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Abstract—In this paper, we present a novel surrogate-assisted
evolutionary optimization framework for solving computationally
expensive problems. The proposed framework uses computation-
ally cheap hierarchical surrogate models constructed through on-
line learning to replace the exact computationally expensive ob-
Jjective functions during evolutionary search. At the first level, the
framework employs a data-parallel Gaussian process based global
surrogate model to filter the evolutionary algorithm (EA) popu-
lation of promising individuals. Subsequently, these potential in-
dividuals undergo a memetic search in the form of Lamarckian
learning at the second level. The Lamarckian evolution involves a
trust-region enabled gradient-based search strategy that employs
radial basis function local surrogate models to accelerate conver-
gence. Numerical results are presented on a series of benchmark
test functions and on an aeredynamic shape design problem. The
results obtained suggest that the proposed optimization frame-
work converges to good designs on a limited computational budget.
Furthermore, it is shown that the new algorithm gives significant
savings in computational cost when compared to the traditional
evolutionary algorithm and other surrogate assisted optimization
frameworks.

Index Terms—Aerodynamic shape design, evolutionary opti-
mization, global and local surrogate model, genetic algorithm,
Gaussian process, radial basis function.

1. INTRODUCTION

VOLUTIONARY algorithms (EAs) have been success-

fully applied to many complex engineering design opti-
mization problems in recent years. Their popularity lies in ease
of implementation and their ability to converge close to the
global optimal design. However, EAs typically require thou-
sands of function evaluations to locate a near-optimal solution.
Hence, when EAs are applied to problems involving high fidelity
simulation codes, the high computational cost involved poses a
serious impediment to their successful application. This is pri-
marily because a single exact fitness function evaluation (in-
volving the analysis of a complex engineering system based on
high fidelity simulation codes) often consumes many minutes to
hours, or even days, of CPU time. One promising way to signif-
icantly reduce the computational cost of EAs is to employ com-
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putationally cheap surrogate models in place of computationally
expensive exact fitness evaluations [1]-[5]. By leveraging sur-
rogate models, the computational burden can be greatly reduced
since the efforts involved in building the surrogate model and
optimization using it are much lower than the standard approach
of directly coupling the simulation codes with the optimizer.

In this paper, we present a surrogate-assisted evolutionary
optimization framework which combines both global and local
surrogate models for solving computationally expensive prob-
lems. The present work is motivated by the lack of a suitable
multilayer surrogate-assisted evolutionary optimization frame-
work for solving computationally expensive problems. In other
words, we show how multiple surrogate models can be com-
bined to accelerate EA search. The first level of the proposed
optimization framework involves a strategy that employs a data-
parallel Gaussian process (DPGP) surrogate model to identify
the promising individuals in the EA population. The DPGP ap-
proach was devised to reduce the high computational cost associ-
ated with standard Gaussian process (GP) modeling [6]. Subse-
quently, the promising individuals undergo Lamarckian learning
based on a trust-region enabled gradient-based search strategy
that accelerates local search using computationally cheap radial
basis function (RBF) surrogate models. Lamarckian learning
forces the genotype to reflect the result of improvement by re-
placing the locally improved individual back into the population
to compete for reproductive opportunities.

The remainder of this paper is organized as follows. Section II
presents a brief review of the surrogate assisted EAs described
in the literature. Section III introduces the proposed surrogate-
assisted evolutionary optimization framework for solving
computationally expensive problems. Results obtained from
numerical studies on a series of benchmark test functions are
presented and discussed in Section IV. Section V presents the
application of the proposed surrogate-assisted EA to a real-
world aerodynamic shape design problem. Finally, Section VI
summarizes our main conclusions.

II. RELATED WORK

Various techniques for the construction of surrogate models,
often also referred to as metamodels or approximation mod-
els, have been used in engineering design optimization. Among
these techniques, polynomial regression (PR), artificial neural
network (ANN), radial basis function (RBF), and Gaussian pro-
cess (GP) [also referred to as Kriging, or design and analysis
of computer experiments (DACE)] models are among some of
the most prominent and commonly used techniques. Empirical
studies of a number of these approximation methods have been
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made available recently. Among these methods, the RBF and GP
methods were shown to perform best under multiple modeling
criteria in [7]-[9].

Apart from the techniques used to construct surrogate mod-
els, there has been a growing body of research focusing on
the development of new EA frameworks for solving com-
putationally expensive problems on a limited computational
budget [2], [10]-[12]. Most existing approaches in this area
replace the expensive exact objective function with a global
surrogate model of the fitness landscape constructed from
a limited number of data points that hopefully mimics the
entire search landscape. These data points are usually ob-
tained during one or more generations of a classical evolu-
tionary search. Subsequently, the surrogate model is updated
online, based on the new data points generated as the search
evolves.

Keane and Petruzzelli [11] employed variable-fidelity analy-
sis models in the context of genetic algorithm-based optimiza-
tion of aircraft wings. Ratle [2] examined a simple strategy
for integrating GAs with Kriging models. It uses a heuris-
tic convergence criterion to determine when an approximate
model should be updated. The same problem was revisited by
El-Beltagy et al. [13], where the balance between the concerns
of optimization with design of experiments was addressed. Jin
et al. [14] coupled EAs with neural network-based surrogate
and proposed an empirical criterion to switch between the ex-
pensive and approximate models during the search. In Song
et al. [5], a real-coded GA coupled with Kriging was demon-
strated on firtree structural optimization using a 3o princi-
ple. A strategy for coupling EAs with local search based on
a quadratic response surface model was considered in Liang
etal. [15].

In practice, due to the curse of dimensionality, accurate global
models become increasingly difficult to construct for prob-
lems with large numbers of variables. To circumvent these
limitations, online local surrogate models have been consid-
ered in place of global models in the evolutionary search [1],
[12]. Ong et al. proposed a trust-region approach in the hy-
brid evolutionary search to interleave use of the exact ob-
jective and constraint functions with computationally cheap
local surrogate models during Lamarckian learning [1]. Fur-
ther, the use of gradient information to improve the approx-
imation accuracy of surrogate-assisted EAs was also con-
sidered in [12]. The local learning technique represents an
instance of the transductive inference paradigm, which has
been the focus of recent research in statistical learning theory
[16], [17].

HI. EVOLUTIONARY OPTIMIZATION FRAMEWORK COMBINING
BOTH GLOBAL AND LOCAL SURROGATE MODELS

In Section III, we present the essential ingredients of the
proposed evolutionary optimization framework combining both
global and local surrogate models for solving computationally
expensive problems on a limited computational budget. In par-
ticular, we consider the general bound constrained nonlinear
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programming problem of the form
Minimize: f(x)
Subjectto: x; < x < %, (1)

where f(x) is a scalar-valued objective function, x € R? is the
vector of continuous design variables, and x; and x,, are vectors
of lower and upper bounds, respectively.

In this work, we are interested in cases where the evaluation
of f(x) is computationally expensive, and it is desired to ob-
tain a near-optimal solution on a limited computational budget.
It is worth noting that the present algorithm may be easily ex-
tended to constrained problems by adopting either an augmented
Lagrangian or a penalty function approach. The readers are re-
ferred to the authors’ earlier work in [1] on how this extension
may be achieved.

For the sake of readability, the proposed hierarchical
surrogate-assisted evolutionary optimization framework in-
volves four phases, which are outlined below.

1) Phase 0 {Initialization}: At the first step, a population of
design points is initialized either randomly or using de-
sign of experiments techniques such as Latin hypercube
sampling. These design points are evaluated using the ex-
act objective function. The exact fitness values obtained
are then archived in a central database together with the
design vectors. After some initial period of time (for in-
stance, after three generations of standard EA search), a
data-parallel Gaussian process (DPGP) modeling method
is devised to construct a surrogate model that repre-
sents the global trends of the entire fitness landscape,
using the top ranking ¢ archived design points of the
database as training data.

2) Phase 1 {Global Search Strategy}: The first step in this
phase is to check whether or not the DPGP global sur-
rogate model needs to be updated. If changes in the
top ranking ¢ design points of the database have taken
place, the DPGP model will be updated using the new
top g design points. In this manner, the computational
cost can be reduced since the DPGP global surrogate
model need not be reconstructed at every generation.
Subsequently, the DPGP global surrogate model is used
to preevaluate all individuals of the population. The
predictions produced by using the DPGP model are
used to prescreen subsequent EA populations such that
only the top ranking 7% (0 < n < 100) individuals un-
dergo Lamarckian learning. This eliminates any unneces-
sary local searches from being conducted on individuals
whose actual fitness is anticipated to be poor.

3) Phase?2 {Local Search Strategy}: A Lamarckian evolution
process involving a trust-region framework devised for in-
terleaving exact objective functions with computationally
cheap RBF surrogate models is used during the gradient-
based search. For each nonduplicated % individual, a
local RBF surrogate model is built dynamically using
only the m nearest neighboring data points in the cen-
tral database. Each surrogate model represents the local
fitness landscape in the vicinity of an individual, and is
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BEGIN

Initialize: Generate a database containing a population
of designs.

Construct DPGP global surrogate model using top rank-
ing ¢ design points in the database.

While (computational budget is not exhausted)

If (The top ¢ design points are changed.)

* Update the DPGP global surrogate model using
the top g design points in the central database.

End If

Evaluate all individuals in the population using the

DPGP global surrogate model.

For each non-duplicated top ranking » percent indi-

vidual in the population,

x Apply trust-region enabled gradient-based local
search strategy to the individual which interleaves
the exact fitness function with a RBF local surro-
gate model for the fitness function.

* Update the database with any new design points
generated during the trust-region iterations to-
gether with the corresponding exact function val-
ues.

* Replace the individuals in the EA population with
the locally improved solution in the spirit of
Lamarckian learning.

End For

Apply standard EA operators to create a new popu-

lation.

End While
END

Fig. 1. Outline of the proposed evolutionary optimization framework combin-
ing both global and local surrogate models.

hence termed here a local surrogate model. If an improved
solution is found in the Lamarckian learning process, the
genotype is forced to reflect the result of improvement by
placing the locally improved individual back into the pop-
ulation to compete for reproductive opportunities. Subse-
quently, results of any new exact fitness obtained during
the Lamarckian learning process are added into the cen-
tral database, facilitating possible updating of surrogate
models through online learning.

4) Phase 3 {Standard EA Operations}: The population then
proceeds with the standard EA operators of crossover, mu-
tation, etc. This process of hierarchical surrogate-assisted
EA search is continued until the computational budget is
exhausted or a user-specified termination criterion is met.
The basic steps of the proposed evolutionary optimiza-
tion framework combining both global and local surrogate
models for solving computationally expensive problems
are listed in Fig. 1. We next describe Phases I and 2 in
greater detail.

A. Global Search Strategy

The global search strategy is designed to identify search re-
gions that contain better quality solutions, here represented by

the superior individuals in a EA population. An obvious and
commonly used technique is to use a surrogate model to pre-
evaluate the entire population of individuals based on the ap-
proximated fitness value [3], [18]-[20].

The choice of global surrogate model in the present frame-
work should be one that is capable of modeling any complex
global trends of the exact fitness landscape accurately. A sta-
tistically rigorous approximation is the idea of Bayesian inter-
polation or regression, which is also referred to as Gaussian
process (GP) approximation in the neural networks literature,
and Kriging in the geostatistics literature. It is generally rec-
ognized as a powerful tool for accurately modeling complex
landscapes. Since a GP model possesses the aforementioned
features, it makes good sense to use it as a global surrogate
model. Besides the mean fitness prediction, statistical error
estimates can be readily obtained from the Gaussian process
approximation, which can be potentially exploited during evo-
lutionary search; see, for example, [20]. In the present work,
the probability of improvement (PoI) [21] predicted by the GP
global surrogate model is used as the preselection criterion to
prescreen the population of promising individuals in our global
search strategy. This may help to prevent premature convergence
to a false global optimum, especially on multimodal and high
dimensional problems. Nevertheless, a major disadvantage of
the GP approximation method is that model construction and,
in particular, hyperparameter tuning, can be rather time con-
suming when compared to other commonly used approximation
methods.

We now briefly describe the GP modeling technique used
here for global surrogate model construction. In addition, the
preselection criterion based on the Pol is discussed.

Let D = {x;,t;},i =1,...,n denote the training dataset,
where x; € R? is an input design vector and ¢; € R is the cor-
responding target value. The GP surrogate model assumes the
presence of an unknown true modeling function f(x) and an
additive noise term v to account for anomalies in the observed
data. Thus

t(x) = f(x) +v. 2

The standard analysis requires the specification of prior prob-
abilities on the modeling function and the noise model. From a
stochastic process viewpoint, the collection t = {t1,t2,...,tn}
is called a Gaussian process if every subset of t has a joint Gaus-
sian distribution. More specifically

1

P(t]C, {z.)) = = exp (—%(t _ e e - u)) 3

where C is a covariance matrix parameterized in terms of hy-
perparameters 8, i.e., C;; = k(x;, x;;8) and p is the process
mean. The Gaussian process is characterized by this covariance
structure since it incorporates prior beliefs both about the true
underlying function as well as the noise model. In the present
study, we use the following exponential covariance model:

k(zi, ;) = e~ 7m0 gy @

where © = diag{6;, 6, ...,04} € R¥?isadiagonal matrix of
undetermined hyperparameters, and §,4,1 € R is an additional
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hyperparameter arising from the assumption that noise in the
dataset is Gaussian (and output dependent). We shall hence-
forth use the symbol € to denote the vector of undetermined
hyperparameters; i.e., @ = {61, 02,...,60441}-

In practice, the undetermined hyperparameters are tuned to
the data using the evidence maximization framework. Once the
hyperparameters have been estimated from the data, predictions
can be readily made for a new testing point. To illustrate this,
assume that t,, represents the set of n targets, C,, the corre-
sponding covariance matrix and that the process to be modeled
has zero mean, i.e., p = 0. Given a new point X1, it can be
shown that the prediction ¢,,; has a conditional probability
distribution given by

1 b1 — 1, 2
P(tat1]D,C,xp41) = 7 &P (-.(.ﬁ_ﬂ___ﬁ_l_)_) 5)

262
where
b1 = k1 (¥)C7 e ©)
and
‘71214-1 = K(Xnt1,Xn+1; 9)k77;+1(x)0;1kn+1 )]
where f,.; and o2 +1 are the predicted poste-
rior mean and variance, rtespectively, and k.1 =
{k(Zn+1,21), B(Tnt1,22), . -, k(Tnt1, 7)) € R™. Hence,

tn+1 is the mean prediction at point X, 1, 0n41 is the standard
deviation of ¢,; and provides a measure of the confidence
at point X,1. In other words, the Gaussian process approach
results in a surrogate model which is a Gaussian random field.

From a computational perspective, the search for an optimal
GP regressor under the evidence maximization framework [22]
involves solving the following nonlinear maximum-likelihood
estimation (MLE) problem to determine the most probable hy-
perparameters Gyp for the given data:

Oyp = ming L(6) ®)
where
1 Lre n
L@)=~§bymcn—§mcntN—§m@w ©)

is the negative log likelihood function.

The main computational cost involved in constructing GP sur-
rogate models occurs in the MLE phase. Since computing L(8)
and its gradient generally involves computing and decomposing
a dense n x n covariance matrix (O(n3) operations) at each
iteration, training the GP model can be prohibitively expensive,
even for moderately sized data (e.g., a few thousand data points).
It is worth noting that an approximation method requiring high
computational cost has limited utility in a surrogate-assisted
evolutionary optimization framework.

The computational bottleneck in standard GP modeling can be
alleviated by employing a data-parallel approach, which makes
it possible to deal with datasets containing tens of thousands
of points at modest computational cost [6]. Since a Gaussian
stochastic process is completely specified by its covariance func-
tion, training a GP involves considering a parameterized covari-
ance function and determining its hyperparameters 8 such that
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the log likelihood of the data is maximized. We next outline
a compactly supported covariance function to facilitate data-
parallel GP learning.

To illustrate our approach, let us assume the existence of
p disjoint and spatially localized subsets of the training data,
say Ci,Cy,...,Cp. This partitioning of data can be read-
ily achieved using the greedy load balancing clustering al-
gorithm proposed by Choudhury et al. [6]. Given such a
partitioning, the following covariance model can be employed
to model the data:

k(xi7 Xj5 c(xi)7 C(xj)v 0) = 5c(xi) c(x,-)k(xia Xjs 9) (10)

]

where x;,x; € R? are input vectors, d;; is the Kronecker
delta function, @ is a set of hyperparameters and ¢ : ¢(x) —
1,2,...,pis anassignment function which maps the input point
x to one of p available clusters. Then, the covariance function
in (9) can be immediately written for cluster ¢ as

k(x1,x25¢(+),0) = k(x1,x2;80),
=0,

e(x;) = c¢(x;) =1
(11)

where 8; denotes the set of hyperparameters for the local model
trained on the ith cluster. Consider the case when p = 2; i.e.,
when the data has been partitioned into two disjoint spatially
localized subsets. Then, using (11), the covariance matrix can

be written as
<= k)

otherwise

where K;; € R™*™ contains correlation terms explicitly
from the ¢th cluster which consists of n; points. Since in this
case the determinant of the covariance matrix K can be written
as the product of determinants of the blocks K;; and K5, the
log likelihood can be split into individual log likelihoods for the
two partitions, i.e.,

L(0) = L(6,) + L(05).

From the preceding discussion, it is clear that the use of
a compactly supported covariance function naturally leads to a
data-parallel learning approach to GP approximation, and hence
provides a means to handle large datasets. In general, it is of-
ten the case that the predictive capability may reduce when an
increasing number of clusters are used [6]. However, this degra-
dation in performance is often very small and acceptable given
the significant savings in computational cost.

As previously mentioned, the Gaussian process approach re-
sults in a random field approximation of the analysis code.
Using the output mean prediction #(x) and standard devia-
tion ¢(x) of GP model, a variety of preselection criteria for
the selection of promising individuals may be formulated to
accelerate evolutionary optimization search. An obvious and
common preselection criterion is to use the mean prediction for
exploiting the knowledge of the GP model to find the promising
individuals. However, this may lead to premature convergence
in many cases due to the inevitable limitations on the accuracy
of a global surrogate model constructed using a few data points.
Hence, there is also a need to explore new areas of search space

(13)
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Fig. 2. Characteristics of the Pol criterion when the GP model is trained on
points generated by a one-dimensional function.

for a more thorough global search. To circumvent this problem,
Torczon and Trosset [23] proposed minimizing the merit func-
tion fys = £(x) — ao(x). The first term in the merit function
ensures exploration of regions in the design space that are likely
to have better solutions, whereas the second term favors those
points at which the predictions are likely to have maximum
error. The parameter «, in some sense, balances the tradeoff
between local exploitation and global exploration. An alleged
disadvantage of this approach is that the user has to choose an
appropriate fixed value of « or develop a sensible strategy for
adapting this parameter as the search progresses.

Here, we consider using the probability of improvement in-
stead of the merit function, since previous work in [19] sug-
gests that it performs well. To illustrate the approach used here,
consider the case when it is aimed to solve a minimization
problem. Let {~ denote the smallest value of all the outputs in
the training dataset used to construct the GP surrogate. Sub-
sequently, it is intended to use the surrogate model to predict
a new point x* at which the output is likely to be lower than
t~. The Pol at the point x* (i.e., the probability that the surro-
gate prediction at x* is lower than ™) can be readily computed
from the posterior mean #(x*) and standard deviation o (x*)
as follows:

t~ —-f(x*)) (14)

o(x*)

Pol(x*) = & <

where ®( - ) is the normal cumulative distribution function.
Fig. 2 shows the characteristics of the Pol preselection crite-
rion for a one-dimensional test function. It may be noted from the
figure that the Pol criterion is able to correctly identify the region
in which the true objective function must be sampled to drive
f(z) below ¢~. The points identified by maximizing PoI(x) can
be appended to the baseline training dataset to update the surro-
gate model (and consequently the Pol criterion). Increasing the
number of training points in such a stagewise fashion improves
the ability of the Pol criterion to correctly locate the region in

which the optimum lies. Note here that this statistical criterion
is only used to filter the individuals in an EA population-as dis-
cussed later, a local search strategy is employed to identify the
best solution in the vicinity of an individual. We also mention
here the possibility of employing alternative statistical measures
such as the expected improvement criterion proposed by Jones
etal. [21].

B. Local Search Strategy

The local search strategy is designed to work with a locally
trained system that adjusts to the local properties of the train-
ing data in each area of the input space. The surrogate model
is constructed using only the m neighboring data points in
the database nearest to the design point of interest, because the
neighboring points are likely to have more impact than remote
ones [3].

The surrogate model used by the local search strategy is built
dynamically for every filtered and nonduplicated individual.
Since local surrogate models will probably be built thousands
of times during the overall search, computational efficiency is a
major concern. This consideration motivates the use of RBF lo-
cal surrogate models, which can be efficiently applied to approx-
imate multiple-input multiple-output data, particularly when a
few hundred data points are used for training. The RBF model
also has found to offer reasonable accuracy as well as fast train-
ing. Since computational efficiency is the major concern, the
RBF model is suitable for the local search strategy of the pro-
posed optimization framework.

Let D = {x;,t:;},=1,...,n denote the training dataset,
where x; € R%and t; € R are the input and output, respectively.
Then the local surrogate models are interpolating radial basis
function networks of the form

t(x) = Y aiK([x = xi), (15)

i=1

where K(||x—x]|):R* =R is a RBF and o=
{a1, 29, ...,0n} € R™ denotes the vector of weights.

Typical choices for the kernel include linear splines, cu-
bic splines, multiquadrics, thin plate splines, and Gaussian
functions [24]. We propose the use of linear splines; i.e.,
lx — ¢;l|, to construct surrogate models since our earlier study
[1] suggests that this kernel is capable of providing mod-
els with good generalization capability at a low computa-
tional cost. Further, our local search strategy embeds a feasible
sequential quadratic programming (FSQP) optimizer within
a trust-region framework, which ensures convergence to the
local optimum of the exact computationally expensive objective
function [1], [25]. More specifically, for each nonduplicated
individuals among the top ranking n% in the population, the
local search strategy proceeds with a sequence of trust-region
subproblems of the form

Minimize : f* (x + x¥) (16)

Subject to : ||x|| < QF amn



ZHOU et al.: COMBINING GLOBAL AND LOCAL SURROGATE MODELS

wherek = 0,1,2,..., kmax, f () is the approximation function
corresponding to the objective function f(x). x* and QF are the
starting point and the trust-region radius used for local search at
iteration k, respectively.

For each subproblem (or during each trust-region iteration),
surrogate models of the exact fitness function; viz., f¥(x) are
created dynamically. The m nearest neighbors of the initial
point, x¥, are extracted from the archived database of design
points evaluated thus far using the exact analysis codes. The
criterion used to determine the similarity between design points
is the simple Euclidean distance metric. These points are then
used to construct local surrogate models of the exact objective
function.

The surrogate models thus created are used to facilitate the
necessary fitness function estimations in the local searches. Dur-
ing local search, we initialize the trust-region {2 using the mini-
mum and maximum values of the design points used to construct
the surrogate models. After each iteration, the trust-region ra-
dius Q* is updated based on a measure which indicates the
accuracy of the surrogate model at the kth local optimum x .
After computing the exact values of the fitness function at this
point, the figure of merit p* is calculated as

e FOR) s () s

F (k) = f (xk)

The above equations provide a measure of the actual versus

predicted change in the exact fitness function values at the kth

local optimum. The value of p* is then used to update the trust-
region radius as follows [26]:

QFl = 0.250F  if pF < 0.25
=0k if0.25 < p* <0.75
=£0F ifpP > 075 (19)

where § = 2,if |[xE — xF|| = QF or ¢ = L,if |xE — xF |
< OF.

The trust-region radius QF is reduced if the accuracy of the
surrogate, measured by p* is low. QF is doubled if the surrogate
is found to be accurate and the kth local optimum x¥ lies on the
trust-region bounds. Otherwise, the trust-region radius remains
unchanged.

The exact solutions of the objective functions at the kth local
optimum are combined with the existing neighboring data points
to generate new surrogate models in the subsequent trust-region
iterations. The initial point for iteration k + 1 is defined by

Xk =xEifpf >0
=xk ifpF <o. (20)

The trust-region process for an individual terminates when the
maximum number of trust-region iterations permissible, kmax,
chosen by the user, is reached. Lamarckian learning then pro-
ceeds if the kpy.x local optimum solution obtained is an im-
provement over that of the initial individual.
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IV. PERFORMANCE ANALYSIS

In Section IV, we analyze the performance of the proposed
evolutionary optimization framework. Since a genetic algorithm
(GA) is used here in the empirical studies, we also refer to the
algorithm proposed in the present work as surrogate-assisted
genetic algorithm with global and local search strategy (SAGA-
GLS). We evaluate the performances of the SAGA-GLS al-
gorithm against a traditional GA, and two surrogate-assisted
evolutionary optimization algorithms that were recently intro-
duced in the literature [1], [3]. These are representatives of
surrogate-assisted evolutionary algorithm with global-search
strategy (SAGA-GS) or local-search strategy (SAGA-LS).

At each search generation, the SAGA-GS employs the stan-
dard RBF or GP surrogate model to screen the entire population
of individuals. The predefined top ranking 1% individuals in
the EA population then undergo exact evaluations. In contrast
to [3], the SAGA-GS we employed in our study involves us-
ing the computationally cheap DPGP and estimates the ranking
of the individuals based on their probability of improvements
rather than merely using the mean prediction. On the other hand,
the SAGA-LS we considered corresponds to the earlier work of
the authors [1] that evolves the solution of each individual in the
spirit of Lamarckian learning using local RBF surrogates.

A standard GA is employed with population size of 50, uni-
form crossover, and mutation operators at probabilities 0.6 and
0.001, respectively. A stochastic universal sampling algorithm
is used for selection. However, apart from the standard GA set-
tings, the two user-specified parameters of the SAGA-LS are
1) maximum number of nearest neighboring data points used
to construct the local surrogate model myax, and 2) maximum
trust region iterations kmax. In our numerical studies, we set
Mmax and Kmax to 100 and 3, respectively. In SAGA-GS and
SAGA-GLS, the maximum number of training design points
(i.e., gmax) and clusters for constructing the global surrogate
model using DPGP are configured as 2000 and 4, respectively.
It is worth noting that in the surrogate assisted algorithms, all
design points in the database will be used for constructions of
global or local surrogate models, if the training design points
are lower than the maximum number configured, i.e., gnax Or
Mmax. In addition, all configurations used in this study were
values suggested in earlier studies [1], [6], [27].

The results obtained from our empirical studies on a range
of benchmark test functions, i.e., two unimodal test functions
(Sphere and Rosenbrock test function) and three multimodal
test functions (Ackley, Griewank, and Rastrigin test function)
are presented in Figs. 3~7. All benchmark test functions used
in the study are of 20 dimensions and have a single global
minimum at zero (see Appendix I for greater details of the test
functions). Note that the results presented are averaged over 20
simulation runs conducted with a limited computational budget
of (6 x 10%) exact objective function evaluations.

From the results obtained in Figs. 3-7, it is clear that all
the surrogate-assisted evolutionary optimization algorithms
considered here are capable of searching more efficiently than
the standard GA on the benchmark problems under a limited
computational budget. Further, both SAGA-LS and SAGA-GLS
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appear to converge much faster and yield improved solution
quality as compared to SAGA-GS on all the benchmark prob-
lems. This makes sense since Memetic algorithms, i.e., EAs
that employ local search heavily such as SAGA-LS and SAGA-
GLS, are generally well-known to search more effectively and
efficiently. The superiority of SAGA-LS and SAGA-GLS are
more evident on unimodal benchmark problems.

It is worth noting that SAGA-GLS converges significantly
faster than the SAGA-LS on unimodal problems. For instance,
we observed that SAGA-GLS converges correctly to the global
minimum of the exact objective function in Fig. 3 within the
limited computational budget. This outcome may be easily ex-
plained. Since the Sphere problem is a smooth, symmetric func-
tion and unimodal, it makes perfect sense to use the Lamarckian
learning process in SAGA-GLS or SAGA-LS involving any
gradient-based local search. However, in contrast to SAGA-LS,
only the 7% top ranking individuals among the entire EA popu-
lation in SAGA-GLS undergo the Lamarckian learning process,
thus providing significant computational cost savings.
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Consider next the complex multimodal benchmark prob-
lems. On multimodal functions, the number of local minima
increases exponentially with the problem dimensions; often
they present hills and valleys with misleading local optima.
Any gradient-based optimization algorithm would easily be-
come stuck in a local minima. Hence, performance studies of
surrogate-assisted EAs on multimodal problems reflect the algo-
rithm’s ability to escape from poor local optima and head toward
the global optimum. Figs. 5-7 illustrate the search performances
of GA, SAGA-GS, SAGA-LS, and SAGA-GLS on the Ack-
ley, Griewank, and Rastrigin multimodal benchmark test func-
tions, respectively. From these figures, SAGA-GLS is once again
demonstrated to accelerate the evolutionary search significantly
faster than GA, SAGA-GS, or SAGA-LS on all of the mul-
timodal problems considered. For the Ackley function, we ob-
served that the SAGA-GLS is capable of converging correctly to
the global minimum of the exact objective function even though
there are thousands of local minima in the entire search space
(see Fig. 5). This indicates the robustness of the SAGA-GLS in
preventing premature convergence.

Overall, the results obtained also imply that the SAGA-GLS
is not only capable of identifying the better quality individu-
als in each EA population (via its global search strategy), but
at the same time its intrinsic local search strategy can also ex-
ploit these filtered individuals effectively and efficiently. This
combination of the global and local search strategies in the
SAGA-GLS is the key reason for the improvements in search
quality at a significantly lower computational budget than exist-
ing surrogate-assisted EAs.

V. AERODYNAMIC SHAPE DESIGN OPTIMIZATION

In Section V, we apply the SAGA-GLS to efficient aerody-
namic shape design. In particular, we consider the parametric
design optimization of a 2-D airfoil structure with minimum
drag-over-lift ratio, i.e., D/ L.

The drag D and lift L on an airplane are the components of
the total aerodynamic force parallel and vertical to the direction
of flight, respectively, as shown in Fig. 8(a). The importance
of the D/L ratio in design can be understood, for example, in
two airplane performance considerations [28]. First, the engine
thrust required for level and unaccelerated flight, that is, cruise,
is given by

Teruise = (weight of aircraft) x D/L 2n

Second, an airplane in a power-off gliding flight will descent at
an angle-f;1iding given by

tan ggliding = D/L (22)

In both cases, it is obvious that the smaller the ratio D/L,
the better the performance. In the first case, a small ratio means
less engine power is required for cruising flight, thus saving
fuel. In the second case, low drag over lift entails a safer gliding
flight in the case of engine failure. While the drag and lift forces
on an airplane are determined by various body components,
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Fig. 8. Forces acting on an airplane and airfoil. (a) Airplane. (b) Airfoil.

the contribution of the wings is dominant. This motivates the
development of an approach for designing airfoil geometries by
minimizing the D/L ratio.

In an airfoil shape optimization problem using computational
fluid dynamics, the drag and lift forces can be obtained by
calculating the flow field around the airfoil under prescribed
operating conditions, defined by the Mach number which rep-
resents the incident flow rate, and the angle of attack [see
Fig. 8(a)]. Ignoring friction, the flow is governed by the 2-D
Euler equations

2, 2—2 + %’ —0 23)
with ¢ as the time variable
o ol 4 p it
= pu2 h= PUIUL f2= PU«% @4
pE pur H pusH

where p is the density, u; and uq are the flow velocity com-
ponents in the Cartesian space with coordinates z; and zo,p
is the pressure, E is the total specific energy, and H is the
total specific enthalpy. Moreover, the pressure is given by
p= (v - Dp(E — (1)/(2)u? ~ (1)/(2)u3), where y is the spe-
cific heat [29].

Thus, the drag D and lift L are simply the components oppo-
site the direction of flight ., and the direction perpendicular
to flight 7, respectively, of the resultant force due to pressure
acting along the contour C of the airfoil [see Fig. 8(b)]. They
are given by the following integrals:

D = fp(a)ﬁ(a).ﬂoo do (25)
c

L= fp(a)ﬁ(a).ﬁ,o do. (26)
C
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Fig. 9. Airfoil geometry characterized using 24-parameter Hicks-Henne
functions.

A. Optimization Setup

The optimization problem considered here is to achieve an
airfoil design for an optimized drag-to-lift ratio profile for con-
stant operating conditions of Mach 0.5 and angle of attack
AOA = 2.0°. The geometry of the airfoil is represented us-
ing 24-parameter Hicks—Henne functions [30], as illustrated
in Fig. 9.

For the airfoil problem we consider, a single exact com-
putational fluid dynamics (CFD) analysis takes approximately
20 min to compute on a Pentium III processor. In comparison,
surrogate model construction using linear splines RBF takes less
than a second to compute, while building the DPGP model takes
no more than a minute on a typical workstation. When dealing
with computationally expensive problems that cost many min-
utes of CPU time per function evaluation, this training cost may
be regarded as insignificant.

We conduct the parametric design of the airfoil using all
three evolutionary optimization frameworks, i.e., standard GA,
SAGA-LS, and SAGA-GLS. It is worth noting that the SAGA-
GS algorithm was omitted for the sake of brevity since it has
been shown as inferior to SAGA-LS and SAGA-GLS. Apart
from using a population size of 20 (due to the immense com-
putational cost), all other parameters are kept the same as in
Section I'V.

B. Optimization Results

The design histories of the aerodynamic 2-D airfoil optimiza-
tion problem using standard GA, SAGA-LS, and SAGA-GLS
frameworks are presented in Fig. 10. Using a population of 20
initial design points based on Latin hypercube sampling, these
designs are evaluated using the exact CFD analysis code. All
three EA frameworks proceed with the standard GA operations
using the exact CFD analysis code for the first three genera-
tions. Hence, they share the same search history at the initial
search phase. This initial phase represents the period where the
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Fig. 10. Convergence trends of the GA, SAGA-LS, and SAGA-GLS frame-
work for the aerodynamic shape design problem.

SAGA-LS and SAGA-GLS forms its database of past design
points for constructing surrogate models later during search.

Clearly, the results in Fig. 10 indicate that both SAGA-
GLS and SAGA-LS arrived at better airfoil designs than the
standard GA, while incurring significantly lower computa-
tional costs. Moreover, SAGA-GLS was shown to accelerate
the evolutionary search much faster as compared to both stan-
dard GA and SAGA-LS, producing improved design much
earlier.

V1. CONCLUSION

For computationally expensive optimization problems, the
use of a surrogate model helps to greatly reduce the num-
ber of exact fitness evaluations by exploiting the informa-
tion contained in the search history. In this paper, we present
a novel surrogate-assisted evolutionary optimization frame-
work that combines both global and local surrogate mod-
els. The algorithm makes use of the global surrogate model
and a probability of improvement preselection criterion to
rank the promising individuals in the EA population. A
surrogate-assisted Lamarckian learning approach is then ap-
plied to these promising individuals to accelerate evolutionary
search.

Experimental studies are presented for a number of uni-
modal and multimodal benchmark test functions to study the
effect of changing various user-specified parameters introduced
in this framework. Results are also presented for a real-world
aerodynamic shape design problem. The empirical results were
compared with those obtained using a standard GA and other
surrogate-assisted EAs. The results obtained suggest that the
proposed optimization framework is capable of solving com-
putationally expensive optimization problems more efficiently
than the standard GA, SAGA-GS, and SAGA-LS on a limited
computational budget.
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APPENDIX I
TEST PROBLEMS

A. Sphere Test Function

f@)=>"(22),

-512<x;<5.12, i=1,2,...,n.
=1
(27)
B. Rosenbrock Test Function
n—1 9
f(l‘) == Z (100 X (-Z'i—l-l e .'L'ZZ) + (]. - a:i)z)
=1

—2.048 <7, <2048, i=1,2,....n—1. (28)

C. Ackley Test Function

f(iB) =20+e— 206—0.2 i Z:;l z? 6% Z:zl cos2nx;

—-32.768 < z; £ 32.768, ¢=1,2,...,n. (29)
D. Griewank Test Function
Fl@) =1+ 2/4000 — [ ] cos(=:/V7)
i=1 i=1
—600 <z; <600, :=1,2,...,n. (30)
E. Rastrigin Test Function
n
f(z) =10n + Z (z? — 10 cos(2nz;))
i=1
-512< 2, <512, ¢+=12,...,n. (31)
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