, a beat between the NS
spin frequency and some other frequency (Alpar & Shaham 1985),
e.g. the Keplerian frequency at the marginally stable circular orbit
(MSCO), or at the sonic radius of the accretion flow (Miller et al.
1998a; see also Alpar & Shaham 1985). These models propose
that the lower kHz QPO is produced close to the NS surface, and is
linked to mass accretion rate instabilities caused by inhomogeneites
in the accretion disc. On the other hand, for the upper kHz QPO
the flux oscillations could also originate on the NS surface (Miller
et al. 1998a), or they could originate further away and be caused
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Figure 5. Comparison between the oscillating temperature and oscillation amplitude of the corona, T,, and NS, T, in 4U 1636 — 53 as a function of the
frequency of the lower kHz QPO for the cold- (left-hand column) and hot-seed model (right-hand column). In the top panel, the solid lines represent the mock
oscillations of the corona temperature, 7., while the dotted lines represent the mock oscillations of the NS temperature, T, at two arbitrary lower kHz QPO
frequencies, denoted with different colors. In the second panel, we plot the time lag between 7, and T as a function of the QPO frequency. In the third panel,
we plot the average photon escape time, 7. Nesc, as a function of QPO frequency. In the bottom panel, we compare the oscillation amplitudes |67, | and |57|.
‘We must note that the quantities plotted here are not directly observed but retrieved from the model, after fitting the RMS and time lag data.

either by occultations of self-luminous disc inhomogeneites or by
Doppler beaming of the same inhomogeneites when their radial
distance or orbital inclination do not allow occultations (Stella &
Vietri 1998). Gilfanov et al. (2003) proposed that the lower kHz
QPO originates in a boundary layer close to the NS surface, and
it is associated with Comptonization, and de Avellar et al. (2013)
proposed that, regardless of the dynamical mechanism that explains
the kHz QPO frequencies, the radiative mechanism that governs
the timing properties of the lower and upper kHz QPOs should be
different. Recently, Ribeiro et al. (2017) showed that the frequency
dependence of the fractional RMS amplitude of the upper kHz
QPO, although in general different from that of the lower kHz
QPO, exhibits the same behaviour as that of the lower kHz QPO
around certain QPO frequencies. The latter finding indicates that
when the lower and upper kHz QPOs are (separately) observed
within a certain QPO frequency range, their variability could be
caused by the same radiative mechanism.

From the findings of Gilfanov et al. (2003), de Avellar et al.
(2013), and Ribeiro et al. (2017), we assume that the flux that
oscillates at the upper kHz QPO frequency is produced in the
disc, the flux that oscillates at the lower kHz QPO frequency is
produced close to the NS surface. Furthermore, depending on its
size, a spherically symmetric corona can cover both the NS surface
and the inner parts of the accretion disc. In this scenario, the balance
between the NS radius, a, the corona size, L, and the radius of the
MSCO, R, determines whether the fractional rms amplitude of the
upper kHz QPO is affected by Comptonization, and thus whether
it would resemble the behaviour of the fractional rms amplitude of
the lower kHz QPO. Wang et al. (2017) fitted the spectrum of 4U
1636 — 53, with different reflection models, and found an inner disc
radius, R;, = (5.1 — 10.3)R,, in the intermediate state, during which
the lower kHz QPO is typically observed (Zhang et al. 2017) (R, =
GM/c?, with M the mass of the NS and G and ¢ the gravitational
constant and the speed of light, respectively). Assuming a minimum
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Figure 6. The retrieved average external heating rate, Heyo, for 4U
1636 — 53 in units of the Eddington luminosity, as a function of the frequency
of the lower kHz QPO for the cold- (the blue-dashed line) and hot-seed (the
red-dotted line) model cases.
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Figure 7. The energy-averaged fractional RMS amplitude measurements
as a function of the frequency of the lower kHz QPO for 4U 1636 — 53
(Ribeiro et al. 2017; the grey squares and the shaded area), alongside our
cold- and hot-seed model predictions with the blue-dashed and red-dotted
lines, respectively.

NS mass of 1.55Mg, as suggested by Bulik, KluZniak & Zhang
(2000) based on the maximum kHz QPO frequencies observed in
4U 1636 — 53, yields a minimum inner radius of ~12-23 km.
Assuming a minimum NS radius of ~11km for 4U 1636 — 53
(Stiele, Yu & Kong 2016), which is smaller than the radius of the
MSCO, a width of the corona of ~8km at 770Hz (see Fig. 3,
for the cold-seed source case) would imply that the inner parts of
the disc would be covered by the corona at specific frequencies.
Based on these arguments, it is very interesting that a hump in the
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Figure 8. The energy-averaged time lags of the lower kHz QPO in 4U
1636 — 53 versus QPO frequency (de Avellar et al. 2013; the grey squares
and the shaded area), alongside the cold- and hot-seed model predictions
with the blue-dashed and red-dotted lines, respectively.
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Figure 9. The feedback parameter, 7, retrieved from our model from the
fits to the RMS and time lag energy spectra of the lower kHz QPO in 4U
1636 — 53, plotted against the best-fitting value of the size L. The cold-
(the blue squares) and hot-seed model (the red circles) form two separate
regimes.

energy-averaged RMS amplitude of the upper kHz QPO is apparent
at 770 Hz (Ribeiro et al. 2019), while the energy-averaged rms
amplitude of the lower kHz QPO peaks at about the same frequency.
Although the energy-averaged RMS amplitude of the upper kHz
QPO exhibits a different dependence upon QPO frequency to that
of the lower kHz QPO, Ribeiro et al. (2019) showed that around
770 Hz the energy-averaged RMS amplitude of the upper kHz QPO
resembles that of the lower. If the upper kHz QPO originates in the
accretion disc, as its frequency increases and the orbiting material,
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that causes the QPO move inwards there will be a critical frequency
of the upper kHz QPO (e.g. 770 Hz) where if the corona is extended
enough the orbiting material will cross inside the corona and the
upper kHz QPO will be affected by the properties of the corona
and thus its radiative mechanism might be the same as that of the
lower kHz QPO. We note that the crossing of the orbiting material
inside the corona would happen when the lower kHz QPO has
a frequency of around 515 Hz given an estimate of the constant
separation between the lower and upper kHz QPO in 4U 1636 — 53
of about 255 Hz, as reported in Zhang et al. (1997).

A more accurate estimation of the critical upper kHz frequency,
where the orbiting material crosses inside the corona is non-
trivial and would require detailed general relativistic simulations.
In particular, the high NS spin of ~582Hz reported for 4U
1636 — 53 (Strohmayer & Markwardt 2002) does not allow us
to apply corrections to the radius of the MSCO and to the Keplerian
frequency of the accreting matter, which are of first order to the
dimensionless angular momentum j = ¢J/GM? (Hartle & Thorne
1968; Miller et al. 1998a; Miller, Lamb & Cook 1998b), where J
is the orbital angular momentum of the NS. However interesting,
such an analysis falls outside the scope of this work.

5.4 Future prospects with eXTP and NICER

The enhanced X-ray Timing and Polarimetry mission (eXTP; Zhang
et al. 2019), and the Neutron-star Interior Composition ExploreR
(NICER; Gendreau, Arzoumanian & Okajima 2012), are two very
promising missions that can help validate some of the results
presented here. NICER is currently active on the International Space
Station while eXTP is expected to be launched in the mid 2020s.
The improved timing and spectral capabilities of both eXTP and
NICER will allow phase-resolved spectroscopy of LMXBs (see in’t
Zand et al. 2019 for an extensive discussion on the science with
eXTP). The variability and time delay between the time-dependent
temperatures 7. and 7, can be measured and compared to the
predictions of the model presented here (e.g Fig. 5). Furthermore,
measuring NS radii with NICER through pulse profile modelling
(Ozel et al. 2016), combined with knowledge about the size of
the corona, can help us understand whether it is correct to use the
accretion disc as a source of seed photons in the case of a spherical
corona.

6 CONCLUSIONS

We developed a numerical model that predicts the energy depen-
dence of the RMS amplitude and time lags of QPOs in NS LMXBs.
Using observations of the lower kHz QPOs in the NS LMXB 4U
1636 — 53, we propose that the dependence of the variability of this
QPO upon energy and QPO frequency is due to the surrounding
Comptonizing medium (corona) whose temperature exhibits the
same dependence upon QPO frequency. We demonstrated that this
model allows one to fit the timing properties of QPOs and get
constraints on the thermodynamic properties and spatial extent of
the corona. More importantly, our model makes predictions that can
be tested with current and future instruments and thus can shed light
on whether Comptonization is the mechanism responsible for the
radiative properties of the lower kHz QPOs in NS LMXBs.
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APPENDIX A: NUMERICAL SCHEMES

A1 Steady-state solution

In this section, we compute the SSS, n,9 = n, [+ = 0] of equa-
tion (1). After the change of variables n, = Nn. and E = xkT;
equation (1), in steady state, becomes

d’N _dN N 2 2 n ) 1 (Al
dx?2 dx xz2 x  x2 ST 1
where ¢, = #::(A) and n. = % Equation (A1), which

is dimensionless after the change of variables, is solved as a bound-
ary value problem, using a finite difference scheme. The derivatives
in equation (A1) were replaced by second-order accurate central
differences formulas. The discretized equation on an arbitrary mesh
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is

v (Lo LY yi(i 22 2 e
§x2 28x Sx? x_? X x%

N—— e ———
L D(x))
) 1 1 1
N —— )= A2
+ (5x2+25xj> ST (A2
—_——
U Clxj)

wherej=1,2, ..., M — 1, with M the number of mesh points and dx
the mesh size, i.e. step size of the method. (Note that although we use
8 for the step size, it does not represent any kind of perturbation. The
condition applied at the boundaries is naturally N° = N* = 0. The
solution of equation (A1) comes from solving a linear system that is
formed using equation (A2). In particular, if we write equation (A2)
for every consecutive triad of points on the mesh, we can form an
(M — 1) x (M + 1) linear system. In matrix form, this equation
willbe A x N = C. Taking into account the boundary conditions,
the first and last columns of A can be incorporated in C so now
the new coefficient matrix 7 of the system is square (M — 1) x
(M — 1). Matrix T is tri-diagonal with L, D, and U (appearing in
A2) being its sub-diagonal, diagonal, and super-diagonal elements,
respectively. We solved this system using Gaussian elimination with
partial pivoting using the routine dgtzsv from the LAPACK library
(Anderson et al. 1999) as implemented in SCIPY’s package LINALG
(Oliphant 2007).

A2 Solution of the linearized equation

Initially, we derive the formulas that describe the fractional ampli-
tudes of the perturbations 8H.y, 8T., and 8T, and discuss how they
are connected to 8n, . Following the reasoning and formulation of
Kumar & Misra (2014), and using the first law of thermodynamics,
we can write

3 9T, . .
2k = How— < AE >, (A3)
2" ot

where < AE > canbe viewed as the work rate produced per particle
in an ideal gas, here electrons in the medium, H.y, is the heat offered
to the system per unit time per particle, and %k(a T./dt) is the change
in the internal energy per particle per unit time. The term < AE >
for the Comptonization process is identified as the Compton cooling
rate per electron and is given by

Emax
. E
< AE >= /(4kTe — E)—n,ordE, (A4)
mecC
Emin

where E., and E. are the arbitrary limits. The bolometric
luminosity of the NS surface, is 4ra’o T*, where o is the Stefan
Boltzman constant. According to Lee et al. (2001) and Kumar &
Misra (2014), it is valid to assume that a fraction n of the output
Comptonized photons return to the NS, increasing its temperature
and thus its luminosity. Based on this effect, we can model the
luminosity of the NS as a superposition of a luminosity of a
blackbody component with an inherent temperature 7;n, and a
fraction, n, of the output spectrum. In that sense, we can write

n
drna*o T} = dma’o T, + Ve / mgw, (A5)

where V., = (4/3)[(a + L) — 4’] is the volume of the medium.
Hereafter, n will be referred to as the feedback parameter; it is
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obvious from equation (AS5) that there is an upper limit 7,,x for n
that is obtained if we apply 7T, = 0. Assuming that the inherent
NS temperature, T i, does not undergo oscillations then §75 is the
result of the oscillating photon density, §n,,, that affects the observed

temperature, 7, through feedback.

The amplitudes 67., §T; can be obtained by linearizing equa-
tions (A3) and (AS) after substituting the perturbed terms. The
derived formulas for the amplitudes, after the proper change of
variables, are

. . kTw)?
Hlowgd oy + "<TRN KT e0)” </x2N8n dx —4/xN8nydx)

mec

§T. =
3, 4(kTo)*neoxn(x)
7EtwkTeo + — e / Ndx
(A6)
and
(STS — k4nvcnc(chO)2 XNSHV (A7)
16w a?o (kTy)*t. Nesc.(x)

In equation (A6), H., is the, assumed constant, external heating
rate when the corona is at thermal equilibrium. In order to calculate
this term, we must consider the equilibrium solution (;’Te =0), of
equation (A3), which leads to

3
Hexo = M(4/dex - /szdx). (A8)

mec

With equation (A8), we complete the set of equations that are
used to construct the model. Finally, we must note that the integrals
that appear in all of the aforementioned formulas must be computed
numerically and the integration limits are arbitrary in general.

Equation (7), which already is in dimensionless form, was
discretized using second-order accurate central difference formulas,

to become
angt (L L]
4 o Nox
J

x2  26x  dx

D(x;)

pae (a1
Sx2 26x dx /_NSx

U(xj)
ar( 2 1N >+8T1Teo Xj
= e| = = 1 ST N . 5

C(xj)
(A9)

Equation (A9) represents a linear system of equations, where the
left-hand side can be used to construct a tri-diagonal coefficient
matrix with L(x;), D(x;), and U(x;) the sub diagonal, diagonal,
and superdiagonal elements, respectively. For simplicity, we write
equation (A9) as

8nl " L(x;) + 8nd D(x;) 4 8n) "' U(x;) = Ci(x;)8T;
+Co(x))T;,  (A10)
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where C(x;) and C;(x;) can be found by comparing equation (A10)
to (A9). Assuming M mesh points, just as in equation (A2) so
that j = 1, 2, ..., M, the left-hand side of equation (A10) can be
represented by a product of a tri-diagonal array of coefficients, with
L, D, and U being its subdiagonal, diagonal, and superdiagonal
elements, respectively, and a column array of the unknown values
of én,, on the grid.

On the right-hand side of equation (A10), the terms 87 and 67,
are integral functions of dn, (x) thus we can write for 67,

8T, = ko(X)+k1(X)/ Q1(x)dn,dx

—|—k2(x)/ 0>(x)dn,,dx, (A11)

where &y, ka2, k3, Oy, and O, can be found by comparing equa-
tion (A6) to (Al1). For 8T, we can write

5T, = py / Q3(x)dn,dx , (A12)

where p; and Q3 can be found by comparing equation (A7)
to (A12). We can now use the composite 3/4 Simpson rule in
order to replace the integrals in equations (Al1) and (A12) with
analytic expressions. The definite integral of a random function
F whose analytic form is unknown, using second-order Lagrange
polynomials, can be written as

M)2

b
8
/ F(x)dx = ?.X Z [F(Xz_,;g) + 4F(X2j,1) 4+ F(ij)] . (A13)

j=1

In our case, the integrals in equations (A11) and (A12), which we
want to approximate, have the general form /; = f Qi(x)dn, (x)dx
where i is an index that denotes a different function. According to
equation (A13), our integrals /; can be written as a weighted sum of
the values of én, (x;) on the grid as

ox
=" [Qi(xo)Sny(xo) + i), )]

46x
Z Qi(x;)8n, (x;)
modj/Z#U
28x
Z Qi (x)8n, (x)). (A14)

mod Jj/2=0

Using equations (A11), (A12), and (A14) the amplitudes 57, and
8T can be substituted to the right-hand side of equation (A10), as
the sum of the values of 6n, (x;) on the entire grid. The final form
of the coefficient array, corresponding to the solution of the system
of equations formed by equation (A10), will not be tri-diagonal
anymore. The advantage of this mathematical technique is the fact
that no initial assumptions are needed for 7, and 87, and also there
is no need of an iterative scheme that requires the aforementioned
amplitudes to converge in order to obtain a final solution.

This paper has been typeset from a TEX/IATEX file prepared by the author.
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