UNIVERSITY OF

Southampton

University of Southampton Research Repository

Copyright © and Moral Rights for this thesis and, where applicable, any accompanying data are
retained by the author and/or other copyright owners. A copy can be downloaded for personal
non-commercial research or study, without prior permission or charge. This thesis and the
accompanying data cannot be reproduced or quoted extensively from without first obtaining
permission in writing from the copyright holder/s. The content of the thesis and accompanying
research data (where applicable) must not be changed in any way or sold commercially in any

format or medium without the formal permission of the copyright holder/s.

When referring to this thesis and any accompanying data, full bibliographic details must be given,

e.g.

Thesis: Author (Year of Submission) "Full thesis title", University of Southampton, name of the

University Faculty or School or Department, PhD Thesis, pagination.

Data: Author (Year) Title. URI [dataset]

UNIVERSITY OF SOUTHAMPTON
FacuLTy OF ENGINEERING, SCIENCE AND MATHEMATICS

SCHOOL OF MATHEMATICS

MultiCrossover Genetic
Algorithms for Combinatorial

Optimisation Problems
by

Lal Soon LEE

Thesis for the degree of
Doctor of Philosophy in Operational Research

April 2006

ABSTRACT
UNIVERSITY OF SOUTHAMPTON
ABSTRACT

FACULTY OF ENGINEERING, SCIENCE AND MATHEMATICS
SCHOOL OF MATHEMATICS

Doctor of Philosophy

MULTICROSSOVER GENETIC -AT'GORITHMS FOR COMBINATORIAL
OPTIMISATION PROBLEMS

e

P ¥
by Lai Soott LEE

The usual strategy within a genetic algorithm (GA) is to generate a pair of offspring
during crossover. We hypothesise that generating multiple offspring during the
crossover can improve the performance of a GA. This thesis reports on the devel-
opment and evaluation of a new strain of GA, called the MultiCrossover Genetic
Algorithms (MXGAs) for solving combinatorial optimisation problems (COPs) to
investigate this hypothesis. The MXGA utilises a multicrossover operator that
uses a simple yet effective standard crossover strategy to generate offspring. The
proposed multicrossover first generates a candidate list of temporary offspring from
a pair of selected parents through repeated applications of the proposed crossover
strategy. Two distinct temporary offspring are generated each time the strategy is
executed. The best and a selected temporary offspring are then chosen to be the
offspring for the current generation. Various techniques are also introduced into
the MXGA to further enhance the solution quality.

In this thesis, MXGAs are applied to three specific variants of COPs: single
machine family scheduling problem, non-oriented two-dimensional rectangular sin-
gle bin size bin packing problem with due dates, and symmetric travelling salesman
problem with due dates. These problems are motivated by the dilemma faced by
the manufacturing organisations which involves the trade-off between the man-
ufacturer’s efficiency and customers’ satisfaction. The common characteristic of
the problems studied is the inclusion of the customers’ due dates. Schemes for
obtaining a lower bound on the maximum lateness for the problems studied are
also introduced. Extensive computational experiments are carried out to assess
the effectiveness of the MXGAs compared to other local search methods such as
tabu search, steepest descent and a standard genetic algorithm.

Contents

Abstract

List of Figures

List of Tables

Declaration of Authorship
Acknowledgements

1 Introduction
1.1 Background
1.2 Motivations, Objectives and Aims .
1.3 Overview of the Thesis

2 Search and Optimisation Techniques
2.1 Introduction
2.2 Complexity Theory
2.3 Exact Approaches

2.3.1 Branch and Bound
2.3.2 Dynamic Programming . . .
2.4 Heuristics and Metaheuristics . . .
2.5 Local Search Methods
2.5.1 Descent Method
2.5.2 Tabu Search
2.5.3 Simulated Annealing
2.5.4 Genetic Algorithms
2.5.5 Other Local Search Methods

ii

vii

xii

xiii

CONTENTS

3 Combinatorial Optimisation Problems Studied

3.1
3.2
3.3

3.4

3.9

Introductiono
Basic Concepts of Bicriteria Objective Function
Machine Scheduling Problems
3.3.1 Typology of Machine Scheduling Problems
3.3.2 Lower Bounds for 1|sf|Lmax - -« - -« v o v oo i i
Cutting and Packing Problems
3.4.1 Typologies of Cutting and Packing Problem
3.4.2 Approaches to 2DRSBSBPPo
3.4.2.1 Heuristic Placement Routines
3.4.2.2 Exact Approaches and Lower Bounds
3.4.2.3 Local Search Methods
3.4.3 Lower Bounds for 2DRSBSBPP
3.4.3.1 Oriented Rectangular
3.4.3.2 Non-Oriented Rectangular
Travelling Salesman Problem
3.5.1 Heuristic Methods for TSP
3.5.1.1 Tour Construction Heuristics
3.5.1.2 Tour Improvement Heuristics
3.5.1.3 Composite Heuristics

3.5.2 Exact and Local Search Approaches for TSP

4 Genetic Algorithms

4.1
4.2
4.3
4.4
4.5
4.6

Introduction
Representation Lo
Initial Populationo oo
Fitness Evaluation oL
Selection Mechanism
Crossover Operator
4.6.1 Binary Representation
4.6.2 Path Representation

4.6.3 Adjacency Representation

il
28
28
29
31
32
37
42
45
49
49
o7
60
64
64
68
71
73
73
75
78
80

CONTENTS iv

4.6.4 Matrix Representation 106

4.7 Mutation Operator 109
4.8 Replacement Strategy L. 113
4.9 MultiCrossover Genetic Algorithms 114
4.9.1 [Initial Population 115

4.9.2 Selection Mechanism L. 116
4.9.3 Multicrossover Operator 116
4.9.4 Swap Operator 118
4.9.5 Mutation Operator 118
4.9.6 Replacement and Filtration Strategies 119

4.10 Summary e 120
5 Single Machine Family Scheduling Problem 123
5.1 Introduction 123
5.2 Approaches to Single Machine Family Scheduling Problem 126
5.2.1 Exact Approaches 126
5.2.2 Heuristics and Local Search Algorithms 129

5.3 Earliest Due Date (EDD) 134
5.4 MultiCrossover Genetic Algorithm 136
5.4.1 Representation 136
5.4.2 MultiCrossover 137
5.4.3 Swap s 139
54.4 Mutationo 140

5.5 Competitors — Performance Measure 141
5.5.1 Dynamic Length Tabu Search 143
5.5.2 Randomised Steepest Descent Method 144

5.6 Computational Experience 144
5.6.1 Experimental Design 145

5.6.2 Standard Steepest Descent Method vs. Randomised Steep-
est Descent Method 147

5.6.3 Standard Tabu Search vs. Dynamic Length Tabu Search . . 148
5.6.4 Initial Investigation of MultiCrossover Genetic Algorithm . . 150

CONTENTS v

5.6.5 A Comparison of different Local Search Algorithms 153

5.7 Conclusions and Remarks 155

6 Non-Oriented Two-Dimensional Rectangular Single Bin Size Bin

Packing Problem 156
6.1 Introduction 156
6.2 Lowest Gap Fillo 158
6.2.1 Implementation 161
6.3 MultiCrossover Genetic Algorithm 166
6.3.1 Search Spaceo 166
6.3.2 Representation 166
6.3.3 Decoding 167
6.3.4 MultiCrossover 170
6.3.5 Swap e 172
6.3.6 Mutation 172
6.3.7 Fitness Evaluation 173
6.4 2DRSBSBPP with Due Dates 175
6.5 Lower Bound for 2DRSBSBPP with Due Dates 178
6.6 Competitors - Performance Measure 179
6.6.1 Unified Tabu Search 179
6.6.2 Randomised Descent Method 185
6.7 Computational Experience 187
6.7.1 Experimental Design00 187

6.7.2 A Comparison of Different Heuristic Placement Routines . . 191
6.7.3 Unified Tabu Search, 196
6.7.4 Initial Investigation of MultiCrossover Genetic Algorithm . . 198
6.7.5 A Comparison of different Local Search Algorithms 202

6.7.6 A Comparison of different Local Search Algorithms (with
duedates) o 205

6.8 Conclusions and Remarks 211

CONTENTS

7 Symmetric Travelling Salesman Problem with Due Dates

7.1 Introduction . . .

7.2 Time Constrained Travelling Salesman Problem

7.3 Travelling Salesman Problem with Due Dates
7.4 Lower Bound for TSPDD

7.5 MultiCrossover Genetic Algorithm

7.5.1 Representation

7.5.2 MultiCrossovero

7.5.3 Swap . ..

7.5.4 Mutation

7.6 Competitors - Performance Measure

7.6.1 Dynamic Length Tabu Search

7.6.2 Randomised Steepest Descent Method

7.7 Computational Experience Lo

7.7.1 Experimental Design

7.7.2 Initial Investigation of MultiCrossover Genetic Algorithm

7.7.3 A Comparison of different Local Search Algorithms

7.8 Conclusions and Remarks

8 Conclusions and Further Research

8.1 Summaries of Research Conducted

8.2 Further Research

References

vl

212
212
214
218
220
222
222
222
226
227
228
228
230
231
231

. 234

237
242
243

243
247

248

List of Figures

2.1 A simple diagram of P and NP (Tovey [265])
2.2 Algorithm of a Descent Method
2.3 Algorithm of a Tabu Search
2.4 Algorithm of a Simulated Annealing
2.5 Algorithm of a Genetic Algorithm

3.1 Structure of an EDD sequence (Hariri and Potts [139])
3.2 Cases in lower bounding scheme (Hariri and Potts [139])
3.3 Basic Problem Types of C&P Problems (Wischer et al. [274])

3.4 Bin and [tem Dimensions
3.5 Placement of a rectangle into a partial layout using BL routine . . .
3.6 Placement of a rectangle into a partial layout using BLi routine

3.7 Placement of a rectangle into a partial layout using BLF routine . .
3.8 Bin and Item Dimensions L.
3.9 Solution found by AD routine L.
3.10 Solution found by TP routine
3.11 Floor Ceiling
3.12 Procedure CUTSQ (Del’Amico et al. [69])
3.13 A 2-Opt move: original tour (left) and resulting tour (right)

3.14 3-Opt moves: original tour (far left) and possible resulting tours
(right) o

3.15 A 4-Opt move: original tour (left) and resulting tour (right)

4.1 Examples of Individualso
4.2 An example of a Stochastic Universal Sampling

4.3 1-Point and 2-Point Crossover

vii

L1sT OF FIGURES viii

4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20

0.1
5.2
5.3
5.4

6.1
6.2
6.3

6.4
6.5
6.6
6.7
6.8
6.9

Uniform Crossover 96
Partially Mapped Crossover 97
Order Crossover i vt 98
IX Crossover v . oo e 98
Sorted Match Crossover 99
Cycle Crossover e 99
Maximal Preservative Crossover 100
Edge Recombination Crossover 101
Linear Order Crossover 101
Order-Based Crossover 102
Position-Based Crossover oL 102
Subtour Exchange Crossover 103
Distance Preserving Crossover 103
Alternating-Position Crossover 104
Complete Subtour Exchange Crossover 104
Alternate Edges Crossover 105
The Framework of a Standard Genetic Algorithm (SGA) vs. Mul-

tiCrossover Genetic Algorithm (MXGA) 115
An example of an individual (chromosome) 137
MultiCrossover 138
SWAD .« v v o e e 139
Job Mutation 140
Examples of pointer and gap L. 161
Packing the rectangles into a bin (LGF routine) 164
Scenarios where gap size < m]m {h;}, binfulland y=H 165
An example of an individual (chromosome) 167
MultiCrossover Lo 171
SWaD . . o o e e 172
Three solutions to the 2DRSBSBPP using the same number of bins 173
Unified Tabu Search Framework (Lodi et al. [198]) 181

Unified Tabu Search: Procedure SEARCH (Lodi et al. [198]) 181

L1sT OF FIGURES ix

6.10 Unified Tabu Search: Procedure DIVERSIFICATION (Lodi ef al. [198])182

6.11 Unified Tabu Search: Procedure SEARCH_1 184
6.12 Randomised Descent Method: Procedure SEARCH 186
6.13 Randomised Descent Method: Procedure SEARCH_1 186
7.1 An example of a 3 cities problem 219
7.2 An example of an individual (chromosome) 222
7.3 MultiCrossover 224
T4 SWap 226

7.5 Displacement Mutation 227

List of Tables

2.1

3.1
3.2

3.3

3.4
3.5
3.6

4.1

5.1
5.2
5.3
5.4

5.5

(@2
(@)}

5.7
5.8

6.1
6.2
6.3

Analogy of Simulated Annealing (Dowsland [75]) 20
Graham et al.’s Typology of Machine Scheduling Problems 36
Dyckhoff’s Typology of Cutting and Packing Problems (Dyckhoff

[82]) 46
Wiischer et al.’s Typology of Cutting and Packing Problems (Wascher
etal [274]) .. 47
Landscape of IPT: Output Maximisation (Wéascher et al. [274]) . . 48
Landscape of IPT: Input Maximisation (Wéscher et al. [274]) 48
Milestones in the solution of TSP instances solved to optimality
(extracted from [72]) Lo 72
Binary Representation of a 6-cities TSP (Larrafiaga et al. [178]) . . 86

Implementation of generic design variables for SGA and MXGA . . 147

Comparison of SSDM with RSDM (20000 iterations per run) 148
Comparison of DLTS with STS (20000 iterations per run) 149
Comparison of Steady-State Replacement with Elitism Replacement

and Filtration Strategies in SGA (15 CPU seconds per run) 150
Comparison Between Crossover Operators (15 CPU seconds per run)151
Results of Swap (15 CPU seconds perrun) 152
Results of Mutation (15 CPU seconds per run) 153
Comparative Computational Results (15 CPU seconds per run) . . 154
Classes for the Problem Instances (Lodi et al. [194]) 188

Implementation of generic design variables for MXGA and SGA . . 190

Implementation of generic design variables for UTSrp, UTS;or and
RDM . . . 190

L1sT OF TABLES xi

6.4 Comparison of BLF Routine with LGF Routine (Execution Time:

less than 0.1 CPU second) 193
6.5 Comparison of LGF with BLF, FC, and TP (Lodi et al [194]) (Ex-

ecution Time: less than 0.1 CPU second) 195
6.6 Comparison of UTSyp (Lodi et al. [194]) with UTS;qr (60 CPU

seconds PEr IUn) 197
6.7 Comparison of LGF with MXGA;.5 199
6.8 Comparison of LGF with MXGAj (with and without swap) 200

6.9 Comparison of LGF with MXGAj (with and without mutation) . . 201
6.10 A Comparison of MXGAp with the SGA, UTSzer and RDM (120
CPU seconds per rum)o 204

6.11 A Comparison of Different Local Search Algorithms (objective func-
tion: minimise the L.x with a secondary objective of minimising
the number of bins used) (120 CPU seconds per run) 208

6.12 A Comparison of Different Local Search Algorithms (objective func-
tion: minimise the number of bins used with a secondary objective
of minimising the L) (120 CPU seconds per run) 209

6.13 Comparative Computational Results (120 CPU seconds per run) . . 210

7.1 Implementation of generic design variables for MXGA and SGA . . 233
7.2 Implementation of generic design variables for DLTS and RSDM . . 233
7.3 Results of MXGA; (with and without Swap) (maximum of 20000

generations per run)o 235

7.4 Results of MXGA, (with and without Mutation) (maximum of 20000
generations per run ®) L 236
7.5 A Comparison of Different Local Search Algorithms © (objective
function: minimise L., with a secondary objective of minimising
the total tour length) oL 240
7.6 A Comparison of Different Local Search Algorithms ¢ (objective
function: minimise the total tour length with a secondary objective

of minimising Lypax) - -+« o o v o o oo 241

DECLARATION OF AUTHORSHIP X1l

DECLARATION OF AUTHORSHIP

I, Lai Soon LEE, declare that the thesis entitled MultiCrossover Genetic Algo-
rithms for Combinatorial Optimisation Problems and the work presented in it are

my own. [confirm that:

this work was done wholly or mainly while in candidature for a research

degree at this University;

where any part of this thesis has previously been submitted for a degree or
any other qualification at this University or any other institution, this has

been clearly stated;

where I have consulted the published work of others, this is always clearly
attributed;

where I have quoted from the work of others, the source is always given.
With the exception of such quotations, this thesis is entirely my own work;

I have acknowledged all main sources of help;

where the thesis is based on work done by myself jointly with others, I have
made clear exactly what was done by others and what I have contributed

myself;

none of this work has been published before submission.

ACKNOWLEDGEMENTS xiil

Acknowledgements

THA/\/’/C you . » » There are many people that I am indebted to for mak-
ing this thesis possible. T start by saying a big thank you, “TERIMA KASIH”,
“Xie XIE”, “MAHALO"”, “GRACIAS”, “MERCI”, and “DANKE” to my supervisor,
Professor Chris Potts and my advisor, Dr Julia Bennell for their guidance, mo-
tivation (mostly in the form of conferences in “ezotic” places), concern, patience
(especially when reading my thesis) and freedom to conduct the research. Special
mention to Julia and Howard for providing a roof over Yvonne and my head for
the crucial months (for the record, we loved the flat!).

[would like to express my gratitude to my employer Universiti Putra Malaysia
(UPM) and Ministry Of Science, Technology and Innovation (MOSTI) for sup-
porting my Ph.D. studies and finance over the past three and a half years.

My special thanks and warm wishes to the clerical staff on level five for the
day-to-day support, assistance and attention throughout my time at the University

of Southampton.

To Jonathan and Christine, thanks for the sound advice with regards to the
thesis and ETEX. My dear “editors”: Honora, Andrew and Christine, what do I
do without you! My officemates: Naomi, Jenni, and Ebert who have made my
time at the office memorable with laughter, concern and jokes. I will cherish these
times very much. To Edgar, Alex and the “Belgian Panda” (Christophe), you all
have made the stay at Southampton very pleasant and memorable! T also would
like to mention my badminton team: Lelio, Bis, Vanessa, Hong, Eric and Stephen
for many enjoyable hours of games that help me control the everyday pressures of
Ph.D. life.

I would like to express my love to my family and loved ones for the support
and motivation they have given to me throughout my time at the University of
Southampton, especially for taking upon themselves many of my duties whilst I
was here. Thanks to all my friends at home, who were always there for a laugh,
and did not forget me despite the distance.

These acknowledgements would not be completed without a big THANKS to

Yvonne. You know how important you are for me. You were always be my side,
and without your love and support, this work would have never been finished.

Chapter 1

Introduction

1.1 Background

Combinatorial Optimisation Problems (COPs) appear in many diverse areas such
as resource allocation, scheduling, cutting and packing, sequencing, and routing.
The objective is that of assigning value to a set of decision variables such that a
function of these variables is optimised (minimised or maximised), perhaps in the

presence of some constraints.

A class of problems of particular interest in COPs is that of the ‘hard’ problems.
It is often easy to find a feasible solution to these type of problems. However, it
is usually quite difficult to find a good solution as the solution space for all the
feasible solutions is very large. This class includes problems famous for their
difficulty such as the Machine Scheduling Problems (MSPs), Cutting and Packing
(C&P) Problems , and the Travelling Salesman Problem (TSP).

COPs occur in many more areas of our lives than we might initially expect. For
instance, scheduling course assignments to be completed based on their deadlines,
placing clothes into a suitcase or shopping for daily groceries in a huge market. In
this research, we focus on the business and industrial applications of the problems.
We study specific problem variants of the three different areas of COPs mentioned

above. Specifically these are: single machine family scheduling problem, non-

CHAPTER 1 9

oriented two-dimensional rectangular single bin size bin packing problem with due

dates, and symmetric travelling salesman problem with due dates.

The study of MSPs dates back to 1950s (e.g. Jackson [156] and Smith [256]).
In general, a MSP is concerned with the allocation of scarce resources to activities
with the objective of optimising one or more performance measures. Resources
may be machines in an assembly plant, runways at an airport, nurses in a hospi-
tal, etc. Activities may be various operations in a manufacturing process, landings
and take-offs at an airport, duties of nurses in a hospital, etc. There are also many
different performance measures to optimise. One objective might be the minimisa-
tion of the maximum lateness, while another objective may be minimisation of the
mean completion time. As in the examples given above, real world applications of
the MSPs arise in the process industry, airline industry, hospital, etc. For some

latest surveys on the real world applications, see the collection of Leung [185].

Although C&P has been studied since the mid-fifties, Gilmore and Gomory’s
articles in the 1960s ([112, 113, 114]) are the first to present techniques which could
be practically applied to medium size real-world problems. C&P is concerned with
finding a good arrangement of multiple small items in one or more larger objects.
The usual objective of the allocation process is aimed at maximising the utilisation
of the larger objects (and therefore minimising the wastage), or maximising the
value of the small items packed. The C&P problems are encountered in many real-
world applications such as wood, glass, metal and textile industries, newspaper
paging and cargo loading. High material utilisation is of particular interest to
industries with mass-production, since small improvements in utilisation can result

in large savings of material and considerable reduction of the production cost.

The general form of the TSP was first stated by Karl Menger in 1930s, but
it is not until 1954 when the first mathematical formulation for the TSP appears
courtesy of Dantzig et al. [63]. A TSP specifies a number of cities and the distance
between any pair of cities. The objective is to find the shortest round trip visiting
each city exactly once. Although transportation applications are the most natu-

ral setting for the TSP, the simplicity of the model has led to many interesting

CHAPTER 1 3

applications in other areas. Example include, computer wiring on circuit boards
(Lenstra and Rinnooy Kan [183]), X-ray crystallography (Bland and Shallcross
[33]), and hole drilling on metal sheets (Reinelt [241]).

From the theoretical point of view, it is possible to calculate the value of all
the feasible solutions and select the best for all these problems. This strategy is
best known as complete enumeration. However, from a practical point of view,
sometimes it is impossible to follow such a strategy especially with large problems.
In many cases, the number of feasible solutions grows exponentially as the problem
size increases. For instance, a symmetric version of the TSP with 25 cities will
contain over 3 x 10?® feasible solutions. As the problem size increases, the number
of feasible solutions will increase exponentially. For a problem with 50 cities, there
exist over 3 x 102 feasible solutions! Clearly for problems over a certain size, it
is impossible to follow a strategy of complete enumeration. It is in this situation

that methods known as heuristics are used.

Heuristics seek good feasible solutions to COPs in circumstances where the
complexity of the problem or the limited time available for its solution do not
allow complete enumeration. A heuristic is a technique which seeks good solutions
at a reasonable computational cost. However, a heuristic is not guaranteed to find
the best solution. In fact, many heuristics give no guarantee on solution quality.
Moreover, heuristics are often domain specific in that they are designed to deal

with the needs of a specific problem.

To deal with these shortcomings, there has been increasing interest in tech-
niques that have a more generic structure. In particular, local search methods
and metaheuristics have become widely used. A local search technique can be
summarized as an iterative search procedure. It starts from an initial feasible
solution from the search space and then improves it by applying a series of local
modifications until a local optimum is found. Metaheuristics provide a way of con-
siderably improving the performance of simple heuristic procedures. The search
strategies proposed by metaheuristic methodologies result in iterative procedures

with the ability to search the solution space effectively.

CHAPTER 1

1.2 Motivations, Objectives and Aims

In the last two decades, we have seen dramatic changes of the conditions under
which manufacturing organisations have to operate and the objectives they have
to meet. Next to efficiency, quality and delivery reliability have become key per-
formance criteria. In particular, the ability to cut manufacturing lead times and to
meet tight due dates determines a company’s competitive position. For instance,
one of the most common scheduling problems in batch production involves the
trade-off between the machine efficiency and meeting customers’ due dates. On
one hand, scheduling large batches means that relatively little time is spent in set
up (e.g. obtaining and returning tools, inspecting material, time for cooling, etc.)
and by doing so, machine efficiency is high. However, long runs on a given batch
of jobs, may mean that due dates for other jobs are missed. On the other hand,
scheduling jobs based on priority of customers’ due dates result in shorter runs
which also mean a large amount of setup time is incurred. As a result, capac-
ity may become inadequate to meet the demand on time. This problem becomes

particularly difficult when the setup time between jobs from a different batch is

significant.

The problems studied in this thesis are mainly motivated by the dilemma faced
by the manufacturing organisations as mentioned above which involves the trade-
off between the manufacturer’s efficiency and customers’ satisfaction. An efficient
way of dealing with the problem needs to be developed to achieve a balance between
these performance measures. With this in mind, we investigate three specific
variant of hard problems mentioned in the previous section where the common
interest between the problems to be solved is the inclusion of the customers’ due
dates. We solve the problems using some well-known local search methods with a
particular focus on Genetic Algorithms (GAs).

One of the main objectives of this research is to develop a general framework

for our proposed MultiCrossover Genetic Algorithms (MXGAs) for solving the

problems. The proposed MXGA utilises a multicrossover operator that uses a

CHAPTER 1 5

simple yet effective standard crossover strategy to generate offspring. Every time
the proposed crossover strategy is executed, two temporary offspring are gener-
ated from the selected parents. The main feature of the multicrossover is that
it first generates a candidate list of valid temporary offspring from a pair of se-
lected parents through repeated applications of the proposed crossover strategy.
Then, the best and a selected temporary offspring (using the probabilistic binary
tournament selection mechanism) are chosen to be the offspring for the current
generation. Various techniques will also be introduced into the proposed MXGA
to further enhance the solution quality when compared with other local search

methods. Detailed descriptions of the framework will be given in Section 4.9.

For the remainder of this section, we describe briefly the problems to be solved

in this thesis. Detailed descriptions of the problems will be given in Chapter 5-7.

The Single Machine Family Scheduling Problem (SMFSP) is a scheduling prob-
lem in which a set of jobs that are partitioned into groups, called families, and
processed by a single machine. Each job has a processing time on the machine and
a due date by which it should ideally be completed. A setup time is required at
the start of the schedule and also when the next job is from a different family. If
a job is not completed on time, a cost is associated for each time period it is late.

The objective is to minimise the maximum cost caused by late jobs.

The classical Two-Dimensional Bin Packing Problem (2DBPP) refers to the
problem of packing a set of small two-dimensional items into one or more larger
objects (i.e. bins). In this study, the small items are constrained to be rectan-
gular and may be rotated by 90°. The bins are also rectangular and have fixed
dimensions. We refer to this problem type as the non-oriented T'wo-Dimensional
Rectangular Single Bin Size Bin Packing Problem (2DRSBSBPP). Each rectangle
is placed into a bin without creating overlapping between the rectangles that have
already been packed in the bin or overflowing the bin. The objective is to minimise

the number of bins used to pack all the rectangles.

CHAPTER 1 6

We consider a logical extension to the problem where each rectangle has a due
date and each bin has a fixed processing time. This extension has practical applica-
tions in the wood and metal industries. In the metal industry for instance, suppose
that the bins used in the problem are the metal sheets with fixed dimensions, and
the rectangles placed in a bin are the rectangular shapes to be cut from a metal
sheet. Each metal sheet requires a fixed processing time on a cutting machine to
cut all the shapes. As each rectangular shape has a due date, metal sheets which
contain shapes with small due dates are ideally cut earlier. On the other hand, by
mixing the shapes with different due dates might increased the packing efficiency
if the shapes with different due dates can be use to fill in the gaps between the
shapes on the metal sheets. However, this approach may result in missing the due
dates of the shape with small due dates. If a shape is not completed on time, a
cost is associated for each time period it is late. The objective is to minimise the

maximum cost caused by the lateness and the number of bins used.

The classical TSP specifies a number of cities and the distance between any pair
of cities. The objective is to find the shortest round trip visiting each city exactly
once. The TSP is symmetric if the distance between two cities is the same in both
directions; otherwise it is asymmetric. We study an extension to the TSP where
each city has a due date by which it should ideally be visited. This extension has
important practical applications in bank or postal deliveries, school bus routing,
etc. If a city is not visited on time, a cost is associated for each time period it is
late. The objective is to minimise the maximum cost caused by the late visit and

the shortest round trip of visiting each city exactly once.

1.3 Overview of the Thesis

The remainder of the thesis is organised as follows. Chapter 2 gives a brief intro-
duction to COPs and the techniques, both exact and heuristic, that can be applied
to solve them. We also describe some of the widely used local search methods in

their basic form in Chapter 2. In Chapter 3, we introduce the MSPs, C&P and

CHAPTER 1 7

TSP in more details. Some basic concepts of bicriteria objective function are in-
troduced. We present a typology of MSP and a lower bounding scheme for a
SMFSP with family setup times. Typologies of C&P are also given in Chapter 3.
We discuss some of the well-known approaches, both exact and heuristic, that can
be used to solve the 2DRSBSBPP. We also present the lower bounds for 2DRS-
BSBPP in both oriented and non-oriented cases. The remainder of Chapter 3
concentrates on reviewing some of the well-known heuristic and exact approaches
used in solving the symmetric and asymmetric version of TSP. Chapter 4 gives
detailed descriptions of the main components in a Standard GA (SGA) and the
proposed MXGA. We address each main component of the SGA by giving brief
summaries for the approaches used in each component. The general framework of

the MXGA is then discussed in detail in the remainder of the chapter.

The next three chapters give accounts of MXGAs applied to the problems
studied. The proposed MXGA for each problem is based on the general frame-
work suggested in Chapter 4. The performance of the MXGAs is experimentally
evaluated on standard and benchmark instances of these problems. Extensive
computational comparisons are also conducted using some of the well-known local
search algorithms such as tabu search (TS), steepest descent method (SDM) and
SGA. For each problem, a substantial amount of effort has also been put into the

developments of the TS and SDM to further improve the solution quality.

Chapter 5 tackles the SMFSP with the objective of minimising the maximum
lateness of the jobs with the presence of the family setup times. We give a general
introduction to the problem and review some approaches used for solving them.
To the best of our knowledge, no research has been carried out on the application
of the genetic algorithm for this specific problem type. Some variations of the

MXGA, TS and SDM are investigated, and all experimental results are presented.

Chapter 6 concentrates on the non-oriented 2DRSBSBPP. We develop a new
heuristic placement routine, called Lowest Gap Fill (LGF), that is effective in
filling the gaps in a partial layout by dynamically selecting the best rectangle

for placement. We compare the LGF placement routine with some well known

CHAPTER 1 8

heuristics reported in the literature. A new variant of the 2DRSBSBPP, called
2DRSBSBPP with due date is introduced, where each rectangle has a due date
and each bin has a fixed processing time. The objective is minimising the maximum
lateness of the rectangles by packing them, without overlapping, and minimising
the number of bins. We also derive a lower bounding scheme for the maximum

lateness of the problem.

In Chapter 7, we study a new variant of the symmetric version of the time-
constrained TSP, called the Symmetric TSP with due dates (STSPDD), where
each city has a due date. The objective is to minimise the maximum lateness and
the total tour length of the cities to be visited. We give a brief introduction to the
time-constrained TSP and review some approaches used for the TSP with time

windows. A lower bounding scheme for the maximum lateness of the STSPDD is

derived.

The thesis concludes with Chapter 8 where the work on MXGAs are sum-

marised and comments are given on some possible extensions for future work.

Chapter 2

Search and Optimisation

Techniques

2.1 Introduction

In this chapter, we present some of the well-known search and optimisation tech-
niques used for solving combinatorial optimisation problems. A combinatorial
optimisation problem can be described as the search for a feasible solution with
the best objective function value from a finite set of feasible solutions that op-
timises (minimises or maximises) a given objective function. The best objective
function value is the smallest objective function value for a minimisation problem

and the largest for a maximisation problem.

Search and optimisation techniques are too wide to cover in one chapter and
are beyond the scope of this thesis. Therefore we only concentrate on some of
the well-known techniques in their basic form from the literature. In Section 2.2,
we introduce the concept of complexity theory. Section 2.3 gives brief overviews
on two well-known exact approaches used for solving combinatorial optimisation
problems: branch and bound and dynamic programming. To end this chapter,
we introduce the ideas of heuristics and metaheuristics in Section 2.4, and present

some of the widely used local search methods in their basic form in Section 2.5.

CHAPTER 2 10

2.2 Complexity Theory

Complexity theory is part of the theory of computation dealing with the resources
required during computation to solve a given problem. The most common re-
sources are time (how many steps it takes to solve a problem) and space (how
much memory it takes). In this section, we concentrate on the time complexity
theory. The definitions, as well as most of the theory presented in this section, are
extracted from Tovey [265] and Whitley and Watson [279]. Detailed descriptions
can be found in Garey and Johnson [108], Papadimitriou [226] and Sipser [254].

The time complexity of a problem is the number of steps that it takes to
solve an instance of the problem as a function of the size of the input length,
using the most efficient algorithm. More formally, we use the Big-O notation:
‘O(p (input length))’, where p is a function of the input length. For example,
consider an instance of size n which can be solved in n? steps using an algorithm.
We say the algorithm requires O(n?) time. Note that this function expresses the
worst-case scenario of the problem at sufficiently large sizes. Suppose an algorithm
solves a problem of size n in at most 2n> + 9n? + 99 steps. For such function, we
are concerned in the rate of growth as n increases exponentially. Therefore, the
difference between 2n% and n® are not important. We can also discard the lower
order terms, as at large sizes it is the highest degree that determines the rate of

growth. Thus, we say this algorithm requires O(n3) time.

The idea of complexity theory is that of classifying problems into two main
classes, namely P and NP. The problem class P is the set of problems that can
be solved by a deterministic Turing machine in polynomial time. A deterministic
Turing machine is a mathematical model of an algorithm. This class corresponds
to the problems which can be effectively solved in the worst case. The problem
class NP is the set of problems that can be solved by a non-deterministic Turing
machine in polynomial time. This class contains problems that people would
like to be able to solve effectively such as the Boolean Satisfiability Problem and

Travelling Salesman Problem (TSP).

CHAPTER 2 11

It is clear that P C NP, and P # NP is a widely believed conjecture although
no proof has been established to date. Further research has gained insight into
the class NP by dividing the class into subclasses. INP-complete class is a
subclass of NP which has a property that all NP problems can be reduced to the
NP-complete problem in polynomial time. In other words, a decision problem
(i.e. problem where the answer is either ‘YES’ or ‘NQO’) is called NP-complete if it
is polynomially equivalent to the satisfiability problem, which is proved by Stephen
Cook in 1971 to be NP-complete. More formally, a problem R is NP-complete
if: (1) R € NP and (2) R is NP-hard. The term NP-hard is used to describe
the corresponding optimisation problem of a NP-complete decision problem. The
significance of the class NP-complete is explained below. If problem A can be
reduced to problem B in polynomial time and a polynomial algorithm for solving
problem B is found, then problem A is also solved in polynomial time. This mean
that if a polynomial time algorithm is found for any NP-complete problem then
all problems in the class NP can be solved in polynomial time, and therefore
P = NP. If, as believed, P £ NP, then it has been shown that there must exists

problems that are neither in P nor NP-complete (see Figure 2.1).

Figure 2.1: A simple diagram of P and NP (Tovey [265])

The NP-hardness of a problem suggests that it is impossible to find an opti-
mal solution without the use of an essentially enumerative algorithm, for which
computation times will increase exponentially with problem size. For this reason,
heuristic methods have been developed to obtain good solutions for large prob-
lems in a reasonable amount of time. There is clearly a tradeoff between the

computational investment in obtaining a solution and the quality of that solution.

CHAPTER 2 12

2.3 Exact Approaches

We introduce the basics of branch and bound and dynamic programming with the

help of Denardo [70] and Dowsland [77].

d

2.3.1 Branch and Bound

The origins of the Branch and Bound (B&B) idea go back to the work of Dantzig
et al. [63] on the TSP in 1954. Four years later, Eastman [85] developed the first
B&B algorithm based on a subtour elimination scheme. However, the term ‘branch
and bound itself was coined by Little et al. [191] in conjunction with their TSP

algorithm in 1963. Many such procedures have since been proposed.

The main idea of a B&B approach is to partition the feasible solutions into
disjoint sets, each belonging to a branch of a tree, and then bound the cost of each
set in order to restrict the search to an optimal solution. The rationale behind the
B&B is to reduce the size of the feasible solutions that need to be considered by
repeatedly partitioning the problem into a set of smaller subproblems. Suppose
we are dealing with a minimisation problem. By calculating a lower bound on the
objective function values in a set, and if it is equal or worse than the best objective
function value found so far, the optimal solution of the problem cannot lie in the
subset and the subset is referred to as fathomed. No further work needs to be done

on a fathomed subset.

The search of subset can be represented as a tree. The set of all feasible
solutions is represented by the first node (i.e. root of the tree). The disjoint subsets
are also represented as nodes, joined by edges to the first node. At each node, a
lower bound is calculated and a decision is made either to partition the node further
forming new nodes or to fathom the node. The sets of solutions represented by
the nodes become smaller at each successive level of the tree. At the final level,
each node represents a single solution. The algorithm terminates when all nodes

are fathomed and the node with the best upper bound gives the optimal solution.

CHAPTER 2 13

The efficiency of a B&B approach relies on the quality of the bounds and the
search strategy used. It is usually worth deriving bounds that are as tight as pos-
sible. In the case of lower bounds, this is often achieved by exploiting as much
information about the problem as possible. The tighter the lower bound at a node,
the greater the chance of the node being fathomed. Sometime, an upper bound
is also used in conjunction with the best objective function value found so far to
prune the tree. In some cases, a problem may become easy to solve if some of the
constraints are removed. This is a process known as relazation and the solution
to the relaxed problem often provides a valid bound to the solution of the original
problem. Two comimon search strategies used in B&DB in solving the combinato-
rial optimisation problem are known as depth-first search and breadth-first search.

Detailed descriptions of the branching schemes can be found in Dowsland [77].

2.3.2 Dynamic Programming

Dynamic Programming (DP) was first introduced by Richard Bellman in 1953.

The essence of DP is Bellman’s Principle of Optimality (28] which states that:

“An optimal policy has the property that whatever the initial state and
the initial decisions are, the remaining decisions must constitute an

optimal policy with regard to the state resulting from the first decision.”

Similar to B&B algorithm, DP is a procedure that solves combinatorial opti-
misation problems by breaking down into subproblems. The method hinges on
the ability to break the problem down into stages, which enable the subproblems
in each stage to be solved by an efficient recursive algorithm from the solutions in

the previous stage.

Any DP implementation has four main ingredients: stages, state, decisions and
policies. At each stage, for each feasible state, a decision is make on how to
achieve the next stage. The decisions are then combined into subpolicies that are

themselves combined into an overall optimal policy. Stages are often referred to

CHAPTER 2 14

the time periods from the start or end of the planning horizon, or in terms of
expanding subsets of variables that may be included at each stage. States are
commonly defined as the amount of produce in stock or yet to be produced, the
size or capacity of an entity such as a stock sheet, container, or the destination
already reached in a TSP. Depending on the level of complexity, DPs have been

classified into four categories: deterministic, stochastic, adaptive and residual.

2.4 Heuristics and Metaheuristics

The basic concept of heuristic was first introduced by Polya [231] in 1945. This
term is derived from the Greek word ‘heuriskein’ meaning to find or discover.

Reeves and Beasley [240] give the following definition:

“A heuristic is a technique which seeks good (i.e. near optimal) solu-
tions at a reasonable computational cost without being able to guarantee
either feasibility or optimality or even in many cases to state how close

to optimality a particular feasible solution 1s.”

Heuristic procedures can be divided into four basic strategies based on the

classification given by Foulds [103]. Many heuristics comprise a combination of

more than one of these strategies:

e construction strategy : begins with a partial solution and successively add
new elements which are likely to be valuable parts for the final solution. This
strategy is useful when it is relatively difficult to generate feasible solutions
to the problem.

e improvement strategy : begins with a sub-optimal solution and progressively
seek improvement via a series of modifications. This strategy is useful when
it is relatively easy to generate starting solutions.

e component analysis strategy : divides the problem into component parts.
Each component part is optimised through a heuristic or even algorithm and

then recompiled in a beneficial way.

CHAPTER 2 15

e [earning strategy : uses a tree-search diagram similar to B&B approach to
chart the progress. The choice of which branch to take is guided by learning

from the outcome of earlier decisions.

The inability of the classical heuristics to continue the search upon becoming
trapped in a local optimum leads to the consideration of techniques for guiding
known heuristics to overcome local optimality. One might investigate the applica-

tion of metaheuristics for solving optimisation problems.

Metaheuristics provide a way of considerably improving the performance of
simple heuristic procedures. The search strategies proposed by metaheuristic result
in iterative procedures with the ability to escape local optimal points. As such local
optima often differ considerably in value from the global optimum, particularly if

there are many. The practical impact of metaheuristics has been immense.

The term metaheuristic was coined by Fred Glover [116] in 1986 and has became
widely applied in the literature. The formal definition of metaheuristics is based
on a variety of definitions from different authors. Following Glover and Laguna

[120]:

“A metaheuristic refers to a master strategy that guides and modifies
other heuristics to produce solutions beyond those that are normally

generated in a quest for local optimality.”
The following definition was given in Osman and Kelly [222] in 1996:

“A metaheuristic is an iterative generation process which guides a sub-
ordinate heuristic by combining intelligently different concepts for ez-
ploring and exploiting the search spaces using learning strategies to
structure information in order to find efficiently near optimal solu-

tions”

CHAPTER 2 16

The evolution of metaheuristics during the past two decades has taken an
explosive upturn. Metaheuristics in their modern forms are based on a variety
of interpretations of what constitutes ‘intelligent’ search. A number of adaptive
processes originating from different settings such as psychology (learning), biology
(evolution), physics (annealing), and neurology (nerve impulses) have served as a
staring point.

To summarise, the following definition by Vo8 et al. [271] seems to be most

appropriate:

“A metaheuristic is an iterative master process that guides and modifies
the operations of subordinate heuristics to efficiently produce high qual-
ity solutions. It may manipulate a complete (or incomplete) single so-
lution or a collection of solutions at each iteration. The subordinate
heuristics may be high (or low) level procedures, a simple local search,
or just a construction method. The family of metaheuristics includes,
but is not limited to, adaptive memory procedures, tabu search, ant sys-
tems, greedy randomised adaptive search, variable neighborhood search,
evolutionary methods, genetic algorithms, scatter search, neural net-

works, simulated annealing, and their hybrids.”

2.5 Local Search Methods

A Local Search (LS) method can be summarized as an iterative search procedure.
It starts from an initial feasible solution from the search space and then improves
it by applying a series of local modifications until a local optimum is found. In
other words, during the search a set of neighbouring solutions, N (%), in the search
space is defined for each feasible solution %, and the next solution j is searched
among the solutions in N (7). A neighbouring solution is generated using some
suitable mechanism with some acceptance rule to decide on whether to replace the

current solution.

CHAPTER 2 17

The acceptance rule used in a LS method is usually dependent on a comparison
of objective function values between the current solution and its neighbouring
solution. If the former is larger (for a minimisation problem), then we consider
the neighbour solution as an tmproving move. But if the latter is larger, then it is

a deteriorating move. In the case where both are the same, it is a neutral move.

Depending on the strategy of choosing solutions from the neighbourhood of
the current solution and the way in which the stopping criteria are defined, we
get different LS methods. For an excellent general survey on LS methods, see the
collections of Reeves [238], Aarts and Lenstra [1] and Burke and Kendall [41]. In

the remainder of this section, we summarise the basics of some of the well-known

LS methods.

2.5.1 Descent Method

In a Descent Method (DM), only improving moves are allowed. A potential move
is rejected if it is found to be deteriorating or neutral. The procedure stops when
no more improving moves can be made. As a result of this limitation, the method
terminates at a local optimum and is quite often a fairly mediocre solution. Figure

2.2 shows the structure of a DM.

Figure 2.2: Algorithm of a Descent Method
S1: Choose an initial solution ¢ in S.
S2: Find a j in N(4) such that f(j) < f(k) for any k& € N(7).
S3: If f(7) > f(i) then stop. Else set ¢ = j and go to S2.

The version of a DM called steepest descent method scans the entire neighbour-
hood of 7 in search of a neighbour solution j that gives the best f(j) value over
Jj € N(1). Due to its greedy nature, steepest descent is sometimes impractical
because it is computationally too expensive, when N(i) contains many elements

or each element is too costly to retrieve or evaluate.

CHAPTER 2 18

To allow further exploration after the finding of a local optimum, one can adopt
an acceptance rule which allows non-improving moves. Consequently, the proce-
dure can escape from a local optimum and continue its search. Some examples of
procedures that allow deteriorating and neutral moves during search are Simulated

Annealing (SA) and Tabu Search (TS).

2.5.2 Tabu Search

Tabu Search (TS) is a method that was originally proposed by Fred Glover [116]
in 1986. The word tabu (or taboo) comes from Tongan, a language of Polynesia,
where it was used by the aborigines of Tonga island to indicate things that cannot

be touched because they are sacred.

The basic principle of the T'S is to pursue LS whenever it encounters a local op-
timum by allowing non-improving moves. The action of cycling back to previously
visited solutions is countered by the use of a short term memory function, called
tabu list which records the recent history of the search. Looking at the procedure,
one can say that basically TS is an extension of a classical LS. Glover did not
see TS as a proper heuristic, but rather as a metaheuristic, a general strategy for

guiding and controlling ‘inner’ heuristics specifically tailored to solve the problems

at hand.

The basic idea of the method is to explore the search space of all feasible
solutions by a sequence of moves. A move involves jumping from one solution
to another better solution that is available. However, based on the memory of
the search history, certain moves may be forbidden or tabu. This might mean not
permitting the search to return to a recently visited point in the search space or not
allowing a recent move to be reversed. At each iteration, a best admissible move
will be selected. A move is called admissible if it is not tabu or if an aspiration
criterion is fulfilled. These are described in detail in Glover [117, 118] and Glover

and Laguna [120].

CHAPTER 2 19

General speaking, a tabu list is a short term memory function in which a fixed
and fairly limited quantity of information is recorded. The tabu list implicitly
keeps track of moves. These attributes will be forbidden from being embodied
in moves selected to be used in at least one subsequent iteration because their
inclusion might lead back to a previously visited solution. The goal is to permit

‘good’ moves in each iteration without revisiting solutions already encountered.

Tabu lists are sometimes too powerful where they may prohibit attractive
moves, even when there is no danger of cycling. This may stall the entire search-
ing process. The opportunity for breaking the tabu conditions is defined by the
aspiration criterion. The aspiration criterion can be considered a device that al-
lows one to revoke a tabu by allowing a move, even if it is tabu, if the action will
result in a solution with an objective value better than that of the current best
known solution. Two general aspiration criteria are influence and quality. A move
is thought to be influential if it substantially changes the structure of the current
solution, thus moving in to new areas of the solution space. A solution attribute
is defined as of sufficient quality to break the tabu conditions if it implies a shift

towards the global optimum. The algorithm of a TS is shown in Figure 2.3.

Figure 2.3: Algorithm of a Tabu Search
Generate initial solution
Loop

Identify neighbourhood set

Identify tabu set

Identify aspiration set

Choose the best move

Exit (when goal is satisfied or the stopping criterion is reached)
End Loop

Various extensions for the TS have been derived over the years such as the
diversification and intensification techniques. At initialization, the goal is make a
coarse examination of the solution space, or better known as ‘diversification’. This
procedure forces the search into previously unexplored areas of the search space
using a long term memory such as frequency memory. But as candidate locations

are identified, the search becomes more focused to produce local optimal solutions

CHAPTER 2 20

through the process of “intensification’ using a intermediate term memory such as
the recency memory. Detailed descriptions on various extensions for the TS can

be found in Glover [117, 118].

2.5.3 Simulated Annealing

The term Simulated Annealing (SA) is derived from the analogous physical pro-
cess of heating and then slowly cooling a substance to obtain a strong crystalline
structure. SA is based on an idea that was first published by Metropolis et al. [209]
in 1953. But interest in SA began 30 years later with the work of Kirkpatrick et
al. [168] in 1983 and Cerny [45] in 1985 for solving combinatorial optimisation
problems. They showed that the Metropolis algorithm could be applied to opti-
misation problems by mapping the elements of the physical cooling process onto

the elements of a combinatorial optimisation problem as shown in Table 2.1.

Table 2.1: Analogy of Simulated Annealing (Dowsland [75])

‘ Thermodynamic Simulation | Combinatorial Optimisation
System states Feasible solutions
Energy Cost
Change of state Neighbouring solution
Temperature Control parameter
Frozen state Heuristic solution

The SA process lowers the temperature in slow stages until the system ‘freezes’
and no further changes occur. At each temperature, the simulation must proceed
long enough for the system to reach a steady state or equilibrium. This is known
as thermalization. The slower the cooling schedule, the more likely the algorithm
is to find an optimal or near-optimal solution but with a longer run time. Thus
effective use of this technique depends on finding a cooling schedule that produces

good enough solutions without taking excessive time for the problem.

The idea was that an initial state of a thermodynamic system was chosen at
energy £ and temperature T, holding T constant. Then the initial 7" configuration

is perturbed and the change in energy AF, is computed. If the change in energy is

CHAPTER 2 21

negative, the new configuration is accepted. If the change in energy is positive, it
is accepted with a probability given by the Boltzmann factor e~ . This process
is repeated for sufficient times to give a good sampling statistic for the current
temperature. The temperature is then slowly decremented by some cooling func-
tion C, and the entire process repeated until a frozen state is achieved at 7" = 0.
Improving and neutral moves are always accepted, while deteriorating moves are
accepted according to a given probabilistic acceptance function. Good overviews
of SA and its applications can be found in Dowsland [75] and the SA chapters in
textbooks edited by Reeves [238], Aarts and Lenstra [1] and Burke and Kendall
[41]. An algorithm stating SA is given in Figure 2.4.

Figure 2.4: Algorithm of a Simulated Annealing

Initialise 7 to i and T to T
Loop - Cooling
Loop - Local Search
Derive a neighbour, j of ¢
NE := E(j) — E(%)

If AE<O

Then ¢ :=j

Else derive random number r € [0, 1]
If r <e F
Then i :=j
End If

End If

End Loop - Local Search
Exit (when goal is satisfied or the stopping criterion is reached)
T=0C(T)

End Loop - Cooling

2.5.4 Genetic Algorithms

This subsection gives a brief overview of Genetic Algorithms (GAs) and does not
cover the whole variety of GAs. Detailed descriptions of GAs can be found in the
textbooks by Goldberg [121] and Davis [66] and will be discussed in Chapter 4.

A comprehensive overview of GAs can also be found in Liepins and Hilliard [188],

CHAPTER 2 22

Beasley et al. [26, 27], Whitley [277], Tomassini [264], Mitchell [212] and Dowsland

1

[76]. Moreover, an annotated bibliography is given in Alander [4].

GAs were first conceived by John Holland in the 1960s and developed by Hol-
land and his students and colleagues at the University of Michigan in 1970s. This
led to Holland’s book “Adaptation in Natural and Artificial Systems” [147] pub-
lished in 1975. GA is a part of evolutionary computing. The idea of evolutionary
computing was first introduced in the 1960s by Ingo Rechenberg in his work ‘ Fvo-
lution Strategy’. GAs are inspired by Darwin’s theory of evolution, based on the
genetic processes of biological organisms. Over many generations, natural popu-
lations evolve according to the principles of natural selection and ‘survival of the
fittest’, as stated by Charles Darwin in “The Origin of Species”. By mimicking
this process, a GA is able to ‘evolve’ solutions to real world problems, if they have

been suitably encoded.

A GA mimics some of the processes of natural evolution and selection. In
nature, each species must adapt successfully to an ever changing environment in
order to maximise the likelihood of its survival. The knowledge gained by each
species is encoded in its chromosomes which will undergo transformation when
reproduction occurs. Over a period of time, changes to the chromosomes give rise
to species that are more likely to survive, and so have a greater chance of passing
their improved characteristics on to future generations. Of course, not all changes

will be beneficial but those which are not tend to die out.

Holland’s GA attempts to simulate nature’s genetic algorithm in the following
manner. The first step is to represent a feasible solution to a problem with a string
of genes that can take on some value from a specified finite range or alphabet.
This string of genes is known as a chromosome (individual). Then, an initial
population of individuals, each representing a feasible solution to the given problem
is constructed at random. Each individual is assigned a fitness value according to
how good a solution to the problem it is. For each generation, the fitness of each
individual in the population is measured (a high fitness value would indicate a

better solution compared to a low fitness value). The fitter the individuals, the

CHAPTER 2 23

more likely they are to be selected from the population using a selection mechanism
to produce offspring for the next generation via a reproduction stage (crossover
and mutation). These offspring will inherit good characteristics of both parents.
After many generations of selection for the fitter individuals, the result is hopefully
a population that is substantially fitter than the original. Figure 2.5 shows the

structure of a GA.

Figure 2.5: Algorithm of a Genetic Algorithm
S1: [Start] Generate an initial population Ppp, of n chromosomes.
S2: [Fitness] Evaluate the fitness g(z) of each chromosome z in the population.
S3: [New Population] Create a new population by repeating the following
steps until the new population is complete.
i. [Selection] Select 2 parent chromosomes from a population according
to their fitness (the fitter, the better chance of being selected).
ii. [Crossover] With a crossover probability p., cross over the parents to
form 2 new offspring (children). If no crossover was
performed, the offspring is an exact copy of parents.
ili. [Mutation] With a mutation probability p.,, mutate new offspring at
each locus (position in chromosome).
iv. [Replace] Place new offspring in the new population.
S4: [Fitness] Evaluate the fitness g(z’) of each chromosome «’ in the new
population.
S5: [Test] If the end condition is satisfied, STOP, and return the fittest solution

found; otherwise, go to S3.

2.5.5 Other Local Search Methods

Scatter Search
The Scatter Search (SS) was first introduced in 1977 by Fred Glover [115] as

a heuristic for integer programming. SS is a population based algorithm that
stores solutions in a set, called the reference set and constructs new solutions by
combining existing ones.

Initially, a set of diverse solutions P is constructed. The reference set RefSet,
is constructed by extracting adequate solutions from P with quality and diversity

in mind. With quality, the initial solutions are usually generated from a heuristic

CHAPTER 2 24

procedure. With diversity, the solutions may be generated from different heuristics
to explore different regions of the solution space. Then, a number of subsets
of solutions is generated systematically. The solutions of these subsets will be
combined to generate new solutions that may replace others in RefSet. In other
words, new solutions are improved with a local search method before considering
their inclusion in RefSet. If a new solution has been added to RefSet, new subsets

are generated and the process is repeated, otherwise, the algorithm is terminated.

More formally, the basic SS algorithm comprises of the following five interacting
methods which lead to the well-known template published in 1998 by Glover [119]:

Diversification Generation Method.
Improvement Method.

Reference Set Update Method.
Subset Generation Method.
Solution Combination Method.

=W

Ut

This template has served as the main reference for most of the SS implementations
to date. An excellent introduction to the principles of SS is given in Mart{ et
al. [204]. The book by Laguna and Marti [174] covers standard implementations

of both basic and advanced SS designs.

Greedy Randomised Adaptive Search Procedures — GRASP

GRASP is a multistart or iterative procedure where each GRASP iteration con-
sists of two phases: a construction phase and a local search phase. It was first
proposed by Feo and Resende [93] in 1989. The construction phase is essentially a
randomised greedy algorithm where a feasible solution is iteratively constructed,
one element at a time. The construction phase is therefore capable of producing a
diverse set of starting solutions for the local search. The local search phase in the
basic GRASP is a simple descent algorithm that finds local optima. The under-
lying principle is to investigate many good starting solutions through the greedy
procedure and thereby increase the possibility of finding a good local optimum on

at least one starting solution.

CHAPTER 2 25

The basic GRASP construction phase is similar to the semi-greedy heuristic
introduced by Hart and Shogan [140]. At each construction iteration, a candidate
list is formed, which lists all of the candidate elements which can be added to the
current partial solution in order of their myopic benefit with respect to a greedy
function. One element is chosen randomly from the candidate list to be added to
the partial solution. The heuristic is adaptive because the benefits associated with
every element are updated at each iteration of the construction phase to reflect
the changes due to the selection of the previous element. Comprehensive reviews
on the extensions and applications of GRASP can be found in Feo and Resende
94] and Resende [243]

IE

Ant Colony Optimisation
The Ant Colony Optimisation (ACO) algorithm was first introduced by Marco

Dorigo [73] in his thesis in 1992. It was inspired by the behavior of ants in finding
paths from the nest to food. We refer to Dorigo et al. [74] for an overview of the

recent work on ACO.

In the real world, ants will first wander around randomly. The ants communi-
cate information about a path using pheromone trails. Ants deposit the pheromone
on the ground while walking from food source to the nest and vice versa. If other
ants find such a path, they are unlikely to keep wandering around at random,
but will instead follow the trail marked by the strong pheromone concentration;
returning and reinforcing the trail with its own pheromone if they eventually find
food. The pheromone trail allows the ants to find their way back to the food source

(or to the nest).

However, the pheromone trail evaporates over time, thus reducing its ‘attrac-
tive’ strength. The longer it takes for an ant to travel down the path and return
again, the more time the pheromones evaporate. On the other hand, a shorter
path gets marched over faster. Thus, the pheromone density remains high as it is

laid on the path as fast as it evaporates.

CHAPTER 2 2%

As a result, when one ant finds a good (i.e. short) path from the nest to a food
source, other ants are more than likely to follow that path, and positive feedback
eventually causes all the ants to follow a single path. The idea of the basic ACO
is to mimic this behavior with ‘artificial ants’ walking around the graph which

represents the problem to be solved.

Variable Neighborhood Search
Variable Neighborhood Search (VNS) was first proposed by Mladenovi¢ and Hansen

[213] in 1997. They examine the idea of systematically changing the neighbour-
hoods within a local search algorithm. VNS explores increasingly distant neigh-
bourhoods of the current solution, and moves from there to a new one as long
as improvements are found. This algorithm is simple yet effective and can be

implemented easily using any local search method as the inner heuristic.

Initially, a set of neighbourhood structures Ng, k& =1, ..., knax, is selected ran-
domly. Then, starting from the first neighbourhood (k := 1), an initial solution
(current solution) is randomly generated and a local optimum is obtained by ap-
plying some local search method (e.g. descent method). The initial solution is
generated at random in order to avoid cycling. The current solution is updated if
a better solution is obtained and the search continues at k := 1; otherwise, proceed

to k:=k+ 1. The process is repeated until a stopping criterion is reached.

Various extensions have been derived over the years. A series of comprehensive
reviews on the principles and applications of the VNS can be found in Hansen and

Mladenovié¢ [134, 135, 136, 137, 138].

Iterated Local Search

Iterated Local Search (ILS) is a simple but effective procedure to explore multiple
local optima, which can be implemented in any type of local search algorithm. A
detailed description of the ILS and its applications can be found in Lourengo et

al. [199].

CHAPTER 2 97

Under the basic form of ILS, the next starting solution is obtained from the
current local optimum by applying a pre-specified type of random move to it. We
refer to such a move as a perturbation. Starting from an initial current solution,
a local search algorithm is applied to find a new current solution which is a local
optimum. Having decided on a current solution, a perturbation is applied. If the
solution leading from the perturbation fails the acceptance test, it will be rejected.
In this case, another perturbation is executed, and the process is repeated until
the perturbation is accepted. Then, when a local optimum is found, the entire

procedure is repeated until a stopping criterion is reached.

Chapter 3

Combinatorial Optimisation

Problems Studied

3.1 Introduction

In this chapter, we study the three combinatorial optimisation problems mentioned
in Chapter 1 in more detail. In Section 3.2, we introduce the basic concepts of
bicriteria objective function. In Section 3.3, we give a general introduction to
the machine scheduling problem and discuss a typology to the problem. We also
present a lower bounding scheme for a single machine family scheduling problem
with setup times in Section 3.3.2 which subsequently becomes the lower bound we

employ for the computational experiments in Chapter 5, Section 5.6.

Section 3.4 begins with a general overview of the cutting and packing prob-
lem, and follows with the typologies of the problem. We discuss some of the
well-known approaches (placement routines, exact and local search methods) that
can be used to solve the two-dimensional rectangular single bin size bin packing
problem. Lower bounds for the two-dimensional rectangular single bin size bin
packing problem in both oriented and non-oriented cases are discussed in Section
3.4.3. The lower bounds for the non-oriented cases are used in the computational

experiments in Section 6.7. Section 3.5 concentrates on reviewing some of the

28

CHAPTER 3 29

well-known approaches, both heuristic and exact, that can be used to solve the

symmetric and asymmetric versions of travelling salesman problems.

3.2 Basic Concepts of Bicriteria Objective Func-
tion

In this section, we introduce the basic concepts of bicriteria objective function
for solving combinatorial optimisation problems. These concepts provide some
guidelines on solving the bicriteria problems in Chapter 6 and 7. These concepts,

as well as most of the definitions presented are extracted from Hoogeveen [149].

Suppose that for a given combinatorial optimisation problem, there are two
performance criteria, say f and g, that need to be considered. Without loss of
generality, assume that these criteria are to be minimised. Unless we are ex-
tremely lucky, there will be no solution that achieves the minimum value for both
performance criteria simultaneously. Depending on the relationship between the
performance criteria, two distinct approaches can be distinguished: hierarchical

optimisation and stmultaneous optimisation.

Hierarchical Optimisation

Hierarchical Optimisation is used when one of the performance criterion is far more
important than the other one. Suppose that criterion f is more important than
criterion g. In the first stage, the optimum value, say f*, with respect to criterion
f is obtained. In the second stage, the second criterion g is optimised subject to
the additional constraint that f < f*. This approach also can be referred to as a

lezicographical optimisation approach.

Simultaneous Optimisation

Simultaneous Optimisation is used when no criterion is dominant. Thus, the per-
formance of the second criterion can be greatly improved while losing only a little

performance on the first criterion. Evans [86] and Fry et al. [107] distinguish three

CHAPTER 3 30

different approaches in simultaneous optimisation: priort optimisation, interactive
optimisation, and posteriors optimisation.

In priori optimisation, both criteria are aggregated into one composite objective
function F(f,g) for some given function F, after which an optimum solution is
determined for this one problem as a whole. F' can be a linear function such
as oof + g, where « is a given constant that indicates the relative importance of
criterion f with respect to criterion g, but it may just as well be a quadratic or

even more complex function.

An interactive optimisation is used when active involvement of a decision maker
is required during the solution process. Given one or more already obtained,
relevant solutions, the decision maker must indicate which one is preferable, and

if not satisfied yet, in which direction the search should continue.

A posteriori optimisation is employed when it is computationally inaccessible
in optimising the function F'(f, g) in a direct manner, especially when the function
F' is nonlinear. This problem can be solved in two ways. We first select from the
set of solutions a subset that contains an optimum solution. If the function F'is
known, then we compute the optimum solution in this set. If F"is not known, then

we present this set to the decision maker and let him/her choose the solution.

By applying simultaneous optimisation on a function F'(f, g), where both f and
g are to be minimised, there exists a Pareto optimal solution by which the optimum
is attained. Usually, the number of Pareto optimal points is finite. However, the
number of Pareto optimal points can become infinite subject to the constraints
and assumptions of the problem to be solved. A trade-off curve is defined as the
curve that contains all Pareto optimal points. Moreover, an efficient frontier can
be defined as a piecewise-linear convex function, where each endpoint corresponds
to the solution of one of the lexicographical optimisation problems, where each
breakpoint is Pareto optimal, and each Pareto optimal point is located either on
or above this function (cite in Hoogeveen [149]). Note that the trade-off curve and

the efficient frontier are equal only if the trade-off curve is convex.

CHAPTER 3 31

3.3 Machine Scheduling Problems

Machine Scheduling Problems (MSPs) exist in many diverse areas, such as flexible
manufacturing systems, production planning, airline industry, hospital, etc. For
some latest surveys on the real world applications of the machine scheduling prob-
lems, see the collection of Leung [185]. The main focus is on the efficient allocation
of one or more resources to activities over time. Due to the complexity studies
conducted during the last three decades, it is now widely understood that most
machine scheduling problems are NP-hard (see Lenstra et al. [184] for more de-
tails). Some excellent and comprehensive reviews of the MSPs can be found in
Conway et al. [58], Baker [20], Lawler et al. [181], Anderson et al. [8], Chrétienne
et al. [51] and Pinedo [229]. The recent textbook by Leung [185] provides ex-

cellent coverage of the most recent and advanced topics on scheduling problems.

Moreover, an annotated bibliography is given in Hoogeveen et al. [150].
MSPs can be briefly described as follows (as in Anderson et al. [8]):

“There are m machines, which are used to process n jobs. A schedule specifies, for
each machine i (1 =1,2,...,m) and each job 7 (j =1,2,...,n), one or more time
intervals throughout which processing is performed on j by 7.”

A schedule is feasible if there is:

e 1o overlapping of time intervals corresponding to the same job (so that a job

cannot be processed by more than one machine at one time),

e no overlapping of time intervals corresponding to the same machine (so that

a machine cannot process more than one job at one time), and

e satisfies various requirements relating to the specific problem type (machine
environment, job characteristics, and optimality criterion) which will be dis-

cussed in detail in Section 3.3.1.

In the study of the MSPs, we focus specifically on Single Machine Family
Scheduling Problem (SMFSP) where jobs are partitioned into families and set

up is required between these families. The objective is to find a schedule which

CHAPTER 3 32

minimises the maximum lateness of the jobs in the presence of the sequence inde-

pendent family setup times. Details of the research are given in Chapter 5.

A single machine scheduling problem is one where there are n jobs to be sched-
uled on a single machine. The assumption is that all jobs and the machine are
available at time zero and preemption of jobs are generally not allowed. Each of
the jobs j (j = 1,...,n), is characterised by its processing time p;, and associated
due date d;. Other parameters of job j that occur in some problems include a
release date 7, a deadline d;, and a weight w;. An early survey of this problem is
given by Gupta and Kyparisis [133].

Much of the early work on scheduling was concerned with the analysis of single
machine scheduling systems. These include Jackson’s derivation of the Earliest
Due Date (EDD) rule in 1955 where jobs are sequenced in non-decreasing order of
their due dates (see Jackson [156]), and Smith’s derivation of the Shortest Weighted
Processing Time (SWPT) rule in 1956 where jobs are sequenced in non-decreasing
order of their processing time to weight ratios (see Smith [256]). These orderings

are used as priority rules for scheduling more complex systems.

The study of the single machine scheduling problem is still very important for
several reasons, but most relevant is that a good understanding of this problem
provides a support to model the behaviour of a complex system. It is important to
understand the working of the system components, and quite often the single ma-
chine problem appears as an elementary component in a large scheduling problem

(cite in Baker [20]).

3.3.1 Typology of Machine Scheduling Problems

A typology is a systematic classification of objects into homogenous categories
based on a given set of criteria. It helps to unify definitions and notations. In
this subsection, we will discuss in detail the specific problem type for the MSPs.
Most of the definitions presented in this subsection are extracted from Anderson

et al. [8].

CHAPTER 3 33

Machine Environment

Different configurations of machines create different production systems for the
problem. However, in each case, all machines become available to process jobs at
time zero. These production systems can be classified as follows:

e single stage: one operation for each job involving either a single machine or

m machines operating in parallel;

e multi stage: jobs require operations on different machines involving either

flow shop, job shop or open shop scheduling.

In the case of parallel machine scheduling, each machine has the same function
and each job j has to spend a given time on any of the m machines. This system
can be decomposed further as follows:

e identical parallel machines: processing time of an operation is independent

of the machine assignment;

e uniform parallel machines: machines operate at different speeds but are

otherwise identical; and

e unrelated parallel machines: processing time of an operation depends on the

machine assignment.

A comprehensive review of parallel machine scheduling can be found in Cheng and
Sin [49].

In multi-stage machine scheduling, there are m machines, each having a different
function. Each job j consists of several operations, each of which has to be exe-
cuted on a designated machine, and no job can undergo more than one operation
at a time. The details of the multi stage system are as follows:

e flow shop: a job is processed once on each machine in the routingof 1,2, ..., m.

All jobs follow the same routing of machines.

e open shop: each job is also processed once on each machine, but the machine

routing can differ between jobs and forms part of the decision process.

e job shop: each job has a prescribed routing through the machines, and the

routing may differ between jobs.

CHAPTER 3 34

Vaessens et al. [268], Jones and Rabelo [162], and Jain and Meeran [157] provide
surveys on the job shop scheduling problems while surveys on flow shop scheduling
problems are given by Dudek et al. [79] and Cheng et al. [48]. A detailed survey
on complexity results for open shop scheduling problems is given by Kubiak et

al. [173].

Job Characteristics

In the case of single machine and identical parallel machines, we denote the pro-
cessing time for job j as p;. For uniform parallel machines, the processing time
on machine ¢ may be expressed as p;/u,, where u; is the speed of machine 7. We
denote p;; as the processing time on machine 4 for the case of unrelated parallel
machine, flow shop and open shop scheduling problem. In a job shop, p;; denotes
the processing time of the ith operation of job 7. Job availability may be restricted
by imposing a release date r;, which is the time when job j is available for pro-
cessing, or a deadline d;, which specifies the time by which it should ideally be

completed.

Suppose that jobs within a schedule can be partitioned into F' families according
to the similarity of their production requirements. As a result of this similarity,
no set up on a machine is required when following another job from the same
family. However, a family setup time on machine 7 is required when a job of
family g is immediately preceded by a job of a different family f. We denote the
family setup time as s;pg, OT Sy, if there is no preceding job. If for each g, we
can write s;5, = S;0y = Siy for all f # g, then the setup times on machine 7 are
sequence independent; otherwise, they are sequence dependent. If for each machine
i, Sifg = Ssq for all families f and g including the case f = 0, then the setup
times are machine independent; otherwise, they are machine dependent. Hence,

by definition, the setup times for a single machine are machine independent.

CHAPTER 3 35

The job characteristics also include the possibility of allowing preemption and
of specifying precedence constraints. If preemption is allowed, then an operation
may be interrupted and resumed at a later time; otherwise, an operation, once
started, must be processed until completion without interruption. A precedence

constraint stipulates that a certain job cannot start before another one has been

completed.

Optimality Criteria
The optimality criterion is usually a function of the job completion times Cy, Cy, ..., C,.
Common criteria are mazimum completion time Cmax=max C;, and total comple-
tion time) C;. For a given schedule, if a due date d; is]specified for each job 7,
we can corrjlpute for job 7 its:

e lateness, L; = C; — d;,

o tardiness, T; = mJaX{O, C;—d;},

o carliness, £; = mjax{O, dj — C;}, and

e unit tardiness, U; = 1 if C; > d;, U; = 0 otherwise.

Important criteria involving job due dates are the mazirmum lateness Lyax=max L,
J
total tardiness Z Tj, total earliness Z , and number of late jobs Z U;. If each

job j has a posmve weight wj, then We can also have weighted Versmns of these

criteria.

Throughout the study, we will adopt the representation scheme of Graham et
al. [128] for the machine scheduling problem. This is a three-field representation
«|fB]y which indicates the specific problem type:

«: machine environment,
[: job characteristics,
v: optimality criterion which involves the minimisation.

These characteristics are summarised in Table 3.1.

CHAPTER 3

36

Table 3.1: Graham et al.’s Typology of Machine Scheduling Problems

Characteristic | Symbol Description
] =0 a single machine
oy =P identical parallel machines
o =@ uniform parallel machines
Machine ar =R unrelated parallel machines
Environment | oy = F a flow shop
Q@ o =0 an open shop
o =J a job shop
Qg =0 the number of machines is arbitrary
Gy =m there are a fixed number of machines m
G =o0 no release dates are specified
Br=r; jobs have release dates
Po=o0 no deadlines are specified
Ba = d.j jobs have deadlines
Job B3 =o there are no setup times
Characteristics | G3 = 5,74 | there are general family setup times
Ié) B3 = 54q there are machine independent family setup times
B3 = sif there are sequence independent family setup times
B3 =55 there are machine and sequence independent family setup times
By =0 no precedence constraints are specified
B4 = prec | jobs have precedence constraints
B4 = pmin | preemption of jobs is allowed
Optimality Crnax maximum completion time
Criterion Linax maximum lateness
v > (w;)C; | total (weighted) completion time
i
> (w;)T; | total (weighted) tardiness
7
(involves the | > (w;)U; | total (weighted) number of late jobs
7
minimisation of)| > (w;)E; | total (weighted) earliness
J

Let o denote the empty symbol. The first field takes the form o = ajaq, where

oy and ay are interpreted as in Table 3.1. Note that for a single machine problem,

o) = o and ay = 1, whereas «; # o and ag # 1 for other types of problems. An

example of the representation scheme is 1| |} w;C;, which denotes the minimi-

sation of total weighted completion time in a single machine scheduling problem.

Another example is problem Pm|7;| Lyax, which denotes the minimisation of max-

imum lateness on a fixed number m of identical parallel machines with jobs release

dates.

CHAPTER 3 37

3.3.2 Lower Bounds for 1|sf|Lmax

In this subsection, we present a lower bounding scheme for a SMFSP with family
setup times. The objective of the problem is to find a schedule which minimises the
maximum lateness L. of the jobs in the presence of the sequence independent
family setup times s;. The lower bounds are used to measure the performance of
the heuristic solution found when the exact solution to the problem is unknown.
The lower bounds are obtained from the bounds proposed by Hariri and Potts
[139]. The complete explanation and derivation of the lower bounds can be found
in Hariri and Potts [139] where the lower bounds were used in their branch and
bound algorithm.

We first relax all setup times except the first job of each family and solve
the resulting problem by Jackson’s EDD rule. We use the subscript pair (f,7) to
identify the ith job from family f. Let S be an arbitrary subset of jobs, and let

o ds; = due date of job (f,1),

e ps; = processing time of job (f,1),

e C(S) = lower bound on the completion time of the job sequenced last

amongst jobs of S,

e S = subset of S which jobs may be sequenced last amongst job of S in a

feasible schedule.

Thus, a valid lower bound on the maximum lateness is

LB(S) = O(S) - max {dy.}. (3.1)

In a feasible schedule, there is a setup time, s; before the first job in each
family, f (f = 1,..., F'). Before applying the EDD rule to the feasible schedule,
we can relax the setup time by resetting the processing time of the job in each
family f using ps1 = ps1 + sy. Suppose that job (h, k) has maximum lateness, we

have the lower bound

LBy =T — du (3.2)

CHAPTER 3 38

where T is the completion time of job (h, k) in the EDD sequence. The lower
bounding scheme is terminated with LBy as the lower bound if all jobs before
(h, k) in the EDD sequence are from family h. If there is a job in the EDD
sequence that is scheduled before (h, k) and which does not belong to family A,

the search for improving the lower bound continues.

Let (g,J) be the last job in the family ¢ that appears before job (h, k) in the
EDD sequence, and 7" denote the completion time of job (g,) in this sequence.
Also, let R’ denote the set of jobs in the EDD sequence up to and including job
(g,7) and let denote R the set of jobs in the EDD sequence up to and including
job (h, k). Figure 3.1 shows the structure of the EDD sequence, and the sets I’

and R.
Figure 3.1: Structure of an EDD sequence (Hariri and Potts [139])
. Jobs of ., | Jobs of
(f)l) familyg (c).]) familyh (h)k)
0 T’ T
Set R' >
< Set R >

In the subsequent analysis, we discard all jobs except those of the set R. The
various cases of analysis are depicted in Figure 3.2. The bounds at the various

nodes of interest are derived below.

CHAPTER 3 39

Figure 3.2: Cases in lower bounding scheme (Hariri and Potts [139])

his h not
split split

0

()

gnot & i%
split split

g not
split

gnot & i%
split split

|

gis g not gis g not gls gnot
last last last last last last
ink’ inR' inR' inR’ in R inR

Node Ay: jobs of family A do not form a single batch.

Due to the additional family setup time for family A, we get completion time,

C(R) =T + sp. From equation (3.2), we obtain

LBy, =T + sy — das. (3.3)

Node A;: jobs of family g and of family A do not form a single batch.
Similar to node Ay, C(R) =T + s, + s, because of the additional setup times for

families g and A, yielding

LBy, =T + 54+ 5p — dp- (3.4)

CHAPTER 3 40

Node A;: all jobs of family g are scheduled after the other jobs of R’

Using the information that job (g, 7) is completed no earlier than time 77, the lower
bound, LB(R' - {(g,7'+ 1),...,(g,7)}) for j' = 1,...,j, where C(R' —{(g,J" +
D,....(g,0H =T - Zg:j,H Pgi- Lhe best of these lower bounds is

J
LBA2 = jllillaX) {T/ — Z pgi — dgj’} . (35)

yeensd L
=741

Node Aj;: job (g,7) is not scheduled last amongst jobs of R'.
Excluding the jobs of family g, let job (f,¢) have the largest due date amongst
jobs of R/, yields

LBa, =T — dy.. (3.6)

Thus, the overall lower bound for nodes labelled A is

LBA = max {LBAO,min {LBAI,LBAQ,LBAG'}} . (37)

Nodes BQ,Bl,BQ, and Bgi

Since the analysis of nodes labelled B is similar to that for the A nodes, the lower

bounds are stated without derivation.

& .
LBBO =]C/Iilla,)(}C {T — Z Pni — dhk’} , (38)

seensy

i=k'+1
LBB1 = T/ + Sg — dg]', (39)
J
LBy, = T — c—dyi s 3.10
By j/I:nf)ij{ Z Dy 93 } ()
i=j'4+1
LBB3 == T/ - dfi. (311)

Thus, the overall lower bound for nodes labelled B is

LBy = max {LBg,, min {LBp,, LBy, LBp,}} . (3.12)

CHAPTER 3 41

Nodes Cy, Cq,Cy, and Cs:
As for the nodes labelled B, we state the lower bounds for the C nodes without

derivation. Note that there is no explicit expression for LBg,.

LBo, = T+s,—dy;, (3.13)
J
LB02 = _/r_nlax] {T - Z pgi — dgj’} , (314)
T i=j'+1
LBe, = T—ds. (3.15)

Therefore, the overall lower bound for nodes labelled C' is

LB = min{LB¢,, LBc,, LBe,} . (3.16)

The overall lower bound for the problem is the minimum of the individual bounds

from nodes labelled A, B and C': it can be expressed as
LBy =min{LB4,LBp,LB¢}. (3.17)

Recall that if R contains only jobs of family &, then the lower bound is LB = LBy;
otherwise, it is LB = LB;. The computation of LBy and LB requires O(nlogn)

time.

CHAPTER 3 42

3.4 Cutting and Packing Problems

Cutting and Packing (C&P) problems are optimisation problems that are con-
cerned with finding a good arrangement of multiple small items in one or more
larger objects. This type of problem is encountered in many areas of business
and in industry (e.g. wood, glass, and textile industries, newspaper paging, cargo
loading, etc) and forms part of the combinatorial optimisation problems found in
operational research. The usual objective of the allocation process is aimed at
maximising the utilisation of the large objects, or maximising the value of the
small items packed.

The reduction of production costs is one of the major issues in manufacturing
industries. High material utilisation is of particular interest to industries involved
with mass-production, since small improvements of the layout can result in large
savings of material and considerably reduce production costs. The complexity of
the problem and the solution approach depend on the geometry of the items to be

placed and the constraints imposed.

Although C&P problems have been studied since the mid-fifties, Gilmore and
Gomory's articles in the 1960s [112, 113, 114] on linear programming approaches
to one, two and more dimensional cutting stock problems are the first to present

techniques which could be practically applied to medium size real-world problems.

In the study of the C&P problems, we focus on the non-oriented case of the
two-dimensional rectangular single bin size bin packing problem where a set of
small rectangles has to be allocated to one or more bins. The rectangles to be
packed may be rotated by 90°. The objective is to pack without overlaps, all the
rectangles into the minimum number of bins. Details of the research are discussed

in Chapter 6.

C&P problems occur in various application areas involving different constraints
and objectives. In the following, we briefly define the basic problem types (see
Figure 3.3) of C&P problems based on the improved typology given by Wascher
et al. [274].

CHAPTER 3 43

Figure 3.3: Basic Problem Types of C&P Problems (Waischer et al. [274])

C & P problems
kind of output input
assignment maximisation minimisation

|
I |

all dimensions fixed variable dimension(s) all dimensions fixed
assortment of R i weakly strongly . weakly strongly
small items identical J heterogeneous heterogeneous arbitrary heterogeneous heterogeneous
C&P Identical Open
K ck i . .
problem Item Packing Placement Pl;zglsg;l Dimension CultJtmEIStnck Bin Packing
types Problem Problem Problem roblem Problem

The C&P problem can be broadly classified into two sub-problems: output
(value) maximisation problem and input (value) minimisation problem. In both
cases, a set of small items has to be assigned to a given set of large objects. With
respect to the assortment of the small items, Wascher et al. [274] distinguish three

cases, namely identical, weakly heterogeneous and strongly heterogeneous.

For the identical small items, all items are of the same shape and size. The small
items with weakly heterogeneous assortment can be grouped into relatively few
classes (in relation to the total number of items), for which the items are identical
with respect to shape and size. The set of strongly heterogeneous assortment of
small items is characterised by the fact that only very few items are of identical

shape and size.

Output Maximisation:

In this case, the set of large objects is not sufficient to accommodate all the small
items. Thus, all large objects are to be used to which a selection of the small items
of maximal value has to be assigned. Based on the assortment of the small items,
a problem in this category can be classified as an identical item packing problem,

a placement problem or a knapsack problem.

CHAPTER 3 44

e I[dentical Item Packing Problem
This problem consists of the assignment of the maximum number of iden-
tical small items to a limited set of large objects. Dowsland and Dowsland
[78] define this problem as a manufacturer’s pallet loading problem where

identical items have to be loaded onto the pallet.

e Placement Problem
In this problem, a weakly heterogeneous assortment of small items has to be
assigned to a limited set of large objects. Dowsland and Dowsland [78] refer
to this problem as a distributor’s pallet loading problem where the pallet has

to be packed with non-identical items.

e Knapsack Problem
In this problem, a strongly heterogeneous assortment of small items which
has to be allocated to a limited set of large objects while observing the
capacity constraint of the large objects such that the total value of the items

packed is maximised.

Input Minimisation:

In this case, the set of large objects is sufficient to accommodate all small items.
All small items are to be assigned to a selection of the large object(s) of minimal
value. Based on the assortment of the small items, a problem in this category
can be classified as an open dimension problem, a cutting stock problem or a bin

packing problem

e Open Dimension Problem
This problem involves a set of small items which has to be assigned com-
pletely to one or more large objects. The large objects are given but their
extension in at least one dimension can be considered as a variable. Dowsland
and Dowsland [78] define this problem as a strip packing problem where the
large objects are strips with fixed width but unlimited height. The objective

is to minimise the total height needed to pack all the small items.

CHAPTER 3

e Cutting Stock Problem
In this problem, a weakly heterogeneous assortment of small items is com-

pletely assigned to a selection of large objects of minimal value.

e Bin Packing Problem
This problem is concerned with packing a set of strongly heterogeneous small

items into the minimum number of large objects.

3.4.1 Typologies of Cutting and Packing Problem

Due to the diversity of the problem and application areas, similar packing prob-
lems appear under different names in the literature. In order to facilitate the
information exchange, Dyckhoff [82] introduces four characteristics according to
which C&P problems are categorised. However, his typology was not widely ac-
cepted. As a result, Wéscher et al. [274] develop a revised classification of the

typology. The details of the typologies are given below:

Dyckhoff’s Typology:
Dyckhoff [82] seeks to identify common characteristics and properties to discrim-

inate between problem types. As a result, he systematically classified packing

problems into a 4-field representation of «|8|y|d where,

a: Dimensionality.
G: Kind of Assignment.
~v: Assortment of Large Objects.

0 : Assortment of Small Items.

These characteristics and the values they can take on are summarised in Table

3.2.

CHAPTER 3 46

Table 3.2: Dyckhoff’s Typology of Cutting and Packing Problems (Dyckhoff [82])
r(fharacteristic Symbol Description

[Dimensionality one dimensional
two dimensional
three dimensional
N dimensional with N > 3
Kind of all objects and a selection of items
Assignment a selection of objects and all items

one object

identical figures

different figures

few items (of different figures)

many items of many different figures

many items of relatively few different (non-congruent) figures

Assortment of
Large Objects

Assortment of
Small Objects

QX Z MU~ < WY wwo

congruent figures

Hence, a classical Two-Dimensional Bin Packing Problem (2DBPP) can be

classified as 2|V|I|M, where,

2: two dimensional.

V. a selection of objects and all items.

I : identical figure for large objects.

M: many items of many different figures for small items.

Wascher et al.’s Typology:

After almost 15 years since Dyckhoff’s initial publication, it became obvious that
Dyckhoff’s typology was insufficient with respect to recent developments. In 2005,
Waischer et al. [274] propose an improved typology with the aim of allowing for
a complete categorisation of all known C&P problems and its corresponding lit-
erature. They highlight the following three drawbacks faced by the Dyckhoff’s
typology in the recent development in the field of C&P:
e not necessarily all C&P problems (in the narrow sense) can be assigned
uniquely to problem types;
e Dyckhoff’s typology is partially inconsistent; its application might have con-
fusing results;
e application of Dyckhoff’s typology does not necessarily result in homoge-

neous problem categories.

CHAPTER 3 47

These drawbacks are discussed further with help from examples in Wascher et

al. [274]. The details of the typology are summarised in Table 3.3.

Table 3.3: Wischer et al.’s Typology of Cutting and Packing Problems (Wascher
et al. [274])

fl

Characteristic Description Further Description
Dimensionality | 1,2,3, N(N > 3)
Kind of Qutput (value) maximisation e.g. knapsack problem
Assignment Input (value) minimisation e.g. bin packing problem
Assortment of Identical small items
Small Items Weakly heterogeneous assortment
Strongly heterogeneous assortment
Assortment of One large object All dimensions fixed
Large Objects One or more variable dimensions
Several large objects Identical large objects
(all dimensions fixed) Weakly heterogeneous assortment
Strongly heterogeneous assortment
Shape of Regular e.g. rectangles, circles, cylinders, etc.
Small Items Irregular (or non-regular) e.g. shirts, shoes, swimsuit, etc.

In order to further define the typology, the characteristics for the kind of as-
signment are structured further into Intermediate Problem Types (IPT). This is
achieved by taking into consideration the assortment of the large objects as well
as the small items as an additional differentiating criterion. Wéscher et al. [274]
summarise the system of the IPT as in Table 3.4 and 3.5. In the final stage, they

systematically classify the C&P problems according to the following system:

{1,2,3,n} — dimensional{), rectangular, circular, . . . , irregular } {IPT'}.

As mentioned earlier, we concentrate our study on the non-oriented two-dimensional

rectangular single bin size bin packing problem where the rectangles may rotate
90°. This problem is classified by Wascher et al. [274] as: non-oriented 2DRSB-
SBPP. Thus, for the rest of the thesis, we refer without loss of generality, to the

problem in our study as non-oriented 2DRSBSBPP.

CHAPTER 3

Table 3.4: Landscape of IPT: Output Maximisation (Wéscher et al. [274])

assortment
of the small
items identical weakly strongly
characteristics heterogeneous heterogeneous
of the large
object
Single
one Identical Item Large Object Single
large object | Packing Problem Placement Knapsack Problem
Problem
11PP SLOPP SKP
Multiple Identical
all Large Object Multiple Identical
dimensions identical Placement Knapsack Problem
fixed Problem
MILOPP MIKP
Multiple
Heterogeneous Multiple
Large Object Heterogeneous
heterogeneous Placement Knapsack Peoblem
Problem
MHLOPP MHKP

Table 3.5: Landscape of IPT: Input Maximisation (Wéscher et al. [274])

assortment
of the small
items weakly strongly
characteristics heterogeneous heterogeneous
of the large
object
Single Stock Size Single Bin Size
identical Cutting Stock Problem | Bin Packing Problem
all SSSCSP SBSBPP
dimensions weakly Multiple Stock Size Multiple Bin Size
fixed heterogeneous | Cutting Stock Problem | Bin Packing Problem
MSSCSP MBSBPP
strongly Residual Residual
heterogeneous | Cutting Stock Problem | Bin Packing Problem
RCSP RBPP
one large object Open Dimension Problem
variable dimension(s) ODP

CHAPTER 3 49

3.4.2 Approaches to 2DRSBSBPP

Before the start of the survey, we define the 2DRSBSBPP as follows:

“Given a set of n rectangular items j € J = {1,2,...,n}, each defined by a
height A;, and a width w;, and an unlimited number of identical rectangular bins,
each having a height H, and a width W. The objective is to allocate without
overlaps, all the rectangles into the minimum numbers of bins.” The 2DRSBSBPP
is classified as a class of NP-hard problem by Garey and Johnson [108].

A considerable amount of research has been carried out and various approaches
have been proposed to solve the 2DRSBSBPP. In the following subsection, we
concentrate on the review of the literature for the problem. Some excellent and
comprehensive reviews of the approaches to the problem can be found in Dowsland
and Dowsland [78], Dyckhoff and Finke [83], Lodi et al. [195, 196, 197], and Hopper
and Turton [152]. Moreover, an annotated bibliography is given in Dyckhoff et
al. [84]. The approaches can be broadly classified into three methods: heuristic

L

placement routines, exact approaches and lower bounds, and local search methods.

3.4.2.1 Heuristic Placement Routines

Most of the heuristic placement routines from the literature can be classified in
two families (see Lodi et al. [196]):

— One-phase algorithms: directly pack the rectangles into the finite bins.

— Two-phase algorithms: start by packing the rectangles into a single strip, (i.e. a
bin having width W, and infinite height). In the second phase, the strip solution

is used to construct a packing into finite bins.

The majority of the approaches are level algorithms, i.e. the bin packing is
obtained by placing the rectangles, from left to right, in rows forming levels. The
first level is the bottom of the bin, and subsequent levels are produced by the
horizontal line coinciding with the top of the tallest rectangle packed on the level
below. Three classical strategies for level packing are suggested by Coffman et al.

[56]. Note that j = current rectangle.

CHAPTER 3 50

1. Next-Fit (NF): rectangle j is packed left justified on a level if it fits.

Otherwise, the level is closed and a new level is created to pack the rectangle

left justified.

2. First-Fit (FF): rectangle 7 is packed left justified on the first level where

it fits. If no level can accommodate 7, a new level is initialised as in NF.

3. Best-Fit (BF): rectangle j is packed left justified on that level, among those
where it fits, for which the resulting packing has the minimum remaining
horizontal space. If no level can accommodate j, a new level is initialised as

in NF.

In addition, sorting the rectangles in decreasing width, height, or area in com-
bination with NF, FF, and BF routine, can improve the average performance of
the simple placement routines. These routines are referred to as NFD, FFD, and
BFD respectively (D = Decreasing), and can be implemented to run in O(nlogn)

time.

For the remainder of this subsection, we denote a current bin list as a list of all
possible bins in which the next rectangle can be packed. We discuss each of the

heuristic placement routine by classifying them as H,A,(R),T, where:

H : name of the Heuristic placement routine.

A : Abbreviation of the routine.

(R): name of the Researcher(s) who popularised the routine.
T : Time complexity of the routine.

One-Phase Algorithms
Finite Next-Fit, FNF, (Berkey and Wang [32]), O(nlogn):

Only one bin is held in the current bin list. Rectangles are packed into finite bins
using the NF routine. When the next rectangle to be packed cannot fit into the

current bin, the bin is removed and a new empty bin is added.

CHAPTER 3 ol
Finite First-Fit, FFF, (Berkey and Wang [32]), O(nlogn):

All the bins that have been created are maintained in the current bin list. Each
rectangle is packed on the lowest level of the first bin where it fits. If no level in
the bins can accommodate it, a new level is created either in the first suitable bin,

or by initialising a new bin.

Bottom-Left, BL, (Baker et al. [16], Jakobs [158]), O(n?):

This is a different classical approach which does not pack the rectangles by level
packing heuristic. The rectangle is packed as near to the bottom of the bin as it
will fit and then as far to the left as it can be placed at that bottom-most level.
Starting from the top right corner of the bin, each rectangle makes successive
moves of sliding as far as possible to the bottom of the bin and then as far as
possible to the left of the bin until the rectangle is placed in a stable position.
Figure 3.5 shows the placement of a sequence of rectangles described in Figure
3.4. The major disadvantage of this routine is the creation of empty areas in the

layout, when larger rectangles block the movement of successive ones.

Figure 3.4: Bin and Item Dimensions

bin : (W,H) = (15,10) rectangle,n | 1 2 3 4 5 6 7 8
width, w 1 8 2 3 5 2 8 2
height, h 6 1 4 2 4 1 3 2
1
3 5
4 7 8
I 2 | 16]

g 3 | 4 5 4 > 4

CHAPTER 3 52

Finite Bottom-Left, FBL, (Berkey and Wang [32]), O(n?):

This routine is a variation of BL for the finite bin case. The routine initially sorts
the rectangles by non-increasing width. The rectangle is then packed in the lowest

position of any initialised bin, left justified. If no bin can allocate it, a new one is

initialised.

Improved Bottom-Left, BLi, (Liu and Teng [192]), O(n?):

Like the BL routine, it starts by placing the rectangle on the top right corner of
the bin. It is then moved as far as possible to the bottom. Instead of moving it the
complete distance to the left in the next step until it collides as in the BL routine,
the BLi routine moves the rectangle along the partial layout by giving downward
movement priority so that rectangles only slide leftwards if no downward movement
is possible. In Figure 3.6, the allocation of the same sequence of rectangle used in
Figure 3.4 is shown. Liu and Teng [192] give two numerical examples to compare
the performance of the BL and BLi. Comptutational experiments show that BLz

constantly outperformed the BL.

............

{8 P8 !

.....

] 7 _f—EB 7 “Bl 7

s 33715 o i e 3.3_’
2 1 | 4 2 4 2 i

Bottom-Left Fill, BLF, (Chazelle [46]), O(n?):
BLF is a modified version of the BL placement routine. BLF places rectangles by

searching a list of location points that indicate potential positions where rectangles
may be placed. These points are maintained in a bottom left ordering sequence.
The algorithm starts with the lowest and leftmost point, where the rectangle is

placed and left justified. Then, the rectangle is checked for overlap with any other

CHAPTER 3 53

rectangles that form the partial layout in the bin. If it does not overlap, the
rectangle is placed and the point list is updated to indicate any new points. If the
rectangle overlaps, the next point list is selected until the rectangle can be placed
without overlap occurring or a new bin is initialised if no bin can accommodate
it. Figure 3.7 demonstrates the placement policy using the same ordered list of
rectangles as in Figure 3.4. Since the generation of the layout is based on the
allocation of the lowest sufficiently large area in the partial layout rather than on
a series of bottom left moves, it is capable of filling existing gaps in the packing
pattern. Compared to the BL and BL¢ routine, this method results in a denser

packing pattern.

Figure 3.7: Placement of a rectangle into a partial layout using BLF routine

Y ’ :—1
{ | [5] [}
3 4 85 2 4 2 4

Hopper and Turton [153] performed a series of computational experiments be-
tween the BL and BLF and found that BLF outperformed BL by up to 25%.
Moreover, preordering the rectangles in non-increasing width or height for both
placement routines increased the packing quality by up to 10% compared to ran-

dom sequence.

Alternate Direction, AD, (Lodi et al. [194]), O(n®):

The routine starts by sorting the rectangles according to non-increasing height,
and by computing a lower bound, L on the optimal solution value. Then, L bins
are initialised by packing on their bottom a subset of the rectangles, following a
BFD routine. As an example, consider the 12 rectangles shown in Figure 3.8 with
L = 2. Rectangles 1,2,3,7,and, 9 are packed into the initialised bins with a BFD

routine (Figure 3.9). The remaining rectangles are packed, one bin at a time, into

CHAPTER 3 54

bands according to the current direction associated with the bin. In this case, the
current direction is “from right to left”. If the direction is “from left to right”

(“from Tight to left”):

o the first rectangle of the band is packed with the left (right) edge touching
the left (right) edge of the bin, in the lowest possible position;

e each subsequent rectangle is packed with its left (right) edge touching the
right (left) edge of the previous rectangle in the band, in the lowest position.

Once no rectangle can be packed in either direction in the current bin, the next
initialised bin becomes the current one. If no rectangle can be packed into any of
the initialised bin, a new bin is opened. Figure 3.9 shows the solution found by

AD where the rectangles used are as described in Figure 3.8.

Figure 3.8: Bin and Item Dimensions

in : = L=2
bin : (WH) = (10.8); rectangle,n| 1 2 3 4 5 6 7 8 9 10 11 12
widhbw [4 4 8 4 4 4 1 6 2 9 9 3
heighth |6 4 3 3 3 3 3 2 2 2 2 A1
1 :
2 o
3 4.5,6 H 8 9 10, 11 B
Figure 3.9: Solution found by AD routine
8 10
4
6 5
1 2]
2= 7 3
9 11

Bin 1 Bin 2 Bin 3

CHAPTER 3 55

Touching Perimeter, TP, (Lodi et al. [194]), O(n?):

This routine is designed for the non-oriented case where the rectangles to be packed
may be rotated by 90°. It starts by sorting the rectangles in non-increasing area
and by horizontally orienting them. It then initialises L bins, where L is the
lower bound, and packs one rectangle at a time, either in the existing bin, or by
initialising a new one. The choice of the bin and of the packing position is done
by evaluating a score (percentage of the rectangle perimeter which touches the
bin and the other items that are already packed). For each candidate packing
position, the score is evaluated twice, for the two rectangle orientations (if both
are feasible). The position with the highest score is selected and ties are broken by
choosing the bin with the maximum packed area. Figure 3.10 shows the solution
found by TP using the same example in Figure 3.8. The rectangles are sorted by
TP as (1,3,10,11,2,4,5,6,8,9,7,12), with rectangle 1 and 7 rotated 90° before

the packing commences.

Figure 3.10: Solution found by TP routine

11 — 8
7 q (12
9
10 : 6
1 2 4 5
Bin 1 Bin 2

Two-Phase Algorithms

Hybrid First-Fit, HFF, (Chung et al. [54]), O(nlogn):

In the first phase, a strip packing is obtained through the First-Fit Decreasing
Height (FFDH). Let H,, H,,... be the height of the resulting levels in a single
strip, and observe that H; > H, > A finite bin packing solution is then
obtained by solving a one-dimensional bin packing problem (with rectangle sizes
H; and bin capacity H) through the FFD algorithm: initialise bin 1 to pack level
1, and, for 2 = 2,3, .. ., pack the current level i into the lowest indexed bin where

it fits, if any. If no bin can accommodate 1, initialise a new bin.

CHAPTER 3 56

Finite Best-Strip, FBS, (Berkey and Wang [32]), O(nlogn):

The first phase is performed by first packing the rectangles into levels in an open
ended strip using the BF routine to select the level for packing the next rectangle.
In the second phase, a one-dimensional bin packing problem is solved through the
BFD routine: a level is packed in that bin, among those where it fits, if any, for

which the unused vertical space is a minimum, or by initialising a new bin.

Hybrid Next-Fit, HNF, (Frenk and Galambos [106]), O(nlogn):
NFD is adopted in the first phase to pack the rectangles into levels in an open

ended strip. In the second phase, a one-dimensional bin packing problem is solved
through the NFD algorithm: a level is packed in the current bin if it fits, or

otherwise, on a new level, created either in the current bin (if possible), or in a

new orne.

Floor-Ceiling, FC, (Lodi et al. [194]), O(n?):

This routine can be applied to both oriented and non-oriented cases. The rect-
angles are initially sorted in non-increasing order of their shortest edge, and hor-
izontal oriented (for non-oriented case only). We first denote the horizontal line
defined by the top/bottom edge of the tallest rectangle packed on a level as the
ceiling/floor of the level. In the first phase, the current rectangle is packed, in
order of preference:

- on a floor, according to a Best-Fit strategy, or

- on a ceiling (if the rectangle cannot be packed on the floor below),

—on the floor of a new level.

In the second phase, the levels are packed into finite bins, either through the BFD
algorithm or by using an exact algorithm for the one-dimensional bin packing

problem. A possible FC packing pattern is shown in Figure 3.11.

CHAPTER 3 57

Figure 3.11: Floor Ceiling

6 | 5

Knapsack Problem, KP, (Lodi et al. [194]), O(n®):

Start by sorting the rectangles in non-increasing height such that h; > h;;, for
j=1,2,...,n— 1. At each iteration of the strip packing phase, a new level is
initialised with the tallest unpacked rectangle, say j*. The level packing is then
completed by solving an instance of knapsack problem having an element for each
unpacked rectangle j, with profit p; = w;h;, cost ¢; = w; and capacity g = W—w;-.
The problem is to select a subset of rectangles in which the total cost does not
exceed ¢, and the total profit is a maximum. In the second phase, the levels are

packed into finite bins through a one-dimensional bin packing problem.

Lodi et al. [194] compare the AD, TP, FC and KP placement routines with the
FFF and FBS placement routines proposed by Berkey and Wang [32] on a series
of computational experiments using benchmark problem instances that include up
to 100 rectangles. The placement routines are compared in different combinations
of requirements based on the rectangles’ orientation and guillotine cuts constraint.
Computational results show that their proposed placement routines outperformed

both FFF and FBS routines with the TP performs the best.

3.4.2.2 Exact Approaches and Lower Bounds

Much of the work on the exact approaches for SBSBPP concentrate on the one-
dimensional case. For example, linear programming (by Valério de Carvalho [68]
and Applegate et al. [11]), column generation algorithm and branch and bound
approaches (by Valério de Carvalho [67] and Vanderbeck [269]). These approaches

are too wide to cover in one section and are beyond the scope of this study.

CHAPTER 3 58

Therefore, as mentioned earlier, we limit the survey to the exact methods for the

two-dimensional cases.

Gilmore and Gomory [114] made a first attempt at modelling the 2DRSBS-
BPP by extending their model for the one-dimensional stock cutting problem (in
[112, 113]). Their approach is based on the concept of pattern. Given the set of
rectangles and the bins, they define a pattern as a subset of the rectangles that
can be loaded into the bin without causing an overlapping of the rectangles them-
selves. Considering that, in the optimal solution, one pattern is used for each bin,
the objective of minimising the number of patterns used is equal to minimising the
number of bins used in the solution. In this model, the authors develop a column

generation algorithm to help solve the problem.

In 1998, Martello and Vigo [203] improve the lower bounds proposed by Martello
and Toth [202] for the oriented 2DRSBSBPP which are used within a branch and
bound (B&B) approach. They use both FFF and FBF heuristic placement rou-
tines to initialise a feasible solution for the B&B approach. Their B&B approach
is based on a two level branching scheme:

— outer branch-decision tree: at each iteration node, a rectangle is assigned to a
bin without specifying its actual position; and

— inner branch-decision tree: a feasible packing (if any) for the rectangles currently
assigned to a bin is determined, possibly through enumeration of all the possible
patterns.

They show that the worst-case performance ratio of the lower bounds is %OPT
(OPT = optimal solution). The derivation of the lower bounds are discussed in
detail in Section 3.4.3.1. In the paper, the well known continuous lower bound
for the problem is analysed and the worst-case performance ratio is calculated as
iOPT. Computational results for the benchmark problem instances show that
the B&B is capable of finding the optimal solution for problems involving up to

120 rectangles.

CHAPTER 3 59

Fekete and Schepers [91, 92] propose a generic approach for obtaining fast lower
bounds for the oriented case, based on dual feasible functions. Worst-case analysis
shows that the asymptotic worst-case performance ratio of the lower bounds is
20OPT and can be implemented in linear time (i.e. O(n)) if the given n rectan-
gles are sorted by size. Computational results illustrate that the lower bounds

outperform the lower bounds proposed by Martello and Vigo [203].

Dell’Amico et al. [69] present a lower bound for the non-oriented case of the
problem which is then used within an B&B approach developed by Martello and
Vigo [203]. Before the bound is calculated, each rectangle is replaced by a number
of square items by cutting it with a CUTSQ procedure (see Figure 3.12). Unit
squares of size one are not produced, as they are not use in the subsequent lower
bound computations. The derivation of the lower bound is discussed in detail in
Section 3.4.3.2 which subsequently becomes the lower bound we employ for the
computational experiments in Section 6.7. The computational results for instances
up to 100 rectangles show that the proposed bound is considerably better than

the continuous lower bound.

Boschetti and Mingozzi [34] improve the lower bounds proposed by Martello
and Vigo [203] for the oriented case of 2DRSBSBPP. They show that the lower
bounds also dominate the lower bounds proposed by Fekete and Schepers [91, 92].
However, the main disadvantage of their lower bounds lie in the computational
complexity of the bounds. In the same year, Boschetti and Mingozzi [35] also
devise tighter lower bounds for the non-oriented case. Computational results show
the effectiveness of the lower bounds which dominate the bounds proposed by
Dell’Amico et al. [69].

In 2003, Pisinger and Sigurd [230] propose a hybrid branch and price/constraint
programming algorithm for solving the oriented 2DRSBSBPP. They use the col-
umn generation principle of Gilmore and Gomory and solve the specific pricing
problem by means of constraint programming. They also propose new lower
bounds using the delayed column generation. The computational results show

that the lower bounds obtained through delayed column generation are tighter

CHAPTER 3 60
than bounds proposed by Martello and Vigo [203] and Fekete and Schepers [91, 92].

In 2004, Puchinger and Raidl [236, 237] present an integer linear programming
formulations solved by CPLEX for both restricted and unrestricted versions of the
2DRSBSBPP. Furthermore, a branch and price approach is proposed by formu-
lating the original problem as a set covering problem. Fast column generation is
performed by applying a hierarchy of four methods, namely a greedy heuristic,
an evolutionary algorithm, and both a restricted and unrestricted integer linear
programming for the pricing problem. Extensive computational experiments are
performed and the results show that the lower bounds obtained by column gener-

ation are strong.

3.4.2.3 Local Search Methods

Since the 2DRSBSBPP belongs to the class of NP-hard problems, exact approaches
are bound to work well for small to medium sized problem instances only. Real
world applications which include up to thousands of rectangles have to be solved
heuristically or by local search methods. Much of the research on the local search
methods for SBSBPP focus on the one-dimensional case. These include Ant Colony
Optimisation (by Brugger et al. [37] and Levine and Ducatelle [186]), Genetic
Algorithms (by Falkenauer [87, 88], Runarsson et al. [245], and lima and Yakawa
[155]), and Simulated Annealing (by Kampke [1653]). Since we concentrate on the
two-dimensional case, these approaches are beyond the scope of this study. For the
remainder of this subsection, we limit the survey to the use of genetic algorithms

and tabu search for the two-dimensional cases.

Genetic Algorithms
A common feature found in most Genetic Algorithms (GAs) developed for SBS-

BPP is their two-stage approach, where a GA is combined with a heuristic place-
ment routine. In this two-stage approach, a GA manipulates the encoded solutions,
which are then evaluated by a decoding algorithm transforming the packing se-

quence into the corresponding physical layout. Since domain knowledge is built

CHAPTER 3 61

into the decoding procedure, the size of the search space can be reduced. The
search space is further restricted to feasible solutions only. As a result, the pack-

ing strategy generates only non-overlapping layouts.

The first researcher to implement GAs in the domain of packing was Smith [255]
in 1985. He applies a GA to a two-dimensional rectangular packing problem with
fixed orientation. The objective of his GA is to put as many blocks into a single
rectangular region as possible. He uses permutations of rectangles to encode the
instances. Thus, the original problem becomes a sequencing problem and heuristics
are used to transform those permutation into packing schemes. Experimental
results have shown that his GA can produce the same packing density 300 times

faster than a dynamic programme.

In 1994, Hwang et al. [154] design a GA for the 2DRSBSBPP where the
rectangles are represented by a permutation and packed into the bins by a two-
stage heuristic. In the first stage, the level-oriented FF placement routine places
rectangles onto an open ended strip of unlimited height, constructing the layout
as a sequence of levels. Each level forms a rectangular block containing one or
more rectangles. In the next stage, the packed strip is decomposed at each level
forming a block of rectangles of fixed width and with the height equal to the height
of the level. The blocks are then packed using the FFD or the BFD routine into
a fixed size bin reducing the problem to a one-dimensional problem. The authors
implement two GAs using the FFD and the BFD routines in the decoding stage.
Comparisons are made with the HFF routine, which is a combination of the FFDH
and FFD routines. The GAs consistently outperformed the heuristic one (HFF),

whereby the one using the BFD routine performed best.

A year later, Kroger [172] develops a sequential and a parallel GA to solve
a constrained 2DRSBSBPP, which demands a guillotine restriction for the valid
packing layout. He uses a problem specific encoding which represents the essen-
tial structure of a packing scheme by a binary tree. The major motivation for
the crossover operator is to combine as many partial solutions (subtrees) from

both parents as possible, thus preserving the main characteristics and providing

CHAPTER 3 62

a systematic continuation of the search. The author compares the sequential GA
with the FF placement routine, simulated annealing, and a random search strat-
egy which randomly generates valid preorder strings. The proposed algorithm
produces high quality solutions compared with other heuristic methods, even in
its sequential version. The concept of a meta-rectangle is also proposed in the
paper. Due to the guillotine constraint of the packing schemes, each group of
neighbouring rectangles forms a partial arrangement with still a rectangular shape
(meta-rectangle). Then, each meta-rectangle temporarily freezes a hyperplane of
an existent solution. Thus, the complexity of a problem is reduced and the algo-

rithm’s search can be guided into the most promising parts of the solution space.

Hopper and Turton [151] propose two GAs for the rectangle packing problem in
1999. The GAs as well as the BL and BLF placement routines have been tested on a
number of packing problems. The GA combined with the BLF routine outperforms
the GA using the BL routine as well as the heuristic placement routines. They
conclude that, the performance difference between the two GAs implementation

is due to the improved placement routine.

Two years later, Hopper and Turton [153] compare several local search algo-
rithms including GA, simulated annealing (SA), naive evolution (NE), hill climbing
and random search. The authors show that the combination between the GA, SA,
and NE with the BLF routine all gave similar results but they are better than the
combinations with the BL routine as well as the heuristic routine with height or

width sorted input sequence.

Tabu Search
Lodi et al. [193, 194] develop an Unified Tabu Search (UTS) code for multi di-

mensional rectangular SBSBPP in 1999. The main characteristic of the unified
framework in tabu search explained in [193, 194] is an adoption of a search scheme
and a neighbourhood which are independent of the specific packing problem to be
solved. The UTS is based on two possible neighbourhood moves. Both neighbour-

hoods consist of moves involving the rectangles of a particular bin, which is called

CHAPTER 3 63

target bin and is defined in Section 6.6.1. At each iteration, the algorithm consid-
ers a rectangle j currently packed in the target bin b and tries to remove j from b.
The first neighbourhood move attempts to directly pack j into a different bin. In
the second neighbourhood move, the algorithm tries to recombine the rectangles
of two different bins so that one of them can accommodate j. The approach is

discussed in more details in Section 6.6.1.

Lodi et al. [193] consider an oriented 2DRSBSBPP with guillotine cuts con-
straint. They propose a simple deterministic algorithm which is used in the ini-
tialisation of the UTS approach. The proposed algorithm runs in O(nlogn) time
with a worst-case performance ratio of 4. The algorithm is based on a technique
developed by Martello and Vigo [203] in proving the worst-case performance of
the continuous lower bound for 2DRSBSBPP. The UTS approach is developed by
applying two simple heuristic placement routines (i.e. FFF and FBS) in the neigh-
bourhood search. Their UTS algorithm outperformed both heuristics for problem

instances up to 120 rectangles. Also, the comparison with a B&B approach is

comparable for instances that include up to 100 rectangles.

A year later, Lodi et al. [194] introduce four new heuristic placement rou-
tines: FC, KP, AD, and TP, as described earlier which are developed according
to different combinations of requirements based on the rectangle’s orientation and
guillotine cuts constraint. The proposed heuristic placement routines are then
used in the UTS approach to generate an initial layout. Computational results on
the benchmark problem instances that include up to 100 rectangles show that the
proposed heuristic placement routines outperformed FFF and FBS routines (by
Berkey and Wang [32]). They conclude that the UTS, in general, has improved
the initial deterministic solution produced by the heuristic placement routine and
1s comparable to a B&B approach. Further investigation shows that both papers

give similar results.

CHAPTER 3 64

3.4.3 Lower Bounds for 2DRSBSBPP

In this subsection, we present lower bounds for 2DRSBSBPP in both oriented and
non-oriented cases. The lower bounds are obtained from the bounds proposed
by Martello and Vigo [203] (oriented) and Dell’Amico et al. [69] (non-oriented)
that are used in their branch and bound algorithm. These derivation of the lower

bounds are extracted from their papers.

3.4.3.1 Oriented Rectangular

We first define the bin with dimensions (W,H) and rectangles with width wy,
and height h;. Let, j € J = {1,...,n}, where n is the total rectangles to be
placed. The simplest bound for 2DRSBSBPP is the Continuous Lower Bound Ly,
which can be computed in O(n) time and has a worst-case performance ratio of
(Martello and Vigo [203]):

Ly = [Lj;f;ﬂ . (3.18)

The idea is to calculate the total area of the rectangles and divide it by the area
of a bin. The rounded up value obtained is a valid lower bound. This bound does
not take into account the fact that many rectangles cannot be packed together in
a bin. More accurate lower bounds which explicitly take into consideration both

dimensions of the rectangles are introduced by Martello and Vigo [203].

We first present a lower bound that can be computed in linear time. Let
JV ={jeJ:w > 1W?} and observe that no two rectangles of J% may be
packed side by side into a bin. Given any integer p, with 1 < p < %H, let

Jo= {jeJV:h > H-p}
1
ho= eV H-p>h > H), (3.19)
1
Jy = {jEJW:§HZhij}.

Note that no two rectangles of J; | J J, may be packed into the same bin, so [J; [/3

is a valid lower bound on the optimal solution. The lower bound can be strengthen

CHAPTER 3 65

by observing that no rectangle in J3 will fit into a bin used for a rectangle in J.
Hence, for any given integer p, with 1 < p < %H, a valid lower bound on the

optimal solution is

LY (p) = max{LY (p), L} (p)}, where (3.20)
b= (T H =Sk
LY (p) = |J1uJ2,+max{o, [Zfe"a = (]!T 2ses >H (3.21)

= e |25

5

Both Ly (p) and Ly (p) are obtained by adding to |.J; |J J2| the minimum number

(3.22)

Ly (p) = |J1 U Jo| + max ¢ 0,

of additional bins needed for the rectangles of J;3. Thus, a valid lower bound on

the optimal solution is

LY = LY (p)}. 23
po= _max {47 (p)) (3.23)

The overall computation of LY can be performed in O(n?) time, since LY (p) and

LY (p) can be determined in O(n) time.
Now let J*={jeJ:h;>1H} 1<p<iW and
Jo= {jeJ w>W—p},
1
JQ = {jE']HIW—pZIUj>§W}, (324)

1
Jg = {jEJH§WZIU]Zp}

It is clear that from the above results, a valid lower bound on the optimal solution

18

H H -
= > 2
L= max {L ()}, where (3.25)
L (p) = max{LY (p), L{ (p)}, where (3.26)
_ws — (| Jo|W — W,
Lf(p) — ‘Jl U JQ‘ + max {0, [Z]Eh 7 (‘ ;'/ Z]Eh J)_l } ’ (327)

= e | 552

%]

Lg(p) = |J, U Jo| + max < 0,

CHAPTER 3 66

Thus, an overall lower bound on the optimal solution can be computed in O(n?)
time as

Ly = max{L¥, L7} (3.29)

In the remainder of this subsection, we present lower bounds which explicitly

take into account both dimensions of the items. Given an integer value ¢, 1 < ¢ <

W, let
K, = {jeJ:w>W—gqj,
1
K, = {jEJ:W—qzwj>§W}, (3.30)
1

First observe that K| |JK, = JY and is independent of ¢. Hence a valid lower
bound on the number of bins is needed for the rectangles in K, (J K is given by
LY. We can tighten this value by considering the rectangles in K3 and observing
that none of them can be packed beside an rectangle of K. Then a valid lower

bound on the optimal solution is

LV = m W wh 3.31
2 = Jpax {Ly(g)}, where (3.31)
e e hawy — (HLY — S h)W
LY (q) = L¥V+max{o, [Z]E“““ e F([Wl 2serc o) H (3.32)

and can be computed in O(n?) time.

Similarly, the L& can also be obtained as follows. Let, 1 < g < %H and

Ky = {jeJ:h;>H—q},
1

1
Ky = {jed:gH>h>q}

A valid lower bound on the optimal solution is

o 2 (@)} 3.34
b 154?(%5(2)H{L2 (CJ)} where ()
ercaurcs s = WL = 3osere 1)
Lf(q):Lfm&X{o’ F]%UKS - f(fwl S H (3.35)

CHAPTER 3 67

Thus, the overall lower bound,

Ly = max{LY L&}, (3.36)

It is worth mentioning that lower bounds L; and Ly have the same worst-case
time complexity, but the computation of LY (L) requires the value of LV (LH).
Thus, the average computing time required for Lq is approximately twice the time
required for L.

Martello and Vigo [203] further describe a lower bound which is computation-
ally more expensive, but can in some cases improve the previous one. Given any

pair of integers (p,q), with 1 <p < %H and 1 < ¢ < %W Let,
L = {jeJ:hj>H—-p and w; >W — ¢},
1 1
L = {yeJ\L:h;> EH and w; > EW}, (3.37)

1 1
Iy = {jEJ:EHZhjzp and §W2wj2q},

Observe that I; | J I; is independent of (p, q), that no two items of I; | I; may be
packed into the same bin, and that no rectangle in I3 will fit into a bin containing
a rectangle in I;. Given a bin W x H containing a rectangle of size w; X h;, the

maximum number of p X ¢ items that can be packed into the bins is

b R | e e R

Hence, a valid lower bound on the optimal solution that can be computed in O(n?)

time is given by

s L h 3.39
37 epe By L3P @)}, where (3.39)

13 — Zjelg m(4, ,q)

Hig

Thus, the overall lower bound for oriented 2DRSBSBPP is

Ls(p,q) = |I; ULy + max < O, (3.40)

Ly = max{Ly, L3}. (3.41)

CHAPTER 3 68

3.4.3.2 Non-Oriented Rectangular

In the following subsection, we present a lower bound for non-oriented 2DRSBS-
BPP proposed by Dell’Amico et al. [69]. Without loss of generality, we assume
that all input data are positive integers and bins and items are given in ‘horizontal’
orientation, i.e. that W > H and w; > h; for j = 1,...,n. In order to ensure

feasibility, we assume that w; < W and h; < H for j=1,...,n.

A valid lower bound comes from the following relaxation. Given an instance of
the problem, we replace each rectangle by a number of square items obtained by
appropriately cutting it using procedure CUTSQ as described in Figure 3.12. For
the resulting instance, there is no difference between allowing 90° rotation or not.
Note that in the case of a rectangle j where w; = h;, there is no need to apply the
CUTSQ procedure. Note that squares of size one are not produced, as they are of

no use in the subsequent lower bound computations.

Figure 3.12: Procedure CUTSQ (Dell’Amico et al. [69])

procedure CUTSQ:
JSQ = @;
for j:=1to n do
S =0
while h; > 1 do
k= |w;/h;;
add & squares of size h; to S;
wj = w; — khy;
swap w; and h;
end while;
JSQ = JSQ us
end for
end.

CHAPTER 3 69

Let M ={1,...,m} where m = |Jgg| is the number of resulting squares, and
let I; (j € M) be the resulting edge sizes. Given an integer value ¢, 0 < ¢ < H,

let

S = {jEZ\/[:l]’>W—q},
1
1 1

1

Recall that W > H, and observe that, by definition:

e cach square of S) | J S, requires a separate bin;
e no square of S3 can be packed into a bin containing a square of Sy;
e no square of S3 can be packed over a square of Sy;

e at most one square of S5 can be packed beside a square of S;.

Let,

L =15,
|92 + max { %% 0% J ’
H/25 1)

> s, lj] | 185\ (3.43)

where

Ss is the set of the largest squares of S3 that can be packed into the bins that pack

the squares of Sy; and

S3\S3 is the set of the squares in S3 that do not belongs to Ss.

CHAPTER 3 70

A valid lower bound on the optimal solution value is

Ls = L h 3.44
5= g iy L(0)), where (3.44)

T ZjESQUSSUS4 lj2 - (WHE - Zj6523 ZJ(H - l]))
L(q)—\Sﬂ+L+max{0,[o 7

(3.45)

where Sys = {j € S, U S3:{; > H — ¢} and can be computed in O(m) time.

If W = H, Equation 3.45 can be simplifies to

, : 12
L(q):'51u52|—f—max{0, Fi%jiai—wgyu. (3.46)

Dell’Amico et al. [69] also mention that for instances where some rectangles
that cannot be rotated (i.e. w; > H for some j), an alternative bound can be
obtained as follows. Let T = {j : w; > H}, apply CUTSQ only to the items
of {1,...,n}\T and compute, for the instance defined by 7 plus the resulting
squares, any lower bound for the oriented case. By using lower bound L, and
improve Lz by setting Ls = max{Ls, L4}, they conclude that the overall lower
bound for non-oriented 2DRSBSBPP is given by

LBO = max{Lo, L5} (347)

CHAPTER 3 71

3.5 Travelling Salesman Problem

The Travelling Salesman Problem (TSP) is a classical combinatorial optimisation
problem. It was first documented as early as 1759 by Euler, whose interest was
solving the knight’s tour problem (as cited by Hoffman and Wolfe [146]). A correct
solution would have a knight visit each of the 64 squares on a chessboard exactly
once on its tour. The term ‘travelling salesman’ was first used in 1832, in a German
book written by a veteran travelling salesman. Mathematical problems related to
the TSP were treated in the 1800s by Sir Willlam Rowan Hamilton on solving
the Hamiltonian cycle in Graph Theory. The general form of the TSP was first
stated by Karl Menger in 1930s, but it is not until 1954 when the first mathematical
formulation for the TSP appears courtesy of Dantzig et al. [63]. Since then, a huge
amount of research has been done on this problem over the years as summarised
in Table 3.6. This table represents the latest problem instances for the TSP that
are solved to optimality. The most widely used collection of TSP instances in
recent computational studies is Gerhard Reinelt’'s TSPLIB [266] test sets. The
TSPLIB is made up of over 100 instances arising from industrial, geographic, and
academic sources. To supplement this collection, further instances are available in
the National TSP [216], World TSP [283] and VLSI TSP [270] collections. The
long history of the TSP can be found in Hoffman and Wolfe [146].

The TSP is one of the most studied combinatorial optimisation problems of
our time and is simple to state but very difficult to solve. The problem has
been formulated in several different ways (see Langevin et al. [176]). We use the
following formulation as stated by Johnson and McGeoch [161]:

Given a set {c1, ¢y, ..., ¢cn} of cities and for each pair {c;, ¢;} of distinct cities, there
exist a distance d(c;, ¢;). The objective is to find an ordering = of the cities that
minimises the tour length, i.e. the quantity

n—1
d(Cw(i), Cﬂ(i+1)) + d(Cw(n)> C?r(l))' (3.48)

=1

CHAPTER 3 72

The TSP is classified as a class of NP-Complete problems by Garey and John-
son [108]. The problem is symmetric (STSP) if, and only if, d(¢;, ¢;) = d{c;, ¢;) for
1 < 4,7 < n; otherwise it is asymmetric (ATSP). A special case of STSP is Eu-
clidean TSP where the distance between the cities satisfy the ‘triangle inequality’:
d(ci, ¢;) +d{cj, cx) > d(c;, cx) for all ¢, j, k € n. The cities are given as points with
integer coordinates in the two-dimensional plane, and the distance are computed

according to the Euclidean metric.

Table 3.6: Milestones in the solution of TSP instances solved to optimality (ex-
tracted from [72])

Year Research Team Size of Name
Instance
1954 | G. Dantzig, R. Fulkerson, and S. Johnson 49 cities® | dantzigd2
1971 | M. Held and R.M. Karp 64 cities | 64 random
points
1975 | P.M. Camerini, L. Fratta, and F. Maffioli 67 cities | 67 random
points

1977 | M. Grétschel 120 cities gr120

1980 | H. Crowder and M.W. Padberg 318 cities lin318

1987 | M. Padberg and G. Rinaldi 532 cities attH32

1987 | M. Grétschel and O. Holland 666 cities gr666

1987 | M. Padberg and G. Rinaldi 2,392 cities pr2392

1994 | D. Applegate, R. Bixby, V. Chvdtal, and | 7,397 cities pla7397
W. Cook

1998 | D. Applegate, R. Bixby, V. Chvédtal, and | 13,509 cities | usal3509
W. Cook

2001 | D. Applegate, R. Bixby, V. Chvatal, and | 15,112 cities d15112
W. Cook

2004 | D. Applegate, R. Bixby, V. Chvatal, W. | 24,978 cities | sw24978
Cook, and K. Helsgaun

% optimal tour through the 42 cities uses roads that pass through the 7 cities that are excluded.

TSP often comes up as a subproblem in more complex combinatorial problems,
the best known and important one of which is the Vehicle Routing Problem (VRP),
that is, the problem of determining for a fleet of vehicles which customers should
be served by each vehicle and in what order each vehicle should visit the customers
assigned to it. Although transportation applications are the most natural setting
for the TSP, the simplicity of the model has led to many interesting applications

in other areas. For example,

CHAPTER 3 73

e Computer wiring (Lenstra and Rinnooy Kan [183]): some computer systems
can be described as modules with pins attached to them. It is often desired
to link these pins by means of wires, so that exactly two wires are attached

to each pin and total wire length is minimised.

e X-ray Crystallography (Bland and Shallcross [33]): some experiments in
crystallography consist of taking a large number of X-ray intensity measure-
ments on crystals by means of a detector. Each measurement requires that
a sample of the crystal be mounted on an apparatus and that the detector
be positioned appropriately. The order in which the various measurements

on a given crystal are made can be seen as the solution of a TSP.

e Hole drilling (Reinelt [241]): the holes to be drilled on boards or metallic
sheets are the cities, and the tour is the distance it takes to move the drill
head from one hole to the next.

Some excellent surveys of published research on the TSP can be found in Lawler

et al. [180], Reinelt [242], Jinger et al. [164], and Johnson and McGeoch [161].

3.5.1 Heuristic Methods for TSP

In this subsection, we address some of the well known heuristic methods for solving
the TSP. The objective of this subsection is to give a general overview of the
approaches used to solve the TSP rather that comparing the effectiveness among
the approaches used in solving the problem. Generally speaking, TSP heuristics

can be classified as tour construction, tour improvement, and composite heuristics.

3.5.1.1 Tour Construction Heuristics

In brief, tour construction procedures gradually build a tour by selecting each
vertex in turn and by inserting them one by one into the current tour. Various
techniques are used for selecting the next vertex and for identifying the best in-
sertion place. While the procedures are very fast, the solution quality is usually

rather poor.

CHAPTER 3 74

Nearest Neighbour:

Bellmore and Nemhauser [30] propose this procedure where a feasible tour is con-
structed by including the most advantageous city at each step. This heuristic
requires O(n?) time and the steps are as follow:

S 1: Consider an arbitrary vertex as a starting point.
S 2: Determine the closest vertex to the last vertex considered and include it in
the tour. If any vertex has not yet been considered, repeat S2.

S 3: Link the last vertex of the tour to the first one.
A possible modification is to consider in turn all n vertices as a starting point. The

overall time complexity is then O(n?) and the resulting tour is generally better.

Insertion:

Rosenkrantz et al. [244] consider a class of insertion procedures that use various
criteria. The steps are briefly summarised as follow:

S 1: Construct a first tour consisting of two vertices.
S 2: Consider in turn all vertices not yet in the tour. Insert in the tour a vertex
chosen with respect to a given criterion, for example:
(a) the vertex yielding the least distance increment,
(b) the vertex closest to the current tour,
(c) the vertex furthest away from the tour,
(d) the vertex forming the largest angle with two consecutive vertices of the
tour, etc.
If any vertex has not yet been considered, repeat S2.
S 3: Link the last vertex of the tour to the first one.

Depending on the criterion that is used, the complexity of this heuristic varies

between O(nlogn) and O(n?).

Clarke-Wright:
This procedure is derived from a more general VRP proposed by Clarke and Wright

[55]. In terms of the TSP, the steps are given as follow:

S 1: Consider an arbitrary vertex as a depot (e.g. city 1) where the tour returns
to the depot after each visit to another vertex.

S 2: Calculate the saving s;; = c1; — ¢;; + ¢;1 for all pairs of vertices 7 and j. Note
that the saving is the amount by which the tour would be shortened if the
tour went directly from one vertex to the other, bypassing the depot. Order
the savings in non-increasing order.

CHAPTER 3 75

S 3: Starting from the top of the order, perform the bypass so long as it does not
create a cycle of non-depot vertices or cause a non-depot vertex to become
adjacent to more than two other non-depot vertices.

S 4: Repeat S3 until there are only two non-depot vertices remaining connected
to the depot.

This heuristic can be implemented to run in O(n?logn) time.

Christofides:

Christofides [52] proposes a heuristic that is run in O(n3) time. The heuristic
proceeds as follows:

S 1: Construct a minimum spanning tree 7' for the set of cities.

S 2: Construct a minimum matching M for the set of all odd degree vertices in
T.

S 3: Find an Eulerian tour for the Eulerian graph (i.e. a cycle that passes through
each edge exactly once) that is the union of 7" and M.

A travelling salesman tour can then be constructed by traversing this cycle while

taking shortcuts to avoid multiple visited vertices.

3.5.1.2 Tour Improvement Heuristics

These heuristics start with an arbitrary initial tour and then search for improve-
ment by edge exchange method. The method locally modifies the current solution
by deleting k& edges from the current tour and reconnecting the resulting paths
using k new edges so as to generate a new improved solution. Typically, these
heuristics are applied iteratively until a local optimum is found. The major draw-

back of these heuristics is the possibility of becoming trapped at a local optimum.

k-Opt:
S 1: Consider an initial tour.
S 2: Remove k edges, thus breaking the tour into & paths. Reconnect the & paths

in all possible ways. If any reconnection yields a shorter tour, consider this

tour as a new solution and repeat S2. STOP when no improvement can be

obtained.

CHAPTER 3 76

In the case of 2-Opt, a neighbouring solution is obtained from the current so-
lution by deleting two edges, reversing one of the resulting paths and reconnecting
the tour (see Figure 3.13). The 2-Opt heuristic is proposed by Croes [62] and

requires O(n?) time.

Figure 3.13: A 2-Opt move: original tour (left) and resulting tour (right)

a b a b

Lin [189] proposes a 3-Opt move, where three edges are deleted. The three
resulting paths are then put together in a new way, possibly reversing one of them
(see Figure 3.14). The computational results show that the 3-Opt moves is more
effective than 2-Opt moves, though the size of the neighbourhood is larger and
hence more time consuming to search. The time complexity for searching the

neighbourhood defined by 3-Opt is O(n?).

Figure 3.14: 3-Opt moves: original tour (far left) and possible resulting tours

(right)
a f a f a
b eg 2b ey b
d c d c

f//»\\a P
eQ\ /jb |
d ¢

Bentley [31] derives a 2.5-Opt heuristic for geometric TSP, which expands the

2-Opt neighbourhood to include a simple form of 3-Opt move that can be found
with little extra effort. In a 2.5-Opt move, one relocates a single city from its
current location to a position between two current tour neighbours elsewhere in
the tour. This corresponds to the situation where b and c are the same city in

Figure 3.14. The 2.5-Opt heuristic achieved a better average tour over 2-Opt but

CHAPTER 3 77

with a much longer computation time. However, it is still worse than the 3-Opt
heuristic.

Lin and Kernighan [190] suggest a 4-Opt move which is also known as the
double-bridge move. A double-bridge move can be viewed as a combination of two
2-Opt moves. The heuristic starts by breaking four edges in the tour thus forming
four paths. Suppose the resulting four paths are 7175737} in order (see Figure
3.15). The move rearrange these into the new ordering 77,7575 (without reversing
any of the paths) and this yields the new tour. Computational experiments show
that the algorithms based solely on 4-Opt move did not find noticeable better

solutions than the 3-Opt heuristic.
Figure 3.15: A 4-Opt move: original tour (left) and resulting tour (right)

a

T4//"_‘\<1 // N

h c h < c
A

1
| ' A
1 !

LN

e f e

b a b

Or-Opt:

Or [221] proposes a simplified exchange procedure requiring only O(n?) operations

at each step, but producing tours nearly as good on average as those obtained with

a 3-Opt heuristic. The steps are as follow:

S 1: Consider an initial tour and set ¢ := 1 and s := 3.

S 2: Remove a chain of s consecutive vertices from the tour, starting with the
vertex in position ¢, and temporarily insert it between all remaining pairs of
consecutive vertices on the tour.

e [f the temporary insertion yields a shorter tour, implement it immedi-
ately, thus defining a new tour. Set ¢ := 1 and repeat S2.
e If no temporary insertion yields a shorter tour, set ¢t :=¢t+1. I[ft = n+1,

then proceed to S3, otherwise repeat S2.

S 3: Sett:=1land s:=s— 1. If s >0, go to S2, otherwise STOP.

CHAPTER 3 78

Lin-Kernighan (LK):
Lin and Kernighan [190] develop a sophisticated edge exchange procedure where
the number of edges k, to be exchanged in each step is regarded as a variable. LK
uses a very complex neighbourhood search structure which requires O(n°) time.
The LK algorithm was considered for many years to be the ‘uncontested champion’
- of heuristic methods for the TSP (cite in Johnson and McGeoch [161]). The best
description of the full details of the LK algorithm is the original paper by Lin
Kernighan in 1973.

3.5.1.3 Composite Heuristics

The procedures combine tour construction and tour improvement heuristics. The
idea behind a composite heuristic is to obtain a good initial solution quickly and
then apply a computationally more expensive improvement heuristic to get to a

near optimal solution.

CCAO:

Golden and Stewart [127] design a composite heuristic for symmetrical Euclidean
TSP. It exploits a well known property of such problems, namely that in any
optimal solution, vertices located on the convex hull of all vertices are visited in the
order in which they appear on the convex hull boundary. This heuristic constructs
an initial tour consisting of the convex hull of vertices. Vertices not yet on the
tour are gradually included by first considering all possible insertions, and then
selecting the best move according to a largest angle criterion. The Hamiltonian
tour is then improved by the Or-Opt as the post-optimisation procedure. The

heuristic can be summarised as follows:

S 1: (C: Convex Hull) Define an initial (partial) tour by forming the convex hull
of vertices.

S 2: (C: Cheapest Insertion) For each vertex k not yet contained in the tour,
identify the two adjacent vertices i and jx on the tour such that ¢;, x + cij, —
Cirj, 18 minimised (¢;; = cost or distance from city 7 to city 7).

S 3: (A: Largest Angle) Select the vertex k* that minimises the angle between
edges (i, k) and (k, jx) on the tour, and insert it between g and jg-.

S 4: Repeat S2 and S3 until a Hamiltonian tour of all vertices is obtained.

S 5: (O: Or-Opt) Apply the Or-Opt procedure to the tour and STOP.

CHAPTER 3 79

GENIUS:
Gendreau et al. [109] develop an efficient heuristic algorithm called GENIUS, which

is a combination of a Generalised Insertion (GENI) procedure and an Unstringing
and Stringing (US) post-optimisation routine. This routine consists of removing
a vertex from a feasible tour and of inserting it back at different position. There
are two insertion and unstringing types in GENI and US procedures respectively.
Detailed descriptions of the two insertion and unstringing types can be found in
Gendreau et al. [109]. The procedures are summarised as follow (extracted from
Gendreau et al. [109]):

GENI procedure:

S 1: Create an initial tour by selecting an arbitrary subset of three vertices. Ini-
tialise the p-neighbourhoods of all vertices (p-neighbourhood = set of the p

vertices on the tour closest to v, where v is an arbitrary vertex not yet on

the tour).

S 2: Randomly select a vertex v not yet on the tour. Implement the cheapest
insertion of v considering the two possible orientations of the tour and the
two insertion types. Update the p-neighbourhoods of the all vertices after

vertex v is inserted into the tour.

S 3: If all vertices are now part of the tour, STOP, otherwise go to S2.

US routine:
S 1: Consider an initial tour 7 of cost z. Set 7* := 7, z* := z and ¢t := 1.

S 2: Starting from tour 7, apply the unstringing and stringing procedures with
vertex vy, considering in each case the two possible types of operations and
the two possible orientations of the tour. Let 7’ be the tour obtained and let
Z' be its cost. Set 7:= 7" and z := 2’

e [f 2 < 2% set 7" =171, 2*:= zand t :=1; repeat S2.
e If 22> 2 sett =1+ 1.

e [f and t = n + 1, STOP: the best available tour is 7* and its cost is

equal to z*, otherwise repeat S2.

CHAPTER 3 30

3.5.2 Exact and Local Search Approaches for TSP

A large number of exact algorithms such as Linear Programming (LP), Dynamic

Programming (DP) and B&B approach have been proposed for the TSP.

One of the earliest exact algorithm formulations is due to Dantzig [63] in 1954.
He formulates the problem as an Integer LP problem involving zero-one variables
and using a cutting plane approach to prove the optimality of a heuristic solution

to a 49-city problem (an impressive size at that time).

The recursive technique of DP for the TSP is suggested by Bellman [29] and
independently by Held and Karp [141] in 1962. At that time, DP could only solve
relatively small problem instances (up to 17 cities), due to its enormous storage
requirements. With the advances of the modern computer, we would expect to

solve larger problem instances today.

The B&B approach also plays an important role in the development of the
TSP. The first ever B&B approach for TSP was developed in 1958 by Eastman [85]
and it has became a general tool for hard problems in combinatorial optimisation
problems. The success of the algorithm also led to the derivation of the well known

lower bound for STSP by Held and Karp [142, 143].

Over the past fifty years, the record for the largest non-trivial TSP instance
solved to optimality has increased substantially from 49 cities problem in 1954 up
to 24 978 Swedish cities problem in May 2004. Although the advances seen can be
partly attributed to the increase in computing power, much of the improvement is
due to the major developments in the use of B&B approaches. Applegate et al. [9]
develop a very successful Branch and Cut algorithm which is derived from the B&B
approach by employing the cutting plane method to strengthen the relaxations
used for branching. Laporte [177] gives an excellent overview on the exact and
approximate algorithms for TSP.

In recent years, local search methods like the Iterated Lin-Kernighan (by John-

son and McGeoch [161]) and Chained Lin-Kernighan (by Applegate et al. [10, 12]),
based on the Martin-Otto-Felten approach described by Martin et al. [205, 206] are

CHAPTER 3 81

widely believed to be the most cost-effective way to improve on the LK algorithm.
The successful implementation of the Chained Lin-Kernighan on large scale STSP
has led to the development of the state-of-the-art Concorde software for solving
the large STSP. Concorde uses the Chained Lin-Kernighan as part of its exact

solution procedure based on the Branch and Cut algorithm.

Other promising methods for solving TSP are Guided Local Search (GLS)
as proposed by Voudouris and Tsang [272] and Guided Variable Neighbourhood
Search (GVNS) as proposed by Burke et al. [39].

GLS augments the cost function of the problem to include a set of penalty terms
for the edges and passes this problem, instead of the original one, for minimisation
by the local search procedure. Each time a local search gets caught in a local
optimum, the penalties are modified and local search is called again to minimise
the modified cost function. Local search is confined by the penalty terms and
focuses attention on promising regions of the search space. As the penalties build
up for edges frequently appearing in local optima, the algorithm starts exploring
new regions in the search space by including edges not previously use and therefore
not penalised. Voudouris and Tsang [272] combine the GLS with a neighbourhood
reduction scheme, called Fast Local Search (FLS) which significantly speeds up
the operations of the algorithm. The GLS implementation that uses the FLS and
2-Opt move within the local search procedure easily outperform some general local
search methods such as simulated annealing and tabu search. Furthermore, they
demonstrate that GLS with FLS-20pt is highly competitive, if not better, than
some of the best specialised algorithms for the STSP such as Iterated LK and

genetic local search.

GVNS proposed by Burke et al. [39] uses the notion of guided shakes within
Variable Neighbourhood Search as a method to restart the search when it becomes
trapped in a local optimum. This is shown to improve on the performance of ran-
dom shaking strategies suggested in the original work by Hansen and Mladenovi¢
[134]. GVNS uses a hybrid approach of the HyperOpt/3-Opt as the local search
heuristic. This approach yields very good results for the test problems in ATSP.

CHAPTER 3 &2

The first researcher who tackle the TSP with GAs appears to be Brady [36]
in 1985. His example is soon followed by Grefenstette et al. [131], Goldberg and
Lingle [126], Oliver et al. [220] and many others. Comprehensive surveys can
be found in Potvin [235], Schmitt and Amini [248], and Larranaga et al. [178].
Moreover, an annotated bibliography is given in Alander [5]. Despite the leap in
the performance of GAs since the work of Miihlenbein et al. [215] in 1988, it is
only recently that they have appeared competitive. Recent papers by Freisleben
and Merz [105], Jayalakshmi et al. [159], and Chol et al. [50] yield encouraging

results supporting the competitiveness of GAs.

Freisleben and Merz [105] propose a genetic local search algorithm for solving
both STSP and ATSP. Their approach is based on the combination of GA and local
search methods that employ heuristics such as LK for STSP and Nearest Neighbour
for ATSP. Local search techniques are used to efficiently find the local optima in the
TSP search space, and GA is used to broaden the search in order to find improved
local optima. A new crossover operator, Distance Preserving Crossover (DPX)
as explained in Section 4.6.2 has been developed to enable the GA to perform a
particular ‘jump’ within the search space of local optima. Furthermore, there is a
mutation operator which performs random jumps within the neighbourhood of the
local optima, and a new replacement strategy which maintains a sufficient degree
of diversity within the population. The computational results presented for several
symmetric and asymmetric TSP instances have shown that the approach is able

to produce high quality solutions in reasonable time.

A Hybrid GA (HGA) is designed by Jayalakshmi et al. [159]. They develop
three heuristics for the Fuclidean TSP. One of the heuristics, called Initialisation
Heuristic (IH), is applicable only to the Euclidean TSP and is for generating the
initial population. The other two heuristics: RemoveSharp and LocalOpt, can be
applied to all forms of symmetric and asymmetric TSPs. Both heuristics are greedy
in nature. Results obtained by HGA outperform the results obtained by existing
GA implementations for certain problems, where the convergence rate is found to

be high and the optimal solution is obtained in a fewer number of generations.

CHAPTER 3 33

Chol et al. [50] present a GA to solve the ATSP. The GA proposed extends the
search space by purposefully generating and including infeasible solutions in the
population. Instead of trying to maintain the feasibility with crossover operations,
it searches through both feasible and infeasible regions for good quality solutions.
The Karp’s patching algorithm (see Karp [166]) is used as a repair algorithm to
convert infeasible solutions to feasible ones from time to time. A comparative
computational study using benchmark problems shows that the proposed GA is a

viable option for ATSP.

Glover [116] appears to be the first researcher who developed the tabu search
algorithm for the STSP. Limited results were reported by Glover [117], Knox and
Glover [171], Knox [169, 170], and Malek et al. [201]. All these algorithms use
2-Opt as their basic moves, but they differ with respect to the size of the tabu list
used and the implementation of the aspiration criterion. Tsubakitani and Evans
[267] study the problem of optimising the size of the tabu list when applying tabu
search with a short term memory function to the STSP. Their study revealed that
good tabu list sizes are smaller than generally believed. Computational results
show that tabu search generates better solution quality when constructed to a
tixed computation time compared to 2-Opt and 3-Opt moves, for a variety of
small problem instances. However, Johnson and McGeoch [161] conclude from the

literature that tabu search appears to be inferior to the Lin-Kernighan method in

terms of the solution quality obtainable within a fixed computation time.

The first simulated annealing applied to TSP was due to Kirkpatrick et al. [168]
and independently by Cerny [45]. Since then, the TSP has continued to be a prime
testbed for the approach and its variants. Generally speaking, simulated annealing
is unable to compete with a single run of Lin Kernighan in terms of the solution
quality obtainable within a fixed computation time. However, over longer time
periods, simulated annealing can outperform multi-start Lin Kernighan on some

instances (Johnson and McGeoch [161]).

Chapter 4

Genetic Algorithms

4.1 Introduction

The aims of this chapter are to give more detailed descriptions of the main com-
ponents in a standard Genetic Algorithm (GA) and our proposed MultiCrossover
Genetic Algorithms (MXGAs). A brief overview of a GA is presented in Section
2.5.4. Each main component of the GAs is described and a brief summary of the
variety of approaches often used in the components is provided. Note that the main
objective of this chapter is to give an overview of the approaches used in the GAs
rather than comparing the effectiveness and efficiency of the approaches in solving
combinatorial optimisation problems. The efficiency of an approach depends on
the representation used and differs from one problem domain to another. In the
remainder of this chapter, without loss of generality, we refer to the chromosome

as an individual, and genes in the chromosome as the elements in the individual.

In Sections 4.2 — 4.8, the approaches used in each component of GAs are briefly
explained in chronological order. The general framework of the proposed MXGA
is addressed in Section 4.9. We end this chapter by giving a summary of the GAs

in Section 4.10.

84

CHAPTER 4 85

4.2 Representation

Each individual represents a legal solution to the problem and is composed of
a string of elements with length L. The binary alphabet {0,1} is often used to
represent these elements but depending on the application, integers or real numbers
are used. In fact, almost any representation can be used that enables a solution to
be encoded as a finite length string. Figure 4.1 shows some examples of commonly

used representation for individuals.

Figure 4.1: Examples of Individuals

Binary Representation
Individual: 1 0 0 0 1 0 1 1 0 1
Example of problem: Knapsack Problem
Encoding: ‘I’= item in the knapsack, ‘0’ otherwise.

Permutation Representation

Individual: 3 7 2 8 10 1 9 6 4 5
Example of problem: Cutting and Packing Problem
Encoding: sequence of the items to be placed.

Matriz Representation

J1 g2 Js Ja
1) 0 0 0 1
Individual : Zj (1) 8 é 8

14 01 0 0
Fxample of problem: Travelling Salesman Problem
Encoding: ‘1’= city 7 is visited immediately after city ¢, ‘0’ otherwise.
Real Value Representation
Individual : 1.23 5.78 3.56 0.89 1.02
Example of problem: Finding Weights for Neural Network
Encoding: values represent weights for inputs.

Since the Travelling Salesman Problem (TSP) is one of the most studied com-
binatorial optimisation problems, there is no surprise that there have been many
different representations used to solve the TSP using GAs. As a result, the TSP
is a good example problem to use as a basis for describing the different types of
representation. In the remainder of this section, we explain briefly the represen-
tations used in GAs to solve the TSP. Excellent reviews are given in Potvin [235]

and Larranaga et al. [178].

CHAPTER 4 86

Binary Representation

In this representation, each city in a n-cities TSP is represented as an element
with a string of [log, n] bits, and an individual is a string of n[log, n] bits. For
example, in a TSP with six cities, the cities are represented by 3-bits strings as

given in Table 4.1. Thus, the tour of cities

7:1-2-3-4—-5—-6
is represented by
C = (000 001 010 011 100 101).

Note that there exist 3-bit strings which do not corresponds to any city: 110 and

111.

Table 4.1: Binary Representation of a 6-cities TSP (Larrafiaga et al. [178])

7 City @ 1 City 4
1 000 4 011
2 001 5 100
3 010 6 101

Although the binary strings constitute the most natural way of representation

in GAs, it is considered to be not very appropriate for the TSP as commented by

Whitley et al. [278]:

“Unfortunately, there is no practical way to encode a TSP as a binary
string that does not have ordering dependencies or to which operators
can be applied in a meaningful fashion. Simply crossing strings of cities
produces duplicates and omissions. Thus, to solve this problem some
variation on standard genetic crossover must be used. The ideal recom-
bination operator should recombine critical information from the parent

structures in a non-destructive, meaningful manner.”

CHAPTER 4 87

Path Representation

This is considered to be the most natural way to encode TSP tour. In this repre-
sentation, the n cities to be visited are sequenced in order according to a list of n
elements, so that if city ¢ is the jth element of the list, city ¢ is the jth city to be

visited. Hence, the tour of cities

7:2-8-5-3-7-9-1-10-6—-4

is simply represented by
C=(285379 1106 4).

This representation has encouraged a great number of crossover and mutation

operators to be developed. These operators are discussed in detail in Section 4.6

and 4.7.

Adjacency Representation

This representation is developed by Grefenstette et al. [131] and is designed to
facilitate the manipulation of edges between cities in the tour. The crossover
operator developed based on this representation produces offspring that inherit
most of the edges from their parents. A tour is represented as a list of n cities.
City j is listed in position 4 in the individual if, and only if, the tour leads from
city 7 to city j (i.e. there is an edge from city 4 to city 7 in the tour). Hence, the

tour 7" mentioned above can be encoded as

C=(10872349516).

Ordinal Representation

This representation is also developed by Grefenstette et al. [131]. The encoding is

based on a ‘reference tour’. Assume, for example, that the reference tour is given

by
R=(123456789 10).

CHAPTER 4 38

Now the tour 7" mentioned earlier is represented as
C=(2742441321).

This approach is interpreted as follows. The first number of C' is a ‘2’. This means
that the first city of the tour is the second element of list /2. The second element
is then removed from R and the partial tour is: 2—. The second element of C' is
a ‘7. Therefore, the second city of the tour is the 7th element of list R, which is
city ‘8”. The 7th element is then removed from R and the partial tour is: 2 — 8—.
The process is repeated until all the elements of R have been removed and the

final tour is

7:2-8-5-3-7-9-1-10—-6—4.

Matrix Representation

Fox and McMahon [104] represent a tour as a matrix in which the element in row
¢ and column 7 is a ‘1’, if and only if, in the tour city 7 is visited before city j. For

example, the tour (2 — 3 — 1 — 4) is represented by the matrix

0001

1011
C =

1 001

0000

Seniw [251] and Homaifar et al. [148] have an alternative approach. They
defined the matrix element in the sth row and the jth column to be ‘1’ if, and only
if, the tour city j is visited immediately after city 7. This implies that a legal tour
is represented by a matrix of which each row and each column contains precisely

one ‘1’. For example, the tour (2 —3 — 1 —4) mentioned earlier can be represented

by matrix
0001
0010
C =
1000
01 00

CHAPTER 4 &9

4.3 Initial Population

Once a suitable representation has been decided, an initial population of size P,
is created to serve as the starting point for the GA. The initial population can be
created using two methods:

(1) randomly or

(2) by using specialised problem specific information.

A small population size may not be able to cover the solution space adequately,
whereas a large population size may incur a heavy computational burden without
making acceptable progress toward a high quality solution in a reasonable amount
of time. Many report implementations where a population size between 30 and

200 is usually recommended (see Grefenstette [129], Goldberg [122] and Alander
3]).

4.4 Fitness Evaluation

This involves defining an objective or fitness function against which each individual
is tested for suitability to be introduced to the population under consideration.
As the algorithm proceeds, one would expect the individual fitness of the ‘best’

individual to increase as well as the fitness of the population as a whole.

If the GA has been correctly implemented, the population will evolve over
successive generations so that the fitness of the individuals in each generation
will increase towards better local optima. Convergence is the progression towards
increasing uniformity. De Jong [163] gives the following definition in his thesis in

1975:

“A gene is said to have converged when 95% of the population share
the same value. ... The population is said to have converged when all

of the genes have converged.”

CHAPTER 4 90

However, if the population converges too quickly, it often leads to the prob-
lem of premature convergence. Premature convergence is a commonly cited prob-
lem with GAs when a few comparatively highly fit (but not optimal) individuals
dominate the population, causing it to converge on a local optimum. Once the
population has converged (every individual in the population is identical), the abil-
ity of the GAs to continue to search for better solutions is effectively eliminated.
Crossover of almost identical individuals produce little that is new. New areas
of the solution space can only be explored by mutation, which simply performs a

slow random search.

4.5 Selection Mechanism

Individuals are selected from the population to be the parents for crossover with
a given selection probability ps. According to Darwin’s evolution theory, the best
ones should survive and create new offspring. In the remainder of this section, we

define the selection probability p,, of an individual ¢ as:

ps(1) = ffl where (4.1)

/i is the fitness value associated with individual 4; and

f is the mean fitness of the current population.

We refer to the selection pressure as the degree to which selection favours fitness.
The selection pressure is characterised by the take over time I', the number of
generations taken for the best individual in the initial generation to completely
dominate the population (mutation and crossover are switched off). When the
selection pressure is low, the selection procedure allows less fit individuals to re-
produce at close to the rate of fitter individuals while maintaining the diversity
and variation in the population. When the selection pressure is high, the selection
procedure strongly emphasises highly fit individuals, assuming that the early di-

versity with the slow selection has allowed the population to find the right part of

the search space.

CHAPTER 4 91

A comparative analysis of selection mechanism used in GAs is given by Gold-
berg and Deb [124]. Note that the name of the author/researcher who proposed

the approach is stated next to the name of the selection mechanism.

Roulette Wheel (Holland [147], 1975):

Each individual is represented by a space in a roulette wheel that proportionally
corresponds to its selection probability ps(¢). By representing the spinning of the
roulette wheel, parents are chosen using ‘stochastic sampling with replacement’
strategy. This strategy is very sensitive to fitness function design. For example,
let four individuals have fitness of 0.004, 0.002, 0.003, and 0.500. The ‘0.500’
individual (super individual) will take up almost the entire wheel, and so will be
likely to be alone in the next generation (i.e. the selection pressure very high).
While on another example where individuals with fitness 998, 997, 999, and 1000
have virtually no selection pressure at all. There are also problems when dealing

with zero and negative fitness.

Rank (Baker [18], 1985):

17

Rank selection first ranks the population from 1 to Py, (population size) according
to their individual selection probability ps(z). The worst will have rank 1, second
worst rank 2, etc. and the best will have rank F,,,. The parents are selected
through roulette wheel selection, but the segments of the wheel are proportional
to the individual’s rank, rather than its selection probability. This strategy reduces
the dominating effects of super individuals, and thus reduces the selection pressure
when the fitness variance is high. But, this can lead to slower convergence, because

the best individuals do not differ so much from the others.

Stochastic Universal Sampling (SUS) (Baker [19], 1987):

Assume that the population is laid out in random order as in a pie graph, where
each individual is assigned space on the pie graph in proportion to its selection
probability p,(4). Next, an outer roulette wheel is placed around the pie with Py

(population size) equally spaced pointers. A single spin of the roulette wheel will

CHAPTER 4 92

now simultaneously pick all F,,, parents. An example with a P,,, = 16 is given in

Figure 4.2. A single spin of the outer roulette wheel will simultaneously select all

16 parents.

Figure 4.2: An example of a Stochastic Universal Sampling
1

16

Sigma Scaling (Tanese [263], 1989):

This is achieved by mapping ‘raw’ fitness values of an individual ¢ to its ‘Expected
Value’ (ExpVal); so as to make the GA less susceptible to premature convergence.
(EzpVal); of an individual 7 is the expected number of times an individual will
be selected to reproduce. This strategy also helps to keep the selection pressure
relatively constant over the course of the run rather than depending on the fitness
variance in the population. The expected number of times of an individual ¢ to be

selected to reproduce at time ¢ is given as follows:

1+ LGSO it 51 £ 0

20(t)

1.0 if o(t) =0

ExpVal(i,t) = where (4.2)
f(2) is the fitness of 1;
f(t) is the mean fitness of the population at time ¢;

o(t) is the standard deviation of the population fitness at time ¢.

In early stage, when () is typically high, the fitter individuals will not be
many standard deviations above the mean, and so they will not dominate the
offspring. But, in the later stage, when the population is closer to convergence
and the o(t) is typically lower, the fitter individuals will stand out more, allowing

evolution to continue.

CHAPTER 4 93

Tournament (Goldberg et al. [125], 1989):

There are several variants and the idea is simple. In the binary tournament selec-
tion, a pair of individuals are selected randomly from the population. The fitter
of the two is selected to be the parent. The two are then returned to the origi-
nal population and can be selected again. This is repeated until F,,, individuals
have been selected. Larger tournaments may also be used, where the fittest of K

(K < P,,p) randomly chosen individuals are selected.

Using larger tournaments has the effect of increasing the selection pressure,

since less fit individuals are less likely to be selected, while fitter individuals have

an increased likelihood.

In order to control the selection pressure, a probabilistic binary tournament
selection can be employed. The fitter individual is selected to be the parent with
a probability p, where 0.5 < p < 1. The selection pressure can be lowered by
using lower values of p, since less fit individuals are comparatively more likely to

be selected, while fitter individuals are less.

Boltzmann Tournament(Goldberg [123], 1990 and Mahfoud [200], 1991):
This is an approach which thermodynamically control the selection pressure of a
GA, using principles from Simulated Annealing (SA). In order to do so, a mixture

of SA acceptance probabilities and three-way tournament selection is proposed.

First of all, three individuals {ay, as,a3) are randomly selected from the pop-
ulation. Individual a; must differ from a; by a fitness amount of . Individual
az must also differ from a; and a; by at least ¢. Then, ay and az will compete
using a winning probability according to a logistic probability function of fitnesses
and temperature. The winner will compete against a; using the similar winning

probability, and the best individual will be selected as the parent for crossover.

Using the fitness values f1, f5, and f3 of individuals a;, ay and ag respectively,

the winning probabilities for as over az (p'), a1 over ay (p”), and a; over az (p")

CHAPTER 4 94

are given by (extracted from Goldberg [123]):

. 1
L Y
1
7o
P= g and (4.3)
1
"o
L Y

Then, the overall winning probabilities p1, p2 and ps for a1, as and as, are given by

(extracted from Mahfoud [200]):

p1 — pl(l—p”)+(1—‘pl)(1_‘p”l),

/i

p, = p'p’, and (4.4)

ps = (1-p)p"
At the early stage, the temperature starts out high (i.e. the initial temperature,
y stag p g
7o), which means that the selection pressure is low. The temperature is gradually

lowered in the later stage according to the rule
iy =a- 1y, (4.5)

where « is the cooling coefficient. By doing this, we gradually increase the selection
pressure, thereby allowing the GA to narrow in ever more closely to the best part
of the search space while maintaining the ‘appropriate’ degree of diversity. At each
temperature T3, a number of function evaluations Ny, are performed (i.e. the time

to reach equilibrium at a given temperature).

According to Goldberg [123], the value of ¢ is initially set to 0.5 and changed

after each selection of an individual according to the rule

*T‘ln<“2——1),l p2—p|+1) <1
w; = [p2—p1]+1 i (I 2 1|) (4.6)
Prmax s (pe—m|+1) =21

(with e being a value large enough to guarantee acceptance).

CHAPTER 4 95

4.6 Crossover Operator

Crossover is a strategy of producing new offspring by replacing some of the elements
in one parent with the corresponding elements of the other parent. Crossover is
used with the hope that the new offspring will inherit good characteristics of both
parents. There are many different variants of crossover operators that are specially
designed to suit the different type of representation and problems. Not all the
crossover operators discussed below are suitable for all problems. For instance, the
sorted match crossover operator is specially designed for T'SP but is not suitable

for other problems such as machine scheduling problem.

Crossover is not usually applied to all pairs of selected parents. Instead, a
random choice is made based on a crossover probability p.. Empirical studies have
shown that better results are achieved by a crossover probability of between 0.60
and 0.95 (see Grefenstette [129] and Schaffer et al. [247]). If crossover is not
applied to the selected parents, two offspring are produced simply by duplicating
the selected parents via the reproduction strategy. This gives each individual a

chance of passing on its elements without the disruption of crossover.

In the remainder of this section, we describe briefly some of the crossover oper-
ators used in literature by classifying them based on the representation framework
used. The author/researcher who proposed the operator is listed next to the name

of the crossover operator.

4.6.1 Binary Representation

1- and 2-Point Crossover (Holland [147], 1975):

1-point crossover involves taking the two selected parents and crossing them at a
randomly chosen point. The parents exchange ‘tails’ to generate two offspring. In
2-point crossover, two randomly chosen points are selected. Substrings between
the two crossover points swap their positions between the two parents, rendering

two offspring. Figure 4.3 shows examples of 1-point and 2-point crossover of two

CHAPTER 4 06

parents using binary representation. In fact, we can choose more crossover points

so that the search can diversify into other “interesting’ regions of the solution space.

Figure 4.3: 1-Point and 2-Point Crossover

Parent1:(1 0 0110 011 0) Offspringl:(100111011)

crossover point |

Parent2:(0 10 0{1 101 1) Offspring2:(01 000011 0)
1-point crossover

Parent 1 : (1 0;0 10011 0) Offspringl:(100011010)
CTOSSOVeET point | i
Parent2: (0 110 0 1 1 0/1 1) Offspring2:(01 071 00111)

! [
1 |

2-point crossover

Uniform Crossover, UX (Syswerda [261], 1989):

This crossover performs at each point a random decision to produce the offspring.
Each element in the offspring is created by copying the corresponding element
from one of the parents. The element is chosen according to a randomly generated
crossover mask using a binary representation. A ‘1’ in the crossover mask means
the element is copied from the first parent, and ‘0’ means the element is copied
from the second parent, as shown in Figure 4.4. The offspring therefore contains
a mixture of elements from each parent. The process is repeated to produce the

second offspring. A new crossover mask is randomly generated for each pair of

parents.

Figure 4.4: Uniform Crossover

Parent1: (71 0010 0110) Offspringl:(10010 1010)

Parent2: (01001101 1) Offspring2:(010010111)

CHAPTER 4 97

4.6.2 Path Representation

Partially Mapped Crossover, PMX (Goldberg and Lingle [126], 1985):

For PMX, it is not the values of the element which are crossed, but the order
in which they appear. Offspring inherit elements with ordering information from
each parent. PMX first randomly selects two crossover points on both parents
(see Figure 4.5). In order to create an offspring, the substring between the two
crossover points in the first parent replaces the corresponding substring in the
second parent (see S1). Then, the interchange mapping is applied outside of the
crossover points as many time as necessary, in order to eliminate duplicates and

- recover all elements (see S2).

Figure 4.5: Partially Mapped Crossover

5371064)
5371064)

Parent1:(2 8 53|79 110 6 4) (S1H:(2 8

crossover points Offspring 1:(S2):(2 8
Parent2:(6 4 9 8(5 3 7|2 10 1)

= I
N I«

[o2e]

7912101)
79121035)

(Sly:(6 4
interchange mapping : Offspring 2 :(S2):(6 4

1w o
o)

7 <> 5 9 «—>3] «—>7

Note that the absolute positions of some elements of both parents are preserved.
In fact, the number of elements that do not inherit their positions from one of the

two parents is at most equal to the length of the substring.

Order Crossover, OX (Davis [65], 1985):

T'wo crossover points are selected randomly on the selected parents (see Figure 4.6).
The substring between the crossover points in the first parent is copied to the first
offspring (see S1). Then the remaining positions in the first offspring are filled
by considering the sequence of elements in the second parent, starting after the
second crossover point (when the end of the individual is reached, the sequence
continues at position 1) (see S2). Note that the duplicates are not considered.

Similarly, the second offspring is formed by taking the substring from the second

CHAPTER 4 08

parent and by considering the sequence of elements in the first parent to fill up the
empty spaces in the offspring. This operator tries to preserve the relative order of

the elements in both parents.

Figure 4.6: Order Crossover

Parent1:(2 8 5 3|7 9 1|10 6 4) SD:(_ _ _ _ 791 _)

crossover points Offspring 1:(S2):(4 8 53 791210 6)
Parent2:(6 4 9 8|53 7|2 10 1)

()]

SO:(____537___)
Offspring 2 :(S2):(2 &8 537106 4)

=]
e~

1X (Davis [65], 1985):

This operator is the simplification of OX where a 1-point crossover is used instead
of a 2-point crossover (see Figure 4.7). The substring before the crossover point in
the first parent is copied to the first offspring (see S1). The remaining positions

in the first offspring are filled in the order of the second parent (see S2).

Figure 4.7: 1X Crossover

Parent1:(2 8 53(79110¢64) SH:(28 53 _ ___ _ _)

crossover point Offspring 1:(S2):(2 8 53649710 1)
Parent2:(6 4 9 8/53 7210 1)
SD:(6498)

Offspring2 :(S2):(6 4 98253 7110)

Sorted Match Crossover, SMX (Brady [36], 1985):

This operator searches for substrings in both parents which have the same length,
start with the same element, end with the same element and contain the same
set of elements. If such substrings are found, the fitness of these substrings are
determined. The substring with the lower fitness value in a parent is replaced with
the substring with the higher fitness value to form a new offspring. In Figure 4.8,
parent 1 contains the substring (8 5 3 7 9) and the parent 2 contains substring (8
75 39). These substrings have the same length, both begin with element ‘8’ end

with element ‘9’, and both contain the same elements. Suppose that the fitness

CHAPTER 4 99

value of substring (8 7 5 3 9) is higher than the fitness value of the substring (8 5
3 7 9). Then, the new offspring is created by replacing the substring (8 53 7 9)
in parent 1 with the substring (8 753 9).

Figure 4.8: Sorted Match Crossover
Parent 1: (28 537911064

Parent 2: (648 75 8 92101)
Offspring: (28 753911064)

Miihlenbein et al. [215] concluded that this operator was useful in reducing
the computation time, but it is a weak scheme for crossover. If no substring can
be found in both parents which fulfill the basic requirements of the operator, or
both substrings found contained the same sequence of elements and have the same

fitness value, then this operator has failed to produce a new offspring.

Cycle Crossover, CX (Oliver et al. [220], 1987):

This crossover focuses on subsets of elements that occupy the same subset of
position in both parents. It tries to inherit the position of each element from
one of the two parents. An example is given in Figure 4.9 where the underlined
elements in both parents are the subset of elements {2,6,10} that occupied the
same subset of positions {1, 8,9} in both parents. These elements are copied from
one parent to the offspring (at the same position), and the remaining positions
are filled with the elements of the other parent in the same order in which they

appeared in the parent.

Figure 4.9: Cycle Crossover
Parent1:(2 8 5379110 6 4) Offspringl :(24 9853

10 6

7 1)
Parent2:(6 4 98 53 7 2 10 1) Offspring2 :(6 8 537 912104)

Maximal Preservative Crossover, MPX (Mihlenbein et al. [215], 1988):

This operator works in a similar way to the PMX operator. An example is given

in Figure 4.10. A substring of the first parent is randomly selected, whose length

CHAPTER 4 100

[, is within the range of 10 < [< L/2, where L is the length of the individual.
If L < 20, then length | < 10. All the elements of the chosen substring are
removed from the second parent. An offspring is constructed by first copying the
substring from the first parent into the first part of the offspring (see S1). Then,
the remaining part of the offspring is filled up with elements in the same order as

they appear in the second parent (see S2).

Figure 4.10: Maximal Preservative Crossover

Parent1:(2 853791106 4) SH:(379_____ __)
substring: (3 7 9) Offspring 1:(82):(3 796 4852101)
Parent2:(6 4 9 8 537210 1) SH:(4985_)
substring : (4 9 8 5) Offspring2 :(S2):(49852371106)

This operator will only destroy a limited number of edges between the elements.
In fact, the maximum number of edges which may be destroyed is equal to the

length of the chosen substring.

Edge Recombination Crossover, ERX (Whitley et al. [278], 1989):
This operator is designed for the symmetric TSP. [t tries to use the edges which

are contained in both parents as much as possible. The steps to generate one
offspring is given below and an example lies in Figure 4.11.

1. Designing of the Edge table: assign a list of neighbours in parent 1 and
parent 2 to each city (the sign ‘- means that the corresponding city is a
neighbour in both parents). The first and the last cities are considered as

neighbours for the TSP.

2. An arbitrary first city is chosen from the table with the smallest list of

neighbours and is called the current city.
3. The following iterative procedure is used:

(a) Select a city which is a neighbour of the current one and which has
the fewest remaining neighbours (breaking ties randomly), or select an
arbitrary remaining cities if the current city has no remaining neighbour.

(b) The city is added to the tour and becomes the new current city.

(c) If all n cities are not selected, go to (a).

CHAPTER 4 101

Figure 4.11: Edge Recombination Crossover

Parent1:(2 853791106 4) Edge table :
Parent2:(6 4 9853 7210 1) operation neighbour
1 69 -10
Offspring 1:(3 5827 94 61 10) § 45778 10
. 4 -
Offspring 2:(53 79 82 4 6 10 1) . SR
6 1 410
where x = random breaks ties 7 2-39
8 2-59
9 1478
10 126

Linear Order Crossover, LOX (Falkenauer and Bouffouix [89], 1991):

This operator is a modified version of OX, proposed to solve job-shop scheduling
problems. The LOX operator differs from the OX in that the relative positions
of two elements are important and will be preserved. An example is given in
Figure 4.12 by using the same parents as in OX. Two crossover points are selected
randomly. The elements in the second parent are copied to the first offspring.
The elements in the substring (7 9 1) are removed from the first offspring, leaving
three empty spaces to be filled (see S1). The elements are first slid to the left up
to the point when no empty space remains on the left of the cross site. Then the
elements are slid to the right, leaving only empty spaces between the crossover
points. Finally, the empty spaces are filled with substring (7 9 1) (see S2). The

second offspring is generated analogously using the substring (5 3 7) and the first

parent.
Figure 4.12: Linear Order Crossover
Parent 1:(2 8 5 3|7 91|10 6 4) (S1):(6 4 _ 8|53 _|210 _)
CrOSSOVEr points Offspring 1: (S2):(6 4 8 57 9 1|3 2 10)
Parent2:(6 4 9 8(53 7|2 10 1)
SD:(28_ | 91106 4)
Offspring 2 :(S2):(2 8 9 1|53 7|10 6 4)

CHAPTER 4 102

Order-Based Crossover, OBX (Syswerda {262], 1991):

This crossover focuses on the relative order of the elements on the parents. An
example is given in Figure 4.13. At first, a subset of elements (underlined) are
randomly selected from the first parent. In the first offspring, these elements
appear in the same order as in the first parent, but at positions (circled) taken
from the second parent (see S1). Then, the remaining positions are filled with
the elements of the second parent (see S2). Similarly, the second offspring is
constructed by placing the subset of elements (underlined) selected from the second
parent at the positions (circled) taken from the first parent. Then, the remaining

empty spaces are filled with the elements of the first parent.

Figure 4.13: Order-Based Crossover

Parent 1:(2 8 5(3)7 9(1)10(6)4) SH:(_2 __5 4 _)
subset of elements : {2, 5, 4} Offspring 1:(S2):(6 29853 74101)

Parent 2:(6(4)9 8(5)3 7(2)10 1) SD:(__ _6__3 _1_)
subset of elements : {6, 3, 1} Offspring2 :(S2):(2 8 56 793 101 4)

Position-Based Crossover, PBX (Syswerda [262], 1991):

A subset of positions are randomly selected in the first parent (Figure 4.14). Then,
the elements found at these positions are copied to the first offspring (at the same
positions) (see S1). The other positions are filled with the remaining elements, in

the same order as in the second parent without duplication (see S2).

Figure 4.14: Position-Based Crossover

Parent1:(2 8 53791106 4) ShH:(2 _5_ _ __ _ _4)
subset of positions : {1, 3, 10} Offspring 1 : (§2):(2 6 59837101 4)
Parent2:(6 4 9853 72101) SH:(__9__3__10_)
subset of positions : {3, 6, 9} Offspring2 :(S2):(2 8 95731610 4)

CHAPTER 4 103

Subtour Exchange Crossover, SXX (Yamamura et al. [284], 1992):

A pool of offspring are generated by enumerating all the substrings of the parents
consisting of the same set of elements. Then, the best offspring is selected from
the pool of offspring. An example is given in Figure 4.15. Suppose that two
substrings consist of the same set of elements (e.g. {3,5,7,8} and {4,6} were
found in both parents). Two possible offspring are generated by exchanging the

common substrings from the parents.

Figure 4.15: Subtour Exchange Crossover

6 4) Offspringl: (2738591 1046)

Parent 1 : (28 53791 10

Parent2:(4 6 1 73 851

2 9) Offspring2 :(6 41853710289)

C>

Distance Preserving Crossover, DPX (Freisleben and Merz [105], 1996):

The contents of the first parent is copied to the offspring and all edges that are
not in common with the other parent are deleted. The resulting fragments of the
broken substring are reconnected using different edges to those contained in either
of the parents. To do this, a greedy reconnection procedure is used. Suppose
that the edge (¢,7) has been broken, the nearest available neighbour k& of 7 is
taken and the edge (7,k) is added to the substring, provided that (7, %) is not
contained in any of the parents. This process continues until all fragments have
been reconnected. For example, consider the parents in Figure 4.16. By copying
parent 1 to the offspring and deleting the edges not contained in both parents
leads to the substring fragments: 2, 8-5-3-7, 9, 1-10, and 6-4. Offspring 1 is an

example of reconnection that does not use edge connection from either parent.

Figure 4.16: Distance Preserving Crossover

Parent 1:(2 8 53791106 4)
Parent2:(6 498537210 1)

Fragments: 2|8 5 3 7]|9|1 10| 6 4 |
Offspring 1:(7 358110926 4)

CHAPTER 4 104

Alternating-Position Crossover, APX (Larraflaga et al. [179], 1997):

The offspring is constructed by selecting the next element alternately from both
parents, omitting the elements already present in the offspring. An example is

given in Figure 4.17. By doing so, we believed that this operator will destroys too

many edges between the elements.

Figure 4.17: Alternating-Position Crossover

Parent1:(2 8 53791106 4) Offspringl: (26 845937110)
Parent2:(6 4 9 8 53 72 10 1) Offspring2 :(6 24 89537110)

Complete Subtour Exchange Crossover, CSEX (Katayama et al. [167],
1998):

This operator is a modification of SXX, where the common substring used in
CSEX is either identical or symmetrical in the sequence of elements. By using the
same parents in Figure 4.15, the common substrings are (8 5), (3 7) and (6 4) in
parent 1, and (8 5), (7 3) and (4 6) in parent 2. A pool of offspring is generated
by enumerating all the common substrings in both parents. The best offspring
is then selected from the pool of offspring. If K common substrings are included
within the parents, a maximum of 2 x 2K — 2 offspring are generated. Figure 4.18

gives two possible offspring from the parents using CSEX.

Figure 4.18: Complete Subtour Exchange Crossover

Parent2 :(4 6 1 7 3 102 9) Offspring2 :(6 4 137851029)

Parent1:(28 53791106 4) Offspringl: (2 8 573 911046)
7385

Subtour Preservation Crossover, SPX (Soak and Ahn [257], 2004):

This operator is designed for TSP where a similar subtour enumeration technique
to SXX, CSEX and DPX is used. This operator generates offspring using common
subtour which parents share and edges included in each parents. The procedure of

SPX is divided into two steps. The first step is to enumerate all common subtour,

CHAPTER 4 105

and next is to reconnect each subtour and any isolated cities. Although SPX finds
the same subtours from two identical parents, it can generates different offspring
by selecting different starting point and each process of reconnecting subtours and
isolated cities. When a city is selected as a starting point, shorter edge between two
possible edges is selected. If a shorter edge has already been selected, another edge
is selected. And if both edges are already selected, random selection is performed

among the endpoints not yet selected. This process continues until a tour is formed.

4.6.3 Adjacency Representation

Alternate Edges Crossover, AEX (Grefenstette et al. [131], 1985):

This operator is used in TSP where a starting edge (7, 7) in the offspring is selected
randomly in one parent. Then, the tour in the offspring is extended by selecting
the edge (4, k) in the other parent. The offspring is progressively extended in this
way by alternately selecting edges from each parent. When an edge introduces a
cycle, the next edge is selected at random (and is not inherited from the parents).
An example is given in Figure 4.19. Note that edge (9, 3) in offspring 1 and edge

(7,9) in offspring 2 are not inherited from any of their parents.

Quite often, the AEX introduces too many random edges between the elements
in the offspring and good substrings are often disrupted by the crossover operator.
Since the offspring must inherit as many edges as possible from the parents, the
introduction of random edges should be minimised. As reported in Grefenstette

et al. [131], the results with this operator have been uniformly discouraging.

Figure 4.19: Alternate Edges Crossover

Adjacency Representation Actual Tour
Parentl:(10385214679)":> 9-7-4-5-2-3-8-6-1-10
Parent2:(4 9 76 105218 3) 3-7-2-9-8-1-4-6-5-10

Offspring 1 :(10 9 8 6 254 13 7)) 7-4-6-5-2-9-3-8-1-10
Offspring2:(4 3751019 6 8 2) 2-3-7-9-8-6-1-4-5-10

CHAPTER 4 106

Subtour Chunk Crossover, SCX (Grefenstette et al. [131], 1985):
This operator is developed for TSP where an offspring is constructed by first

copying a random length subtour of the first parent. Then, the partial tour is
extended by choosing a random length subtour from the second parent. The
offspring is progressively extended this way by alternately selecting a subtour from
two parents. A subtour is not added if it produces an illegal tour. In this case, an
edge is chosen at random from the edges that do not produce a cycle and added into
the partial tour. This operator should performs better than the AEX. However,
its performance is still not very encouraging as it does not take into account the

available information about the edges.

Heuristic Crossover, HX (Grefenstette et al. [131], 1985):

This operator is designed for TSP where the procedure of generating an offspring

is as follows:

S 1: Select randomly a starting city from one of the two parents.

S 2: Compare the edges leaving the current city in both parents and select the
shorter edge.

S 3: If the added edge creates a cycle in the partial tour, try the other edge. If it
also introduces a cycle, extend the tour with a random edge that does not

introduce a cycle.
S 4: Repeat S2 and S3 until all cities are included in the tour.

Jog et al. [160] suggest to replace the random edge selection by the selection of

the shortest edge in a pool of ¢ random edges, where ¢ is a parameter.

4.6.4 Matrix Representation

In the next two crossover operators, insertion crossover and union crossover, we
use the matrix representation where the element in row 7 and column 7 is a ‘1’ if,

and only if, in the tour city 7 is visited before city j.

CHAPTER 4 107

Insertion Crossover, MIX (Fox and McMahon [104], 1987):
An offspring O, is constructed from two parents (P1 and P2) in the following way:

S 1: Foralli,j €{1,2,3,...,n} define

0. - 1Pl =P2y =1,
v 0 otherwise.
S 2: Some 1’s which are unique for one of the parents are “added” to O.
The matrix is completed using the analysis of the sum of rows and columns, in
such a way that the result is a legal tour. This operator preserves all precedence
relationship which are common to both parents. For example (extracted from

Larrafiaga et al. [178]), Fox and McMahon [104] represent the parent tours (2 —
3—1—4)and (2—4—1-3) as

00 01 0010
Pl = oL and P2 = v
1 001 00 00
0000 1010
After S1, we have
0000
1011
0 0 00
0000

This matrix can be completed in six different ways, since the only restriction on
the offspring tour is that it starts in city 2. One possible offspring is the tour

(2 =1 —4 — 3) which is represented by:

0 011

1 011
O =

0 0 020

0 010

CHAPTER 4 108

Union Crossover, MUX (Fox and McMahon [104], 1987):

This operator tries to combine some precedence relationships taken from each
parent. First, it divides the set of cities into two disjoint groups. For example, by
using the two parents above, we could divide the set of cities into {1,2} and {3, 4}.
The matrix elements of an offspring is constructed by placing the first group from

the first parent and the second group from the second parent. Hence, we have

00 77
10 7?77
7700
7710

The resulting matrix is completed by an analysis of the sum of the rows and

columns. One possible offspring is the tour (4 —3 —2— 1) which is represented by:

0 000
1000
1100
1110

Matrix Crossover, MMX (Homaifar et al. [148], 1991):

This crossover operator uses a matrix representation where the element in the
ith row and the jth column is ‘1’, if and only if, city j is visited immediately
after city ¢ in the tour. This operator deals with column positions rather than
element positions. First, a crossover point is selected at random. Then, MMX
exchanges all the entries of the two parents determined by the crossover point(s).
With the example given above, Homaifar et al. [148] represent the parent tours

(le.(2-3—-1—-4)and (2—4—-1-13)) as:

00 0 1 0 0 1 0O

00 10 00 0 1
Pl = and P2 =

1 000 01 0 0

01 0 0 1 0 00

CHAPTER 4 109

Suppose that the crossover point is chosen between the first and the second column,

which yields

0/0 0 1 0/0 1 0O
0|0 1 0 010 0 1
and
110 0 0 0/1 0 O
0|1 0 0 110 0 O

One of resulting offspring after the crossover is

0010

0001

1100
kOOOO)

Note that this matrix does not represent a legal tour. MMX may result in infea-

sibility in the form of duplications or cycles. These two problems are treated in

two steps:

S 1: Remove the duplication by moving a ‘1’ from each row with duplicate ‘1’s
into another row that has no ‘1’ entries.

S 2: Cut and connect cycles to produce a legal tour while preserving as many of

the existing edges from the parent as possible.
By applying S1 to the offspring, we have a new offspring which represents the
legal tour (1 —3 —2 —4)

= o o O
[= N]
[s
oS RO

4.7 Mutation Operator

After a crossover or a reproduction is performed, mutation takes place. This is to
prevent too many identical individuals from being in the same generation which
leads to premature convergence and the danger of becoming trapped in a local

optimum.

CHAPTER 4 ' 110

Although mutation is intended to prevent the GAs from falling into a local
optimum, if the mutation rate is too high then the GAs will in fact change to a
random search. Any efficient optimisation algorithm must use two techniques to
find a global optimum:

—exploration: to investigate new and unknown areas in the search space, and
—exploitation: to make use of knowledge found at points previously visited to help

find better points.

These two requirements are contradictory, but a good search algorithm provides
a balance between the two. A purely random search is good for exploration, but
does no ezploitation, while a purely descent method is good at ezploitation, but
does little ezploration. Combinations of these two strategies can be quite ideal,
but it is difficult to find that right balance. GAs use both crossover and mutation
operators to ezplore and ezploit the search space in the hope of finding good optimal

solutions (see Goldberg [121]).

In the binary representation for instance, if we only use the crossover opera-
tor to produce offspring, one potential problem that may arise is that if all the
individuals in the initial population have the same value at a particular element,
then all future offspring will have this same value at that element. For example,
if all the individuals in the population have a ‘0’ in fifth element, then all future

offspring will have a ‘0’ at fifth element after the crossover takes place.

Binary mutation is applied randomly to each offspring individually that alters
each element from ‘1’ to ‘0’ or vice versa with a given probability, p,,. This value is
called the mutation rate. Various optimal mutation rates have been reported. The
most common approaches are either to use a small mutation probability (e.g. pm =
0.001), or to use a value p,, = 1/L, Whére L is the length of the individual (see
Grefenstette [129], Fogarty [99], Hesser and Ménner [145], and Béck [15]).

Various mutation operators have been designed for the integer representation

(e.g permutation, path, adjacency and ordinal). As opposed to the binary muta-

tion operator, which introduces small changes into the individual, the mutation

CHAPTER 4 111

operator for integer representation often greatly modifies the offspring. These op-
erators are briefly summarised below. In the remainder of this section, without

loss of generality, we refer to the following offspring for mutation:
Offspring: (2 8 53 79 1 10 6 4).

Simple Inversion Mutation (SIM) (Holland [147], 1975):

This operator was first introduced by Holland and then popularised by Grefen-
stette [130] in 1987. This operator first selects randomly two cut points in the
offspring, and then reverse the substring between these two cut points to form a
new offspring. Consider the offspring and suppose that the first cut point is chosen

between the second and third element, and the second cut point between the 6th

and 7th element. This results in:

New Offspring: (2 8 9 7 3 5 1 10 6 4).

Insertion Mutation (ISM) (Fogel [100], 1988):

This operator starts by randomly choosing an element and removing it from the
offspring. The element is then inserted in a randomly selected place. For example,
consider again the offspring mentioned earlier, and suppose that the operator

selects the third element, removes it, and randomly inserts it after 8th element.

Hence, the resulting new offspring is:
New Offspring: (2 8 379 1 10 6 5 4).

This operator is also called the Position Based mutation by Syswerda [262].

Exchange Mutation (EM) (Banzhaf [25], 1990):

EM is achieved by first randomly selecting two elements in the offspring, and then
exchanging their position. Consider the offspring mentioned above, and suppose
that the third and 9th element are randomly selected. This results in a new
offspring:

New Offspring: (2 8 6 3 79 1 10 5 4).

CHAPTER 4 112

This operator is also referred to as the Swap mutation (by Oliver et al. [220]),
the Point mutation (by Ambati et al. [7]), the Reciprocal Exchange mutation (by
Michalewicz [210]), and the Order Based mutation (by Syswerda [262]).

Scramble Mutation (SM) (Syswerda [262], 1991):

This is achieved by first selecting a random substring from the offspring and then
scrambling the elements in the substring. For example, consider the offspring used

earlier, and suppose that the substring (5 3 7 9) is chosen. One possible result is:

New Offspring: (2 8 9 5§ 3 7 1 10 6 4).

Displacement Mutation (DM) (Michalewicz [210], 1992):

This operator first selects a substring at random from the offspring. Then, the
substring is removed from the offspring and reinserted in a randomly selected place.
Suppose that the substring (5 3 7 9) is selected from the offspring. Hence, after
the removal of the substring, we have (2 8 1 10 6 4). Suppose that we randomly

select the 4th element to be the element after which the substring is inserted. This

results in a new offspring:
New Offspring: (2 8 1 10 5§ 8 7 9 6 4).

This mutation also called Cut mutation by Banzhaf [25].

Inversion Mutation (IVM) (Fogel [101], 1990 and [102], 1993):

This operator is similar to the DM. The main difference is the substring selected is
inserted into the offspring in the reversed order. Based on the offspring mentioned
earlier, suppose that the substring (5 3 7 9) is chosen, and that this substring is

inserted in reversed order immediately after 4th element. This gives:
New Offspring: (2 8 1 10 9 7 3 5 6 4).

Banzhaf [25] referred to the IVM as the Cut-Inverse mutation.

CHAPTER 4 113

4.8 Replacement Strategy

At the end of each generation, the parent population will be replaced by the
offspring population. The proportion of individuals in the parent population which

are repla in ea eneration is defined as the ‘generation gap’.
replaced in each generatio defined as the ‘generation gap’

Holland’s GA assume replacement of the whole population en bloc at each gen-
eration without considering the quality (fitness) of the parent population. He has
used a generation gap of 1. We refer to his method as the generational evolution.
From the optimisation point of view, this seems a bad decision to make. We may
have spent considerable effort in obtaining a good solution, only to run the risk
of throwing it away and thus preventing it from taking part in future generations.
One of the problems with generational evolution is that an entire generation must

be built before we can begin to test the quality of the new individuals generated.

For this reason, De Jong [163] introduced the concepts of elitism and steady-
state. It is inevitable that the fittest individual in each generation can be lost if it
is not selected to reproduce or if it is destroyed by crossover or mutation. In the
elitism replacement scheme, the fittest individual so far will survive for the next
generation by only replacing the remaining (P, — 1) individuals of the population

with the offspring.

Steady-state replacement scheme take this a stage further by replacing only a
few (typically two) of the least fit individuals in each generation. This method has
advantages as it is implicitly elitist for all high potential individuals and the new
individuals added to the population immediately contribute to the quality of the

population.

Syswerda [262] shows that, when the individuals to be replaced in the steady-
state are randomly selected, the performance of the generational and the steady-
state GAs are approximately the same. Most users of steady-state replacement
schemes utilise an exponential ranking to select the individuals to be replaced
or the worst fit individuals for replacement (see Syswerda [261] and Whitley et

al. [278]).

CHAPTER 4 114

4.9 MultiCrossover Genetic Algorithms

In this section, we concentrate on the discussion of our proposed MultiCrossover
Genetic Algorithms (MXGAs) for solving combinatorial optimisation problems.
The usual strategy within a GA is to generate a pair of offspring during crossover.
We hypothesise that generating multiple offspring during the crossover can improve

the performance of a GA.

Since the first crossover operator developed by John Holland [147] in 1975, sub-
stantial amount of efforts have been put into the developments of new crossovef
operators by the GAs community. New techniques are developed to further im-
prove the performance of the crossover operators and the GAs as a whole. The
new designs of the crossover operators are also due to the introduction of new
gene representations. It is usually the case that a new crossover operator is more
complex and complicated than the previous one. Quite often some of the new
crossover operators are also quite computationally time consuming in generating
offspring.

Our proposed MXGA utilises a multicrossover operator in an effort to achieve
better solution quality when compared with a Standard GA (SGA) and other
local search algorithms such as Tabu Search and Steepest Descent Method. In the
MXGA, offspring for the population are selected from a candidate list of temporary
offspring generated via some simple but yet effective classical crossover operators.
Various techniques are also introduced into the proposed MXGA to further enhance

the solution quality.

In the remainder of this section, we explain the general framework of the pro-
posed MXGA and we also highlight the differences with the SGA in some of the
remaining subsections. Since different problem domains require different represen-
tation schemes and constraints, the detailed descriptions of the architecture of the
MXGA will be given in the later chapters where we solve different combinatorial
optimisation problems using MXGAs. A comparison of the general framework of

the SGA and the MXGA is given in Figure 4.20.

CHAPTER 4 115

Figure 4.20: The Framework of a Standard Genetic Algorithm (SGA) vs. Multi-
Crossover Genetic Algorithm (MXGA)

START

‘ Initial Population ’

v

‘ Initial Population ‘

‘ Fitness Evaluation ’ Fitness Evaluation ‘

—)’ Tournament Selection ‘

MultiCrossover

YES

—>’ Tournament Selection [

Reproduction

Individual
Mutation

Mutation -
Gene Mutation

‘ Fitness Evaluation

¢‘ ‘ Fitness Evaluation Fi

Steady-state Replacement ’ ¥
Elitism Replacement and Filtration J

Stopping
Criteria

Stopping
Criteria

Return FITTEST Solution

Return FITTEST Solution

v
o]
Standard Genetic Algorithm (SGA) MultiCrossover Genetic Algorithm (MXGA)

4.9.1 Initial Population

Before an initial population is generated as the starting point for the MXGA, a
suitable representation is chosen based on the type of combinatorial optimisation
problem to be solved. Once the representation has been decided, a initial pop-
ulation F,,p,, which is of size 100 in our implementation, is uniformly randomly

generated using a random number generator. We have assumed that the size of

P

vop 18 kept constant throughout the process.

CHAPTER 4 116

4.9.2 Selection Mechanism

We use a probabilistic binary tournament selection scheme as the selection mech-
anism of each parent in the MXGA. As the name suggests, two individuals are
chosen at random from the population. A random number 7, is then chosen from
an uniform distribution defined on [0,1]. If r < k (where & is a parameter), the
fitter of the two individuals is selected to be the parent; otherwise the less fit
individual is selected. The two are then returned to the original population and

can be selected again.

In our study, we set the value of k¥ as 0.75. In other words, we give a 75%
chance for the fitter individual to be selected as the parent compared to the less
fit individual which only has a 25% chance to be selected. The probabilistic binary
tournament selection is a preferred choice over other selection mechanisms such
as the Roulette Wheel because the latter method is very sensitive to the fitness
function design, making the selection pressure too high or negligible, rendering the

selection mechanism unreliable.

4.9.3 Multicrossover Operator

Recall that in all the crossover operators (except SXX and CSEX) applied in a
SGA, exactly two offspring are generated from a pair of selected parents each time
a crossover operator is executed. The design of the crossover operator needs to
be carefully considered based on the representation scheme used and the problem
type to be solved. This ensures that only valid offspring can be generated without
violating any constraints of the representation scheme and the problem itself. Some
crossover operators (e.g. MMX) even need a repair mechanism to generate valid

offspring from the invalid ones.
Unlike others, the multicrossover operator in the MXGA uses some of the sim-

ple yet effective classical crossover operators such as 1-point and 2-point crossover

as the crossover strategy in generating offspring. The main feature of the mul-

CHAPTER 4 117

ticrossover operator is that it first generates a candidate list of valid temporary
offspring from a pair of selected parents through repeated applications of the pro-
posed crossover strategy. Two valid temporary offspring are generated each time
by a sequence of steps defined by the crossover strategy. By repeating the strategy
for ¢ times, where ¢ is a parameter, a candidate list of 2¢ valid temporary offspring
is then generated. Finally, the best and a selected temporary offspring (using the
probabilistic binary tournament selection mechanism) will be chosen to be the
offspring for the current generation. Initial computational experiments on various
combinations of selection methods (e.g. best, worst, random, roulette wheel, rank-
ing and tournament) support the above decision of selecting the offspring from the

candidate list of temporary offspring.

The number of repeated applications ¢ needed to generate a candidate list of
temporary offspring remains as a parameter. On one hand, generating a large
candidate list of temporary offspring can be very time consuming and will results
in less time spent on exploring the other regions of the solution space, especially
when there is a fixed computation time. On the other hand, a small candidate
list of temporary offspring may fail to exploit the potential of the multicrossover
operator. For instance, by taking ¢ = 1, this in fact can be regarded as a standard
crossover operator in a SGA, where both temporary offspring are selected as the

offspring for the current generation.

In order to overcome the above problem, the design of the crossover strategy in
generating two valid temporary offspring has to be simple, fast and yet effective.
With less time spent on repeating the strategy in generating two valid temporary
offspring, this means we have more time to spare on exploring the solution space.
With this in mind, we develop multicrossover operators which are simple to im-
plement and effective in finding good solutions. The design of the multicrossover
operator is based on the representation framework used and the problem type to be
solved. Note that the multicrossover operator will only be applied to the selected

parents with a given crossover probability p..

CHAPTER 4 118

4.9.4 Swap Operator

Depending on the outcome of the crossover probability p., the multicrossover may
not be applied to the selected parents. Instead of the exact duplicate of the parents
as in a SGA via the reproduction, a new operator called ‘swap’ is used in the MXGA
to produce two offspring that are different from their parents. By doing this, we

introduce more diversity to the search space.

The basic step of this operator is to randomly select a swap point in a parent
and then swap the substrings separated by the swap point to form a new offspring.
More swap points can be selected within a parent, but depending on the problem,
this might destroy some of the good features from the parent. But on the contrary,
this may lead to a more interesting region in the search space. In some sense, this
swap operator could be regarded as a ‘giant’ mutation where the elements in the

parent are randomly reassigned.

4.9.5 Mutation Operator

An ideal GA should maintain a high degree of diversity within the population as it
evolves from one generation to the next. Otherwise, the population may converge

prematurely before the desired solution is found.

We apply the mutation operator in the MXGA in two stages. At first, a subset
of individuals is selected from the new offspring population with a given individual
mutation probability py,. An offspring is selected if a randomly number ¢ from
an uniform distribution defined on [0,1], assigned to the offspring is less or equal
to the individual mutation probability (i.e. ¢ < pyr). Then, the selected offspring
will go through the second stage of the mutation process, where each element in

the offspring is visited and altered with a given gene mutation probability p,,.

There are some concerns in applying the mutation to the offspring. Too low
a mutation rate implies too little exploration. With a very small mutation rate

(e.g. pm = 0.0001), further exploration of a population ceases once the population

CHAPTER 4 119

has converged to a local optimum. On the other hand, a very high mutation rate
will change every element in the individual randomly. Then the whole evolutionary
process is simply a random search with no exploitation of the information acquired

from the previous generation.

In this study, we use the value of 0.25 and 1/L for pas and p,, respectively,
where L is the length of an individual. In other words, we allow on average,
25% of the offspring population to undergo the gene mutation stage. By doing
this, we not only keep the mutation to the offspring on a moderate scale, we also
help speed up the MXGA by keeping some of the good offspring generated by
the multicrossover operator to the next generation without any disruption by the
mutation. The value of 1/L is uéed to allow the gene mutation to introduce small

changes in the selected offspring.

4.9.6 Replacement and Filtration Strategies

If a generational evolution is used in a GA, there is no competition between the
parents and the offspring so the offspring replaces the parents irrespective of their
fitness values. All individuals have the lifetime of exactly one generation and
parents are always thrown away, so there is a distinct possibility that valuable

information is lost before the next generation.

Our proposed MXGA uses Elitism Replacement scheme where the offspring
have to compete with their parents to gain admission to the new population. One
advantage of the elitist scheme is that good solutions once found are never lost
unless even better solutions are created. During the elitism replacement stage, both
parent and offspring population are combined into a single population of size 2F,,.
Then, the individuals of the combined population are sorted in a non-increasing
order of their associated fitness value f;, so that fi > fo > ... > fap,,,. The
individuals of the new population for the next generation of size Py, is thus the first
half of the combined population. The rule is to always select the fittest individuals

from the combined population before proceeding to the next generation.

CHAPTER 4 120

After P,,, (population size) individuals have been selected, a process called
‘filtration’ is used to identify the identical individuals from the new population.
Two individuals are said to be identical if, and only if, the sequence of the elements
in both individuals (i.e. genotype) are identical. The identical individuals will be
removed and replaced by uniformly randomly generated new individuals to avoid

‘premature convergence’ and to add diversity to the new population.

As the filtration procedure involves the process of “identify’, “re-generate” and
“re-evaluate” of the new individuals, which requires a certain amount of computa-

tional time, it is sensible to just invoke the procedure every R generations (where

R is a parameter, e.g. 50).

4.10 Summary

G As have been theoretically and empirically proven to provide robust search mech-
anisms in complex spaces. However, traditional GAs, although robust, are gener-

ally not the most successful optimisation algorithm on any particular domain.

The advantage of GAs comes from the fact that the technique can deal with a
wide range of problem areas. GAs do not guarantee the global optimum solution
to a problem, but they are generally good at finding ‘acceptably good’ solutions

to problems in a reasonable time frame.

Beasley et al. [26] give the following remarks:

“Where specialised techniques ezist for solving particular problems, they
are likely to outperform GAs in both speed and accuracy of the final re-
sult. The main ground for GAs then, is in difficult areas where no such
techniques exist. Even where ezisting techniques work well, improve-

ments have been made by hybridising them with a GA.”

Hybridising GAs with the most successful optimisation methods for particular

problems is the best of both worlds. When correctly implemented, these algorithms

CHAPTER 4 121

should do no worse than the method with which the hybridising is done. However,
they are still rooms for improvements on a standard GA. See Whitley [277] for

more details. Some principle attractions of GAs are given in Reeves [239]:

1. Generality: the algorithms work on a coding of a problem, so it is easy to
write one general computer program for solving many different optimisation
problems. However, a specific coding may have a significant impact on the
GA’s ability to find good solutions, unless the operator used to search the

space is carefully selected with respect to the coding.

2. Nonlinearity: many conventional optimisation techniques rely on unreal-
istic assumptions of linearity, convexity, differentiability, etc. This is not
needed by GAs; the only requirement is the ability to calculate some mea-

sure of performance, which may be highly complicated and non-linear.

3. Robustness: empirical evidence is strong that although it is possible to
fine-tune a GA to work better on a given problem, it is nonetheless true that
a wide range of parameter settings (population size, crossover and mutation

rate, etc.) will give very acceptable results.

4. Ease of modification: even relatively minor modification to a particular
problem may cause severe difficulties to many heuristics. By contrast, it is

easy to change a GA to model variations of the original problem.

t

Parallel nature: quite apart from the property of intrinsic parallelism which
GAs have been shown to possess, there is great potential for implementing

GAs in parallel.

In this chapter, a general framework of the proposed MXGA is introduced. The
novelty of the proposed MXGA is the development of the multicrossover operator
in generating offspring. The proposed multicrossover operator uses a simple but
yet effective classical crossover strategy to generate a candidate list of temporary

offspring. The best and a selected temporary offspring are then chosen to be the

CHAPTER 4 122

offspring of the current generation. Various techniques such as swap procedure,
2-stage mutation operator, elitism replacement and filtration strategy are also

introduced into the proposed MXGA to further enhance the solution quality.

Chapter 5

Single Machine Family Scheduling

Problem

5.1 Introduction

In this chapter, we address a Single Machine Family Scheduling Problem (SMFSP)
where jobs are partitioned into families and setup is required between these fam-
ilies. The objective is to find a schedule which minimises the maximum lateness
Lmax of the jobs In the presence of the sequence independent family setup times sy.
This SMESP can be represented as 1|sf|Lyax based on the standard classification
of Graham et al. [128] (as described in Section 3.3.1). We restrict our study to
offline machine scheduling where it is assumed that the data for the problem in-
stances are known with certainty in advance. According to Hariri and Potts [139],
the problem can be defined as follows:

“Given are IV jobs, each characterised by a processing time p;, on a single machine,
and a due date d;, for j = 1,2,..., NV, and a partition into F' families. For each
family f, for f =1,2,..., F, jobs are split into batches, where a batch is defined
as a maximal set of contiguously scheduled jobs from the same family which share
the same set up. A sequence independent family setup time sy, is required at the

start of the schedule and also when there is a switch of jobs from another family.

123

CHAPTER 5 124

The objective is to find a schedule which minimises the maximum lateness Lpay,
of the jobs in the presence of the family setup times.”

The SMFSP for arbitrary F'is an NP-hard problem as shown by Bruno and
Downey [38]. The general assumptions of the SMFSP in this study are:

1. all input data are positive integers;
2. each job becomes available for processing at time zero;
the machine becomes available for processing at time zero;

the machine can only process at most one job at a time;

- W

5. once processing begins on a job, it is processed to completion without inter-
ruption;

6. the machine cannot perform any processing while undergoing a setup.

Set ups include adjusting tools, positioning work in process material, paint dry-
ing, cleanup, chemical reaction to be completed, etc. The majority of scheduling
research assumes setup times as either negligible and hence ignored or considered
as part of the processing time. While this assumption simplifies the problem, it
adversely affects the solution quality for many applications which require explicit
treatment of setup (cite in Allahverdi et al. [6]). For example, imagine jobs that
each belong to a particular family, where jobs in a family tend to be similar in
some way, such as their required tooling or their container size. As a result of
this similarity, a job does not require a set up when following another job from
the same family, but a known family setup time is required when a job follows a
member of some other family. We call this a family scheduling model. Typically,

there is a large number of jobs, but a relatively small number of families.

The main motivation of this study is derived from a complex trade-off at the
core of many scheduling problem in practice. This trade-off involves balancing the
machine efficiency of long production runs of a similar jobs, against the customers’
satisfaction gained from completing the jobs before or by their due dates. At one
extreme, if efficiency is more important, we find that the batch sizes tend to

be large to allow many jobs to run on a similar set up. However, if resources

CHAPTER 5 125

are committed to long production runs, other jobs tend to get delayed, thus not
achieving their due dates. At the other extreme, when a good due date performance
1s warranted, the batch sizes are kept small so that priorities can be shifted. This
allows jobs that face the most urgent due date pressures to be completed ahead
of the other jobs. By doing so, it is observed that this shifting may require a
number of set ups, and lead to a loss of productive efficiency. In the long run, this
efficiency loss will in turn lead to a diminished ability to meet due dates. Thus,
there is an obvious inherent conflict between efficiency and due date performance.
This conflict represents a challenge to any scheduling procedure used for short-term

scheduling of production batches.

In this study, the aim is to develop a MultiCrossover Genetic Algorithm (MXGA)
that utilises the multicrossover operator to achieve better solution quality com-
pared to a standard genetic algorithm and other local search algorithms namely
Tabu Search and Descent Method. We use a standard 1-point or F-point crossover
strategy to produce two temporary offspring. Detailed descriptions of the proposed
multicrossover operator are discussed in Section 5.4. Various techniques are intro-
duced into the MXGA to further enhance the solutions. The architecture of the

MXGA used in this chapter is based on the framework discussed in Section 4.9.

In next section, we review some approaches used for the SMFSP with setup
times. Some properties of the Earliest Due Date rules for SMFSP are stated in
Section 5.3. The developments of the MXGA for solving SMFSP with sequence
independent setup times are the focus of Section 5.4. Some of the main components
in the MXGA are discussed in detail. Section 5.5 provides an insight into the
local search algorithms we designed specifically for comparison purposes with the
MXGA. Extensive computational experiments are carried out in Section 5.6. We

end this chapter by giving some concluding remarks in Section 5.7.

CHAPTER 5 126

5.2 Approaches to Single Machine Family Schedul-

ing Problem

In this section, we concentrate on the review of the literature for the SMFSP
with the presence of the family setup times. Various approaches, namely exact
approaches, heuristic and local search algorithms have been proposed to solve the
problem. Some excellent and comprehensive reviews of the SMFSP which involving
setup consideration and batching can be found in Potts and Van Wassenhove [234],
Webster and Baker [275], Liace and Emmons [187], Allahverdi et al. [6], Yang and
Liao [286], and Potts and Kovalyov [233].

It is worth mentioning that, in the event where all the setup times are zero, the
problem of minimising the maximum lateness and minimising the total (weighted)
completion time are solved in O(Nlog N) time by Jackson’s Earliest Due Date
(EDD) rule (see, Jackson [156]) and Smith’s Shortest (Weighted) Processing Time
(SWPT) rule (see, Smith [256]) respectively.

5.2.1 Exact Approaches

Maximum Lateness

In 1989, Monma and Potts [214] consider a variety of SMFSPs under the assump-
tion that sequence dependent setup times syf,, for families satisfy the ‘triangle
inequality’: the setup time associated with a changeover from family f to A is
assumed to take no longer than that for the changeover from family f to g, fol-
lowed by a changeover from family ¢ to h. Using dynamic programming (DP),
they show the problems with the objective (minimisation) Lmax, >_;w;Cj, and
>.; Uj to be efficiently solvable for a fixed number of batches. Their DP ap-
proach solve 1]s ;| Lmax and 1]sg,| 3> w,;C; in O(F2NF*+2F) time, and 1|5 4| Lpax
and 1lis| > w,;C; in O(F*N?*) time. Thus, the DP algorithms are polynomial
time bounded by the number of jobs but exponentially bounded in the number of

families. Potts [232] shows that the time complexity for 1|8 ¢|Lmax and 1]s¢| > w;C;

CHAPTER 5 127

can be reduced to O(N?) when F = 2. Unfortunately, this DP approach is not of

practical use unless F' is very small.

An improved backward DP approach with job insertion which schedules the
jobs from the back to the front (i.e. in non-decreasing order of their indices within
the families) is proposed by Ghosh and Gupta [111] for 1|s,|Liyax, which requires

O(F2NF) time. However, their approach is only practical when F is very small.

In 1996, Schutten et al. [250] develop a branch and bound (B&B) approach
for the problem of 1|7}, s¢|Lmax. In the presence of release dates r;, no results are
known about the order of jobs within a family. A key component of their algorithm
is the use of dummy jobs to represent setups. A lower bound is obtained by relaxing
setups and solving the corresponding preemptive problem, and the approach uses a
forward branching rule. Computational results show that the algorithm is effective

in solving instances for up to about 40 jobs.

A year later, Hariri and Potts [139] develop a B&B approach where all jobs
are ready at time zero for the problem 1|sf|Lyax. They first obtain an initial
lower bound by ignoring setup, except for those associated with the first job in
each family, and solved the resulting problem with EDD rule. This lower bound
is then improved by a limited enumeration that considers whether or not certain
families are split into at most two batches. Their B&B algorithm optimally solved

problems with up to 50 jobs.

In 1997, Pan and Su [225] develop a B&B algorithm for problem 1[s¢|Lmax.
They derive some fundamental properties of an optimal schedule to simplify the
problem. Several dominance criteria and a lower bound of the optimal lateness are
also developed to construct the B&B algorithm. The computational results reveal

that the proposed algorithm effectively solves problems up to 30 jobs.

In 2000, Baker and Magazine [22] provide an algorithm that uses a B&B ap-
proach combined with dominance properties which reduced the effective problem
size to solve the problem of 1|$|Lpmay (s = identical setup time). They establish

that the size of the problems that can be solved is a function of the number of

CHAPTER D 128

families, the number of jobs per families, the relative size of the setup time and the
relative due date range. The identification of composite jobs allows the effective
problem size to be reduced before the enumeration begins. For the most difficult

categories, they solve problems for up to 60 jobs.

Total (Weighted) Completion Time

In 1991, Mason and Anderson [208] define the changeover for a job in a new family
as the set down operation from the previous family and a set up operation for the
new family. When the setdown times are all zero, they show that the changeover
structure is equivalent to sequence independent family setups. They derive various
dominance rules and constructed a B&B algorithm for 1|s¢| > w;C;. Their lower
bound is derived using objective splitting: the total weighted completion time can
be partitioned into contribution from the processing times and from the setup
times, which are optimised separately. Their algorithm is able to solve problems
up to 30 jobs. However, the algorithm can only be effective when the number of

families are small compared with the number of jobs.

Crauwels et al. [59] propose a B&B approach for problem of 1js¢| " w;C;.
They obtain a lower bound by performing a Lagrangian relaxation of the machine
capacity constraints in a time-indexed formulation of the problem. Their first
algorithm uses a forward branching rules and multiplier adjustment method for
obtaining the lower bound, while the second algorithm uses a binary branching
rule and subgradient optimisation method for computing the lower bound. Com-
putational results show that the first algorithm solves problems with up to 70 jobs,
and is more efficient than both Mason and Anderson’s algorithm, and also their

second algorithm.

In 2000, Dunstall et al. [81] introduce two new lower bounds for problem
1)s¢| > w;C;. These lower bounds are shown analytically to dominate Mason
and Anderson’s lower bound and can be computed more efficiently than the La-
grangian lower bound of Crauwels et al. [59]. An improved B&B algorithm of

Mason and Anderson [208] through the addition of a new dominance rule and the

CHAPTER 5 129

substitution of the lower bounds is constructed. Their algorithm efficiently solves

problems with 50 or more jobs, depending on the values of setup times.

Other Objective Functions

Chen [47] proposes a polynomial DP algorithm for solving the problem of earliness-
tardiness penalties for two criteria. The first criterion minimises the total tardiness
and earliness penalties, while the second extends the first criterion to include the
total due date penalty. He shows that the algorithm has a running time polynomial

with respect to the number of jobs but is exponential with the number of batches.

5.2.2 Heuristics and Local Search Algorithms

Maximum Lateness

Problem 1|s¢|Lmax has been an interest of many researchers in recent years. In
1991, Zdrzatka [287] proposed heuristic methods for 1|s¢| Lyay in which there are
unit setup times. To facilitate the worst-case analysis, he assumes that all due
dates are non-positive. When all jobs of a family are scheduled contiguously, the
resulting schedule is shown to have a maximum lateness which does not exceed
twice the optimal value. He also suggests an improvement which allows each family
to be split into at most two batches. The improved heuristic requires O(N?) time
and generates a schedule for which the maximum lateness does not exceed % times

that of an optimal schedule.

Four years later, Zdrzatka [288] designed two approximation algorithms for the
problem without the unit setup time assumption and with non-positive due dates.
The algorithm starts with a schedule in which each batch contains all jobs from a
family, and allows each family to be split into at most two batches. The algorithm
requires O(N?) time, and it generates a schedule with maximum lateness that is
no more than % times the optimal value. His algorithm can be adapted for the
problem of 1|7}, s¢|Cmax to generate a schedule of maximum lateness that is no

more than % times the optimal value.

CHAPTER 5 130

Hariri and Potts [139] propose a single batch heuristic in which all jobs of a
family form a batch, and a double batch heuristic in which each family is parti-
tioned into at most two batches according to the due dates of its jobs. They show
that both heuristics require O(Nlog N) time. They also show that the single
batch heuristic has a worst-case performance ratio of 2 — %, whereas a composite

batch heuristic which selects the better of the schedules generated by the single

and double batch heuristic has a worst case analysis of g for arbitrary F.

Woeginger [282] investigates a SMFSP in which each job has a processing time
and a delivery time. The objective is to find a schedule of jobs that minimises the
time by which all jobs are delivered with the presence of the sequence independent
family setup times. This problem is equivalent to 1|s¢|Lyax. Woeginger formulates
the problem using DP and applies the Trimming-The-State-Space technique to
cut the state space down to polynomial size and simultaneously demonstrate the

existence of a Polynomial-Time Approximation Scheme (PTAS) for the problem.

Baker [21] develops a procedure called Gap Heuristic that exploits a splitting
condition while adding jobs, one at a time, to a schedule for the problem of 1|s| Liyax
(s = identical setup time). Its computational requirement is O{N?log N) since
each iteration inserts one job into the schedule, and there could be reordering of the
batches with each insertion so that their batch due dates are in order. He suggests
two heuristic procedures that use neighbourhood search routines to improve the
existing heuristic. He defines a C'—neighbourhood by choosing a batch and com-
bining it with the next earlier batch of the same family, and a S—neighbourhood
which involves splitting off the last job from a batch and inserting it later in the
schedule, possibly as a separate batch. Computational results indicate that his
hybrid heuristic (on average) produces results where the difference between the
heuristic solution and an optimal solution is approximately equal to the average
job processing time.

Pan et al. [224] propose a mathematical programming model for 1|sf|Lmax. The

heuristic algorithm solves the problem by first finding an initial schedule and then

applying merging properties (forward and backward mergers) to improve the initial

CHAPTER 5 131

schedule. Their proposed algorithm can be modified to find approximate solutions
that minimise the maximum tardiness. The computational results reveal that
the proposed method produces more accurate solutions for maximum tardiness
problems than for maximum lateness problems and is efficient in solving problems

of up to 1000 jobs.

Shin et al. [253] propose a tabu search (TS) for the problem of 1|r;, s,| Liax-
The tabu search is composed of two parts: a MATCS (Modified Apparent Tar-
diness Cost with Setups) rule for finding an efficient initial solution, and a tabu
search approach to seek a near optimal solution from the initial solution. They
also develop a restricted neighbourhood generation scheme to find a better neigh-
bourhood schedule more efficiently. They explore a hybrid move operator which
alternates insert move and swap move as the search progresses. They compare the
TS with the RHP (Rolling Horizon Procedure) heuristic proposed by Ovacik and
Uzsoy [223] for problem instances up to 100 jobs. The computational experiments
show that the TS outperforms RHP heuristic in terms of the computational time

and solution quality.

In 2004, Schultz et al. [249] propose a new neighbourhood search heuristic for
solving problem 1|$f,|Lmax based on the properties and theorems presented by
Hariri and Potts [139] and Baker [21]. Of particular interest is Hariri and Potts’
problem reduction procedure that identifies the condition under which two jobs
from the same family must be scheduled contiguously and can thus be replaced by a
single composite job, therefore reducing the overall problem size. The procedure is
shown to be effective, producing optimal/near optimal solutions over a wide range

of problem instances and is computationally efficient for large problems (500 jobs).

Total (Weighted) Completion Time
Gupta [132] and Ahn and Hyun [2] present heuristic methods for solving the prob-

lem of 1|sz,| >~ C;. Gupta’s method constructs a partial schedule using the earliest
completion time rule: the job which is appended to the current partial sequence is

chosen so that its completion time is as small as possible. Ahn and Hyun [2] sug-

CHAPTER 5 132

gest an improvement heuristic which attempts to reduce the total completion time
of the current sequence by shifting contiguously scheduled jobs from the same fam-
ily to another position. Computational results show that the improved heuristic

generates better solutions compared to Gupta’s method.

Mason [207] design a genetic algorithm (GA) for problem 1|s¢| > w;C; using
a binary representation of solutions. Each element in the representation indicates
whether or not the corresponding job starts a batch. He uses standard genetic

operators in the algorithm.

Herrmann and Lee [144] study problem of 1|d;,s¢| > C; by introducing an
extended heuristic for the Constrained Flowtime with Setup problem (CFTS).
The Multiple-Pass Minimum Waste heuristic performs well at minimising the total
flowtime of CFTS. They use a GA to improve the solution quality by adjusting the
inputs of the heuristic. This GA includes a penalty function for infeasible points

that increases the cost of tardiness as the search progresses.

Williams and Wirth [281] propose a new heuristic for 1|s¢| > C; solved in
O(N*) time, based on the properties derived by Mason and Anderson [208] for an
optimal schedule. Their heuristic performs well when tested against the no family

splitting heuristic and Gupta’s heuristic for problems of 50 jobs.

Crauwels et al. [61] investigate four local search heuristics: descent method,
simulated annealing, threshold accepting, and TS for a problem of 1|sf| > w,;C;.
They use the neighbourhood search procedures proposed by Ahn and Hyun [2]
in their local search heuristics. All four heuristics are reported to yield less than
0.4% deviation from the optimal solution for problems with up to 50 jobs. The
best results are obtained with a hybrid method which uses the multistart version
of a TS when the number of families is small, and uses Mason’s GA for a large
number of families.

Wang et al. [273] design a GA based on fundamental runs theory for the

problem of 1|sf| > C;. The numerical results show that the computational per-

formance of the GA depends on the number of ‘fundamental’ runs, and not the

CHAPTER 5 133

number of jobs. When the number of groups is much less than the number of jobs,

the number of fundamental runs is usually much less than the number of jobs.

Other Objective Functions

Crauwels et al. [60] propose multistart descent method, simulated annealing, TS,
and GA for the problem of 1]s¢| > U;. The neighbourhood search algorithms
use either job or batch neighbourhood. Computational results for problems up
to 50 jobs show that the GA performs the best compared to other local search

algorithms.

Nowicki and Zdrzatka [217] propose a general TS approach for solving any
general cost functions on a single machine with major sequence independent family
setup times and minor setup times for jobs within families. They evaluate the
approach computationally for the objectives of minimising the maximum weighted
lateness and total weighted tardiness on the problem instances ranging between

40 and 200 jobs.

Webster et al. [276] propose and investigate a GA for scheduling jobs with an
unrestricted common due date. The objective is to minimise total earliness and
tardiness cost where early and tardy penalty rates are allowed to be arbitrary for
each job. They compare the computational results of a GA with a B&B procedure

on problem instances up to 30 jobs.

A Lagrangian relaxation based approach is developed by Sun et al. [259] for
problem 1]sf,| > w;T7. The primal problem is decomposed into job level subprob-
lems which are solved optimally and an approximate dual problem is then solved
using subgradient technique. The result of the relaxation is a list of jobs sequenced

by starting times that is then improved via a three way swap.

Armentano and Mazzini [13], design a GA for problem 1]ss,| > T;. They com-
pare the test problems with those obtained by the CPLEX software and the ATCS
(Apparent Tardiness Cost with Setups) heuristic. For small problems, their pro-

posed GA yield near optimal solutions for most of the problems tested. For larger

CHAPTER 5 134

problems, the GA outperforms ATCS in 93% of the test problems using reasonable

computational time.

Suriyaarachchi and Wirth [260] introduce some properties of an optimal sched-
ule for the problem of 1|sy| Y E}, > T;. They also present a fast heuristic proce-
dure for the problem based on the proposed properties. Its performance is com-
pared with a lower bound, a greedy heuristic, a genetic algorithm, and for small

problems, the optimal solution.

5.3 Earliest Due Date (EDD)

To specify the problem of SMFSP with family setup time more formally, consider
N jobs that are divided into F families. Each family f, for 1<f<F', contains ny
jobs where ny -+ ny +--- -+ np = N. We used the subscript pair (f,7) to identify
the jth job from family f. Each job becomes available for processing at time zero,
and is to be scheduled on a single machine. Let py; denote the processing time
of job (f,7), for 1<j<n;, and dy; is its due date. A sequence independent family
setup time s; is required at the start of the schedule if a job of family [is the first
to be processed and on the occasion when there is a switch in the processing of

jobs from one family to family f.

In the event when there is no setup time in the problem, we can minimise the

Lnax by sequencing jobs using the EDD rule (see Jackson [156]).

Property 1 (EDD Rule)

For a given set of NV jobs, with known processing times and due dates, the minimum
value of L, is achieved by sequencing the jobs in non-decreasing order according
to their due dates.

According to Monma and Potts [214], there exists an optimal solution in which
jobs within each family are sequenced in non-decreasing order of the due dates,

that is in EDD order. We restate their result below.

CHAPTER 5 135

Property 2: (EDD within family)

There is an optimal schedule such that the jobs within each family are sequenced

in non-decreasing order of their due dates.

The practical implication of Property 2 is to focus scheduling decisions on
choosing a family rather than choosing a job. The rule is aimed at determining
which family is most critical. Within that family, the job with the earliest due
date should come next. This means that the jobs in a family should appear in
EDD order (ds; < dg;11). Suppose that all jobs in family f are processed as a
single batch, and the family due date d is defined as:

dy = min {ds; + g5} (5.1)
]—1,2 ,,,,, ny

where ¢y; represents the processing time in family f that occurs after job (f,J)

and is sometimes called the ‘tail’ of job (f,7),
ns
qfj :pri— (Pf1+Dpr2+ppa+ -+ Pri)- (5.2)
i=1

With this, one can construct an optimal schedule by sequencing the jobs in
a non-decreasing order according to their due dates within each family and then
continue with sequencing the families in a non-decreasing order of their family
due dates. The concept of sequencing according to family due dates has broader
applicability in schedules where families are split into two or more batches. A
batch is a maximal group of contiguously scheduled jobs within a family. Let
(f,h),...,(f, k) be the jobs of an arbitrary batch b, and the batch due date § is

defined as:

,,,,,

These batch-related parameters help the EDD rule adapt to sequencing the

batches in the way as explained in Baker [21].

CHAPTER 5 136

Property 3 (EDD Rule for batches)

There exists an optimal schedule where the batches are sequenced in a non-

decreasing order according to their due dates.

This rule should be followed whenever one is considering scheduling in batches.
Due dates may not always be relevant but generally, the meeting of deadlines is
a major concern in scheduling problems. Scheduling to minimise lateness is a

common way of making job completion times conform to due dates.

In an optimal schedule, jobs within each batch are sequenced using the EDD
rule according to their job due date dj;. Then, the batches in the schedule are
sequenced in a non-decreasing order according to their batch due dates §, (i.e. 5 <
6p+1). A sequence independent family setup time sy, is added before the start of

each batch. The maximum lateness L., of the schedule is
Liax = max{L;} (5.4)
J

where L; = C; — d;, C; = completion time of job j.

5.4 MultiCrossover Genetic Algorithm

In this section, we propose a MXGA for solving a SMEFSP to minimise the maxi-
mum lateness. To the best of our knowledge, no research has been carried out on
the application of GAs for the problem of 1|s¢|Liax. In the following subsections,
we will discuss some of the main components in the MXGA based on the archi-
tecture described in Section 4.9. A general framework of the proposed MXGA is

summarised in Figure 4.20.

5.4.1 Representation

The proposed MXGA is developed using binary {0,1} representation to define the
partition of families into batches, where ‘1’ means the first job in a batch and ‘0’

means a contiguously sequenced job in a batch. This representation is used by

CHAPTER 5 137

Mason [207] in his GA for solving the problem of 1|ss| >~ w;Cj. The genes can
be selected freely except the first gene (job (f,1)) in each family f, where ‘1’ is
placed to indicate the start of a family. The length of the chromosome (individual)
corresponds to the number of jobs NV, to be scheduled. Figure 5.1 shows an example
of the gene representation for an individual with 15 jobs in 3 families. Note that
the gene representation for the first job (f,1) in each family f is always ‘1’. In
this example, we have two batches in family 1, three batches in family 2 and one

batch in family 3.

Figure 5.1: An example of an individual (chromosome)

A
4 N/ N N\

Individual | 101 00[10101][10000
=R ——
B1 B2 Bl B2 B3 Bl

Family 1 Family 2 Family 3
A A

During the decoding stage, genes in each individual will be decoded into a
sequence of batches. Having calculated the batch due date using (5.3), the batches

are scheduled in a non-decreasing order of their batch due dates (property 3).

5.4.2 MultiCrossover

Multicrossover is considered as the primary genetic operator used in the MXGA.
Based on a crossover probability, p., two offspring will be produced from a pair
of selected parents. As a result of the job permutation used as the gene repre-
sentation in most previous studies, specially designed crossover operator such as
Partially Mapped Crossover (PMX) ([252]) and Order Crossover (OX) ([182]) are
used to generate feasible solutions. Unlike others, our proposed crossover operator
uses standard 1-point or F-point crossover to produce two temporary offspring by
crossing two selected parents in each cycle of steps. In this case, F defines the total
number of families in the schedule. Thus, every family in the parent is involved in

the crossover. The process of F-point crossover strategy is as follows.

CHAPTER 5 138

S 1: Select randomly a crossover point in family 1 to be used in both P1 and P2
(Parent 1 and 2).

S 2: Exchange the ‘tails’ of family 1 in both P1 and P2 to form two new temporary

family partitions.

S 3: A randomly generated number will determine the assignment of the new
temporary family partitions in TC1 or TC2 (Temporary Offspring 1 and 2).

S 4: Repeat S 1 -8 3 for each family f (f =2,3,..., F) in both P1 and P2 until
two complete TC1 and TC2 are formed.

The steps above will be repeated ¢ times to produce 2¢ temporary offspring. The
best and a selected temporary offspring (using the probabilistic binary tournament
selection mechanism) are then chosen to be the offspring for the current generation

(refer to Figure 5.2 for an example with ¢ = 3). Note that the steps can be easily

modified to complement a 1-point crossover strategy.

Figure 5.2: MultiCrossover

Family1 Family2 Family 3
/—'%/—'%!_}_\

Parent 1 \10010\11101\11010\ TC1 [10000[10001[11100 |

Parentz\11000\10000\10100\ *Tc2 [11010[11100[10010 |

TC3 (11010[10001[10100 |

Parent 1 f10§010’111§01f1§1010’"»

Parentz\115000[100500]1@100\ TC4 |10000[11100[11010 |

Parent 1 \10010\11101 11010\ »Tc5\10010\10101\11000\

Parent2‘11000‘10000‘10100‘ *TC6 11000[11000/10110 |

_ Crossover Offspring 1 [11010[11100[10010 |
~ Point

Offspring2 [11000[11000[10110]

CHAPTER 5 139

5.4.3 Swap

As described in Section 4.9, the swap operator is applied to produce two new
offspring when the multicrossover is not applied to the parents. This is achieved
by doing the following:

S 1: Select randomly a family and a swap point within the family from a parent

to form two sub-genes.

S 2: Swap the position of the sub-genes (except the first job in the selected family)
with the swap point as the point of exchange.

S 3: The other genes from the other family remain unchanged.

The steps above are repeated for the second parent to create a second offspring.
In Figure 5.3, a swap point is chosen randomly between the second gene and the
third gene from family 2 in parent 1. Two sub-genes ({1}, {1,0,1}) are formed in
family 2. Note that the first gene (job (2,1)) in family 2 is not in the list of the
sub-genes and it will remain unchanged. We then swap the sub-genes in family 2
while the genes from the other families (1 and 3) remain unchanged. This results
in a completely new offspring from the parent. Similarly, offspring 2 is formed
from parent 2 where a swap point is chosen in family 1 in parent 2. Note that
swap will result in a new structure of the gene representation but not the structure

of the jobs. The genes will only be decoded into jobs in the decoding stage.

Figure 5.3: Swap

Parent 1 \10010\115101\11010 | Parent 2 }110?00\1000&0100 |
Swaﬁ Point Swap: Point
offspring 1 | 10010 1101111010 | Offspring2 10010/ 10000]10100 |

CHAPTER 5 140

5.4.4 Mutation

After a crossover or swap procedure is performed, mutation takes place. We used
two mutation operators in our MXGA. First, an offspring is selected for the proce-
dure of the gene mutation based on an individual mutation probability, pyr. Then,
each gene of the selected offspring (except the first gene in each family) is visited

and flipping the ‘1’ to ‘0’ or vice versa with a given gene mutation probability, p,,.

When a gene is flipped from ‘1’ to ‘0’, it means we combine two contiguously
scheduled batches into one single batch with the total number of the jobs in the
new batch equal to the sum of the jobs in the previous two separated batches. We
split a single batch into two separated batches if the gene is flipped from ‘0’ to ‘1’

The flipped gene will be the first job in the second batch.

Figure 5.4: Job Mutation

Before Job Mutation: After Job Mutation:
B1 B2 B1 B2B3B1 B2 B1 B2 B1 B2 B1B2B3
e Wi W Ve T W A A P
101001010110190 10100({10001/10110
\\mutate/

Figure 5.4 shows an example of gene mutation of an individual at the third
gene in family 2 and the fourth gene in family 3. With the given P,,, we flipped
the gene for job (2,3) from ‘1’ to ‘0’ and from ‘0’ to ‘1’ in the gene for job (3,4).
Note that the number of batches in family 2 has been reduced to two with four
jobs and one job in the first and second batch respectively. The number of batches

in family 3 increased from two to three, where there are two, one and two jobs in

each batch respectively.

CHAPTER 5 141

5.5 Competitors — Performance Measure

In order to measure the effectiveness and quality of the MXGA in solving the
problem, we compare the MXGA to those of a standard GA (SGA), a Tabu Search
(TS) and a Descent Method (DM). All the local search algorithms adopt the
binary representation used in the MXGA. To form an initial solution, the jobs
representation are uniformly randomly generated except for the first job (i.e. job

(f,1)) in each family f, where ‘1’ is placed to indicate the start of a family.

We first consider two neighbourhood approaches suggested by Ahn and Hyun
[2] for problem 1[s;,| > C;. They suggest that a neighbour can be constructed by
shifting a job or a sub-batch forward or backward, while maintaining the Shortest
Weighted Processing Time (SWPT) property for jobs within each family. Their ap-
proaches have been successfully applied by Crauwels et al. [61] within descent, sim-
ulated annealing, threshold accepting, and tabu search for problem 1|s;| > w;C}.
Since the approaches proved to be very efficient in finding near-optimal solutions
for the problem of minimising the completion time, we believe that the approaches
will also be useful for our problem of minimising the maximum lateness. Detailed
descriptions of the neighbourhood approaches can be found in Crauwels et al. [61].
It has been observed by Ahn and Hyun [2] that the shift job neighbourhood is
smaller than the more general shift sub-batch neighbourhood. Conventionally, the
complete neighbourhood is searched at each iteration to find the best possible
move in DM and non-tabu move in TS. Thus, it is advantageous to choose a small
neighbourhood. Therefore, we use the shift-job neighbourhood in preference to

shift sub-batch neighbourhood.

It is convenient to describe the shift job neighbourhood using an example.

Consider a sequence
S=(10100]10101[1000T1)

which comprises 7 batches in 3 families (f = 1,2,3) (vertical line “|” divides the

jobs into families). For a forward shift of a single job, we select the first job of a

CHAPTER 5 142

batch and swap its job representation with the second job in the same batch. For
instance, consider the batches in family 1, by swapping the job representation of
the third job (first job of batch 2) and the fourth job (second job of batch 2) in

family 1, we obtain the sequence
S;=(10010]10101[1000T1).

As a result, the third job in family 1 is now the last job in batch 1, and the
fourth job in family 1 has became the first job in the second batch of family 1.
Note that the actual sequence of the batches in an optimal schedule is determined
during the decoding stage where the batches are sequenced in a non-decreasing

order according to their batch due dates.

Similarly, for a backward shift of a single job, we select the first job of a batch
and swap its job representation with the last job from the previous batch. Consider
again the batches in family 1, by swapping the job representation of the third job
(first job of batch 2) and second job (last job of batch 1) in family 1, we obtain

the sequence
Soy=(11000]10101]1000T1).

In this case, the third job in family 1 is now the second job of batch 2 while the

second job in family 1 has became the first job in the second batch of family 1.

It is worth mentioning that the shift job neighbourhood discussed earlier does
not create any extra batches in the schedule. However, we extend it so that it can
create an extra batch in consisting of a single job. For a forward shift, we select the
second job in a batch and alter the job representation from ‘0’ to ‘1’, leaving the
first job of the batch to form an extra batch by itself. Consider again the second
batch in family 1 from sequence S, by altering the job representation of the fourth

job in family 1 (second job in batch 2) from ‘0’ to ‘1’, we obtain the sequence
S3=(10110]10101[1000T1).

Similarly, for a backward shift, we select the last job of a batch and alter the job

representation from ‘0’ to ‘1’. By doing this, the selected job has became an extra

CHAPTER b 143

batch by itself. Consider again the sequence S5, by altering the job representation
of the second job in family 1 (last job in batch 1) from ‘0’ to ‘1’, we get the

following sequence

S4=(11100]10101]1000 1).

5.5.1 Dynamic Length Tabu Search

A dynamic length tabu list of tabu search (DLTS) is designed for our problem
using shift job neighbourhood. The tabu list length is dynamically controlled
during implementation in order to achieve better solution quality. Such processes

can have an important influence on which moves are available to be selected at a

given iteration.

The basic role of the tabu list is to prevent cycling. If the length of the tabu
list is too short, tabu search may keep returning to the same local optimum, thus
preventing the search process from exploring a wide area of the solution space.
Conversely, a tabu list that is too long creates too many restrictions. It also
results in excessive computational time to search the tabu list to determine if a
move is tabu. As a result, less time is available for the procedure to explore in the
solution space within a given computational time limit. Therefore, the length of
the tabu list should be as short as possible but long enough to allow the search to
move away from the local optimum. An effective way of overcoming this difficulty
is to use a variable length tabu list where each element of the list is active for a

number of iterations, that is bounded by the given maximum and minimum values.

In the DLTS, a tabu list is created to prevent moves that shift certain jobs.
After a move is executed, the job that is shifted is stored in the tabu list, or both
jobs are stored if the move is effectively the transpose of adjacent jobs. Thus, a
neighbour is tabu if it is generated by shifting one of the jobs in the tabu list.
As in the standard tabu list procedure, whenever the list becomes full and a new

entry is to be added, the oldest element is overwritten.

CHAPTER 5 144

We also introduced an aspiration criterion (as described in Section 2.5.2) into
the DLTS to prevent the occasional loss of good solutions due to the tabu list. If
the solution value of a tabu neighbour is better than that for all solutions generated

thus far, then its tabu status is overridden.

5.5.2 Randomised Steepest Descent Method

Having successfully developed the DLTS using shift job neighbourhood search, a
steepest descent method (SDM) using the same neighbourhood search procedure
is developed. It adopts an acceptance rule that allows neutral moves to be made
for up to M consecutive iterations (where M is a parameter, e.g. M = 1000) before
terminating the algorithm. The SDM is known to be a very greedy neighbourhood
search method which finds the local optimum quickly. But, the risk of visiting
the same solutions previously found thus creating a cycle within this solutions set
is also high. To remedy this drawback, we introduced a randomisation strategy
into the algorithm when there are multiple identical good solutions (i.e. improving
and neutral moves) found in a single iteration. A move is selected randomly from
the list of the identical good solutions. We believed the strategy will help the
search to escape from falling into the same local optimum and continue its search
in the solution space. Also note that deteriorating moves are not considered in
the algorithm. In other words, the algorithm will terminate once the best schedule

found in the current iteration is worse than the best schedule found so far.

5.6 Computational Experience

In this section, we report on computational results of our proposed local search
algorithms. For TS and DM, we present results which show how the choice of
parameters affect solution quality. For example, we investigate the different range
of tabu list length in DLTS and the performance of the randomisation in our

proposed RSDM compared to the standard DM. We also present results of our

CHAPTER 5 145

proposed MXGA at the different stages of development. Although many addi-
tional parameter setting tests were performed to obtain a ‘good’ implementation
of each algorithm, only the most significant are reported. Having found suitable
parameter settings for each method, we complete this section by presenting exten-
sive computational results for the different local search algorithms proposed in the

previous sections.

5.6.1 Experimental Design

Problem instances with 50 and 100 jobs, and with 4, 8 and 12 families are gener-
ated. Jobs are distributed uniformly across families, so that each family contains
| N/F| or [N/F7 jobs. In each problem, processing times are randomly generated
integers from an uniform distribution defined on [1,100]. Having generated pro-
cessing times and computed P = Z}:l Zyil pyj, five sets of integer due dates are
generated from the uniform distribution [0,aP], where o € {0.2,0.4,0.6,0.8,1.0}.

We label each set of due dates range as follows:

D1: [0,0.2P]
D2: [0,0.4P]
D3: [0,0.6P]
D4: [0,0.8P)
D5: [0,1.0P]

Setup times are integers from the following uniform distributions (based on Hariri
and Potts [139)):

Class A: [1,100] (medium);
Class B: [1,20] (small);
Class C: [101,200] (large).

For each combination of V, F', & and setup times class, five problem instances
are created. The algorithms are coded in ANSI-C using Microsoft Visual C++
6.0 as the compiler and run on a Pentium 4, 2.0 GHz computer with 512MB
memory. Since the optimal solutions are not known, we use a lower bound to
assess the quality of solutions generated by the algorithms. The lower bound used

for each test problem is presented in Section 3.3.2. Algorithms are compared by

CHAPTER b 146

listing, for each combination of value NV, I, o and setup times class, the average
relative percentage deviation (ARD) (equation (5.5)) and the maximum relative

percentage deviation (MRD) (equation (5.6)) of the heuristic solution value from

the lower bound.

Sl S (B« 100%)

ARD = 5.
[. R) (5)
UB;, — LB, -
leD = L:n”l;i?i] {T X 100%} y WhEre (:)6)
r=1,2,....R

I = number of problem instances with the relevant combination of parameters;
R = number of repeated runs for problem instance ¢ (¢+ = 1,2,...,1);
U B;, = heuristic solution found in rth run of problem instance i;

LB; = lower bound of the problem instance i.

We adopt the following abbreviations for the remaining subsections:

1P : 1 point crossover

FP : I point crossover

SGA : Standard Genetic Algorithm

MXGA : MultiCrossover Genetic Algorithm

STS : Standard Tabu Search

DLTS : Dynamic Length Tabu Search

SSDM : Standard Steepest Descent Method
RSDM : Randomised Steepest Descent Method
Elite & Filter: Elitism replacement and Filtration strategy

The specific values for the generic design variables in SGA and MXGA are
summarised in Table 5.1. Initial computational experiments are performed to
determine the size of the candidate list of temporary offspring. Five values of ¢

(t=13,5,7,9,10) are tested and results show that ¢ = 5 gives the best result within

a reasonable computation time.

CHAPTER 5 147

Table 5.1: Implementation of generic design variables for SGA and MXGA

variable value
chromosome length, L N
population size, F,, 100
crossover operator 1-point and F-point (F' = no. of families)
crossover rate, p, 0.75
multicrossover, ¢t (MXGA only) | 5 (=10 temporary offspring)
individual mutation rate, p,, 0.25
gene mutation rate, p,, 1/N
filtration rate, R every 50 generations
selection mechanism probabilistic binary tournament

5.6.2 Standard Steepest Descent Method vs. Randomised

Steepest Descent Method

Table 5.2 presents results comparing the SSDM with our proposed RSDM. Five
problem instances with 100 jobs in 4 families are generated and setup class A
([1,100]) is used in this experiment. For each problem instance, a total of 30 runs
are performed to obtain an average value. A duration of 20000 iterations for each

run is performed.

The first column gives the due date combination among D1-D5. Columns two
and four refer to the ARD (equation (5.5)), while columns three and five refer to
the MRD (equation (5.6)) of SSDM and RSDM, respectively. For each algorithm,
the entries report the average values computed over the five problem instances (in
this case, I =5, R = 30). The final line of the Table 5.2 gives the overall average

value over all five combination of due dates.

CHAPTER. 5 148

Table 5.2: Comparison of SSDM with RSDM (20000 iterations per run)

Due Date SSDM RSDM
ARD MRD | ARD MRD
D1 0.25 0.80 0.18 0.55
D2 1.84 3.93 1.71 2.84
D3 9.12 1241 8.61 11.31
D4 19.60 27.78 | 19.25 25.88
D5 66.73 140.93 | 65.64 139.60

Average | 19.51 37.17 | 19.08 36.04

We first observe that the performance of both algorithms in D5 are unimpres-
sive, with relatively large deviations of the heuristic solution value from that of the
lower bound. Among the due date combinations, D5 proved to be the most difficult
to achieve a value close to the lower bound. The solution quality significantly im-
proves if the range of the due date is small. A comparison of all corresponding due
date ranges for both algorithms show that RSDM is slightly the better of the two.
It is worth mentioning that the RSDM takes slightly longer computation time to
reach a better local optimum. This is due to the acceptance rule applied in the
RSDM which allows neutral moves during the execution. The SSDM terminates
once no improving move is found. Thus, for a descent method, we subsequently

concentrate on the RSDM.

5.6.3 Standard Tabu Search vs. Dynamic Length Tabu

Search

Table 5.3 gives results for the different settings of the tabu list length of the
TS approach. The problem instances generated from Section 5.6.2 are used in this
experiment. As in Section 5.6.2, for each problem instance, 30 runs were performed
with a duration of 20000 iterations per each run. The different settings of the tabu

list length in Table 5.3 are as follow:

CHAPTER b5 149

rey: z,y € {10« 75,25 — 75}
Starts with a tabu list length of z. Increase the length by 5 after 100
non-improving moves. Decrease the length by 5 once an improving
move is found. Dynamically control the length of the tabu list within
the range ([z, y])throughout the run.

y—z: y,z€{75 10,75 < 25}.
Starts with a tabu list length of y. Decrease the length by 5 after 100
non-improving moves. Increase the length by 5 once an improving
move is found. Dynamically control the length of the tabu list within
the range ([y, z])throughout the run.

z .z €{10,25,50,75,100}.
Fixed tabu list length at z throughout the run.

Table 5.3: Comparison of DLTS with STS (20000 iterations per run)

DLTS | STS

1075 | 7510 | 25575 | 7525 10 25 50 75 [100
D1 0.00 0.00 0.00 0.00 0.25 0.22 0.25 0.26 0.18
D2 0.98 0.99 0.99 1.00 1.67 1.67 1.62 1.64 1.68
ARD | D3 6.44 6.35 6.58 6.20 7.73 7.61 7.67 7.73 8.69
D4 | 1621 | 1594 | 16.83 | 15.64 | 1876 | 18.39 | 1848 | 18.60 | 19.42
D5 | 5519 | 5798 | 5642 | 56.36 | 59.09 | 58.45 | 59.91 | 58.88 | 58.68
| Average | 15.76 | 1625 | 16.16 | 1584 | 17.50 | 17.27 | 17.39 | 17.42 [17.71 |
D1 0.00 0.00 0.00 0.00 0.92 0.82 0.98 0.98 0.93
D2 1.95 1.95 1.95 1.95 2.95 2.92 2.59 2.59 2.47
MRD | D3 8.71 8.21 8.72 8.06 | 10.30 | 10.21 9.96 9.95 9.97

D4 | 2373 | 2253 | 24.34 | 21.87 | 26.56 | 2598 | 25.73 | 26.56 | 25.44

D5 | 113.41 | 12152 | 115.72 | 119.51 | 124.32 | 121.00 | 122.96 | 122.70 | 121.34

| Average [29.56 [30.84 | 30.15] 30.28 | 33.01 | 3219 [3244 [32.56 | 32.03 |

Due Date !

As for the descent method, we observe that the solution quality is high when
the due date range is small. Note that the dynamically controlled tabu list length
versions of TS achieved the lower bound for due date D1 for all five problem
instances in every run (i.e. 150 runs where [= 5, and R = 30). Comparing the
results for the dynamic and the fixed length versions of tabu list of the algorithms,
better solution quality is generated for the former version in every due date range
with the ‘10 « 75 version performing the best. This improved performance is
explained by the observation that the short tabu list is needed at the beginning of

the run to allow the search to fully exploit the neighbourhood. A longer tabu list

CHAPTER 5 150

is needed at the later stage of the run to allow the search into ‘interesting’ regions

of the solution space which would not otherwise be explored. Thus, the TS with

‘10 < 75’ version is preferred.

5.6.4 Initial Investigation of MultiCrossover Genetic Al-

gorithm

During the development of the proposed MXGA, we made some decisions on the
design at different stages. We gradually construct the proposed MXGA from the
SGA. For the initial investigation in this subsection, five problem instances with
five (D1-D5) combinations of due dates are generated and setup class A ([1,100])
is used in this experiment. For each combination of the problem instance and due
date range, a total of 30 runs are performed to obtain the average value. A fixed

time limit of 15 CPU seconds per run is imposed.

Table 5.4 shows results for the different replacement strategies that we em-
ployed in the SGA at the early stages of development of the MXGA. We compare
the well known steady-state replacement strategy (see Section 4.8) with our pro-
posed elitism replacement and filtration strategy described in Section 4.9.6 using
standard 1-point and F-point crossover operators. For each algorithm, the entries
report the average values (ARD and MRD) computed over the five problem in-
stances with five combinations of due dates (i.e. 750 runs). The final line of Table

5.4 gives the overall average value.

Table 5.4: Comparison of Steady-State Replacement with Elitism Replacement
and Filtration Strategies in SGA (15 CPU seconds per run)

N F ‘ Steady State + 1P ‘ Steady State + FP | Elite & Filter + 1P | Elite & Filter + FP
ARD MRD ARD MRD ARD MRD ARD MRD
50 4 25.87 79.53 24.90 78.65 25.27 79.05 24.89 77.23
8 18.01 48.21 17.56 46.88 16.95 46.10 16.90 45.15
100 4 21.93 53.68 21.38 51.16 20.80 51.29 20.32 48.41
8 23.34 54.65 22.87 50.27 22.41 51.12 22.04 48.82

| Average | 22.29 59.02 | 21.68 56.74 21.36 56.89 | 21.04 54.90

CHAPTER 5 151

The results achieved by F-point crossover in both replacement strategies clearly
outperform the 1-point crossover, although fewer generations are created within
the time limit. Table 5.4 also shows that the elitism replacement and filtration
strategy yield better results in both crossover operators compared to their coun-
terparts in the steady state replacement strategy. A comparison of the correspond-
ing replacement strategies and crossover points for the algorithms shows that the
elitism replacement and filtration strategy with F-point crossover is the best of
the four. The fact that the elitism replacement and filtration strategy with F-
point crossover outperforms the other algorithms for every single test case shows
that they can search the solution space in a more efficient manner. Thus, for the
replacement strategy, we subsequently concentrate on the elitism replacement and

filtration strategy in the MXGA.

Table 5.5 shows results of the multicrossover operator Compared to the standard
crossover operator using 1-point and F-point crossover strategies. The standard
crossover operator can be regarded as a special case of the multicrossover operator
where the steps described in Section 5.4.2 are used to produce exactly two offspring
(i.e. t = 1). This operator is used to investigate whether it is advantageous to
produce multiple offspring during multicrossover. Five problem instances with
five combinations of due dates are generated and setup class A ([1,100]) is used in
this experiment.

Table 5.5: Comparison Between Crossover Operators (15 CPU seconds per run)
Elite & Filter + 1P Elite & Filter + FP

N F Standard MultiCrossover Standard MultiCrossover
ARD MRD | ARD MRD | ARD MRD | ARD MRD

50 4 | 25.15 7877 | 24.22 7599 | 2476 77.13 | 2401 7551
8 | 16.98 4583 | 16.35 4401 | 16.85 45.20 | 16.12 43.89
100 4 12075 51.05 | 17.79 43.65 | 20.05 49.67 | 17.47 43.15

8 | 2245 50.67 | 19.35 43.89 | 21.91 48.23 | 19.01 43.51
| Average | 21.33 56.58 | 19.43 51.89 [20.90 55.06 | 19.15 51.52

Our first observation from Table 5.5 is that the standard crossover operators
give poorer results than the multicrossover operator with both 1-point and F-point

crossover strategies. As suggested, the F-point crossover strategy does perform

CHAPTER 5 152

better compared to 1-point crossover strategy in both different crossover operators.
It is clear that better solution quality is obtained under the multicrossover operator
in both cases although fewer generations are created within the time limit. This

superiority is more pronounced when the number of jobs is large.

We conclude that the 1-point and F-point multicrossover operators are the
preferred versions of crossover operators, with the latter performing marginally
better. Consequently, the F-point multicrossover operator is used in the proposed

MXGA.

Table 5.6 shows the computational results of the proposed MXGA using the
swap operator explained in Section 5.4.3. The purpose of this experiment is to
investigate the effect on the solution quality when using the swap operator in our

proposed MXGA.

Table 5.6: Results of Swap (15 CPU seconds per run)
MXGA (1P) | MXGA (FP) |
N F with Swap | without Swap | with Swap | without Swap |
ARD MRD | ARD MRD f ARD MRD | ARD MRD

50 4 2389 7451 | 2465 76.05 | 23.23 73.21 | 24.09 75.34
8 | 16.05 42.19 | 16.98 44.15 | 15.76 41.34 | 16.31 43.67
100 4 | 17.11 4176 | 18.01 43.44 | 16.45 40.97 | 17.34 43.21
8 | 19.09 42.29 | 19.74 43.67 | 18.76 41.19 | 19.25 43.19

Average | 19.04 50.19[19.85 51.83 | 18.55 49.18 | 19.25 51.35

It is clear from Table 5.6 that the swap operator yields better results in the
MXGA compared to the algorithms without the swap operator. This matches our
intuition that the swap operator manages to create more diversity in the population
and lead the search into the more ‘interesting’ regions to explore better local
optima. Analysing the results obtained by the algorithms, we can conclude that
the presence of the swap operator in the proposed MXGA improves the solution

quality with the F-point crossover version performing the best.

Table 5.7 reports the results of the proposed MXGA using the mutation op-
erator as described in Section 5.4.4. As for the swap operator, we observe that

the presence of the mutation operator in the MXGA improves the solution qual-

CHAPTER 5 153

ity. This improved performance is explained by the observation that the mutation

operator is able to help the MXGA explore unknown regions.

The results of the computational experiments in this subsection provide guide-
lines for the design of the proposed MXGA. The elitism replacement and filtration
strategy clearly outperform the steady state replacement strategy. The high selec-
tion pressure cause by the elitism scheme makes the population fall into premature
convergence. But it can be overcome by introducing the filtration strategy into
MXGA. By removing and replacing the identical individuals with randomly gen-
erated individuals in every R generations, this will help the population explore
more unknown regions in the search space. The exploration technique used in the
standard mutation operator can be further enhanced by introducing the swap op-
erator into the MXGA, while the exploitation technique can be improved by using
the multicrossover operator as described in Section 5.4.2. Consequently, this final

version of the proposed MXGA is used in our comparative tests in the subsection.

Table 5.7: Results of Mutation (15 CPU seconds per run)
MXGA (1P) MXGA (FP)

N F | with Mutation | without Mutation | with Mutation | without Mutation
ARD MRD | ARD MRD ARD MRD | ARD MRD
22,76 7231 | 23.92 74.62 21.24 70.29 | 23.31 73.41
14.95 40.77 | 15.99 42.01 13.98 38.76 | 15.87 41.65
16.21 39.64 | 17.32 41.92 15.64 38.21 | 16.41 40.99

8 | 1834 40.78 | 18.89 41.95 17.45 39.44 | 18.65 41.01

Léverage 18.07 48.38 | 19.03 50.13 17.08 46.68 | 18.56 49.27

BO

100

LS. 2N

5.6.5 A Comparison of different Local Search Algorithms

In this subsection, we present results of tests that compare the DLTS, RSDM, and
MXGA with each other. We also compare our ‘good’ implementations with stan-
dard TS and GA. The differences between the MXGA and SGA are with regards
to the use of the crossover operator, reproduction procedure and the replacement
scheme. The SGA applies the standard F-point crossover operator to produce

two offspring from two selected parents. In the case of SGA, the steps explained

CHAPTER 5

in Section 5.4.2 are used only once (i.e. £ = 1) to generate exactly two offspring.
The SGA uses the reproduction procedure instead of a swap operator when the
crossover does not apply to the selected parents. The replacement strategy em-

ployed in the SGA is the steady-state replacement strategy.

For this final experiment, we use the problem instances described in Section
5.6.1. For each combination of problem instance, 30 runs were performed. In
order to have a fair comparison between different algorithms in this experiment,
we employed a duration of 15 CPU seconds per run. Results are listed in Table
5.8. For each algorithm, the entries report the average values (ARD and MRD)
computed over the five problem instances with five combinations of due dates

(i.e. 750 runs). The final line of Table 5.8 gives the overall average value.

Table 5.8: Comparative Computational Results (15 CPU seconds per run)

[Setup v r | SGA MXGA STS DLTS RSDM
Class TARD MRD | ARD MRD | ARD MRD | ARD MRD | ARD MRD
4 | 1858 70.63 | 13.54 71.56 | 25.34 133.93 | 13.76 72.31 | 17.03 88.60

50 8 17.85 69.24 13.76 60.06 | 23.10 77.21 | 14.82 62.82 | 18.71 69.20

12 12,38 41.35 9.31 36.71 | 15.33 50.48 | 10.93 39.37 | 13.48 44.01

A 4 | 21.12 150.38 | 15.73 119.68 | 17.35 126.67 | 15.74 113.06 | 18.96 135.78
100 8 | 26.26 138.34 | 18.75 106.15 | 23.65 120.21 | 20.80 114.30 | 24.24 125.23

12 | 34.91 12486 | 19.28 82.83 | 23.02 99.61 | 20.50 87.28 | 23.97 100.47

Average | 21.85 100.64 | 15.06 79.50 | 21.30 102.86 | 16.09 81.52 | 19.40 93.88
‘7 4 6.72 54.79 4.65 42.53 9.93 81.00 4.81 42.87 6.03 51.34
50 8 10.30 72.03 7.74 59.31 | 12.84 82.93 8.52 64.07 9.46 67.68

12 8.35 50.78 5.51 39.51 | 10.91 62.37 7.72 50.61 8.40 53.12

B 4 978 90.00 | 7.1 69.12 | 807 87.09 | 7.47 76.14 | 834 8178
100 8 | 13.69 12320 | 9.64 91.07 | 11.85 115.56 | 11.08 97.63 | 11.85 102.99

12 | 17.44 113.88 | 9.52 7246 | 11.37 86.34 | 10.89 79.57 | 12.01 88.80

L Average | 11.05 84.12 | 7.37 62.34 | 10.83 8589 | 842 6848 [9.35 74.29

50 8 | 2256 ©51.45 | 15.42 41.56 | 27.04 58.37 | 16.00 44.72 | 20.59 60.11
12 | 13.40 30.32 9.27 25.26 | 14.91 35.06 | 10.07 26.31 | 14.18 34.29
C 4 | 4418 16515 | 25.60 99.87 | 25.85 103.67 | 25.72 103.06 | 30.57 131.31
100 8 | 39.39 11215 | 25.60 83.38 | 29.92 98.94 | 26.82 89.00 | 31.76 102.47
12 | 55.27 108.72 | 22.43 60.90 | 26.26 70.58 | 23.08 62.56 | 27.76 78.24
| Average | 33.82 00.43 | 19.23 61.45 | 26.19 75.50 | 10.83 64.17 | 24.50 79.23

AVERAGE [22.24 0173 | 13.89 67.76 | 19.44 88.08 | 14.78 71.39 | 17.75 82.47 |

4 ’28.09 74.80 17.05 57.75 | 33.17 86.38 | 17.29 59.33 | 22.11 68.93

We first observed that the MXGA performs significantly better than the SGA.
This shows that MXGA is able to produce better solution quality compared to
SGA. There is clear evidence from Table 5.8 that, on average, the MXGA is the
best algorithm followed by the DLTS, RSDM, STS and finally the SGA. Also, our
proposed DLTS and RSDM outperformed the STS and SGA.

CHAPTER 5 155

We have found that computational difficulty as measured by relative deviation
from the lower bound increases with problem size. With other things being equal,
when we increase the number of jobs, then both ARD and MRD will increase.
Note that for all the local search algorithms, fewer generations (or iterations) are

executed within the time limit as the number of jobs or families become larger.

The algorithms find problems of setup class C (large setup time) to be the most
challenging. This is due to the large setup time, as it contributes substantially to
the maximum lateness of an optimal schedule. Jobs tend to form a larger batch
size, with more jobs in a batch, to reduce the need of setup time between batches
from different families. As a result, more jobs will miss their assigned due dates.
From the manufacturer’s point of view, the only solution to the large setup time is
to form large batch sizes to allow many jobs to run on a similar setup. When the
setup time is small (i.e. setup class B), more batches are formed which means fewer
jobs are to be processed per batch, and hence more jobs will meet their respective
due dates. Results from Table 5.8 suggest that the problem instances with setup

class B is relatively easier to solve compared to other setup classes.

5.7 Conclusions and Remarks

In this chapter, a single machine family scheduling problem with family setup
times to minimise the maximum lateness is studied. We have also described the

EDD properties for jobs within a family and for batches.

We have designed a genetic algorithm which uses a multicrossover operator in
an effort to achieve better solutions quality. Various techniques have also been
introduced into the proposed algorithm to further enhance the solutions quality.
Extensive computational experiments show that the proposed multicrossover ge-
netic algorithm (MXGA) achieves better results compared to a standard genetic
algorithm, both standard and dynamic length tabu search and a randomised steep-
est descent method. The development of MXGA for other optimality criterion such

as minimising the total (weighted) tardiness/earliness is worthy of future research.

Chapter 6

Non-Oriented Two-Dimensional
Rectangular Single Bin Size Bin
Packing Problem

6.1 Introduction

In this chapter, we concentrate on a non-oriented two-dimensional rectangular
single bin size bin packing problem (2DRSBSBPP) (based on Wischer et al.’s
Typology). According to Lodi et al. [194], the problem can be defined as follows:
“Given are n rectangles, each characterised by a height h;, and a width w;, for
j = 1,2,3,...,n and an unlimited number of identical rectangular bins, each
having height H, and width W. The objective of the 2DRSBSBPP is to pack each
rectangle into a bin so that no two rectangles overlap and the number of required
bins is minimised.”

This problem is classified as a class of NP-hard problem by Garey and Johnson
[108].

156

CHAPTER 6 157

The general assumptions of the 2DRSBSBPP in this study are:

1. all input data are positive integers;

2w, <Wh; <H(j=12,...,n);

3. a set of rectangular items, which may contain identical rectangles;

4. a set of identical objects (bins);

5. rectangle j may be rotated by 90° where max{w;, h;} < min{W, H};
6. rectangles are packed in non-guillotine cuts pattern in the bin;

7. rectangles are packed in an orthogonal packing pattern: the edges of the

rectangles are parallel to those of the bins.

One of the objectives in this study is to develop a new heuristic placement
routine that can be used with our proposed MultiCrossover Genetic Algorithm
(MXGA). The proposed placement routine was inspired by the best-fit heuristic
placement routine designed by Burke et al. [40] and Whitwell [280] for solving the

two dimensional rectangular stock cutting problem.

In this study, we propose a MXGA that utilises the multicrossover operator to
solve the 2DRSBSBPP. We use a standard 1-point or 2-point crossover to produce
two temporary offspring. Detailed descriptions of the proposed multicrossover
operator are discussed in Section 6.3.4. The architecture of the MXGA used in

this chapter is based on the framework discussed in Section 4.9.

This study will look at a new variant of the 2DRSBSBPP by including a due
date for each rectangle and a fixed processing time for each bin. As a result, the
problem becomes a bicriteria optimisation problem where the objective function is
to find an optimal solution for minimising the maximum lateness of the rectangles
and minimising the number of bins used. This extension has practical applica-
tions in the wood and metal industries. This problem can also be treated as a
batching machine scheduling problem where a machine can process several jobs

simultaneously. Section 6.4 will address this problem in more detail.

CHAPTER 6 158

The motivation of this extension came from the dilemma faced in the industrial
manufacturing applications which involved the trade-off between the customers’
satisfaction (meeting customers’ due date on the order placed) and the manufac-

turer’s efficiency (minimising the wastage of material used).

In the next section, we present a new heuristic placement routine for 2DRSBS-
BPP in more detail. The developments of the MXGA for solving the 2DRSBSBPP
are the focus of Section 6.3. Some of the main components of the MXGA are dis-
cussed in detail. A new variant of the 2DRSBSBPP which involves rectangle due
date and fixed bin processing time is addressed in Section 6.4 and a new lower
bound of the maximum lateness for the 2DRSBSBPP with due dates is then pro-
posed in Section 6.5 in order to measure the performance of the heuristic solution
found when the exact solution is unknown. Section 6.6 provides an insight into
the local search algorithms we designed specifically for comparison purposes with
the proposed MXGA. To end this chapter, extensive computational experiments
are conducted for the proposed placement routine, the classic 2DRSBSBPP and
the new 2DRSBSBPP with due dates in Section 6.7. Some concluding remarks

are given in Section 6.8.

6.2 Lowest Gap Fill

Inspired by the Bottom-Left Fill (BLF) routine, Burke et al. [40] and Whitwell
[280] propose a best-fit heuristic placement routine for the two-dimensional stock
cutting problem that is effective in filling the available gaps in the partial layout by
dynamically selecting the best rectangle for placement during the packing stage.
Unlike the Bottom-Left (BL) and BLF routines that place the rectangles based on
the sequence of rectangles supplied, their proposed routine would make informed
decisions about which rectangle should be packed next and where it should be
placed. Their extensive computational results show that the proposed heuristic
is able to outperform the currently published and established heuristic and meta-

heuristic methods to produce solutions that are very close to optimal with very

CHAPTER 6 159

small computational time. Due to the excellent results achieved by the best-fit
heuristic in stock cutting problem, we are intrigued to use their ideas to design a
new placement routine to suit our problem. In the following, we briefly describe
the best-fit heuristic placement routine for the cutting stock problem. Detailed

descriptions of the routine can be found in Burke et al. [40] and Whitwell [280].

According to Burke et al. [40] and Whitwell [280], the best-fit heuristic is a
greedy algorithm that attempts to produce a high quality packing layout by ex-
amining the available gap within the stock sheet and then placing the rectangle
that best fits the lowest gap available. Every time a rectangle is placed, the lowest
available gap will change with respect to its location and size. They define a niche
placement policy for the case when the best fit rectangle does not completely fill

the gap. This policy describes how a rectangle should be placed within the gap.

The best-fit placement routine is implemented in three stages: preprocessing
stage, packing stage, and postprocessing stage. In the preprocessing stage, the
rectangles are initially arranged following a horizontal orientation and sorted in
non-increasing order of their width, breaking ties by non-increasing height. The
stock sheet is represented as a linear array in which the number of elements is equal
to the width of the stock sheet (z-coordinate). Each element of the array holds the
total height of the packing at that z-coordinate of the stock sheet. Therefore, the
coordinate of the lowest gap can be determined by locating the smallest value of
the array and the width of the gap is the length of the consecutive array of equal

value.

During the packing stage, a list of rectangles is examined and the best fitting
rectangle returned. This rectangle is then placed within the gap depending on the
current niche placement policy. The rectangle is assigned coordinates and removed
from the rectangle list. The relevant stock sheet array elements are incremented
by the rectangle height. The process continue until every rectangle is packed in

the stock sheet.

CHAPTER 6 160

In the postprocessing stage, the quality of solution is improved by repacking
any rectangle that creates ‘towers’ in the layout. Towers are created when long
thin (i.e. height > width) rectangles are protruding from the top of the packing
layout. The tower is removed from the packing and then rotated 90° before being
repacked in the new orientation on top of the packing layout. If the solution quality
is improved, the prosess is repeated on a new ‘tower’. This process continues until

there is no improvement in the solution quality.

Based on the ideas presented above, we propose a new heuristic placement
routine for the 2DRSBSBPP, called the Lowest Gap Fill (LGF). This placement
routine consists of two stages: preprocessing stage and packing stage. Asin the best-
fit placement routine, before the start of the LGF placement routine, the rectangles
are initially arranged following a horizontal orientation (where its longest edge is
parallel to the bottom of the bin) and sorted in a non-increasing order of their

width (breaking ties by non-increasing height).

We employ a best-fit type strategy by examining the lowest available gap in
the current bin and then placing the rectangle that best fits the gap available.
This placement routine not only keeps track of the free position in the layout, but
also of the dimensions of the available gap at the respective position. When no
remaining rectangle can fit into any of the available gaps in the current bin, the
bin is closed and a new empty bin is initialised to replace the closed bin as the
current bin. Any unfilled space in the closed bin will be regarded as wastage. Also
note that the proposed routine only concentrates on one bin during the packing
process. This differs from the BL and BLF routines, where a list of bins that has
been created needs to be maintained. The routine continues until all the rectangles
in the list have been packed into a minimum number of bins. The details of the

implementation stages will be discussed in the next subsection.

Some of the algorithms such as BL and BLF may require a costly owverlap
evaluation test. This evaluation test performs an overlap test between the rectangle
and each of the rectangles that have already been packed in the current bin. It

is obvious that the more rectangles that have been packed, the more overlap tests

CHAPTER 6 161

have to be performed. The process becoming increasingly slower as each rectangle
is placed. With the best-fit approach and the implementation strategy of the
LGF (presented in next subsection), this costly evaluation test is not needed as

the rectangle packed will not overlap with other rectangles already packed in the

current bin.

6.2.1 Implementation

Preprocessing Stage

Instead of maintaining a linear array as in the best-fit placement routine proposed
by Whitwell [280], we use a pointer (z,y) to indicate the position of the lowest
available gap in the bin during the packing stage. The pointer is determined by
locating the lowest free position in a bin, left justified. A free position is where a
rectangle can be placed without overlapping with other rectangles that are already
packed. The width of the gap can be found by measuring the length on the z-
coordinate starting from the pointer until it touches either the right edge of the
bin (Figure 6.1 (a)) or the left edge of a tall rectangle (Figure 6.1 (b)). Note that
the difference between the height of the bin and the y-coordinate of the pointer
gives the height of the available gap. As a result, we obtain both dimensions of
the available gap. This will ensure that the rectangle to be placed next will not

overlap with the bin or any other rectangles that are already packed in the bin.

Figure 6.1: Examples of pointer and gap
(a) (b)

10 5 10
9 — 9 —
8 8 —
7 7
6 — 6 —|
5 - 5 -
4 4 —
3 3] erssesss
2 2
N

(I N I O I I I FITTT T 1T T7TT1TT11
12345678910 1234567 8910
pointer = (8,0) pointer = (5,3)

gap width = 2 units gap width = 3 units

CHAPTER 6 162

Due to the best-fit strategy that we employ in our proposed routine, we must
examine all of the rectangles to be sure that the selected rectangle to be placed
next is the largest available rectangle that can be fit in the gap at each placement.
However, we can reduce the number of rectangles we need to examine by sorting

the list of rectangles once before packing commences.

This can be done by first rotating any rectangle for which the height is greater
than the width so that we get a list of rectangles with their longest edge parallel
to the bottom of the bin. For example, by denoting each rectangle by a (width,
height) pair, the rectangle list of
{(2,2), (5,9), (1,2), (7,2), (3,5)} becomes {(2,2), (9,5), (2,1), (7,2), (5,3)}.

Then, the list of rectangles is sorted in non-increasing order of width (breaking
ties by non-increasing height). From the previous example,

{(2,2), (9,5), (2,1), (7,2), (5,3)} becomes {(9,5), (7,2), (5,3), (2,2), (2,1)}. This

preprocessing stage required O(nlogn) time.

The new list of rectangles can now be examined for the best fitting rectangle
without the need to search the entire list during the packing stage. For instance,
suppose we found a gap of 6 units in the bin. The first rectangle (9,5) in the list is
examined. Note that it could fill 5 units if rotated. It does not fit the gap exactly,
so we continue the search. The second rectangle (7,2) is examined. It can fill 2
units if rotated. We must continue because there may be a rectangle with a width
of 6 units that can fit the gap exactly. The third rectangle (5,3) is examined. It
can fill the same number of units as the first rectangle. Since we prefer to pack
the larger rectangle first, the first rectangle would be returned as the best fitting
rectangle. We know we can terminate our search, as all remaining rectangles have
dimensions of less than or equal to 5. Also note that we terminate the search as
soon as a rectangle that fits exactly is found. This will reduce the search time of
the process. In general, it is better to place a rectangle with larger dimensions
earlier in the packing than towards the end of the packing, when smaller rectangles

are easier to fit into any gaps within the bin.

CHAPTER 6 163

Packing Stage

During the packing stage, the smallest dimension of height for the available rect-
angles in the rectangle list (i.e. z:IIﬂan {h;}, where j = number of the remaining
rectangles in the rectangle list) is étér’ed. This value is used to compare with the
width of the gap in the current bin. The value of min{h;} will only be updated
if the rectangle with the smallest dimension of heig]ht has been packed into the
current bin. The pointer and the corresponding gap width will also be maintained
during the packing stage.

At first, an empty bin is initialised as the current bin, where the pointer is
at the bottom-left corner (z = 0,y = 0) of the current bin, with a gap width of
the entire bin width W. The first rectangle in the rectangle list is then placed at
the bottom left of the current bin. The placed rectangle is then removed from the
rectangle list. The pointer and gap width are updated according to the dimensions
of the packed rectangle. Next, the rectangle list is examined again and the best
fitting rectangle returned. The selected rectangle will be placed in the current
bin to fill the gap, with the bottom-left corner of the selected rectangle placed at
the position of the corresponding pointer. This will ensure that the current bin
is systematically filled from the bottom-left corner of the bin. The rectangle is
removed from the rectangle list and the value of the pointer and gap width are
updated. If the best fitting rectangle does not completely fill the gap, then there
1s no need to locate or update the new pointer for the next rectangle. Only the
gap width needs to be updated, where it is a portion of the recent gap. Figure
6.2 shows the stages of packing the rectangles into an empty bin using the LGF

placement routine. Note that rectangle 3 and 5 have been rotated 90°.

CHAPTER 6 164

Figure 6.2: Packing the rectangles into a bin (LGF routine)

bin: (W,H) =(10,7) rectangle, n | 1 2 3 4 5
width, w 7 7 5 2 2
height, h 5 2 3 2 1
1
3
2 * 5]

1 1 3
1 2 3
mjin{hj}=l mjin{hj}=l mjin{hj}zl
pointer = (0,0) pointer = (7,0) pointer = (0,5)
gap width = 10 units gap width = 3 units gap width = 10 units
2 2 4 2 4 |5
1 3 1 3 1 3
4 5 6
mjin{hj} =1 mjin{hj} =1
pointer = (7,5) pointer = (9,5)
gap width =3 units gap width = 1 units

If the gap width at the corresponding pointer is smaller than the current value
of mjin {h;}, we can regard the relevant space as wastage. The reason behind this
is that if the gap cannot be filled now, it will not be able to be filled later in
the process. So, the pointer will be raised up to the next lowest point where the
corresponding gap width is at least as big as the value of rnjin {h;}. For example
(Figure 6.3 (a)), assume that there is a gap width of 1 unit at the corresponding
pointer in the current bin, but the min {A;} = 2, which means that none of the
remaining rectangles in the list can fi’; into the gap. The pointer is then raised to

the next lowest point (5, 3) where the corresponding gap width is at least 2 (in this

CHAPTER 6

case is 5). When the current bin is full (Figure 6.3 (b)) or the pointer has been
raised to the top of the current bin (i.e. y = H) (Figure 6.3 (c)), the bin is closed
and removed. A new empty bin is initialised as the current bin and the process
continues until all of the rectangles in the list are packed. Only one bin is open
at a time. In order to reduce the time spent searching through all the bins that
have been created during the process one by one, it is advantageous to close and
remove the bin once none of the remaining gaps can be filled. This will reduce the

processing time. This packing stage requires O(n?) time.

165

Figure 6.3: Scenarios where gap size < min {h;}, bin full and y = H
J

cLO

.

cL®

pointer = (5,5)
gap width =5

(@)

pointer = (0,0)
gap width =10

(b)

minth;} =2 min{h,} =2 min{h;} =2

7 J 1
pointer = (9,0) pointer = (10,10) pointer = (0,10)
gap width = | gap width =0 gap width=0
minth;} =2 min{A } =2 min{h,} =2

J 7 J

pointer = (0,0)
gap width =10

(c)

CHAPTER 6 166

6.3 MultiCrossover Genetic Algorithm

In this section, we propose a MXGA for solving the 2DRSBSBPP. The proposed
MXGA utilises a multicrossover operator in an effort to achieve enhanced solutions
for a better quality of packing pattern in the bins. A common feature found in most
genetic algorithms (GAs) developed for 2DRSBSBPP is their two stage approach,
where a GA is used to explore and find good solutions in the search space. Then,
a placement routine is needed to decode the solutions generated by the GA into

the corresponding packing pattern for the evaluation of their layout quality.

In our proposed MXGA, we employ LGF as our placement routine. In the
remaining section, we will discuss some of the main components in our proposed
MXGA. Note that the general architecture of the MXGA for 2DRSBSBPP is the

same framework as we described in Section 4.9.

6.3.1 Search Space

It would be beneficial if the search space is sufficiently large to allow the search
process to explore a large range of layout patterns before it started converging.
But, a very large search space may contain a high number of layout configurations
which do not contribute to the search process due to their low quality. Therefore, it
is advantageous to limit the search space. The search space for this implementation
is limited with respect to the feasibility of the solutions. The feasibility of all
solutions in the search space is guaranteed by the decoding procedure which only

produce non-overlapping solutions.

6.3.2 Representation

Most researchers have used items permutation to represent an individual. Each
rectangle only appeared once in the individual and is not repeated. The rectangles

are then packed into bins according to the sequence in which they appeared. Since

CHAPTER 6 167

we are using the LGF placement routine in the decoding stage (presented in next

subsection), the sequence of the rectangles becomes irrelevant.

In our proposed MXGA, the complete set of rectangles n, forms the length
of the chromosome (individual). The genes are represented by a uniform random
permutation of the integer numbers of bins in the interval [1,LB,], where LB, is the
overall lower bound described in Section 3.4.3, equation (3.47). Thus, a solution to
the packing problem in this case consists of a sequence of positive integer numbers
indicating the bin number, in which the rectangles are placed into the bin. The

exact location in the layout is then determined by a placement routine.

Figure 6.4 shows an example of the gene representation for an individual with
8 (n) rectangles attempt to pack into 3 (LB,) bins. The individual will attempt
to pack rectangles {3,5,7} into bin 1, rectangles {1,4} into bin 2, and rectangles
{2,6,8} into bin 3 if it fits during the decoding stage using the LGF placement
routine. Any rectangle that cannot be feasibly packed into the assigned bin are
dealt with the strategies suggested in the next subsection. Also note that every

rectangle only appears once in the individual.

Figure 6.4: An example of an individual (chromosome)

item’'sno. 1 2 3 4 5 6 7 8

binsno. [2[3[1[2][1]3[1]3]

6.3.3 Decoding

The LGF heuristic placement routine is used to decode the genotype (gene represen-
tation) of an individual into phenotype (packing layout). The heuristic placement
routine is designed such that the decoding only results in valid packing layouts.
Before the placement routine takes place, the individual needs to be decoded into
a sequence of rectangles which are grouped by the bin numbers that are associated
with each rectangle. This is achieved by the following two step procedure:

S1 : Sort the rectangles in a increasing order of their associated bin number.

S2 : Groups the rectangles with the same bin number.

CHAPTER 6 168

Also note that, based on the requirement of the placement routine, we need to
pre-order the rectangles within the group before the routine commences. During
the process of packing the rectangles into the bin within the group, any rectangle
that cannot be feasibly packed will be regarded as an unassigned rectangle and
kept in a list. After placement routine has been applied to all groups of rectangles,
a strategy is needed to pack the rectangle(s) in the unassigned rectangle list into
the bins already used or into new bins, so that a complete set of rectangles are
packed without overlapping. After the strategy has been applied, the genotype of
the individual is updated with the new packing layout. We suggest the following
three strategies to deal with the problem. Note that the rectangle(s) in the unas-

signed rectangle list are sorted in order of non-increasing size before the strategy

cominences.

pack_extra:

Pack all the rectangle(s) in the unassigned rectangle list into one or more new bins
without considering the bins already in use. This strategy is more likely to yield
poor results, since more bins will be required than previously assigned. However,
its computation time is very short in comparison to other strategies and therefore

may be preferred.

pack_above:

Pack the unassigned rectangle(s) above the other items already packed in the bins,
without permitting overflowing of the bin or overlapping of the rectangles, until all
the rectangle(s) in the list are packed. Initialise a new bin if none of the bins can
accommodate the unassigned rectangle(s). This strategy might produce a better
result compared to the first strategy. However, the resulting packing layout tends
to produce waste in the bin by not taking into consideration filling the empty space

in between the rectangles or between the rectangles and the bin.

CHAPTER 6 169

repack:

Pack any unassigned rectangles from the list into the bins already used. This is a
more powerful but computationally more expensive strategy. The idea is to first
unpack the rectangles already packed in the selected bin and repack it again after
adding a rectangle from the unassigned rectangle list into the group. This method
may result in a better quality in the packing layout of the bin compared to the

former strategies. The procedure is as follows:

S1 : Sort the bins in non-decreasing order of their bin utilisation (equation (6.1)).
S2 : Start from the first bin in the list (i.e. lowest bin utilisation), unpack the
rectangles from the selected bin by emptying the contents of the bin.

S3 : Repack the selected bin using the LGF with the rectangles previously as-
signed to the bin plus the first rectangle (i.e. largest) from the unassigned
rectangle list. Any left over or unfit rectangle(s) will became unassigned at
this stage.

S4 : Calculate the bin utilisation (equation (6.1)) for the selected bin.

e If the value of the bin utilisation has increased, the selected bin is
updated with the new packing layout, bin utilisation, and the list of
rectangle in the bin. The unassigned rectangle list will also be updated
(reorder) with any left over rectangle(s) from S3. If the unassigned
rectangle list is empty, STOP; else, go to S1.

e Else (i.e. decreased or equal value), the selected bin is not updated
(i.e. the rectangles previously packed in the selected bin and the status
of the unassigned rectangle remain unchanged). If the selected bin is
the last bin in the list, go to S5; else, go to S3 and pack the same
unassigned rectangle into the next bin in the list.

S5 : Pack any unassigned rectangle(s) in the list into one or more new bins until

the complete set of rectangles is packed without overlapping.

Step S1 is inspired by the ideas of bin utilisation, where low bin utilisation

means the rectangles in that particular bin are packed loosely. It could also mean

CHAPTER 6 170

less rectangles were packed in the bin. This also means that there are more chances
for the unassigned rectangles to be packed in the bin with some minor modification
to the packing layout. Note that by the end of the process, we might have increased
the number of bins used from the ones originally assigned in the genotype. But,

we also might have increased the quality of the individual bin utilisation.

6.3.4 MultiCrossover

Most researchers have used specific crossover operator such as cycle crossover (CX),
partially matched crossover (PMX)([151, 154]), order based crossover (OBX), or
order crossover (OX)([158, 192, 255]) in their proposed GA when dealing with
the 2DRSBSBPP. This is due to the fact that they use items permutation in the
encoding stage, where the individual is represented by a sequence of permutations
of the rectangles. In order to ensure the rectangles only appeared once and are
not repeated in the offspring, they have to use the specific crossover to check
the validity of the offspring before the decoding commences. Unlike others, our
proposed multicrossover operator uses standard I-point or 2-point crossover to
produce two temporary offspring. The idea behind this is that our individual is
represented by a sequence of the bin number with the length of the complete set
of rectangles. Every gene represents a bin number in which the rectangle will be
packed if it fits. Thus, the constraint for the rectangles to appear only once in

the solution is already fulfilled before the crossover commences. The process for a

2-point crossover is as follows:

S 1: Select randomly 2 crossover points in both P1 and P2 (Parent 1 & 2).

S 2: Form 3 pairs of sub-genes (head, body, tail) which are separated by the
crossover points in both P1 and P2.

S 3: A randomly generated number will determine the allocation of each pair
(e.g. head) in TC1 and TC2 (Temporary Offspring 1 & 2).

S 4: Repeat S 3 for the other two pairs (body, tail) until 2 complete TC1 and
TC2 are formed.

CHAPTER 6 171

The steps above will be repeated ¢ times to produce 2t temporary offspring.
The best and a selected temporary offspring using probabilistic binary tournament
selection mechanism are then chosen to be the offspring for the current generation.
The steps can be easily modified to suit the 1-point crossover strategy. Figure
6.5 shows an example of the multicrossover process with ¢ = 3. Recall that the
individual is represented by a sequence of random permutations of the bin numbers,

with length equal to the complete set of rectangles.

As a result of the computational complexity of the decoding strategies described
in Section 6.3.3, the evaluation of the temporary offspring is conducted using the
pack_extra strategy . Although the pack_above and repack strategies may generate
a better solution quality, they require more computational effort in comparison to

the pack_extra strategy.

Figure 6.5: MultiCrossover

Parent1 | 11281323 |1¢2 |1 Tc1 1112132112321

= — g

Parent2 |2 |1¢3|2|1(2(3%1 |3

Tc2 |21 |1]13]2|3]|1(1|3

Parent1 | 182 |1|3(2¢3 (12| 1 T3 1112111322313
Parent2 |2¢1(|3|2|1¢2(3]1| 3 C TCa |21 (31213121
Parent1 |12 |1}3[2(33}1]|2 |1 TCs |21 (33|23 (1(2]1

Parent2213212313iTC6121212313

Offspring1 | 2|1 (13|23 |11 |3

_ Crossover

Point

Offspring2 | 2|13 132|312 |1

CHAPTER 6 172

6.3.5 Swap

As a result of the crossover probability, p., the crossover may not be applicable to
the selected parents. Instead of ‘reproduction’ as in a standard GA, a new operator
called ‘swap’ was used to produce new offspring and introduce more diversity into

the population. This can be achieved by:

S 1: Select randomly a swap point in a parent to form two sub-genes.

S 2: Swap the position of the sub-genes to form a new offspring.

The steps above are repeated for the second parent to create a second offspring.
Figure 6.6 shows the process of swap on two selected parents. Before the swap
commences, Parent 1 will pack rectangles {3,5,7} in bin 1, rectangles {1,4} in
bin 2, and rectangles {2,6,8} in bin 3. After a swap point (between rectangles
4 and 5) has been selected in Parent 1, two sub genes consist of bins {2,3,1,2}
(rectangle 1 — 4) and bins {1,3,1,3} (rectangle 5 — 8) are formed. Then, the sub
genes will swap position to form a new offspring (Offspring 1) which will pack
rectangles {1,3,7} in bin 1, rectangles {5,8} in bin 2, and rectangles {2,4,6} in bin

3. Similarly, Offspring 2 is created by using the same steps as explained above.

Figure 6.6: Swap

Parent 1 21301124113 111(3 parent2 |1 |3 §1 (2 |23 |2 |3

+ swap point { swap point
Offspring1 |13 |1 323 |12 Oﬁspringz12232313

6.3.6 Mutation

After a crossover or swap is performed, mutation takes place. This operator pre-
vents all solutions in the population from converging on same local optima. We
used two mutation operators in our MXGA. First of all, we select a subset of
individuals from the new offspring population with a given individual mutation
probability, pps. An offspring is selected for individual mutation if the random

number 7 assigned to the offspring is less than or equal to the individual mutation

CHAPTER 6 173

probability (i.e 7 < pp). Then, the selected offspring will go through the gene
mutation process. Each gene in the selected offspring is visited and if & < pp,
the bin number is randomly changed in the interval [1,LB,], where & is a random

number and p,, is the gene mutation probability.

6.3.7 Fitness Evaluation

The main objective function in our proposed MXGA for the classic 2DRSBSBPP
is to minimise the number of bins used to pack the complete set of rectangles. This
is correct from the problem objective point of view. However, this is not sufficient
to guide the search process since a large number of solutions will result in the same
total number of bins used. Figure 6.7 shows three solutions to a problem instance
involving 23 rectangles, which use the same number of bins. The bins in solution
1 and solution 2 are not very densely packed and show many empty areas enclosed
between the rectangles. Solution 3 is the favoured one since the first five bins are
very densely packed. The last bin contains only one rectangle, which one of the
other bins may easily accommodate after some minor modifications to the packing
layout. This solution is therefore a better than the other two and the objective

function needs to indicate this via the fitness value.

Figure 6.7: Three solutions to the 2DRSBSBPP using the same number of bins

1 =t| el | Hs

— 7

| PR

=]
solution 1 solution 2 solution 3

CHAPTER 6 174

The quality of a packing pattern is determined by the utilisation of each bin
as defined in equation (6.1), where j indicates the number of rectangles in the
respective bin, A, is the area of the rectangle ¢ (i = 1,2,...,7) in the bin, and
Agpject 18 the capacity of the bin. The denser the rectangles are packed, the less

waste is produced and the higher the bin utilisation.

]"— Aitem'
Bin Utilisation = == (6.1)

Aobject

Next we consider the problem of aggregating the bin utilisation over all the bins.
Falkenauer and Delchambre [90] suggest a fitness function for the IDRSBSBPP
that includes the capacity of the individual bins. In their work, equation (6.2) is
used in a GA for a one-dimensional problem with M being the number of bins
used. A; is the area of all the items in a certain bin with the capacity of Agpject;-
The exponent £ is a constant (k > 1) and puts a higher weight on bins with higher
utilisation. They experimented with several values for k& and settled on k = 2.

S ()
T Tobdeeti L L 9 9

Fitness =

From the mathematical point of view, equation (6.2) favours solutions where
the rectangles are evenly packed across the bins, than solutions where rectangles
are packed very densely in all bins except one bin, which is loosely packed in most
cases. Refer back to Figure 6.7, and by applying equation (6.2), we will select
the solution from solution 1 as having the highest fitness value in the solution
space rather than solution 3. In solution 1, the items are packed quite evenly in
every bin. While in solution 3, the first five bin are very densely packed but the
last bin has a very small bin utilisation which will reduce the overall fitness value
significantly.

In order to overcome these disadvantages, we propose an improved fitness func-
tion where we permit one bin to have a poor individual bin utilisation. The rect-
angle(s) in this bin has (have) a much higher chance of being removed from the bin

and packed in other bins. To achieve this, we first sort the bins in non-increasing

CHAPTER 6 175

order of their bin utilisation. Then, the fitness value is calculated, ignoring the

last bin, using the following equation:

S ()
i=1 iects
Fitness™ = % A_Obfc — M > 1. (6.3)

For a single bin solution, the fitness value is calculated using equation (6.2). Note

that equation(6.3) does not represent the ‘true’ value of the overall bin utilisation.
Equation (6.3) puts more pressure on bins with higher bin utilisation by discarding
the bin with the lowest bin utilisation. The idea behind this is to always select the
solutions which contain bins with high individual bin utilisation plus a bin with
a very low individual bin utilisation. We hope that the bin with the lowest bin
utilisation can easily be removed in the next iteration/generation.

It is worth mentioning that the fitness value obtained from equation 6.3 is
only used during the execution of the algorithm. Once the stopping criterion is
reached, the ‘frue’ overall bin utilisation for the best solution found is calculated

using equation (6.2).

6.4 2DRSBSBPP with Due Dates

Having successfully developed the LGTF placement routine and our proposed MXGA,
we now extend our study on 2DRSBSBPP by assigning due dates to each rectan-

gle that is to be packed and a fixed processing time for each bin. We define the

problem as follows:

“Given are n rectangles, each characterised by a height A;, a width w;, and a due
date d;, for 7 = 1,2,3,...,n and an unlimited number of identical rectangular
bins, each having a height H, a width W, and a fixed processing time P. The
2DRSBSBPP with due date has the objective of minimising the maximum lateness
of the n rectangles by packing them, without overlap, and minimising the number
of bins.”

The aim of this study is to solve the dilemma often faced in the industrial

application which involves the trade-off between the customers’ satisfaction and

CHAPTER 6 176

the manufacturer’s efficiency. In a classic 2DRSBSBPP, we either assume the
rectangles due dates are not considered during packing stage, or the productions
are scheduled to complete within a single production period. These assumptions
render time to not be an issue in the packing stage, with focus only on the quality
of the packing.

This extension has practical applications in the wood and metal industries. In
the metal industry for instance, suppose that the bins used are the metal sheets
with fixed dimensions, and the rectangles placed in a bin are the rectangular shapes
to be cut from a metal sheet. Each metal sheet requires a fixed processing time
on a cutting machine to cut all the shapes, where each shape has a due date by

which it should be completed.

Suppose that a group of customers place orders (i.e. shapes) with different due
dates by which they should be completed. A decision has to be made on either to
satisfy the customers by meeting the due dates of the orders placed, or to increase
the packing efficiency by mixing the customers orders and therefore minimise the

wastage of the metal sheets used.

From meeting the customers’ satisfaction point of view, metal sheets which
contain shapes with small due dates are ideally cut earlier. By doing this, shapes
with small due dates are placed together in one or more metal sheets. Depending
on the dimensions of the shapes, the metal sheets may not be fully utilised, where
the packing layout will create waste. This solution becomes less appealing to the
manufacturer if the wastage cannot be recycled rendering the cost of production

to increase.

From the manufacturer’s point of view, mixing the customers orders can in-
crease the packing efficiency if the shapes of an order can be use to fill in the gaps
created by the shapes of another order on the metal sheets. However, depending
on the shapes’ due dates, the approach of mixing the customers orders to achieve
a higher packing efficiency may result in missing the due dates of the customers

orders with small due dates.

CHAPTER 6 177

However, due dates and packing efficiency may not be a direct trade-off. In a
special case, mixing the customers orders with similar due dates might simultane-
ously increase the packing efficiency and meet customers due dates, since shapes
with small dimensions are able to fill in the gaps between the larger shapes from
other customers orders. By doing this, the metal sheets can be fully utilised where
the metal sheets are densely placed and therefore creating less wastage. At the
same time, this approach will meet the customers due dates by placing the shapes

with similar due dates together in one or more metal sheets.

This problem can also be treated as a batching machine scheduling problem
where a machine can processed several jobs simultaneously. A bin can be viewed
as a single machine with a fixed capacity. Rectangles packed in the bin are the
jobs processed in the machine. In this case, the jobs are processed in the machine
with a fixed processing time. Thus, the problem can be transformed into a batch-
ing machine scheduling problem where the objective is to find a schedule which

minimise the maximum lateness of the group jobs.

In order to deal with the 2DRSBSBPP with due dates, we first define two
distinct objective functions for the problem to be solved:

1. minimise the maximum lateness of the rectangles to be packed with a sec-
ondary objective of minimising the number of bins used (ideal for customers’
satisfaction);

2. minimise the number of bins used with a secondary objective of minimising
the maximum lateness of the rectangles packed (ideal for manufacturer’s
efficiency).

Each of the objective function can be viewed as a hierarchical optimisation
approach. This approach first optimises the primary objective, then the secondary
objective is optimised subject to the additional constraint that the solution value of
the primary objective is optimum. By alternating the objective functions in every
G generations (or I iterations) during the execution of the local search algorithms,
we will be able to find a good balance of the trade-off between the customers’

satisfaction and salesman’s routing efficiency.

CHAPTER 6 178

The maximum lateness, Lmayx of the rectangles packed is calculated as follows:
let B be the number of bins used, P is the fixed bin processing time, and d; is the
due date of rectangle 7. Assume 7 is the number of rectangles packed in bin b,

then the bin due date, d,, is obtained using the following equation

The bins are reindexed in a non-decreasing order of their bin due dates (i.e. & <
8p+1). Thus, the maximum lateness of the rectangles packed is

Lnax = b:rlI,lQ%.}.(.,B{(P x b) — 0y} (6.5)

6.5 Lower Bound for 2DRSBSBPP with Due Dates

In this section, we derive a simple lower bound of the maximum lateness for the
2DRSBSBPP with due dates. The lower bound (for the number of bins used
in non-oriented 2DRSBSBPP) proposed by Dell’Amico et al. [69] is used in the

derivation of this lower bound.

As we do not know which rectangle has the maximum value of lateness, we first
sort the n rectangles in EDD order (i.e. non-decreasing order of their due dates) to
identify the rectangle with the largest due date. Then, by using the lower bound
discussed in Section 3.4.3.2, we obtain the number of bins used for the n rectangles.
As mentioned earlier, this problem uses a fixed processing time P, for the bins.
The completion time for the bins is the product of the fixed processing time and
the number of bins used. Thus, the lower bound on the maximum lateness for the
n rectangles is the difference between the completion time and the highest due
date. The steps (summarised below) are repeated by removing the rectangle with
the largest due date from the list until only one rectangle is left to be packed into

the bin.

CHAPTER 6 179

S 1: Sort the n rectangles in a non-decreasing order of their associated rectangle
due date d;, so that di < dy < ... < d,. Set j =n.

S 2: Calculate the lower bound for the number of bins used, LB%in (as explained
in Section 3.4.3.2) for the j rectangles.

S 3: Compute a lower bound on the maximum lateness of the j rectangles,
L7 = (P x LB,) — d;; where d; = largest due date.

S 4: Reduce j by 1 (ie. 7:=j—1), and repeat S 2 - S 3 until j = 1.

Thus, the lower bound of the maximum lateness for 2DRSBSBPP with due dates

1s:

LBy, = max {L7}. (6.6)
5=1,2,3,.m

To justify that the above procedure generates a valid lower bound, consider
rectangles 1,2,...,7. The number of bins required to pack these rectangles is at
least LB as shown by Dell’Amico et al. [69] in Section 3.4.3.2. In an optimal
solution, define rectangle ¢ so that none of the rectangles 1,...,i —1,i+1,...,J

appears in a later bin than rectangle . If rectangle 7 is in bin b, then

LBy > (Pxb)y—d
> (Px LB)—d; (6.7)

IV

(P x LBY,) - d;,

as defined in S 3.

6.6 Competitors - Performance Measure

6.6.1 Unified Tabu Search

In this subsection, we briefly describe the Tabu Search used in the computational
experiments. It is based on the Unified Tabu Search (UTS) developed by Lodi
et al. [194]. The choice was made based on the effectiveness of the algorithm in
generating high quality solutions. For more details about the framework of the

UTS, see Lodi et al. [193, 194, 196, 198].

CHAPTER 6 180

The main feature of the framework is the use of a unified parametric neigh-
bourhood, whose size and structure are dynamically varied during the search. The
algorithm also adopts a search scheme which is independent of the specific packing

problem to be solved.

Given a current solution, the neighbourhood is searched through moves which
consist in modifying the solution by changing the packing of a subset of rectangle
S, in an attempt to empty a specific target bin. Subset S is defined so as to
include one rectangle, 7, from the target bin and the current contents of & other
bins. The new packing for S is obtained by executing a heuristic placement routine
A on §. The value of parameter k, which defines the size and the structure of the
current neighbourhood, is automatically updated during the search. The algorithm

maintains k£ distinct tabu lists.

The target bin is selected as the one minimising, over all current bin 7, the

filling function
Z s, W iy Si
o(8i) = =T — — '—n— (6.8)

where S; denotes the set of rectangles currently packed in bin 7, and « is a user
specified positive weight. The resulting choice favours the selection of target bins

with a low bin utilisation (breaking ties by bins packing a relatively large number

of rectangles).

The overall algorithm is briefly stated in Figure 6.8. An initial incumbent
solution is obtained by executing routine A on the complete instance, while the
initial tabu search solution consists of packing one rectangle per bin. At each
lteration, a target bin is selected, and a sequence of moves, each performed within
the procedure SEARCH (Figure 6.9), tries to empty it. The procedure SEARCH
also updates the value of parameter £ and, in special cases, may perform the
procedure DIVERSIFICATION (given in figure 6.10). The execution is halted as

soon as a proven optimal solution is found, or a time limit is reached.

CHAPTER 6

Figure 6.8: Unified Tabu Search Framework (Lodi et al. [198])

Figure 6.9: Unified Tabu Search: Procedure SEARCH (Lodi et al. {198])

algorithm TSpack:
z":= A({1,...,n}) (comment: incumbent solution value);
let L be a lower bound on the optimal solution value;
if z* = L then stop;
initialise all tabu lists to empty;
pack each item into a separate bin;
z:=n (comment: Tabu Search solution value);
d:=1;
determine the target bin ¢;
while time (or iteration) limit is not reached do
diversify := false; k := 1;
while diversify = false; and z* > L do

kin = k;
call SEARCH(t, k, diversify, z);
z* := min{z*, z};

if £ < kin then determine the new target bin ¢
end while;
if z* = L then stop
eise cail DIVERSIFICATION(d, z, t)
end while
end.

procedure SEARCH(t, k, diversify, z):

penalty® := 4o0;
for each j € St do
for each k-tuple K of bins not including ¢ do
$ 1= (U Uses S0
penalty := 4o0;

case
A(S) < k:
execute the move and update the solution value z;
k:=max{l,k —1};
return;
A(S) = k:

if the move is not tabu or Sy = {j} then
execute the move and update the solution value z;
if S¢ = {j} then k:=max{1,k — 1};
return
end if;
A(S)=k+1and k> 1:
let I be the set of k£ + 1 bins used by A;
Fi= argminge {(S0)}, 7= (S\{7 1) U S
if A(T) =1 and the move is not tabu then
penaity := min{p(T), min,¢ 1\ 73 {(5:)}}
end case;
penalty™ := min{penalty*, penalty};
end for;
end for;
if penalty* # +oc then execute the move corresponding to penalty™
else if k = kmax then diversify := true else k:= k+1

return.

181

CHAPTER © 182

The value of k is updated as follows. When a move in the SEARCH procedure
decreases the number of k£ bins (A(S) < k), or when a non-tabu move removes
rectangle j from target bin ¢ by packing the set S into exactly & bins (A(S) = k),
the move is immediately performed and the neighbourhood size is reduced by one
unit (i.e. & := k — 1). Its value is increased by one unit (ie. k = k + 1), if
the neighbourhood has been completely searched without finding an acceptable
move. If k has already reached a maximum prefixed value k.., the procedure

DIVERSIFICATION, as given in Figure 6.10, is performed.

Figure 6.10: Unified Tabu Search: Procedure DIVERSIFICATION (Lodi et
al. [198])

procedure DIVERSIFICATION(d, z, t)
if d < z and d < dpax then
d:=d+1;
let ¢ be the bin with d-th smallest value of ©(+);

else
remove from the solution the |z/2] bins with smallest ©(-) value;
pack into a separate bin each item currently packed in a removed bin;
reset all tabu list to empty;
d:=1
return.

A move that is not immediately performed is evaluated through a penalty. The
penalty is infinity if the move is tabu, or if routine A used at least two extra
bins (i.e. A(S) > k + 1)), or if & = 1. Otherwise, the penalty is obtained as
follows. A local target bin, ¢ is determined among the k£ + 1 bins produced by A.
Routine A is executed on the rectangles set 7" with the rectangles in bin ¢ plus the
residual rectangles in the target bin ¢, in an attempt to get a single bin solution.
If this happens, the penalty of the overall move is the minimum among the filling
function values obtained for the & 4 1 resulting bins. Otherwise, the move is not
acceptable and its penalty is set to infinity. The move with the minimum penalty
(if any) is performed when the entire neighbourhood is searched without finding
an acceptable move.

As mentioned earlier, each neighbourhood has a tabu list and a tabu tenure

Te (k=1,..., kmax). For k > 1, each list stores the penalty™ values corresponding

to the last 7, moves performed in the corresponding neighbourhood. For & = 1,

CHAPTER 6 183

the tabu list stores the values of the filling function, ¢(-), corresponding to the

last 7; sets for which a move has been performed.

Having constructed the UTS using LGF as the placement routine, we incorpo-
rate the idea of finding the minimum of the maximum lateness for the rectangles
to be packed into the design of the UTS. Since the UTS already is a very efficient
algorithm, we only need some minor modifications to the original code to deal with
the alternative objective function. Recall that, from the study of the 2DRSBSBPP

with due dates, we have the following two distinct objective functions:

1. minimise the maximum lateness of the rectangles packed with a secondary
objective of minimising the number of bins used;
2. minimise the number of bins used with a secondary objective of minimising

the maximum lateness of the rectangles packed.

In order to find a good balance between the trade-off of the objective func-
tions (i.e. customers’ satisfaction and packing efficiency), we alternate between
the objective functions every [iterations by introducing a new SEARCH_1 pro-
cedure (given in Figure 6.11) into the main algorithm of the UTS. Note that the
SEARCH procedure developed by Lodi et al. [194] favoured the second objective
where packing efficiency is very high.

Inspired by the target bin t, we defined the weakest bin, [which contains rect-
angles with small due dates but high lateness in current solution as follows. Let
(); be the set of rectangles i, each having a due date d;, currently packed into bin
J with a fixed processing time P, and B is the number of bins used in the current
solution. Bin [is the one maximising, over all current bin j (j = 1,...,B), the

following lateness equation
L; = (P xj)—9;; where §; = mén{dl} (6.9)
1€
The moves try to remove the rectangle(s) with the smallest due date from the

weakest bin using the procedure SEARCH_I as explained in Figure 6.11. Variable

F (in Figure 6.11) denotes the maximum lateness value obtained from a new

CHAPTER 6 184

packing layout when a rectangle from the weakest bin is removed and placed in
one of the &k bins. The solution is considered “acceptable” if: (i) the maximum
lateness over all bins is decreased (i.e. F' < Lp,y) or (ii) the number of bins used
does not exceed the current solution value while maintaining the maximum lateness
value (i.e. F' = Lpax and A(Q) < k). We allow the number of bins used to increase

if it results in the decrease of the maximum lateness.

Figure 6.11: Unified Tabu Search: Procedure SEARCH_1

procedure SEARCH_1(l, k, diversify,y, z):

penalty* 1= +oo;

Linax 1= ¥;

for each j € ; do

for each k-tuple K of bins not including ! do

Q= {]} u (UiEK Qi);
penalty := +oc;
case

F < Lmax:
execute the move and update the solution value y and z;
k:= max{l,k — 1},
return;
F = Lmax and A(Q) S k:
if the move is not tabu or Q; = {5} then
execute the move and update the solution value z;
if @, = {j} then k := max{1,k — 1},
return
end if;
F > Lmax and A(Q) < k:
if the move is not tabu then

penalty .= F
end case;
penalty* := min{penalty”, penalty};
end for;

end for;
if penalty* # 4+oc then execute the move corresponding to penalty*
else if k = kmax then diversify := true else k:= k+ 1

return.

As in the procedure SEARCH, the value of & in the SEARCH_1 procedure is
updated as follows. When either (i) or (ii) is applied, the move is immediately
performed and the neighbourhood size is reduced by one unit (i.e. & := k —1).
Its value is increased by one unit (i.e. &k := k + 1), if the neighbourhood has been
completely searched without finding an acceptable move. If k£ has already reached
a maximum prefixed value k,,, the procedure DIVERSIFICATION (Figure 6.10)
is performed. But, when neither (i) nor (ii) apply, a penalty is associated with the

move. The penalty is infinity if the move is tabu, or if the maximum lateness value

CHAPTER 6 185

obtained from the new packing is higher than the current solution when routine A
uses at least one extra bin (i.e. F' > L. and A(Q) > k). Otherwise, the penalty

takes the value of F.

When the neighbourhood has been searched entirely without detecting cases (i)
and (ii), the move having the minimum finite penalty (if any) is performed and the
control returns to the main algorithm. As previously mentioned, there is a tabu
list and a tabu tenure 74 (K = 1,. .., knax) for each neighbourhood. Each list keeps

a memory of the penalty” values corresponding to the last 7, moves performed.

6.6.2 Randomised Descent Method

The Randomised Descent Method (RDM) we employed in the computational ex-
periments has a similar framework as in the UTS discussed in the previous sub-
section. The main difference lies in the use of the tabu list in the UTS and the

acceptance rule and randomisation introduced in the RDM.

The SEARCH and SEARCH_1 procedures discussed in the previous subsection
also have been modified to suit the framework of the algorithm. While the main
features of the UTS (i.e. unified parametric neighbourhood, stopping criteria, and
diversification) are used in the RDM, we also adopted an acceptance rule which
allows the neutral move solutions up to R consecutive iterations before terminating
the algorithm. When there are multiple identical neutral moves found during
the SEARCH procedure (given in Figure 6.12) or SEARCH_1 procedure (given
in Figure 6.13) in a single iteration, randomisation is used to randomly select a
move from the list of identical moves. Consequently, the procedure can escape
from falling into the same local optimum and continue its search. Note that
the deteriorating move (i.e. [A(S) = £+ 1 and & > 1] in Figure 6.9 and [F >
Lmax and A(Q) < k| in Figure 6.11) is not considered in the RDM.

As in UTS for 2DRSBSBPP with due dates, we alternate the objective func-
tions (discussed in Section 6.4) in every [iterations and employ first improve

strategy for the RDM.

CHAPTER 6 186

Figure 6.12: Randomised Descent Method: Procedure SEARCH

procedure SEARCH(t, k, diversify, z):
U:=0;
for each j € 5¢ do
for each k-tuple K of bins not including ¢ do
§i={j}u (UieK Si)s
case
A(S) < k:
execute the move and update the solution value z;
= max{1l,k— 1};
return;
A(S) =k:

if S; = {j} then
execute the move and update the solution value z;
k:=max{1l,k — 1};
return

else
U:=U+1;
if U < T then update the move into temp list

end case;
end for;

end for;

if U # 0 then randomly execute a move from the temp list
else if k = kmax then diversify := true else k:=k + 1
return.

Figure 6.13: Randomised Descent Method: Procedure SEARCH_1

procedure SEARCH_1(l, k, diversify, y, z):
U.:=0;
Limax = Y
for each j € Q; do
for each k-tuple K of bins not including ! do
@ ={7}UUsex Qi)

case
F < Lmax:
execute the move and update the solution value y and z;
k:=max{1,k —1};
return;
F = Lmnax and A(Q) < k:
U:=U+1;
if U < T then update the move into temp list
end if;
end case;
end for;

end for;

if U # 0 then randomly execute a move from the temp list
else if k = kmax then diversify := true else ki =k + 1
return.

CHAPTER 6 187

6.7 Computational Experience

We are now in position to give computational results on the performance of the
LGF and the proposed local search algorithms. Having explained the experimental
design for our computational experiments, we conduct the computational experi-
ments in four parts. First, we compare the LGF with some well known heuristic
placement routines, namely: BLF, Touching Perimeter (TP) and Floor Ceiling
(FC), as described in Section 3.4.2.1. Then, we compare the results obtained by
using TP and LGF as the placement routine (i.e. inner heuristic) in the Unified
Tabu Search developed by Lodi et al. [194]. In the third part of the computa-
tional experiments, we give some computational results of our proposed MXGA
at different stages of development. We present the final results of our extensive
computational experiments for different local search algorithms in two different
scenarios. First, we show the final results of comparing our proposed MXGA with
standard GA (SGA), UTS and RDM where the objective function of the problem
to be solved is minimising the number of bins used (and therefore maximising
the overall bin utilisation). Then, comparisons of different local search algorithms
based on the objective functions discussed in Section 6.4 are presented for 2DRS-

BSBPP with the inclusion of rectangle due dates and a fixed bin processing time.

6.7.1 Experimental Design

The algorithms are coded in ANSI-C using Microsoft Visual C++ 6.0 as the com-
piler and run on a Pentium 4, 2.0 GHz computer with 512 MB memory. We
use problem instances taken from the literature. We consider ten different classes
of problem instances. The first six classes (/ - VI) are proposed by Berkey and
Wang [32] as in Table 6.1. In each of the six classes, all of the rectangle sizes
are generated in the same interval. Martello and Vigo [203] propose the next four
classes (VII - X)(Table 6.1), where a more realistic situation is considered. The

rectangles are classified into four types:

CHAPTER 6 188

Type 1: w; uniformly random in [%VV, W], h; uniformly random in [1, %H],

Type 2: w; uniformly random in [1, %W}, h; uniformly random in [%H, HI;

Type 3: w; uniformly random in [JW, W1, h; uniformly random in [%H , HI;
[

Type 4: w; uniformly random in [1, 3 W], h; uniformly random in [1, ; HJ;

Table 6.1: Classes for the Problem Instances (Lodi et al. [194])

Class ‘ Bin (W x H) Item (w; and hy)
I 10 x 10 uniformly random in [1,10]
I 30 x 30 uniformly random in [1,10]
111 40 x 40 uniformly random in [1,35]
v 100 x 100 uniformly random in [1,35]
%4 100 x 100 uniformly random in[1,100]
VI 300 x 300 uniformly random in [1,100]
Vil 100 x 100 Type 1 with probability 70%,
Type 2, 3, 4 with probability 10% each
VIII 100 x 100 Type 2 with probability 70%,
Type 1, 8, 4 with probability 10% each
X 100 x 100 Type 3 with probability 70%,
Type 1, 2, 4 with probability 10% each
X 100 x 100 Type 4 with probability 70%,
Type 1, 2, 8§ with probability 10% each

For each class, five values of n : 20,40, 60, 80, 100 are considered. For each
combination of class and value of n, 10 problem instances are generated. The
problem instances are provided by Lodi et al. [194] and are publicly available on

the web [64]. We adopt the following abbreviations for the remaining subsections:

1P : 1-point crossover
2P : 2-point crossover
SGA : Standard Genetic Algorithm

MXGA : MultiCrossover Genetic Algorithm

MXGA; : MXGA with pack_extra strategy in the decoding stage
MXGA;,: MXGA with pack_above strategy in the decoding stage
MXGAj3: MXGA with repack strategy in the decoding stage
MXGA g: final version of MXGA

UTSrp : Unified Tabu Search with TP as the inner heuristic
UTSgp : Unified Tabu Search with LGF as the inner heuristic
RDM : Randomised Descent Method

CHAPTER 6 189

Since the optimal solutions for the problem instances are not known, we use
the lower bound proposed by Dell’Amico et al. [69] for the number of bins used, as
described in Section 3.4.3.2. We compare the performance of the various heuris-
tic placement routines and local search algorithms on the basis of the following

ZK UBBini
i=1 \ LBgin,

statistics:

Average Ratio, Ratio = Ve , (6.10)
K

- U

Overall Bin Utilisation, OBU = —Z—’—;(lw— where (6.11)
UBBini Aj 2
U, = Zj:er]i?’x~H) , and (6.12)
> i1 Dy

Average Relative Percentage Deviation, ARD = %—z, where (6.13)

LTBLmaxi - BLmaxi Iey,
D; = T3, x 100%. (6.14)

Note that parameter K in equations (6.10), (6.11), and (6.13) takes the value of
the number of problem instances tested for each combination of class and value of
n. In this case K = 10. Also note that the variables U Bgy,, and UBLmui represent
the heuristic solutions found in instance ¢ for the number of bins used and the
maximum lateness respectively. Similarly, LBgi,, and LBy, represent the lower
bound of the problem instance i for number of bins used and the maximum lateness
respectively. Equation (6.12) is the overall bin utilisation as explained in equation

(6.2), where A, is the total area of all the rectangles in bin 7 (j = 1,2,...,U Bpi,)-

The specific values for the generic design variables in MXGA, UTS and RDM
are summarised in Table 6.2 and 6.3 respectively. Initial computational exper-
iments are performed to determine the size of the candidate list of temporary
offspring. Five values of ¢ (¢ = 3,5,7,9,10) are tested and results show that ¢t =5

gives the best result within a reasonable computation time.

CHAPTER 6 190

Table 6.2: Implementation of generic design variables for MXGA and SGA

variable value
chromosome length, L n (number of rectangles)
population size, Fpop 100
CTOSSOVEr operator 1-point and 2-point
crossover rate, p. 0.75
multicrossover, ¢t (MXGA ouly) | 5 (= 10 temporary offspring)
individual mutation rate, pys 0.25
gene mutation rate, p,, 1/n
selection mechanism probabilistic binary tournament
filtration rate, £ (MXGA only) | every 50 generations

Table 6.3: Implementation of generic design variables for UTStp, UTS;gr and
RDM

f variable value

‘ tabu tenure for all &, 7, (UTSzp and UTSygF only) 3
max. number of distinct tabu lists, kya (UTS7p and UTSpor only) 3
a (equation (6.8)) 20
max. value of the differentiation counter d, diax 50
iterations executed before alternating the objective function, I 100
max. no. of consecutive neutral move allowed per run, £ (RDM only) | 1000

In the final part of the computational experiments, having computed the com-
pletion time of LBgi,,, Cip, = P x LBgp,, (P = 100), for each problem in-
stance, we generate three sets of integer due dates from the uniform distribution
of 101, 8Cp,], where 8 € {0.6,0.8,1.0}. We label each set of due date class as
follows (assuming LBgi,, > 1):

Class A: [101,0.6Cyg,];

Class B: [101,0.8Cyg,];

(3

Class C: [IOI,IOCLBJ

CHAPTER 6 191

6.7.2 A Comparison of Different Heuristic Placement Rou-

tines

In this subsection, we first compare the LGF with the BLF as explained in Section
3.4.2.1. Literature suggests that the BLF routine outperforms the Bottom-Left
(BL) routine, although it has a longer execution time. Also, the use of the pre-
ordering sequence by non-increasing width, height or area gives better quality
solutions. Hence, we concentrate only on the BLF routine. This is also due to the

fact that both placement routines have the same time complexity of O(n?).

The results of the BLF placement routine are generated using the following

five preordering sequences of the rectangles:
DW : Decreasing Width, breaking ties by decreasing height.

DH : Decreasing Height, breaking ties by decreasing width.
DA(W): Decreasing Area, breaking ties by decreasing Width.
DA(H) : Decreasing Area, breaking ties by decreasing Height.
R : Random permutation.

As we want to extensively test the LGF placement routine, we compare our
results with the TP and FC placement routines developed by Lodi et al. [194]
using the problem instances provided in [64]. In this experiment, we use DA(W)
preordering sequence in the BLF placement routine to generate the solutions.
Note that we do not give the execution times for both experiments, as these are

negligible (never exceeding 0.1 seconds per execution).

CHAPTER 6 192

LGF vs. BLF

The computational results comparing LGF with BLF placement routine are pre-
sented in Table 6.4. The first two columns give the class and the value of n. The
next five columns refer to the BLF placement routine with five different preorder-
ing sequences (DW, DH, DA(W), DA(H), R). The last column refers to the LGF

placement routine.

For each algorithm, the entries report the average ratio (equation (6.10)), com-
puted over the 20 randomly generated problem instances. For each class, the final
line gives the average over all values of n. The final line of Table 6.4 gives the

overall average value over all classes. The bold face figures represent the best

solution obtained for each class.

We first observe that the solution quality of LGF placement routine outper-
forms the BLF placement routine in all five preordering categories. The best
average value found in BLF placement routine is with DA(W) preordering se-
quence. By considering in each class, we see that the LGF routine produces the
best results in 9 out of 10 classes. There is clear evidence that filling the gaps in
the partial layout by dynamically selecting the best rectangle is better than based

on the sequence of the rectangles supplied.

CHAPTER 6

193

Table 6.4: Comparison of BLF Routine with LGF Routine (Execution Time: less

than 0.1 CPU second)

BLF

Class n 5w T BE TOAW DA | ' | “°F
20 1170 | 1.170 | 1148 | 1.148 [1.251 | 1.117

40 1115 | 1.115 | 1.109 | 1.115 | 1.180 | 1.067

I 60 1123 | 1.130 | 1125 | 1.130 | 1.188 | 1.085
80 1130 | 1.130 | 1124 | 1.124 | 1.174 | 1.082

100 1132 | 1132 | 1126 | 1.126 | 1.155 | 1.060
Average 1.136 | 1.136 | 1.126 | 1.129 [1190 | 1.082
20 1.000 | 1.000 | 1.000 | 1.000 | 1.100 1.000—(

40 1025 | 1.025 | 1.025 | 1.025 | 1.025 | 1.000

I 60 1.075 | 1.075 | 1.075 | 1.075 | 1.250 | 1.050
80 1.017 | 1.033 | 1.033 | 1.033 | 1.150 | 1.000

100 1.042 | 1.046 | 1.042 | 1.046 | 1.083 | 1.000
Average 1.032 | 1.036 | 1.035 | 1.036 [1.122 | 1.010
20 1.265 | 1.265 | 1.265 | 1.265 | 1.333 | 1.167

40 1248 | 1.248 | 1.229 | 1.229 | 1.339 | 1.145

Il 60 1.220 | 1.220 | 1.194 | 1.194 | 1.259 | 1.130
80 1232 | 1.232 | 1.216 | 1218 | 1.263 ; 1118

100 | 1.259 | 1.255 | 1.233 | 1.233 | 1.275 | 1.100
Average T.245 | 1.244 | 1.2y | 1.227 [1.294 | 1.132
20 1.100 | 1.100 | 1.050 | 1.050 | 1.350 | 1.050

40 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000

IV 60 1100 | 1100 | 1125 | 1125 | 1.200 | 1.075
80 1.017 | 1.050 | 1.033 | 1.050 | 1.200 | 1.000

100 1.017 | 1.017 | 1.050 | 1.050 | 1.104 | 1.017
Average T.047 | 1.053 | 1.052 | 1.055 | 1.171 | 1.028
20 1218 | 1.201 | 1173 | 1.173 | 1.265 | 1.137

40 1.186 | 1.186 | 1.149 | 1149 | 1.278 | 1.154
V60 1.181 | 1.181 | 1.156 | 1.181 | 1.235 | 1.135
80 1202 | 1.202 | 1181 | 1.181 | 1.255 | 1.144
100 1170 | 1172 | 1144 | 1172 | 1.219 | 1.123 |
Average 1100 | 1.188 | 1.161 | 1.171 | 1.250 | 1.138 |
20 1000 | 1.000 | 1.000 | 1.000 | 1.050 | 1.000

40 1.300 | 1.350 | 1.350 | 1.350 | 1.350 | 1.250

VI 60 1125 | 1.125 | 1.075 | 1.125 | 1.300 | 1.075
80 1.092 | 1.108 | 1108 | 1.108 | 1.138 | 1.075

100 1167 | 1167 | 1183 | 1.183 | 1.250 | 1.100
Average 1137 [1.150 | 1.143 | 1.153 | 1.222 | 1.100
20 1252 | 1.252 | 1.185 | 1.185 | 1.283 | 1.213

40 1.234 | 1.234 | 1194 | 1.194 | 1.312 | 1.199
VII 60 1218 | 1.218 | 1.194 | 1.218 | 1.284 | 1.163
80 1.229 | 1.229 | 1.202 | 1.202 | 1.320 | 1168

100 1.204 | 1.204 | 1.182 | 1204 | 1.290 | 1.149
Average 1297 | 1.227 | 1191 | 1.201 | 1.208 | 1.178
20 1276 | 1.276 | 1.215 | 1.276 | 1.358 | 1.203

40 1239 | 1.239 | 1.191 | 1191 | 1.316 | 1.176
VIIT 60 1231 | 1.231 | 1200 | 1.231 | 1.313 | 1.174
80 1234 | 1.236 | 1.205 | 1.205 | 1.315 | 1.189

100 1203 | 1.203 | 1.179 | 1.203 | 1.281 | 1.145
Average 1237 | 1.237 | 1198 | 1.221 [1.317 1.177
20 1014 { 1.014 | 1.003 | 1.003 | 1.014 | 1.014

40 1.007 | 1.007 | 1.000 | 1.007 | 1.007 | 1.007

IX 60 1.005 | 1.005 | 1.000 | 1.005 | 1.002 | 1.005
80 1.005 | 1.005 | 1.001 1.005 | 1.003 | 1.005

100 1.006 | 1.006 | 1.001 | 1.001 | 1.003 | 1.006
Average 1007 | 1.007 | 1.001 | 1.004 [1.006 | 1.007
20 1246 | 1.246 | 1.213 | 1246 | 1.488 | 1.167

40 1157 | 1.149 | 1.149 | 1.157 | 1.408 | 1117

X 60 1.162 | 1.169 | 1157 | 1162 | 1.376 | 1.092
80 1136 | 1.152 | 1132 | 1.152 | 1.397 | 1.082

100 | 1144 | 1148 | 1121 | 1121 | 1.407 | 1.093
Average 1.169 [1.173 1154 | 1.168 1.415 | 1.110
[AVERAGE | 1.143 | 1145 | 1129 | 1.137 [1.228 | 1.096 |

CHAPTER 6 194

LGF vs. BLF vs. FC vs. TP
Table 6.5 summarises the results comparing the BLF with DA(W) preordering

sequence, FC, and TP placement routines with LGF. The decision of using the
preordering sequence of DA(W) in the BLF placement routine is based on the
computational results reported in the previous experiment. For each placement
routine, the entries report the average ratio (equation (6.10)), computed over the
10 problem instances given in [64]. For each class, the final line gives the average
overall values of n. The final line of Table 6.5 gives the overall average value over

all classes. The bold face figures represent the best solution found in each class.

By considering, for each class, the average value computed over all values of n,
we see that the BLF placement routine with DA(W) preordering sequence always
produces the worst results among the four placement routines. Neither of the
placement routines for LGF, FC and TP can be classified as the clear winner in
this experiment as they produce mixed degrees of success in terms of the solution
quality in each class. In terms of the solution quality for the average value over
all classes, LGF only underperforms TP by 0.3% (7.6% over the lower bound for
TP and 7.9% over the lower bound for LGF) but it outperforms FC by 2% (9.9%
over the lower bound). However, if we recall that both FC and TP have a time
complexity of O(n®) for their algorithm, while LGF only has a time complexity
of O(n?), then it is advantageous to employ the LGF as the heuristic placement

routine for 2DRSBSBPP.

CHAPTER 6

Table 6.5: Comparison of LGF with BLF, FC, and TP (Lodi et al [194]) (Execution

Time: less than 0.1 CPU second)

| AVERAGE

Class n | BLF | LGF | FC | TP [[Class n | BLF | LGF | FC TP
20 | 1.09 [1.03 | 1.06 | 1.05 20 | 100 | 1.00 | 1.00 [1.00
40 | 112 | 1.04 | 1.08 | 1.06 40 | 1.40 1.40 140 | 1.40
I 60 | 113 | 1.05 | 109 | 105 V1 60 | 110 | 105 | 1.05 | 1.05
80 | 115 | 106 | 1.09 | 1.06 80 | 1.00 | 1.00 | 1.00 | 1.00
100 | 112 | 1.04 | 1.07 | 1.03 100 | 113 | 1.07 | 107 | 1.07
Average 1.122 | 1.044 | 1.078 1.050 Average 1.127 | 1.103 | 1.104 1.104
20 | 1.00 [1.00 [1.00 | 1.00 20 | 122 | 119 | 119 | 113
40 | 110 | 110 | L10 | 1.10 40 | 120 | 1.12 117 | 1.10
IT 60 | 110 | 1.05 | 1.05 | 1.00 VI 60 | 120 | 110 | 1.18 | 112
80 | 107 | 107 | 103 | 107 80 | 120 | 110 | 117 | 111
100 | 1.06 | 1.03 | 1.03 | 1.00 100 | 119 | 1.09 | 1.17 | 111
Average | 1.065 | 1.050 | 1.042 | 1.034 Average 1202 | 1.119 | 1.176 | 1.114
20 | 120 | 106 | 118 | 1.06 20 | 123 | 1.15 116 | 1.16
40 | 122 | 113 | 116 | 111 40 | 122 | 116 | 119 | 1.16
I 60 | 126 | 110 | 119 | 111 VI 60 | 119 | 1.09 | 118 | 111
80 | 127 | 110 | 115 | 1.10 80 | 119 | 110 | 116 | 111
100 | 1.23 | 1.08 | 1.13 | 1.08 100 | 119 | 1.09 | 117 | 112
Average | 1.230 | 1.003 | 1.162 | 1.092 Average 1204 | 1.116 | 1.172 | 1.132
20 | 1.00 [1.00 | 1.00 | 1.00 20 | 101 1.01 Loo | 101
40 | 1.00 | 1.00 | 100 | 1.00 40 | 1.02 1.02 | 1.01 | 1.02
IVv. 60 | L10 | 1.15 | 110 | 1.10 IX 60 | 1.01 1.01 101 | 1.01
80 | 110 | 110 | 110 | 107 80 | 1.01 1.01 1.01 1.01
100 | 113 | 1.07 | 1.07 | 1.08 100 | 1.01 1.01 1.01 1.01
Average 1.065 1.063 1.054 | 1.040 Average 1.011 1.011 1.008 | 1.012
20 [115 | 109 | 1.08 | 1.06 20 | 115 1.20 1.15 | 1.20
40 | 118 | 110 | L10 | 111 40 | 113 | 1.07 | 109 | 1.08
v 60 | 116 | 1.09 | 111 | 1.08 X 60 | 114 | 1.08 1.09 | 1.09
80 | 117 | 1.09 | L1l | 1.08 80 | 1.14 | 1.06 1.06 | 1.06
100 | 116 | 1.08 | 1.10 | 1.08 100 | 111 1.07 107 | 1.06
Average 1165 | 1.092 | 1.100 | 1.082 || Average 1.135 | 1.098 | 1.092 | 1.098
1.133 | 1.079 | 1.099 | 1.076 |

CHAPTER 6 196

6.7.3 Unified Tabu Search

This subsection compares the empirical performance of UTS using TP and LGF
as the inner heuristic. Note that the results of UTSrp are extracted from Lodi
et al. [194] while the results of UTS oF are generated from the problem instances
given in [64]. This is a comparison of a classic 2DRSBSBPP. In each algorithm,
the results are obtained from the average of 10 (i.e. K') problem instances. The

execution in both algorithms are halted as soon as a time limit of 60 CPU seconds

per instance is reached.

Table 6.6 gives the results of the comparison between the UT'Srp and UTS ap.
As explained previously, the first and third pairs of columns correspond to the class
and the value of n. The second and last pairs of columns refer to the average ratio
(equation (6.10)) computed by UTSrp and UTS or respectively. In this table too,
for each class, the final line gives the average over all values of n. The final line
of Table 6.6 gives the overall average value over all classes. The bold face figures

represent the best solutions obtained for each class.

Based on the average value computed over all values of n, we can observe
that both UT'Syp and UTS gp generally improve the initial deterministic solution
produced by the inner heuristic (i.e. TP and LGF respectively in Table 6.5), except
Class IV and VI produced by UTSzp. With the help of the tabu search approach,
we further improved the solution quality of the LGF from 7.9% to 6.0% over the
lower bound. The approach also improved the solution quality of the TP from 7.6%
to just 6.0% over the lower bound. Note that both algorithms achieve the same
result (i.e. 1.060). We can conclude that, the unified tabu search is an effective
approach to 2DRSBSBPP regardless of the specific placement routine used in the
SEARCH procedure.

CHAPTER 6

Table 6.6: Comparison of UTSyp (Lodi et al

seconds per run)

[Class n | UTSyp | UTS.gr | Class n | UTSrp | UTS or
| 20 1.05 1.03 20 1.00 1.00
40 1.04 1.04 40 1.40 1.30
I 60 1.04 1.04 VI 60 1.05 1.05
80 1.06 1.06 80 1.00 1.00
100 1.03 1.03 100 1.07 1.07
Average | 1.044 1.039 Average 1.104 1.083
20 1.00 1.00 20 1.11 1.13
40 1.10 1.10 40 1.08 1.08
11 60 1.00 1.00 VII 60 1.06 1.07
80 1.03 1.00 80 1.10 1.10
100 1.00 1.00 100 1.08 1.08
Average 1.026 1.020 Average 1.086 1.093
20 1.06 1.04 20 1.10 1.10
40 1.09 1.10 40 1.10 1.13
11 60 1.08 1.09 VIII 60 1.07 1.07
80 1.07 1.09 80 1.08 1.09
100 1.07 1.06 100 1.09 1.08
Average 1.074 1.077 Average 1.088 1.094
20 1.00 1.00 20 1.00 1.00
40 1.00 1.00 40 1.01 1.01
IV 60 1.10 1.10 X 60 1.01 1.01
80 1.07 1.03 80 1.01 1.01
100 1.03 1.03 100 1.01 1.01
Average 1.040 1.033 Average 1.008 1.007
20 1.04 1.06 20 1.12 1.15
40 1.07 1.09 40 1.06 1.06
\Y% 60 1.06 1.09 X 60 1.06 1.06
80 1.07 1.08 80 1.05 1.05
100 1.07 1.08 100 1.05 1.04
Average 1.062 1.079 Average 1.068 | 1.072

| AVERAGE | 1.060 |

1.060

197

CHAPTER 6 198

6.7.4 Initial Investigation of MultiCrossover Genetic Al-

gorithm

In this subsection, we report on computational results of the MXGA at different
stages of development. Although many additional parameter setting tests are per-
formed to obtain a ‘good’ implementation of the MXGA, only the most significant
are reported. As for the proposed MXGA for the single machine family schedul-
ing problem described in Chapter 5, we believed that the elitism replacement and

filtration strategy also improved the proposed MXGA for the 2DRSBSBPP.

As for the initial development, we consider only the first four classes of problem
instances described in Table 6.1. For each class, we consider three values of n :
20, 40, 80, and for each combination of class and n, 10 problem instances are tested.
We use the problem instances provided by Lodi et al. [194]. In the remaining tables
(Table 6.7-6.9), the results generated by the LGF placement routine are used as
the benchmark for the development of the MXGA. The execution of the MXGA

algorithms are halted as soon as a time limit of 120 CPU seconds per instance is

reached.

We first compare different decoding strategies in the MXGA as suggested in
Section 6.3.3 where the results are reported in Table 6.7. We employ 2-point multi-
crossover in this experiment with the pack_eztra strategy as the decoding strategy
for the temporary offspring. The choice is made based on the low time complex-
ity of this decoding strategy compared to others. The first two columns give the
class and the value of n. The next pair of columns refer to the results generated
by heuristic placement routine, LGF. The following three pairs of columns refer
to the results generated by the MXGA with three different decoding strategies:
pack_extra, pack_above and repack strategies. For each algorithm, the entries in the
first column report the average ratio (equation (6.10)) while the second column
give the average overall bin utilisation (equation (6.11)). For each class, the final
line gives the average over all values of n. The final line of Table 6.7 gives the

overall average value of all classes.

CHAPTER 6 199

We first observe that the solution quality of all three MXGAs outperform the
LGF. Among the classes, Class III proved to be the most difficult to solve. As sug-
gested, the repack strategy proved to be the most powerful tool among the three,
followed by the pack_above strategy in generating good results. The pack_extra
strategy produced the least impressive results. It is clear that the better solution
quality is obtained under the repack strategy, although it is computationally more

expensive. Consequently, the repack strategy is used in the decoding stage.

Table 6.7: Comparison of LGF with MXGA; 53

Class n *LGF "MXGA; PMXGA, "MXGA; ‘
Ratio OBU | Ratio OBU | Ratio OBU | Ratio OoBU
20 1.0268 &80.54 | 1.0268 80.54 | 1.0268 80.54 | 1.0268 80.54
1 40 1.0379 84.95 | 1.0379 R84.95 | 1.0379 84.95 | 1.0379 84.95
80 1.0626 86.22 | 1.0626 86.22 | 1.0626 86.22 | 1.0626 86.22
Average 1.0424 83.90 | 1.0424 83.90 | 1.0424 83.90 | 1.0424 83.90
20 1.0000 42.40 | 1.0000 42.40 | 1.0000 42.40 | 1.0000 42.40
11 40 1.1000 54.72 | 1.1000 54.72 | 1.1000 54.72 | 1.1000 54.72
80 1.0667 78.48 | 1.0633 78.84 | 1.0567 79.26 | 1.0499 79.84
Average 1.0556 58.53 | 1.0544 58.65 | 1.0522 58.79 | 1.0500 58.99
20 1.0567 65.70 | 1.0529 66.01 | 1.0510 66.38 | 1.0499 66.77
111 40 1.1266 69.26 | 1.1199 70.24 | 1.1067 71.64 | 1.1000 72.54
80 1.0982 78.47 | 1.0967 78.86 | 1.0899 79.03 | 1.0831 79.25
Average 1.0938 71.14 | 1.0898 71.70 | 1.0825 72.35 | 1.0777 72.85
20 1.0000 38.36 | 1.0000 38.36 | 1.0000 3&8.36 | 1.0000 38.36
v 40 1.0000 56.71 | 1.0000 56.71 | 1.0000 56.71 1.0000 56.71
80 1.1000 74.13 | 1.1000 74.13 | 1.1000 74.13 | 1.1000 74.13
Average 1.0333 56.40 | 1.0333 56.40 ‘ 1.0333 56.40 | 1.0333 56.40

AVERAGE | 1.0563 67.50 | 1.0550 67.67 | 1.0526 67.86 | 1.0509 68.04

% deterministic algorithm with execution time of less than 0.1 CPU second.
b stopping criterion of 120 CPU seconds per run.

Table 6.8 examines the effect on solution quality for the proposed MXGA
when we incorporate the swap procedure instead of the reproduction procedure
as in a SGA if the multicrossover does not apply to the selected parents. As in
the previous experiment, we employ 2-point multicrossover with the pack_eztra
decoding strategy for the temporary offspring. From the results we achieved from
the previous experiment, we apply the repack strategy during the decoding stage
for the offspring in this experiment. The table gives the same information for the

first two pairs of columns as in Table 6.7, while the following two pairs of columns

CHAPTER 6 200

refer to the results generated by the MXGA for the cases of without and with the
swap procedure respectively.

Our first observation from Table 6.8 is that the swap procedure yields better
results in the MXGA compared to the algorithm which is without the procedure.
As the values indicate, the swap procedure has a beneficial influence on the solution
quality although it requires a slightly longer computation time and therefore fewer
generations will be evaluated within the time limit. This indicates that, besides
the mutation operator, the swap procedure also helps the algorithm to further
explore the search space. Analysing the results obtained by the algorithms, we

can conclude that the presence of the swap procedure in our proposed MXGA

does improve the solution quality.

Table 6.8: Comparison of LGF with MXGAj; (with and without swap)
‘LGF . MXGAs
Class n without Swap with Swap
Ratio OBU | Ratio OBU | Ratio OBU
20 1.0268 80.54 | 1.0268 80.54 | 1.0268 80.54
I 40 1.0379 84.95 | 1.0379 84.95 | 1.0379 84.95
80 1.0626 86.22 | 1.0626 86.22 | 1.0626 86.22
Average 1.0424 83.90 | 1.0424 83.90 | 1.0424 83.90
20 1.0000 42.40 | 1.0000 42.40 | 1.0000 42.40
I 40 1.1000 54.72 | 1.1000 54.72 | 1.1000 54.72
80 1.0667 78.48 | 1.0499 79.84 | 1.0499 79.84
Average 1.0556 58.53 | 1.05600 58.99 | 1.0500 58.99
20 1.0567 65.70 | 1.0499 66.77 | 1.0379 67.67
111 40 1.1266 69.26 | 1.1000 72.54 | 1.1000 71.64
80 1.0982 78.47 | 1.0805 80.34 | 1.0769 81.03
Average 1.0938 71.14 | 1.0768 73.22 | 1.0716 73.45
20 1.0000 38.36 | 1.0000 38.36 | 1.0000 38.36
v 40 1.0000 56.71 | 1.0000 56.71 | 1.0000 56.71
80 1.1000 74.13 | 1.1000 74.13 | 1.0921 74.89
Average 1.0333 56.40 | 1.0333 56.40 | 1.0307 56.65

| AVERAGE | 1.0563 67.50 | 1.0506 68.13 | 1.0487 68.25 |

¢ deterministic algorithm with execution time of less than 0.1 CPU second.
< stopping criterion of 120 CPU seconds per run.

In the next experiment, we investigate the impact of the mutation operator in
the MXGA. It has been suggested that the mutation operator might deteriorate

the solution quality by randomly assigning the item into a random bin. In order

CHAPTER 6 201

to analyse the impact of the mutation operator on the final outcome, a MXGA has
been applied without using the mutation operator. Note that the multicrossover
operators used in this experiment are the 1-point and 2-point crossover strategies
described in Section 6.3.4. Once again, the pack_eztra decoding strategy is used for
the temporary offspring. Table 6.9 summarises the computational results of the
MXGA using the mutation operator. The table gives the same information for the
first two pairs of columns as in Table 6.7, while the following four pairs of columns
refer to the results generated by the MXGA for the cases of with or without the

mutation operator using l-point and 2-point multicrossover respectively.

Table 6.9: Comparison of LGF with MXGAj; (with and without mutation)

‘LGF TMXGA;
Class 71 1P + Mutation ‘ 1P - Mutation | 2P + Mutation ‘ 2P - Mutation
Ratio OBU | Ratio OBU | Ratio OBU | Ratio OBU | Ratio OBU
20 | 1.0268 80.54 | 1.0268 80.54 | 1.0268 80.54 | 1.0268 80.54 | 1.0268 80.54
[40 | 1.0379 84.95| 1.0379 84.95 | 1.0379 84.95 | 1.0379 84.95 | 1.0379 84.95
80 | 1.0626 86.22 | 1.0626 86.22 | 1.0626 86.22 | 1.0626 86.22 | 1.0626 86.22
Average | 1.0424 83.90 | 1.0424 83.90 | 1.0424 83.90 | 1.0424 83.90 [1.0424 83.90
20 [1.0000 42.40 | 1.0000 42.40 | 1.0000 42.40 [1.0000 42.40 | 1.0000 42.40
II 40 | 1.1000 54.72 | 1.1000 54.72 | 1.1000 54.72 | 1.1000 54.72 | 1.1000 54.72
80 | 1.0667 78.48 | 1.0333 81.02 | 1.0499 79.84 | 1.0333 81.02 | 1.0499 79.84
Average | 1.0556 58.53 [1.0444 59.38 [1.0500 58.99 | 1.0444 59.38 | 1.0500 58.99
20 | 1.0567 65.70 | 1.0367 68.91 | 1.0499 66.89 | 1.0367 68.91 | 1.0499 66.89
III 40 | 1.1266 69.26 | 1.0921 74.33 | 1.1000 71.64 | 1.0921 74.33 | 1.1000 71.64
80 | 1.0982 7847 | 1.0731 81.23 | 1.0835 80.12 | 1.0731 81.23 | 1.0835 80.12
Average | 1.0938 71.14 [1.0673 74.82 | 1.0778 72.88 [1.0673 74.82 | 1.0778 72.88
20 | 1.0000 38.36 | 1.0000 38.36 | 1.0000 38.36 | 1.0000 38.36 | 1.0000 38.36
IV 40 | 1.0000 56.71 | 1.0000 56.71 | 1.0000 56.71 | 1.0000 56.71 | 1.0000 56.71
80 | 1.1000 74.13 | 1.0834 75.67 | 1.1000 74.13 | 1.0834 75.67 | 1.1000 74.13
Average | 1.0333 56.40 | 1.0278 56.91 | 1.0333 56.40 | 1.0278 56.91 | 1.0333 56.40
| AVERAGE | 1.0563 67.50 | 1.0455 68.76 [1.0509 68.04 | 1.0455 68.76 | 1.0509 68.04

¢ deterministic algorithm with execution time of less than 0.1 CPU second.
f stopping criterion of 120 CPU seconds per run.

The results achieved by the MXGA with the mutation operator in both 1-point

and 2-point multicrossover operators clearly outperform the MXGA without the
mutation operator. Also note that the MXGA with mutation operator in both the
1-point and 2-point multicrossover operators achieved the same solution values in

every combination of class ¢ (i = 1,2,3,4) and value n (n = 20,40, 80). Thus,

CHAPTER 6 202

the mutation operator is used in our proposed MXGA. In the next subsections,
this final version of the MXGA is compared to other local search approaches.
The results of the tests that are described in the previous experiments provide

guidelines for the design of the MXGA.

6.7.5 A Comparison of different Local Search Algorithms

In this subsection, we present the results of an extensive computational experiment
that compares our proposed MXGA with the SGA, UTS and RDM on solving the
classic 2DRSBSBPP. Since the MXGA performs equally well for both 1-point and
2-point multicrossover operators, we decide to test the performance of both with
the SGA. For this experiment, problem instances provided by Lodi et al. [194]
are used. For each class, we consider five values of n : 20,40, 60,80, 100. For
each combination of class and value of n, 10 problem instances are tested. Lor a
fair comparison between different algorithms in this experiment, we employ the
stopping criterion of 120 CPU seconds per instance. The specific values for the
generic design variables in MXGA, SGA, UTS and RDM are summarised in Table
6.2 and Table 6.3.

The differences between the MXGA and SGA employ in this experiments are
with regards to the use of the crossover operator, reproduction procedure and the
replacement scheme. The SGA applies the standard crossover operator to produce
two offspring from two selected parents. In the case of SGA, the steps explained
in Section 6.3.4 are used only once (i.e. ¢ = 1) to generate exactly two offspring.
The SGA uses the reproduction procedure instead of a swap operator when the
crossover does not apply to the selected parents. The replacement strategy employ

in the SGA is the steady-state replacement strategy.

The results are presented in Table 6.10. The first two columns give the class
and the value of n. The next two pairs of columns refer to the final version of
MXGA, MXGAF, and give the results for the 1-point and 2-point multicrossover

respectively. The following two pairs of columns refer to the SGA, and give results

CHAPTER 6 203

for the 1-point and 2-point crossover respectively. The last two pairs of columns

give the results of the UTS;cr and RDM respectively.

For each algorithm, the entries in the first column report the average ratio
(equation (6.10)), while the entries in the second column give the average overall
bin utilisation (equation (6.11)), computed over the ten generated instances. For
each class, the final line gives the average over all values of n. The final line of
Table 6.10 gives the overall average value over all classes. It is worth mentioning
again that the placement routine used in all of the algorithms is the LGF placement

routine we developed in Section 6.2.

By considering for each class, the average values computed over all values
of n, we see that the MXGAFr, in both the 1-point and 2-point multicrossover,
perform reasonably well compared to other algorithms except in Class IV and VI
where UTS g p performs the best. In general, SGA produced the least impressive
results where the SGA with the 2-point crossover operator performs slightly better
(i.e. 0.1%) than the SGA with 1-point crossover operator in terms of the overall
average ratio over all classes. Only a small fraction of improvement (i.e. 0.6%) is
achieved in the SGA compared to the LGF heuristic routine. This may suggest
that either the SGA is not an ideal choice of algorithm to be used in the bin packing
problem or the LGF placement routine is itself already a powerful heuristic for the

packing problem.

A closer look at the results of the UTS;¢r and RDM show that both algorithms
also performed quite well, with UTS;qr performing marginally better. This sup-
ports the idea that acceptance rule and randomisation procedure introduced in
the RDM, are comparable with the ideas of tabu lists and tabu tenure used in the
UTS.¢r in generating high quality solutions. This indicates that the randomisa-

tion procedure is capable of directing the moves to escape from local optima.

Improvements of 2.5% and 2.2% in the 1-point and 2-point MXGA respec-
tively as compared to LGF placement routine show that the MXGAR is able to

produce better solution quality. A significant improvement of 2% (1-point) and

CHAPTER 6 204

1.6% (2-point) in the MXGAf compared to SGA is obtained from the overall re-
sults. This suggests that the various techniques used in the MXGAy are capable
of improving the results although less generations are generated within the time
limit. The overall results show that the MXGAR algorithm is the preferred choice
followed by the UTS;gr, RDM and SGA.

Table 6.10: A Comparison of MXGAr with the SGA, UTS,qr and RDM (120
CPU seconds per run)

MXGA » SGA

Class n } 1P 2P P 2P UTScor RDM
Ratio OBU Ratio OBU Ratio OBU Ratio OBU Ratio OBU Ratio OBU
20 1.03 81.48 1.03 81.49 1.03 81.11 1.03 81.04 1.03 81.31 1.05 80.69
40 1.04 85.94 1.03 86.91 1.04 85.79 1.05 84.42 1.04 85.75 1.05 84.36
I 60 1.04 88.40 1.04 88.25 1.05 86.63 1.04 87.85 1.04 88.05 1.04 87.73
80 1.06 87.40 1.06 87.20 1.06 87.00 1.06 86.93 1.06 87.25 1.06 87.23
100 1.02 93.43 1.03 92.71 1.03 92.26 1.03 92.59 1.03 92.45 1.03 92.67
Average 1.037 87.33 1.036 87.31 1.041 86.56 1.040 86.57 1.039 86.96 1.046 86.54
20 1.00 42.40 1.00 42.40 1.00 42.40 1.00 42.40 1.00 42.40 1.00 42.40
40 1.10 56.07 1.10 56.07 1.10 54.80 1.10 55.03 1.10 56.07 1.10 56.07
II 60 1.00 76.54 1.00 76.81 1.20 67.24 1.17 70.38 1.00 76.81 1.00 76.81
80 1.00 83.51 1.03 81.07 1.07 78.00 1.07 78.00 1.00 83.45 1.03 81.34
100 1.00 81.48 1.00 81.36 1.03 78.21 1.03 78.05 1.00 81.48 1.03 78.09
Average 1.020 68.00 1.027 67.54 1.080 64.13 1.073 64.77 1.020 68.04 1.032 66.94
20 1.04 68.91 1.04 68.96 1.06 66.18 1.06 66.21 1.04 68.91 1.06 66.02
40 1.09 74.33 1.09 74.37 1.09 73.20 1.11 71.15 1.10 72.87 1.09 74.11
III 60 1.08 81.76 1.09 80.72 1.10 77.71 1.09 78.35 1.09 80.23 1.09 80.25
80 1.06 83.33 1.06 83.21 1.09 79.25 1.09 79.17 1.09 79.82 1.09 79.10
100 1.06 85.27 1.06 83.98 1.08 81.10 1.09 80.39 1.06 83.34 1.07 83.01
Average 1.065 78.72 1.068 78.24 1.085 75.49 1.087 75.06 1.077 77.03 1.080 76.50
20 1.00 38.36 1.00 38.36 1.00 38.36 1.00 38.36 1.00 38.36 1.00 38.36
40 1.00 56.71 1.00 56.56 1.00 55.07 1.00 55.01 1.00 56.71 1.00 56.71
IV 60 1.10 71.46 1.10 71.33 1.10 70.07 1.10 69.64 1.10 71.06 1.10 71.07
80 1.07 76.49 1.10 74.15 1.10 72.96 1.10 72.86 1.03 79.25 1.07 76.24
100 1.03 79.30 1.03 79.02 1.07 75.75 1.07 75.37 1.03 79.15 1.03 79.15
Average 1.040 64.47 1.047 £63.88 1.053 62.44 1.053 62.25 1.033 64.90 1.040 64.31
20 1.04 70.58 1.04 70.51 1.06 68.03 1.06 68.06 1.06 68.34 1.04 70.44
40 1.06 76.54 1.06 76.51 1.08 73.74 1.08 73.36 1.09 72.89 1.07 75.21
vV 60 1.07 78.23 1.07 78.06 1.09 75.37 1.07 76.33 1.09 75.46 1.07 77.65
80 1.07 78.96 1.07 78.93 1.08 76.35 1.08 76.40 1.08 76.63 1.07 78.85
100 1.05 83.93 1.07 82.44 1.07 80.98 1.08 79.81 1.08 79.44 1.07 81.89
Average 1.058 77.65 1.061 77.29 1.076 74.89 1.075 74.79 1.079 74.55 1.064 76.81
20 1.00 29.23 1.00 29.23 1.00 29.23 1.00 29.23 1.00 29.23 1.00 29.23
40 1.40 49.09 1.40 49.13 1.40 47.40 1.40 47.42 1.30 50.12 1.40 48.25
VI 60 1.00 70.03 1.00 70.17 1.05 66.22 1.05 65.96 1.05 66.00 1.03 68.34
80 1.00 68.67 1.00 67.86 1.00 66.66 1.00 67.00 1.00 68.67 1.00 68.67
100 1.07 75.99 1.07 75.40 1.10 72.60 1.10 72.40 1.07 75.34 1.07 75.25
Average 1.093 58.60 1.093 58.36 1.110 56.42 1.110 56.40 1.083 57.87 1.100 57.95
20 1.11 71.94 1.11 71.89 1.13 68.96 1.13 68.79 1.13 68.51 1.13 68.61
40 1.07 80.43 1.07 80.27 1.09 77.16 1.12 75.28 1.08 78.97 1.08 78.89
VII 60 1.05 85.22 1.06 83.68 1.08 80.60 1.08 80.68 1.07 82.74 1.06 83.24
80 1.08 84.79 1.09 83.45 1.10 81.23 1.09 82.22 1.10 81.14 1.10 81.33
100 1.07 86.30 1.07 85.81 1.10 82.00 1.09 82.20 1.08 84.36 1.08 84.11
Average 1.075 81.74 1.080 81.02 1.101 77.99 1.103 77.83 1.093 79.14 1.080 79.24
20 1.10 72.14 1.10 72.14 1.12 69.27 1.12 69.01 1.10 72.14 1.10 72.14
40 1.09 80.23 1.09 79.84 1.11 76.55 1.09 78.41 1.13 74.95 1.11 76.25
VIII 60 1.06 84.93 1.06 84.36 1.10 79.96 1.10 79.67 1.07 83.27 1.07 83.01
80 1.07 85.21 1.08 83.93 1.10 81.22 1.11 80.62 1.09 82.63 1.10 81.11
100 1.06 86.55 1.07 86.10 1.09 82.31 1.09 82.79 1.08 84.74 1.08 84.56
Average 1.078 81.81 1.081 81.27 1.105 77.86 1.101 78.10 1.094 79.55 1.092 79.41
20 1.00 43.87 1.00 43.57 1.01 43.03 1.01 43.03 1.00 43.57 1.00 43.57
40 1.01 45.75 1.01 45.75 1.01 45.75 1.01 45.75 1.01 45.75 1.01 45.75
IX 60 1.01 43.56 1.01 43.56 1.01 43.56 1.01 43.56 1.01 43.56 1.01 43.56
80 1.01 45.12 1.01 45.12 1.01 45.12 1.01 45.12 1.01 45.12 1.01 45.12
100 1.01 46.10 1.01 46,10 1.01 46.10 1.01 46.10 1.01 46.10 1.01 46.10
Average 1.007 44.82 1.007 44.82 1.008 44.71 1.008 44.71 1.007 44.82 1.007 44.82
20 1.13 68.40 1.13 68.38 1.18 67.13 1.13 67.01 1.15 66.34 1.13 67.01
40 1.06 79.87 1.06 79.68 1.06 78.17 1.06 77.87 1.06 79.73 1.06 79.55
X 60 1.07 84.42 1.08 83.41 1.10 79.99 1.08 80.59 1.06 85.21 1.07 84.67
80 1.06 85.83 1.06 85,51 1.07 82.66 1.06 83.17 1.08 89.14 1.05 89.00
100 1.04 87.85 1.04 87.11 1.07 82.80 1.07 83.36 1.04 86.89 1.05 85.65
Average 1.070 81.27 1.072 80.82 1.086 78.15 1.080 78.40 1.072 81.46 | 1.072 81.18

Average | 1.054 72.44 | 1.057 _ 72.06 | 1.074 60.86 | 1.073 60.88 | 1.060 _ 71.43 | 1.062 _ 71.36

CHAPTER 6 205
6.7.6 A Comparison of different Local Search Algorithms

(with due dates)

In this final section of computational experiments, we compare the results of
different local search algorithms on solving the 2DRSBSBPP with due dates. Both
algorithms UTS gr and RDM use SEARCH and SEARCH_1 procedures during

the execution.

Once again, we use the problem instances provided by Lodi et al. [194]. For
each class, we consider five values of n : 20,40, 60,80, 100, and for each combi-
nation of class and value of n, 10 problem instances are tested. As described in
Section 6.7.1, we further categorise the data set into three separate groups by allo-
cating the due dates to the rectangles. In order to have a fair comparison between
different algorithms in this experiment, we employ the stopping criterion of 120

CPU seconds (2 minutes) per instance.

Recall that, we optimise the bicriteria objective function of the problem by
alternating between optimising each of the objective function discussed in Section
6.4, through a hierarchical optimisation approach in every [iterations (in this case
= 100 for UTS;cr and RDM), and G generations (in this case = 100 for MXGAf
and SGA). By alternating the objective functions during the execution of the al-
gorithms, we are solving the problem using a simultaneous optimisation approach.
Under this approach, both objective functions are treated as equally important.
As aresult, a set of Pareto optimal solutions consisting of both objective functions
is obtained, where a trade-off curve and an efficient frontier for the problem can
be formed. Note that the trade-off curve and the efficient frontier are equal only

if the trade-off curve is convex.

It is worth mentioning that there is no suitable way of constructing a single
composite objective function to represent the bicriteria objective function of the
problem. This is due to the incomparability of the unit used (i.e. time, number of
bins) in both performance criteria which result in the computationally inaccessi-

bility for optimising the single composite objective function in a direct manner.

CHAPTER 6 206

Both MXGAFr and SGA algorithms do not require any major modifications to
suit the objective functions. Both algorithms are only required to include the ob-
jective functions discussed in Section 6.4 as part of the fitness evaluation procedure.
As suggested from the previous results, we employ the 1-point crossover operator
in both algorithms as it produced better results within a fixed computation time

compared to the 2-point crossover operator.

We present only the results of the two extreme points of the efficient frontier.
The computational results of the first and second objective functions are presented
in Table 6.11 and Table 6.12 respectively. In both tables, the first two columns
give the due date class (discussed in Section 6.7.1) and the problem class. For each
algorithm, the entries in the first column report the overall average ratio computed
over all values of n (in this case, X' = 50 in equation (6.10)). The entries in the
second and third columns give the average overall bin utilisation (equation (6.11)
with K = 50) and the overall average relative percentage deviation (equation
(6.13) with K = 50) respectively. For each due date class, the final line gives the
average value over all classes. The final line of each table gives the overall average
value over all due date classes. Table 6.13 gives a summary of Table 6.11 and

Table 6.12.

By considering the overall average value found in each due date class in both
Table 6.11 and Table 6.12, we see that the problem instances in due date class
C to be the most challenging. The overall average ratio reported in Table 6.11
clearly shows that the trade-off begins to show effect on the solution quality when
the range of the rectangle due date increased. It is clear to see that the MXGA ob-
tained better results compared to other algorithms, although the results obtained
in ‘Ratio’ (equation (6.10)) and ‘OBU’ (equation (6.11)) are worse than the results
for the classic 2DRSBSBPP (refer Table 6.10). We notice that the RDM performs
better than UTS qr in all performance measures except in class A, where UTS;qr

performs marginally better than RDM in both ‘Ratio” and ‘OBU’.

CHAPTER 6 207

It is interesting to see that in Table 6.12, the computational results generated
by SGA (1.065 on average) and UTS;gr (1.052 on average) in terms of ‘Ratio’
are generally better than the results obtained from the classic 2DRSBSBPP (from
Table 6.10: 1.074 [SGA] and 1.060 [UTS.¢r|). However, MXGA and RDM fail to
improve the solution quality of the ‘Ratio’ when compared with their counterpart
in the classic problem. In this table, RDM clearly performs better than UTS gr
in terms of ‘ARD’. This may indicate that UTS gF is a very effective approach
in finding the minimum number of bins used, but less powerful in minimising the
maximum lateness of the rectangles packed. There is no huge surprise at this out-
come as the UTS;or is initially designed specifically for the classic 2DRSBSBPP

where the ‘only’ objective is to minimise the number of bins used.
In this case (i.e. second objective in Section 6.4), MXGA generated less impres-
sive results compared to UTS;gr in term of ‘Ratio’ and ‘OBU’. But, the ‘ARD’

obtained by the MXGA clearly outperforms other algorithms.

Due Date

Data

SGA

MXGAr UTS.cr RDM

Class Class | Ratio | OBU | ARD | Ratio | OBU ARD | Ratio | OBU | ARD | Ratio | OBU | ARD

I 1.056 | 83.10 16.58 | 1.042 | 85.26 12.37 | 1.053 | 83.42 16.02 | 1.088 | 7873 | 22.27

il 1.033 | 63.69 17.38 | 1.020 | 66.19 11.15 | 1.025 | 64.92 13.17 | 1.025 | 65.36 12.00

111 1.109 | 71.36 | 30.86 | 1.078 | 75.40 22.00 | 1.084 | 74.51 27.90 | 1.092 | 73.23 | 26.59

v 1.047 | 60.68 | 21.74 | 1.047 | 61.65 17.29 | 1.033 | 62.25 19.09 | 1.040 | 61.77 | 18.95

A Y 1.087 | 72.45 | 24.24 | 1.070 | 74.46 18.00 | 1.077 | 73.61 21.97 | 1.076 | 73.53 | 21.73

VI 1.110 | 54.51 23.23 | 1.093 | 56.01 16.66 | 1.110 | 54.41 21.49 | 1.103 | 55.34 19.34

VII | 1.120 | 74.45 | 33.48 | 1.090 | 78.54 2352 | 1.107 | 76.70 | 29.67 | 1.099 | 77.10 | 29.46

VIIT | 1.125 | 74.14 | 33.96 | 1.080 | 78.79 23.31 | 1.102 | 77.26 | 29.99 | 1.103 | 76.41 29.03

IX 1.007 | 44.07 1.68 | 1.007 | 44.10 1.68 | 1.007 | 42.92 1.74 | 1.007 | 43.17 2.12

X 1.099 | 74.96 | 27.90 | 1.080 | 77.27 23.89 | 1.089 | 76.59 | 32.05 | 1.093 | 74.93 | 27.54

Average 1.079 | 67.34 | 23.10 | 1.062 | 69.77 16.99 | 1.069 | 68.66 | 21.31 | 1.073 | 67.96 | 20.90

I 1.065 | 81.82 | 34.93 | 1.046 | 84.73 24.17 | 1.069 | 81.58 | 31.78 | 1.088 | 78.46 | 38.27

1T 1.033 | 63.61 | 47.72 | 1.027 | 65.52 33.98 | 1.038 | 64.05 | 39.68 | 1.032 | 63.68 | 33.46

111 1.132 | 68.91 66.78 | 1.088 | 73.90 46.21 | 1.128 | 69.99 | 64.99 | 1.107 | 71.50 | 56.46

v 1.060 | 59.27 | 53.45 | 1.047 | 61.70 35.98 | 1.063 | 59.58 | 49.09 | 1.060 | 59.22 | 45.72

B \Y% 1.113 | 69.66 | 48.58 | 1.080 | 73.43 35.51 | 1.104 | 70.91 48.33 | 1.094 | 71.59 | 40.41

VI 1.110 | 54.34 | 4885 | 1.110 | 54.93 37.73 | 1.090 | 55.34 | 46.41 | 1.097 | 55.00 | 42.01

VII | 1.133 | 72.88 | 71.94 | 1.102 | 76.80 5217 | 1.135 | 73.47 | 65.82 | 1.122 | 74.28 | 58.16

VIII | 1.143 | 72.19 | 72.72 | 1.099 | 77.38 4941 | 1.122 | 75.08 | 67.28 | 1.118 | 74.27 | 60.49

IX 1.007 | 43.84 2.42 | 1.007 | 43.97 2.42 | 1.007 | 43.09 2.53 | 1.007 | 43.30 3.79

X 1.113 | 73.38 | 67.45 | 1.087 | 76.31 5348 | 1.125 | 72.90 | 81.02 | 1.110 | 73.23 | 64.39

Average 1.091 | 6599 | 5148 | 1.069 | 68.87 | 37.11 | 1.088 | 66.60 | 49.69 | 1.084 | 66.45 | 4432
1 1.085 | 79.30 | 136.69 | 1.054 | 83.50 92.98 | 1.083 | 79.76 | 11541 | 1.104 | 76.50 128@

11 1.050 | 61.80 | 232.20 | 1.040 | 64.02 149.48 | 1.048 | 62.60 | 165.41 | 1.040 | 62.44 | 179.75

111 1.164 | 65.80 | 180.45 | 1.093 | 73.28 124.96 | 1.148 | 68.01 | 173.81 | 1.127 | 69.10 | 148.03

v 1.070 | 58.68 | 223.21 | 1.053 | 60.59 153.24 | 1.063 | 60.12 | 210.69 | 1.063 | 59.19 | 183.06

C \Y% 1.134 | 67.32 | 149.25 | 1.088 | 72.38 105.04 | 1.134 | 68.20 | 142.07 | 1.106 | 69.88 | 121.12

VI 1.110 | 54.34 | 274.92 | 1.110 | 54.43 241.31 | 1.110 | 54.42 | 264.36 | 1.117 | 53.73 | 251.38

VII | 1.161 | 70.18 | 296.58 | 1.106 | 76.20 209.59 | 1.164 | 70.42 | 261.95 | 1.134 | 7177 | 227.27

VIII | 1.153 | 70.86 | 421.53 | 1.101 | 76.79 273.28 | 1.172 | 69.72 | 387.14 | 1.135 | 72.15 | 320.40

IX 1.007 | 43.71 9.93 | 1.007 | 43.81 9.93 | 1.008 | 43.14 15.13 | 1.008 | 43.29 | 18.72

X 1.131 | 71.33 | 396.65 | 1.100 | 75.24 318.50 | 1.148 | 70.83 | 412.62 | 1.134 | 70.87 | 345.31

Average 1.107 | 64.33 | 232.14 | 1.075 | 68.02 | 167.83 | 1.108 | 64.72 | 214.86 | 1.097 | 64.80 | 192.31

(uni 10d spuooss NJD 0z1) (pesn sulq

JO IoquInu oY) SUSTWIUIW JO 9AI}00(q0 ATRPU028S ® M **™r7 oY) SSIUITUIW (TOT}

-ounj 9A1399(qo) SWYITIOSy yoIeOG 800 JULISHL(] Jo uosiredwo)) y :11°9 9B,

9 YHLdVH))

Due Date | Data SGA MXGAp UTS gr RDM
Class Class | Ratio | OBU ARD Ratic | OBU ARD Ratio OBU ARD Ratio | OBU ARD
1 1.038 | 85.73 22.37 | 1.036 | 86.13 13.96 | 1.038 85.63 18.83 | 1.084 | 79.08 22.58
II 1.033 63.69 17.38 1.020 66.19 11.15 1.020 65.31 13.20 1.020 65.73 12.19
111 1.079 74.82 38.33 1.070 76.35 23.83 1.060 77.30 30.30 1.079 74.75 29.02
v 1.047 60.68 21.74 1.047 61.65 17.29 1.033 62.25 19.09 1.040 61.77 18.95
A A% 1.068 74.55 27.57 1.062 75.53 20.28 1.055 76.24 26.34 1.073 73.85 22.01
VI 1.110 54.51 23.23 1.093 56.01 16.66 1.110 54.41 21.49 1.103 55.34 19.34
VII 1.091 77.89 39.45 1.077 80.20 28.44 1.068 81.43 34.14 1.094 77.66 30.64
VIII 1.089 78.23 39.93 1.079 80.05 28.68 1.074 8(.80 33.40 1.096 77.15 29.67
IX 1.007 44.07 1.68 1.007 44.10 1.68 1.007 42.91 1.74 1.007 | 43.17 2.12
X 1.079 77.22 30.07 1.073 78.28 26.56 1.064 79.73 35.09 1.083 75.93 28.52
Average 1.064 69.14 26.18 1.056 70.45 18.85 1.0583 | 70.60 23.36 1.068 68.44 21.51
1 1.041 85.19 46.29 1.036 86.24 29.00 1.035 85.95 39.96 1.081 79.42 42.80
I 1.033 | 63.61 47.72 | 1.020 | 66.02 34.34 | 1.020 65.52 40.23 | 1.020 | 64.75 33.68
11 1.078 | 74.88 89.86 | 1.071 | 75.99 55.05 | 1.064 77.05 76.45 | 1.076 | 74.90 68.20
v 1.053 59.72 53.68 1.047 61.70 35.98 1.045 61.16 49.59 1.047 60.44 45.85
B \% 1.068 | 74.44 63.55 | 1.062 | 75.60 40.84 | 1.057 76.03 56.22 | 1.075 | 73.56 48.26
VI 1.110 54.34 48.85 1.103 55.40 37.80 1.083 55.83 46.48 1.090 55.43 42.10
VII 1.090 | 77.85 91.03 | 1.081 | 79.34 66.72 1.067 81.24 82.04 | 1.094 | 77.33 65.92
VIII 1.089 | 78.19 89.91 | 1.081 | 79.56 59.48 | 1.069 81.35 82.18 | 1.097 | 76.58 68.15
IX 1.007 43.84 2.42 1.007 43.97 2.42 1.007 43.09 2.53 1.007 43.30 3.79
X 1.079 77.28 75.08 1.074 78.02 60.04 1.073 78.42 92.67 1.080 76.41 73.31
Average 1.065 | 68.93 60.84 | 1.058 | 70.18 42.17 | 1.052 | 70.56 56.83 | 1.067 | 68.21 49.21
I 1.041 85.17 | 189.73 1.036 85.96 124.60 1.037 85.67 149.20 1.089 78.17 | 138.09
11 1.037 | 62.99 | 234.99 | 1.020 | 65.65 152.94 1.020 64.95 168.62 | 1.020 | 64.21 | 181.97
11 1.076 | 75.08 | 253.78 | 1.072 | 75.69 147.83 | 1.054 78.04 | 227.23 | 1.081 | 73.73 | 182.49
v 1.053 | 59.99 [225.52 | 1.047 | 61.13 154.41 1.040 61.79 | 213.44 | 1.047 | 60.49 | 186.81
C v 1.072 | 73.99 | 200.62 | 1.062 | 75.48 145.06 | 1.056 76.14 | 184.62 | 1.078 | 72.59 | 146.44
VI 1.110 | 54.34 | 274.92 | 1.110 | 54.43 241.31 1.103 55.15 | 264.76 | 1.103 | 54.78 | 252.29
VII 1.088 | 78.04 | 386.60 | 1.079 | 79.43 263.25 | 1.067 81.28 | 332.09 | 1.107 | 74.73 | 267.94
VIIL 1.091 77.85 | 509.33 1.081 79.39 328.74 1.069 81.03 467.79 1.099 75.80 | 450.80
X 1.007 | 43.71 9.93 | 1.007 | 43.81 9.93 | 1.007 43.23 16.61 | 1.008 | 43.31 21.83
X 1.074 7773 | 497.09 1.071 78.29 418.83 1.066 78.99 487.26 1.085 76.24 | 441.32
Average 1.065 | 68.89 | 278.25 | 1.058 | 69.93 | 198.69 | 1.052 | 70.63 | 251.16 | 1.072 | 67.41 | 227.00

(unz 1od spuodes NJdD 0z1) (¥*™7 o3

Surstwuturua JO 9A1309[q0 AIRpU0D9s B YIIm PasT Sulq JO IOQUINU 813 SSTWIUTUW :UOT)

-ounj 9A1300(q0) SWYIIOS]Y [yoIeag [BO0T JusIeli(] jo uosiredwo)) y :g1°9 o[qR],

g YdILdVH))

602

Due Date Class | SGA MXGA \ UTS qr RDM

Lmax / Bin | Ratio | OBU | ARD | Ratio | OBU | ARD | Ratio TOBU ARD | Ratio | OBU | ARD
A 1.079 | 67.34 | 23.10 | 1.062 | 69.77 16.99 | 1.069 | 68.66 21.31 | 1.073 | 67.96 | 20.90
B 1.091 | 65.99 | 51.48 | 1.069 | 68.87 | 37.11 | 1.088 | 66.60 | 49.69 | 1.084 | 66.45 | 44.32
C 1.107 | 64.33 | 232.14 | 1.075 | 68.02 | 167.83 | 1.108 | 64.72 | 214.86 | 1.097 | 64.89 | 192.31

AVERAGE 1.092 | 65.89 | 102.24 | 1.069 | 68.89 | 73.98 | 1.088 | 66.66 95.20 | 1.085 | 66.43 | 85.84

Bin / Lmax | Ratio | OBU | ARD | Ratio | OBU | ARD | Ratio | OBU | ARD | Ratio | OBU | ARD
A 1.064 | 69.14 | 26.18 | 1.066 | 70.45 18.85 | 1.053 | 70.60 23.36 | 1.068 | 68.44 | 21.51
B 1.065 | 68.93 | 60.84 | 1.058 | 70.18 42.17 | 1.052 | 70.56 56.83 | 1.067 | 68.21 | 49.21
C 1.065 | 68.89 | 273.25 | 1.068 | 69.93 | 198.69 | 1.052 |, 70.63 | 251.16 | 1.072 | 67.41 | 227.00

AVERAGE 1.065 | 68.99 | 121.76 | 1.057 | 70.19 | 86.57 | 1.052 | 70.60 | 11045 | 1.069 | 68.02 } 99.24

(un1 1ed spuodas N D 0z1) synsoy reuonenduio) oaryeredwIo)) €179 9[q8],

9 YHALAVHD

0l¢

CHAPTER 6

6.8 Conclusions and Remarks

In this chapter, a non-oriented two-dimensional rectangular single bin size bin
packing problem with the objective of minimising the number of bins used is
defined. We have developed a heuristic placement routine called Lowest Gap
Fill (LGF) that is effective in filling the available gaps in the partial layout by
dynamically selecting the best rectangle for placement during the packing stage.
The routine requires O(n?) time. We compare the placement routine with some
well known heuristics reported in the literature. Computational results shown that

our proposed placement routine is capable of producing high quality solutions.

A MultiCrossover Genetic Algorithm (MXGA) has been proposed to solve the
non-oriented 2DRSBSBPP in this chapter. Various techniques have been intro-
duced into the MXGA to further enhance the solutions. We compared the MXGA
with the well known Unified Tabu Search (UTS) proposed by Lodi et al. [194].
Extensive computational experiments show that the MXGA achieves better results

compared to a standard genetic algorithm, UTS and randomised descent method.

We also introduced a new variant of the 2DRSBSBPP where each rectangle
has a due date and there is a fixed processing time for the bins used. The objec-
tive of this problem variant is to minimise the maximum lateness of the rectangles
and minimising the number of bins used. A lower bound to the problem is also
proposed in this chapter. Extensive computational experiments have been carried
out to solve the 2DRSBSBPP with due dates. All the local search algorithms
previously designed have been modified to suit the problem. Comparative com-
putational results shown that our proposed MXGA achieved a mixed degree of

success compared to UTS.

The applications of MXGA and LGF for other cutting and packing problems
such as open dimension problem and stock cutting problem are worthy of future

research.

Chapter 7

Symmetric Travelling Salesman

Problem with Due Dates

7.1 Introduction

In this chapter, we study a new variant of the symmetric version of the Time
Constrained Travelling Salesman Problem (TCTSP), called the Travelling Sales-
man Problem with Due Dates (TSPDD). Other TCTSP in literature are TSP
with Deadlines (TSPD), TSP with Target Times (TSPTT) and TSP with Time
Windows (TSPTW). The TSPDD has important practical applications in bank or

postal deliveries and scheduling deliveries.

The TSPDD can be defined as follows:
“Given a set {1,2,...,n} of cities, there exist a distance (or cost) ¢;;, and a travel
time t;;, for each pair 7, 7 € n of distinct cities. Assume that city 1 is a depot and
the tour must visit every city exactly once, starting and ending at the depot. For
each city ¢ (except city 1), there is a due date d;. This problem is best treated as
a bicriteria optimisation problem where the objective is to find an ordering of the
cities that starts and ends at the depot which minimises the mazimum lateness

Lmax, and the total tour length of the cities.”

212

CHAPTER 7 213

The main motivation of this study is derived from the trade-off between the
customers’ (to be served in the cities) satisfaction and the routing (travelling

cost/time) efficiency of the salesman.

In this study, we propose a MultiCrossover Genetic Algorithm (MXGA) that
utilises the multicrossover operator to solve the TSPDD. We introduce a new
variant of a subtour based crossover, where the constraint on sharing the common
subtours in both parents is relaxed. Detailed descriptions of the operator are given
in Section 7.5.2. Once again, the architecture of the MXGA uses in this chapter
is based on the framework design discussed in Section 4.9. Various techniques will

be introduced to further enhance the solution quality.

In the next section, we concentrate on the study of the TCTSP from literature.
To the best of our knowledge, there is no literature on the TSPDD. Hence, we focus
on problems which are closely related to TSPDD, namely TSPD, TSPTT and
TSPTW. Extensive search on the literature shows that both TSPD and TSPTT

receive little attention from the research community. Literature on the TSPTW

will be the focus in Section 7.2.

TSPTW consists of finding the minimum-cost tour of a set of cities where each
city is visited exactly once. To be feasible, the tour must start and end at an
unique depot within a certain time window and each city must be visited within
its own time window. According to Balas and Simonetti [23], the problem can be
defined more formally as follows:

“Given a set {1,2,...,n} of cities, there exist a distance/cost c;;, and a travel time
ti;, for each pair 4,7 € n of distinct cities. For each city 4, there is a time window
la;,b;] where a; and b; are the earliest and latest bound of the time window. The
time window indicates that city 4 has to be visited not earlier than a; and not later
than b;. Early arrival is allowed, where there exists a waiting time w; until a;. The
TSPTW is:

— hard : if the late arrival is not allowed, or

- soft : if the late arrival is allowed by adding a penalty to the objective function.

CHAPTER 7 214

The objective is to find a minimum cost tour, where the cost of a tour may
be the total distance travelled (in which case the waiting time w;, is ignored) or
the total time it takes to complete the tour (in which case the waiting time w; is

added to the travel time ¢;;).”

The problem is NP-hard and Savelsbergh [246] has shown that even finding
a feasible solution to the TSPTW is an NP-complete problem. TSPTW can
be viewed as a subproblem of the Vehicle Routing Problem with Time Window
(VRPTW).

Section 7.3 addresses the TSPDD in more detail and a new lower bound of the
maximum lateness for the TSPDD is then proposed in Section 7.4. The develop-
ments of the MXGA for solving the TSPDD are the focus of Section 7.5. Some of
the main components in the MXGA are discussed in detail. Section 7.6 provides
an insight into the local search algorithms designed specifically for comparison
purposes with the proposed MXGA. Computational experiments are conducted in
Section 7.7 to assess the merit of the proposed algorithms. To end this chapter,

we give some concluding remarks in Section 7.8.

7.2 Time Constrained Travelling Salesman Prob-

lem

Bansal et al. [24] consider the TSPD which they define as a problem of finding
a tour in a set of n cities, starting at a city r (i.e. depot), that visits as many
citles as possible by their deadlines. This problem has a practical application
on the point-to-point orienteering problem and machine scheduling problem with
sequence dependent setup times. The authors give an O(logn) approximation
algorithm for the problem. They also extend their study in VRPTW and give an
O(log® n) approximation to the problem. No computational results are reported

in their study.

CHAPTER 7 215

Campbell and Thomas [43] address the stochastic version of the TSPD where
each city ¢ to be visited is based on a given probability p;. They present three
different models to represent three different ways in which deadline violations can
be measured and addressed in a stochastic environment. No computational results

are reported in their study.

Balas and Simonetti [23] introduce the TSPTT which is applicable to Just-In-
Time scheduling problems. This model defines a target time for each city, rather
than a time window. The objective is to minimise the maximum deviation between
the target time and the actual service time over all cities. A secondary objective
could be the minimisation of the total time needed to complete the tour. They
propose a Dynamic Programme (DP) which is initially used in their research to
solve the TSPTW. Computational results for problem instances from the literature
for up to 46 cities, where the target times are defined as the time window mid-
points, show that the optimal solution is found in most cases within a reasonable

time. To the best of our knowledge, no further research has been done on this

problem variant.

The first approaches for the TSPTW can be attributed to Christofides et
al. [53] and Baker [17]. Both papers present a Branch and Bound (B&B) ap-
proach. Christofides et al. [53] describe the B&B approach in which the lower
bound computation is performed via a state-space relaxation in a DP scheme. So-
lutions of problem instances of up to 50 cities with ‘moderately tight’ time windows
are reported. Baker [17] exploits a time constrained critical path formulation in
the lower bound computation. The algorithm performs well on problems of up to

50 cities when only a small percentage of the time windows overlap.

Langevin et al. [175] address the problem using a two-commodity flow formula-
tion within a B&B scheme. Computational results for problems of up to 60 cities
are reported. More recently, Ascheuer et al. [14] consider several formulations for
the asymmetric version of the problem and compares them within a branch and
cut scheme. The framework incorporates techniques tailored for the asymmetric

TSPTW such as data preprocessing, primal heuristics, local search, and variable

CHAPTER 7 216

fixing. Their algorithm solves instances in the range of 50-70 cities to optimality.

They also tested their algorithm on real-world problem instances with sizes of up
to 250 cities.

Dumas et al. [80] propose a DP approach for the TSPTW that extensively
exploits elimination tests to reduce the state space. They report solving instances
with up to 200 cities with fairly wide’ time windows. Mingozzi et al. [211] propose
a DP derived by through a generalisation of the state-space relaxation scheme
developed by Christofides et al. [53]. Their proposed algorithm can be also applied
to TSPTW problems with precedence constraints. They present computational

- results for instances of up to 120 cities.

More recently, Balas and Simonetti [23] present a new DP algorithm that can
be applied to a wide class of restricted TSP. This approach yields good results on
the asymmetric version of TSPTW in cases where the number of overlapping time

windows are small.

Recently, TSPTW has drawn interest from the Constraint Logic Programming
(CLP) community. Pesant et al. [227] propose a CLP which incorporates arc
elimination and time window reduction rules previously proposed by Langevin et
al. [175] and Desrochers et al. [71] respectively. A year later, Pesant et al. [228§]
show the flexibility of the CLP by solving a new variant of the TSPTW, called
TSPTW with Multiple Time Windows, using the same algorithm as for the original

problem with some minor modifications.

Focacci et al. [95] view the TSPTW as a model combining TSP and a scheduling
problem. They use a set of propagation techniques based on feasibility reasoning
and exploiting information on costs. In addition, they also propose two branching
strategies that can be used to solve the problem. Computational results of problem
instances from the literature show that the algorithm is a viable choice for solving
TSPTW. Moreover, they use the TSPTW as a case study and present a series of
papers on CLP based on the general framework presented in [95] (see [96, 97, 98]).

CHAPTER 7 217

Because of the limitations associated with exact formulation, there exists a
body of research focusing on heuristic techniques for the TSPTW. Carlton and
Barnes [44] solve the TSPTW with a reactive tabu search approach that permits
infeasible solutions in its search neighbourhood through the implementation of a
static penalty function. Computational results on 145 problem instances of up to
200 cities from the literature show that optimal or near-optimal solutions can be

obtained within reasonable computation times.

Gendreau et al. [110] present an algorithm based on the GENIUS procedure (as
discussed in Section 3.5.1.3). The computational results for problem instances of
up to 100 cities from the literature, indicate that optimal or near- optimal solutions

can be obtained in most cases within reasonable computation times.

Calvo [42] presents a three-stage procedures to solve the TSPTW. It starts by
solving an assignment problem with a particular objective function. This objective
function takes into account the scheduling constraints, which are relaxed to obtain
a pure assignment problem from the original formulation. By doing this, a solution
close to feasible is obtained where there is a set of subtours and a long main tour
starting from and ending at the depot. An insertion heuristic is then applied to
insert the subtours into the main tour to obtain a good initial feasible solution for
the problem. The solution is further improved by a local search scheme based on
a k-Opt exchange procedure. Computational results on 395 benchmark problems
indicate that optimal or near-optimal solutions can be obfained in most cases

within reasonable times.

Ohlmann and Thomas [219] apply a variant of simulated annealing, called com-
pressed annealing, which incorporates a variable penalty method with stochastic
search to solve the TSPTW. The performance of the compressed annealing algo-
rithm is tested on 400 problem instances from the literature. The authors demon-
strate that compressed annealing consistently converges to good solutions, and
exhibits potential for particularly large instances with wide time windows. They
obtain new best known solution for a number of instances and match the previously

best known solution in most of the benchmark problem instances.

CHAPTER 7 218

Nygard and Yang [218] propose a Genetic Algorithm (GA) to solve the TSPTW.
They develop a new crossover operator, called the Earliest Closing Time Crossover
operator. Each offspring is carefully constructed by selecting the next city to be
visited, based on the latest service time of the next potential city of both parents.
The GA consistently provides good quality solutions for the problem instances

from literature.

A year later, Yang and Nygard [285] solve the TSPTW using a GA by in-
troducing a new class of crossover operator, called edge-type crossover, and a
heuristically selected initial population. The initial population of the tour is con-
structed by first ordering the cities with time windows according to their latest
service time to form a partial tour. Then, the cities with no time windows are
inserted in between the partial tour to form a complete route. The edge-type
crossover consists of a class of five different operators (i.e. shorter edge, longer
edge, most cities, randomly combined, and nearest cities), which are modifications
of the greedy crossover operator of Grenfenstette et al.[131]. Computational results
of the problem instances from literature demonstrate that the proposed crossover
operators are effective. Moreover, the use of a heuristic method to generate the

initial population greatly reduces the computation time.

7.3 Travelling Salesman Problem with Due Dates

In this section, we introduce a new variant of the TCTSP, called Travelling Sales-

man Problem with Due Dates (TSPDD). The formal definition of the TSPDD is

given in Section 7.1.

We concentrate our study on the symmetric version (i.e. ¢;; = ¢;;) of the prob-
lem. For simplicity, we also assume that ¢;; = ¢;; for 7,j € n. It is worth mention-
ing that, although the total tour length of the cities is symmetric, the maximum
lateness of the cities is not. We can demonstrate this by using the example in
Figure 7.1 with a 3 cities (i = 1,2,3) problem. Note that the formulation and

calculation of the maximum lateness of the cities will be given later in the section.

CHAPTER 7 219

Let city 1 be the depot, city 2 and city 3 have a due date of 5 units and 6 units re-
spectively. Suppose that {c1a, ca3, cs1} = {3, 4,5} and ¢;; = ¢;; for each pair4,j € 3
of distinct cities. Thus, for Tour A: (1 2 3), the total tour length is 12 units and
the maximum lateness is 1 unit. On the other hand, Tour B: (1 3 2) gives the
same tour length as Tour A but with the maximum lateness of 4 units. This result

shows that the total tour length is symmetric but the maximum lateness is not.

Figure 7.1: An example of a 3 cities problem
Tour A Tour B

Cpy =4 [=4

dzzs/\d3=6 d, =5 /(—\dzzé
2 3 2 3
612:3\ /031:5 021:3\ //013:5
1 1

The main motivation of this study is derived from the trade-off between the
customers’ (to be served in the cities) satisfaction and the routing (travelling cost)
efficiency of the salesman. On one hand, if the routing efficiency is more important,
the salesman tends to visit customers via the shortest route in between cities to
reduce the travelling cost (e.g. time and fuel). On the other hand, to meet the
customer due date (e.g. bank closing time), the original route has to be reassigned
so that priorities can be shifted. This allows customers (i.e. cities) that have the

shortest due date to be visited ahead of the other cities.

In order to deal with the problem, we first define two distinct objective func-

tions for the problem to be solved:

1. minimise the maximum lateness of the cities to be visited with a secondary
objective of minimising the total tour length (ideal for customers’ satisfac-
tion);

2. minimise the total tour length with a secondary objective of minimising the
maximum lateness of the cities to be visited (ideal for salesman’s routing

efficiency).

Each of the objective function can be viewed as a hierarchical optimisation

approach. This approach first optimises the primary objective, then the secondary

CHAPTER 7 220

objective is optimised subject to the additional constraint that the solution value of
the primary objective is optimum. By alternating the objective functions in every
G generations (or [iterations) during the execution of the local search algorithms,
we will be able to find a good balance of the trade-off between the customers’

satisfaction and salesman’s routing efficiency.

The maximum lateness L., of the cities to be visited in the tour is calculated
as follows: let (1), 7(2),...,m(n), where m(1) = city 1, be the ordering of the
cities to be visited in the tour and d.(;) is the due date of the jth city in the tour.
We denote tr(jyx(j+1) as the travel time from jth city to (7 -+ 1)th city in the tour.
The lateness of the jth city in the tour is obtained by the following:

Lagy =) tenti+1) — du(s)- (7.1)

7-1
i=1

Thus, the maximum lateness of the cities to be visited in the tour is

Lmax = max {LW(])} (72)

i=2,3..n

7.4 Lower Bound for TSPDD

In this section, we derive a simple lower bound of the maximum lateness for the
TSPDD where the distance between the cities satisfy the ‘triangle inequality’. The
Concorde software [57] which is developed by the research team lead by Applegate

is used to generate the optimal tour length LB"™ of the n cities.

We first sort cities 2,...,n in EDD order (i.e. non-decreasing order of their
due dates) and let city 1 be the depot at which the tour must start and end. By
employing the Concorde software [57], we obtain the optimal tour length LB™, of
the problem. Since we assumed that ¢;; = ¢;;, then, LB™ is also the total time
travelled by the cities in the optimal tour. The lower bound on the maximum

lateness of the tour of n cities is the minimum value of

LB" —t;, —dy: forj =2,3,...,n. (7.3)

CHAPTER 7 221

The logic is: one of the cities 2,3, ..., n, must be the last city in the tour. Suppose
it is city j. Then travel time ¢;; is included in the tour, and so a lower bound on
the time that we can visit city j is LB™ —t;,. We then subtract the due date of
the city j to get the lower bound on the maximum lateness, L™ = LB™ —{;; — d;.
As we do not know which city is last in the tour, we look at all possibilities and

choose the smallest.

The steps of finding the optimal tour length and the lower bound on the max-
imum lateness of the tour are repeated by first removing the city with the largest
due date from the list. The process is repeated until the list contains only the

depot. More formally, the process can be summarised as follows:

S 1: Sort cities 2, ...,7n in a non-decreasing order of their associated city due date
d;, so that dy < d3 < ... <d, and let city 1 be the depot. Set j = n.

S 2: Find the optimal tour length LB7, of j cities using the Concorde software.
S 3: Compute a lower bound on the maximum lateness of the j cities,

Lj = min {LBJ - til - dz}

i=23,....]
S 4: Reduce j by 1 (i.e. j:=j—1), and repeat S 2 -S 3 until j = 1.

Thus, the lower bound of the maximum lateness for TSPDD is

LB, = max {L’}. (7.4)

7=2,3,...,n

To justify that the above procedure generates a valid lower bound, consider an
optimal tour of n cities. Suppose that we delete cities j + 1,...,n from this tour.
From the triangle inequality, no city is visited later as a result of these deletion.

Let 7" be the tour length, and h be the last city visited. Then

LBLmax Z T - thl - dh’
> LB —ty —dy (7.5)
J

1=2,3,...,

as defined in S3.

CHAPTER 7

7.5 MultiCrossover Genetic Algorithm

In this section, we proposed a MultiCrossover Genetic Algorithm (MXGA) for
solving the TSPDD. In the remaining subsections, we will discuss some of the

main components of our proposed MXGA. The general architecture of the MXGA

is shown in Section 4.9.

7.5.1 Representation

The proposed MXGA is developed using path representation (as discussed in Sec-
tion 4.2). The complete set of cities n, forms the length of the chromosome (in-
dividual). In this representation, the n cities to be visited are sequenced in order
according to a string of n genes, so that if city 7 is the jth gene of the string, city
¢ is the jth city to be visited. Without loss of generality, the first gene in each
chromosome is city 1 and indicates the start of the tour as a depot. Also note that,
every city appears only once in the chromosome. Figure 7.2 shows an example of
the representation of an individual with 9 cities to be visited. Hence, the tour
starts at city 1, the depot, followed by city 4, city 9, city 7, etc. until it reaches

city 6 before it returns to the depot.

Figure 7.2: An example of an individual (chromosome)

genesno. 1 2 3 4 5 6 7 8 9
city'sno. [1/4[9/7]2[5/8]3[6

7.5.2 MultiCrossover

The proposed multicrossover operator is a variant of the subtour based crossover.
The offspring generated from this operator inherit the subtours from their parents.
Unlike the other subtour based crossover operators such as Subtour Exchange

Crossover (SXX) [284], Complete Subtour Exchange Crossover (CSEX) [167] and

CHAPTER 7 223

Subtour Preservation Crossover (SPX) [257], where the parents have to share the

common subtours in order for the operator to be effective, our proposed crossover

strategy relaxes this constraint.

This subtour based crossover strategy first randomly selects a subtour of size
s from a parent P. Then, an arbitrary city is chosen within the subtour which
indicates the position of the city in another parent) where the subtour will be
inserted. Any repeated city from parent is removed to form a valid temporary
offspring. Similarly, we can generate the second temporary offspring by inserting
a randomly selected subtour from parent @ to parent P. The size of the subtour
is randomly selected within a bound of [2, an], where n is the number of cities to
be visited. Initial experiments suggest the value of o as 0.2. In other words, the
size s of the subtour is between the range of 2 cities to 20% of the total cities to
be visited in the tour. The process of generating two temporary offspring from a

pair of parents is as follows (an example is given in Figure 7.3):

S 1: Select randomly a subtour of size s in both P1 and P2 (Parent 1 & 2).
S 2: Select randomly a city in the subtour of P2 as the identifier /.

S 3: Locate the position R of [in P1.

S 4: Insert the subtour of P2 into P1 at R.

S 5: Remove the duplicate cities from P1 by preserving the subtour of P2. The
completed tour is denoted as TC1 (Temporary Offspring 1).

S 6: Repeat S2 — S5 to generate TC2 (Temporary Offspring 2) by inserting
subtour from P1 into P2 analogously.

By repeating the steps above for r times, we produce a candidate list of 2r
temporary offspring. The best and a selected temporary offspring found using the
probabilistic binary tournament selection mechanism are then chosen to be the
new offspring for the current generation. It is more convenient to describe the

process using the example in Figure 7.3 with r = 3.

224

CHAPTER 7
Figure 7.3: MultiCrossover

subtour Temp.“][:‘_4{:}6‘9‘4‘7‘2‘5‘8‘3@
parent1 | 1] 4[97} 2] 5] 8/ 3]6] | Tc1[1][6]9][4]7][2]5][8]3]
Parent2| 1 8] 3|6 (9)4|7]5]2] " Temp.[1]8][3]6]9[4]7 [2]5 [4]Z]

10218 3 6947]2]5]
o subtour Temp.[1 [4]9]7] 2[9]4]7]5]8 [3]6]
parent 1 1| 4] 9] 7] 2 5(8J 3]6] }\ *rc3[1]2][9]4]7[5] 8] 3]6]
ParentZ‘ 1‘ 8‘3\6 9‘4‘7@ 2‘ Temp.[l‘Z ‘5‘8‘ 3[3J6‘9‘4‘7[5‘M
Tca[1[2 [5]8] 3]6]9]4]7]

s woms [T 4[8]7 [2]5[8 13169]
parent 1] 1] 4] 9]7 [2) 5] 8] 3] 6] Tcs[1]4[7]2]5]8][3]6]9]
Parent2‘1‘8‘3@9 4‘7‘5‘2] Temp.‘1‘8\3\6‘9‘4[:7:,’:]5‘7m

1ee1]8]36]9 145 72

Ofspring 1/ 16194 7]2[5[8]3)]

@ = dentifier)
Offsprng“‘2‘9‘4‘7‘5{8‘3‘6‘

In Figure 7.3, we have two parent tours represented by Parentl (P1) and Par-

ent2 (P2) respectively as:
P1:(149725836) and P2:(1 8369475 2).

Suppose that the cities between the 4th and 6th gene are selected as the subtour
in both P1 (7 2 5) and P2 (6 9 4), and we randomly selected city 9 in P2 as the
identifier 7. Hence, the position R of I in P1 is at the 3rd gene. By inserting the

subtour from P2 into P1 at the 3rd position, we get

Temp.:(1 46 9472583 6).

CHAPTER 7 225

Note that the resulting chromosome is infeasible as city 4 and city 6 appear
twice (i.e. visited twice in the tour). To deal with this infeasibility, city 4 and city
6 that previously appear in P1 are removed from the resulting chromosome. The
aim is to always preserve the cities in the subtour from the other parent. The

feasible chromosome is the new temporary offspring (TC1):
TC1: (16 947258 3).

By repeating the steps above (i.e. subtour of P1 (7 2 5), I = city 7 in P1, and
R =7 in P2), we have the second temporary offspring (TC2):

TC2:(183694725).

The whole process of generating two temporary offspring is repeated for r (in
this case r = 3) times to generate a candidate list of 2r temporary offspring. Then,
the best and a selected temporary offspring (in this case are TC1 and TC3) found
using the probabilistic binary tournament selection mechanism will be chosen to

be the new offspring for the current generation.

The advantage of randomly choosing a city within the subtour as the identifier
helps the crossover strategy to generate different offspring if the same parents and
subtour are selected again later in the process. For instance, suppose that the two
parents from Figure 7.3 are selected again for crossover, with a different identifier
selected within the same subtour (i.e. (6 9)) in Parent 2, we produce different
offspring:

— city 6 from Parent 2 as the identifier: Offspring: (1 4 7 2 5 8 3 6 9);
— city 9 from Parent 2 as the identifier: Offspring: (1 4 6 9 7 2 5 8 3).

CHAPTER 7 226

7.5.3 Swap

The swap operator used in the MXGA is based on the idea of a 3-Opt move as
described in Section 3.5.1.2. This operator is used to produce new offspring and
introduce more diversity into the population when the multicrossover operator

does not apply. This can be achieved by doing the following steps:

S 1: Select randomly 3 swap points in a parent.
S 2: Form 4 subtours which are separated by the swap points.

S 3: Swap the position of the 2nd and 3rd subtours to form a new offspring.

The steps above are repeated for the second parent to create a second offspring.
Figure 7.4 shows the resulting offspring after the swap operator has been applied

to a parent.

Figure 7.4: Swap

Parent: 1 61112913315 7412 8|10 5|14
wswap points —

Offspring:| 1| 6|15/ 7| 412 8|10/ 5 |11/2 |9 |13/3 14

Note that we do not reverse the sequence of the genes within the subtours.
It is considered that reversing the sequence of genes might produce deteriorating

results when the city with the shorter due date is visited later in the tour.

CHAPTER 7

7.5.4 Mutation

We use the Displacement Mutation (DM) operator proposed by Michalewicz [210]
(as described in Section 4.7) to mutate the offspring. First of all, a subset of
individuals from the new offspring population is selected with a given individual
mutation probability pys, where an offspring is selected for mutation if the random
number m, assigned to the offspring is less or equal to the indwidual mutation
probability (i.e. m < pp). Then the selected offspring will go through the DM.

The steps of the DM can be summarised as follows:

S 1: Select a subtour at random from the offspring.
S 2: Remove the subtour from the offspring.

S 3: Reinsert the subtour into the offspring at a randomly selected point.

For example, consider the offspring in Figure 7.5 and suppose that the subtour
(8 - 10 — 5) is selected. Let say we randomly select the 3rd gene to be the gene

after which the subtour is inserted. This results in a new offspring as in Figure

7.5.

Figure 7.5: Displacement Mutation

before mutation:| 1 | 15| 7|4 (12| 810 5/11|2 | 9 [13| 3|14

A\ N AN g

11 6|15 7, 412|112 |9 |13/ 3 |14 subtour:| 8 10| 5

insertion point

after mutation: |1 |6 |15 810/ 5/ 7|4 /12|11/2 |9 |13| 3|14

CHAPTER 7

7.6 Competitors - Performance Measure

7.6.1 Dynamic Length Tabu Search

In this subsection, we briefly describe the Tabu Search (T'S) used in the computa-
tional experiments. We use the TS developed by Knox [170]. Several modifications
have been considered to further enhance the efficiency of the algorithm. For in-
stance, Knox uses the 2-Opt (2-edge exchange) procedure as the inner heuristic
and a fixed tabu list length of 3n for the TS, where n is the number of cities to be
visited. On the other hand, we employ the 3-Opt (3-edge exchange) procedure as

the inner heuristic and a dynamic length of the tabu list for the algorithm.

The length of the tabu list is dynamically controlled during implementation
in order to achieve better solution quality. Such processes can have an important
influence on which moves are available to be selected at a given iteration. We
observe that a short tabu list is needed at the beginning of the run to allow the
search to fully exploit the neighbourhood. A longer tabu list is needed at the later

stage of the run to allow the search to explore the other region of the search space.

Since applying the 3-Opt procedure would result in a huge search space, we
use a neighbour list for each city to reduce the search space and improve the
speed of the algorithm while maintaining the solution quality. The neighbour list
implementation was proposed by Johnson and McGeoch [161]. The details of our
proposed Dynamic Length Tabu Search (DLTS) algorithm can be described as

follows.

Before the start of the algorithm, a neighbour list for each city 7 (¢ = 1,2,3,...,n),
which contains k (where k is a parameter, typically & = 20) nearest neighbours
in a non-decreasing order of their distance/cost ¢;;, for ¢ # j; j = 1,2,3,...,n
is generated. Two tabu lists (one for each of the bicriteria objective functions)
with size of [n/8] are initialised (which are empty at the beginning of the search).
However, throughout the implementation, the size of the tabu list is dynamically

controlled within the range of [n/8] to [n/6] via the following systematic proce-

CHAPTER 7 299

dure. Start with a tabu list length of [n/8]. Increase the length by 2 after 100

non-improving moves. Decrease the length by 2 once an improving move is found.

The idea of a dynamic length tabu list is inspired by Tsubakitani and Evans
1267] in their study to find an optimum size of the tabu list for STSP. We quote

the following statement from their paper:

“If the tabu list is too short, the TS may keep returning to the same local
optimum. This prevents the search process from exploring a wide area
of the solution space. In contrast, if the tabu list is too long, it results
in excessive computational time to search the tabu list to determine if
a move s tabu. Thus, a longer time spent going through a tabu list
provides less time for the procedure to explore in the solution space for
a given computational time Therefore, the tabu list size should be

as small as possible but long enough to allow the search to move away

from the local optimum.”

Based on their computational experiments, they recommend that the tabu list
size is in the range of [n/8] to [n/6] for TS using 3-Opt moves.

The search begins with a randomly constructed initial tour except city 1, which
is set to be the depot. At each iteration, a series of candidate 3-edge exchanges
is evaluated and the best exchange candidate ey, is identified and accepted as
the new tour. An exchange candidate e, is one which is either not tabu or is
able to override the tabu status by producing a new tour whose total tour length
or maximum lateness (depending on the objective functions) is lower than the

aspiration criterion value.

It is worth mentioning that, this implementation does not perform an exhaus-
tive evaluation of all 3-edge exchange candidates on each iteration of the search.
Instead, the neighbour list described earlier is used during the edge exchange pro-
cedure. Furthermore, the candidates for city 7 + 1 are also subject to the due date

constraint where the due date of city 1+ 1 has to be greater than or equal to that of

CHAPTER 7 230

city 7. The logic is that travelling from city ¢ to city 141 with the shortest distance
helps to reduce the total tour length and visiting cities in a non-decreasing order

of their due date helps to reduce the maximum lateness.

We employ the same updating procedures suggested by Knox [170] for the tabu
list and aspiration criterion. Note that Knox [170] employs the 2-edge exchange
procedure as the inner heuristic. Thus, only two dropped edges are considered
during updating procedures. In DLTS, the information recorded on the tabu lists
consists of the three dropped edges of a 3-edge exchange candidate. The added
edges are not recorded on the tabu lists. In other words, updating a tabu list
involves placing the deleted edges of the 3-edge exchange on the list. If the list
is full, the oldest elements of the tabu list are replaced by the new deleted edges
information. An exchange candidate is classified as tabu only if all three added
edges of the exchange are on the tabu lists. If one or more added edges are
not on the tabu lists, then the candidate move is not classified as tabu. The
value recorded on the aspiration criterion is the total tour length or the maximum
lateness (depending on the objective functions) which exists prior to making the
candidate exchange. The aspiration value associated with the three dropped edges

of an exchange is the only one updated.

In order to find a good balance between the trade-off of the objective functions
(i.e. customers’ satisfaction and salesman’s routing efficiency), we alternate the
objective functions during the search in every I iterations the relevant tabu list

and aspiration criterion.

7.6.2 Randomised Steepest Descent Method

The Randomised Steepest Descent Method (RSDM) we employed in the compu-
tational experiments has a similar framework (i.e. 3-Opt exchange and neighbour
list) as in the DLTS. The main differences are: instead of using the tabu lists and
the aspiration criterion to ezplore and ezploit the search space in DLTS, we use

the acceptance rule and randomisation to search the solution space in RSDM.

CHAPTER 7 231

The acceptance rule we employ allows neutral moves of up to R consecutive
iterations (where R is a parameter, e.g. 1000) before terminating the algorithm.
This gives the algorithm more chance to ezplore and exploit the search space. We
also introduce a randomisation strategy into the algorithm when there are multiple
identical good tours, either improving or neutral moves, found in a single iteration.
In order to prevent the tour from falling into the same local optimum, a move is

randomly selected from the list of identical tours to be the new current tour.

Note that deteriorating moves are not allowed in RSDM. In other words, the
algorithm will terminate once the best tour found at the end of the current iteration
is worse than the best tour found so far. As in DLTS, we alternate the objective

functions during the search every I iterations.

7.7 Computational Experience

In this section, we report on computational results of our proposed local search
algorithms. Having explained the experimental design for the computational ex-
periments, we present the performance effect of the swap and mutation operators
in our proposed MXGA in solving a series of test problems from literature for the

standard Symmetric Travelling Salesman Problem (STSP).

We complete this section by presenting the extensive computational results
for different local search algorithms proposed in the previous sections for solving
the symmetric version of TSPDD, based on the objective functions discussed in

Section 7.3.

7.7.1 Experimental Design

All the reported computational results are generated on a Pentium IV 2.0GHz
PC with 512 Mb memory. The algorithms are coded in ANSI-C using Microsoft
Visual C++ 6.0 as the compiler. The problem instances used are from the TSPLIB

CHAPTER 7 232

1266], with the number of cities varying from 17 to 200. We adopt the following

abbreviations for the remaining subsections:

Trnin : Minimum Tour Length

Liax : Maximum Lateness

SGA : Standard Genetic Algorithm

MXGA : MultiCrossover Genetic Algorithm
MXGA;: MXGA for STSP

DLTS : Dynamic Length Tabu Search
RSDM : Randomised Steepest Descent Method

We compare the performance of the various local search algorithms on the basis
of the following statistics:

— Minimum Relative Percentage Deviation:

UBfpin,_,, . —OPT .
Toin : MRDp = miin _OPT x 100% » . (7.6)
UB L 12, K LBr e |
Liax : MRDp = min e x 100% p . (7.7)
1 LBLmax
— Average Relative Percentage Deviation:
K
Tonin : ARDp = Z:“}—(l, where D, = d IOlPT x 100%. (7.8)
K
! E’L UB max; - LB max 3
Loy : ARDp = Z;—(l where B, = ——~ LE?LW fmes 100%. (7.9)

The variables used in the above equations take the following values:
- K = total number of repeated runs for each problem instance using different
starting solution(s). In this case, K = 10.
- UBr,,,. = heuristic solution found in 4-th run for Tiy,.
— UBLmXi = heuristic solution found in 4-th run for L .«.
- LB, = lower bound of the L, for the problem instance.
— OPT = optimal solution of the problem instance with respect to the tour length
(as given in TSPLIB [266]).
The due date d;, of city 7 is generated based on the idea of Solomon [258] in

generating the center of the time windows for the vehicle routing problem with

CHAPTER 7 233

time windows. He uses the interval (e; + t1;, {1 — t;1 — ;) as the center of the time
windows where the variables take the following values:
— e and [; = earliest and latest bound of the time windows for the depot,
— ty; and ¢;; = travel time from depot to city 7 and vice versa, and
— §; = service time in city 7.

As mentioned in Section 7.3, the depot (i.e. city 1) does not has a time window
nor due date. For simplicity, we assume e; = 1 and [, = OPT. Note that
cij = ti for 4,7 € n, and there is no service time in the cities. Hence, the

integer due date of the city 4, d;, is generated from the uniform distribution of

(b5, OPT — ty].

The specific values for the generic design variables in MXGA, SGA, DLTS,
and RSDM are summarised in Table 7.1 and 7.2 respectively. Initial computational
experiments are performed to determine the size of the candidate list of temporary

offspring. Five values of r (r = 3,5,7,9,10) are tested and results show that r =5

gives the best result within a reasonable computation time.

Table 7.1: Implementation of generic design variables for MXGA and SGA

variable value
crossover rate, p. 0.75
multicrossover, 7 (MXGA and MXGA; only) | 5 (= 10 temporary offspring)
individual mutation rate, pas 0.25
filtration rate, ¥ (MXGA and MXGA; only) | every 50 generations
selection mechanism probabilistic binary tournament
chromosome length, L number of cities
population size, N 100
alternating the objective functions, G every 100 generations

Table 7.2: Implementation of generic design variables for DLTS and RSDM
variable value

neighbour list, & 20
alternating the objective functions, I 100
max. number of consecutive neutral move allowed per run, R (RSDM only) | 1000

CHAPTER 7 234
7.7.2 Initial Investigation of MultiCrossover Genetic Al-

gorithm

In this subsection, we report on computational results of the proposed MXGA
for solving the standard STSP. This problem variant does not includes due dates
to the cities. In other words, the only objective function to be considered is the
minimum tour length of visiting each city exactly once. We believe that the results
obtained from these experiments will give good indications on the performance of
the MXGA. For the initial development, we consider only 15 problem instances
containing between 17 and 100 cities, taken from the TSPLIB [266]. For each test
problem, a total of 10 runs are performed to obtain an average value. A duration
of maximum of 20000 generations per run are performed. Note that, the execution
in each run of the MXGA, is halted as soon as the OPT for the problem instance is
found, or when 1000 consecutive non-improving generations have been generated.
By doing this, we can reduce the computation time spent on the execution of
the algorithms. The logic is that, if an algorithm fails to improve the solution
quality after a certain number of generations, the population is considered to
have converged to a local optimum. Further exploration and exploitation on the
search space are unlikely to improve the solution quality. Note that the average

computation time for each problem instance is not reported in Table 7.3 and 7.4.

We incorporate the swap operator in the MXGA, instead of the reproduction
procedure when the multicrossover operator does not apply to the selected parents.
Table 7.3 examines the effect of that on solution quality for the proposed MXGA,.
The first column of Table 7.3 lists the names of the TSPLIB instances considered,
where the number indicates the number of cities. The second column gives the
optimal solution of the problem instances. The following two pairs of columns
refer to the results obtained by the MXGA, for cases with and without the swap
operator respectively. For each algorithm, the entries in the first column report the
minimum relative percentage deviation (equation (7.6)) of the tour length while

the second column gives the average relative percentage deviation (equation (7.8))

CHAPTER 7 235

of the tour length. The final line of Table 7.3 gives the overall average value over
all test problems.

We first observe that the swap procedure yields better results in the MXGA,
compared to the algorithm without the procedure. Of the 15 problems tested,
the MXGA, with the swap operator finds optimal solutions for six problems at
least once in 10 runs, compared to five problems for MXGA, without the swap
operator. As the values indicate, we believed that the swap operator procedure is
able to help the algorithm to further explore the search space although a slightly
longer computation time is required. Consequently, the swap operator is used in

the proposed MXGA.

Table 7.3: Results of MXGA; (with and without Swap) (maximum of 20000 gen-

erations per run %)

MXGA,;
TSPLIB with Swap without Swap
Data Set | OPT | MRDy | ARDy | MRDy | ARDr
grl7 2085 0.00 0.71 0.00 1.74
gr2l 2707 0.00 0.00 0.00 0.07
gr24 1272 0.00 1.01 0.00 1.21
fri26 937 0.00 0.00 0.00 0.64
bays29 2020 0.00 1.36 0.00 3.54
dantzigd? 699 0.00 0.00 0.14 3.35
swiss42 1273 0.67 4.41 1.01 6.21
att48 | 10628 1.11 5.04 1.11 4.73
gra8 5046 1.34 5.83 2.11 8.02
hk48 | 11461 1.15 4.88 1.89 5.70
eil51 426 1.50 4.42 2.03 5.44
berlin52 7542 1.34 4.37 3.21 6.51
st70 675 2.96 8.61 5.48 10.81
pr76 | 108159 0.77 6.33 2.54 8.87
kroA100 | 21282 2.63 8.00 4.67 10.27
Average 0.90 3.66 1.61 5.14

@ stopping criterion: 1000 consecutive non-improving generations or optimal solution is found.

In the next experiment, we will investigate the impact of the mutation operator
in the MXGA,. It has been suggested that the mutation operator might deteriorate
the solution quality by randomly inserting the cities into the tour. To analyse
this, a MXGA, has been applied without using the mutation operator. Note
that the swap operator is used in the MXGA; for both cases (with and without

CHAPTER 7 236

mutation operator). Table 7.4 summarises the computational experiments of these
experiments. The table gives the same information for the first two columns as
in Table 7.3. The following two pairs of columns refer to the results obtained by

the MXGA, for the cases of with and without the mutation operators respectively.

Table 7.4: Results of MXGA; (with and without Mutation) (maximum of 20000

generations per run °)

MXGA;
TSPLIB with Mutation without Mutation
Data Set | OPT | MRDy | ARDy | MRDr | ARDr
grl? 2085 0.00 0.00 0.00 0.48
gr2l 2707 0.00 0.00 0.00 0.00
gr24 1272 0.00 0.00 0.00 0.94
fri26 937 0.00 0.00 0.00 0.00
bays29 2020 0.00 0.79 0.00 1.47
dantzigd?2 699 0.00 0.00 0.00 0.00
swiss4?2 1273 0.00 3.97 0.84 4.23
att48 10628 0.56 3.11 1.11 5.11
grd8 5046 0.00 3.06 1.23 5.79
hk48 11461 0.00 4.46 1.43 4.95
eil51 426 0.23 1.81 1.41 4.32
berlin52 7542 0.00 3.89 1.05 4.24
st70 675 0.74 4.56 3.05 8.54
pr76 | 108159 0.65 4.81 0.79 6.54
kroA100 21282 0.45 5.77 2.79 7.51
f Average 0.18 | 2.42 0.91 3.61

b stopping criterion: 1000 consecutive non-improving generations or optimal solution is found.

Our first observation from Table 7.4 is that the results achieved by the MXGA,
with the mutation operator clearly outperform the MXGA, without the mutation
operator. Of 15 problems tested, the MXGA, with mutation operator finds op-
timal solutions of 10 problems at least once in 10 runs while the remaining five
problems of near optimal solutions (i.e less than 1% over the optimal). As in the
previous experiment, the MXGA, with mutation operator requires slightly longer
computation time compared to the MXGA, without mutation operator. Thus, the
mutation operator is used in the proposed MXGA. Consequently, this final version

of the MXGA is used in the comparative tests in next subsection.

CHAPTER 7 237

7.7.3 A Comparison of different Local Search Algorithms

In this subsection, we present the results of an extensive computational experiment
that compare our proposed MXGA with the Standard GA (SGA), DLTS and
RSDM described in the previous sections. The differences between the MXGA and
SGA are with regards to the use of the subtour crossover operator, reproduction
procedure and the replacement scheme. The SGA applies the subtour crossover
operator to produce two offspring from two selected parents. In the case of SGA,
the steps explained in Section 7.5.2 are used only once (i.e. r = 1) to generate
exactly two offspring. The SGA uses the reproduction procedure instead of a
swap operator when the crossover does not apply to the selected parents. The

replacement strategy employ in the SGA is the steady-state replacement strategy.

For this final experiment, we use 29 problem instances containing between
51 and 200 cities, taken from the TSPLIB [266]. All the problem instances use
a format of ‘EUC_2D’ for the distance between the cities. EUC_2D means the
edge of a pair of cities is an Euclidean distance in two-dimensional. The choice
is made due to the limitation of the Windows version of the Concorde software
[57] in obtaining the optimal tour length which is then used in the calculation of
the lower bound of maximum lateness in Section 7.4. This Windows version of

software is constrained by the format of the distance between the cities.

For each test problem, a total of 10 runs are performed to obtain an average
value. In order to have a fair comparison between the different algorithms in this
experiments, we employ the stopping criterion of 300 CPU seconds (5 minutes)
per run for problem instances with 100 cities or less, and 600 CPU seconds (10

minutes) per run for problem instances with cities between 101 and 200.

Recall that, we optimise the bicriteria objective function of the problem by
alternating between optimising each of the objective function discussed in Section
7.3, through a hierarchical optimisation approach in every [iterations (in this
case = 100) for DLTS and RSDM, and G generations (in this case = 100) for
MXGA and SGA. By alternating the objective functions during the execution of

CHAPTER 7 238

the algorithms, we are actually trying to solve the problem using a simultaneous
optimisation approach. Under this approach, both objective functions are treated
as equally important. As a result, a set of Pareto optimal solutions consisting
of both objective functions is obtained, where a trade-off curve and an efficient
frontier for the problem can be formed. Note that the trade-off curve and the

efficient frontier are equal only if the trade-off curve is convex.

It is worth mentioning that there is no suitable way of constructing a single
composite objective function to represent the bicriteria objective function of the
problem. This is due to the incomparability of the unit used (i.e. time, tour length)
in both performance criteria which result in the computationally inaccessibility for

optimising the single composite objective function in a direct manner.

In this section, we present only the results of the two extreme points of the
efficient frontier. The computational results of the first and second objective func-
tions are presented in Table 7.5 and Table 7.6 respectively. The first column in
both tables lists the names of the TSPLIB instances considered, where the num-
ber indicates the number of cities. For each algorithm, the entries in the first
two columns report the minimum relative percentage deviation (equation (7.6))
and the average relative percentage deviation (equation (7.8)) of the tour length
respectively. The next two columns report the minimum relative percentage de-
viation (equation (7.7)) and the average relative percentage deviation (equation
(7.9)) of the maximum lateness respectively. The final line of each table gives the

overall average value over all test problems.

By considering the overall average value found over all test problems in both
Table 7.5 and Table 7.6, the MXGA achieved better results compared to SGA,
DLTS and RSDM. However, a one-to-one comparison on the test problems shows
that the MXGA achieved a mixed degree of success compared to DLTS and RSDM.
Note that, the results obtained for L. in both tables are less impressive in all
cases. This might be due to the simple lower bound derived previously. Hence, a
better lower bound is needed to further justify the quality of the results. We also

noticed that both DLTS and RSDM obtained similar results in most of the test

CHAPTER 7 239

problems. This suggests that the randomisation used in the RSDM might have
the same effectiveness as the tabu list in DLTS. The problem instances with prefix
“pr” appear to be difficult to solve using DLTS and RSDM compared to MXGA
and SGA.

The results of SGA in Table 7.5 appear comparable with both the DLTS and
RSDM algorithms in most of the test problems, especially in finding the minimum
tour length. However, SGA failed to compete with the other algorithms when
the second objective is considered (in Table 7.6). Based on the computational
results, we can conclude that a good balance between the trade-off of the maximum
lateness and the minimum tour length is very difficult to achieve within a limited

computation time.

‘00z Pue T0T usemiaq SoIpo Uilm sovuejsul wajqold 10 uni 1ed spuodas 40D 009

uotel1o Jurddos

"s88] 10 s8I 001 Yl seoueisul welqoid 1o uni ed spuovss NJD 00g

5GA MXGA DLTS RSDM
TSPLIB Tmin Lmax Tmin Lmax Tmin Lmax Tmin Lmax
Data Set MRDy| ARDy| MRDp| ARDL| MRDy| ARDy| MRDr| ARD,|| MRDy| ARD7] MRD.| ARD, MRDyp| ARDr| MRDp| ARDp
eil51 15.82 17.57 61.33 70.11 15.59 19.10 45.74 51.19 20.85 23.35 52.41 62.95 17.04 17.77 44.29 47.29
berlin52 17.06 25.07 58.76 77.44 19.43 22.04 44.51 53.72 22.19 25.58 52.28 69.13 18.36 21.15 42.78 47.28
st70 26.07 28.10 85.10 106.00 22.13 27.41 69.37 80.02 25.27 29.66 70.21 81.77 23.05 24.80 66.78 70.62
€il76 19.29 27.13 110.81 140.96 23.75 25.23 81.77 94.45 22.42 26.25 79.76 92.96 20.19 22.24 71.46 79.48
pr76 13.50 18.86 40.69 52.24 10.32 14.17 31.92 37.74 21.39 27.95 37.28 59.08 16.28 21.60 28.62 43.67
rat99 28.93 35.35 121.88 144.91 20.38 22.70 82.44 96.95 29.48 31.80 88.63 98.10 26.36 29.29 85.05 90.78
kroA100 28.90 34.02 87.88 107.86 24.28 25.53 68.29 79.67 33.39 36.84 66.36 78.67 31.54 34.00 61.85 68.45
kroB100 33.55 37.14 112.00 132.07 18.55 22.19 67.98 81.50 26.59 32.83 63.81 73.23 25.21 29.37 61.71 67.25
kroC100 24.60 36.67 88.69 117.20 17.21 25.46 70.63 80.98 32.94 38.58 60.57 73.61 33.72 36.49 59.37 68.33
kroD100 26.71 41.00 99.60 120.32 22.28 24.92 73.86 82.12 33.28 39.41 64.56 78.54 33.87 35.61 65.11 72.23
kroE100 32.04 33.56 116.62 139.18 28.71 32.28 83.82 97.58 27.21 32.92 76.90 89.53 26.39 30.73 71.83 80.97
rd100 30.47 34.53 110.04 130.26 20.09 22.26 76.97 90.30 29.84 32.42 67.28 78.05 25.72 29.39 60.70 69.93
€ill01 27.31 31.32 109.12 125.69 18.60 20.83 75.67 88.38 26.10 29.01 64.42 75.20 20.76 25.15 61.22 67.65
lin105 24.15 36.56 87.92 111.08 18.03 24.24 71.16 79.94 35.27 39.30 65.54 79.23 30.26 34.55 64.92 71.70
prl07 21.01 33.87 65.40 102.48 16.59 18.83 50.49 61.31 24.03 32.31 52,02 89.16 29.21 44.62 59.60 113.29
prl24 30.70 46.86 93.86 123.78 15.61 22.82 65.60 75.26 35.92 55.71 65.84 115.46 41.26 68.52 77.99 128.78
bierl27 24.70 29.66 44.21 55.71 12.61 15.50 25.17 31.02 13.19 21.75 25.07 32.54 13.77 21.08 32.77 41.29
ch130 36.21 40.82 108.82 129.91 15.51 24.07 73.45 86.16 27.86 33.66 56.67 66.73 28.50 31.76 54.59 61.99
prl36 30.99 36.25 77.60 89.20 13.63 17.73 49.54 56.61 24.03 36.16 59.18 91.51 46.18 65.22 81.29 138.57
prld44 33.11 48.76 78.52 104.97 22.52 24.85 53.77 61.37 63.69 96.19 138.68 201.26 101.71 143.41 192.88 280.18
ch150 38.73 49.30 135.71 160.78 23.04 26.94 93.20 103.58 35.15 38.37 75.87 83.30 32.78 35.53 71.37 78.75
kroA150 46.22 49.16 115.34 138,05 26.53 28.39 77.29 89.36 36.99 40.80 59.09 68.29 36.60 40.52 61.59 68.18
kroB150 39.48 48.86 132.88 161.65 24.88 27.47 90.07 102.78 37.04 39.28 72.96 83.20 37.65 38.89 73.73 81.90
prl52 27.49 42.56 90.64 116.00 18.30 20.63 62.55 75.84 38.88 59.99 88.34 147.74 51.10 92.39 136.75 218.27
ul59 42.72 52.60 118.26 145.43 21.14 19.75 63.16 72.72 29.99 36.18 56.51 67.86 28.56 35.39 55.66 65.35
ratl95 57.80 66.11 230.26 257.20 39.78 36.94 148.91 165.52 34.27 37.27 107.60 120.11 31.18 36.04 107.21 118.40
d198 31.58 39.49 120.53 143.26 26.26 22.64 85.91 97.41 26.05 30.75 61.51 69.84 25.10 29.60 56.79 67.49
kroA200 58.20 64.99 161.84 187.91 34.80 38.40 106.44 121.09 36.81 40.68 69.73 75.50 36.76 40.67 66.51 76.18
kroB200 55.61 69.62 164.15 196.39 37.87 37.17 104.32 116.10 37.92 39.84 70.99 79.83 35.40 39.04 71.44 78.22
AVERAGE | 3183 | 39.85 | 104.43 | 127.17 || 21.67 | 24.50 | 7221 [8313 [[30.62 | 37.41 | 67.93 | 8560 " 3188 | sos2 | 7055 | ss36 |

I Jo 2A130a[(0 ATRpU008s ® 1Im *¥W T aSTIIuiuI (Uory

STt

(y38uer 1nog 18107 8Y1 Su

) MALAVHD

-OUnJ 2A1199[qo) , SWYIIOSTY YoIeag (8207 JuaIai(] Jo uostreduo)) v :G) 9[qe],

0ve

‘007 pue TQ1 Ueamiaq S813Id Y3lm ssduejsul wslqold 10j uni ted spuodss NdD 009

uoleyt1d Surddogs

*§89] 10 S9131D (0T YIlm seouejsutl wejqold 107 uni tod spuodss 4D OOE

5GA MXGA DLTS RSDM
TSPLIB Trmin Lmax Tmin Limax Timin Limax Tmin Lmax
Data Set MRDy| ARDy| MRDp| ARD.;|| MRDy| ARDy| MRD,| ARD. | MRD4| ARDq] MRD| ARDL| MRDy| ARDy| MRD,| ARD[
eil51 4.37 7.85 96.10 101.43 1.17 2.54 128.69 116.21 2.44 5.77 140.17 121.50 0.52 1.08 124.93 121.70
berlin52 8.44 14.75 98.71 112.99 0.06 3.79 109.95 117.50 4.04 9.03 117.09 129.09 0.63 1.72 115.65 116.66
st70 8.59 17.16 134.48 134.63 2.31 4.59 127.18 136.14 3.35 6.83 139.29 147.92 1.54 3.11 132.91 138.93
eil786 12.53 19.16 154.59 181.73 2.57 5.27 163.84 168.61 3.98 6.13 181.43 171.98 1.34 3.12 172.48 183.73
pr76 6.80 13.09 52.96 60.06 1.17 4.24 50.08 55.65 12.57 17.88 49.43 71.61 5.05 11.70 45.71 60.01
rat99 19.54 28.82 138.92 175.58 6.87 10.03 158.35 165.14 6.00 8.46 159.38 160.94 3.67 5.53 154.72 155.49
kroA100 13.77 24.25 111.87 131.07 2.43 5.98 115.12 117.84 4.52 9.23 119.23 126.01 4.06 6.55 114.11 122.79
kroB100 19.93 29.20 138.60 156.75 4.15 7.38 122.16 134.22 3.68 6.99 130.48 131.85 3.14 1.89 122.70 125.76
kroC100 19.53 28.93 123.42 129.89 1.79 8.14 105.21 118.09 4.92 9.49 112.46 124.33 5.05 7.63 115.16 118.81
kroI>100 18.64 29.08 109.20 134.99 3.89 7.67 120.92 122.48 4.07 8.77 117.66 125.62 3.63 6.02 119.12 123.69
kroE100 18.07 27.52 150.11 164.06 3.19 7.14 151.33 150.32 3.41 6.81 142.47 148.62 3.26 4.90 138.49 144.45
rd 100 17.78 27.34 131.15 147.99 2.97 8.34 135.10 132.48 2.56 6.43 119.61 131.32 1.07 3.11 121.52 122.59
eil101 20.76 26.40 135.30 155.02 4.96 7.83 137.11 145.04 5.06 7.70 138.53 143.10 3.72 5.26 125.59 137.54
lin105 17.39 29.69 98.48 127.89 8.80 13.02 102.90 104.66 5.77 11.27 90.07 107.98 4.21 7.98 99.65 105.05
prl0o7 14.63 27.14 94.23 121.38 4.94 9.96 69.19 83.48 9.59 16.11 105.24 120.90 13.23 27.48 130.81 138.98
prl24 26.05 42.21 108.15 133.17 7.90 13.78 79.79 90.44 19.62 35.95 83.22 144.59 19.55 45.37 95.79 148.06
bierl27 19.79 27.29 51.35 61.33 5.35 9.49 40.71 48.78 3.93 9.21 34.96 39.79 7.56 15.24 39.21 51.98
ch130 28.14 36.59 140.19 150.57 10.48 14.24 109.23 114.63 4.69 6.90 108.67 115.07 3.00 4.76 100.75 112.26
pri36 24.54 33.36 85.24 97.84 5.39 10.56 69.93 73.64 12.95 27.55 99.19 109.58 29.61 58.17 99.53 154.60
prld4 28.55 42.89 84.97 115.67 7.75 12.81 68.15 71.67 52.47 89.04 202.43 224.44 71.66 134.32 243.45 294.08
ch150 33.91 44.41 145.60 181.10 12.32 19.02 152.16 168.80 5.70 8.20 128.55 140.03 4.39 6.21 135.46 136.86
kroA150 34.45 44.24 146.42 149.52 11.31 17.01 96.64 109.66 6.61 9.89 102.69 109.97 7.04 9.93 101.85 109.11
kroB150 30.14 43.95 161.05 182.24 12.51 17.70 131.54 133.49 7.16 10.01 115.77 130.13 7.48 10.08 118.56 132.79
pr152 21.98 37.97 111.33 126.65 8.55 14.58 80.58 86.54 29.27 50.16 155.07 182.43 37.94 86.20 182.62 233.07
uls9 36.51 48.57 147.10 157.31 6.75 11.69 83.81 87.31 4.43 9.24 99.16 105.92 4.04 8.11 90.03 101.75
rat195 51.39 62.07 254.20 282.43 24.91 28.65 195.64 200.17 6.49 10.22 173.80 182.95 7.33 9.60 175.64 182.43
d198 26.34 35.52 130.87 156.89 12.02 16.03 101.11 112.59 3.65 5.43 106.99 109.62 4.20 6.06 107.71 111.53
kroA200 52.64 61.84 192.82 199.99 23.68 29.43 129.08 140.49 6.19 8.80 118.01 120.95 7.26 9.23 118.49 120.82
kroB200 52.47 66.56 185.28 209.16 23.07 27.60 132.33 136.44 7.30 10.27 115.91 120.84 7.13 9.77 119.39 118.43
[AVERAGE | 23.71 | 33.72 | 128.02 | 146.18 H 7.70 | 12.02 | 112.68 | 118.71 H 8.50 | 14.75 ‘ 120.93 | 131.00 | 9.39 | 17.69 | 122.83 | 135.30 |

(x*em,]

Surstiura Jo ea1109(qo Arepuooes ® UYim [SUS[INO7 [BJ0] oY} OSIWIUIUL UOI}

-ouny 9A1198(qo) , SWYILIOS]Y oIeag [0 JUaILdLJ Jo uostredwo)) Y :9°/ o[qel,

L dALAVHD

17ve

CHAPTER 7 242

7.8 Conclusions and Remarks

In this chapter, the variants of the Time Constraint Travelling Salesman Problem
(TCTSP) are studied. A new variant of TCTSP, called the Travelling Salesman
Problem with Due Dates (TSPDD) is introduced, where each city to be visited has
a due date. The objective is to find an ordering of the cities that starts and ends
at the depot which minimises the maximum lateness and the total tour length of

the cities. A lower bound of the maximum lateness to the problem is also proposed

in this chapter.

A MultiCrossover Genetic Algorithm (MXGA) has been proposed to solve the
TSPDD in this chapter. Various techniques have been introduced into the pro-
posed MXGA to further enhanced the solutions quality. The computational re-
sults presented for several symmetric version of TSP instances have shown that

the MXGA 1is able to produce high quality solutions.

A tabu search which dynamically control the length of the tabu list during the
execution and a neighbour list of visiting the nearest cities is developed for the
problem. A randomised steepest descent method is also developed. It randomly
selects a tour when there are multiple identical good tours found in a single it-
eration. Extensive computational experiments have been carried out to solve the
TSPDD. Comparative results show that the MXGA achieved better solution qual-
ity compared to a standard genetic algorithm, dynamic length tabu search and
randomised steepest descent method. However, the results obtained in minimising

the maximum lateness are less impressive.

There are several issues for future research. First, a better lower bound of the
maximum lateness could be derived. Secondly, it would be interesting to inves-
tigate the performance of the local search algorithms on other TCTSP. Thirdly,
further tests of the algorithms on other possibly more complex TSP instances are
required to provide a detailed assessment of the merits of the proposed algorithms.

For instance, different range of city due dates sets could be considered.

Chapter 8

Conclusions and Further Research

Throughout this thesis, we have considered the developments of a general frame-
work for MultiCrossover Genetic Algorithms (MXGAs) for three specific variants
of Combinatorial Optimisation Problems (COPs) and successfully applied the pro-
posed MXGASs to each of the problems. We demonstrated that the proposed ap-
proach is general enough to be applicable to a diverse range of problems from the
Single Machine Family Scheduling Problem (SMFSP) with family setup times to
the Symmetric Travelling Salesman Problem with due dates (STSPDD). In this
last chapter, we summarise the research conducted and discuss the prospects for

future research on the subject.

8.1 Summaries of Research Conducted

The problems we studied are mainly motivated by the dilemma faced by manu-
facturing organisations which involves the trade-off between the manufacturer’s
efficiency and customers’ satisfaction. By including the customers’ due dates into
the standard problems, we have created some new NP-hard problems which have

these due dates as a common theme.

One of the main objectives of this research is to develop a general framework for

the MXGA (Section 4.9) for solving the problems. The proposed MXGA utilises a

243

CHAPTER 8 244

multicrosover operator that uses a simple yet effective standard crossover operator
as the crossover strategy to generate offspring. Every time the proposed crossover
strategy is executed, two temporary offspring are generated from the selected par-
ents. The main feature of the multicrossover is that it first generates a candidate
list of valid temporary offspring from a pair of selected parents through repeated
applications of the proposed crossover strategy. Then, the best and a selected
temporary offspring (using the probabilistic binary tournament selection mech-
anism) are chosen to be the offspring for the current generation. Furthermore,
various operators such as swap and filtration techniques have been introduced into
the MXGA to further enhance the solution quality. The efficiency of the MXGA
developed in the thesis is measured through a comparison with other local search
methods such as tabu search (TS) and a steepest descent method (SDM) using the
same problem instances. Since the problems are NP-hard, the optimal solutions
are not known. The next best form of validation of the algorithm is to compare

the results with lower bounds.

The implementation of the MXGA starts in Chapter 5 with the SMFSP with
family setup times. The objective is to find a schedule which minimises the maxi-
mum lateness of the jobs in the presence of the sequence independent family setup
times. To the best of our knowledge, no research has been carried out on the
application of a genetic algorithm (GA) for this specific problem. The proposed
MXGA is developed using binary representation and uses the standard 1-point or
F-point crossover operator (where F' defines the total number of families in the

schedule) as the crossover strategy to produce temporary offspring.

The performance of the MXGA is compared with an improved TS and SDM.
A tabu search with a dynamic length tabu list (DLTS) is designed for the problem
using the shift job neighbourhood (as explained in Section 5.5). The tabu list
length is dynamically controlled during implementation in order to achieve better
solution quality. Such a process has an important influence on which moves are
available to be selected at a given iteration. An aspiration criterion is also intro-

duced to prevent the occasional loss of good solutions due to the tabu list. In our

CHAPTER 8 245

SDM, we considered a randomisation strategy when there are multiple identical
good solutions (i.e. improving and neutral moves) found in a single iteration. A
move is selected randomly from the list of the identical good solutions. We be-
lieved this strategy helps the search to escape from a local optimum and continue
its search in other ‘interesting’ regions of the search space. FExtensive computa-
tional results show that the proposed MXGA performs better compared than the
other local search methods, and in particularly significantly improves the solution

quality compared to a standard GA (SGA).

In Chapter 6, we first studied the non-oriented Two-Dimensional Rectangular
Single Bin Size Bin Packing Problem (2DRSBSBPP) and successfully developed
a heuristic placement routine, called Lowest Gap Fill (LGF'), that is effective in
filling the gaps in a partial layout by dynamically selecting the best rectangle
for placement. The LGF requires only O(n?) time (where n is the number of
rectangles) during the packing stage. Promising results have been achieved (as in
Table 6.4 and 6.5) and it is comparable with other higher complexity placement
routines such as Floor Ceiling and Touching Perimeter (both routines have time
complexity of O(n?)).

We extended the problem by including a positive integer due date for each
rectangle and a fixed processing time for the bins used. Hence, a new variant of
the problem emerged and we referred to it as 2DRSBSBPP with due dates. The
objective is to minimise the maximum lateness of the rectangles by packing them,
without overlap, and minimising the number of bins. This new problem variant
has practical industrial applications such as in the wood and metal industries.
Section 6.4 explains in detail the problem to be solved. Since the optimal solution
is not known, we derived a simple lower bound on the maximum lateness for the

problem.

The MXGA proposed for both standard and extended 2DRSBSBPP are based
on the general framework discussed in Section 4.9. An integer permutation repre-
sentation is used where each gene indicates the bin number, in which the rectangles

are placed into the bin. We used the standard 1-point or 2-point crossover operator

CHAPTER 8 246

as the crossover strategy to produce two temporary offspring. The performance of
the MXGA is compared with the Unified Tabu Search (UTS) developed by Lodi
et al. [194] and a Randomised Descent Method (RDM) which uses a similar frame-
work as in the UTS. All the local search algorithms use the LGF as the placement
routine. Although the MXGA significantly outperforms the SGA and RDM in

the extensive computational experiments, it achieves a mixed degrees of success

compared to UTS.

The STSPDD is the main focus of Chapter 7. This is a new variant of the
time-constrained TSP where each city has a due date by which it should ideally
be visited. The objective is to minimise the maximum lateness and the total
tour length of the cities to be visited. This extension has important practical
applications in banks or postal deliveries, scheduling deliveries, etc. The proposed
MXGA uses a path representation and subtour crossover operator. The proposed
crossover strategy generates two temporary offspring through a process that inserts

a subtour, from one parent to the other parent.

The performance of the MXGA is compared with a DLTS and RSDM. Both
DLTS and RSDM use a 3-Opt move as the inner heuristic. Since applying the
3-Opt procedure would result in a huge search space, a neighbour list for each city
1s introduced to reduce the search space and increase the speedup of the algorithms
while maintaining the solution quality. A neighbour list of a city is a list which
contains a group of nearest neighbours from the city in a non-decreasing order of
their distance. Comparative results show that the MXGA achieves better solution
quality compared to the SGA, DLTS and RSDM. However, the results obtained
in minimising the maximum lateness are less impressive for all the local search

algorithms.

Unfortunately, the lack of suitable lower bounds for the maximum lateness
makes it difficult to decide whether the solutions obtained from the proposed
MXGAs and other local search methods in the previous problems are in fact of

high quality. This could be the subject of future further research efforts.

CHAPTER § 247

8.2 Further Research

Our work has left some open ends, both theoretical and computational. The use
of local search algorithms to tackle any kind of COPs is always an endless source
for research. More classical local search algorithms such as simulated annealing,
scatter search, variable neighbourhood search or ant colony optimisation could be
implemented to further justify the merit of our proposed MXGAs in solving the
problems. Further extensive computational tests of the MXGAs on other possibly
more complex problem instances may also be required to provide a detailed as-
sessment of the merits of the proposed algorithms. For instance, different ranges

of customers’ due dates sets could be considered.

Furthermore, it would be interesting to investigate the performance of the
proposed MXGAs on other optimality criteria for the problems studied. For in-
stance, the development of MXGAs for other optimality criterion such as minimis-
ing the total (weighted) tardiness/earliness in SMFSP, other cutting and packing
problems such as open dimension problem and stock cutting problem, and other

time-constrained TSP such as the TSP with time windows are worthy of future

research.

The next issue that comes to mind is computing suitable lower bounds of
the maximum lateness for the non-oriented 2DRSBSBPP with due dates and the
TSPDD. Better lower bounds could be derived by using the dynamic programming
formulation of the state-space relaxation technique. The search for lower bounds

using other techniques is still an open area for future research.

In this thesis, we have demonstrated the effectiveness and efficiency of the
MXGAs built up from the underlying general framework in solving COPs. We
really hope that the studies in this thesis will be helpful for the developments of
such algorithms and new variants of the COPs. It has certainly given us many

possibilities for further research.

References

[1]

—
(@14
.

E. Aarts and J.K. Lenstra (editor). Local Search in Combinatorial Optimiza-
tion. John Wiley & Sons Ltd., UK, 1997.

B.H. Ahn and J.H. Hyun. Single Facility Multi-Class Job Scheduling. Com-
puters & Operations Research, 17(3):265-272, 1990.

J.T. Alander. On Optimal Population Size of Genetic Algorithms. In Pro-
ceedings of IEEFR International Conference of Computer Systems and Soft-

ware Engineering, volume 92, pages 65-70, 1992.

J.T. Alander. An Indexed Bibliography of Genetic Algorithms: 1957-1993.
Technical Report: 94-1, Department of Information Technology and Produc-
tion Economics, University of Vaasa, 13 Feb. 1994.

J.T. Alander. An Indexed Bibliography of Genetic Algorithms and the Trav-
eling Salesman Problem. Technical Report: 94-1-TSP, Department of Infor-
mation Technology and Production Economics, University of Vaasa, 12 Dec.

2000.

A. Allahverdi, J.N.D. Gupta, and T. Aldowaisan. A Review Of Scheduling
Research Involving Setup Considerations. OMEGA, International Journal
of Management Science, 27:219-239, 1999.

B.K. Ambati, J. Ambati, and M.M. Mokhtar. Heuristic Combinatorial Opti-
mization by Simulated Darwinian Evolution: A Polynomial Time Algorithm

for the Traveling Salesman Problem. Biological Cybernetics, 65:31-35, 1991.

248

REFERENCES 249

[

[

—

8]

12]

13]

15)

E.J. Anderson, C.A. Glass, and C.N. Potts. Machine Scheduling. In E. Aarts
and J.K. Lenstra, editors, Local Search in Combinatorial Optimization, pages

361-414, UK, 1997. John Wiley & Sons Ltd.

D.L. Applegate, R. Bixby, V. Chvatal, and W. Cook. On the Solution of

Traveling Salesman Problems. Documenta Mathematica. Extra Volumn ICM

1998, 3:645-656, 1998.

D.L. Applegate, R. Bixby, V. Chvéatal, and W. Cook. Finding Tours in
the TSP. Report No. 99885, Research Institute for Discrete Mathematics,

Unwwersitat Bonn, Bonn, Germany, 1999.

D.L. Applegate, L..S. Buriol, B.L. Dillard, D.S. Johnson, and P.W. Shor. The
Cutting-Stock Approach to Bin Packing: Theory and Experiments. In R.E.
Ladner, editor, Proceedings of the Fifth Workshop on Algorithm Engineer-
ing and Ezperiments (ALENEX), Baltimore, Maryland, April 2003. SIAM
(Society for Industrial and Applied Mathematics).

D.L. Applegate, W. Cook, and A. Rohe. Chained Lin-Kernighan for Large
Traveling Salesman Problems. INFORMS Journal on Computing, 15(1):82—
92, Winter 2003.

V.A. Armentano and R. Mazzini. A Genetic Algorithm for Scheduling on a
Single Machine with Set-Up Times and Due Dates. Production Planning &
Control, 11(7):713-720, 2000.

N. Ascheuer, M. Fischetti, and M. Grotschel. Solving the Asymmetric Trav-
eling Salesman Problem with Time Windows by Branch-and-Cut. Mathe-
matical Programming, 90(3):475-506, May 2001.

T. Bédck. Optimal Mutation Rates in Genetic Search. In S. Forrest, editor,
Proceedings of the 5th International Conference on Genetic Algorithm, pages

2-8, San Mateo, CA, USA, 1993. Morgan Kaufmann Publisher Inc.

REFERENCES

[16]

22]

23]

[24]

250

B.S. Baker, Jr.E.G. Coffman, and R.L. Rivest. Orthogonal Packing in Two
Dimensions. SIAM Journal on Computing, 9(4):846-855, 1980.

E.K. Baker. An Exact Algorithm for the Time-Constrained Traveling Sales-
man Problem. Operations Research, 31(5):938-945, Sept.—Oct. 1983.

J.E. Baker. Adaptive Selection Methods for Genetic Algorithms. In J.J.
Grefenstette, editor, Proceedings of the First International Conference on
Genetic Algorithms and Their Applications, pages 101-111, Mahwah, NJ,

USA, 1985. Lawrence Erlbaum Associates, Inc.

J.E. Baker. Reducing Bias and Inefficiency in the Selection Algorithm. In
J.J. Grefenstette, editor, Proceedings of the Second International Conference
on Genetic Algorithms and Their Applications, pages 14-21, Hillsdale, New

Jersey, 1987. Lawrence Erlbaum Associates.

| K.R. Baker. Introduction to Sequencing and Scheduling. Wiley, New York,

1974.

K.R. Baker. Heuristic Procedures for Scheduling Job Families with Setups
and Due Dates. Naval Research Logistic, pages 976—-991, 1999.

K.R. Baker and M.J. Magazine. Minimizing Maximum Lateness With Job
Families.” Furopean Journal of Operational Research, 127:126-139, 2000.

E. Balas and N. Simonetti. Linear Time Dynamic-Programming Algorithms
for New Classes of Restricted TSPs: A Computational Study. INFORMS
Journal on Computing, 13(1):56-75, Winter 2001.

N. Bansal, A. Blum, S. Chawla, and A. Meyerson. Approximation Algo-
rithms for Deadline-TSP and Vehicle Routing with Time Windows. In Pro-
ceedings of the 86th Annual ACM Symposium on Theory of Computing, pages
166—-174, Chicago, IL, USA, 13-16 June 2004. ACM Press, New York, USA.

W. Banzhaf. The “Molecular” Traveling Salesman. Biological Cybernetics,

64(1):7-14, Nov. 1990.

REFERENCES 251

26]

[33]

34

[35]

D. Beasley, D.R. Bull, and R.R. Martin. An Overview of Genetic Algorithms:
Part 1, Fundamentals. University Computing, 15(2):58-69, 1993.

D. Beasley, D.R. Bull, and R.R. Martin. An Overview of Genetic Algorithms:
Part 2, Research Topics. University Computing, 15(4):170-181, 1993.

R. Bellman. Dynamic Programming. Princeton University Press, Princeton,

NJ, 1957.

R. Bellman. Dynamic Programming Treatment of the Traveling Salesman

Problem. Journal of the ACM, 9(1):61-63, Jan. 1962.

M. Bellmore and G.L. Nemhauser. The Traveling Salesman Problem: A
Survey. Operations Research, 16(3):538-558, 1968.

J.L. Bentley. Fast Algorithms for Geometric Traveling Salesman Problems.

ORSA Journal of Computing, 4:387-411, 1992.

J.O. Berkey and P.Y. Wang. Two-Dimensional Finite Bin-Packing Algo-
rithms. The Journal of the Operational Research Society, 38(5):423-429,

1987.

R.G. Bland and D.F. Shallcross. Large Traveling Salesman Problems arising
from experiments in X-ray Crystallography: a preliminary report on com-

putation. Operation Research Letters, 8:125-128, 1989.

M.A. Boschetti and A. Mingozzi. The Two-Dimensional Finite Bin Packing
Problem. Part I: New Lower Bounds for the Oriented Case. JOR: Quarterly
Journal of the Belgian, French and Italian Operations Research Societies,

1:27-42, 2003.

M.A. Boschetti and A. Mingozzi. The Two-Dimensional Finite Bin Packing
Problem. Part II: New Lower and Upper Bounds. 4OR: Quarterly Journal
of the Belgian, French and Italian Operations Research Societies, 1:135-147,
2003.

REFERENCES 252

[36]

[37]

[38]

39

[40]

41]

R.M. Brady. Optimization Strategies Gleaned from Biological Evolution.
Nature, 137:804-806, 1985.

B. Brugger, K.F. Doerner, R.F. Hartl, and M. Reimann. AntPacking - An
Ant Colony Optimization Approach for the One-Dimensional Bin Packing
Problem. In J. Gottlieb and G.R. Raidl, editors, 4th European Conference on
Evolutionary Computation in Combinatorial Optimization: EvoCOP 2004,
volume 3004 of LNCS, pages 41-50, Coimbra, Portugal, 5-7 April 2004.
Springer-Verleg Berlin Heidelberg.

J. Bruno and P. Downey. Complexity of Task Sequencing with Dead-
lines, Set-up Times and Changeover Costs. SIAM Journal on Computing,

7(4):393-404, November 1978.

E. K. Burke, P.I. Cowling, and R. Keuthen. Effective Local and Guided Vari-
able Neighbourhood Search Methods for the Asymmetric Traveling Salesman
Problem. In E.J.W. Boers, J. Gottlieb, P.L. Lanzi, R.E. Smith, S. Cagnoni,
E. Hart, G.R. Raidl, and H. Tijink, editors, Applications of Evolutionary
Computing, Proceedings of the EvoWorkshops 2001, Lecture Notes in Com-
puter Science, volume 2037, pages 203-212, Berlin, 2001. Springer-Verlag.

E. K. Burke, G. Kendall, and G. Whitwell. A New Placement Heuristic for
the Orthogonal Stock-Cutting Problem. Operations Research, 52(4):655-671,
July 2004.

E.K. Burke and G.Kendall (eds.). Search Methodologies. Introductory Tuto-
rials in Optimization and Decision Support Techniques. Springer, New York,

USA, 2005.

R.W. Calvo. A New Heuristic for the Traveling Salesman Problem with Time

Windows. Transportation Science, 34(1):113-124, Feb. 2000.

A M. Campbell and B.W. Thomas. Probabilistic Traveling Salesman Prob-

lem with Deadlines. Transportation Science, (to appear).

REFERENCES 253

[44]

[45]

[46]

[49]

[50]

W.B. Carlton and J.W. Barnes. Solving the Traveling Salesman Problem
with Time Windows using Tabu Search. ITE Transactions, 28:617-629, 1996.

V. Cerny. A Thermodynamical Approach to the Traveling Salesman Prob-
lem: An Efficient Simulation Algorithm. Journal of Optimization Theory

and Applications, 45(1):41-51, Jan. 1985.

B. Chazelle. The Bottom-Left Bin Packing Heuristic: An Efficient Imple-
mentation. [EEE Transactions on Computers, 32(8):697-707, 1983.

Z.L. Chen. Scheduling with Batch Setup Times and Earliness-Tardiness
Penalties. Furopean Journal of Operational Research, 96:518-537, 1997.

T.C.E. Cheng, J.N.D. Gupta, and G. Wang. A Review of Flowshop Schedul-
ing Research with Setup Times. Production and Operations Management,

9(3):262-282, Fall 2000.

T.C.E. Cheng and C.C.S. Sin. A State-of-the-art Review of Parallel-machine
Scheduling Research. Furopean Journal of Operational Research, 47:271-292,
1990.

1.C. Choi, S.I. Kim, and H.S. Kim. A Genetic Algorithm with a Mixed
Region Search for the Asymmetric Traveling Salesman Problem. Computers

& Operations Research, 30:773-786, 2003.

P. Chrétienne, Jr. E.G. Coffman, J.K. Lenstra, and Z. Liu (eds.). Scheduling
Theory and Its Applications. Wiley, Chichester, 1995.

N. Christofides. Worst-case Analysis of a New Heuristic for the Traveling
Salesman Problem. Technical Report: 388, GSIA, Carnegie-Mellon Univer-
sity, Pittsburgh, PA, 1976.

N. Christofides, A. Mingozzi, and P. Toth. State Space Relaxation Pro-

cedures for the Computation of Bounds to Routing Problems. Networks,

11:145-164, 1981.

REFERENCES 254

[54]

[60]

[61]

F.K.R. Chung, M.R. Garey, and D.S. Johnson. On Packing Two-Dimensional
Bins. STAM Journal of Algebraic Discrete Mathematics, 3:66-76, 1982.

| G. Clarke and J.W. Wright. Scheduling of Vehicles from a Central Depot to

a number of Delivery Points. Operations Research, 12(4):568-581, 1964.

E.G. Coffman, M.R. Garey, and D.S. Johnson. Approximation Algorithms
for Bin Packing. In G. Ausiello, N. Lucertini, and P. Serafini, editors, Algo-
rithm Design for Computer Systems Design, pages 49-106, Springer, Vienna,
1984.

Concorde. Website. http://www.tsp.gatech.edu/concorde/index.html, last
accessed 04/07/05.

R.W. Conway, W.L. Maxwell, and L.W. Miller. Theory of Scheduling.
Addison-Wesley, Reading, M.A., 1967.

H.A.J. Crauwels, A.M.A. Hariri, C.N. Potts, and L.N. Van Wassenhove.
Branch and Bound Algorithm for Single Machine Scheduling with Batch
Set-Up Times to Minimize Total Weighted Completion Time. Annals of
Operations Research, 83:59-76, 1998.

H.A.J. Crauwels, C.N. Potts, and L.N. Van Wassenhove. Local Search
Heuristics for Single-Machine Scheduling with Batching to Minimize the
Number of Late Jobs. FEuropean Journal of Operational Research, 90:200~
213, 1996.

H.A.J. Crauwels, C.N. Potts, and L.N. Van Wassenhove. Local Search
Heuristics for Single Machine Scheduling with Batch Set-Up Times to Min-
imize Total Weighted Completion Time. Annals of Operations Research,

70:261-279, 1997.

G.A. Croes. A Method for Solving Traveling Salesman Problem. Operatlions
Research, 6(6):791-812, 1958.

REFERENCES 255

[63]

[70]

[71]

[72]

G.B. Dantzig, D.R. Fulkerson, and S.M. Johnson. Solution of a Large-scale
Traveling-salesman Problem. Journal of the Operations Research Society of

America, 2(4):393-410, 1954.

Data Set for 2DRSBSBPP. Website.
http://www.or.deis.unibo.it /research _pages/ORinstance/2BP.html, last
accessed 19/10/04.

L. Davis. Job Shop Scheduling with Genetic Algorithms. In J.J. Grefen-
stette, editor, Proceedings of the First International Conference on Genetic
Algorithms and Their Applications, pages 136—140, Mahwah, NJ, USA, 1985.

Lawrence Erlbaum Associates, Inc.

L. Davis. Handbook of Genetic Algorithms. Van Nostrand Reinhold, New
York, USA, 1991.

J.M. Valério de Carvalho. Exact Solution of Bin-Packing Problems using
Column Generation and Branch and Bound. Annals of Operations Research,

86:629-659, Jan. 1999.

J.M. Valério de Carvalho. LP models for Bin Packing and Cutting Stock
Problems. European Journal of Operational Research, 141(2):253-273, 2002.

M. Dell’Amico, S. Martello, and D. Vigo. A Lower Bound for the Non-
Oriented Two-Dimensional Bin Packing Problem. Discrete Applied Mathe-
matics, 118:13-24, 2002.

E.V. Denardo. Dynamic Programming: Models and Applications. Prentice-
Hall Inc., Englewood Cliffs, NJ, 1982.

M. Desrochers, J. Desrosiers, and M.M. Solomon. A New Optimization
Algorithm for the Vehicle Routing Problem with Time Windows. Operations
Research, 40(2):342-354, 1992.

D.L. Applegate, R. Bixby, V. Chvétal, and W. Cook. Website.
http://www.tsp.gatech.edu/history /milestone.html, last accessed 04/07/05.

REFERENCES 256

73]

[74]

81]

82]

[83]

M. Dorigo. Optimuzation, Learning, and Natural Algorithms. PhD thesis,
Politecnico di Milano, 1992.

M. Dorigo, G. Di Caro, and L.M. Gambardella. Ant Algorithms for Discrete
Optimization. Artificial Life, 5(3):137-172, 1999.

K.A. Dowsland. Simulated Annealing. In C.R. Reeves, editor, Modern
Heuristic Techniques for Combinatorial Problems (Advance Topics in Com-

puter Science), pages 20-69, UK, 1995. McGRAW-HILL.

K.A. Dowsland. GAs: a Tool for OR? Journal of the Operational Research
Society, 47:550-561, 1996.

K.A. Dowsland. Classical Techniques. In E. K. Burke and G.Kendall, editors,
Search Methodologies. Introductory Tutorials in Optimization and Decision

Support Techniques, pages 19-68, New York, USA, 2005. Springer.

K.A. Dowsland and W.B. Dowsland. Packing Problems. Furopean Journal
of Operational Research, 56:2—14, 1992.

R.A. Dudek, S.S. Panwalker, and M.L. Smith. The Lessons of Flowshop
Scheduling Research. Operations Research, 40(1):7-13, 1992.

Y. Dumas, J. Desrosiers, E. Gelinas, and M.M. Solomon. An Optimal Algo-
rithm for the Traveling Salesman Problem with the Time Windows. Opera-

tions Research, 43(2):367-371, 1995.

S. Dunstall, A. Wirth, and K. Baker. Lower Bounds and Algorithms for
Flowtime Minimization on a Single Machine with Set-Up Times. Journal of

Scheduling, 3:51-69, 2000.

H. Dyckhoff. A Typology of Cutting and Packing Problems. FEuropean
Journal of Operational Research, 44:145-159, 1990.

H. Dyckhoff and U. Finke. Cutting and Packing in Production and Distri-
bution. Physica Verlag, Heidelberg, 1992.

REFERENCES 257

[84] H. Dyckhoff, G. Scheithauer, and J. Terno. Cutting and Packing (C&P). In

185]

88]

[89]

[90]

92]

(93]

M. Dell’Amico, F. Maffioli, and S. Martello, editors. Annotated Bibliogra-
phies in Combinatorial Optimization, pages 393—-412, 1997. John Wiley &

Sons, Chichester.

W.L. Eastman. Linear Programming with Pattern Constraints. PhD thesis,
Harvard University, Cambridge, MA., 1958.

G.W. Evans. An Overview of Techniques for Solving Multiobjective Mathe-
matical Programs. Management Science, 30:1268-1282, 1984.

E. Falkenauer. A New Representation and Operators for Genetic Algorithms

Applied to Grouping Problems. Evolutionary Computation, 2:123-144, 1994.

E. Falkenauer. A Hybrid Grouping Genetic Algorithm for Bin Packing.
Journal of Heuristics, 2:5-30, 1996.

E. Falkenauer and S. Bouffouix. A Genetic Algorithm for Job Shop. In
Proceedings of the 1991 IEEE International Conference on Robotics and Au-
tomation, pages 824-829, Sacramento, California, April 1991.

E. Falkenauer and A. Delchambre. A Genetic Algorithm for Bin-Packing and
Line Balancing. In Proceedings of the 1992 IEEE International Conference
on Robotics and Automation, volume 2, pages 1186—1192, Nice, France, 1992.

S. Fekete and J. Schepers. On More-Dimensional Packing I1: Bounds. Tech-
nical Report: 97.289, Angewandte Mathematik und Informatik, Universitat
zu Koln, 2000.

S. Fekete and J. Schepers. New Classes of Fast Lower Bounds for Bin Packing
Problems. Mathematical Programmaing, 91:11-31, 2001.

T.A. Feo and M.G.C. Resende. A Probabilistic Heuristic for a computation-
ally difficult Set Covering Problem. Operations Research Letters, 8:67-T1,
1989.

REFERENCES 258

(94

96]

[99]

[100]

[101]

T.A. Feo and M.G.C. Resende. Greedy Randomized Adaptive Search Pro-
cedures. Journal of Global Optimization, 6:109-133, 1995.

F. Focacci, M. Milano, and A. Lodi. Solving TSP with Time Windows with
Constraints. In Proceedings of the 1999 International Conference on Logic

Programmung, pages 515-529, Las Cruces, New Mexico, USA, 1999. MIT

Press.

F. Focacci, M. Milano, and A. Lodi. Cutting Planes in Constraint Program-
ming: A Hybrid Approach. In R. Dechter, editor, LNCS: 6th International
Conference of Principle and Practice of Constraint Programming — CP2000,
volume 1894, pages 187-201, Singapore, Sept. 2000. Springer-Verlag, Berlin
Heidelberg.

F. Focacci, M. Milano, and A. Lodi. A Hybrid Exact Algorithm for the
TSPTW. INFORMS Journal on Computing, 14(4):403-417, Fall 2002.

F. Focacci, M. Milano, and A. Lodi. Embedding Relaxations in Global Con-
straints for Solving TSP and TSPTW. Annals of Mathematics and Artificial
Intelligence, 34(4):291-311, April 2002.

T.C. Fogarty. Varying the Probability of Mutation in the Genetic Algorithm.
In J.D. Schaffer, editor, Proceedings of the Third International Conferences
on Genetic Algorithms, pages 104-109, San Francisco, CA, USA, 1989. Mor-

gan Kaufmann Publishers.

D.B. Fogel. An Evolutionary Approach to the Traveling Salesman Problem.
Biological Cybernetics, 60:139-144, 1988.

D.B. Fogel. A Parallel Processing Approach to a Multiple Traveling Salesman
Problem Using Evolutionary Programming. In L. Canter, editor, Proceed-
ings on the Fourth Annual Parallel Processing Symposium, pages 318-326,
Fullterton, CA, 1990.

REFERENCES 259

[102]

103]

104]

1105]

107

108]

109]

[110]

[111]

D.B. Fogel. Applying Evolutionary Programming to Selected Traveling Sales-
man Problems. Cybernetics and Systems, 24:27-36, 1993.

L.R. Foulds. The Heuristic Problem-Solving Approach. Journal of the Op-
erational Research Society, 34(10):927-934, Oct. 1983.

M.S. Fox and M.B. McMahon. Genetic Operators for Sequencing Problems.
In G. Rawlings, editor, Foundations of Genetic Algorithms. First Workshop
on the Foundations of Genetic Algorithms and Classifier Systems, pages

284-300, Los Altos, CA, 1987. Morgan Kaufmann Publishers.

B. Freisleben and P. Merz. A Genetic Local Search Algorithm for Solving
Symmetric and Asymmetric Traveling Salesman Problem. In Proceedings
of the 1996 IEEE International Conference on Evolutionary Computation,
pages 616621, Nagoya, Japan, May 20-22 1996.

J.B. Frenk and G.G. Galambos. Hybrid Next-Fit Algorithm for the Two-

Dimensional rectangle Bin-Packing Problem. Journal on Computing, 39:201-

217, 1987.

T.D. Fry, R.D. Armstrong, and H. Lewis. A Framework for Single Machine
Multiple Objective Sequencing Research. OMEGA, 17:595-607, 1989.

M.R. Garey and D.S. Johnson. Computer and Intractability: A Guide to the
Theory of NP-Completeness. W.H. Freeman, San Francisco, 1979.

M. Gendreau, A. Hertz, and G. Laporte. New Insertion and Postoptimisa-
tion Procedures for the Traveling Salesman Problem. Operations Research,

40(6):1086-1094, Nov.-Dec. 1992.

M. Gendreau, A. Hertz, G. Laporte, and M. Stan. A Generalized Insertion
Heuristic for the Traveling Salesman Problem with Time Windows. Opera-

tions Research, 46(3):330-335, May.-June. 1998.

J.B. Ghosh and J.N.D. Gupta. Batch Scheduling to Minimize Maximum
Lateness. Operations Research Letters, 21:77-80, 1997.

REFERENCES 260

112]

[113]

[114]

[116]

[117]

[118]

[119]

1120]

121]

122]

P.C. Gilmore and R.E. Gomory. A Linear Programming approach to the
Cutting Stock Problem. Operations Research, 9(6):849-859, 1961.

P.C. Gilmore and R.E. Gomory. A Linear Programming approach to the
Cutting Stock Problem - Part II. Operations Research, 11(6):863-888, 1963.

P.C. Gilmore and R.E. Gomory. Multistage Cutting Stock Problem of Two
and more Dimensions. Operations Research, 13(1):94-120, 1965.

F. Glover. Heuristics for Integer Programming using Surrogate Constraints.

Decision Sciences, 8:156-166, 1977,

F. Glover. Future Paths for Integer Programming and Links to Artificial

Intelligence. Computers & Operations Research, 13:533-549, 1986.

F. Glover. Tabu Search - Part I. ORSA Journal on Computing, 1(3):190-206,
1989.

F. Glover. Tabu Search - Part II. ORSA Journal on Computing, 2(1):4-32,
1990.

F. Glover. A Template for Scatter Search and Path Relinking. In J.K. Hao,
E. Lutton, E. Ronald, M. Schoenauer, and D. Snyers, editors, Artificial
FEuvolution, Lecture Notes in Computer Science, volume 1363, pages 13-54.

Springer, 1998.

F. Glover and M. Laguna. Tabu Search. Kluwer Academic Publishers,
Boston, 1997.

D.E. Goldberg. Genetic Algorithms in Search, Optimization, and Machine
Learning. Addison-Wesley, USA, 19809.

D.E. Goldberg. Sizing Populations for Serial and Parallel Genetic Algo-
rithms. In J.D. Schaffer, editor, Proceedings of the Third International Con-
ferences on Genetic Algorithms, pages 70-79, San Francisco, CA; USA, 1989.

Morgan Kaufmann Publishers.

REFERENCES 261

123]

[124]

127)

[128]

[130]

[131]

D.E. Goldberg. A Note on Boltzmann Tournament Selection for Genetic Al-
gorithms and Population-Oriented Simulated Annealing. Complex Systems,

4:445-460, 1990.

D.E. Goldberg and K. Deb. A Comparative Analysis of Selection Schemes
used in Genetic Algorithms. In G.J.E. Rawlins, editor, Foundations of Ge-

netic Algorithms, pages 69-93. Morgan Kaufmann, 1991.

D.E. Goldberg, B. Korb, and K. Deb. Messy Genetic Algorithms: Motiva-
tion, Analysis and First Results. Complex Systems, 3:493-530, 1989.

D.E. Goldberg and R. Lingle. Alleles, Loci and the Traveling Salesman Prob-
lem. In Proceedings of the International Conferences on Genetic Algorithms

and Their Applications, pages 154-159, 1985.

B.L. Golden and W.R. Stewart. Empirical Analysis of Heuristics. In E.L.
Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan, and D.B. Shmoys, editors, The
Traveling Salesman Problem: A Guided Tour of Combinatorial Optimization,

pages 207-249, Chichester, UK, 1985. John Wiley & Sons Ltd.

R.L. Graham, E.L. Lawler, J.K. Lenstra, and A.H.G. Rinnooy Kan. Opti-
mization and Approximation in Deterministic Machine Scheduling: A Sur-

vey. Annals of Discrete Mathematics, 5:287-326, 1979.

J.J. Grefenstette. Optimisation of Control Parameters for Genetic Algo-
rithms. IEEE Transactions on Systems, Man and Cybernatics, 16(1):122—
128, Jan./Feb. 1986.

J.J. Grefenstette. Incorporating Problem Specific Knowledge into Genetic
Algorithms. In L. Davis, editor, Genetic Algorithms and Simulated Anneal-
ing, pages 42-60, Los Altos, CA., 1987. Morgan Kaufmann Publishers.

J.J. Grefenstette, R. Gopal, B. Rosmaita, and D. Van Gucht. Genetic Algo-
rithms for Traveling Salesman Problem. In J.J. Grefenstette, editor, Proceed-

ings of the First International Conference on Genetic Algorithms and Their

REFERENCES 262

(132

133]

[134]

135

136

[137]

138]

[139]

[140]

Applications, pages 160-168, Mahwah, NJ, USA, 1985. Lawrence Erlbaum

Associates, Inc.

J.N.D. Gupta. Single Facility Scheduling with Multiple Job Classes. Furo-
pean Journal of Operational Research, 33:42—-45, 1988.

S.K. Gupta and J. Kyparisis. Single Machine Scheduling Research. OMEGA:
International Journal of Management Science, 15:207-227, 1987.

P. Hansen and N. Mladenovié. An Introduction to Variable Neighborhood
Search. In S. VoB, S. Martello, I.LH. Osman, and C. Roucairol, editors,
Meta-Heuristics: Advances and Trends in Local Search Paradigms for Opti-

mazation, pages 433-458, Boston, MA., 1999. Kluwer Academic Publishers.

P. Hansen and N. Mladenovi¢. Developments of Variable Neighborhood
Search. In C. Ribeiro and P. Hansen, editors, Fssays and Surveys in Meta-

heuristics, pages 415-440, Dordrecht, 2001. Kluwer Academic Publishers.

P. Hansen and N. Mladenovi¢. Variable Neighborhood Search. FEuropean
Journal of Operational Research, 130(3):449-467, May 2001.

P. Hansen and N. Mladenovié. Variable Neighborhood Search. In F. Glover
and G. Kochenberger, editors, Handbook of Metaheuristics, pages 145-184,
Dordrecht, 2003. Kluwer Academic Publishers.

P. Hansen and N. Mladenovi¢. Variable Neighborhood Search. In E.K.
Burke and G. Kendall, editors, Search Methodologies. Introductory Tutorials
in Optimization and Decision Support Techniques, pages 211-238, New York,
USA, 2005. Springer.

A.M.A. Hariri and C.N. Potts. Single Machine Scheduling with Batch Setup
Time to Minimize Maximum Lateness. Annals of Operations Research,

70:75-92, 1997.

J.P. Hart and A.W. Shogan. Semi-Greedy Heuristics: An Empirical Study.
Operations Research Letters, 6:107-114, 1987.

REFERENCES 263

[141]

142]

[143)

144]

[145]

[146]

147]

148]

149]

[150]

M. Held and R.M. Karp. A Dynamic Programming Approach to Sequencing
Problems. SIAM Journal on Applied Mathematics, 10(1):196-210, March

1962.

M. Held and R.M. Karp. The Traveling-Salesman Problem and Minimum
Spanning Trees. Operations Research, 18(6):1138-1162, Nov.-Dec. 1970.

M. Held and R.M. Karp. The Traveling-Salesman Problem and Minimum
Spanning Trees: Part I1. Mathematical Programming, 1:6-25, 1971.

J.W. Herrmann and C.Y. Lee. Solving a Class Scheduling Problem with a
Genetic Algorithm. ORSA Journal on Computing, 7(4):443-452, 1995.

J. Hesser and R. Ménner. Towards an Optimal Mutation Probability for
Genetic Algorithms. In H.P. Schwefel and R. Ménner, editors, Proceedings
of the 1st Workshop on Parallel Problem Solving from Nature, pages 23-32,
London, UK, 1991. Springer-Verlag.

A.J. Hoffman and P.Wolfe. History. In E.L. Lawler, J.K. Lenstra,
A H.G. Rinnooy Kan, and D.B. Shmoys, editors, The Traveling Salesman
Problem: A Guided Tour of Combinatorial Optimization, pages 207-249,
Chichester, UK, 1985. John Wiley & Sons Ltd.

J.H. Holland. Adaptation in Natural and Artificial Systems. The University
of Michigan Press, Ann Arbor, (reprinted by mit press, 1992) edition, 1975.

A. Homaifar, S. Guan, and G.E. Liepins. A New Approach on the Traveling
Salesman Problem by Genetic Algorithm. Technical Report, North Carolina

A&T State University, 1991.

H. Hoogeveen. Multicriteria Scheduling. European Journal of Operational

Research, 167:592—623, 2005.

J.A. Hoogeveen, J.K. Lenstra, and S.L. van de Velde. Sequencing and
Scheduling: an annotated bibliography. Memorandum COSOR 97-02, Eind-

hoven University of Technology, 1997.

REFERENCES 264

[151]

[152]

153]

154]

[156]

[157]

[158]

[159]

E. Hopper and B.C.H. Turton. A Genetic Algorithm for a 2D Industrial
Packing Problem. Computers & Industrial Engineering, 37:375-378, 1999.

E. Hopper and B.C.H. Turton. A Review of the Application of Meta-
Heuristic Algorithms to 2D Strip Packing Problems. Artificial Intelligence
Rewiew, 16:257-300, 2001.

E. Hopper and B.C.H. Turton. An Empirical Investigation of Meta-Heuristic
and Heuristic Algorithms for a 2D Packing Problem. FEuropean Journal of
Operational Research, 128:34-57, 2001.

S.M. Hwang, Y.K. Cheng, and J.T. Horng. On Solving Rectangle Bin Pack-
ing Problems using Genetic Algorithms. In Proceedings of the 1994 IEEE
International Conference on Systems, Man, and Cybernetics. Part 2 (of 8),
pages 1583-1590, San Antonio, TX, USA, 1994.

H. lima and T. Yakawa. A New Design of Genetic Algorithm for Bin Pack-
ing. In Proceedings of the 2003 Congress on Evolutionary Computations,

CEC2008. Vol.1-4, volume 2, pages 1044-1049, Canberra, Australia, Dec.
2003.

J.R. Jackson. Scheduling a Production Line to Minimize Maximum Tardi-
ness. Research Report /3, Management Science Research Project, University

of Cualifornia, Los Angeles, CA, 1955.

A.S. Jain and S. Meeran. A State-Of-The-Art Review of Job-Shop Scheduling
Techniques. Technical Report: Department of Applied Physics, Electronic
and Mechanical Engineering, University of Dundee, UK, 1998.

S. Jakobs. On Genetic Algorithms for the Packing of Polygons. FEuropean
Journal of Operational Research, 88:165—181, 1996.

G.A. Jayalakshmi, S. Sathiamoorthy, and R. Rajaram. A Hybrid Genetic
Algorithm - a new Approach to solve Traveling Salesman Problem. Interna-

tional Journal of Computational Engineering Science, 2(2):339-355, 2001.

REFERENCES 265

1160] P. Jog, J.Y. Suh, and D. Van Gucht. The Effects of Population Size, Heuristic

[161]

[162]

163]

164]

168]

Crossover and Local Improvement on a Genetic Algorithm for the Traveling
Salesman Problem. In J. Schaffer, editor, Proceedings of the Third Inter-
national Conferences on Genetic Algorithms, pages 110-115, San Francisco,

CA, USA, 1989. Morgan Kaufmann Publishers.

D.S. Johnson and L.A. McGeoch. The Traveling Salesman Problem: A Case
Study in Local Optimization. In E. Aarts and J.K. Lenstra, editors, Local
Search in Combinatorial Optimization, pages 215-310, UK, 1997. John Wiley
& Sons Ltd.

A. Jones and L.C. Rabelo. Survey of Job Shop Scheduling Techniques. Tech-
nical Report: National Institute of Standards and Technology, Gaithersburyg,
MD, 1998.

K.A. De Jong. An Analysis of the Behavior of a Class of Genetic Adaptive
Systems. PhD thesis, University of Michigan, 1975.

M. Jinger, G. Reinelt, and G. Rinaldi. The Traveling Salesman Problem.
Report No.92.113, Angewandte Mathematik und Informatik, Universitat zu

Kdln, Cologne, Germany, 1994.

T. Kampke. Simulated Annealing: use of a new tool in Bin Packing. Annals

of Operations Research, 16:327-332, 1988.

R.M. Karp. A Patching Algorithm for the Nonsymmetric Traveling-Salesman
Problem. SIAM Journal on Computing, 8(4):561-573, Nov. 1979.

K. Katayama, H. Hirabayashi, and H. Narihisa. Performance Analysis of a
New Genetic Cross-over for the Traveling-Salesman Problem. [EICE Trans-

actions on Fundamentals of Electronics, Communications and Computer Sci-

ences, E81-A(5):738-750, 1998.

S. Kirkpatrick, C.D. Gelatt, and M.P. Vecchi. Optimization by Simulated
Annealing. Science, 220(4598):671-680, 13 May 1983.

REFERENCES 266

169]

170]

171]

172]

(173]

[174]

[175]

[176]

177]

178

J. Knox. The Application of Tabu Search to the Symmetric Traveling Sales-

man Problem. PhD thesis, College of Business and Administration, Univer-

sity of Colorado, Boulder, CO., 19809.

J. Knox. Tabu Search Performance on Symmetric Traveling Salesman Prob-

lem. Computers & Operations Research, 21(8):867-876, 1994.

J. Knox and F. Glover. Comparative testing of Traveling Salesman Heuristics
derived from Tabu Search, Genetic Algorithms and Simulated Annealing.

Working Paper, California State Polytechnic University, September 1989.

B. Koger. Guillotineable Bin Packing: A Genetic Approach. European Jour-
nal of Operational Research, 84:645-661, 1995.

W. Kubiak, C. Sriskandarajah, and K. Zaras. A note on the Complexity of
Openshop Scheduling Problems. INFOR, 29:284-294, 1991.

M. Laguna and R. Mart{. Scatter Search — Methodology and Implementations
in C. Kluwer Academic Publishers, Boston, 2003.

A. Langevin, M. Desrochers, J. Desrosiers, and F. Soumis. A Two-
Commodity Flow Formulation for the Traveling Salesman and Makespan

Problem with Time Windows. Networks, 23:631-640, 1993.

A. Langevin, F. Soumis, and J. Desrosiers. Classification of Traveling Sales-

man Problem Formulations. Operations Research Letters, 9:127-132, March

1990.

G. Laporte. The Traveling Salesman Problem: An Overview of Exact
and Approximate Algorithms. European Journal of Operational Research,

59:231-247, 1992.

P. Larranaga, C.M.H. Kuilpers, R.H. Murga, [. Inza, and S. Dizdarevic.
Genetic Algorithms for Traveling Salesman Problem: A Review of Repre-

sentations and Operators. Artificial Intelligence Review, 13:129-170, 1999.

REFERENCES

(179

1180]

[181]

[182]

183]

[184]

185

[186]

187]

267

P. Larranaga, C.M.H. Kuilpers, M. Poza, and R.H. Murga. Decomposing
Bayesian Networks: Triangulation of the Moral Graph with Genetic Algo-
rithms. Statistics and Computing, 7(1):19-34, Mar. 1997.

E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan, and D.B. Shmoys (eds.).
The Traveling Salesman Problem: A Guided Tour of Combinatorial Opti-
mization. John Wiley & Sons Ltd., Chichester, UK, 1985.

E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan, and D.B. Shmoys. Se-
quencing and Scheduling: Algorithms and Complexity. In S.C. Graces,
A H.G. Rinnooy Kan, and P.H. Zipkin, editors, Logistic of Production and
Inventory, Handbooks in Operations Research and Management Science, vol-

ume 4, pages 445-522, Amsterdam, North-Holland, 1993.

C.Y. Lee and J.Y. Choi. A Genetic Algorithm for Job Sequencing Prob-
lems with Distinct Due Dates and General Early-Tardy Penalty Weights.
Computers & Operations Research, 22(8):857-869, 1995.

J.K. Lenstra and A.H.G. Rinnooy Kan. Some Simple Applications of the
Traveling Salesman Problem. Operational Research Quarterly, 26:717-733,

1975.

J.K. Lenstra, A.H.G. Rinnooy Kan, and P. Brucker. Complexity of Machine
Scheduling Problems. Annals of Discrete Mathematics, 1:343-362, 1977.

J.Y-T. Leung. Handbook of Scheduling. Algorithms, Models, and Perfor-
mance Analysis. Chapman & Hall/CRC, US, 2004.

J. Levine and F. Ducatelle. Ant Colony Optimisation and Local Search for
Bin Packing and Cutting Stock Problems. Journal of Operational Research
Society, 55(7):705-716, July 2004.

M.M. Liaee and H. Emmons. Scheduling Families of Jobs with Setup Times.
International Journal of Production Economaics, 51:165-176, 1997.

REFERENCES 268

188]

(189

190]

191]

[192]

193]

194]

195]

1196]

197]

G.E. Liepins and M.R. Hilliard. GAs: Foundations and Applications. Annals
of Operations Research, 21:31-58, 1989.

S. Lin. Computer Solutions of the Traveling Salesman Problem. Bell System
Technical Journal, 44:2245-2269, 1965.

S. Lin and B.W. Kernighan. An Effective Heuristic Algorithm for the Trav-
eling Salesman Problem. Operations Research, 21(2):498-516, 1973.

J.D.C. Little, K.G. Murty, D.W. Sweeney, and C. Karel. An Algorithm for
the Traveling Salesman Problem. Operations Research, 11(6):972-989, 1963.

D. Liu and H. Teng. An Improved BL-Algorithm for Genetic Algorithm
of the Orthogonal Packing of Rectangles. Furopean Journal of Operational
Research, 112:413-420, 1999.

A. Lodi, S. Martello, and D. Vigo. Approximation Algorithms for the Ori-
ented Two-Dimensional Bin Packing Problem. Furopean Journal of Opera-

tional Research, 112:158-166, 1999.

A. Lodi, S. Martello, and D. Vigo. Heuristic and Metaheuristic Approaches
for a Class of Two-Dimensional Bin Packing Problems. INFORMS Journal

on Computing, 11:345-357, 1999.

A. Lodi, S. Martello, and D. Vigo. Recent Advances on Two-Dimensional
Bin Packing Problems. Technical Report OR/99/2, DEIS - Universita di
Bologna, 1999.

A. Lodi, S. Martello, and D. Vigo. Recent Advances on Two-Dimensional
Bin Packing Problems. Discrete Applied Mathematics, 123:379-396, 2002.

A. Lodi, S. Martello, and D. Vigo. Two-Dimensional Packing Problems: A
Survey. Furopean Journal of Operational Research, 141:241-252, 2002.

REFERENCES 269

198]

[199]

1200]

201]

[202]

203

204]

1205]

1206]

207]

A. Lodi, S. Martello, and D. Vigo. TSpack: A Unified Tabu Search Code for
Multi-Dimensional Bin Packing Problems. Annals of Operations Research,

131(1-4):203-213, October 2004.

H.R. Lourengo, O. Martin, and T. Stiitzle. Iterated Local Search. In
F. Glover and G. Kochenberger, editors, Handbook of Meta-Heuristics (In-
ternational Series in Operations Research and Management Science), vol-

ume 57, pages 321-353, Norwell, MA, 2002. Kluwer Academic Publishers.

S. Mahfoud. An Analysis of Boltzmann Tournament Selection. IlliGAL
Report 91007, University of Illinots at Urbana-Champaign, October 1991.

M. Malek, M. Guruswamy, and M. Pandya. Serial and Parallel Simulated
Annealing and Tabu Search Algorithms for the Traveling Salesman Problem.

Annals of Operations Research, 21:59-84, 1989.

S. Martello and P. Toth. Lower Bounds and Reduction Procedures for the
Bin Packing Problem. Duscrete Applied Mathematics, 28(1):59-70, July 1990.

S. Martello and D. Vigo. Exact Solution of the Two-Dimensional Finite Bin

Packing Problem. Management Science, 44(3):388-399, 1998.

R. Marti, M. Laguna, and F. Glover. Principles of Scatter Search. Furopean
Journal of Operational Research, 169(2):359-372, 2006.

O. Martin, S.W. Otto, and E.W. Felten. Large-step Markov Chains for the
Traveling Salesman Problem. Complex Systems, 5:299-326, 1991.

O. Martin, S.W. Otto, and E.W. Felten. Large-step Markov Chains for the
TSP incorporating Local Search Heuristics. Operations Research Letters,

11:219-224, 1992.

A.J. Mason. Genetic Algorithms and Scheduling Problems. PhD thesis,
Department of Engineering, University of Cambridge, UK, 1992.

REFERENCES 270

208

209]

210]

211]

212)

213

214]

215]

216]

217]

218]

A.J. Mason and E.J. Anderson. Minimizing Flow Time on a Single Machine

with Job Classes and Setup Times. Naval Research Logistics, 38:333-350,
1991.

N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller. Equa-
tion of State Calculations by Fast Computing Machines. Journal of Chemical
Physics, 21:1087-1092, 1953.

Z. Michalewicz. Genetic Algorithms + Data Structures = Evolution Pro-

grams. Springer Verlag, Berlin, Heidelberg, 1992.

A. Mingozzi, L. Bianco, and S. Ricciardelli. Dynamic Programming Strate-
gies for the Traveling Salesman Problem with Time Windows and Precedence

Constraints. Operations Research, 45(3):365-377, 1997.
M. Mitchell. An Introduction to Genetic Algorithms. MIT Press, USA, 1996.

N. Mladenovi¢ and P. Hansen. Variable Neighborhood Search. Computers
& Operations Research, 24(11):1097-1100, 1997.

C.L. Monma and C.N. Potts. On the Complexity of Scheduling with Batch
Setup Time. Operations Research, 37(5):798-804, 1989.

H. Miihlenbein, M. Gorges-Schleuter, and O. Krdmer. Evolution Algorithms
in Combinatorial Optimization. Parallel Computing, 7:65-85, 1988.

National TSP. Website. http://www.tsp.gatech.edu/world/countries.html,
last accessed 04/07/05.

E. Nowicki and S. Zdrzalka. Single Machine Scheduling with Major and
Minor Setup Times: A Tabu Search Approach. The Journal of Operational
Research Society, 47(8):1054-1064, Aug. 1996.

K.E. Nygard and C.H. Yang. Genetic Algorithms for the Traveling Salesman

Problem with Time Windows. In Sharda Balci and Zenios, editors, Com-

REFERENCES 271

219]

i

1220]

221]

222

223

224

[225]

226

puter Science and Operations Research. New Development in their Interfaces,

pages 411-423, Williamsburg, V.A., 8-10 Jan. 1992. Pergamon Press.

J.W. Ohlmann and B.W. Thomas. A Compressed Annealing Approach to
the Traveling Salesman Problem with Time Windows. INFORMS Journal

on Computing, (to appear).

ILM. Oliver, D.J. Smith, and J.R.C. Holland. A Study of Permutation
Crossover Operators on the TSP. In J.J. Grefenstette, editor, Proceedings of
the Second International Conference on Genetic Algorithms and Their Ap-
plications, pages 224-230, Hillsdale, New Jersey, 1987. Lawrence Erlbaum

Associates, Inc.

I. Or. Traveling Salesman-Type Combinatorial Problems and Their rela-
tion to the Logistics of Regional Blood Banking. PhD thesis, Department of
Industrial Engineering and Management Sciences, Northwestern University,

Evanston, 1L, 1976.

I.H. Osman and J.P. Kelly (editor). Meta-Heuristic: Theory and Applica-
tions. Kluwer Academic Publishers, Boston, MA., 1996.

I.M. Ovacik and R. Uzsoy. Rolling Horizon Algorithms for a Single-Machine
Dynamic Scheduling Problem with Sequence Dependent Setup Times. In-
ternational Journal of Production Research, 32:1243-1263, 1994.

J.C.H. Pan, J.S. Chen, and H.L. Cheng. A Heuristic approach for Single-
Machine Scheduling with Due Dates and Class Setups. Computers € Oper-
ations Research, 28:1111-1130, 2001.

J.C.H. Pan and C.S. Su. Single Machine Scheduling with Due Dates and
Class Setups. Journal of the Chinese Institute of Engineers, 20(5):561-572,
1997.

C. Papadimitriou. Computational Complezity. Addison-Wesley, Reading,
MA, 1994.

REFERENCES 272

227

228]

229]

230]

[231]

232)

233

234]

[235]

236

G. Pesant, M. Genfreau, J.Y. Potvin, and J. M. Rousseau. An Exact Con-
straint Logic Programming Algorithm for the Traveling Salesman Problem

with Time Windows. Transportation Science, 32(1):12-29, Feb. 1998.

G. Pesant, M. Genfreau, J.Y. Potvin, and J.M. Rousseau. On the flexibility
of Constraint Programming models: from Single to Multiple Time Windows
for the Traveling Salesman Problem. FEuropean Journal of Operational Re-

search, 117(2):253-263, 1999.

M.L. Pinedo. Scheduling: Theory , Algorithms, and Systems. Prentice Hall,
Englewood Cliffs, NJ., 1995.

D. Pisinger and M. Sigurd. Using Decomposition Techniques and Constraint
Programming for Solving the Two-Dimensional Bin Packing Problem. Tech-

nical Report 03/01, University of Copenhagen, Denmark., 2003.
G. Polya. How to Solve it. Princeton University Press, Princeton, 1945.

C.N. Potts. Scheduling Two Job Classes on a Single Machine. Computers &
Operations Research, 18:411-415, 1991.

C.N. Potts and M.Y. Kovalyov. Scheduling With Batching: A Review. Eu-
ropean Journal of Operational Research, 120:228-249, 2000.

C.N. Potts and L.N. Van Wassenhove. Integrating Scheduling with Batching
and Lot-Sizing: A Review of Algorithms and Complexity. The Journal of
the Operational Research Society, 43(5):395-406, May 1992.

J.Y. Potvin. Genetic Algorithms for the Traveling Salesman Problem. Annals
of Operations Research, 63:339-370, 1996.

J. Puchinger and G.R. Raidl. An Evolutionary Algorithm for Column Gener-
ation in Integer Programming: An Effective Approach for 2D Bin Packing.
In X. Yao, editor, Lecture Notes in Computer Science (8th International
Conference on Parallel Problem Solving from Nature (PPSN VIII), volume
3242, pages 642-651, Birmingham, UK., Sept 18-22, 2004 2004.

REFERENCES 273

[237]

[238]

239

1240

241]

[242]

1

[243]

244

245

[246]

J. Puchinger and G.R. Raidl. Models and Algorithms for Three-Stage Two-
Dimensional Bin Packing. Technical Report TR-186-04-04, Technische Uni-
versitat Wien, Sept. 2004.

C.R. Reeves. Modern Heuristic Technigues for Combinatorial Problems (Ad-
vance Topics in Computer Science). McGRAW-HILL, London, UK, 1995.

C.R. Reeves. Genetic Algorithms for the Operations Researcher. INFORMS
Journal of Computing, 9(3):231-250, 1997.

C.R. Reeves and J.E. Beasley. Introduction. In C.R. Reeves, editor, Mod-
ern Heuristic Techniques for Combinatorial Problems (Advance Topics in

Computer Science, pages 1-19, London, UK, 1995. McGRAW-HILL.

G. Reinelt. Fast Heuristics for Large Geometric Traveling Salesman Prob-

lems. ORSA Journal of Computing, 4:206-217, 1992.

G. Reinelt. The Traveling Salesman Problems: Computational solutions for
TSP Applications. Lecture Notes in Computer Science, 840, 1994. Springer-

Verlag, Berlin.

M.G.C. Resende. Greedy Randomized Adaptive Search Procedures
(GRASP). In C. Floudas and P.M. Pardalos, editors, Encyclopedia of Opti-
mization, volume 2, pages 373-382. Kluwer Academic Publishers, 2001.

D.J. Rosenkrantz, R.E. Stearns, and P.M. Lewis. An Analysis of several
Heuristics for the Traveling Salesman Problem. STAM Journal of Computing,

6(3):563-581, Sept. 1977.

T.P. Runarsson, M.T. Jonsson, and P. Jensson. Dynamic Dual Bin Packing
using Fuzzy Objectives. In The 1996 [EEE International Conference on
Evolutionary Computation, ICEC’96, pages 219-222, Nagoya, Japan, May
20-22 1996 1996.

M.W.P. Savelsbergh. Local Search in Routing Problem with Time Windows.
Annals of Operations Research, 4:285-305, 1985.

REFERENCES 274

247

(250

[251]

252]

[253]

[254]

J.D. Schaffer, R.A. Caruana, L.J. Eshelman, and R. Das. A Study of Control
Parameters affecting online performance of Genetic Algorithms for Function
Optimization. In J.D. Schaffer, editor, Proceedings of the Third International
Conferences on Genetic Algorithms, pages 51-60, San Francisco, CA, USA,
1989. Morgan Kaufmann Publishers.

L.J. Schmitt and M.M. Amini. Performance Characteristics of Alternative
Genetic Algorithmic Approaches to the Traveling Salesman Problem using
Path Representation: An Empirical Study. European Journal of Operational
Research, 108:551-570, 1998.

S.R. Schultz, T.J. Hodgson, R.E. King, and M.R. Taner. Minimizing L., for
the Single Machine Scheduling problem with Family Set-ups. International
Journal of Production Research, 42(20):4315-4330, October 2004.

J.M.J. Schutten, S.L. van de Velde, and W.H.M. Zijm. Single-Machine
Scheduling with Release Dates, Due Dates, and Family Setup Times. Man-
agement Science, 42(8):1165-1174, 1996.

D. Seniw. A Genetic Algorithm for the Traveling Salesman Problem. MSc
Thesis, University of North Carolina, Charlotte, 1991.

M. Sevaux and S. Dauzére-Pérés. Genetic Algorithm to Minimize the
Weighted Number of Late Jobs on a Single Machine. FEuropean Journal
of Operational Research, 151:296-306, 2003.

H.J. Shin, C.O. Kim, and S.S. Kim. A Tabu Search Algorithm for Single Ma-
chine Scheduling with Release Times, Due Dates, and Sequence-Dependent
Set-Up Times. The International Journal of Advanced Manufacturing Tech-
nology, 19:859-866, 2002.

M. Sipser. Introduction to the Theory of Computation. PWS Publishing,
Cambridge, MA, 1997.

REFERENCES 275

1255]

[256)

[257]

258

[259)]

[260]

1261

262]

D. Smith. Bin-Packing with Adaptive Search. In J.J. Grefenstette, editor,
Proceedings of the First International Conference on Genetic Algorithms and
their Applications, pages 202—-206, Mahwah, NJ, USA, 1985. Lawrence Erl-

baum Associates, Inc.

W.E. Smith. Various Optimizers for Single-Stage Production. Nawval Re-
search Logistics Quarterly, 3:59-66, 1956.

S.M. Soak and B.H. Ahn. New Genetic Crossover Operator for the TSP.
In L. Rutkowski, J. Siekmann, R. Tadeusiewics, and L.A. Zadeh, editors,
Proceedings of the Tth International Conference of Artificial Intelligence and
Soft Computing: ICAISC 2004, LNCS, pages 480—485, Zakopane, Poland,
7-11, June 2004.

M.M. Solomon. Algorithms for the Vehicle Routing and Scheduling Problems
with Time Window Constraint. Operations Research, 35(2):254-265, Mar .-
Apr. 1987.

X.Q@. Sun, J.S. Noble, and C.M. Klein. Single-Machine Scheduling with
Sequence Dependent Setup to Minimize Total Weighted Squared Tardiness.
IIE Transactions, 31(2):113-124, Feb. 1999.

R.H. Suriyaarachchi and A. Wirth. Earliness/Tardiness Scheduling with a
Common Due Date and Family Setups. Technical Report, School of Com-
puting and Information Technology, University of Western Sydney, 2003.

G. Syswerda. Uniform Crossover in Genetic Algorithms. In Proceedings of
the Third International Conferences on Genetic Algorithms, pages 2-9, San

Francisco, CA, USA, 1989. Morgan Kaufmann Publishers.

G. Syswerda. Schedule Optimization Using Genetic Algorithms. In L. Davis,
editor, Handbook of Genetic Algorithms, pages 332-349, New York, 1991.
Van Nostrand Reinhold.

REFERENCES

1263]

1264]

265]

[266]

1267]

[268]

269]

[270]

[271]

272]

276

R. Tanese. Distributed Genetic Algorithms. In Proceedings of the Third
International Conferences on Genetic Algorithms, pages 434-439, San Fran-

cisco, CA, USA, 1989. Morgan Kaufmann Publishers.

M. Tomassini. A Survey of Genetic Algorithms. In D. Stauffer, editor, An-
nual Reviews of Computational Physics, volume 111, pages 87-118, Singapore,

1995. World Scientific.

C.A. Tovey. Tutorial on Computational Complexity. Interfaces, 32(3):30-61,
May-June 2002.

TSPLIB. Website. http://www.iwr.uni-
heidelberg.de/groups/comopt /soft /TSPLIB95/TSPLIB.html, last accessed

04,07 /05.

S. Tsubakitani and J.R. Evans. Optimizing Tabu List Size for the Traveling
Salesman Problem. Computers & Operations Research, 25(2):91-97, 1998.

R.J.M. Vaessens, E.H.L. Aarts, and J.K. Lenstra. Job Shop Scheduling by
Local Search. INFORMS Journal of Computing, 8:302-317, 1996.

F. Vanderbeck. Computational Study of a Column Generation Algorithm
for Bin Packing and Cutting Stock Problems. Mathematical Programming,

86(3):565-594, Dec. 1999.

VLSI TSP. Website. http://www.tsp.gatech.edu/vlsi/index.html, last ac-
cessed 04/07/05.

S. Vo3, S. Martello, I.H. Osman, and editors C. Roucairol. Meta-Heuristics:
Advances and Trends in Local Search Paradigms for Optimization. Kluwer

Academic Publishers, Boston, MA., 1999.

C. Voudouris and E. Tsang. Guided Local Search and its Application to the
Traveling Salesman Problem. FEuropean Journal of Operational Research,

113:469-499, 1999.

REFERENCES 277

273

274

275]

276]

277)

[278]

279

1280]

D. Wang, M. Gen, and R. Cheng. Scheduling Grouped Jobs on Single
Machine with Genetic Algorithm. Computer and Industrial Engineering,

36:309-324, 1999.

G. Wascher, H. HauBiner, and H. Schumann. An Improved Typology of
Cutting and Packing Problems. Working Paper: No. 24. Otto von Guericke
University, last revision: 17th May 2005.

S. Webster and K.R. Baker. Scheduling Groups of Jobs on a Single Machine.
Operations Research, 43(4):692-703, 1995.

S. Webster, P.D. Jog, and A. Gupta. A Genetic Algorithm for Scheduling Job
Families on a Single Machine with Arbitrary Earliness/Tardiness Penalties
and an unrestricted common Due Date. International Journal of Production

Research, 36(9):2543-2551, 1998.

D. Whitley. A Genetic Algorithm Tutorial. Statistic and Computing, 4:65-
85, 1994.

D. Whitley, T Starkweather, and D. Fuquay. Scheduling Problems and Trav-
eling Salesman: The Genetic Edge Recombination Operator. In Proceedings
of the Third International Conferences on Genetic Algorithms, pages 133—
140, San Francisco, CA, USA, 1989. Morgan Kaufmann Publishers.

D. Whitley and J.P. Watson. Complexity Theory and the No Free Lunch
Theorem. In E.K. Burke and G.Kendall, editors, Search Methodologies. In-
troductory Tutorials in Optimization and Decision Support Techniques, pages

317-339, New York, USA, 2005. Springer.

G. Whitwell. Novel Heuristic and Metaheuristic Approaches to Cutting and
Packing. PhD thesis, School of Computer Science and Information Technol-

ogy, University of Nottingham, September 2004.

REFERENCES 278

[281]

282]

283]

[284]

[286]

L 3

[287]

288]

D. Williams and A. Wirth. A New Heuristic for a Single Machine Schedul-
ing Problem with Set-Up Times. The Journal of the Operational Research
Society, 47(1):175-180, Jan. 1996.

G.J. Woeginger. A Polynomial-Time Approximation Scheme for Single-
Machine Sequencing with Delivery Times and Sequence-Independent Batch

Set-Up Times. Journal of Scheduling, 1:79-87, 1998.

World TSP. Website. http://www.tsp.gatech.edu/world/index.html, last
accessed 04/07/05.

M. Yamamura, I. Ono, and S. Kobayashi. Character-Preserving Genetic
Algorithm for Traveling Salesman Problem. Journal of Japanese Society for

Artificial Intelligence, 6:1049-1059, 1992. (in Japanese).

i CH. Yang and K.E. Nygard. The Effect of Initial Population in Genetic

Search for Time Constrained Traveling Salesman Problem. In Proceedings of
the 19983 ACM Conference on Computer Science, pages 378-383, Indianapo-
lis, Indiana, US, 1993. ACM, ACM Press, New York.

W.H. Yahg and G.J. Liao. Survey of Scheduling Research Involving Setup
Times. International Journal of System Science, 30(2):143-155, 1999.

S. Zdrzatka. Approximation Algorithms for Single Machine Sequencing with
Delivery Times and Unit Batch Setup Times. Furopean Jouwrnal of Opera-
tional Research, 51:199-209, 1991.

S. Zdrzatka. Analysis of Approximation Algorithms for Single-Machine
Scheduling with Delivery Times and Sequence Independent Batch Setup
Times. Furopean Journal of Operational Research, 80:371-380, 1995.

	Thesis-copyright-declaration-text-4 (2)
	00321961

