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The usual strategy within a genetic algorithm (GA) is to generate a pair of offspring 
during crossover. We hypothesise that generating multiple offspring during the 
crossover can improve the performance of a GA. This thesis reports on the devel­
opment and evaluation of a new strain of GA, called the MultiCrossover Genetic 
Algorithms (MXGAs) for solving combinatorial optimisation problems (COPs) to 
investigate this hypothesis, The MXGA utilises a multicrossover operator that 
uses a simple yet effective standard crossover strategy to generate offspring, The 
proposed multicrossover first generates a candidate list of temporary offspring from 
a pair of selected parents through repeated applications of the proposed crossover 
strategy. Two distinct temporary offspring are generated each time the strategy is 
executed. The best and a selected temporary offspring are then chosen to be the 
offspring for the current generation. Various techniques are also introduced into 
the MXGA to further enhance the solution quality. 

In this thesis, MXGAs are applied to three specific variants of COPs: single 
machine family scheduling problem, non-oriented two-dimensional rectangular sin­
gle bin size bin packing problem with due dates, and symmetric travelling salesman 
problem with due dates. These problems are motivated by the dilemma faced by 
the manufacturing organisations which involves the trade-off between the man­
ufacturer's efficiency and customers' satisfaction. The common characteristic of 
the problems studied is the inclusion of the customers' due dates. Schemes for 
obtaining a lower bound on the maximum lateness for the problems studied are 
also introduced. Extensive computational experiments are carried out to assess 
the effectiveness of the MXGAs compared to other local search methods such as 
tabu search, steepest descent and a standard genetic algorithm. 
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Chapter 1 

Introduction 

101 Background 

Combinatorial Optimisation Problems (COPs) appear in many diverse areas such 

as resource allocation, scheduling, cutting and packing, sequencing, and routing. 

The objective is that of assigning value to a set of decision variables such that a 

function of these variables is optimised (minimised or maximised), perhaps in the 

presence of some constraints. 

A class of problems of particular interest in COPs is that of the' hard' problems. 

It is often easy to find a feasible solution to these type of problems. However, it 

is usually quite difficult to find a good solution as the solution space for all the 

feasible solutions is very large. This class includes problems famous for their 

difficulty such as the Machine Scheduling Problems (MSPs), Cutting and Packing 

(C&P) Problems, and the Travelling Salesman Problem (TSP). 

COPs occur in many more areas of our lives than we might initially expect. For 

instance, scheduling course assignments to be completed based on their deadlines, 

placing clothes into a suitcase or shopping for daily groceries in a huge market. In 

this research, we focus on the business and industrial applications of the problems. 

We study specific problem variants of the three different areas of COPs mentioned 

above. Specifically these are: single machine family scheduling problem, non-

1 



CHAPTER 1 2 

oriented two-dimensional rectangular single bin size bin packing problem with due 

dates, and symmetric travelling salesman problem with due dates. 

The study of MSPs dates back to 1950s (e.g. Jackson [156] and Smith [256]). 

In general, a MSP is concerned with the allocation of scarce resources to activities 

with the objective of optimising one or more performance measures. Resources 

may be machines in an assembly plant, runways at an airport, nurses in a hospi­

tal, etc. Activities may be various operations in a manufacturing process, landings 

and take-offs at an airport, duties of nurses in a hospital, etc. There are also many 

different performance measures to optimise. One objective might be the minimisa­

tion of the maximum lateness, while another objective may be minimisation of the 

mean completion time. As in the examples given above, real world applications of 

the MSPs arise in the process industry, airline industry, hospital, etc. For some 

latest surveys on the real world applications, see the collection of Leung [185]. 

Although C&P has been studied since the mid-fifties, Gilmore and Gomory's 

articles in the 1960s ([112, 113, 114]) are the first to present techniques which could 

be practically applied to medium size real-world problems. C&P is concerned with 

finding a good arrangement of multiple small items in one or more larger objects. 

The usual objective of the allocation process is aimed at maximising the utilisation 

of the larger objects (and therefore minimising the wastage), or maximising the 

value of the small items packed. The C&P problems are encountered in many real­

world applications such as wood, glass, metal and textile industries, newspaper 

paging and cargo loading. High material utilisation is of particular interest to 

industries with mass-production, since small improvements in utilisation can result 

in large savings of material and considerable reduction of the production cost. 

The general form of the TSP was first stated by Karl Menger in 1930s, but 

it is not until 1954 when the first mathematical formulation for the TSP appears 

courtesy of Dantzig et al. [63]. A TSP specifies a number of cities and the distance 

between any pair of cities. The objective is to find the shortest round trip visiting 

each city exactly once. Although transportation applications are the most natu­

ral setting for the TSP, the simplicity of the model has led to many interesting 
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applications in other areas. Example include, computer wiring on circuit boards 

(Lenstra and Rinnooy Kan [183]), X-ray crystallography (Bland and Shallcross 

[33]), and hole drilling on metal sheets (Reinelt [241]). 

From the theoretical point of view, it is possible to calculate the value of all 

the feasible solutions and select the best for all these problems. This strategy is 

best known as complete enumeration. However, from a practical point of view, 

sometimes it is impossible to follow such a strategy especially with large problems. 

In many cases, the number of feasible solutions grows exponentially as the problem 

size increases. For instance, a symmetric version of the TSP with 25 cities will 

contain over 3 x 1023 feasible solutions. As the problem size increases, the number 

of feasible solutions will increase exponentially. For a problem with 50 cities, there 

exist over 3 x 1062 feasible solutions! Clearly for problems over a certain size, it 

is impossible to follow a strategy of complete enumeration. It is in this situation 

that methods known as heuristics are used. 

Heuristics seek good feasible solutions to COPs in circumstances where the 

complexity of the problem or the limited time available for its solution do not 

allow complete enumeration. A heuristic is a technique which seeks good solutions 

at a reasonable computational cost. However, a heuristic is not guaranteed to find 

the best solution. In fact, many heuristics give no guarantee on solution quality. 

Moreover, heuristics are often domain specific in that they are designed to deal 

with the needs of a specific problem. 

To deal with these shortcomings, there has been increasing interest in tech­

niques that have a more generic structure. In particular, local search methods 

and metaheuristics have become widely used. A local search technique can be 

summarized as an iterative search procedure. It starts from an initial feasible 

solution from the search space and then improves it by applying a series of local 

modifications until a local optimum is found. Metaheuristics provide a way of con­

siderably improving the performance of simple heuristic procedures. The search 

strategies proposed by metaheuristic methodologies result in iterative procedures 

with the ability to search the solution space effectively. 
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1.2 Motivations, Objectives and Aims 

In the last two decades, we have seen dramatic changes of the conditions under 

which manufacturing organisations have to operate and the objectives they have 

to meet. Next to efficiency, quality and delivery reliability have become key per­

formance criteria. In particular, the ability to cut manufacturing lead times and to 

meet tight due dates determines a company's competitive position. For instance, 

one of the most common scheduling problems in batch production involves the 

trade-off between the machine efficiency and meeting customers' due dates. On 

one hand, scheduling large batches means that relatively little time is spent in set 

up (e.g. obtaining and returning tools, inspecting material, time for cooling, etc.) 

and by doing so, machine efficiency is high. However, long runs on a given batch 

of jobs, may mean that due dates for other jobs are missed. On the other hand, 

scheduling jobs based on priority of customers' due dates result in shorter runs 

which also mean a large amount of setup time is incurred. As a result, capac­

ity may become inadequate to meet the demand on time. This problem becomes 

particularly difficult when the setup time between jobs from a different batch is 

significant. 

The problems studied in this thesis are mainly motivated by the dilemma faced 

by the manufacturing organisations as mentioned above which involves the trade­

off between the manufacturer's efficiency and customers' satisfaction. An efficient 

way of dealing with the problem needs to be developed to achieve a balance between 

these performance measures. With this in mind, we investigate three specific 

variant of hard problems mentioned in the previous section where the common 

interest between the problems to be solved is the inclusion of the customers' due 

dates. We solve the problems using some well-known local search methods with a 

particular focus on Genetic Algorithms (GAs). 

One of the main objectives of this research is to develop a general framework 

for our proposed MultiCrossover Genetic Algorithms (MXGAs) for solving the 

problems. The proposed MXGA utilises a multicrossover operator that uses a 
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simple yet effective standard crossover strategy to generate offspring. Every time 

the proposed crossover strategy is executed, two temporary offspring are gener­

ated from the selected parents. The main feature of the multicrossover is that 

it first generates a candidate list of valid temporary offspring from a pair of se­

lected parents through repeated applications of the proposed crossover strategy. 

Then, the best and a selected temporary offspring (using the probabilistic binary 

tournament selection mechanism) are chosen to be the offspring for the current 

generation. Various techniques will also be introduced into the proposed MXGA 

to further enhance the solution quality when compared with other local search 

methods. Detailed descriptions of the framework will be given in Section 4.9. 

For the remainder of this section, we describe briefly the problems to be solved 

in this thesis. Detailed descriptions of the problems will be given in Chapter 5-7. 

The Single Machine Family Scheduling Problem (SMFSP) is a scheduling prob­

lem in which a set of jobs that are partitioned into groups, called families, and 

processed by a single machine. Each job has a processing time on the machine and 

a due date by which it should ideally be completed. A setup time is required at 

the start of the schedule and also when the next job is from a different family. If 

a job is not completed on time, a cost is associated for each time period it is late. 

The objective is to minimise the maximum cost caused by late jobs. 

The classical Two-Dimensional Bin Packing Problem (2DBPP) refers to the 

problem of packing a set of small two-dimensional items into one or more larger 

objects (i.e. bins). In this study, the small items are constrained to be rectan­

gular and may be rotated by 900
• The bins are also rectangular and have fixed 

dimensions. We refer to this problem type as the non-oriented Two-Dimensional 

Rectangular Single Bin Size Bin Packing Problem (2DRSBSBPP). Each rectangle 

is placed into a bin without creating overlapping between the rectangles that have 

already been packed in the bin or overflowing the bin. The objective is to minimise 

the number of bins used to pack all the rectangles. 
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We consider a logical extension to the problem where each rectangle has a due 

date and each bin has a fixed processing time. This extension has practical applica­

tions in the wood and metal industries. In the metal industry for instance, suppose 

that the bins used in the problem are the metal sheets with fixed dimensions, and 

the rectangles placed in a bin are the rectangular shapes to be cut from a metal 

sheet. Each metal sheet requires a fixed processing time on a cutting machine to 

cut all the shapes. As each rectangular shape has a due date, metal sheets which 

contain shapes with small due dates are ideally cut earlier. On the other hand, by 

mixing the shapes with different due dates might increased the packing efficiency 

if the shapes with different due dates can be use to fill in the gaps between the 

shapes on the metal sheets. However, this approach may result in missing the due 

dates of the shape with small due dates. If a shape is not completed on time, a 

cost is associated for each time period it is late. The objective is to minimise the 

maximum cost caused by the lateness and the number of bins used. 

The classical TSP specifies a number of cities and the distance between any pair 

of cities. The objective is to find the shortest round trip visiting each city exactly 

once. The TSP is symmetric if the distance between two cities is the same in both 

directions; otherwise it is asymmetric. We study an extension to the TSP where 

each city has a due date by which it should ideally be visited. This extension has 

important practical applications in bank or postal deliveries, school bus routing, 

etc. If a city is not visited on time, a cost is associated for each time period it is 

late. The objective is to minimise the maximum cost caused by the late visit and 

the shortest round trip of visiting each city exactly once. 

1.3 Overview of the Thesis 

The remainder of the thesis is organised as follows. Chapter 2 gives a brief intro­

duction to COPs and the techniques, both exact and heuristic, that can be applied 

to solve them. We also describe some of the widely used local search methods in 

their basic form in Chapter 2. In Chapter 3, we introduce the MSPs, C&P and 
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TSP in more details. Some basic concepts of bicriteria objective function are in­

troduced. We present a typology of MSP and a lower bounding scheme for a 

SMFSP with family setup times. Typologies of C&P are also given in Chapter 3. 

vVe discuss some of the well-known approaches, both exact and heuristic, that can 

be used to solve the 2DRSBSBPP. We also present the lower bounds for 2DRS­

BSBPP in both oriented and non-oriented cases. The remainder of Chapter 3 

concentrates on reviewing some of the well-known heuristic and exact approaches 

used in solving the symmetric and asymmetric version of TSP. Chapter 4 gives 

detailed descriptions of the main components in a Standard GA (SGA) and the 

proposed MXGA. We address each main component of the SGA by giving brief 

summaries for the approaches used in each component. The general framework of 

the MXGA is then discussed in detail in the remainder of the chapter. 

The next three chapters give accounts of MXGAs applied to the problems 

studied. The proposed MXGA for each problem is based on the general frame­

work suggested in Chapter 4. The performance of the MXGAs is experimentally 

evaluated on standard and benchmark instances of these problems. Extensive 

computational comparisons are also conducted using some of the well-known local 

search algorithms such as tabu search (TS), steepest descent method (SDM) and 

SGA. For each problem, a substantial amount of effort has also been put into the 

developments of the TS and SDM to further improve the solution quality. 

Chapter 5 tackles the SMFSP with the objective of minimising the maximum 

lateness of the jobs with the presence of the family setup times. We give a general 

introduction to the problem and review some approaches used for solving them. 

To the best of our knowledge, no research has been carried out on the application 

of the genetic algorithm for this specific problem type. Some variations of the 

MXGA, TS and SDM are investigated, and all experimental results are presented. 

Chapter 6 concentrates on the non-oriented 2DRSBSBPP. We develop a new 

heuristic placement routine, called Lowest Gap Fill (LGF), that is effective in 

filling the gaps in a partial layout by dynamically selecting the best rectangle 

for placement. We compare the LGF placement routine with some well known 
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heuristics reported in the literature. A new variant of the 2DRSBSBPP, called 

2DRSBSBPP with due date is introduced, where each rectangle has a due date 

and each bin has a fixed processing time. The objective is minimising the maximum 

lateness of the rectangles by packing them, without overlapping, and minimising 

the number of bins. We also derive a lower bounding scheme for the maximum 

lateness of the problem. 

In Chapter 7, we study a new variant of the symmetric version of the time­

constrained TSP, called the Symmetric TSP with due dates (STSPDD), where 

each city has a due date. The objective is to minimise the maximum lateness and 

the total tour length of the cities to be visited. We give a brief introduction to the 

time-constrained TSP and review some approaches used for the TSP with time 

windows. A lower bounding scheme for the maximum lateness of the STSPDD is 

derived. 

The thesis concludes with Chapter 8 where the work on MXGAs are sum­

marised and comments are given on some possible extensions for future work. 



Chapter 2 

Search and Optimisation 

Techniques 

2 .1 Introduction 

In this chapter, we present some of the well-known search and optimisation tech­

niques used for solving combinatorial optimisation problems. A combinatorial 

optimisation problem can be described as the search for a feasible solution with 

the best objective function value from a finite set of feasible solutions that op­

timises (minimises or maximises) a given objective function. The best objective 

function value is the smallest objective function value for a minimisation problem 

and the largest for a maximisation problem. 

Search and optimisation techniques are too wide to cover in one chapter and 

are beyond the scope of this thesis. Therefore we only concentrate on some of 

the well-known techniques in their basic form from the literature. In Section 2.2, 

we introduce the concept of complexity theory. Section 2.3 gives brief overviews 

on two well-known exact approaches used for solving combinatorial optimisation 

problems: branch and bound and dynamic programming. To end this chapter, 

we introduce the ideas of heuristics and metaheuristics in Section 2.4, and present 

some of the widely used local search methods in their basic form in Section 2.5. 

9 
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2.2 Complexity Theory 

Complexity theory is part of the theory of computation dealing with the resources 

required during computation to solve a given problem. The most common re­

sources are time (how many steps it takes to solve a problem) and space (how 

much memory it takes). In this section, we concentrate on the time complexity 

theory. The definitions, as well as most of the theory presented in this section, are 

extracted from Tovey [265] and Whitley and Watson [279]. Detailed descriptions 

can be found in Garey and Johnson [108], Papadimitriou [226] and Sipser [254]. 

The time complexity of a problem is the number of steps that it takes to 

solve an instance of the problem as a function of the size of the input length, 

using the most efficient algorithm. More formally, we use the Big-O notation: 

'O(p (input length))', where p is a function of the input length. For example, 

consider an instance of size n which can be solved in n 2 steps using an algorithm. 

We say the algorithm requires O(n2 ) time. Note that this function expresses the 

worst-case scenario of the problem at sufficiently large sizes. Suppose an algorithm 

solves a problem of size n in at most 2n3 + 9n2 + 99 steps. For such function, we 

are concerned in the rate of growth as n increases exponentially. Therefore, the 

difference between 2n3 and n 3 are not important. We can also discard the lower 

order terms, as at large sizes it is the highest degree that determines the rate of 

growth. Thus, we say this algorithm requires O(n3
) time. 

The idea of complexity theory is that of classifying problems into two main 

classes, namely P and NP. The problem class P is the set of problems that can 

be solved by a deterministic Turing machine in polynomial time. A deterministic 

Turing machine is a mathematical model of an algorithm. This class corresponds 

to the problems which can be effectively solved in the worst case. The problem 

class NP is the set of problems that can be solved by a non-deterministic Turing 

machine in polynomial time. This class contains problems that people would 

like to be able to solve effectively such as the Boolean Satisfiability Problem and 

Travelling Salesman Problem (TSP). 
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It is clear that P <:;;; NP, and P i= NP is a widely believed conjecture although 

no proof has been established to date. Further research has gained insight into 

the class NP by dividing the class into subclasses. NP-complete class is a 

subclass of NP which has a property that all NP problems can be reduced to the 

NP-complete problem in polynomial time. In other words, a decision problem 

(i.e. problem where the answer is either 'YES' or 'NO') is called NP-complete if it 

is polynomially equivalent to the satisfiability problem, which is proved by Stephen 

Cook in 1971 to be NP-complete. More formally, a problem R is NP-complete 

if: (1) R E NP and (2) R is NP-hard. The term NP-hard is used to describe 

the corresponding optimisation problem of a NP-complete decision problem. The 

significance of the class NP-complete is explained below. If problem A can be 

reduced to problem B in polynomial time and a polynomial algorithm for solving 

problem B is found, then problem A is also solved in polynomial time. This mean 

that if a polynomial time algorithm is found for any NP-complete problem then 

all problems in the class NP can be solved in polynomial time, and therefore 

P = NP. If, as believed, P i= NP, then it has been shown that there must exists 

problems that are neither in P nor NP-complete (see Figure 2.1). 

Figure 2.1: A simple diagram of P and NP (Tovey [265]) 

NP-hard 

The NP-hardness of a problem suggests that it is impossible to find an opti­

mal solution without the use of an essentially enumerative algorithm, for which 

computation times will increase exponentially with problem size. For this reason, 

heuristic methods have been developed to obtain good solutions for large prob­

lems in a reasonable amount of time. There is clearly a tradeoff between the 

computational investment in obtaining a solution and the quality of that solution. 
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2.3 Exact Approaches 

We introduce the basics of branch and bound and dynamic programming with the 

help of Denardo [70] and Dowsland [77]. 

2.3.1 Branch and Bound 

The origins of the Branch and Bound (B&B) idea go back to the work of Dantzig 

et al. [63] on the TSP in 1954. Four years later, Eastman [85] developed the first 

B&B algorithm based on a subtour elimination scheme. However, the term' branch 

and bound' itself was coined by Little et al. [191] in conjunction with their TSP 

algorithm in 1963. Many such procedures have since been proposed. 

The main idea of a B&B approach is to partition the feasible solutions into 

disjoint sets, each belonging to a branch of a tree, and then bound the cost of each 

set in order to restrict the search to an optimal solution. The rationale behind the 

B&B is to reduce the size of the feasible solutions that need to be considered by 

repeatedly partitioning the problem into a set of smaller subproblems. Suppose 

we are dealing with a minimisation problem. By calculating a lower bound on the 

objective function values in a set, and if it is equal or worse than the best objective 

function value found so far, the optimal solution of the problem cannot lie in the 

subset and the subset is referred to as fathomed. No further work needs to be done 

on a fathomed subset. 

The search of subset can be represented as a tree. The set of all feasible 

solutions is represented by the first node (i.e. root of the tree). The disjoint subsets 

are also represented as nodes, joined by edges to the first node. At each node, a 

lower bound is calculated and a decision is made either to partition the node further 

forming new nodes or to fathom the node. The sets of solutions represented by 

the nodes become smaller at each successive level of the tree. At the final level, 

each node represents a single solution. The algorithm terminates when all nodes 

are fathomed and the node with the best upper bound gives the optimal solution. 
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The efficiency of a B&B approach relies on the quality of the bounds and the 

search strategy used. It is usually worth deriving bounds that are as tight as pos­

sible. In the case of lower bounds, this is often achieved by exploiting as much 

information about the problem as possible. The tighter the lower bound at a node, 

the greater the chance of the node being fathomed. Sometime, an upper bound 

is also used in conjunction with the best objective function value found so far to 

prune the tree. In some cases, a problem may become easy to solve if some of the 

constraints are removed. This is a process known as relaxation and the solution 

to the relaxed problem often provides a valid bound to the solution of the original 

problem. Two common search strategies used in B&B in solving the combinato­

rial optimisation problem are known as depth-first search and breadth-first search. 

Detailed descriptions of the branching schemes can be found in Dowsland [77]. 

2.3.2 Dynamic Programming 

Dynamic Programming (DP) was first introduced by Richard Bellman in 1953. 

The essence of DP is Bellman's Principle of Optimality [28] which states that: 

"An optimal policy has the property that whatever the initial state and 

the initial decisions are, the remaining decisions must constitute an 

optimal policy with regard to the state resulting from the first decision." 

Similar to B&B algorithm, DP is a procedure that solves combinatorial opti­

misation problems by breaking down into subproblems. The method hinges on 

the ability to break the problem down into stages, which enable the subproblems 

in each stage to be solved by an efficient recursive algorithm from the solutions in 

the previous stage. 

Any DP implementation has four main ingredients: stages, state, decisions and 

policies. At each stage, for each feasible state, a decision is make on how to 

achieve the next stage. The decisions are then combined into subpolicies that are 

themselves combined into an overall optimal policy. Stages are often referred to 
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the time periods from the start or end of the planning horizon, or in terms of 

expanding subsets of variables that may be included at each stage. States are 

commonly defined as the amount of produce in stock or yet to be produced, the 

size or capacity of an entity such as a stock sheet, container, or the destination 

already reached in a TSP. Depending on the level of complexity, DPs have been 

classified into four categories: deterministic, stochastic, adaptive and residual. 

2.4 Heuristics and Metaheuristics 

The basic concept of heuristic was first introduced by Polya [231] in 1945. This 

term is derived from the Greek word (heuriskein' meaning to find or discover. 

Reeves and Beasley [240] give the following definition: 

"A heuristic is a technique which seeks good (i. e. near optimal) solu­

tions at a reasonable computational cost without being able to guarantee 

either feasibility or optimality or even in many cases to state how close 

to optimality a particular feasible solution is." 

Heuristic procedures can be divided into four basic strategies based on the 

classification given by Foulds [103]. Many heuristics comprise a combination of 

more than one of these strategies: 

• construction strategy: begins with a partial solution and successively add 

new elements which are likely to be valuable parts for the final solution. This 

strategy is useful when it is relatively difficult to generate feasible solutions 

to the problem. 

• improvement strategy: begins with a sub-optimal solution and progressively 

seek improvement via a series of modifications. This strategy is useful when 

it is relatively easy to generate starting solutions. 

• component analysis strategy: divides the problem into component parts. 

Each component part is optimised through a heuristic or even algorithm and 

then recompiled in a beneficial way. 
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III learning strategy: uses a tree-search diagram similar to B&B approach to 

chart the progress. The choice of which branch to take is guided by learning 

from the outcome of earlier decisions. 

The inability of the classical heuristics to continue the search upon becoming 

trapped in a local optimum leads to the consideration of techniques for guiding 

known heuristics to overcome local optimality. One might investigate the applica­

tion of metaheuristics for solving optimisation problems. 

:tvIetaheuristics provide a way of considerably improving the performance of 

simple heuristic procedures. The search strategies proposed by metaheuristic result 

in iterative procedures with the ability to escape local optimal points. As such local 

optima often differ considerably in value from the global optimum, particularly if 

there are many. The practical impact of metaheuristics has been immense. 

The term metaheuristic was coined by Fred Glover [116] in 1986 and has became 

widely applied in the literature. The formal definition of metaheuristics is based 

on a variety of definitions from different authors. Following Glover and Laguna 

[120]: 

"A metaheuristic refers to a master strategy that guides and modifies 

other heuristics to produce solutions beyond those that are normally 

generated in a quest for local optimality." 

The following definition was given in Osman and Kelly [222] in 1996: 

"A metaheuristic is an iterative generation process which guides a sub­

ordinate heuristic by combining intelligently different concepts for ex­

ploring and exploiting the search spaces using learning strategies to 

structure information in order to find efficiently near optimal solu­

tions" 
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The evolution of metaheuristics during the past two decades has taken an 

explosive upturn. Metaheuristics in their modern forms are based on a variety 

of interpretations of what constitutes 'intelligent' search. A number of adaptive 

processes originating from different settings such as psychology (learning), biology 

(evolution), physics (annealing), and neurology (nerve impulses) have served as a 

staring point. 

To summarise, the following definition by VoJ3 et al. [271] seems to be most 

appropriate: 

"A metaheuristic is an iterative master process that guides and modifies 

the operations of subordinate heuristics to efficiently produce high qual­

ity solutions. It may manipulate a complete (or incomplete) single so­

lution or a collection of solutions at each iteration. The subordinate 

heuristics may be high (or low) level procedures, a simple local search, 

or just a construction method. The family of metaheuristics includes, 

but is not limited to, adaptive memory procedures, tabu search, ant sys­

tems, greedy randomised adaptive search, variable neighborhood search, 

evolutionary methods, genetic algorithms, scatter search, neural net­

works, simulated annealing, and their hybrids. )) 

2.5 Local Search Methods 

A Local Search (LS) method can be summarized as an iterative search procedure. 

It starts from an initial feasible solution from the search space and then improves 

it by applying a series of local modifications until a local optimum is found. In 

other words, during the search a set of neighbouring solutions, N(i), in the search 

space is defined for each feasible solution i, and the next solution j is searched 

among the solutions in N(i). A neighbouring solution is generated using some 

suitable mechanism with some acceptance rule to decide on whether to replace the 

current solution. 
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The acceptance rule used in a L8 method is usually dependent on a comparison 

of objective function values between the current solution and its neighbouring 

solution. If the former is larger (for a minimisation problem), then we consider 

the neighbour solution as an improving move. But if the latter is larger, then it is 

a deteriorating move. In the case where both are the same, it is a neutral move. 

Depending on the strategy of choosing solutions from the neighbourhood of 

the current solution and the way in which the stopping criteria are defined, we 

get different L8 methods. For an excellent general survey on L8 methods, see the 

collections of Reeves [238], Aarts and Lenstra [1] and Burke and Kendall [41]. In 

the remainder of this section, we summarise the basics of some of the well-known 

L8 methods. 

2.5.1 Descent Method 

In a Descent Method (DM), only improving moves are allowed. A potential move 

is rejected if it is found to be deteriorating or neutral. The procedure stops when 

no more improving moves can be made. As a result of this limitation, the method 

terminates at a local optimum and is quite often a fairly mediocre solution. Figure 

2.2 shows the structure of a DM. 

Figure 2.2: Algorithm of a Descent Method 
Sl: Choose an initial solution i in S. 
S2: Find a j in N(i) such that f(j) ::::; f(k) for any k E N(i). 
S3: If f(j) ~ f(i) then stop. Else set i = j and go to S2. 

The version of a DM called steepest descent method scans the entire neighbour­

hood of i in search of a neighbour solution j that gives the best f(j) value over 

j E N(i). Due to its greedy nature, steepest descent is sometimes impractical 

because it is computationally too expensive, when N (i) contains many elements 

or each element is too costly to retrieve or evaluate. 
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To allow further exploration after the finding of a local optimum, one can adopt 

an acceptance rule which allows non-improving moves. Consequently, the proce­

dure can escape from a local optimum and continue its search. Some examples of 

procedures that allow deteriorating and neutral moves during search are Simulated 

Annealing (SA) and Tabu Search (TS). 

2.5.2 Tabu Search 

Tabu Search (TS) is a method that was originally proposed by Fred Glover [116] 

in 1986. The word tabu (or taboo) comes from Tongan, a language of Polynesia, 

where it was used by the aborigines of Tonga island to indicate things that cannot 

be touched because they are sacred. 

The basic principle of the TS is to pursue LS whenever it encounters a local op­

timum by allowing non-improving moves. The action of cycling back to previously 

visited solutions is countered by the use of a short term memory function, called 

tabu list which records the recent history of the search. Looking at the procedure, 

one can say that basically TS is an extension of a classical LS. Glover did not 

see TS as a proper heuristic, but rather as a metaheuristic, a general strategy for 

guiding and controlling 'inner' heuristics specifically tailored to solve the problems 

at hand. 

The basic idea of the method is to explore the search space of all feasible 

solutions by a sequence of moves. A move involves jumping from one solution 

to another better solution that is available. However, based on the memory of 

the search history, certain moves may be forbidden or tabu. This might mean not 

permitting the search to return to a recently visited point in the search space or not 

allowing a recent move to be reversed. At each iteration, a best admissible move 

will be selected. A move is called admissible if it is not tabu or if an aspiration 

criterion is fulfilled. These are described in detail in Glover [117, 118] and Glover 

and Laguna [120j. 
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General speaking, a tabu list is a short term memory function in which a fixed 

and fairly limited quantity of information is recorded. The tabu list implicitly 

keeps track of moves. These attributes will be forbidden from being embodied 

in moves selected to be used in at least one subsequent iteration because their 

inclusion might lead back to a previously visited solution. The goal is to permit 

'good' moves in each iteration without revisiting solutions already encountered. 

Tabu lists are sometimes too powerful where they may prohibit attractive 

moves, even when there is no danger of cycling. This may stall the entire search­

ing process. The opportunity for breaking the tabu conditions is defined by the 

aspiration criterion. The aspiration criterion can be considered a device that al­

lows one to revoke a tabu by allowing a move, even if it is tabu, if the action will 

result in a solution with an objective value better than that of the current best 

known solution. Two general aspiration criteria are influence and quality. A move 

is thought to be influential if it substantially changes the structure of the current 

solution, thus moving in to new areas of the solution space. A solution attribute 

is defined as of sufficient quality to break the tabu conditions if it implies a shift 

towards the global optimum. The algorithm of a TS is shown in Figure 2.3. 

Figure 2.3: Algorithm of a Tabu Search 
Generate initial solution 
Loop 

Identify neighbourhood set 
Identify tabu set 
Identify aspiration set 
Choose the best move 
Exit (when goal is satisfied or the stopping criterion is reached) 

End Loop 

Various extensions for the TS have been derived over the years such as the 

diversification and intensification techniques. At initialization, the goal is make a 

coarse examination of the solution space, or better known as 'diversification'. This 

procedure forces the search into previously unexplored areas of the search space 

using a long term memory such as frequency memory. But as candidate locations 

are identified, the search becomes more focused to produce local optimal solutions 
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through the process of 'intensification' using a intermediate term memory such as 

the recency memory. Detailed descriptions on various extensions for the TS can 

be found in Glover [117, 118]. 

2.5.3 Simulated Annealing 

The term Simulated Annealing (SA) is derived from the analogous physical pro­

cess of heating and then slowly cooling a substance to obtain a strong crystalline 

structure. SA is based on an idea that was first published by Metropolis et al. [209] 

in 1953. But interest in SA began 30 years later with the work of Kirkpatrick et 

al. [168] in 1983 and Cerny [45] in 1985 for solving combinatorial optimisation 

problems. They showed that the Metropolis algorithm could be applied to opti­

misation problems by mapping the elements of the physical cooling process onto 

the elements of a combinatorial optimisation problem as shown in Table 2.l. 

Table 2.1: Analogy of Simulated Annealing (Dowsland [75]) 
Thermodynamic Simulation Combinatorial Optimisation 
System states Feasible solutions 
Energy Cost 
Change of state Neighbouring solution 
Temperature Control parameter 
Frozen state Heuristic solution 

The SA process lowers the temperature in slow stages until the system 'freezes' 

and no further changes occur. At each temperature, the simulation must proceed 

long enough for the system to reach a steady state or equilibrium. This is known 

as thermalization. The slower the cooling schedule, the more likely the algorithm 

is to find an optimal or near-optimal solution but with a longer run time. Thus 

effective use of this technique depends on finding a cooling schedule that produces 

good enough solutions without taking excessive time for the problem. 

The idea was that an initial state of a thermodynamic system was chosen at 

energy E and temperature T, holding T constant. Then the initial T configuration 

is perturbed and the change in energy tJ.E, is computed. If the change in energy is 
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negative, the new configuration is accepted. If the change in energy is positive, it 

is accepted with a probability given by the Boltzmann factor e- bol. This process 

is repeated for sufficient times to give a good sampling statistic for the current 

temperature. The temperature is then slowly decremented by some cooling func­

tion C, and the entire process repeated until a frozen state is achieved at T = O. 

Improving and neutral moves are always accepted, while deteriorating moves are 

accepted according to a given probabilistic acceptance function. Good overviews 

of SA and its applications can be found in Dowsland [75] and the SA chapters in 

textbooks edited by Reeves [238], Aarts and Lenstra [1] and Burke and Kendall 

[41]. An algorithm stating SA is given in Figure 2.4. 

Figure 2.4: Algorithm of a Simulated Annealing 

Initialise i to io and T to To 
Loop - Cooling 

Loop - Local Search 
Derive a neighbour, j of i 

6E := E(j) - E(i) 
If 6E < 0 
Then i := j 
Else derive random number 7' E [0,1] 

If r < e-",/ 
Then i:= j 
End If 

End If 
End Loop - Local Search 
Exit (when goal is satisfied or the stopping criterion is reached) 
T= C(T) 

End Loop - Cooling 

2.5.4 Genetic Algorithms 

This subsection gives a brief overview of Genetic Algorithms (GAs) and does not 

cover the whole variety of GAs. Detailed descriptions of GAs can be found in the 

textbooks by Goldberg [121] and Davis [66J and will be discussed in Chapter 4. 

A comprehensive overview of GAs can also be found in Liepins and Hilliard [188J, 
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Beasley et al. [26, 27], Whitley [277], Tomassini [264], Mitchell [212] and Dowsland 

[76]. Moreover, an annotated bibliography is given in Alander [4]. 

GAs were first conceived by John Holland in the 1960s and developed by Hol­

land and his students and colleagues at the University of Michigan in 1970s. This 

led to Holland's book "Adaptation in Natuml and Artificial Systems" [147] pub­

lished in 1975. GA is a part of evolutionary computing. The idea of evolutionary 

computing was first introduced in the 1960s by Ingo Rechenberg in his work' Evo­

lution Stmtegy'. GAs are inspired by Darwin's theory of evolution, based on the 

genetic processes of biological organisms. Over many generations, natural popu­

lations evolve according to the principles of natural selection and 'survival of the 

fittest', as stated by Charles Darwin in "The Origin of Species". By mimicking 

this process, a GA is able to 'evolve' solutions to real world problems, if they have 

been suitably encoded. 

A GA mimics some of the processes of natural evolution and selection. In 

nature, each species must adapt successfully to an ever changing environment in 

order to maximise the likelihood of its survival. The knowledge gained by each 

species is encoded in its chromosomes which will undergo transformation when 

reproduction occurs. Over a period of time, changes to the chromosomes give rise 

to species that are more likely to survive, and so have a greater chance of passing 

their improved characteristics on to future generations. Of course, not all changes 

will be beneficial but those which are not tend to die out. 

Holland's GA attempts to simulate nature's genetic algorithm in the following 

manner. The first step is to represent a feasible solution to a problem with a string 

of genes that can take on some value from a specified finite range or alphabet. 

This string of genes is known as a chromosome (individual). Then, an initial 

population of individuals, each representing a feasible solution to the given problem 

is constructed at random. Each individual is assigned a fitness value according to 

how good a solution to the problem it is. For each generation, the fitness of each 

individual in the population is measured (a high fitness value would indicate a 

better solution compared to a low fitness value). The fitter the individuals, the 
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more likely they are to be selected from the population using a selection mechanism 

to produce offspring for the next generation via a reproduction stage (crossover 

and mutation). These offspring will inherit good characteristics of both parents. 

After many generations of selection for the fitter individuals, the result is hopefully 

a population that is substantially fitter than the original. Figure 2.5 shows the 

structure of a GA. 

Figure 2.5: Algorithm of a Genetic Algorithm 
Sl: [Start] Generate an initial population Ppop , of n chromosomes. 
S2: [Fitness] Evaluate the fitness g(x) of each chromosome x in the population. 
S3: [New Population] Create a new population by repeating the following 

steps until the new population is complete. 
i. [Selection] Select 2 parent chromosomes from a population according 

to their fitness (the fitter, the better chance of being selected). 
ll. [Crossover] With a crossover probability Pc, cross over the parents to 

form 2 new offspring (children). If no crossover was 
performed, the offspring is an exact copy of parents. 

lll. [Mutation] With a mutation probability Pm, mutate new offspring at 
each locus (position in chromosome). 

iv. [Replace] Place new offspring in the new population. 
S4: [Fitness] Evaluate the fitness g(x') of each chromosome x' in the new 

population. 
S5: [Test] If the end condition is satisfied, STOP, and return the fittest solution 

found; otherwise, go to S3. 

2.5.5 Other Local Search Methods 

Scatter Search 

The Scatter Search (SS) was first introduced in 1977 by Fred Glover [115] as 

a heuristic for integer programming. SS is a population based algorithm that 

stores solutions in a set, called the reference set and constructs new solutions by 

combining existing ones. 

Initially, a set of diverse solutions P is constructed. The reference set Ref Set, 

is constructed by extracting adequate solutions from P with quality and diversity 

in mind. With quality, the initial solutions are usually generated from a heuristic 
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procedure. \rVith diversity, the solutions may be generated from different heuristics 

to explore different regions of the solution space. Then, a number of subsets 

of solutions is generated systematically. The solutions of these subsets will be 

combined to generate new solutions that may replace others in Ref Set. In other 

words, new solutions are improved with a local search method before considering 

their inclusion in Ref Set. If a new solution has been added to Ref Set, new subsets 

are generated and the process is repeated, otherwise, the algorithm is terminated. 

More formally, the basic SS algorithm comprises of the following five interacting 

methods which lead to the well-known template published in 1998 by Glover [119]: 

1. Diversification Generation Method. 

2. Improvement Method. 

3. Reference Set Update Method. 

4. Subset Generation Method. 

5. Solution Combination Method. 

This template has served as the main reference for most of the SS implementations 

to date. An excellent introduction to the principles of SS is given in Marti et 

al. [204]. The book by Laguna and Marti [174] covers standard implementations 

of both basic and advanced SS designs. 

Greedy Randomised Adaptive Search Procedures - GRASP 

GRASP is a multistart or iterative procedure where each GRASP iteration con­

sists of two phases: a construction phase and a local search phase. It was first 

proposed by Feo and Resende [93] in 1989. The construction phase is essentially a 

randomised greedy algorithm where a feasible solution is iteratively constructed, 

one element at a time. The construction phase is therefore capable of producing a 

diverse set of starting solutions for the local search. The local search phase in the 

basic GRASP is a simple descent algorithm that finds local optima. The under­

lying principle is to investigate many good starting solutions through the greedy 

procedure and thereby increase the possibility of finding a good local optimum on 

at least one starting solution. 
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The basic GRASP construction phase is similar to the semi-greedy heuristic 

introduced by Hart and Shogan [140]. At each construction iteration, a candidate 

list is formed, which lists all of the candidate elements which can be added to the 

current partial solution in order of their myopic benefit with respect to a greedy 

function. One element is chosen randomly from the candidate list to be added to 

the partial solution. The heuristic is adaptive because the benefits associated with 

every element are updated at each iteration of the construction phase to reflect 

the changes due to the selection of the previous element. Comprehensive reviews 

on the extensions and applications of GRASP can be found in Feo and Resende 

[94] and Resende [243]. 

Ant Colony Optimisation 

The Ant Colony Optimisation (ACO) algorithm was first introduced by Marco 

Dorigo [73] in his thesis in 1992. It was inspired by the behavior of ants in finding 

paths from the nest to food. We refer to Dorigo et al. [74] for an overview of the 

recent work on ACO. 

In the real world, ants will first wander around randomly. The ants communi­

cate information about a path using pheromone trails. Ants deposit the pheromone 

on the ground while walking from food source to the nest and vice versa. If other 

ants find such a path, they are unlikely to keep wandering around at random, 

but will instead follow the trail marked by the strong pheromone concentration; 

returning and reinforcing the trail with its own pheromone if they eventually find 

food. The pheromone trail allows the ants to find their way back to the food source 

(or to the nest). 

However, the pheromone trail evaporates over time, thus reducing its 'attrac­

tive' strength. The longer it takes for an ant to travel down the path and return 

again, the more time the pheromones evaporate. On the other hand, a shorter 

path gets marched over faster. Thus, the pheromone density remains high as it is 

laid on the path as fast as it evaporates. 
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As a result, when one ant finds a good (i.e. short) path from the nest to a food 

source, other ants are more than likely to follow that path, and positive feedback 

eventually causes all the ants to follow a single path. The idea of the basic ACO 

is to mimic this behavior with 'artificial ants' walking around the graph which 

represents the problem to be solved. 

Variable Neighborhood Search 

Variable Neighborhood Search (VNS) was first proposed by Mladenovic and Hansen 

[213] in 1997. They examine the idea of systematically changing the neighbour­

hoods within a local search algorithm. VNS explores increasingly distant neigh­

bourhoods of the current solution, and moves from there to a new one as long 

as improvements are found. This algorithm is simple yet effective and can be 

implemented easily using any local search method as the inner heuristic. 

Initially, a set of neighbourhood structures N k , k = I, ... ,kmax , is selected ran­

domly. Then, starting from the first neighbourhood (k := 1), an initial solution 

(current solution) is randomly generated and a local optimum is obtained by ap­

plying some local search method (e.g. descent method). The initial solution is 

generated at random in order to avoid cycling. The current solution is updated if 

a better solution is obtained and the search continues at k := 1; otherwise, proceed 

to k := k + 1. The process is repeated until a stopping criterion is reached. 

Various extensions have been derived over the years. A series of comprehensive 

reviews on the principles and applications of the VNS can be found in Hansen and 

Mladenovic [134, 135, 136, 137, 138]. 

Iterated Local Search 

Iterated Local Search (ILS) is a simple but effective procedure to explore multiple 

local optima, which can be implemented in any type of local search algorithm. A 

detailed description of the lLS and its applications can be found in Lourengo et 

al. [199]. 
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Under the basic form of ILS, the next starting solution is obtained from the 

current local optimum by applying a pre-specified type of random move to it. We 

refer to such a move as a perturbation. Starting from an initial current solution, 

a local search algorithm is applied to find a new current solution which is a local 

optimum. Having decided on a current solution, a perturbation is applied. If the 

solution leading from the perturbation fails the acceptance test, it will be rejected. 

In this case, another perturbation is executed, and the process is repeated until 

the perturbation is accepted. Then, when a local optimum is found, the entire 

procedure is repeated until a stopping criterion is reached. 
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Combinatorial Optimisation 

Problems Studied 

3.1 Introduction 

In this chapter, we study the three combinatorial optimisation problems mentioned 

in Chapter 1 in more detail. In Section 3.2, we introduce the basic concepts of 

bicriteria objective function. In Section 3.3, we give a general introduction to 

the machine scheduling problem and discuss a typology to the problem. VVe also 

present a lower bounding scheme for a single machine family scheduling problem 

with setup times in Section 3.3.2 which subsequently becomes the lower bound we 

employ for the computational experiments in Chapter 5, Section 5.6. 

Section 3.4 begins with a general overview of the cutting and packing prob­

lem, and follows with the typologies of the problem. We discuss some of the 

well-known approaches (placement routines, exact and local search methods) that 

can be used to solve the two-dimensional rectangular single bin size bin packing 

problem. Lower bounds for the two-dimensional rectangular single bin size bin 

packing problem in both oriented and non-oriented cases are discussed in Section 

3.4.3. The lower bounds for the non-oriented cases are used in the computational 

experiments in Section 6.7. Section 3.5 concentrates on reviewing some of the 

28 



CHAPTER 3 29 

well-known approaches, both heuristic and exact, that can be used to solve the 

symmetric and asymmetric versions of travelling salesman problems. 

3.2 Basic Concepts of Bicriteria Objective Func­

tion 

In this section, we introduce the basic concepts of bicriteria objective function 

for solving combinatorial optimisation problems. These concepts provide some 

guidelines on solving the bicriteria problems in Chapter 6 and 7. These concepts, 

as well as most of the definitions presented are extracted from Hoogeveen [149]. 

Suppose that for a given combinatorial optimisation problem, there are two 

performance criteria, say f and g, that need to be considered. Without loss of 

generality, assume that these criteria are to be minimised. Unless we are ex­

tremely lucky, there will be no solution that achieves the minimum value for both 

performance criteria simultaneously. Depending on the relationship between the 

performance criteria, two distinct approaches can be distinguished: hierarchical 

optimisation and simultaneous optimisation. 

Hierarchical Optimisation 

Hierarchical Optimisation is used when one of the performance criterion is far more 

important than the other one. Suppose that criterion f is more important than 

criterion g. In the first stage, the optimum value, say 1*, with respect to criterion 

f is obtained. In the second stage, the second criterion g is optimised subject to 

the additional constraint that f :::; 1*. This approach also can be referred to as a 

lexicographical optimisation approach. 

Simultaneous Optimisation 

Simultaneous Optimisation is used when no criterion is dominant. Thus, the per­

formance of the second criterion can be greatly improved while losing only a little 

performance on the first criterion. Evans [86] and Fry et al. [107] distinguish three 
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different approaches in simultaneous optimisation: priori optimisation, interactive 

optimisation, and posteriori optimisation. 

In priori optimisation, both criteria are aggregated into one composite objective 

function F(j, g) for some given function F, after which an optimum solution is 

determined for this one problem as a whole. F can be a linear function such 

as o.:f + g, where 0.: is a given constant that indicates the relative importance of 

criterion f with respect to criterion g, but it may just as well be a quadratic or 

even more complex function. 

An interactive optimisation is used when active involvement of a decision maker 

IS required during the solution process. Given one or more already obtained, 

relevant solutions, the decision maker must indicate which one is preferable, and 

if not satisfied yet, in which direction the search should continue. 

A posteriori optimisation is employed when it is computationally inaccessible 

in optimising the function F (j, g) in a direct manner, especially when the function 

F is nonlinear. This problem can be solved in two ways. We first select from the 

set of solutions a subset that contains an optimum solution. If the function F is 

known, then we compute the optimum solution in this set. If F is not known, then 

we present this set to the decision maker and let him/her choose the solution. 

By applying simultaneous optimisation on a function F (j, g), where both f and 

9 are to be minimised, there exists a Pareto optimal solution by which the optimum 

is attained. Usually, the number of Pareto optimal points is finite. However, the 

number of Pareto optimal points can become infinite subject to the constraints 

and assumptions of the problem to be solved. A trade-off curve is defined as the 

curve that contains all Pareto optimal points. Moreover, an efficient frontier can 

be defined as a piecewise-linear convex function, where each endpoint corresponds 

to the solution of one of the lexicographical optimisation problems, where each 

breakpoint is Pareto optimal, and each Pareto optimal point is located either on 

or above this function (cite in Hoogeveen [149]). Note that the trade-off curve and 

the efficient frontier are equal only if the trade-off curve is convex. 
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3.3 Machine Scheduling Problems 

Machine Scheduling Problems (MSPs) exist in many diverse areas, such as flexible 

manufacturing systems, production planning, airline industry, hospital, etc. For 

some latest surveys on the real world applications of the machine scheduling prob­

lems, see the collection of Leung [185]. The main focus is on the efficient allocation 

of one or more resources to activities over time. Due to the complexity studies 

conducted during the last three decades, it is now widely understood that most 

machine scheduling problems are NP-hard (see Lenstra et al. [184] for more de­

tails). Some excellent and comprehensive reviews of the MSPs can be found in 

Conway et al. [58], Baker [20], Lawler et al. [181]' Anderson et al. [8], Chretienne 

et al. [51] and Pinedo [229]. The recent textbook by Leung [185] provides ex­

cellent coverage of the most recent and advanced topics on scheduling problems. 

Moreover, an annotated bibliography is given in Hoogeveen et al. [150]. 

MSPs can be briefly described as follows (as in Anderson et al. [8]): 

"There are m machines, which are used to process n jobs. A schedule specifies, for 

each machine i (i = 1,2, ... , m) and each job j (j = 1,2, ... , n), one or more time 

intervals throughout which processing is performed on j by i." 

A schedule is feasible if there is: 

• no overlapping of time intervals corresponding to the same job (so that a job 

cannot be processed by more than one machine at one time), 

• no overlapping of time intervals corresponding to the same machine (so that 

a machine cannot process more than one job at one time), and 

• satisfies various requirements relating to the specific problem type (machine 

environment, job characteristics, and optimality criterion) which will be dis­

cussed in detail in Section 3.3.1. 

In the study of the MSPs, we focus specifically on Single Machine Family 

Scheduling Problem (SMFSP) where jobs are partitioned into families and set 

up is required between these families. The objective is to find a schedule which 
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minimises the maximum lateness of the jobs in the presence of the sequence inde­

pendent family setup times. Details of the research are given in Chapter 5. 

A single machine scheduling problem is one where there are n jobs to be sched­

uled on a single machine. The assumption is that all jobs and the machine are 

available at time zero and preemption of jobs are generally not allowed. Each of 

the jobs j (j = I, ... ,n), is characterised by its processing time Pj, and associated 

due date dj . Other parameters of job j that occur in some problems include a 

release date rj, a deadline dj , and a weight Wj. An early survey of this problem is 

given by Gupta and Kyparisis [133]. 

Much of the early work on scheduling was concerned with the analysis of single 

machine scheduling systems. These include Jackson's derivation of the Earliest 

Due Date (EDD) rule in 1955 where jobs are sequenced in non-decreasing order of 

their due dates (see Jackson [156]), and Smith's derivation of the Shortest Weighted 

Processing Time (SvVPT) rule in 1956 where jobs are sequenced in non-decreasing 

order of their processing time to weight ratios (see Smith [256]). These orderings 

are used as priority rules for scheduling more complex systems. 

The study of the single machine scheduling problem is still very important for 

several reasons, but most relevant is that a good understanding of this problem 

provides a support to model the behaviour of a complex system. It is important to 

understand the working of the system components, and quite often the single ma­

chine problem appears as an elementary component in a large scheduling problem 

(cite in Baker [20]). 

3.3.1 Typology of Machine Scheduling Problems 

A typology is a systematic classification of objects into homogenous categories 

based on a given set of criteria. It helps to unify definitions and notations. In 

this subsection, we will discuss in detail the specific problem type for the MSPs. 

Most of the definitions presented in this subsection are extracted from Anderson 

et al. [8]. 
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Machine Environment 

Different configurations of machines create different production systems for the 

problem. However, in each case, all machines become available to process jobs at 

time zero. These production systems can be classified as follows: 

• single stage: one operation for each job involving either a single machine or 

m machines operating in parallel; 

• multi stage: jobs require operations on different machines involving either 

flow shop, job shop or open shop scheduling. 

In the case of parallel machine scheduling, each machine has the same function 

and each job j has to spend a given time on any of the m machines. This system 

can be decomposed further as follows: 

• identical parallel machines: processing time of an operation is independent 

of the machine assignment; 

It uniform parallel machines: machines operate at different speeds but are 

otherwise identical; and 

It unrelated parallel machines: processing time of an operation depends on the 

machine assignment. 

A comprehensive review of parallel machine scheduling can be found in Cheng and 

Sin [49]. 

In multi-stage machine scheduling, there are m machines, each having a different 

function. Each job j consists of several operations, each of which has to be exe­

cuted on a designated machine, and no job can undergo more than one operation 

at a time. The details of the multi stage system are as follows: 

• flow shop: a job is processed once on each machine in the routing of 1,2, ... , m. 

All jobs follow the same routing of machines . 

• open shop: each job is also processed once on each machine, but the machine 

routing can differ between jobs and forms part of the decision process . 

.. job shop: each job has a prescribed routing through the machines, and the 

routing may differ between jobs. 
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Vaessens et al. [268], Jones and Rabelo [162]' and Jain and Meeran [157] provide 

surveys on the job shop scheduling problems while surveys on flow shop scheduling 

problems are given by Dudek et al. [79] and Cheng et al. [48]. A detailed survey 

on complexity results for open shop scheduling problems is given by Kubiak et 

al. [173]. 

Job Characteristics 

In the case of single machine and identical parallel machines, we denote the pro­

cessing time for job j as Pj. For uniform parallel machines, the processing time 

on machine i may be expressed as pj/Ui, where Ui is the speed of machine i. We 

denote Pij as the processing time on machine i for the case of unrelated parallel 

machine, flow shop and open shop scheduling problem. In a job shop, Pij denotes 

the processing time of the ith operation of job j. Job availability may be restricted 

by imposing a release date rj, which is the time when job j is available for pro­

cessing, or a deadline dj , which specifies the time by which it should ideally be 

completed. 

Suppose that jobs within a schedule can be partitioned into F families according 

to the similarity of their production requirements. As a result of this similarity, 

no set up on a machine is required when following another job from the same 

family. However, a family setup time on machine i is required when a job of 

family g is immediately preceded by a job of a different family f. We denote the 

family setup time as Sifg, or SiOg if there is no preceding job. If for each g, we 

can write Sifg SiOg = Sig for all f i= g, then the setup times on machine i are 

sequence independent; otherwise, they are sequence dependent. If for each machine 

i, Sifg = S fg for all families f and g including the case f = 0, then the setup 

times are machine independent; otherwise, they are machine dependent. Hence, 

by definition, the setup times for a single machine are machine independent. 
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The job characteristics also include the possibility of allowing preemption and 

of specifying precedence constraints. If preemption is allowed, then an operation 

may be interrupted and resumed at a later time; otherwise, an operation, once 

started, must be processed until completion without interruption. A precedence 

constraint stipulates that a certain job cannot start before another one has been 

completed. 

Optimality Criteria 

The optimality criterion is usually a function of the job completion times e1 , e2 , ... , en. 
Common criteria are maximum completion time emax=max ej, and total comple-

J 

tion time L ej . For a given schedule, if a due date dj is specified for each job j, 
j 

we can compute for job j its: 

• lateness, L j = ej dj , 

• tardiness, Tj = max {O, ej - dj }, 
J 

• earliness, E j = max{O, dj - ej }, and 
J 

• unit tardiness, Uj = 1 if ej > dj , Uj 0 otherwise. 

Important criteria involving job due dates are the maximum lateness Lmax=max L j , 
J 

total tard'iness L~, total earliness L Ej , and number of late jobs L Uj . If each 
j j j 

job j has a positive weight Wj, then we can also have weighted versions of these 

criteria. 

Throughout the study, we will adopt the representation scheme of Graham et 

al. [128] for the machine scheduling problem. This is a three-field representation 

alpI! which indicates the specific problem type: 

a: machine environment, 

p: job characteristics, 

r: optimality criterion which involves the minimisation. 

These characteristics are summarised in Table 3.l. 
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Table 3.1: Graham et al. 's Typology of Machine Scheduling Problems 

Characteristic Symbol Description 
al 0 a single machine 
al =p identical parallel machines 
al = Q uniform parallel machines 

Machine al = R unrelated parallel machines 
Environment al = F a flow shop 

a al = 0 an open shop 
al = J a job shop 
a2 = 0 the number of machines is arbitrary 
a2 =m there are a fixed number of machines m 
{31 = 0 no release dates are specified 
{31 r J jobs have release dates 
{32 = 0 no deadlines are specified 
{32 = dj jobs have deadlines 

Job {33 = 0 there are no setup times 
Characteristics {33 = Bifg there are general family setup times 

{3 {33 = Bfg there are machine independent family setup times 
{33 = Bif there are sequence independent family setup times 
{33 = Bf there are machine and sequence independent family setup times 
{34 = 0 no precedence constraints are specified 
{34 prec jobs have precedence constraints 
{34 = pmtn preemption of jobs is allowed 

Optimality C max maximum completion time 
Criterion Lmax maximum lateness 

I '£(Wj)Cj total (weighted) completion time 
j 

'£(wj)Tj total (weighted) tardiness 
j 

(involves the '£(Wj)Uj total (weighted) number of late jobs 
j 

minimisation of) ,£(wj)EJ total (weighted) earliness 
j 

Let 0 denote the empty symbol. The first field takes the form a = a1 a2, where 

a1 and a2 are interpreted as in Table 3.1. Note that for a single machine problem, 

a1 = 0 and a2 = 1, whereas a1 =J 0 and a2 =J 1 for other types of problems. An 

example of the representation scheme is 11 I ~WjCj, which denotes the minimi­

sation of total weighted completion time in a single machine scheduling problem. 

Another example is problem PmlrjlLmax, which denotes the minimisation of max­

imum lateness on a fixed number m of identical parallel machines with jobs release 

dates. 
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3.3.2 Lower Bounds for 1lsfiLmax 

In this subsection, we present a lower bounding scheme for a SMFSP with family 

setup times. The objective of the problem is to find a schedule which minimises the 

maximum lateness Lmax of the jobs in the presence of the sequence independent 

family setup times sf. The lower bounds are used to measure the performance of 

the heuristic solution found when the exact solution to the problem is unknown. 

The lower bounds are obtained from the bounds proposed by Hariri and Potts 

[139]. The complete explanation and derivation of the lower bounds can be found 

in Hariri and Potts [139] where the lower bounds were used in their branch and 

bound algorithm. 

We first relax all setup times except the first job of each family and solve 

the resulting problem by Jackson's EDD rule. We use the subscript pair (j, i) to 

identify the ith job from family f. Let S be an arbitrary subset of jobs, and let 

• dfi = due date of job (j, i), 

• Pfi = processing time of job (j, i), 

• C(S) lower bound on the completion time of the job sequenced last 

amongst jobs of S, 

• S = subset of S which jobs may be sequenced last amongst job of S in a 

feasible schedule. 

Thus, a valid lower bound on the maximum lateness is 

LB(S) = C(S) - maxJdfi }. 
(f,i)ES 

(3.1) 

In a feasible schedule, there is a setup time, sf before the first job in each 

family, f (j I, ... ,F). Before applying the EDD rule to the feasible schedule, 

we can relax the setup time by resetting the processing time of the job in each 

family fusing Pfl = Pfl + Sf. Suppose that job (h, k) has maximum lateness, we 

have the lower bound 

LBo = T - dhk (3.2) 



CHAPTER 3 38 

where T is the completion time of job (h, k) in the EDD sequence. The lower 

bounding scheme is terminated with LBo as the lower bound if all jobs before 

(h, k) in the EDD sequence are from family h. If there is a job in the EDD 

sequence that is scheduled before (h, k) and which does not belong to family h, 

the search for improving the lower bound continues. 

Let (g, j) be the last job in the family 9 that appears before job (h, k) in the 

EDD sequence, and T' denote the completion time of job (g,j) in this sequence. 

Also, let R' denote the set of jobs in the EDD sequence up to and including job 

(g, j) and let denote R the set of jobs in the EDD sequence up to and including 

job (h, k). Figure 3.1 shows the structure of the EDD sequence, and the sets R' 

and R. 

o 
( 

( 

Figure 3.1: Structure of an EDD sequence (Hariri and Potts [139]) 

(/, i) 
Jobs of 
family g 

Set R' 

SetR 

(g ,j) 

T' 
~ 

Jobs of (h,k) 
family h 

T 

In the subsequent analysis, we discard all jobs except those of the set R. The 

various cases of analysis are depicted in Figure 3.2. The bounds at the various 

nodes of interest are derived below. 
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Figure 3.2: Cases in lower bounding scheme (Hariri and Potts [139]) 
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Node Ao: jobs of family h do not form a single batch. 

Due to the additional family setup time for family h, we get completion time, 

C(R) = T + Sh. From equation (3.2), we obtain 

(3.3) 

Node A l : jobs of family 9 and of family h do not form a single batch. 

Similar to node Ao, C(R) = T + Sg + Sh because of the additional setup times for 

families 9 and h, yielding 

(3.4) 
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Node A2 : all jobs of family 9 are scheduled after the other jobs of R'. 

Using the information that job (g, j) is completed no earlier than time T', the lower 

bound, LB(R' - {(g,j' + 1), ... , (g, j)}) for j' 1, ... ,j, where C(R' - {(g,j' + 

1), ... , (g,j))) = T' - ~~=j'+lP9i' The best of these lower bounds is 

(3.5) 

Node A3: job (g, j) is not scheduled last amongst jobs of R'. 

Excluding the jobs of family g, let job (1, i) have the largest due date amongst 

jobs of R', yields 

(3.6) 

Thus, the overall lower bound for nodes labelled A is 

LBA max {LBAo' min {LBAl , LBA2 , LBA3}}' (3.7) 

Nodes Bo, Bl, B2 , and B3: 

Since the analysis of nodes labelled B is similar to that for the A nodes, the lower 

bounds are stated without derivation. 

,~ax, {T - t Phi - dhk'}', 
k -I, .... k 

, i=k'+1 

(3.8) 

T' + Sg - dgj , (3.9) 

,~ax. {T' - t Pgi - dgj,} , 
J -I, ... ,J 

i=j'+1 

(3.10) 

T' - dfi . (3.11) 

Thus, the overall lower bound for nodes labelled B is 

LBB = max {LBBo, min {LBBl , LBB2,LBB3}} . (3.12) 
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Nodes Co, C1, C2 , and C3 : 

As for the nodes labelled B, we state the lower bounds for the C nodes without 

derivation. Note that there is no explicit expression for LBco' 

LBcl T + 5 g - dgj , (3.13) 

LBc2 .,max . {T - t Pgi - dgj,} , (3.14) 
J -l, ... ,J 

i=j'+l 

LBc3 T - dfi . (3.15) 

Therefore, the overall lower bound for nodes labelled C is 

(3.16) 

The overall lower bound for the problem is the minimum of the individual bounds 

from nodes labelled A, Band C: it can be expressed as 

LB1 min {LBA' LBB , LBc}. ( 3.17) 

Recall that if R contains only jobs of family h, then the lower bound is LB = LBo; 

otherwise, it is LB = LB1. The computation of LBo and LE1 requires 0 (n log n) 

time. 
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3.4 Cutting and Packing Problems 

Cutting and Packing (C&P) problems are optimisation problems that are con­

cerned with finding a good arrangement of multiple small items in one or more 

larger objects. This type of problem is encountered in many areas of business 

and in industry (e.g. wood, glass, and textile industries, newspaper paging, cargo 

loading, etc) and forms part of the combinatorial optimisation problems found in 

operational research. The usual objective of the allocation process is aimed at 

maximising the utilisation of the large objects, or maximising the value of the 

small items packed. 

The reduction of production costs is one of the major issues in manufacturing 

industries. High material utilisation is of particular interest to industries involved 

with mass-production, since small improvements of the layout can result in large 

savings of material and considerably reduce production costs. The complexity of 

the problem and the solution approach depend on the geometry of the items to be 

placed and the constraints imposed. 

Although C&P problems have been studied since the mid-fifties, Gilmore and 

Gomory's articles in the 1960s [112, 113, 114] on linear programming approaches 

to one, two and more dimensional cutting stock problems are the first to present 

techniques which could be practically applied to medium size real-world problems. 

In the study of the C&P problems, we focus on the non-oriented case of the 

two-dimensional rectangular single bin size bin packing problem where a set of 

small rectangles has to be allocated to one or more bins. The rectangles to be 

packed may be rotated by 90°. The objective is to pack without overlaps, all the 

rectangles into the minimum number of bins. Details of the research are discussed 

in Chapter 6. 

C&P problems occur in various application areas involving different constraints 

and objectives. In the following, we briefly define the basic problem types (see 

Figure 3.3) of C&P problems based on the improved typology given by vViischer 

et al. [274]. 
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Figure 3.3: Basic Problem Types of C&P Problems (vVascher et al. [274]) 

kind of 
assignment 

assortment of 
small items 
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problem 
types 
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The C&P problem can be broadly classified into two sub-problems: output 

(value) maximisation problem and input (value) minimisation problem. In both 

cases, a set of small items has to be assigned to a given set of large objects. With 

respect to the assortment of the small items, Wascher et al. [274] distinguish three 

cases, namely identical, weakly heterogeneous and strongly heterogeneous. 

For the identical small items, all items are of the same shape and size. The small 

items with weakly heterogeneous assortment can be grouped into relatively few 

classes (in relation to the total number of items), for which the items are identical 

with respect to shape and size. The set of strongly heterogeneous assortment of 

small iteIl1S is characterised by the fact that only very few items are of identical 

shape and size. 

Output Maximisation: 

In this case, the set of large objects is not sufficient to accommodate all the small 

items. Thus, all large objects are to be used to which a selection of the small items 

of maximal value has to be assigned. Based on the assortment of the small items, 

a problem in this category can be classified as an identical item packing problem, 

a placement problem or a knapsack problem. 
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• Identical Item Packing Problem 

This problem consists of the assignment of the maximum number of iden­

tical small items to a limited set of large objects. Dowsland and Dowsland 

[78] define this problem as a manufacturer's pallet loading problem where 

identical items have to be loaded onto the pallet . 

• Placement Problem 

In this problem, a weakly heterogeneous assortment of small items has to be 

assigned to a limited set of large objects. Dowsland and Dowsland [78] refer 

to this problem as a distributor's pallet loading problem where the pallet has 

to be packed with non-identical items . 

• Knapsack Problem 

In this problem, a strongly heterogeneous assortment of small items which 

has to be allocated to a limited set of large objects while observing the 

capacity constraint of the large objects such that the total value of the items 

packed is maximised. 

Input Minimisation: 

In this case, the set of large objects is sufficient to accommodate all small items. 

All small items are to be assigned to a selection of the large object(s) of minimal 

value. Based on the assortment of the small items, a problem in this category 

can be classified as an open dimension problem, a cutting stock problem or a bin 

packing problem 

.. Open Dimension Problem 

This problem involves a set of small items which has to be assigned com­

pletely to one or more large objects. The large objects are given but their 

extension in at least one dimension can be considered as a variable. Dowsland 

and Dowsland [78] define this problem as a strip packing problem where the 

large objects are strips with fixed width but unlimited height. The objective 

is to minimise the total height needed to pack all the small items. 
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.. Cutting Stock Problem 

In this problem, a weakly heterogeneous assortment of small items is com­

pletely assigned to a selection of large objects of minimal value . 

.. Bin Packing Problem 

This problem is concerned with packing a set of strongly heterogeneous small 

items into the minimum number of large objects. 

3.4.1 Typologies of Cutting and Packing Problem 

Due to the diversity of the problem and application areas, similar packing prob­

lems appear under different names in the literature. In order to facilitate the 

information exchange, Dyckhoff [82] introduces four characteristics according to 

which C&P problems are categorised. However, his typology was not widely ac­

cepted. As a result, Wascher et al. [274] develop a revised classification of the 

typology. The details of the typologies are given below: 

Dyckhoff's Typology: 

Dyckhoff [82] seeks to identify common characteristics and properties to discrim­

inate between problem types. As a result, he systematically classified packing 

problems into a 4-field representation of 0:Ipl~(16 where, 

0:: Dimensionality. 

13: Kind of Assignment. 

I: Assortment of Large Objects. 

6: Assortment of Small Items. 

These characteristics and the values they can take on are summarised in Table 

3.2. 
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Table 3.2: Dyckhoff's Typology of Cutting and Packing Problems (Dyckhoff [82]) 

Characteristic Symbol Description 
Dimensionality 1 one dimensional 

2 two dimensional 
3 three dimensional 
N N dimensional with N > 3 

Kind of B all objects and a selection of items 
Assignment V a selection of objects and all items 
Assortment of 0 one object 
Large Objects I identical figures 

D different figures 
Assortment of F few items (of different figures) 
Small Objects M many items of many different figures 

R many items of relatively few different (non-congruent) figures 
C congruent figures 

Hence, a classical Two-Dimensional Bin Packing Problem (2DBPP) can be 

classified as 21VIIIM, where, 

2: two dimensional. 

V: a selection of objects and all items. 

I : identical figure for large objects. 

M: many items of many different figures for small items. 

Wascher et al. 's Typology: 

After almost 15 years since Dyckhoff's initial publication, it became obvious that 

Dyckhoff's typology was insufficient with respect to recent developments. In 2005, 

vVascher et al. [274] propose an improved typology with the aim of allowing for 

a complete categorisation of all known C&P problems and its corresponding lit­

erature. They highlight the following three drawbacks faced by the Dyckhoff's 

typology in the recent development in the field of C&P: 

• not necessarily all C&P problems (in the narrow sense) can be assigned 

uniquely to problem types; 

• Dyckhoff's typology is partially inconsistent; its application might have con­

fusing results; 

• application of Dyckhoff's typology does not necessarily result 1D homoge-

neous problem categories. 
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These drawbacks are discussed further with help from examples in Wascher et 

al. [274]. The details of the typology are summarised in Table 3.3. 

Table 3.3: Wascher et al. 's Typology of Cutting and Packing Problems (Wascher 
et al. [274]) 

Characteristic Description Further Description 
Dimensionality 1,2,3,N(N)3) 
Kind of Output (value) maximisation e.g. knapsack problem 
Assignment Input (value) minimisation e.g. bin packing problem 
Assortment of Identical small items 
Small Items Weakly heterogeneous assortment 

Strongly heterogeneous assortment 
Assortment of One large object All dimensions fixed 
Large Objects One or more variable dimensions 

Several large objects Identical large objects 
(all dimensions fixed) Weakly heterogeneous assortment 

Strongly heterogeneous assortment 
Shape of Regular e.g. rectangles, circles, cylinders, etc. 
Small Items Irregular (or non-regular) e.g. shirts, shoes, swimsuit, etc. 

In order to further define the typology, the characteristics for the kind of as­

signment are structured further into Intermediate Problem Types (IPT). This is 

achieved by taking into consideration the assortment of the large objects as well 

as the small items as an additional differentiating criterion. Wascher et al. [274] 

summarise the system of the IPT as in Table 3.4 and 3.5. In the final stage, they 

systematically classify the C&P problems according to the following system: 

{I, 2, 3, n} - dimensional{0, rectangular, circular, ... ,irregular }{IPT}. 

As mentioned earlier, we concentrate our study on the non-oriented two-dimensional 

rectangular single bin size bin packing problem where the rectangles may rotate 

90°. This problem is classified by Wascher et al. [274] as: non-oriented 2DRSB­

SBPP. Thus, for the rest of the thesis, we refer without loss of generality, to the 

problem in our study as non-oriented 2DRSBSBPP. 
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Table 3.4: Landscape of IPT: Output Maximisation (Wascher et al. [274]) 

~ 
ofthe small 
items identical weakly strongly 

characteristics heterogeneous heterogeneous 
of the large 
object 

Single 
one Identical Item Large Object Single 

large object Packing Problem Placement Knapsack Problem 
Problem 

IIPP SLOPP SKP 

Multiple Identical 
all Large Object Multiple Identical 

dimensions identical Placement Knapsack Problem 
fixed Problem 

MILOPP MIKP 

Multiple 
Heterogeneous Multiple 
Large Object Heterogeneous 

heterogeneous Placement Knapsack Peoblem 
Problem 

MHLOPP MHKP 

Table 3.5: Landscape of IPT: Input Maximisation (Wascher et al. [274]) 

~ 
of the small 
items weakly strongly 

characteristics heterogeneous heterogeneous 
of the large 
object 

Single Stock Size Single Bin Size 
identical Cutting Stock Problem Bin Packing Problem 

all SSSCSP SBSBPP 

dimensions weakly Multiple Stock Size Multiple Bin Size 
fixed heterogeneous Cutting Stock Problem Bin Packing Problem 

MSSCSP MBSBPP 

strongly Residual Residual 
heterogeneous Cutting Stock Problem Bin Packing Problem 

RCSP RBPP 

one large object Open Dimension Problem 

variable dimension(s) ODP 
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3.4.2 Approaches to 2DRSBSBPP 

Before the start of the survey, we define the 2DRSBSBPP as follows: 

"Given a set of n rectangular items j E J = {I, 2, ... , n}, each defined by a 

height hj, and a width Wj, and an unlimited number of identical rectangular bins, 

each having a height H, and a width ~V. The objective is to allocate without 

overlaps, all the rectangles into the minimum numbers of bins." The 2DRSBSBPP 

is classified as a class of NP-hard problem by Garey and Johnson [lOS]. 

A considerable amount of research has been carried out and various approaches 

have been proposed to solve the 2DRSBSBPP. In the following subsection, we 

concentrate on the review of the literature for the problem. Some excellent and 

comprehensive reviews of the approaches to the problem can be found in Dowsland 

and Dowsland [7S], Dyckhoff and Finke [S3], Lodi et al. [195, 196, 197]' and Hopper 

and Turton [152]. Moreover, an annotated bibliography is given in Dyckhoff et 

al. [S4]. The approaches can be broadly classified into three methods: heuristic 

placement routines, exact approaches and lower bounds, and local search methods. 

3.4.2.1 Heuristic Placement Routines 

Most of the heuristic placement routines from the literature can be classified in 

two families (see Lodi et al. [196]): 

- One-phase algorithms: directly pack the rectangles into the finite bins. 

- Two-phase algorithms: start by packing the rectangles into a single strip, (i.e. a 

bin having width ~V, and infinite height). In the second phase, the strip solution 

is used to construct a packing into finite bins. 

The majority of the approaches are level algorithms, l.e. the bin packing is 

obtained by placing the rectangles, from left to right, in rows forming levels. The 

first level is the bottom of the bin, and subsequent levels are produced by the 

horizontal line coinciding with the top of the tallest rectangle packed on the level 

below. Three classical strategies for level packing are suggested by Coffman et al. 

[56]. Note that j = current rectangle. 
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1. Next-Fit (NF): rectangle j is packed left justified on a level if it fits. 

Otherwise, the level is closed and a new level is created to pack the rectangle 

left justified. 

2. First-Fit (FF): rectangle j is packed left justified on the first level where 

it fits. If no level can accommodate j, a new level is initialised as in NF. 

3. Best-Fit (BF): rectangle j is packed left justified on that level, among those 

where it fits, for which the resulting packing has the minimum remaining 

horizontal space. If no level can accommodate j, a new level is initialised as 

in NF. 

In addition, sorting the rectangles in decreasing width, height, or area in com­

bination with NF, FF, and BF routine, can improve the average performance of 

the simple placement routines. These routines are referred to as NFD, FFD, and 

BFD respectively (D = Decreasing), and can be implemented to run in 0 (n log n) 

time. 

For the remainder of this subsection, we denote a current bin list as a list of all 

possible bins in which the next rectangle can be packed. We discuss each of the 

heuristic placement routine by classifying them as H,A,(R),T, where: 

H : name of the Heuristic placement routine. 

A : Abbreviation of the routine. 

(R): name of the Researcher ( s) who popularised the routine. 

T : Time complexity of the routine. 

One-Phase Algorithms 

Finite Next-Fit, FNF, (Berkey and Wang [32]), O(nlogn): 

Only one bin is held in the current bin list. Rectangles are packed into finite bins 

using the NF routine. When the next rectangle to be packed cannot fit into the 

current bin, the bin is removed and a new empty bin is added. 
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Finite First-Fit, FFF, (Berkey and Wang [32]), O(nlogn): 

All the bins that have been created are maintained in the current bin list. Each 

rectangle is packed on the lowest level of the first bin where it fits. If no level in 

the bins can accommodate it, a new level is created either in the first suitable bin, 

or by initialising a new bin. 

Bottom-Left, BL, (Baker et al. [16], Jakobs [158]), O(n2
): 

This is a different classical approach which does not pack the rectangles by level 

packing heuristic. The rectangle is packed as near to the bottom of the bin as it 

will fit and then as far to the left as it can be placed at that bottom-most level. 

Starting from the top right corner of the bin, each rectangle makes successive 

moves of sliding as far as possible to the bottom of the bin and then as far as 

possible to the left of the bin until the rectangle is placed in a stable position. 

Figure 3.5 shows the placement of a sequence of rectangles described in Figure 

3.4. The major disadvantage of this routine is the creation of empty areas in the 

layout , when larger rectangles block the movement of successive ones. 

Figure 3.4: Bin and Item Dimensions 

bin : (W,H) = (15,10) rectangle, n 2 3 4 5 6 7 8 
width, W 1 8 2 3 5 2 8 2 
height, h 6 1 4 2 4 1 3 2 

Figure 3.5: Placement of a rectangle into a partial layout using BL routine 
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Finite Bottom-Left, FBL, (Berkey and Wang [32]), O(n2): 

This routine is a variation of BL for the finite bin case. The routine initially sorts 

the rectangles by non-increasing width. The rectangle is then packed in the lowest 

position of any initialised bin, left justified. If no bin can allocate it, a new one is 

initialised. 

Improved Bottom-Left, BLi, (Liu and Teng [192]), O(n2
): 

Like the BL routine, it starts by placing the rectangle on the top right corner of 

the bin. It is then moved as far as possible to the bottom. Instead of moving it the 

complete distance to the left in the next step until it collides as in the BL routine, 

the BLi routine moves the rectangle along the partial layout by giving downward 

movement priority so that rectangles only slide leftwards if no downward movement 

is possible. In Figure 3.6, the allocation of the same sequence of rectangle used in 

Figure 3.4 is shown. Liu and Teng [192J give two numerical examples to compare 

the performance of the BL and BLi. Comptutational experiments show that BLi 

constantly outperformed the BL. 

Figure 3.6: Placement of a rectangle into a partial layout using BLi routine 
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Bottom-Left Fill, BLF, (Chazelle [46]), O(n2 ): 

BLF is a modified version of the BL placement routine. BLF places rectangles by 

searching a list of location points that indicate potential positions where rectangles 

may be placed. These points are maintained in a bottom left ordering sequence. 

The algorithm starts with the lowest and leftmost point, where the rectangle is 

placed and left justified. Then, the rectangle is checked for overlap with any other 
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rectangles that form the partial layout in the bin. If it does not overlap, the 

rectangle is placed and the point list is updated to indicate any new points. If the 

rectangle overlaps, the next point list is selected until the rectangle can be placed 

without overlap occurring or a new bin is initialised if no bin can accommodate 

it. Figure 3.7 demonstrates the placement policy using the same ordered list of 

rectangles as in Figure 3.4. Since the generation of the layout is based on the 

allocation of the lowest sufficiently large area in the partial layout rather than on 

a series of bottom left moves, it is capable of filling existing gaps in the packing 

pattern. Compared to the BL and BLi routine, this method results in a denser 

packing pattern. 

Figure 3.7: Placement of a rectangle into a partial layout using BLF routine 
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Hopper and Turton [153] performed a series of computational experiments be­

tween the BL and BLF and found that BLF outperformed BL by up to 25%. 

Moreover, preordering the rectangles in non-increasing width or height for both 

placement routines increased the packing quality by up to 10% compared to ran­

dom sequence. 

Alternate Direction, AD, (Lodi et al. [194]), O(n3 ): 

The routine starts by sorting the rectangles according to non-increasing height, 

and by computing a lower bound, L on the optimal solution value. Then, L bins 

are initialised by packing on their bottom a subset of the rectangles, following a 

BFD routine. As an example, consider the 12 rectangles shown in Figure 3.8 with 

L = 2. Rectangles 1,2,3,7, and, 9 are packed into the initialised bins with a BFD 

routine (Figure 3.9). The remaining rectangles are packed, one bin at a time, into 
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bands according to the current direction associated with the bin. In this case, the 

current direction is "from right to left". If the direction is "from left to right" 

("from right to left"): 

• the first rectangle of the band is packed with the left (right) edge touching 

the left (right) edge of the bin, in the lowest possible position; 

• each subsequent rectangle is packed with its left (right) edge touching the 

right (left) edge of the previous rectangle in the band, in the lowest position. 

Once no rectangle can be packed in either direction in the current bin, the next 

initialised bin becomes the current one. If no rectangle can be packed into any of 

the initialised bin, a new bin is opened. Figure 3.9 shows the solution found by 

AD where the rectangles used are as described in Figure 3.8. 

Figure 3.8: Bin and Item Dimensions 

bin: (W,H) = (10,8) ; L = 2 

D~l 
rectangle, n 2 3 4 5 6 7 8 9 10 11 12 
width , W 4 4 8 4 4 4 1 6 2 9 9 3 
height, h 6 4 3 3 3 3 3 2 2 2 2 1 

IBol I~I lc::ILJ 3 
8 10,11 

Figure 3.9: Solution found by AD routine 
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Touching Perimeter, TP, (Lodi et al. [194]), O(n3 ): 

This routine is designed for the non-oriented case where the rectangles to be packed 

may be rotated by 900
• It starts by sorting the rectangles in non-increasing area 

and by horizontally orienting them. It then initialises L bins, where L is the 

lower bound, and packs one rectangle at a time, either in the existing bin, or by 

initialising a new one. The choice of the bin and of the packing position is done 

by evaluating a score (percentage of the rectangle perimeter which touches the 

bin and the other items that are already packed). For each candidate packing 

position, the score is evaluated twice, for the two rectangle orientations (if both 

are feasible). The position with the highest score is selected and ties are broken by 

choosing the bin with the maximum packed area. Figure 3.10 shows the solution 

found by TP using the same example in Figure 3.8. The rectangles are sorted by 

TP as (1,3,10, 11,2, 4,5,6,8,9,7,12), with rectangle 1 and 7 rotated 900 before 

the packing commences. 

Figure 3.10: Solution found by TP routine 
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Two-Phase Algorithms 

Hybrid First-Fit, HFF, (Chung et al. [54]), O(nlogn): 

In the first phase, a strip packing is obtained through the First-Fit Decreasing 

Height (FFDH). Let HI, H2 , .•. be the height of the resulting levels in a single 

strip, and observe that HI ;::: H2 ;::: . . .. A finite bin packing solution is then 

obtained by solving a one-dimensional bin packing problem (with rectangle sizes 

Hi and bin capacity H) through the FFD algorithm: initialise bin 1 to pack level 

1, and, for i = 2,3, . .. , pack the current level i into the lowest indexed bin where 

it fits, if any. If no bin can accommodate i, initialise a new bin. 
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Finite Best-Strip, FBS, (Berkey and Wang [32]), O(nlogn): 

The first phase is performed by first packing the rectangles into levels in an open 

ended strip using the BF routine to select the level for packing the next rectangle. 

In the second phase, a one-dimensional bin packing problem is solved through the 

BFD routine: a level is packed in that bin, among those where it fits, if any, for 

which the unused vertical space is a minimum, or by initialising a new bin. 

Hybrid Next-Fit, HNF, (Frenk and Galambos [106]), O(nlogn): 

NFD is adopted in the first phase to pack the rectangles into levels in an open 

ended strip. In the second phase, a one-dimensional bin packing problem is solved 

through the NFD algorithm: a level is packed in the current bin if it fits, or 

otherwise, on a new level, created either in the current bin (if possible), or in a 

new one. 

Floor-Ceiling, FC, (Lodi et al. [194]), O(n3
): 

This routine can be applied to both oriented and non-oriented cases. The rect­

angles are initially sorted in non-increasing order of their shortest edge, and hor­

izontal oriented (for non-oriented case only). We first denote the horizontal line 

defined by the top/bottom edge of the tallest rectangle packed on a level as the 

ceiling/floor of the level. In the first phase, the current rectangle is packed, in 

order of preference: 

on a floor, according to a Best-Fit strategy, or 

- on a ceiling (if the rectangle cannot be packed on the floor below), 

- on the floor of a new level. 

In the second phase, the levels are packed into finite bins, either through the BFD 

algorithm or by using an exact algorithm for the one-dimensional bin packing 

problem. A possible Fe packing pattern is shown in Figure 3.11. 
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Figure 3.11: Floor Ceiling 
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Knapsack Problem, KP, (Lodi et al. [194]), G(n3 ): 

Start by sorting the rectangles in non-increasing height such that h j ~ hj+1 for 

j = 1,2, ... , n - 1. At each iteration of the strip packing phase, a new level is 

initialised with the tallest unpacked rectangle, say j*. The level packing is then 

completed by solving an instance of knapsack problem having an element for each 

unpacked rectangle j, with profit Pj = Wj hj, cost Cj = Wj and capacity q = W -Wj*' 

The problem is to select a subset of rectangles in which the total cost does not 

exceed q, and the total profit is a maximum. In the second phase, the levels are 

packed into finite bins through a one-dimensional bin packing problem. 

Lodi et al. [194J compare the AD, TP, FC and KP placement routines with the 

FFF and FBS placement routines proposed by Berkey and Wang [32J on a series 

of computational experiments using benchmark problem instances that include up 

to 100 rectangles. The placement routines are compared in different combinations 

of requirements based on the rectangles' orientation and guillotine cuts constraint. 

Computational results show that their proposed placement routines outperformed 

both FFF and FBS routines with the TP performs the best. 

3.4.2.2 Exact Approaches and Lower Bounds 

Much of the work on the exact approaches for SBSBPP concentrate on the one­

dimensional case. For example, linear programming (by Valerio de Carvalho [68J 

and Applegate et al. [11]), column generation algorithm and branch and bound 

approaches (by Valerio de Carvalho [67J and Vanderbeck [269]). These approaches 

are too wide to cover in one section and are beyond the scope of this study. 
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Therefore, as mentioned earlier, we limit the survey to the exact methods for the 

two-dimensional cases. 

Gilmore and Gomory [114] made a first attempt at modelling the 2DRSBS­

BPP by extending their model for the one-dimensional stock cutting problem (in 

[112, 113]). Their approach is based on the concept of pattern. Given the set of 

rectangles and the bins, they define a pattern as a subset of the rectangles that 

can be loaded into the bin without causing an overlapping of the rectangles them­

selves. Considering that, in the optimal solution, one pattern is used for each bin, 

the objective of minimising the number of patterns used is equal to minimising the 

number of bins used in the solution. In this model, the authors develop a column 

generation algorithm to help solve the problem. 

In 1998, Martello and Vigo [203] improve the lower bounds proposed by Martello 

and Toth [202] for the oriented 2DRSBSBPP which are used within a branch and 

bound (B&B) approach. They use both FFF and FBF heuristic placement rou­

tines to initialise a feasible solution for the B&B approach. Their B&B approach 

is based on a two level branching scheme: 

outer branch-decision tree: at each iteration node, a rectangle is assigned to a 

bin without specifying its actual position; and 

- inner branch-decision tree: a feasible packing (if any) for the rectangles currently 

assigned to a bin is determined, possibly through enumeration of all the possible 

patterns. 

They show that the worst-case performance ratio of the lower bounds is ~OPT 

(0 PT = optimal solution). The derivation of the lower bounds are discussed in 

detail in Section 3.4.3.1. In the paper, the well known continuous lower bound 

for the problem is analysed and the worst-case performance ratio is calculated as 

iOPT. Computational results for the benchmark problem instances show that 

the B&B is capable of finding the optimal solution for problems involving up to 

120 rectangles. 
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Fekete and Schepers [91, 92] propose a generic approach for obtaining fast lower 

bounds for the oriented case, based on dual feasible functions. Worst-case analysis 

shows that the asymptotic worst-case performance ratio of the lower bounds is 

~OPT and can be implemented in linear time (i.e. O(n)) if the given n rectan­

gles are sorted by size. Computational results illustrate that the lower bounds 

outperform the lower bounds proposed by Martello and Vigo [203]. 

Dell'Amico et al. [69] present a lower bound for the non-oriented case of the 

problem which is then used within an B&B approach developed by Martello and 

Vi go [203]. Before the bound is calculated, each rectangle is replaced by a number 

of square items by cutting it with a CUTSQ procedure (see Figure 3.12). Unit 

squares of size one are not produced, as they are not use in the subsequent lower 

bound computations. The derivation of the lower bound is discussed in detail in 

Section 3.4.3.2 which subsequently becomes the lower bound we employ for the 

computational experiments in Section 6.7. The computational results for instances 

up to 100 rectangles show that the proposed bound is considerably better than 

the continuous lower bound. 

Boschetti and Mingozzi [34] improve the lower bounds proposed by Martello 

and Vigo [203] for the oriented case of 2DRSBSBPP. They show that the lower 

bounds also dominate the lower bounds proposed by Fekete and Schepers [91,92]. 

However, the main disadvantage of their lower bounds lie in the computational 

complexity of the bounds. In the same year, Boschetti and Mingozzi [35] also 

devise tighter lower bounds for the non-oriented case. Computational results show 

the effectiveness of the lower bounds which dominate the bounds proposed by 

Dell'Amico et al. [69]. 

In 2003, Pisinger and Sigurd [230] propose a hybrid branch and price/constraint 

programming algorithm for solving the oriented 2DRSBSBPP. They use the col­

umn generation principle of Gilmore and Gomory and solve the specific pricing 

problem by means of constraint programming. They also propose new lower 

bounds using the delayed column generation. The computational results show 

that the lower bounds obtained through delayed column generation are tighter 
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than bounds proposed by Martello and Vigo [203] and Fekete and Schepers [91,92]. 

In 2004, Puchinger and Raidl [236, 237] present an integer linear programming 

formulations solved by CPLEX for both restricted and unrestricted versions of the 

2DRSBSBPP. Furthermore, a branch and price approach is proposed by formu­

lating the original problem as a set covering problem. Fast column generation is 

performed by applying a hierarchy of four methods, namely a greedy heuristic, 

an evolutionary algorithm, and both a restricted and unrestricted integer linear 

programming for the pricing problem. Extensive computational experiments are 

performed and the results show that the lower bounds obtained by column gener­

ation are strong. 

3.4.2.3 Local Search Methods 

Since the 2DRSBSBPP belongs to the class of NP-hard problems, exact approaches 

are bound to work well for small to medium sized problem instances only. Real 

world applications which include up to thousands of rectangles have to be solved 

heuristically or by local search methods. Much of the research on the local search 

methods for SBSBPP focus on the one-dimensional case. These include Ant Colony 

Optimisation (by Brugger et al. [37] and Levine and Ducatelle [186]), Genetic 

Algorithms (by Falkenauer [87, 88], Runarsson et al. [245], and lima and Yakawa 

[155]), and Simulated Annealing (by Ka,mpke [165]). Since we concentrate on the 

two-dimensional case, these approaches are beyond the scope of this study. For the 

remainder of this subsection, we limit the survey to the use of genetic algorithms 

and tabu search for the two-dimensional cases. 

Genetic Algorithms 

A common feature found in most Genetic Algorithms (GAs) developed for SBS­

BPP is their two-stage approach, where a GA is combined with a heuristic place­

ment routine. In this two-stage approach, a GA manipulates the encoded solutions, 

which are then evaluated by a decoding algorithm transforming the packing se­

quence into the corresponding physical layout. Since domain knowledge is built 
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into the decoding procedure, the size of the search space can be reduced. The 

search space is further restricted to feasible solutions only. As a result, the pack­

ing strategy generates only non-overlapping layouts. 

The first researcher to implement GAs in the domain of packing was Smith [255] 

in 1985. He applies a GA to a two-dimensional rectangular packing problem with 

fixed orientation. The objective of his GA is to put as many blocks into a single 

rectangular region as possible. He uses permutations of rectangles to encode the 

instances. Thus, the original problem becomes a sequencing problem and heuristics 

are used to transform those permutation into packing schemes. Experimental 

results have shown that his GA can produce the same packing density 300 times 

faster than a dynamic programme. 

In 1994, Hwang et al. [154] design a GA for the 2DRSBSBPP where the 

rectangles are represented by a permutation and packed into the bins by a two­

stage heuristic. In the first stage, the level-oriented FF placement routine places 

rectangles onto an open ended strip of unlimited height, constructing the layout 

as a sequence of levels. Each level forms a rectangular block containing one or 

more rectangles. In the next stage, the packed strip is decomposed at each level 

forming a block of rectangles of fixed width and with the height equal to the height 

of the level. The blocks are then packed using the FFD or the BFD routine into 

a fixed size bin reducing the problem to a one-dimensional problem. The authors 

implement two GAs using the FFD and the BFD routines in the decoding stage. 

Comparisons are made with the HFF routine, which is a combination of the FFDH 

and FFD routines. The GAs consistently outperformed the heuristic one (HFF), 

whereby the one using the BFD routine performed best. 

A year later, Kroger [172] develops a sequential and a parallel GA to solve 

a constrained 2DRSBSBPP, which demands a guillotine restriction for the valid 

packing layout. He uses a problem specific encoding which represents the essen­

tial structure of a packing scheme by a binary tree. The major motivation for 

the crossover operator is to combine as many partial solutions (subtrees) from 

both parents as possible, thus preserving the main characteristics and providing 
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a systematic continuation of the search. The author compares the sequential GA 

with the FF placement routine, simulated annealing, and a random search strat­

egy which randomly generates valid preorder strings. The proposed algorithm 

produces high quality solutions compared with other heuristic methods, even in 

its sequential version. The concept of a meta-rectangle is also proposed in the 

paper. Due to the guillotine constraint of the packing schemes, each group of 

neighbouring rectangles forms a partial arrangement with still a rectangular shape 

(meta-rectangle). Then, each meta-rectangle temporarily freezes a hyperplane of 

an existent solution. Thus, the complexity of a problem is reduced and the algo­

rithm's search can be guided into the most promising parts of the solution space. 

Hopper and Turton [151] propose two GAs for the rectangle packing problem in 

1999. The GAs as well as the BL and BLF placement routines have been tested on a 

number of packing problems. The GA combined with the BLF routine outperforms 

the GA using the BL routine as well as the heuristic placement routines. They 

conclude that, the performance difference between the two GAs implementation 

is due to the improved placement routine. 

Two years later, Hopper and Turton [153] compare several local search algo­

rithms including GA, simulated annealing (SA), naIve evolution (NE), hill climbing 

and random search. The authors show that the combination between the GA, SA, 

and NE with the BLF routine all gave similar results but they are better than the 

combinations with the BL routine as well as the heuristic routine with height or 

width sorted input sequence. 

Tabu Search 

Lodi et al. [193, 194] develop an Unified Tabu Search (UTS) code for multi di­

mensional rectangular SBSBPP in 1999. The main characteristic of the unified 

framework in tabu search explained in [193, 194] is an adoption of a search scheme 

and a neighbourhood which are independent of the specific packing problem to be 

solved. The UTS is based on two possible neighbourhood moves. Both neighbour­

hoods consist of moves involving the rectangles of a particular bin, which is called 
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target bin and is defined in Section 6.6.1. At each iteration, the algorithm consid­

ers a rectangle j currently packed in the target bin b and tries to remove j from b. 

The first neighbourhood move attempts to directly pack j into a different bin. In 

the second neighbourhood move, the algorithm tries to recombine the rectangles 

of two different bins so that one of them can accommodate j. The approach is 

discussed in more details in Section 6.6.1. 

Lodi et al. [193] consider an oriented 2DRSBSBPP with guillotine cuts con­

straint. They propose a simple deterministic algorithm which is used in the ini­

tialisation of the UTS approach. The proposed algorithm runs in 0 (n log n) time 

with a worst-case performance ratio of 4. The algorithm is based on a technique 

developed by Martello and Vigo [203] in proving the worst-case performance of 

the continuous lower bound for 2DRSBSBPP. The UTS approach is developed by 

applying two simple heuristic placement routines (i.e. FFF and FBS) in the neigh­

bourhood search. Their UTS algorithm outperformed both heuristics for problem 

instances up to 120 rectangles. Also, the comparison with a B&B approach is 

comparable for instances that include up to 100 rectangles. 

A year later, Lodi et al. [194] introduce four new heuristic placement rou­

tines: FC, KP, AD, and TP, as described earlier which are developed according 

to different combinations of requirements based on the rectangle's orientation and 

guillotine cuts constraint. The proposed heuristic placement routines are then 

used in the UTS approach to generate an initial layout. Computational results on 

the benchmark problem instances that include up to 100 rectangles show that the 

proposed heuristic placement routines outperformed FFF and FBS routines (by 

Berkey and Wang [32]). They conclude that the UTS, in general, has improved 

the initial deterministic solution produced by the heuristic placement routine and 

is comparable to a B&B approach. Further investigation shows that both papers 

give similar results. 
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3.4.3 Lower Bounds for 2DRSBSBPP 

In this subsection, we present lower bounds for 2DRSBSBPP in both oriented and 

non-oriented cases. The lower bounds are obtained from the bounds proposed 

by Martello and Vi go [203] (oriented) and Dell'Amico et al. [69] (non-oriented) 

that are used in their branch and bound algorithm. These derivation of the lower 

bounds are extracted from their papers. 

3.4.3.1 Oriented Rectangular 

We first define the bin with dimensions (W,H) and rectangles with width Wj, 

and height h j . Let, j E J = {I, ... , n}, where n is the total rectangles to be 

placed. The simplest bound for 2DRSBSBPP is the Continuous Lower Bound La, 

which can be computed in O(n) time and has a worst-case performance ratio of ~ 

(Martello and Vigo [203]): 

(3.18) 

The idea is to calculate the total area of the rectangles and divide it by the area 

of a bin. The rounded up value obtained is a valid lower bound. This bound does 

not take into account the fact that many rectangles cannot be packed together in 

a bin. More accurate lower bounds which explicitly take into consideration both 

dimensions of the rectangles are introduced by Martello and Vi go [203]. 

We first present a lower bound that can be computed in linear time. Let 

JW = {j E J : Wj > ~ W} and observe that no two rectangles of JW may be 

packed side by side into a bin. Given any integer p, with 1 ::; p ::; ~H, let 

{j E JW : hj > H - p}, 

. W 1 
{J E J : H - p 2: h j > 2' H} , (3.19) 

{ . wI} 
J E J : 2' H 2: h j 2: p . 

Note that no two rectangles of J1 U J2 may be packed into the same bin, so IJ1 U J2 1 

is a valid lower bound on the optimal solution. The lower bound can be strengthen 
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by observing that no rectangle in J3 will fit into a bin used for a rectangle in J1 · 

Hence, for any given integer p, with 1 ::; p ::; ~ H, a valid lower bound on the 

optimal solution is 

Lrv (p) max{L: (p), L; (p)}, where (3.20) 

W { rlJ31 
- 'L.. jEh l ~ J 1 } L(3 (p) = PI U J2 1 + max 0, l~ J . (3.22) 

Both LY:(p) and L;(p) are obtained by adding to IJ1 U J21 the minimum number 

of additional bins needed for the rectangles of J3 . Thus, a valid lower bound on 

the optimal solution is 

max {LW (p)}. 
1:C;p:C;(1/2)H 1 

(3.23) 

The overall computation of L"( can be performed in O( n 2
) time, since LY: (p) and 

L; (p) can be determined in 0 (n) time. 

Now let JH = {j E J : hj > ~H}, 1 ::; p ::; ~ Wand 

{j E J H : W j > vV - p}, 

{ . HI} 
J E J : W - P ;:::: Wj > "2 W , (3.24) 

{ . HI} 
J E J :"2 W ;:::: Wj ;:::: P . 

It is clear that from the above results, a valid lower bound on the optimal solution 

IS 

LiI = max {Lf (p)}, where 
1:C;p:C;(1/2)W 

Lf (p) = max{ L;; (p), L% (p)}, where 

(3.25) 

(3.26) 

(3.27) 

(3.28) 
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Thus, an overall lower bound on the optimal solution can be computed in O(n2
) 

time as 

Ll = max{Lf', Lf}· (3.29) 

In the remainder of this subsection, we present lower bounds which explicitly 

take into account both dimensions of the items. Given an integer value q, 1 ::; q ::; 

~ VV, let 

{j E J : W j > W - q}, 
1 

{j E J: W - q 2': Wj > "2W}, (3.30) 

1 
{j E J : "2 W 2': Wj 2': q}. 

First observe that Kl U K2 == JW and is independent of q. Hence a valid lower 

bound on the number of bins is needed for the rectangles in Kl U K2 is given by 

Ltv. We can tighten this value by considering the rectangles in K3 and observing 

that none of them can be packed beside an rectangle of K 1 . Then a valid lower 

bound on the optimal solution is 

L':[ = max {L':[(q)} , where 
1:S;q:S;(lj2)W 

LW( ) = LW + 0 L...,jE K 2UK3 J J 1 L...,jEKl J { f
" hw - (HLW - '" h)W1} 

2 q 1 max , HW ' 

and can be computed in O(n2
) time. 

Similarly, the Lfj can also be obtained as follows. Let, 1 :s; q ::; ~H and 

{j E J: h j > H - q}, 
1 

{j E J : H - q 2': hj > "2 H}, 

1 
{j E J : "2 H 2': hj 2': q}. 

A valid lower bound on the optimal solution is 

Lfj = max {Lf (q)}, where 
1:S;q:S;(lj2)H 

{ f
" hw· - (W LH - '" h)H1 } Lf (q) = Lf + max 0, L...,jE

K
2
UK

3 J J HW 1 wjEK1 J . 

(3.31) 

(3.32) 

(3.33) 

(3.34) 

(3.35) 
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Thus, the overall lower bound, 

(3.36) 

It is worth mentioning that lower bounds Ll and L2 have the same worst-case 

time complexity, but the computation of L!{ (L!f) requires the value of Lrv (Lf). 

Thus, the average computing time required for L2 is approximately twice the time 

required for L 1 . 

Martello and Vigo [203] further describe a lower bound which is computation­

ally more expensive, but can in some cases improve the previous one. Given any 

pair of integers (p, q), with 1 :::; p:::; ~H and 1 :::; q :::; ~W. Let, 

II {j E J : h j > H - p and Wj > W - q}, 
. 1 1 

(3.37) h {J E J\h : h j > "2 H and W > -W} 
J 2 ' 

13 
. 1 

and ~W > W > q}. {J E J: "2H 2: h j 2: p 2 - J-

Observe that II U h is independent of (p, q), that no two items of h U 12 may be 

packed into the same bin, and that no rectangle in h will fit into a bin containing 

a rectangle in h. Given a bin W x H containing a rectangle of size Wj x hj, the 

maximum number of p x q items that can be packed into the bins is 

m(j, p, q) = l: J l vV ~ Wj J + l ~ J l H ; h
j J -l H ; h

j J l W ~ Wj J . (3.38) 

Hence, a valid lower bound on the optimal solution that can be computed in O(n3
) 

time is given by 

L3 = max {L3(P, q)}, where 
15.p5. (1 /2)H, 15.q5. (1/2) W 

(3.39) 

{ f
1I31- ~jEh m(j,p, q)1 } 

L 3 (p,q)=lhUI2 1+max 0, l~J l~J . (3.40) 

Thus, the overall lower bound for oriented 2DRSBSBPP is 

(3.41 ) 
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3.4.3.2 Non-Oriented Rectangular 

In the following subsection, we present a lower bound for non-oriented 2DRSBS­

BPP proposed by Dell'Amico et al. [69]. Without loss of generality, we assume 

that all input data are positive integers and bins and items are given in 'horizontal' 

orientation, i.e. that W ~ Hand Wj ~ h j for j = 1, ... , n. In order to ensure 

feasibility, we assume that Wj :::; Wand h j :::; H for j = 1, ... ,n. 

A valid lower bound comes from the following relaxation. Given an instance of 

the problem, we replace each rectangle by a number of square items obtained by 

appropriately cutting it using procedure CUTSQ as described in Figure 3.12. For 

the resulting instance, there is no difference between allowing 90 0 rotation or not. 

Note that in the case of a rectangle j where Wj = hj, there is no need to apply the 

CUTSQ procedure. Note that squares of size one are not produced, as they are of 

no use in the subsequent lower bound computations. 

Figure 3.12: Procedure CUTSQ (Dell'Amico et al. [69]) 

procedure CUTSQ: 

end. 

JSQ := 0; 
for j := 1 to n do 

S:= 0; 
while h j > 1 do 

k:= lWj/hjJ; 
add k squares of size hj to S; 

Wj := Wj - khj; 

swap Wj and hj 

end while; 
JSQ:= JSQ uS 

end for 



CHAPTER 3 69 

Let !VI = {I, ... ,m} where m = IlsQI is the number of resulting squares, and 

let lj (j E !VI) be the resulting edge sizes. Given an integer value q, 0 :::; q :::; ~H, 

let 

{j E !VI : l j > W - q}, 
1 

{j E !VI: W - q 2:: lj > "2 W}, 

1 1 
{J' EM: - W > l > - H} 2 -) 2 ' (3.42) 

1 
{j E !vI : "2 H 2:: lj 2:: q}. 

Recall that W 2:: H, and observe that, by definition: 

.. each square of 51 U 52 requires a separate bin; 

.. no square of 53 can be packed into a bin containing a square of 51; 

.. no square of 53 can be packed over a square of 52; 

• at most one square of 53 can be packed beside a square of 52' 

Let, 

(3.43) 

where 

53 is the set of the largest squares of 53 that can be packed into the bins that pack 

the squares of 52; and 

53 \53 is the set of the squares in 53 that do not belongs to 53' 
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A valid lower bound on the optimal solution value is 

L5 = max {L(q)}, where 
O~q~(1/2)H 

70 

(3.44) 

{ r
"· l2_(WHL-"" l(H-l))1} L(q) = ISll + L + max 0, D]ES2US

3
US

4] WH D]E
S
23] ] , 

(3.45) 

where S23 = {j E S2 U S3 : lj > H - q} and can be computed in O(m) time. 

If W = H, Equation 3.45 can be simplifies to 

(3.46) 

Dell'Amico et al. [69] also mention that for instances where some rectangles 

that cannot be rotated (i.e. Wj > H for some j), an alternative bound can be 

obtained as follows. Let T = {j : Wj > H}, apply CUTSQ only to the items 

of {I, ... ,n} \T and compute, for the instance defined by T plus the resulting 

squares, any lower bound for the oriented case. By using lower bound L4 and 

improve L5 by setting L5 = max{L5, L4 }, they conclude that the overall lower 

bound for non-oriented 2DRSBSBPP is given by 

LBo = max{Lo, L5}. (3.47) 
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3.5 Travelling Salesman Problem 

The Travelling Salesman Problem (TSP) is a classical combinatorial optimisation 

problem. It was first documented as early as 1759 by Euler, whose interest was 

solving the knight's tour problem (as cited by Hoffman and 'Wolfe [146]). A correct 

solution would have a knight visit each of the 64 squares on a chessboard exactly 

once on its tour. The term 'travelling salesman' was first used in 1832, in a German 

book written by a veteran travelling salesman. Mathematical problems related to 

the TSP were treated in the 1800s by Sir William Rowan Hamilton on solving 

the Hamiltonian cycle in Graph Theory. The general form of the TSP was first 

stated by Karl Menger in 1930s, but it is not until 1954 when the first mathematical 

formulation for the TSP appears courtesy of Dantzig et al. [63]. Since then, a huge 

amount of research has been done on this problem over the years as summarised 

in Table 3.6. This table represents the latest problem instances for the TSP that 

are solved to optimality. The most widely used collection of TSP instances in 

recent computational studies is Gerhard Reinelt's TSPLIB [266] test sets. The 

TSPLIB is made up of over 100 instances arising from industrial, geographic, and 

academic sources. To supplement this collection, further instances are available in 

the National TSP [216], World TSP [283] and VLSI TSP [270] collections. The 

long history of the TSP can be found in Hoffman and Wolfe [146]. 

The TSP is one of the most studied combinatorial optimisation problems of 

our time and is simple to state but very difficult to solve. The problem has 

been formulated in several different ways (see Langevin et al. [176]). We use the 

following formulation as stated by Johnson and McGeoch [161]: 

Given a set {Cl' C2, ... , cn} of cities and for each pair {Ci' Cj} of distinct cities, there 

exist a distance d( Ci, Cj). The objective is to find an ordering 1[" of the cities that 

minimises the tour length, i.e. the quantity 

n-l 

L d(C7r(i), C7r (i+1)) + d(C7r(n) , C7r(l))' (3.48) 
i=l 
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The TSP is classified as a class of NP-Complete problems by Garey and John­

son [108]. The problem is symmetric (STSP) if, and only if, d(Ci' Cj) = d(cj, Ci) for 

1 :::; i, j :::; n; otherwise it is asymmetric (ATSP). A special case of STSP is Eu­

clidean TSP where the distance between the cities satisfy the 'triangle inequality': 

d( Ci, Cj) + d( Cj, Ck) 2: d( Ci, Ck) for all i, j, kEn. The cities are given as points with 

integer coordinates in the two-dimensional plane, and the distance are computed 

according to the Euclidean metric. 

Table 3.6: Milestones in the solution of TSP instances solved to optimality (ex­
tracted from [72]) 

Year Research Team 
Size of 

Name 
Instance 

1954 G. Dantzig, R Fulkerson, and S. Johnson 49 citiesa dantzig42 

1971 M. Held and RM. Karp 64 cities 64 random 
points 

1975 P.M. Camerini, L. Fratta, and F. Maffioli 67 cities 67 random 
points 

1977 M. Grotschel 120 cities gr120 
1980 H. Crowder and M.W. Padberg 318 cities lin318 
1987 M. Padberg and G. Rinaldi 532 cities att532 
1987 M. Grotschel and O. Holland 666 cities gr666 
1987 M. Padberg and G. Rinaldi 2,392 cities pr2392 
1994 D. Applegate, R Bixby, V. Chvatal, and 7,397 cities pla7397 

W. Cook 
1998 D. Applegate, R Bixby, V. Chvatal, and 13,509 cities usa13509 

W. Cook 
2001 D. Applegate, R Bixby, V. Chvatal, and 15,112 cities d15112 

W. Cook 
2004 D. Applegate, R Bixby, V. Chvatal, W. 24,978 cities sw24978 

Cook, and K. Helsgaun 
. . . . 

a optImal tour through the 42 CItIes uses roads that pass through the 7 Cltles that are excluded . 

TSP often comes up as a subproblem in more complex combinatorial problems, 

the best known and important one of which is the Vehicle Routing Problem (VRP), 

that is, the problem of determining for a fleet of vehicles which customers should 

be served by each vehicle and in what order each vehicle should visit the customers 

assigned to it. Although transportation applications are the most natural setting 

for the TSP, the simplicity of the model has led to many interesting applications 

in other areas. For example, 
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• Computer wiring (Lenstra and Rinnooy Kan [183]): some computer systems 

can be described as modules with pins attached to them. It is often desired 

to link these pins by means of wires, so that exactly two wires are attached 

to each pin and total wire length is minimised . 

• X-ray Crystallography (Bland and Shallcross [33]): some experiments in 

crystallography consist of taking a large number of X-ray intensity measure­

ments on crystals by means of a detector. Each measurement requires that 

a sample of the crystal be mounted on an apparatus and that the detector 

be positioned appropriately. The order in which the various measurements 

on a given crystal are made can be seen as the solution of a TSP. 

• Hole drilling (Reinelt [241]): the holes to be drilled on boards or metallic 

sheets are the cities, and the tour is the distance it takes to move the drill 

head from one hole to the next. 

Some excellent surveys of published research on the TSP can be found in Lawler 

et al. [180], Reinelt [242], Junger et al. [164]' and Johnson and McGeoch [161]. 

3.5.1 Heuristic Methods for TSP 

In this subsection, we address some of the well known heuristic methods for solving 

the TSP. The objective of this subsection is to give a general overview of the 

approaches used to solve the TSP rather that comparing the effectiveness among 

the approaches used in solving the problem. Generally speaking, TSP heuristics 

can be classified as tour construction, tour improvement, and composite heuristics. 

3.5.1.1 Tour Construction Heuristics 

In brief, tour construction procedures gradually build a tour by selecting each 

vertex in turn and by inserting them one by one into the current tour. Various 

techniques are used for selecting the next vertex and for identifying the best in­

sertion place. While the procedures are very fast, the solution quality is usually 

rather poor. 
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Nearest Neighbour: 

Bellmore and Nemhauser [30] propose this procedure where a feasible tour is con­

structed by including the most advantageous city at each step. This heuristic 

requires O(n2 ) time and the steps are as follow: 

8 1: Consider an arbitrary vertex as a starting point. 

8 2: Determine the closest vertex to the last vertex considered and include it in 
the tour. If any vertex has not yet been considered, repeat 82. 

8 3: Link the last vertex of the tour to the first one. 

A possible modification is to consider in turn all n vertices as a starting point. The 

overall time complexity is then O(n3
) and the resulting tour is generally better. 

Insertion: 

Rosenkrantz et al. [244J consider a class of insertion procedures that use various 

criteria. The steps are briefly summarised as follow: 

8 1: Construct a first tour consisting of two vertices. 

8 2: Consider in turn all vertices not yet in the tour. Insert in the tour a vertex 

chosen with respect to a given criterion, for example: 

(a) the vertex yielding the least distance increment, 

(b) the vertex closest to the current tour, 

( c) the vertex furthest away from the tour, 

(d) the vertex forming the largest angle with two consecutive vertices of the 

tour, etc. 

If any vertex has not yet been considered, repeat 82. 

8 3: Link the last vertex of the tour to the first one. 

Depending on the criterion that is used, the complexity of this heuristic vanes 

between O(nlogn) and O(n2
). 

Clarke-Wright: 

This procedure is derived from a more general VRP proposed by Clarke and Wright 

[55]. In terms of the TSP, the steps are given as follow: 

8 1: Consider an arbitrary vertex as a depot (e.g. city 1) where the tour returns 

to the depot after each visit to another vertex. 

8 2: Calculate the saving Sij = Cli - Cij + Cjl for all pairs of vertices i and j . Note 
that the saving is the amount by which the tour would be shortened if the 
tour went directly from one vertex to the other, bypassing the depot. Order 

the savings in non-increasing order. 
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8 3: Starting from the top of the order, perform the bypass so long as it does not 

create a cycle of non-depot vertices or cause a non-depot vertex to become 

adjacent to more than two other non-depot vertices. 

8 4: Repeat 83 until there are only two non-depot vertices remaining connected 

to the depot. 

This heuristic can be implemented to run in 0 (n 2 log n) time. 

Christo fides : 

Christofides [52] proposes a heuristic that IS run m O( n 3
) time. The heuristic 

proceeds as follows: 

8 1: Construct a minimum spanning tree T for the set of cities. 

8 2: Construct a minimum matching M for the set of all odd degree vertices in 

T. 

8 3: Find an Eulerian tour for the Eulerian graph (i.e. a cycle that passes through 

each edge exactly once) that is the union of T and M. 

A travelling salesman tour can then be constructed by traversing this cycle while 

taking shortcuts to avoid multiple visited vertices. 

3.5.1.2 Tour Improvement Heuristics 

These heuristics start with an arbitrary initial tour and then search for improve­

ment by edge exchange method. The method locally modifies the current solution 

by deleting k edges from the current tour and reconnecting the resulting paths 

using k new edges so as to generate a new improved solution. Typically, these 

heuristics are applied iteratively until a local optimum is found. The major draw­

back of these heuristics is the possibility of becoming trapped at a local optimum. 

k-Opt: 

8 1: Consider an initial tour. 

8 2: Remove k edges, thus breaking the tour into k paths. Reconnect the k paths 

in all possible ways. If any reconnect ion yields a shorter tour, consider this 

tour as a new solution and repeat 82. 8TOP when no improvement can be 

obtained. 
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In the case of 2-0pt, a neighbouring solution is obtained from the current so­

lution by deleting two edges, reversing one of the resulting paths and reconnecting 

the tour (see Figure 3.13). The 2-0pt heuristic is proposed by eroes [62] and 

requires O(n2
) time. 

Figure 3.13: A 2-0pt move: original tour (left) and resulting tour (right) 

a b a b 

d c d c 

Lin [189] proposes a 3-0pt move, where three edges are deleted. The three 

resulting paths are then put together in a new way, possibly reversing one of them 

(see Figure 3.14). The computational results show that the 3-0pt moves is more 

effective than 2-0pt moves, though the size of the neighbourhood is larger and 

hence more time consuming to search. The time complexity for searching the 

neighbourhood defined by 3-0pt is O(n3 ). 

Figure 3.14: 3-0pt moves: original tour (far left) and possible resulting tours 
(right) 

d c 

Bentley [31] derives a 2.5-0pt heuristic for geometric TSP, which expands the 

2-0pt neighbourhood to include a simple form of 3-0pt move that can be found 

with little extra effort. In a 2.5-0pt move, one relocates a single city from its 

current location to a position between two current tour neighbours elsewhere in 

the tour. This corresponds to the situation where band c are the same city in 

Figure 3.14. The 2.5-0pt heuristic achieved a better average tour over 2-0pt but 
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with a much longer computation time. However, it is still worse than the 3-0pt 

heuristic. 

Lin and Kernighan [190J suggest a 4-0pt move which is also known as the 

double-bridge move. A double-bridge move can be viewed as a combination of two 

2-0pt moves. The heuristic starts by breaking four edges in the tour thus forming 

four paths. Suppose the resulting four paths are TIT2T3T4 in order (see Figure 

3.15). The move rearrange these into the new ordering TIT4T3T2 (without reversing 

any of the paths) and this yields the new tour. Computational experiments show 

that the algorithms based solely on 4-0pt move did not find noticeable better 

solutions than the 3-0pt heuristic. 

Figure 3.15: A 4-0pt move: original tour (left) and resulting tour (right) 

a b a b ;y---\c 
I • 
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Or-Opt: 

Or [221J proposes a simplified exchange procedure requiring only O(n2
) operations 

at each step, but producing tours nearly as good on average as those obtained with 

a 3-0pt heuristic. The steps are as follow: 

8 1: Consider an initial tour and set t := 1 and s := 3. 

8 2: Remove a chain of s consecutive vertices from the tour, starting with the 

vertex in position t, and temporarily insert it between all remaining pairs of 

consecutive vertices on the tour . 

.. If the temporary insertion yields a shorter tour, implement it immedi­

ately, thus defining a new tour. Set t := 1 and repeat 82 . 

.. If no temporary insertion yields a shorter tour, set t := t+ 1. If t n+ 1, 

then proceed to 83, otherwise repeat 82. 

8 3: Set t := 1 and s := s - 1. If s > 0, go to 82, otherwise 8TOP. 
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Lin-Kernighan (LK): 

Lin and Kernighan [190] develop a sophisticated edge exchange procedure where 

the number of edges k, to be exchanged in each step is regarded as a variable. LK 

uses a very complex neighbourhood search structure which requires O(n5) time. 

The LK algorithm was considered for many years to be the 'uncontested champion' 

'of heuristic methods for the TSP (cite in Johnson and McGeoch [161]). The best 

description of the full details of the LK algorithm is the original paper by Lin 

Kernighan in 1973. 

3.5.1.3 Composite Heuristics 

The procedures combine tour construction and tour improvement heuristics. The 

idea behind a composite heuristic is to obtain a good initial solution quickly and 

then apply a computationally more expensive improvement heuristic to get to a 

near optimal solution. 

CCAO: 

Golden and Stewart [127] design a composite heuristic for symmetrical Euclidean 

TSP. It exploits a well known property of such problems, namely that in any 

optimal solution, vertices located on the convex hull of all vertices are visited in the 

order in which they appear on the convex hull boundary. This heuristic constructs 

an initial tour consisting of the convex hull of vertices. Vertices not yet on the 

tour are gradually included by first considering all possible insertions, and then 

selecting the best move according to a largest angle criterion. The Hamiltonian 

tour is then improved by the Or-Opt as the post-optimisation procedure. The 

heuristic can be summarised as follows: 

S 1: (C: Convex Hull) Define an initial (partial) tour by forming the convex hull 

of vertices. 

S 2: (C: Cheapest Insertion) For each vertex k not yet contained in the tour, 

identify the two adjacent vertices i k and jk on the tour such that Cikk + Ckjk -

Cikjk is minimised (Cij cost or distance from city i to city j). 
S 3: (A: Largest Angle) Select the vertex k* that minimises the angle between 

edges (ik' k) and (k,jk) on the tour, and insert it between ik* and jk*' 
S 4: Repeat S2 and S3 until a Hamiltonian tour of all vertices is obtained. 
S 5: (0: Or-Opt) Apply the Or-Opt procedure to the tour and STOP. 
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GENIUS: 

Gendreau et al. [109] develop an efficient heuristic algorithm called GENIUS, which 

is a combination of a Generalised Insertion (GENI) procedure and an Unstringing 

and Stringing (US) post-optimisation routine. This routine consists of removing 

a vertex from a feasible tour and of inserting it back at different position. There 

are two insertion and unstringing types in GENI and US procedures respectively. 

Detailed descriptions of the two insertion and unstringing types can be found in 

Gendreau et al. [109]. The procedures are summarised as follow (extracted from 

Gendreau et al. [109]): 

GENI procedure: 

S 1: Create an initial tour by selecting an arbitrary subset of three vertices. Ini­

tialise the p-neighbourhoods of all vertices (p-neighbourhood = set of the p 

vertices on the tour closest to v, where v is an arbitrary vertex not yet on 

the tour). 

S 2: Randomly select a vertex v not yet on the tour. Implement the cheapest 

insertion of v considering the two possible orientations of the tour and the 

two insertion types. Update the p-neighbourhoods of the all vertices after 

vertex v is inserted into the tour. 

S 3: If all vertices are now part of the tour, STOP, otherwise go to S2. 

US routine: 

S 1: Consider an initial tour T of cost z. Set T* := T, z* := z and t := 1. 

S 2: Starting from tour T, apply the unstringing and stringing procedures with 

vertex Vt, considering in each case the two possible types of operations and 

the two possible orientations of the tour. Let T' be the tour obtained and let 

z' be its cost. Set T := T' and z := z'. 

e If z < z*, set T*:= T, z*:= z and t:= 1; repeat S2. 

e If z 2: z*, set t : = t + 1. 

e If and t = n + 1, STOP: the best available tour is T* and its cost is 

equal to z*, otherwise repeat S2. 
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3.5.2 Exact and Local Search Approaches for TSP 

A large number of exact algorithms such as Linear Programming (LP), Dynamic 

Programming (DP) and B&B approach have been proposed for the TSP. 

One of the earliest exact algorithm formulations is due to Dantzig [63] in 1954. 

He formulates the problem as an Integer LP problem involving zero-one variables 

and using a cutting plane approach to prove the optimality of a heuristic solution 

to a 49-city problem (an impressive size at that time). 

The recursive technique of DP for the TSP is suggested by Bellman [29] and 

independently by Held and Karp [141] in 1962. At that time, DP could only solve 

relatively small problem instances (up to 17 cities), due to its enormous storage 

requirements. vVith the advances of the modern computer, we would expect to 

solve larger problem instances today. 

The B&B approach also plays an important role in the development of the 

TSP. The first ever B&B approach for TSP was developed in 1958 by Eastman [85] 

and it has became a general tool for hard problems in combinatorial optimisation 

problems. The success of the algorithm also led to the derivation of the well known 

lower bound for STSP by Held and Karp [142, 143]. 

Over the past fifty years, the record for the largest non-trivial TSP instance 

solved to optimality has increased substantially from 49 cities problem in 1954 up 

to 24 978 Swedish cities problem in May 2004. Although the advances seen can be 

partly attributed to the increase in computing power, much of the improvement is 

due to the major developments in the use of B&B approaches. Applegate et al. [9] 

develop a very successful Branch and Cut algorithm which is derived from the B&B 

approach by employing the cutting plane method to strengthen the relaxations 

used for branching. Laporte [177] gives an excellent overview on the exact and 

approximate algorithms for TSP. 

In recent years, local search methods like the Iterated Lin-Kernighan (by John­

son and McGeoch [161]) and Chained Lin-Kernighan (by Applegate et al. [10, 12]), 

based on the Martin-Otto-Felten approach described by Martin et al. [205, 206] are 
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widely believed to be the most cost-effective way to improve on the LK algorithm. 

The successful implementation of the Chained Lin-Kernighan on large scale STSP 

has led to the development of the state-of-the-art Concorde software for solving 

the large STSP. Concorde uses the Chained Lin-Kernighan as part of its exact 

solution procedure based on the Branch and Cut algorithm. 

Other promising methods for solving TSP are Guided Local Search (GLS) 

as proposed by Voudouris and Tsang [272] and Guided Variable Neighbourhood 

Search (GVNS) as proposed by Burke et al. [39]. 

G LS augments the cost function of the problem to include a set of penalty terms 

for the edges and passes this problem, instead of the original one, for minimisation 

by the local search procedure. Each time a local search gets caught in a local 

optimum, the penalties are modified and local search is called again to minimise 

the modified cost function. Local search is confined by the penalty terms and 

focuses attention on promising regions of the search space. As the penalties build 

up for edges frequently appearing in local optima, the algorithm starts exploring 

new regions in the search space by including edges not previously use and therefore 

not penalised. Voudouris and Tsang [272] combine the GLS with a neighbourhood 

reduction scheme, called Fast Local Search (FLS) which significantly speeds up 

the operations of the algorithm. The GLS implementation that uses the FLS and 

2-0pt move within the local search procedure easily outperform some general local 

search methods such as simulated annealing and tabu search. Furthermore, they 

demonstrate that GLS with FLS-20pt is highly competitive, if not better, than 

some of the best specialised algorithms for the STSP such as Iterated LK and 

genetic local search. 

GVNS proposed by Burke et al. [39] uses the notion of guided shakes within 

Variable Neighbourhood Search as a method to restart the search when it becomes 

trapped in a local optimum. This is shown to improve on the performance of ran­

dom shaking strategies suggested in the original work by Hansen and Mladenovic 

[134]. GVNS uses a hybrid approach of the HyperOpt/3-0pt as the local search 

heuristic. This approach yields very good results for the test problems in ATSP. 
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The first researcher who tackle the TSP with GAs appears to be Brady [36] 

in 1985. His example is soon followed by Grefenstette et al. [131]' Goldberg and 

Lingle [126]' Oliver et al. [220] and many others. Comprehensive surveys can 

be found in Potvin [235], Schmitt and Amini [248], and Larraiiaga et al. [178]. 

Moreover, an annotated bibliography is given in Alander [5]. Despite the leap in 

the performance of GAs since the work of Muhlenbein et al. [215] in 1988, it is 

only recently that they have appeared competitive. Recent papers by Freisleben 

and Merz [105], Jayalakshmi et al. [159], and Choi et al. [50] yield encouraging 

results supporting the competitiveness of GAs. 

Freisleben and Merz [105] propose a genetic local search algorithm for solving 

both STSP and ATSP. Their approach is based on the combination of GA and local 

search methods that employ heuristics such as LK for STSP and Nearest Neighbour 

for ATSP. Local search techniques are used to efficiently find the local optima in the 

TSP search space, and GA is used to broaden the search in order to find improved 

local optima. A new crossover operator, Distance Preserving Crossover (DPX) 

as explained in Section 4.6.2 has been developed to enable the GA to perform a 

particular 'jump' within the search space of local optima. Furthermore, there is a 

mutation operator which performs random jumps within the neighbourhood of the 

local optima, and a new replacement strategy which maintains a sufficient degree 

of diversity within the population. The computational results presented for several 

symmetric and asymmetric TSP instances have shown that the approach is able 

to produce high quality solutions in reasonable time. 

A Hybrid GA (HGA) is designed by Jayalakshmi et al. [159]. They develop 

three heuristics for the Euclidean TSP. One of the heuristics, called Initialisation 

Heuristic (IH), is applicable only to the Euclidean TSP and is for generating the 

initial population. The other two heuristics: RemoveSharp and LocalOpt, can be 

applied to all forms of symmetric and asymmetric TSPs. Both heuristics are greedy 

in nature. Results obtained by HGA outperform the results obtained by existing 

GA implementations for certain problems, where the convergence rate is found to 

be high and the optimal solution is obtained in a fewer number of generations. 
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Choi et al. [50] present a GA to solve the ATSP. The GA proposed extends the 

search space by purposefully generating and including infeasible solutions in the 

population. Instead of trying to maintain the feasibility with crossover operations, 

it searches through both feasible and infeasible regions for good quality solutions. 

The Karp's patching algorithm (see Karp [166]) is used as a repair algorithm to 

convert infeasible solutions to feasible ones from time to time. A comparative 

computational study using benchmark problems shows that the proposed GA is a 

viable option for ATSP. 

Glover [116] appears to be the first researcher who developed the tabu search 

algorithm for the STSP. Limited results were reported by Glover [117], Knox and 

Glover [171], Knox [169, 170], and Malek et al. [201]. All these algorithms use 

2-0pt as their basic moves, but they differ with respect to the size of the tabu list 

used and the implementation of the aspiration criterion. Tsubakitani and Evans 

[267] study the problem of optimising the size of the tabu list when applying tabu 

search with a short term memory function to the STSP. Their study revealed that 

good tabu list sizes are smaller than generally believed. Computational results 

show that tabu search generates better solution quality when constructed to a 

fixed computation time compared to 2-0pt and 3-0pt moves, for a variety of 

small problem instances. However, Johnson and McGeoch [161] conclude from the 

literature that tabu search appears to be inferior to the Lin-Kernighan method in 

terms of the solution quality obtainable within a fixed computation time. 

The first simulated annealing applied to TSP was due to Kirkpatrick et al. [168] 

and independently by Cerny [45]. Since then, the TSP has continued to be a prime 

testbed for the approach and its variants. Generally speaking, simulated annealing 

is unable to compete with a single run of Lin Kernighan in terms of the solution 

quality obtainable within a fixed computation time. However, over longer time 

periods, simulated annealing can outperform multi-start Lin Kernighan on some 

instances (Johnson and McGeoch [161]). 
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Genetic Algorithms 

4.1 Introduction 

The aims of this chapter are to give more detailed descriptions of the main com­

ponents in a standard Genetic Algorithm (GA) and our proposed MultiCrossover 

Genetic Algorithms (MXGAs). A brief overview of a GA is presented in Section 

2.5.4. Each main component of the GAs is described and a brief summary of the 

variety of approaches often used in the components is provided. Note that the main 

objective of this chapter is to give an overview of the approaches used in the GAs 

rather than comparing the effectiveness and efficiency of the approaches in solving 

combinatorial optimisation problems. The efficiency of an approach depends on 

the representation used and differs from one problem domain to another. In the 

remainder of this chapter, without loss of generality, we refer to the chromosome 

as an individual, and genes in the chromosome as the elements in the individual. 

In Sections 4.2 - 4.8, the approaches used in each component of GAs are briefly 

explained in chronological order. The general framework of the proposed MXGA 

is addressed in Section 4.9. vVe end this chapter by giving a summary of the GAs 

in Section 4.10. 

84 
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4.2 Representation 

Each individual represents a legal solution to the problem and is composed of 

a string of elements with length L. The binary alphabet {O,l} is often used to 

represent these elements but depending on the application, integers or real numbers 

are used. In fact, almost any representation can be used that enables a solution to 

be encoded as a finite length string. Figure 4.1 shows some examples of commonly 

used representation for individuals. 

Figure 4.1: Examples of Individuals 
Binary Representation 

Individual: 1 0 0 0 1 0 1 1 0 1 
Example of problem: Knapsack Problem 
Encoding: '1'= item in the knapsack, '0' otherwise. 

Permutation Representation 
Individual : 3 7 2 8 10 1 9 6 4 5 
Example of problem: Cutting and Packing Problem 
Encoding: sequence of the items to be placed. 

Matrix Representation 

J1 J2 J3 )4 
i1 

U 
0 0 n Individual : i2 0 1 

Z3 0 0 
i4 1 0 

Example of problem: Travelling Salesman Problem 
Encoding: '1 '= city) is visited immediately after city i, '0' otherwise. 

Real Value Representation 
Individual: 1.23 5.78 3.56 0.89 1.02 
Example of problem: Finding Weights for Neural Network 
Encoding: values represent weights for inputs. 

Since the Travelling Salesman Problem (TSP) is one of the most studied com­

binatorial optimisation problems, there is no surprise that there have been many 

different representations used to solve the TSP using GAs. As a result, the TSP 

is a good example problem to use as a basis for describing the different types of 

representation. In the remainder of this section, we explain briefly the represen­

tations used in GAs to solve the TSP. Excellent reviews are given in Potvin [235] 

and Larraiiaga et al. [178]. 
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Binary Representation 

In this representation, each city in an-cities TSP is represented as an element 

with a string of flOg2 n l bits, and an individual is a string of nflog2 n l bits. For 

example, in a TSP with six cities, the cities are represented by 3-bits strings as 

given in Table 4.1. Thus, the tour of cities 

T: 1-2-3-4-5-6 

is represented by 

C = (000 001 010 all 100 101). 

Note that there exist 3-bit strings which do not corresponds to any city: 110 and 

111. 

Table 4.1: Binarv Representation of a 6-cities TSP (Larraiiaga et al. [178]) 
u 

i City i i City i 

1 000 4 011 
2 001 5 100 
3 010 6 101 

Although the binary strings constitute the most natural way of representation 

in GAs, it is considered to be not very appropriate for the TSP as commented by 

Whitley et al. [278]: 

"Unfortunately, there is no practical way to encode a TSP as a binary 

string that does not have ordering dependencies or to which operators 

can be applied in a meaningful fashion. Simply crossing strings of cities 

produces duplicates and omissions. Thus, to solve this problem some 

variation on standard genetic crossover must be used. The ideal recom­

bination operator should recombine critical information from the parent 

structures in a non-destructive, meaningful manner." 
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Path Representation 

This is considered to be the most natural way to encode TSP tour. In this repre­

sentation, the n cities to be visited are sequenced in order according to a list of n 

elements, so that if city i is the jth element of the list, city i is the jth city to be 

visited. Hence, the tour of cities 

T: 2 - 8 - 5 - 3 - 7 - 9 - 1 - 10 - 6 - 4 

is simply represented by 

c = (2 8 5 3 7 9 1 10 6 4). 

This representation has encouraged a great number of crossover and mutation 

operators to be developed. These operators are discussed in detail in Section 4.6 

and 4.7. 

Adjacency Representation 

This representation is developed by Grefenstette et al. [131] and is designed to 

facilitate the manipulation of edges between cities in the tour. The crossover 

operator developed based on this representation produces offspring that inherit 

most of the edges from their parents. A tour is represented as a list of n cities. 

City j is listed in position i in the individual if, and only if, the tour leads from 

city i to city j (i.e. there is an edge from city i to city j in the tour). Hence, the 

tour T mentioned above can be encoded as 

C = (10 8 7 2 3 4 9 5 1 6). 

Ordinal Representation 

This representation is also developed by Grefenstette et al. [131]. The encoding is 

based on a 'reference tour'. Assume, for example, that the reference tour is given 

by 

R = (1 2 3 4 5 6 7 8 9 10). 
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Now the tour T mentioned earlier is represented as 

c = (2 7 4 2 4 4 1 3 2 1). 

This approach is interpreted as follows. The first number of C is a '2'. This means 

that the first city of the tour is the second element of list R. The second element 

is then removed from R and the partial tour is: 2-. The second element of C is 

a '1'. Therefore, the second city of the tour is the 7th element of list R, which is 

city' 8'. The 7th element is then removed from R and the partial tour is: 2 - 8-. 

The process is repeated until all the elements of R have been removed and the 

final tour is 

T: 2 - 8 - 5 - 3 - 7 - 9 - 1 10 - 6 - 4. 

Matrix Representation 

Fox and McMahon [104] represent a tour as a matrix in which the element in row 

i and column j is a '1', if and only if, in the tour city i is visited before city j. For 

example, the tour (2 3 - 1 - 4) is represented by the matrix 

0 0 0 1 

1 0 1 1 
C= 

1 0 0 1 

0 0 0 0 

Seniw [251] and Homaifar et al. [148] have an alternative approach. They 

defined the matrix element in the ith row and the jth column to be '1' if, and only 

if, the tour city j is visited immediately after city i. This implies that a legal tour 

is represented by a matrix of which each row and each column contains precisely 

one '1'. For example, the tour (2 - 3 -1- 4) mentioned earlier can be represented 

by matrix 

C= 

000 1 

o 0 1 0 

100 0 

o 100 
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4.3 Initial Population 

Once a suitable representation has been decided, an initial population of size Ppop 

is created to serve as the starting point for the GA. The initial population can be 

created using two methods: 

(1) randomly or 

(2) by using specialised problem specific information. 

A small population size may not be able to cover the solution space adequately, 

whereas a large population size may incur a heavy computational burden without 

making acceptable progress toward a high quality solution in a reasonable amount 

of time. Many report implementations where a population size between 30 and 

200 is usually recommended (see Grefenstette [129]' Goldberg [122] and Alander 

[3]). 

4.4 Fitness Evaluation 

This involves defining an objective or fitness function against which each individual 

is tested for suitability to be introduced to the population under consideration. 

As the algorithm proceeds, one would expect the individual fitness of the' best' 

individual to increase as well as the fitness of the population as a whole. 

If the GA has been correctly implemented, the population will evolve over 

successive generations so that the fitness of the individuals in each generation 

will increase towards better local optima. Convergence is the progression towards 

increasing uniformity. De Jong [163J gives the following definition in his thesis in 

1975: 

"A gene is said to have converged when 95% of the population share 

the same value. ... The population is said to have converged when all 

of the genes have converged." 
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However, if the population converges too quickly, it often leads to the prob­

lem of premature convergence. Premature convergence is a commonly cited prob­

lem with GAs when a few comparatively highly fit (but not optimal) individuals 

dominate the population, causing it to converge on a local optimum. Once the 

population has converged (every individual in the population is identical), the abil­

ity of the GAs to continue to search for better solutions is effectively eliminated. 

Crossover of almost identical individuals produce little that is new. New areas 

of the solution space can only be explored by mutation, which simply performs a 

slow random search. 

4.5 Selection Mechanism 

Individuals are selected from the population to be the parents for crossover with 

a given selection probability Ps. According to Darwin's evolution theory, the best 

ones should survive and create new offspring. In the remainder of this section, we 

define the selection probability Ps, of an individual i as: 

(.) Ii h Ps ~ = =- were 
I 

Ii is the fitness value associated with individual i; and 

I is the mean fitness of the current population. 

(4.1 ) 

vVe refer to the selection pressure as the degree to which selection favours fitness. 

The selection pressure is characterised by the take over time r, the number of 

generations taken for the best individual in the initial generation to completely 

dominate the population (mutation and crossover are switched off). When the 

selection pressure is low, the selection procedure allows less fit individuals to re­

produce at close to the rate of fitter individuals while maintaining the diversity 

and variation in the population. When the selection pressure is high, the selection 

procedure strongly emphasises highly fit individuals, assuming that the early di­

versity with the slow selection has allowed the population to find the right part of 

the search space. 
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A comparative analysis of selection mechanism used in GAs is given by Gold­

berg and Deb [124]. Note that the name of the author/researcher who proposed 

the approach is stated next to the name of the selection mechanism. 

Roulette Wheel (Holland [147], 1975): 

Each individual is represented by a space in a roulette wheel that proportionally 

corresponds to its selection probability Ps(i). By representing the spinning of the 

roulette wheel, parents are chosen using 'stochastic sampling with replacement' 

strategy. This strategy is very sensitive to fitness function design. For example, 

let four individuals have fitness of 0.004, 0.002, 0.003, and 0.500. The '0.500' 

individual (super individual) will take up almost the entire wheel, and so will be 

likely to be alone in the next generation (i.e. the selection pressure very high). 

While on another example where individuals with fitness 998, 997, 999, and 1000 

have virtually no selection pressure at all. There are also problems when dealing 

with zero and negative fitness. 

Rank (Baker [18], 1985): 

Rank selection first ranks the population from 1 to P pop (population size) according 

to their individual selection probability Ps(i). The worst will have rank 1, second 

worst rank 2, etc. and the best will have rank Ppop- The parents are selected 

through roulette wheel selection, but the segments of the wheel are proportional 

to the individual's rank, rather than its selection probability. This strategy reduces 

the dominating effects of super individuals, and thus reduces the selection pressure 

when the fitness variance is high. But, this can lead to slower convergence, because 

the best individuals do not differ so much from the others. 

Stochastic Universal Sampling (SUS) (Baker [19], 1987): 

Assume that the population is laid out in random order as in a pie graph, where 

each individual is assigned space on the pie graph in proportion to its selection 

probability Ps(i). Next, an outer roulette wheel is placed around the pie with P pop 

(population size) equally spaced pointers. A single spin of the roulette wheel will 
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now simultaneously pick all Ppop parents. An example with a Ppop = 16 is given in 

Figure 4.2. A single spin of the outer roulette wheel will simultaneously select all 

16 parents. 

Figure 4.2: An example of a Stochastic Universal Sampling 

Sigma Scaling (Tanese [263], 1989): 

This is achieved by mapping 'raw' fitness values of an individual i to its 'Expected 

Value' (ExpVal)i so as to make the GA less susceptible to premature convergence. 

(ExpVal)i of an individual i is the expected number of times an individual will 

be selected to reproduce. This strategy also helps to keep the selection pressure 

relatively constant over the course of the run rather than depending on the fitness 

variance in the population. The expected number of times of an individual i to be 

selected to reproduce at time t is given as follows: 

E"pVai(i, t) ~ { 

f(i) is the fitness ofi; 

1 + f(i)- /(t) 
2a(t) 

1.0 

if a( t) yf 0 

if a(t) = 0 

f(t) is the mean fitness of the population at time t; 

where 

a(t) is the standard deviation of the population fitness at time t. 

( 4.2) 

In early stage, when a(t) is typically high, the fitter individuals will not be 

many standard deviations above the mean, and so they will not dominate the 

offspring. But, in the later stage, when the population is closer to convergence 

and the a(t) is typically lower, the fitter individuals will stand out more, allowing 

evolution to continue. 
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Tournament (Goldberg et al. [125], 1989): 

There are several variants and the idea is simple. In the binary tournament selec­

tion, a pair of individuals are selected randomly from the population. The fitter 

of the two is selected to be the parent. The two are then returned to the origi­

nal population and can be selected again. This is repeated until Ppop individuals 

have been selected. Larger tournaments may also be used, where the fittest of K 

(K :s: Ppop) randomly chosen individuals are selected. 

Using larger tournaments has the effect of increasing the selection pressure, 

since less fit individuals are less likely to be selected, while fitter individuals have 

an increased likelihood. 

In order to control the selection pressure, a probabilistic binary tournament 

selection can be employed. The fitter individual is selected to be the parent with 

a probability p, where 0.5 < p < 1. The selection pressure can be lowered by 

using lower values of p, since less fit individuals are comparatively more likely to 

be selected, while fitter individuals are less. 

Boltzmann Tournament(Goldberg [123], 1990 and Mahfoud [200], 1991): 

This is an approach which thermodynamically control the selection pressure of a 

GA, using principles from Simulated Annealing (SA). In order to do so, a mixture 

of SA acceptance probabilities and three-way tournament selection is proposed. 

First of all, three individuals (aI, a2, a3) are randomly selected from the pop­

ulation. Individual a2 must differ from al by a fitness amount of cpo Individual 

a3 must also differ from al and a2 by at least cpo Then, a2 and a3 will compete 

using a winning probability according to a logistic probability function offitnesses 

and temperature. The winner will compete against al using the similar winning 

probability, and the best individual will be selected as the parent for crossover. 

Using the fitness values 11; 12, and h of individuals aI, a2 and a3 respectively, 

the winning probabilities for a2 over a3 (pi), al over a2 (p") , and al over a3 (pili) 
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are given by (extracted from Goldberg [123]): 

pi 1 
1 + e(h-hIT) ' 

p" 
1 

and 1 + e(h -hiT) , 
(4.3) 

pili 1 
1 + e(fl-hIT )' 

Then, the overall winning probabilities PI, P2 and P3 for aI, a2 and a3, are given by 

(extracted from Mahfoud [200]): 

PI pl(l - p") + (1 - pl)(l - pili), 

P2 pip", and ( 4.4) 

P3 (1 - pl)plII. 

At the early stage, the temperature starts out high (i.e. the initial temperature, 

To), which means that the selection pressure is low. The temperature is gradually 

lowered in the later stage according to the rule 

( 4.5) 

where a is the cooling coefficient. By doing this, we gradually increase the selection 

pressure, thereby allowing the GA to narrow in ever more closely to the best part 

of the search space while maintaining the 'appropriate' degree of diversity. At each 

temperature Tt , a number of function evaluations Nf , are performed (i.e. the time 

to reach equilibrium at a given temperature). 

According to Goldberg [123], the value of !.p is initially set to 0.5 and changed 

after each selection of an individual according to the rule 

·In CP2-~11+I - 1) ,~(lp2 - PI/ + 1) < 1 
(4.6) 

!.pmax , ~ (/P2 - PI/ + 1) 2: 1 

(with !.pmax being a value large enough to guarantee acceptance). 
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4.6 Crossover Operator 

Crossover is a strategy of producing new offspring by replacing some of the elements 

in one parent with the corresponding elements of the other parent. Crossover is 

used with the hope that the new offspring will inherit good characteristics of both 

parents. There are many different variants of crossover operators that are specially 

designed to suit the different type of representation and problems. Not all the 

crossover operators discussed below are suitable for all problems. For instance, the 

sorted match crossover operator is specially designed for TSP but is not suitable 

for other problems such as machine scheduling problem. 

Crossover is not usually applied to all pairs of selected parents. Instead, a 

random choice is made based on a crossover probability Pc. Empirical studies have 

shown that better results are achieved by a crossover probability of between 0.60 

and 0.95 (see Grefenstette [129] and Schaffer et al. [247]). If crossover is not 

applied to the selected parents, two offspring are produced simply by duplicating 

the selected parents via the reproduction strategy. This gives each individual a 

chance of passing on its elements without the disruption of crossover. 

In the remainder of this section, we describe briefly some of the crossover oper­

ators used in literature by classifying them based on the representation framework 

used. The author/researcher who proposed the operator is listed next to the name 

of the crossover operator. 

4.6.1 Binary Representation 

1- and 2-Point Crossover (Holland [147], 1975): 

1-point crossover involves taking the two selected parents and crossing them at a 

randomly chosen point. The parents exchange' tails' to generate two offspring. In 

2-point crossover, two randomly chosen points are selected. Substrings between 

the two crossover points swap their positions between the two parents, rendering 

two offspring. Figure 4.3 shows examples of I-point and 2-point crossover of two 
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parents using binary representation. In fact, we can choose more crossover points 

so that the search can diversify into other 'interesting' regions of the solution space. 

Figure 4.3: I-Point and 2-Point Crossover 

Parent 1 : (1 0010011 0) Offspring 1 : ( 1 o 0 1 1 101 1 ) 
crossover point = : 

Parent 2 : (0 1 0 0 1 1 o 1 1 ) Offspring 2 : ( 0 1000011 0) 

l-point crossover 

, , 
Parent 1 : (1 0 0 1 001:1 0) Offspring 1 : ( 1 0001101 0) 

crossover point =t : 
Parent 2 : (0 1 0 0 1 1 0 i 1 1 ) Offspring 2 : ( 0 10100111) , 

'2-point crossover 

Uniform Crossover, UX (Syswerda [261]' 1989): 

This crossover performs at each point a random decision to produce the offspring. 

Each element in the offspring is created by copying the corresponding element 

from one of the parents. The element is chosen according to a randomly generated 

crossover mask using a binary representation. A '1' in the crossover mask means 

the element is copied from the first parent, and '0' means the element is copied 

from the second parent, as shown in Figure 4.4. The offspring therefore contains 

a mixture of elements from each parent. The process is repeated to produce the 

second offspring. A new crossover mask is randomly generated for each pair of 

parents. 

Figure 4.4: Uniform Crossover 
1- - - - - - - - - - - - -- -- - - - -- ---I 

Crossover Mask:: 1 1 0 1 1 0 0 0 1 : 1 ________________________ , 

Parent 1 : (1 0 0 1 0 0 1 1 0) Offspring 1 : ( 1 0 0 1 0 1 0 1 0) 

Parent 2 : (0 1 0 0 1 1 0 1 1) Offspring 2 : ( 0 1 0 0 1 0 1 1 1 ) 
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4.6.2 Path Representation 

Partially Mapped Crossover, PMX (Goldberg and Lingle [126], 1985): 

For PMX, it is not the values of the element which are crossed, but the order 

in which they appear. Offspring inherit elements with ordering information from 

each parent. PMX first randomly selects two crossover points on both parents 

(see Figure 4.5). In order to create an offspring, the substring between the two 

crossover points in the first parent replaces the corresponding substring in the 

second parent (see Sl). Then, the interchange mapping is applied outside of the 

crossover points as many time as necessary, in order to eliminate duplicates and 

recover all elements (see S2). 

Figure 4.5: Partially Mapped Crossover 

Parent 1 : (2 8 5 3 7 9 1 10 6 4) 
crossover points 

Parent 2 : (6 4 9 8 5 3 7 2 10 1) 

interchange mapping: 

(S 1) : (2 8 J. 1. 5 3 7 10 6 4) 

Offspring 1 : (S 2) : (2 8 1 2. 5 3 7 10 6 4) 

(S 1) : (6 4 2. 8 7 9 1 2 10 1) 

Offspring 2 : (S 2) : (6 4 1. 8 7 9 1 2 10 J.) 

Note that the absolute positions of some elements of both parents are preserved. 

In fact, the number of elements that do not inherit their positions from one of the 

two parents is at most equal to the length of the substring. 

Order Crossover, OX (Davis [65]' 1985): 

Two crossover points are selected randomly on the selected parents (see Figure 4.6). 

The substring between the crossover points in the first parent is copied to the first 

offspring (see S 1 ). Then the remaining positions in the first offspring are filled 

by considering the sequence of elements in the second parent, starting after the 

second crossover point (when the end of the individual is reached, the sequence 

continues at position 1) (see S2). Note that the duplicates are not considered. 

Similarly, the second offspring is formed by taking the substring from the second 
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parent and by considering the sequence of elements in the first parent to fill up the 

empty spaces in the offspring. This operator tries to preserve the relative order of 

the elements in both parents. 

Figure 4.6: Order Crossover 

Parent 1 : (2 8 5 3 7 9 1 10 6 4) 
crossover points 

Parent 2 : (6 4 9 8 5 3 7 2 10 1) 

IX (Davis [65], 1985): 

(S 1) : ( ____ 7 9 1 ___ ) 

Offspring 1 : (S 2) : (4 8 5 3 7 9 1 2 10 6) 

(S 1) : ( ____ 5 3 7 ___ ) 

Offspring 2 : (S 2) :( 2 8 9 1 5 3 7 10 6 4) 

This operator is the simplification of OX where a I-point crossover is used instead 

of a 2-point crossover (see Figure 4.7). The substring before the crossover point in 

the first parent is copied to the first offspring (see 31). The remaining positions 

in the first offspring are filled in the order of the second parent (see 32). 

Figure 4.7: IX Crossover 

Parent 1 : (2 8 5 3 7 9 1 10 6 4) (S 1) : (2 8 5 3 ______ ) 

crossover point Offspring 1 : (S 2) : (2 8 5 3 6 4 9 7 10 1) 
Parent 2 : (6 4 9 8 5 3 7 2 10 1) 

(S 1):( 6 4 9 8 ______ ) 

Offspring2 :(S2):(6 4 9 8253 7110) 

Sorted Match Crossover, SMX (Brady [36], 1985): 

This operator searches for substrings in both parents which have the same length, 

start with the same element, end with the same element and contain the same 

set of elements. If such substrings are found, the fitness of these substrings are 

determined. The substring with the lower fitness value in a parent is replaced with 

the substring with the higher fitness value to form a new offspring. In Figure 4.8, 

parent 1 contains the substring (8 5 3 7 9) and the parent 2 contains substring (8 

75 39). These substrings have the same length, both begin with element '8', end 

with element '9', and both contain the same elements. Suppose that the fitness 
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value of substring (8 7 5 3 9) is higher than the fitness value of the substring (8 5 

3 7 9). Then, the new offspring is created by replacing the substring (8 5 3 7 9) 

in parent 1 with the substring (8 7 5 3 9). 

Figure 4.8: Sorted Match Crossover 

Parent 1: ( 2 8 5 3 7 9 1 10 6 4 ) 

Parent 2: ( 6 4 8 7 5 3 9 2 10 1 ) 

Offspring: ( 2 8 7 5 3 9 1 10 6 4 ) 

Muhlenbein et al. [215] concluded that this operator was useful in reducing 

the computation time, but it is a weak scheme for crossover. If no substring can 

be found in both parents which fulfill the basic requirements of the operator, or 

both substrings found contained the same sequence of elements and have the same 

fitness value, then this operator has failed to produce a new offspring. 

Cycle Crossover, CX (Oliver et al. [220], 1987): 

This crossover focuses on subsets of elements that occupy the same subset of 

position in both parents. It tries to inherit the position of each element from 

one of the two parents. An example is given in Figure 4.9 where the underlined 

elements in both parents are the subset of elements {2, 6, 10} that occupied the 

same subset of positions {I, 8, 9} in both parents. These elements are copied from 

one parent to the offspring (at the same position), and the remaining positions 

are filled with the elements of the other parent in the same order in which they 

appeared in the parent. 

Figure 4.9: Cycle Crossover 

Parent 1 : (l. 8 5 3 7 9 1 10 §. 4) Offspring 1 : (l. 4 9 8 5 3 7 10 §. 1) 

Parent 2 : (Q 4 9 8 5 3 7 ~ lQ 1) Offspring 2 :( Q 8 5 3 7 9 1 ~ lQ 4) 

Maximal Preservative Crossover, MPX (Muhlenbein et al. [215], 1988): 

This operator works in a similar way to the PMX operator. An example is given 

in Figure 4.10. A substring of the first parent is randomly selected, whose length 
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l, is within the range of 10 ::; l ::; L/2, where L is the length of the individual. 

If L < 20, then length l < 10. All the elements of the chosen substring are 

removed from the second parent. An offspring is constructed by first copying the 

substring from the first parent into the first part of the offspring (see S 1). Then, 

the remaining part of the offspring is filled up with elements in the same order as 

they appear in the second parent (see S2). 

Figure 4.10: Maximal Preservative Crossover 

Parent 1 : (2 8 5 I..1.....2.... 1 10 6 4) (S 1) : (3 7 9 _ _ _ _ _ _ _) 

substring: (3 7 9) Offspring 1 : (S 2) : (3 7 9 6 4 8 5 2 10 1) 

Parent 2 : (6 4 9 8 5 3 7 2 10 1) (S 1) : (4 9 8 5 _ _ _ _ _ _) 

substring: (4 9 8 5) Offspring 2 : (S 2) : (4 9 8 5 2 3 7 1 10 6) 

This operator will only destroy a limited number of edges between the elements. 

In fact, the maximum number of edges which may be destroyed is equal to the 

length of the chosen substring. 

Edge Recombination Crossover, ERX (Whitley et al. [278]' 1989): 

This operator is designed for the symmetric TSP. It tries to use the edges which 

are contained in both parents as much as possible. The steps to generate one 

offspring is given below and an example lies in Figure 4.11. 

1. Designing of the Edge table: assign a list of neighbours in parent 1 and 

parent 2 to each city (the sign '-' means that the corresponding city is a 

neighbour in both parents). The first and the last cities are considered as 

neighbours for the TSP. 

2. An arbitrary first city is chosen from the table with the smallest list of 

neighbours and is called the current city. 

3. The following iterative procedure is used: 

(a) Select a city which is a neighbour of the current one and which has 

the fewest remaining neighbours (breaking ties randomly), or select an 

arbitrary remaining cities if the current city has no remaining neighbour. 

(b) The city is added to the tour and becomes the new current city. 

( c) If all n cities are not selected, go to (a). 
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Figure 4.11: Edge Recombination Crossover 

Parent 1 : (2 8 5 3 7 9 1 10 6 4) 

Parent 2 : (6 4 9 8 5 3 7 2 10 1) 

Edge table: 

operation neighbour 
1 6 9 -10 
2 4 7 8 10 
3 -5 -7 

Offspring 1 : (J. 5 8 ~ 7 9 4 6 1. 10 ) 

4 2 -6 9 
5 -3 -8 Offspring 2 : (~ 3 7 .2 8 2 4 6 10 1) 
6 1 -4 10 
7 2 -3 9 
8 2 -5 9 

where! = random breaks ties 

9 147 8 
10 -1 2 6 

Linear Order Crossover, LOX (Falkenauer and Bouffouix [89], 1991): 

101 

This operator is a modified version of OX, proposed to solve job-shop scheduling 

problems. The LOX operator differs from the OX in that the relative positions 

of two elements are important and will be preserved. An example is given in 

Figure 4.12 by using the same parents as in OX. Two crossover points are selected 

randomly. The elements in the second parent are copied to the first offspring. 

The elements in the substring (79 1) are removed from the first offspring, leaving 

three empty spaces to be filled (see 31). The elements are first slid to the left up 

to the point when no empty space remains on the left of the cross site. Then the 

elements are slid to the right, leaving only empty spaces between the crossover 

points. Finally, the empty spaces are filled with substring (7 9 1) (see 32). The 

second offspring is generated analogously using the substring (5 3 7) and the first 

parent. 

Figure 4.12: Linear Order Crossover 

Parent 1 : (2 8 5 3 791 10 6 4) (S 1) : (6 4 _ 8 5 3 _ 2 10 _) 
crossover points Offspring 1 : (S 2) : (6 4 8 5 791 3 2 10) 

Parent 2 : (6 4 9 8 537 2 10 1 ) 
(S 1) : (2 8 __ _ 9 1 10 6 4) 

Offspring 2 : (S 2) : (2 8 9 1 537 10 6 4) 
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Order-Based Crossover, OBX (Syswerda [262]' 1991): 

This crossover focuses on the relative order of the elements on the parents. An 

example is given in Figure 4.13. At first, a subset of elements (underlined) are 

randomly selected from the first parent. In the first offspring, these elements 

appear in the same order as in the first parent, but at positions (circled) taken 

from the second parent (see S 1). Then, the remaining positions are filled with 

the elements of the second parent (see S2). Similarly, the second offspring is 

constructed by placing the subset of elements (underlined) selected from the second 

parent at the positions (circled) taken from the first parent. Then, the remaining 

empty spaces are filled with the elements of the first parent. 

Figure 4.13: Order-Based Crossover 

Parent 1 : (£ 8 i 0 7 90 10 (fJf..) (S 1) : L 2 __ 5 __ 4 __ ) 

subsetofelements: {2,5,4} Offspring 1 :(S2):(6 2 9 8537410 1) 

Parent 2 : ( 2@) 9 8 @)J 70 10 1) (S 1) : ( ___ 6 __ 3 _ 1 _) 

subset of elements : {6, 3, I} Offspring 2 : (S 2):( 2 8 5 6 7 9 3 10 1 4) 

Position-Based Crossover, PBX (Syswerda [262]' 1991): 

A subset of positions are randomly selected in the first parent (Figure 4.14). Then, 

the elements found at these positions are copied to the first offspring (at the same 

positions) (see Sl). The other positions are filled with the remaining elements, in 

the same order as in the second parent without duplication (see S2). 

Figure 4.14: Position-Based Crossover 

Parent 1 : (£ 8 i 3 7 9 1 10 6 1.) (S 1) : (2 _ 5 _ _ _ _ _ _ 4) 

subset of positions : {I, 3, 10} Offspring 1 : (S 2) : (2 6 5 9 8 3 7 10 1 4) 

Parent 2 : (6 4 2. 8 5 1. 7 2 10 1) 

subset of positions: {3, 6, 9} 

(S 1) : ( __ 9 __ 3 10 _) 

Offspring2 :(S2) :(2 8 9 5 731 6104) 
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Subtour Exchange Crossover, SXX (Yamamura et al. [284], 1992): 

A pool of offspring are generated by enumerating all the substrings of the parents 

consisting of the same set of elements. Then, the best offspring is selected from 

the pool of offspring. An example is given in Figure 4.15. Suppose that two 

substrings consist of the same set of elements (e.g. {3, 5, 7, 8} and {4, 6} were 

found in both parents). Two possible offspring are generated by exchanging the 

common substrings from the parents. 

Figure 4.15: Subtour Exchange Crossover 

Parent 1 : (2 8 5 3 7 9 1 10 6 4) Offspring 1 : (2 7 3 8 5 9 1 10 4 6) 

Parent 2 : (4 6 1 7 3 8 5 10 2 9) Offspring 2 : (6 4 1 8 5 3 7 10 2 9) 

Distance Preserving Crossover, DPX (Freisleben and Merz [105], 1996): 

The contents of the first parent is copied to the offspring and all edges that are 

not in common with the other parent are deleted. The resulting fragments of the 

broken substring are reconnected using different edges to those contained in either 

of the parents. To do this, a greedy reconnection procedure is used. Suppose 

that the edge (i, j) has been broken, the nearest available neighbour k of i is 

taken and the edge (i, k) is added to the substring, provided that (i, k) is not 

contained in any of the parents. This process continues until all fragments have 

been reconnected. For example, consider the parents in Figure 4.16. By copying 

parent 1 to the offspring and deleting the edges not contained in both parents 

leads to the substring fragments: 2,8-5-3-7,9, 1-10, and 6-4. Offspring 1 is an 

example of reconnect ion that does not use edge connection from either parent. 

Figure 4.16: Distance Preserving Crossover 

Parent 1 : (2 8 5 3 7 9 1 10 6 4) 

Parent 2 : (6 4 9 8 5 3 7 2 10 1) 

Fragments: 1218 53 71911101641 

Offspring 1 : ( 7 3 5 8 1 10 9 2 6 4) 
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Alternating-Position Crossover, APX (Larranaga et al. [179], 1997): 

The offspring is constructed by selecting the next element alternately from both 

parents, omitting the elements already present in the offspring. An example is 

given in Figure 4.17. By doing so, we believed that this operator will destroys too 

many edges between the elements. 

Figure 4.17: Alternating-Position Crossover 

Parent 1 : (2 8 5 3 7 9 1 10 6 4) Offspring 1 : (2 6 8 4 5 9 3 7 1 10) 

Parent 2 : (6 4 9 8 5 3 7 2 10 1) Offspring 2 : (6 2 4 8 9 5 3 7 1 10) 

Complete Subtour Exchange Crossover, CSEX (Katayama et al. [167], 

1998): 

This operator is a modification of SXX, where the common substring used in 

CSEX is either identical or symmetrical in the sequence of elements. By using the 

same parents in Figure 4.15, the common substrings are (8 5), (3 7) and (6 4) in 

parent 1, and (8 5), (7 3) and (4 6) in parent 2. A pool of offspring is generated 

by enumerating all the common substrings in both parents. The best offspring 

is then selected from the pool of offspring. If K common substrings are included 

within the parents, a maximum of 2 x 2K - 2 offspring are generated. Figure 4.18 

gives two possible offspring from the parents using CSEX. 

Figure 4.18: Complete Subtour Exchange Crossover 

Parent 1 : (2 8 5 3 7 9 1 10 6 4) Offspring 1 : (2 8 5 7 3 9 1 10 4 6) 

Parent 2 : (4 6 1 7 3 U 10 2 9) Offspring 2 : (6 4 1 3 7 8 5 10 2 9) 

Subtour Preservation Crossover, SPX (Soak and Ahn [257], 2004): 

This operator is designed for TSP where a similar subtour enumeration technique 

to SXX, CSEX and DPX is used. This operator generates offspring using common 

subtour which parents share and edges included in each parents. The procedure of 

SPX is divided into two steps. The first step is to enumerate all common subtour, 
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and next is to reconnect each subtour and any isolated cities. Although SPX finds 

the same subtours from two identical parents, it can generates different offspring 

by selecting different starting point and each process of reconnecting subtours and 

isolated cities. When a city is selected as a starting point, shorter edge between two 

possible edges is selected. If a shorter edge has already been selected, another edge 

is selected. And if both edges are already selected, random selection is performed 

among the endpoints not yet selected. This process continues until a tour is formed. 

4.6.3 Adjacency Representation 

Alternate Edges Crossover, AEX (Grefenstette et al. [131]' 1985): 

This operator is used in TSP where a starting edge (i, j) in the offspring is selected 

randomly in one parent. Then, the tour in the offspring is extended by selecting 

the edge (j, k) in the other parent. The offspring is progressively extended in this 

way by alternately selecting edges from each parent. When an edge introduces a 

cycle, the next edge is selected at random (and is not inherited from the parents). 

An example is given in Figure 4.19. Note that edge (9,3) in offspring 1 and edge 

(7,9) in offspring 2 are not inherited from any of their parents. 

Quite often, the AEX introduces too many random edges between the elements 

in the offspring and good substrings are often disrupted by the crossover operator. 

Since the offspring must inherit as many edges as possible from the parents, the 

introduction of random edges should be minimised. As reported in Grefenstette 

et al. [131]' the results with this operator have been uniformly discouraging. 

Figure 4.19: Alternate Edges Crossover 

Adjacency Representation Actual Tour 

Parent 1 : (10 3 8 5 2 1 4 6 7 9 )..-\ 9 - 7 - 4 - 5 - 2 - 3 - 8 - 6 1 - 10 

Parent 2 : (4 9 7 6 10 5 2 1 8 3) IL.j 3 - 7 2 9 - 8 - 1 4 - 6 - 5 - 10 

Offspring 1 : ( 10 9 8 6 2 5 4 1 3 7) q 7 - 4 6 - 5 - 2 - 9 - 3 - 8 1 - 10 

Offspring 2 : (4 3 7 5 10 1 9 6 8 2) 2 - 3 - 7 - 9 - 8 - 6 - 1 - 4 - 5 - 10 
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Subtour Chunk Crossover, SCX (Grefenstette et al. [131]' 1985): 

This operator is developed for TSP where an offspring is constructed by first 

copying a random length subtour of the first parent. Then, the partial tour is 

extended by choosing a random length subtour from the second parent. The 

offspring is progressively extended this way by alternately selecting a subtour from 

two parents. A subtour is not added if it produces an illegal tour. In this case, an 

edge is chosen at random from the edges that do not produce a cycle and added into 

the partial tour. This operator should performs better than the AEX. However, 

its performance is still not very encouraging as it does not take into account the 

available information about the edges. 

Heuristic Crossover, HX (Grefenstette et at. [131]' 1985): 

This operator is designed for TSP where the procedure of generating an offspring 

is as follows: 

S 1: Select randomly a starting city from one of the two parents. 

S 2: Compare the edges leaving the current city in both parents and select the 

shorter edge. 

S 3: If the added edge creates a cycle in the partial tour, try the other edge. If it 
also introduces a cycle, extend the tour with a random edge that does not 

introduce a cycle. 

S 4: Repeat S2 and S3 until all cities are included in the tour. 

Jog et al. [160] suggest to replace the random edge selection by the selection of 

the shortest edge in a pool of q random edges, where q is a parameter. 

4.6.4 Matrix Representation 

In the next two crossover operators, insertion crossover and union crossover, we 

use the matrix representation where the element in row i and column j is a '1' if, 

and only if, in the tour city i is visited before city j. 
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Insertion Crossover, MIX (Fox and McMahon [104], 1987): 

An offspring 0, is constructed from two parents (PI and P2) in the following way: 

S 1: For all i,j E {I, 2, 3, ... , n} define 

... _ { 1 if Pl ij = P2ij 
0,) .-

o otherwise. 

1· , 

S 2: Some 1 's which are unique for one of the parents are "added" to o. 

The matrix is completed using the analysis of the sum of rows and columns, in 

such a way that the result is a legal tour. This operator preserves all precedence 

relationship which are common to both parents. For example (extracted from 

Larranaga et al. [178]), Fox and McMahon [104] represent the parent tours (2 -

This matrix can be completed in six different ways, since the only restriction on 

the offspring tour is that it starts in city 2. One possible offspring is the tour 

(2 - 1 - 4 - 3) which is represented by: 

o 

001 1 

101 1 

o 0 0 0 

o 0 1 0 
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Union Crossover, MUX (Fox and McMahon [104]' 1987): 

This operator tries to combine some precedence relationships taken from each 

parent. First, it divides the set of cities into two disjoint groups. For example, by 

using the two parents above, we could divide the set of cities into {1, 2} and {3, 4}. 

The matrix elements of an offspring is constructed by placing the first group from 

the first parent and the second group from the second parent. Hence, we have 

0 0 ? ? 

1 0 ? ? 

? ? 0 0 

? ? 1 0 

The resulting matrix is completed by an analysis of the sum of the rows and 

columns. One possible offspring is the tour (4 - 3 - 2 - 1) which is represented by: 

o 000 

1 000 

1 100 

1 1 1 0 

Matrix Crossover, MMX (Homaifar et al. [148], 1991): 

This crossover operator uses a matrix representation where the element in the 

ith row and the jth column is (1', if and only if, city j is visited immediately 

after city i in the tour. This operator deals with column positions rather than 

element positions. First, a crossover point is selected at random. Then, MMX 

exchanges all the entries of the two parents determined by the crossover point(s). 

With the example given above, Homaifar et al. [148] represent the parent tours 

(i.e. (2 - 3 - 1 - 4) and (2 - 4 - 1 - 3)) as: 

0 0 0 1 0 0 1 0 

0 0 1 0 0 0 0 1 
PI = and P2 = 

1 0 0 0 0 1 0 0 

0 1 0 0 1 0 0 0 
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Suppose that the crossover point is chosen between the first and the second column, 

which yields 

0 0 0 1 0 0 1 0 

0 0 1 0 0 0 0 1 
and 

1 0 0 0 0 1 0 0 

0 1 0 0 1 0 0 0 

One of resulting offspring after the crossover is 

U 
0 1 

n 0 0 

1 0 

\ 0 0 0 o ) 

Note that this matrix does not represent a legal tour. MMX may result in infea­

sibility in the form of duplications or cycles. These two problems are treated in 

two steps: 

8 1: Remove the duplication by moving a '1' from each row with duplicate 'l's 

into another row that has no '1' entries. 

8 2: Cut and connect cycles to produce a legal tour while preserving as many of 

the existing edges from the parent as possible. 

By applying 81 to the offspring, we have a new offspring which represents the 

legal tour (1 - 3 - 2 - 4) 

o 0 1 0 

000 1 

o 1 0 0 

1 000 

4. 7 Mutation Operator 

After a crossover or a reproduction is performed, mutation takes place. This is to 

prevent too many identical individuals from being in the same generation which 

leads to premature convergence and the danger of becoming trapped in a local 

optimum. 
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Although mutation is intended to prevent the GAs from falling into a local 

optimum, if the mutation rate is too high then the GAs will in fact change to a 

random search. Any efficient optimisation algorithm must use two techniques to 

find a global optimum: 

-exploration: to investigate new and unknown areas in the search space, and 

-exploitation: to make use of knowledge found at points previously visited to help 

find better points. 

These two requirements are contradictory, but a good search algorithm provides 

a balance between the two. A purely random search is good for exploration, but 

does no exploitation, while a purely descent method is good at exploitation, but 

does little exploration. Combinations of these two strategies can be quite ideal, 

but it is difficult to find that right balance. GAs use both crossover and mutation 

operators to explore and exploit the search space in the hope of finding good optimal 

solutions (see Goldberg [121]). 

In the binary representation for instance, if we only use the crossover opera­

tor to produce offspring, one potential problem that may arise is that if all the 

individuals in the initial population have the same value at a particular element, 

then all future offspring will have this same value at that element. For example, 

if all the individuals in the population have a '0' in fifth element, then all future 

offspring will have a '0' at fifth element after the crossover takes place. 

Binary mutation is applied randomly to each offspring individually that alters 

each element from '1' to '0' or vice versa with a given probability, Pm. This value is 

called the mutation rate. Various optimal mutation rates have been reported. The 

most common approaches are either to use a small mutation probability (e.g. Pm = 

0.001), or to use a value Pm = 1/ L, where L is the length of the individual (see 

Grefenstette [129], Fogarty [99], Hesser and Manner [145], and Back [15]). 

Various mutation operators have been designed for the integer representation 

(e.g permutation, path, adjacency and ordinal). As opposed to the binary muta­

tion operator, which introduces small changes into the individual, the mutation 
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operator for integer representation often greatly modifies the offspring. These op­

erators are briefly summarised below. In the remainder of this section, without 

loss of generality, we refer to the following offspring for mutation: 

Offspring: (2 8 5 3 7 9 1 10 6 4). 

Simple Inversion Mutation (SIM) (Holland [147], 1975): 

This operator was first introduced by Holland and then popularised by Grefen­

stette [130] in 1987. This operator first selects randomly two cut points in the 

offspring, and then reverse the substring between these two cut points to form a 

new offspring. Consider the offspring and suppose that the first cut point is chosen 

between the second and third element, and the second cut point between the 6th 

and 7th element. This results in: 

New Offspring: (2 8 9 7 3 5 1 10 6 4). 

Insertion Mutation (ISM) (Fogel [100]' 1988): 

This operator starts by randomly choosing an element and removing it from the 

offspring. The element is then inserted in a randomly selected place. For example, 

consider again the offspring mentioned earlier, and suppose that the operator 

selects the third element, removes it, and randomly inserts it after 8th element. 

Hence, the resulting new offspring is: 

New Offspring: (2 8 3 7 9 1 10 6 5 4). 

This operator is also called the Position Based mutation by Syswerda [262]. 

Exchange Mutation (EM) (Banzhaf [25], 1990): 

EM is achieved by first randomly selecting two elements in the offspring, and then 

exchanging their position. Consider the offspring mentioned above, and suppose 

that the third and 9th element are randomly selected. This results in a new 

offspring: 

New Offspring: (2 8 6 3 7 9 1 10 5 4). 
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This operator is also referred to as the Swap mutation (by Oliver et al. [220]), 

the Point mutation (by Ambati et al. [7]), the Reciprocal Exchange mutation (by 

Michalewicz [210]), and the Order Based mutation (by Syswerda [262]). 

Scramble Mutation (SM) (Syswerda [262]' 1991): 

This is achieved by first selecting a random substring from the offspring and then 

scrambling the elements in the substring. For example, consider the offspring used 

earlier, and suppose that the substring (5 3 7 9) is chosen. One possible result is: 

New Offspring: (2 8 9 5 3 7 1 10 6 4). 

Displacement Mutation (DM) (Michalewicz [210]' 1992): 

This operator first selects a substring at random from the offspring. Then, the 

substring is removed from the offspring and reinserted in a randomly selected place. 

Suppose that the substring (5 3 7 9) is selected from the offspring. Hence, after 

the removal of the substring, we have (2 8 1 10 6 4). Suppose that we randomly 

select the 4th element to be the element after which the substring is inserted. This 

results in a new offspring: 

New Offspring: (2 8 1 10 5 3 7 9 6 4). 

This mutation also called Cut mutation by Banzhaf [25]. 

Inversion Mutation (IVM) (Fogel [101]' 1990 and [102]' 1993): 

This operator is similar to the DM. The main difference is the substring selected is 

inserted into the offspring in the reversed order. Based on the offspring mentioned 

earlier, suppose that the substring (5 3 7 9) is chosen, and that this substring is 

inserted in reversed order immediately after 4th element. This gives: 

New Offspring: (2 8 1 10 9 7 3 5 6 4). 

Banzhaf [25] referred to the IVM as the Cut-Inverse mutation. 
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4.8 Replacement Strategy 

At the end of each generation, the parent population will be replaced by the 

offspring population. The proportion of individuals in the parent population which 

are replaced in each generation is defined as the 'generation gap'. 

Holland's GA assume replacement of the whole population en bloc at each gen­

eration without considering the quality (fitness) of the parent population. He has 

used a generation gap of l. We refer to his method as the generational evolution. 

From the optimisation point of view, this seems a bad decision to make. 'vVe may 

have spent considerable effort in obtaining a good solution, only to run the risk 

of throwing it away and thus preventing it from taking part in future generations. 

One of the problems with generational evolution is that an entire generation must 

be built before we can begin to test the quality of the new individuals generated. 

For this reason, De Jong [163] introduced the concepts of elitism and steady­

state. It is inevitable that the fittest individual in each generation can be lost if it 

is not selected to reproduce or if it is destroyed by crossover or mutation. In the 

elitism replacement scheme, the fittest individual so far will survive for the next 

generation by only replacing the remaining (Ppop -1) individuals of the population 

with the offspring. 

Steady-state replacement scheme take this a stage further by replacing only a 

few (typically two) of the least fit individuals in each generation. This method has 

advantages as it is implicitly elitist for all high potential individuals and the new 

individuals added to the population immediately contribute to the quality of the 

population. 

Syswerda [262] shows that, when the individuals to be replaced in the steady­

state are randomly selected, the performance of the generational and the steady­

state GAs are approximately the same. Most users of steady-state replacement 

schemes utilise an exponential ranking to select the individuals to be replaced 

or the worst fit individuals for replacement (see Syswerda [261] and Whitley et 

al. [278]). 
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4.9 MultiCrossover Genetic Algorithms 

In this section, we concentrate on the discussion of our proposed MultiCrossover 

Genetic Algorithms (MXGAs) for solving combinatorial optimisation problems. 

The usual strategy within a GA is to generate a pair of offspring during crossover. 

We hypothesise that generating multiple offspring during the crossover can improve 

the performance of a GA. 

Since the first crossover operator developed by John Holland [147] in 1975, sub­

stantial amount of efforts have been put into the developments of new crossover 

operators by the GAs community. New techniques are developed to further im­

prove the performance of the crossover operators and the GAs as a whole. The 

new designs of the crossover operators are also due to the introduction of new 

gene representations. It is usually the case that a new crossover operator is more 

complex and complicated than the previous one. Quite often some of the new 

crossover operators are also quite computationally time consuming in generating 

offspring. 

Our proposed MXGA utilises a multicrossover operator in an effort to achieve 

better solution quality when compared with a Standard GA (SGA) and other 

local search algorithms such as Tabu Search and Steepest Descent Method. In the 

MXGA, offspring for the population are selected from a candidate list of temporary 

offspring generated via some simple but yet effective classical crossover operators. 

Various techniques are also introduced into the proposed MXGA to further enhance 

the solution quality. 

In the remainder of this section, we explain the general framework of the pro­

posed MXGA and we also highlight the differences with the SGA in some of the 

remaining subsections. Since different problem domains require different represen­

tation schemes and constraints, the detailed descriptions of the architecture of the 

MXGA will be given in the later chapters where we solve different combinatorial 

optimisation problems using MXGAs. A comparison of the general framework of 

the SGA and the MXGA is given in Figure 4.20. 
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Figure 4.20: The Framework of a Standard Genetic Algorithm (SGA) vs. Multi­
Crossover Genetic Algorithm (MXGA) 
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MultiCrossover Genetic Algorithm (MXGA) 

Before an initial population is generated as the starting point for the MXGA, a 

suitable representation is chosen based on the type of combinatorial optimisation 

problem to be solved. Once the representation has been decided, a initial pop­

ulation Ppop , which is of size 100 in our implementation, is uniformly randomly 

generated using a random number generator. vVe have assumed that the size of 

Ppop is kept constant throughout the process. 
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4.9.2 Selection Mechanism 

We use a probabilistic binary tournament selection scheme as the selection mech­

anism of each parent in the MXGA. As the name suggests, two individuals are 

chosen at random from the population. A random number r, is then chosen from 

an uniform distribution defined on [0,1]. If r < k (where k is a parameter), the 

fitter of the two individuals is selected to be the parent; otherwise the less fit 

individual is selected. The two are then returned to the original population and 

can be selected again. 

In our study, we set the value of k as 0.75. In other words, we gIve a 75% 

chance for the fitter individual to be selected as the parent compared to the less 

fit individual which only has a 25% chance to be selected. The probabilistic binary 

tournament selection is a preferred choice over other selection mechanisms such 

as the Roulette Wheel because the latter method is very sensitive to the fitness 

function design, making the selection pressure too high or negligible, rendering the 

selection mechanism unreliable. 

4.9.3 Multicrossover Operator 

Recall that in all the crossover operators (except SXX and CSEX) applied in a 

SGA, exactly two offspring are generated from a pair of selected parents each time 

a crossover operator is executed. The design of the crossover operator needs to 

be carefully considered based on the representation scheme used and the problem 

type to be solved. This ensures that only valid offspring can be generated without 

violating any constraints of the representation scheme and the problem itself. Some 

crossover operators (e.g. MMX) even need a repair mechanism to generate valid 

offspring from the invalid ones. 

Unlike others, the multi crossover operator in the MXGA uses some of the sim­

ple yet effective classical crossover operators such as I-point and 2-point crossover 

as the crossover strategy in generating offspring. The main feature of the mul-
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ticrossover operator is that it first generates a candidate list of valid temporary 

offspring from a pair of selected parents through repeated applications of the pro­

posed crossover strategy. Two valid temporary offspring are generated each time 

by a sequence of steps defined by the crossover strategy. By repeating the strategy 

for t times, where t is a parameter, a candidate list of 2t valid temporary offspring 

is then generated. Finally, the best and a selected temporary offspring (using the 

probabilistic binary tournament selection mechanism) will be chosen to be the 

offspring for the current generation. Initial computational experiments on various 

combinations of selection methods (e.g. best, worst, random, roulette wheel, rank­

ing and tournament) support the above decision of selecting the offspring from the 

candidate list of temporary offspring. 

The number of repeated applications t needed to generate a candidate list of 

temporary offspring remains as a parameter. On one hand, generating a large 

candidate list of temporary offspring can be very time consuming and will results 

in less time spent on exploring the other regions of the solution space, especially 

when there is a fixed computation time. On the other hand, a small candidate 

list of temporary offspring may fail to exploit the potential of the multicrossover 

operator. For instance, by taking t = 1, this in fact can be regarded as a standard 

crossover operator in a SGA, where both temporary offspring are selected as the 

offspring for the current generation. 

In order to overcome· the above problem, the design of the crossover strategy in 

generating two valid temporary offspring has to be simple, fast and yet effective. 

With less time spent on repeating the strategy in generating two valid temporary 

offspring, this means we have more time to spare on exploring the solution space. 

With this in mind, we develop multicrossover operators which are simple to im­

plement and effective in finding good solutions. The design of the multicrossover 

operator is based on the representation framework used and the problem type to be 

solved. Note that the multicrossover operator will only be applied to the selected 

parents with a given crossover probability Pc. 
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4.9.4 Swap Operator 

Depending on the outcome of the crossover probability Pc, the multicrossover may 

not be applied to the selected parents. Instead of the exact duplicate of the parents 

as in a SGA via the reproduction, a new operator called' swap' is used in the MXGA 

to produce two offspring that are different from their parents. By doing this, we 

introduce more diversity to the search space. 

The basic step of this operator is to randomly select a swap point in a parent 

and then swap the substrings separated by the swap point to form a new offspring. 

More swap points can be selected within a parent, but depending on the problem, 

this might destroy some of the good features from the parent. But on the contrary, 

this may lead to a more interesting region in the search space. In some sense, this 

swap operator could be regarded as a 'giant' mutation where the elements in the 

parent are randomly reassigned. 

4.9.5 Mutation Operator 

An ideal GA should maintain a high degree of diversity within the population as it 

evolves from one generation to the next. Otherwise, the population may converge 

prematurely before the desired solution is found. 

We apply the mutation operator in the MXGA in two stages. At first, a subset 

of individuals is selected from the new offspring population with a given individual 

mutation probability PM. An offspring is selected if a randomly number q from 

an uniform distribution defined on [0,1], assigned to the offspring is less or equal 

to the individual mutation probability (i.e. q ::; PM). Then, the selected offspring 

will go through the second stage of the mutation process, where each element in 

the offspring is visited and altered with a given gene mutation probability Pm. 

There are some concerns in applying the mutation to the offspring. Too low 

a mutation rate implies too little exploration. With a very small mutation rate 

(e.g. Pm = 0.0001), further exploration of a population ceases once the population 
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has converged to a local optimum. On the other hand, a very high mutation rate 

will change every element in the individual randomly. Then the whole evolutionary 

process is simply a random search with no exploitation of the information acquired 

from the previous generation. 

In this study, we use the value of 0.25 and 1/ L for PlvI and Pm respectively, 

where L is the length of an individual. In other words, we allow on average, 

25% of the offspring population to undergo the gene mutation stage. By doing 

this, we not only keep the mutation to the offspring on a moderate scale, we also 

help speed up the MXGA by keeping some of the good offspring generated by 

the multicrossover operator to the next generation without any disruption by the 

mutation. The value of 1/ L is used to allow the gene mutation to introduce small 

changes in the selected offspring. 

4.9.6 Replacement and Filtration Strategies 

If a generational evolution is used in a GA, there is no competition between the 

parents and the offspring so the offspring replaces the parents irrespective of their 

fitness values. All individuals have the lifetime of exactly one generation and 

parents are always thrown away, so there is a distinct possibility that valuable 

information is lost before the next generation. 

Our proposed MXGA uses Elitism Replacement scheme where the offspring 

have to compete with their parents to gain admission to the new population. One 

advantage of the elitist scheme is that good solutions once found are never lost 

unless even better solutions are created. During the elitism replacement stage, both 

parent and offspring population are combined into a single population of size 2Ppop . 

Then, the individuals of the combined population are sorted in a non-increasing 

order of their associated fitness value fi' so that h ~ iz ~ ... ~ izppop • The 

individuals of the new population for the next generation of size Ppop is thus the first 

half of the combined population. The rule is to always select the fittest individuals 

from the combined population before proceeding to the next generation. 
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After Ppop (population size) individuals have been selected, a process called 

'filtration' is used to identify the identical individuals from the new population; 

Two individuals are said to be identical if, and only if, the sequence of the elements 

in both individuals (i.e. genotype) are identical. The identical individuals will be 

removed and replaced by uniformly randomly generated new individuals to avoid 

'premature convergence' and to add diversity to the new population. 

As the filtration procedure involves the process of "identify", "re-generate" and 

"re-evaluate" of the new individuals, which requires a certain amount of computa­

tional time, it is sensible to just invoke the procedure every R generations (where 

R is a parameter, e.g. 50). 

4.10 Summary 

GAs have been theoretically and empirically proven to provide robust search mech­

anisms in complex spaces. However, traditional GAs, although robust, are gener­

ally not the most successful optimisation algorithm on any particular domain. 

The advantage of GAs comes from the fact that the technique can deal with a 

wide range of problem areas. GAs do not guarantee the global optimum solution 

to a problem, but they are generally good at finding 'acceptably good' solutions 

to problems in a reasonable time frame. 

Beasley et al. [26] give the following remarks: 

" Where specialised techniques exist for solving particular problems, they 

are likely to outperform GAs in both speed and accuracy of the final re­

sult. The main ground for GAs then, is in difficult areas where no such 

techniques exist. Even where existing techniques work well, zmprove­

ments have been made by hybridising them with a GA.)J 

Hybridising GAs with the most successful optimisation methods for particular 

problems is the best of both worlds. When correctly implemented, these algorithms 
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should do no worse than the method with which the hybridising is done. However, 

they are still rooms for improvements on a standard GA. See Whitley [277] for 

more details. Some principle attractions of GAs are given in Reeves [239]: 

1. Generality: the algorithms work on a coding of a problem, so it is easy to 

write one general computer program for solving many different optimisation 

problems. However, a specific coding may have a significant impact on the 

GA's ability to find good solutions, unless the operator used to search the 

space is carefully selected with respect to the coding. 

2. Nonlinearity: many conventional optimisation techniques rely on unreal­

istic assumptions of linearity, convexity, differentiability, etc. This is not 

needed by GAs; the only requirement is the ability to calculate some mea­

sure of performance, which may be highly complicated and non-linear. 

3. Robustness: empirical evidence is strong that although it is possible to 

fine-tune a GA to work better on a given problem, it is nonetheless true that 

a wide range of parameter settings (population size, crossover and mutation 

rate, etc.) will give very acceptable results. 

4. Ease of modification: even relatively minor modification to a particular 

problem may cause severe difficulties to many heuristics. By contrast, it is 

easy to change a GA to model variations of the original problem. 

5. Parallel nature: quite apart from the property of intrinsic parallelism which 

GAs have been shown to possess, there is great potential for implementing 

G As in parallel. 

In this chapter, a general framework of the proposed MXGA is introduced. The 

novelty of the proposed MXGA is the development of the multicrossover operator 

in generating offspring. The proposed multicrossover operator uses a simple but 

yet effective classical crossover strategy to generate a candidate list of temporary 

offspring. The best and a selected temporary offspring are then chosen to be the 
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offspring of the current generation. Various techniques such as swap procedure, 

2-stage mutation operator, elitism replacement and filtration strategy are also 

introduced into the proposed MXGA to further enhance the solution quality. 
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Single Machine Family Scheduling 

Problem 

5.1 Introduction 

In this chapter, we address a Single Machine Family Scheduling Problem (SMFSP) 

where jobs are partitioned into families and setup is required between these fam­

ilies. The objective is to find a schedule which minimises the maximum lateness 

Lmax of the jobs in the presence of the sequence independent family setup times sf. 

This SMFSP can be represented as 11 sf I Lmax based on the standard classification 

of Graham et al. [128] (as described in Section 3.3.1). We restrict our study to 

offline machine scheduling where it is assumed that the data for the problem in­

stances are known with certainty in advance. According to Hariri and Potts [139], 

the problem can be defined as follows: 

"Given are N jobs, each characterised by a processing time Pj, on a single machine, 

and a due date dj , for j = 1,2, ... ,N, and a partition into F families. For each 

family f, for f = 1,2, ... , F, jobs are split into batches, where a batch is defined 

as a maximal set of contiguously scheduled jobs from the same family which share 

the same set up. A sequence independent family setup time sf, is required at the 

start of the schedule and also when there is a switch of jobs from another family. 

123 
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The objective is to find a schedule which minimises the maximum lateness Lmax , 

of the jobs in the presence of the family setup times." 

The SMFSP for arbitrary F is an NP-hard problem as shown by Bruno and 

Downey [38]. The general assumptions of the SMFSP in this study are: 

1. all input data are positive integers; 

2. each job becomes available for processing at time zero; 

3. the machine becomes available for processing at time zero; 

4. the machine can only process at most one job at a time; 

5. once processing begins on a job, it is processed to completion without inter­

ruption; 

6. the machine cannot perform any processing while undergoing a setup. 

Set ups include adjusting tools, positioning work in process material, paint dry­

ing, cleanup, chemical reaction to be completed, etc. The majority of scheduling 

research assumes setup times as either negligible and hence ignored or considered 

as part of the processing time. 'While this assumption simplifies the problem, it 

adversely affects the solution quality for many applications which require explicit 

treatment of setup (cite in Allahverdi et al. [6]). For example, imagine jobs that 

each belong to a particular family, where jobs in a family tend to be similar in 

some way, such as their required tooling or their container size. As a result of 

this similarity, a job does not require a set up when following another job from 

the same family, but a known family setup time is required when a job follows a 

member of some other family. We call this a family scheduling model. Typically, 

there is a large number of jobs, but a relatively small number of families. 

The main motivation of this study is derived from a complex trade-off at the 

core of many scheduling problem in practice. This trade-off involves balancing the 

machine efficiency of long production runs of a similar jobs, against the customers' 

satisfaction gained from completing the jobs before or by their due dates. At one 

extreme, if efficiency is more important, we find that the batch sizes tend to 

be large to allow many jobs to run on a similar set up. However, if resources 
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are committed to long production runs, other jobs tend to get delayed, thus not 

achieving their due dates. At the other extreme, when a good due date performance 

is warranted, the batch sizes are kept small so that priorities can be shifted. This 

allows jobs that face the most urgent due date pressures to be completed ahead 

of the other jobs. By doing so, it is observed that this shifting may require a 

number of set ups, and lead to a loss of productive efficiency. In the long run, this 

efficiency loss will in turn lead to a diminished ability to meet due dates. Thus, 

there is an obvious inherent conflict between efficiency and due date performance. 

This conflict represents a challenge to any scheduling procedure used for short-term 

scheduling of production batches. 

In this study, the aim is to develop a MultiCrossover Genetic Algorithm (MXGA) 

that utilises the multicrossover operator to achieve better solution quality com­

pared to a standard genetic algorithm and other local search algorithms namely 

Tabu Search and Descent Method. We use a standard I-point or F-point crossover 

strategy to produce two temporary offspring. Detailed descriptions of the proposed 

multicrossover operator are discussed in Section 5.4. Various techniques are intro­

duced into the MXGA to further enhance the solutions. The architecture of the 

MXGA used in this chapter is based on the framework discussed in Section 4.9. 

In next section, we review some approaches used for the SMFSP with setup 

times. Some properties of the Earliest Due Date rules for SMFSP are stated in 

Section 5.3. The developments of the MXGA for solving SMFSP with sequence 

independent setup times are the focus of Section 5.4. Some of the main components 

in the MXGA are discussed in detail. Section 5.5 provides an insight into the 

local search algorithms we designed specifically for comparison purposes with the 

MXGA. Extensive computational experiments are carried out in Section 5.6. We 

end this chapter by giving some concluding remarks in Section 5.7. 
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5.2 Approaches to Single Machine Family Schedul-

ing Problem 

In this section, we concentrate on the review of the literature for the SMFSP 

with the presence of the family setup times. Various approaches, namely exact 

approaches, heuristic and local search algorithms have been proposed to solve the 

problem. Some excellent and comprehensive reviews of the SMFSP which involving 

setup consideration and batching can be found in Potts and Van Wassenhove [234], 

Webster and Baker [275], Liaee and Emmons [187], Allahverdi et al. [6], Yang and 

Liao [286], and Potts and Kovalyov [233]. 

It is worth mentioning that, in the event where all the setup times are zero, the 

problem of minimising the maximum lateness and minimising the total (weighted) 

completion time are solved in O(N log N) time by Jackson's Earliest Due Date 

(EDD) rule (see, Jackson [156]) and Smith's Shortest (Weighted) Processing Time 

(SvVPT) rule (see, Smith [256]) respectively. 

5.2.1 Exact Approaches 

Maximum Lateness 

In 1989, Monma and Potts [214] consider a variety of SMFSPs under the assump­

tion that sequence dependent setup times Sfg, for families satisfy the 'triangle 

inequality': the setup time associated with a changeover from family f to h is 

assumed to take no longer than that for the changeover from family f to g, fol­

lowed by a changeover from family g to h. Using dynamic programming (DP), 

they show the problems with the objective (minimisation) L max , ~j WjCj , and 

~j Uj to be efficiently solvable for a fixed number of batches. Their DP ap­

proach solve 11SfglLmax and 11Sfgl ~WjCj in O(F2NF2+2F) time, and 11sfiLmax 

and 11sfl ~WjCj in O(F2N2F) time. Thus, the DP algorithms are polynomial 

time bounded by the number of jobs but exponentially bounded in the number of 

families. Potts [232] shows that the time complexity for 11sfiLmax and 11sfl ~ WjCj 
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can be reduced to O(N3) when F = 2. Unfortunately, this DP approach is not of 

practical use unless F is very small. 

An improved backward DP approach with job insertion which schedules the 

jobs from the back to the front (i.e. in non-decreasing order of their indices within 

the families) is proposed by Ghosh and Gupta [111] for 1lsfglLmax, which requires 

O(F2NF) time. However, their approach is only practical when F is very small. 

In 1996, Schutten et al. [250] develop a branch and bound (B&B) approach 

for the problem of 1irJ, sflLmax. In the presence of release dates rj, no results are 

known about the order of jobs within a family. A key component of their algorithm 

is the use of dummy jobs to represent setups. A lower bound is obtained by relaxing 

setups and solving the corresponding preemptive problem, and the approach uses a 

forward branching rule. Computational results show that the algorithm is effective 

in solving instances for up to about 40 jobs. 

A year later, Hariri and Potts [139] develop a B&B approach where all jobs 

are ready at time zero for the problem 1lsflLmax. They first obtain an initial 

lower bound by ignoring setup, except for those associated with the first job in 

each family, and solved the resulting problem with EDD rule. This lower bound 

is then improved by a limited enumeration that considers whether or not certain 

families are split into at most two batches. Their B&B algorithm optimally solved 

problems with up to 50 jobs. 

In 1997, Pan and Su [225] develop a B&B algorithm for problem 1lsflLmax. 

They derive some fundamental properties of an optimal schedule to simplify the 

problem. Several dominance criteria and a lower bound of the optimal lateness are 

also developed to construct the B&B algorithm. The computational results reveal 

that the proposed algorithm effectively solves problems up to 30 jobs. 

In 2000, Baker and Magazine [22] provide an algorithm that uses a B&B ap­

proach combined with dominance properties which reduced the effective problem 

size to solve the problem of 11slLmax (s = identical setup time). They establish 

that the size of the problems that can be solved is a function of the number of 
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families, the number of jobs per families, the relative size of the setup time and the 

relative due date range. The identification of composite jobs allows the effective 

problem size to be reduced before the enumeration begins. For the most difficult 

categories, they solve problems for up to 60 jobs. 

Total (Weighted) Completion Time 

In 1991, Mason and Anderson [208] define the changeover for a job in a new family 

as the set down operation from the previous family and a set up operation for the 

new family. vVhen the setdown times are all zero, they show that the changeover 

structure is equivalent to sequence independent family setups. They derive various 

dominance rules and constructed a B&B algorithm for 11s!1 LWjCj . Their lower 

bound is derived using objective splitting: the total weighted completion time can 

be partitioned into contribution from the processing times and from the setup 

times, which are optimised separately. Their algorithm is able to solve problems 

up to 30 jobs. However, the algorithm can only be effective when the number of 

families are small compared with the number of jobs. 

Crauwels et al. [59] propose a B&B approach for problem of 11s!1 LWjCj . 

They obtain a lower bound by performing a Lagrangian relaxation of the machine 

capacity constraints in a time-indexed formulation of the problem. Their first 

algorithm uses a forward branching rules and multiplier adjustment method for 

obtaining the lower bound, while the second algorithm uses a binary branching 

rule and subgradient optimisation method for computing the lower bound. Com­

putational results show that the first algorithm solves problems with up to 70 jobs, 

and is more efficient than both Mason and Anderson's algorithm, and also their 

second algorithm. 

In 2000, Dunstall et al. [81] introduce two new lower bounds for problem 

11S!1 L WjCj . These lower bounds are shown analytically to dominate Mason 

and Anderson's lower bound and can be computed more efficiently than the La­

grangian lower bound of Crauwels et al. [59]. An improved B&B algorithm of 

Mason and Anderson [208] through the addition of a new dominance rule and the 
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substitution of the lower bounds is constructed. Their algorithm efficiently solves 

problems with 50 or more jobs, depending on the values of setup times. 

Other Objective Functions 

Chen [47] proposes a polynomial DP algorithm for solving the problem of earliness­

tardiness penalties for two criteria. The first criterion minimises the total tardiness 

and earliness penalties, while the second extends the first criterion to include the 

total due date penalty. He shows that the algorithm has a running time polynomial 

with respect to the number of jobs but is exponential with the number of batches. 

5.2.2 Heuristics and Local Search Algorithms 

Maximum Lateness 

Problem 11sfiLmax has been an interest of many researchers in recent years. In 

1991, Zdrzalka [287] proposed heuristic methods for 11sfiLmax in which there are 

unit setup times. To facilitate the worst-case analysis, he assumes that all due 

dates are non-positive. vVhen all jobs of a family are scheduled contiguously, the 

resulting schedule is shown to have a maximum lateness which does not exceed 

twice the optimal value. He also suggests an improvement which allows each family 

to be split into at most two batches. The improved heuristic requires O(N2) time 

and generates a schedule for which the maximum lateness does not exceed ~ times 

that of an optimal schedule. 

Four years later, Zdrzalka [288] designed two approximation algorithms for the 

problem without the unit setup time assumption and with non-positive due dates. 

The algorithm starts with a schedule in which each batch contains all jobs from a 

family, and allows each family to be split into at most two batches. The algorithm 

requires O(N2) time, and it generates a schedule with maximum lateness that is 

no more than ~ times the optimal value. His algorithm can be adapted for the 

problem of 1irJ, sflCmax to generate a schedule of maximum lateness that is no 

more than % times the optimal value. 
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Hariri and Potts [139] propose a single batch heuristic in which all jobs of a 

family form a batch, and a double batch heuristic in which each family is parti­

tioned into at most two batches according to the due dates of its jobs. They show 

that both heuristics require 0 (N log N) time. They also show that the single 

batch heuristic has a worst-case performance ratio of 2 - j;;, whereas a composite 

batch heuristic which selects the better of the schedules generated by the single 

and double batch heuristic has a worst case analysis of ~ for arbitrary F. 

Woeginger [282] investigates a SMFSP in which each job has a processing time 

and a delivery time. The objective is to find a schedule of jobs that minimises the 

time by which all jobs are delivered with the presence of the sequence independent 

family setup times. This problem is equivalent to 1lSjlLmax. Woeginger formulates 

the problem using DP and applies the Trimming-The-State-Space technique to 

cut the state space down to polynomial size and simultaneously demonstrate the 

existence of a Polynomial-Time Approximation Scheme (PTAS) for the problem. 

Baker [21] develops a procedure called Gap Heuristic that exploits a splitting 

condition while adding jobs, one at a time, to a schedule for the problem of 11sILmax 

(s = identical setup time). Its computational requirement is O(N21og N) since 

each iteration inserts one job into the schedule, and there could be reordering of the 

batches with each insertion so that their batch due dates are in order. He suggests 

two heuristic procedures that use neighbourhood search routines to improve the 

existing heuristic. He defines a C-neighbourhood by choosing a batch and com­

bining it with the next earlier batch of the same family, and as-neighbourhood 

which involves splitting off the last job from a batch and inserting it later in the 

schedule, possibly as a separate batch. Computational results indicate that his 

hybrid heuristic (on average) produces results where the difference between the 

heuristic solution and an optimal solution is approximately equal to the average 

job processing time. 

Pan et al. [224] propose a mathematical programming model for 1lsjlLmax. The 

heuristic algorithm solves the problem by first finding an initial schedule and then 

applying merging properties (forward and backward mergers) to improve the initial 



CHAPTER 5 131 

schedule. Their proposed algorithm can be modified to find approximate solutions 

that minimise the maximum tardiness. The computational results reveal that 

the proposed method produces more accurate solutions for maximum tardiness 

problems than for maximum lateness problems and is efficient in solving problems 

of up to 1000 jobs. 

Shin et al. [253] propose a tabu search (TS) for the problem of 117"j' sfgILma.x. 

The tabu search is composed of two parts: a MATCS (Modified Apparent Tar­

diness Cost with Setups) rule for finding an efficient initial solution, and a tabu 

search approach to seek a near optimal solution from the initial solution. They 

also develop a restricted neighbourhood generation scheme to find a better neigh­

bourhood schedule more efficiently. They explore a hybrid move operator which 

alternates insert move and swap move as the search progresses. They compare the 

TS with the RHP (Rolling Horizon Procedure) heuristic proposed by Ovacik and 

Uzsoy [223] for problem instances up to 100 jobs. The computational experiments 

show that the TS outperforms RHP heuristic in terms of the computational time 

and solution quality. 

In 2004, Schultz et al. [249] propose a new neighbourhood search heuristic for 

solving problem 11 sf 9 I Lmax based on the properties and theorems presented by 

Hariri and Potts [139] and Baker [21]. Of particular interest is Hariri and Potts' 

problem reduction procedure that identifies the condition under which two jobs 

from the same family must be scheduled contiguously and can thus be replaced by a 

single composite job, therefore reducing the overall problem size. The procedure is 

shown to be effective, producing optimal/near optimal solutions over a wide range 

of problem instances and is computationally efficient for large problems (500 jobs). 

Total (Weighted) Completion Time 

Gupta [132] and Ahn and Hyun [2] present heuristic methods for solving the prob­

lem of 11sfgl L: Cj. Gupta's method constructs a partial schedule using the earliest 

completion time rule: the job which is appended to the current partial sequence is 

chosen so that its completion time is as small as possible. Ahn and Hyun [2] sug-



CHAPTER 5 132 

gest an improvement heuristic which attempts to reduce the total completion time 

of the current sequence by shifting contiguously scheduled jobs from the same fam­

ily to another position. Computational results show that the improved heuristic 

generates better solutions compared to Gupta's method. 

Mason [207] design a genetic algorithm (GA) for problem 11sfl "£WjCj using 

a binary representation of solutions. Each element in the representation indicates 

whether or not the corresponding job starts a batch. He uses standard genetic 

operators in the algorithm. 

Herrmann and Lee [144] study problem of 11dj, sfl 'L Cj by introducing an 

extended heuristic for the Constrained Flowtime with Setup problem (CFTS). 

The Multiple-Pass Minimum Waste heuristic performs well at minimising the total 

flowtime of CFTS. They use a GA to improve the solution quality by adjusting the 

inputs of the heuristic. This GA includes a penalty function for infeasible points 

that increases the cost of tardiness as the search progresses. 

Williams and Wirth [281] propose a new heuristic for 11sfl "£ Cj solved in 

O(N4) time, based on the properties derived by Mason and Anderson [208] for an 

optimal schedule. Their heuristic performs well when tested against the no family 

splitting heuristic and Gupta's heuristic for problems of 50 jobs. 

Crauwels et al. [61] investigate four local search heuristics: descent method, 

simulated annealing, threshold accepting, and TS for a problem of 11sfl "£WjCj . 

They use the neighbourhood search procedures proposed by Ahn and Hyun [2] 

in their local search heuristics. All four heuristics are reported to yield less than 

0.4% deviation from the optimal solution for problems with up to 50 jobs. The 

best results are obtained with a hybrid method which uses the multistart version 

of a TS when the number of families is small, and uses Mason's GA for a large 

number of families. 

Wang et al. [273] design a GA based on fundamental runs theory for the 

problem of 11sfl "£ Cj. The numerical results show that the computational per­

formance of the GA depends on the number of 'fundamental' runs, and not the 
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number of jobs. When the number of groups is much less than the number of jobs, 

the number of fundamental runs is usually much less than the number of jobs. 

Other Objective Functions 

Crauwels et al. [60] propose multistart descent method, simulated annealing, TS, 

and GA for the problem of 11sfl ~ Uj . The neighbourhood search algorithms 

use either job or batch neighbourhood. Computational results for problems up 

to 50 jobs show that the GA performs the best compared to other local search 

algorithms. 

Nowicki and Zdrzal:ka [217] propose a general TS approach for solving any 

general cost functions on a single machine with major sequence independent family 

setup times and minor setup times for jobs within families. They evaluate the 

approach computationally for the objectives of minimising the maximum weighted 

lateness and total weighted tardiness on the problem instances ranging between 

40 and 200 jobs. 

Webster et al. [276] propose and investigate a GA for scheduling jobs with an 

unrestricted common due date. The objective is to minimise total earliness and 

tardiness cost where early and tardy penalty rates are allowed to be arbitrary for 

each job. They compare the computational results of a GA with a B&B procedure 

on problem instances up to 30 jobs. 

A Lagrangian relaxation based approach is developed by Sun et al. [259] for 

problem 11sf91 ~ wjT}, The primal problem is decomposed into job level subprob­

lems which are solved optimally and an approximate dual problem is then solved 

using subgradient technique. The result of the relaxation is a list of jobs sequenced 

by starting times that is then improved via a three way swap. 

Armentano and Mazzini [13], design a GA for problem 11sf91 ~Tj. They com­

pare the test problems with those obtained by the CPLEX software and the ATCS 

(Apparent Tardiness Cost with Setups) heuristic. For small problems, their pro­

posed GA yield near optimal solutions for most of the problems tested. For larger 
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problems, the GA outperforms ATCS in 93% of the test problems using reasonable 

computational time. 

Suriyaarachchi and 'Wirth [260] introduce some properties of an optimal sched­

ule for the problem of 11 S j I I: E j , I: Tj . They also present a fast heuristic proce­

dure for the problem based on the proposed properties. Its performance is com­

pared with a lower bound, a greedy heuristic, a genetic algorithm, and for small 

problems, the optimal solution. 

5.3 Earliest Due Date (EDD) 

To specify the problem of SMFSP with family setup time more formally, consider 

N jobs that are divided into F families. Each family /, for IS/SF, contains nj 

jobs where nl + n2 + ... + nF N. vVe used the subscript pair (/, j) to identify 

the jth job from family /. Each job becomes available for processing at time zero, 

and is to be scheduled on a single machine. Let Pfj denote the processing time 

of job (/, j), for ISjSnj, and dfj is its due date. A sequence independent family 

setup time S j is required at the start of the schedule if a job of family / is the first 

to be processed and on the occasion when there is a switch in the processing of 

jobs from one family to family f. 

In the event when there is no setup time in the problem, we can minimise the 

Lmax by sequencing jobs using the EDD rule (see Jackson [156]). 

Property 1 (EDD Rule) 

For a given set of N jobs, with known processing times and due dates, the minimum 

value of Lmax is achieved by sequencing the jobs in non-decreasing order according 

to their due dates. 

According to Monma and Potts [214], there exists an optimal solution in which 

jobs within each family are sequenced in non-decreasing order of the due dates, 

that is in EDD order. We restate their result below. 
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Property 2: (EDD within family) 

There is an optimal schedule such that the jobs within each family are sequenced 

in non-decreasing order of their due dates. 

The practical implication of Property 2 is to focus scheduling decisions on 

choosing a family rather than choosing a job. The rule is aimed at determining 

which family is most critical. Within that family, the job with the earliest due 

date should come next. This means that the jobs in a family should appear in 

EDD order (dfj ::; dfj+l). Suppose that all jobs in family f are processed as a 

single batch, and the family due date df is defined as: 

. min { d fj + q f j } 
J=1,2, ... ,nf 

(5.1 ) 

where qfj represents the processing time in family f that occurs after job (I, j) 

and is sometimes called the 'tail' of job (I, j), 

nf 

qfj = LPfi - (Pfl + Pf2 + Pf3 + '" + Pfj)· (5.2) 
i=l 

With this, one can construct an optimal schedule by sequencing the jobs in 

a non-decreasing order according to their due dates within each family and then 

continue with sequencing the families in a non-decreasing order of their family 

due dates. The concept of sequencing according to family due dates has broader 

applicability in schedules where families are split into two or more batches. A 

batch is a maximal group of contiguously scheduled jobs within a family. Let 

(I, h), . .. , (I, k) be the jobs of an arbitrary batch b, and the batch due date 6b is 

defined as: 

These batch-related parameters help the EDD rule adapt to sequencing the 

batches in the way as explained in Baker [21]. 
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Property 3 (EDD Rule for batches) 

There exists an optimal schedule where the batches are sequenced in a non­

decreasing order according to their due dates. 

This rule should be followed whenever one is considering scheduling in batches. 

Due dates may not always be relevant but generally, the meeting of deadlines is 

a major concern in scheduling problems. Scheduling to minimise lateness is a 

common way of making job completion times conform to due dates. 

In an optimal schedule, jobs within each batch are sequenced using the EDD 

rule according to their job due date dbj . Then, the batches in the schedule are 

sequenced in a non-decreasing order according to their batch due dates 6b (i.e. 6b ::; 

6b+l)' A sequence independent family setup time sf, is added before the start of 

each batch. The maximum lateness Lma:'(, of the schedule is 

Lmax = max {LJ } 
J 

where L j = Cj - dj , Cj = completion time of job j. 

5.4 MultiCrossover Genetic Algorithm 

(5.4) 

In this section, we propose a MXGA for solving a SMFSP to minimise the maxi­

mum lateness. To the best of our knowledge, no research has been carried out on 

the application of GAs for the problem of 1lsflLmax. In the following subsections, 

we will discuss some of the main components in the MXGA based on the archi­

tecture described in Section 4.9. A general framework of the proposed MXGA is 

summarised in Figure 4.20. 

5.4.1 Representation 

The proposed MXG A is developed using binary {O, I} representation to define the 

partition of families into batches, where '1) means the first job in a batch and '0' 

means a contiguously sequenced job in a batch. This representation is used by 
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Mason [207] in his GA for solving the problem of 11s!1 L wjGj. The genes can 

be selected freely except the first gene (job (j, 1)) in each family f, where' l' is 

placed to indicate the start of a family. The length of the chromosome (individual) 

corresponds to the number of jobs iV, to be scheduled. Figure 5.1 shows an example 

of the gene representation for an individual with 15 jobs in 3 families. Note that 

the gene representation for the first job (j,1) in each family f is always '1'. In 

this example, we have two batches in family 1, three batches in family 2 and one 

batch in family 3. 

Figure 5.1: An example of an individual (chromosome) 

Family I Family 2 Family 3 

~~~ 

Individual I 1 0 1 0 011 0 1 0 1 11 0 0 0 0 I 
y "---y--J y y y '---y--/ 

B I B2 B I B2 B3 B I 

During the decoding stage, genes in each individual will be decoded into a 

sequence of batches. Having calculated the batch due date using (5.3), the batches 

are scheduled in a non-decreasing order of their batch due dates (property 3). 

5.4.2 MultiCrossover 

Multicrossover is considered as the primary genetic operator used in the MXGA. 

Based on a crossover probability, Pc, two offspring will be produced from a pair 

of selected parents. As a result of the job permutation used as the gene repre­

sentation in most previous studies, specially designed crossover operator such as 

Partially Mapped Crossover (PMX) ([252]) and Order Crossover (OX) ([182]) are 

used to generate feasible solutions. Unlike others, our proposed crossover operator 

uses standard I-point or F-point crossover to produce two temporary offspring by 

crossing two selected parents in each cycle of steps. In this case, F defines the total 

number of families in the schedule. Thus, every family in the parent is involved in 

the crossover. The process of F-point crossover strategy is as follows. 
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S 1: Select randomly a crossover point in family 1 to be used in both PI and P2 

(Parent 1 and 2). 

S 2: Exchange the 'tails' offamily 1 in both PI and P2 to form two new temporary 

family partitions. 

S 3: A randomly generated number will determine the assignment of the new 

temporary family partitions in TC1 or TC2 (Temporary Offspring 1 and 2). 

S 4: Repeat S 1 - S 3 for each family f (f = 2,3, ... , F) in both PI and P2 until 

two complete TC1 and TC2 are formed. 

The steps above will be repeated t times to produce 2t temporary offspring. The 

best and a selected temporary offspring (using the probabilistic binary tournament 

selection mechanism) are then chosen to be the offspring for the current generation 

(refer to Figure 5.2 for an example with t = 3). Note that the steps can be easily 

modified to complement a I-point crossover strategy. 

Figure 5.2: MultiCrossover 

Family 2 Family 3 
• I 

P"ent1 l' 0 0i' 01 '11 + 111~ 1 0 Ii. TC1 l' 0000 l' 0001 1'" 00 I 
Parent 2 11 1 010 011 0 0 010 11 011 0 0 1 *TC2 11 1 0 1 0 11 1 1 0 0 11 0 0 1 0 1 

. " 

Parent 1 /1 010 1 011 1 1\0 1 /111 0 1 0 / 

Parent 2 111~0 0 011 0 o~o 0 11~0 1 00 1 

TC3 /1 1 0 1 0 11 0 0 0 1 11 0 1 0 0 I 
TC4 11 0000 11 1 1 00 11 1 0 1 0 1 

Parent 1 11 0 0 1 10 11 1 !1 0 1 11 1 0 l1 0 1 TC5 11 0 0 1 0 11 0 1 0 1 11 1 0 0 0 1 
.. : II. 

Parent 2 11 1 0 010 11 0
1
0 0 0 11 0 1

1
0 0 1 *TC6 11 1 0 0 0 11 1 0 0 0 11 0 1 1 0 1 

Crossover 
= Point 

Offspring 1 /1 1 0 1 0 11 1 1 0 0 11 0 0 1 0 1 

Offspring 2 /1 1 0 0 0 /1 1 0 0 0 11 0 1 1 0 1 
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5.4.3 Swap 

As described in Section 4.9, the swap operator is applied to produce two new 

offspring when the multicrossover is not applied to the parents. This is achieved 

by doing the following: 

S 1: Select randomly a family and a swap point within the family from a parent 
to form two sub-genes. 

S 2: Swap the position of the sub-genes (except the first job in the selected family) 
with the swap point as the point of exchange. 

S 3: The other genes from the other family remain unchanged. 

The steps above are repeated for the second parent to create a second offspring. 

In Figure 5.3, a swap point is chosen randomly between the second gene and the 

third gene from family 2 in parent 1. Two sub-genes ({I}, {l,O,l}) are formed in 

family 2. Note that the first gene (job (2, 1)) in family 2 is not in the list of the 

sub-genes and it will remain unchanged. We then swap the sub-genes in family 2 

while the genes from the other families (1 and 3) remain unchanged. This results 

in a completely new offspring from the parent. Similarly, offspring 2 is formed 

from parent 2 where a swap point is chosen in family 1 in parent 2. Note that 

swap will result in a new structure of the gene representation but not the structure 

of the jobs. The genes will only be decoded into jobs in the decoding stage. 

Figure 5.3: Swap 

ParentI 11 00 1 0 /1111 01 /1 1 0 1 0 /) ( Parent 2 /11 0100/1 0000 /1 0 1 00 / 

Swap Point Swap Point 

Offspring 1 j 1 0 0 1 0 /11 0 11 /1 1 0 1 0 / Offspring 2 jr-I-O-O-I-O '-/1-0-0 -0 0-'1-1-0 -1 0-0--' 
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5.4.4 Mutation 

After a crossover or swap procedure is performed, mutation takes place. We used 

two mutation operators in our MXGA. First, an offspring is selected for the proce­

dure of the gene mutation based on an individual mutation probability, Pl\I[. Then, 

each gene of the selected offspring (except the first gene in each family) is visited 

and flipping the 'I' to '0' or vice versa with a given gene mutation probability, Pm. 

When a gene is flipped from 'I' to '0', it means we combine two contiguously 

scheduled batches into one single batch with the total number of the jobs in the 

new batch equal to the sum of the jobs in the previous two separated batches. We 

split a single batch into two separated batches if the gene is flipped from '0' to '1'. 

The flipped gene will be the first job in the second batch. 

Figure 5.4: Job Mutation 

Before Job Mutation: 

B1 B2 B1 B2B3 B1 B2 
~~ ~~rLJ~~ 

1 0 1 0 011 0 1. 0 111 0 1 AlO 0 

'\ mutate / 

After Job Mutation: 

B1 B2 B1 B2 B1 B2B3 
~ ~ ~ rLJ ~rLJ~ 

I Q 110100110001110110 

Figure 5.4 shows an example of gene mutation of an individual at the third 

gene in family 2 and the fourth gene in family 3. With the given Pm, we flipped 

the gene for job (2,3) from 'I' to '0' and from '0' to 'I' in the gene for job (3,4). 

Note that the number of batches in family 2 has been reduced to two with four 

jobs and one job in the first and second batch respectively. The number of batches 

in family 3 increased from two to three, where there are two, one and two jobs in 

each batch respectively. 
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5.5 Competitors - Performance Measure 

In order to measure the effectiveness and quality of the MXGA in solving the 

problem, we compare the MXGA to those of a standard GA (SGA), a Tabu Search 

(TS) and a Descent Method (DM). All the local search algorithms adopt the 

binary representation used in the MXGA. To form an initial solution, the jobs 

representation are uniformly randomly generated except for the first job (i.e. job 

(J, 1)) in each family f, where' l' is placed to indicate the start of a family. 

vVe first consider two neighbourhood approaches suggested by Ahn and Hyun 

[2] for problem 11sfgl L Cj. They suggest that a neighbour can be constructed by 

shifting a job or a sub-batch forward or backward, while maintaining the Shortest 

vVeighted Processing Time (SWPT) property for jobs within each family. Their ap­

proaches have been successfully applied by Crauwels et al. [61] within descent, sim­

ulated annealing, threshold accepting, and tabu search for problem 11s!1 LWjCj . 

Since the approaches proved to be very efficient in finding near-optimal solutions 

for the problem of minimising the completion time, we believe that the approaches 

will also be useful for our problem of minimising the maximum lateness. Detailed 

descriptions of the neighbourhood approaches can be found in Crauwels et al. [61]. 

It has been observed by Ahn and Hyun [2] that the shift job neighbourhood is 

smaller than the more general shift sub-batch neighbourhood. Conventionally, the 

complete neighbourhood is searched at each iteration to find the best possible 

move in DM and non-tabu move in TS. Thus, it is advantageous to choose a small 

neighbourhood. Therefore, we use the shift-job neighbourhood in preference to 

shift sub-batch neighbourhood. 

It is convenient to describe the shift job neighbourhood using an example. 

Consider a sequence 

s= (1 0 1 001 1 0 1 0 1 I 1 0 0 0 1) 

which comprises 7 batches in 3 families (J = 1,2,3) (vertical line " I " divides the 

jobs into families). For a forward shift of a single job, we select the first job of a 
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batch and swap its job representation with the second job in the same batch. For 

instance, consider the batches in family 1, by swapping the job representation of 

the third job (first job of batch 2) and the fourth job (second job of batch 2) in 

family 1, we obtain the sequence 

51 (1 0 0 1 0 I 1 0 1 0 1 I 1 0 0 0 1). 

As a result, the third job in family 1 is now the last job in batch 1, and the 

fourth job in family 1 has became the first job in the second batch of family 1. 

Note that the actual sequence of the batches in an optimal schedule is determined 

during the decoding stage where the batches are sequenced in a non-decreasing 

order according to their batch due dates. 

Similarly, for a backward shift of a single job, we select the first job of a batch 

and swap its job representation with the last job from the previous batch. Consider 

again the batches in family 1, by swapping the job representation of the third job 

(first job of batch 2) and second job (last job of batch 1) in family 1, we obtain 

the sequence 

52 = (1 1 0 0 0 I 1 0 1 0 1 I 1 0 0 0 1). 

In this case, the third job in family 1 is now the second job of batch 2 while the 

second job in family 1 has became the first job in the second batch of family 1. 

It is worth mentioning that the shift job neighbourhood discussed earlier does 

not create any extra batches in the schedule. However, we extend it so that it can 

create an extra batch in consisting of a single job. For a forward shift, we select the 

second job in a batch and alter the job representation from '0' to '1', leaving the 

first job of the batch to form an extra batch by itself. Consider again the second 

batch in family 1 from sequence 5, by altering the job representation of the fourth 

job in family 1 (second job in batch 2) from '0' to '1', we obtain the sequence 

53 = (1 0 1 1 0 I 1 0 1 0 1 I 1 0 0 0 1). 

Similarly, for a backward shift, we select the last job of a batch and alter the job 

representation from '0' to '1'. By doing this, the selected job has became an extra 
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batch by itself. Consider again the sequence S, by altering the job representation 

of the second job in family 1 (last job in batch 1) from '0' to '1', we get the 

following sequence 

S4 = (1 1 1 0 0 I 1 0 1 0 1 I 1 0 0 0 1). 

5.5.1 Dynamic Length Tabu Search 

A dynamic length tabu list of tabu search (DLTS) is designed for our problem 

using shift job neighbourhood. The tabu list length is dynamically controlled 

during implementation in order to achieve better solution quality. Such processes 

can have an important influence on which moves are available to be selected at a 

given iteration. 

The basic role of the tabu list is to prevent cycling. If the length of the tabu 

list is too short, tabu search may keep returning to the same local optimum, thus 

preventing the search process from exploring a wide area of the solution space. 

Conversely, a tabu list that is too long creates too many restrictions. It also 

results in excessive computational time to search the tabu list to determine if a 

move is tabu. As a result, less time is available for the procedure to explore in the 

solution space within a given computational time limit. Therefore, the length of 

the tabu list should be as short as possible but long enough to allow the search to 

move away from the local optimum. An effective way of overcoming this difficulty 

is to use a variable length tabu list where each element of the list is active for a 

number of iterations, that is bounded by the given maximum and minimum values. 

In the DLTS, a tabu list is created to prevent moves that shift certain jobs. 

After a move is executed, the job that is shifted is stored in the tabu list, or both 

jobs are stored if the move is effectively the transpose of adjacent jobs. Thus, a 

neighbour is tabu if it is generated by shifting one of the jobs in the tabu list. 

As in the standard tabu list procedure, whenever the list becomes full and a new 

entry is to be added, the oldest element is overwritten. 
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We also introduced an aspiration criterion (as described in Section 2.5.2) into 

the DLTS to prevent the occasional loss of good solutions due to the tabu list. If 

the solution value of a tabu neighbour is better than that for all solutions generated 

thus far, then its tabu status is overridden. 

5.5.2 Randomised Steepest Descent Method 

Having successfully developed the DLTS using shift job neighbourhood search, a 

steepest descent method (SDM) using the same neighbourhood search procedure 

is developed. It adopts an acceptance rule that allows neutral moves to be made 

for up to IV1 consecutive iterations (where IV1 is a parameter, e.g. IV1 = 1000) before 

terminating the algorithm. The SDM is known to be a very greedy neighbourhood 

search method which finds the local optimum quickly. But, the risk of visiting 

the same solutions previously found thus creating a cycle within this solutions set 

is also high. To remedy this drawback, we introduced a randomisation strategy 

into the algorithm when there are multiple identical good solutions (i.e. improving 

and neutral moves) found in a single iteration. A move is selected randomly from 

the list of the identical good solutions. We believed the strategy will help the 

search to escape from falling into the same local optimum and continue its search 

in the solution space. Also note that deteriorating moves are not considered in 

the algorithm. In other words, the algorithm will terminate once the best schedule 

found in the current iteration is worse than the best schedule found so far. 

5.6 Computational Experience 

In this section, we report on computational results of our proposed local search 

algorithms. For TS and DM, we present results which show how the choice of 

parameters affect solution quality. For example, we investigate the different range 

of tabu list length in DLTS and the performance of the randomisation in pur 

proposed RSDM compared to the standard DM. We also present results of our 
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proposed MXGA at the different stages of development. Although many addi­

tional parameter setting tests were performed to obtain a 'good' implementation 

of each algorithm, only the most significant are reported. Having found suitable 

parameter settings for each method, we complete this section by presenting exten­

sive computational results for the different local search algorithms proposed in the 

previous sections. 

5.6.1 Experimental Design 

Problem instances with 50 and 100 jobs, and with 4, 8 and 12 families are gener­

ated. Jobs are distributed uniformly across families, so that each family contains 

lNjFJ or fNjFl jobs. In each problem, processing times are randomly generated 

integers from an uniform distribution defined on [1,100]. Having generated pro­

cessing times and computed P ~~=l ~7~1 Pfj, five sets of integer due dates are 

generated from the uniform distribution [O,aP], where a E {0.2, 0.4, 0.6, 0.8, 1.0}. 

We label each set of due dates range as follows: 

Dl: [0,0.2P] 
D2: [0,0.4P] 
D3: [0,0.6P] 
D4: [0,0.8P] 
D5: [0,1.0P] 

Setup times are integers from the following uniform distributions (based on Hariri 

and Potts [139]): 

Class A: [1,100] (medium); 
Class B: [1,20] (small); 

Class C: [101,200] (large). 

For each combination of N, F, a and setup times class, five problem instances 

are created. The algorithms are coded in ANSI-C using Microsoft Visual C++ 

6.0 as the compiler and run on a Pentium 4, 2.0 GHz computer with 512MB 

memory. Since the optimal solutions are not known, we use a lower bound to 

assess the quality of solutions generated by the algorithms. The lower bound used 

for each test problem is presented in Section 3.3.2. Algorithms are compared by 
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listing, for each combination of value N, F, a and setup times class, the average 

relative percentage deviation (ARD) (equation (5.5)) and the maximum relative 

percentage deviation (MRD) (equation (5.6)) of the heuristic solution value from 

the lower bound. 

,\,1 ,\,R (UBiT-LBi X 10007') 
L..,,=1 L..,r=l LB 10 

ARD= ' 
l·R ' 

(5.5 ) 

{
UB -LB } 

lV! RD =_ max '~B ' x 100% , where 
,-1,2, ... ,1 , 
r=1,2, ... ,R 

(5.6) 

I = number of problem instances with the relevant combination of parameters; 

R = number of repeated runs for problem instance i (i = 1, 2, ... , 1); 

U B ir = heuristic solution found in rth run of problem instance i; 

LBi lower bound of the problem instance i. 

We adopt the following abbreviations for the remaining subsections: 

IP 
FP 
SGA 
MXGA 
STS 
DLTS 
SSDM 
RSDM 

: 1 point crossover 

: F point crossover 
: Standard Genetic Algorithm 

: MultiCrossover Genetic Algorithm 
: Standard Tabu Search 
: Dynamic Length Tabu Search 

: Standard Steepest Descent Method 
: Randomised Steepest Descent Method 

Elite & Filter: Elitism replacement and Filtration strategy 

The specific values for the generic design variables in SGA and lVlXGA are 

summarised in Table 5.1. Initial computational experiments are performed to 

determine the size of the candidate list of temporary offspring. Five values of t 

(t = 3,5,7,9,10) are tested and results show that t = 5 gives the best result within 

a reasonable computation time. 
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Table 5.1: Implementation of generic design variables for SGA and MXGA 
variable value 

chromosome length, L N 
population size, Ppop 100 
crossover operator I-point and F-point (F = no. of families) 
crossover rate, Pc 0.75 
multicrossover, t (MXGA only) 5 (=10 temporary offspring) 
individual mutation rate, PM 0.25 
gene mutation rate, Pm liN 
filtration rate, R every 50 generations 
selection mechanism probabilistic binary tournament 

5.6.2 Standard Steepest Descent Method vs. Randomised 

Steepest Descent Method 

Table 5.2 presents results comparing the SSDM with our proposed RSDM. Five 

problem instances with 100 jobs in 4 families are generated and setup class A 

([1,100]) is used in this experiment. For each problem instance, a total of 30 runs 

are performed to obtain an average value. A duration of 20000 iterations for each 

run is performed. 

The first column gives the due date combination among D1-D5. Columns two 

and four refer to the ARD (equation (5.5)), while columns three and five refer to 

the MRD (equation (5.6)) of SSDM and RSDM, respectively. For each algorithm, 

the entries report the average values computed over the five problem instances (in 

this case, 1 = 5, R = 30). The final line of the Table 5.2 gives the overall average 

value over all five combination of due dates. 
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Table 5.2: Comparison of SSDlVl with RSDlVl (20000 iterations per run) 

Due Date 
SSDM RSDM 

ARD lVlRD ARD MRD 
D1 0.25 0.80 0.18 0.55 
D2 1.84 3.93 1.71 2.84 
D3 9.12 12.41 8.61 11.31 
D4 19.60 27.78 19.25 25.88 
D5 66.73 140.93 65.64 139.60 

1 Average 119.51 37.17 119.08 36.04 1 

We first observe that the performance of both algorithms in D5 are unimpres­

sive, with relatively large deviations of the heuristic solution value from that of the 

lower bound. Among the due date combinations, D5 proved to be the most difficult 

to achieve a value close to the lower bound. The solution quality significantly im­

proves if the range of the due date is small. A comparison of all corresponding due 

date ranges for both algorithms show that RSDlVl is slightly the better of the two. 

It is worth mentioning that the RSDlVl takes slightly longer computation time to 

reach a better local optimum. This is due to the acceptance rule applied in the 

RSDM which allows neutral moves during the execution. The SSDlVl terminates 

once no improving move is found. Thus, for a descent method, we subsequently 

concentrate on the RSDlVl. 

5.6.3 Standard Tabu Search vs. Dynamic Length Tabu 

Search 

Table 5.3 gives results for the different settings of the tabu list length of the 

TS approach. The problem instances generated from Section 5.6.2 are used in this 

experiment. As in Section 5.6.2, for each problem instance, 30 runs were performed 

with a duration of 20000 iterations per each run. The different settings of the tabu 

list length in Table 5.3 are as follow: 
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X +--7 y: x, y E {10 +--7 75,25 +--7 75}. 

Starts with a tabu list length of x. Increase the length by 5 after 100 
non-improving moves. Decrease the length by 5 once an improving 
move is found. Dynamically control the length of the tabu list within 

the range ([x, y])throughout the run. 
y +--7 x: y, x E {75 +--7 10,75 +--725}. 

Starts with a tabu list length of y. Decrease the length by 5 after 100 
non-improving moves. Increase the length by 5 once an improving 
move is found. Dynamically control the length of the tabu list within 
the range ([y, x])throughout the run. 

z Z E {10,25,50, 75, 100}. 
Fixed tabu list length at z throughout the run. 

Table 5.3: Comparison of DLTS with STS (20000 iterations per run) 

Due Date 
DLTS STS 

10+-->75 75+-->10 25+-->75 75+--> 25 10 25 50 75 100 
Dl 0.00 0.00 0.00 0.00 0.25 0.22 0.25 0.26 0.18 
D2 0.98 0.99 0.99 1.00 1.67 1.67 1.62 1.64 1.68 

ARD D3 6.44 6.35 6.58 6.20 7.73 7.61 7.67 7.73 8.69 
D4 16.21 15.94 16.83 15.64 18.76 18.39 18.48 18.60 19.42 
D5 55.19 57.98 56.42 56.36 59.09 58.45 59.91 58.88 58.68 

I Average I 15.76 I 16.25 I 16.16 I 15.84 I 17.50 I 17.27 I 17.39 I 17.42 I 17.71 I 
D1 0.00 0.00 0.00 0.00 0.92 0.82 0.98 0.98 0.93 
D2 1.95 1.95 1.95 1.95 2.95 2.92 2.59 2.59 2.47 

MRD D3 8.71 8.21 8.72 8.06 10.30 10.21 9.96 9.95 9.97 
D4 23.73 22.53 24.34 21.87 26.56 25.98 25.73 26.56 25.44 
D5 113.41 121.52 115.72 119.51 124.32 121.00 122.96 122.70 121.34 

I Average 29.56 I 30.84 I 30.15 I 30.28 I 33.01 I 32.19 I 32.44 I 32.56 I 32.03 I 

As for the descent method, we observe that the solution quality is high when 

the due date range is small. Note that the dynamically controlled tabu list length 

versions of TS achieved the lower bound for due date D1 for all five problem 

instances in every run (i.e. 150 runs where I = 5, and R = 30). Comparing the 

results for the dynamic and the fixed length versions of tabu list of the algorithms, 

better solution quality is generated for the former version in every due date range 

with the '10 +--7 75' version performing the best. This improved performance is 

explained by the observation that the short tabu list is needed at the beginning of 

the run to allow the search to fully exploit the neighbourhood. A longer tabu list 
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is needed at the later stage of the run to allow the search into 'interesting' regions 

of the solution space which would not otherwise be explored. Thus, the TS with 

'10 f-7 75' version is preferred. 

5.6.4 Initial Investigation of MultiCrossover Genetic Al­

gorithm 

During the development of the proposed MXGA, we made some decisions on the 

design at different stages. We gradually construct the proposed MXGA from the 

SGA. For the initial investigation in this subsection, five problem instances with 

five (DI-D5) combinations of due dates are generated and setup class A ([1,100]) 

is used in this experiment. For each combination of the problem instance and due 

date range, a total of 30 runs are performed to obtain the average value. A fixed 

time limit of 15 CPU seconds per run is imposed. 

Table 5.4 shows results for the different replacement strategies that we em­

ployed in the SGA at the early stages of development of the MXGA. vVe compare 

the well known steady-state replacement strategy (see Section 4.8) with our pro­

posed elitism replacement and filtration strategy described in Section 4.9.6 using 

standard I-point and F-point crossover operators. For each algorithm, the entries 

report the average values (ARD and MRD) computed over the five problem in­

stances with five combinations of due dates (i.e. 750 runs). The final line of Table 

5.4 gives the overall average value. 

Table 5.4: Comparison of Steady-State Replacement with Elitism Replacement 
and Filtration Strategies in SGA (15 CPU seconds per run) 

N F 
Steady State + 1P Steady State + FP Elite & Filter + 1P Elite & Filter + FP 
ARD MRD ARD MRD ARD MRD ARD MRD 

50 
4 25.87 79.53 24.90 78.65 25.27 79.05 24.89 77.23 
8 18.01 48.21 17.56 46.88 16.95 46.10 16.90 45.15 

100 
4 21.93 53.68 21.38 51.16 20.80 51.29 20.32 48.41 
8 23.34 54.65 22.87 50.27 22.41 51.12 22.04 48.82 

Average I 22.29 -09.02 21.68 56.74 I 21.36 56.89 21.04 54.90 
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The results achieved by F-point crossover in both replacement strategies clearly 

outperform the I-point crossover, although fewer generations are created within 

the time limit. Table 5.4 also shows that the elitism replacement and filtration 

strategy yield better results in both crossover operators compared to their coun­

terparts in the steady state replacement strategy. A comparison of the correspond­

ing replacement strategies and crossover points for the algorithms shows that the 

elitism replacement and filtration strategy with F-point crossover is the best of 

the four. The fact that the elitism replacement and filtration strategy with F­

point crossover outperforms the other algorithms for every single test case shows 

that they can search the solution space in a more efficient manner. Thus, for the 

replacement strategy, we subsequently concentrate on the elitism replacement and 

filtration strategy in the MXGA. 

Table 5.5 shows results of the multicrossover operator compared to the standard 

crossover operator using I-point and F-point crossover strategies. The standard 

crossover operator can be regarded as a special case of the multicrossover operator 

where the steps described in Section 5.4.2 are used to produce exactly two offspring 

(i.e. t = 1). This operator is used to investigate whether it is advantageous to 

produce multiple offspring during multicrossover. Five problem instances with 

five combinations of due dates are generated and setup class A ([1,100]) is used in 

this experiment. 

Table 5.5: Comparison Between Crossover Operators (15 CPU seconds per run) 
Elite & Filter + IP Elite & Filter + FP 

N F Standard M ul ti Crossover Standard MultiCrossover 
ARD MRD ARD MRD ARD MRD ARD MRD 

50 
4 25.15 78.77 24.22 75.99 24.76 77.13 24.01 75.51 
8 16.98 45.83 16.35 44.01 16.85 45.20 16.12 43.89 

100 
4 20.75 5l.05 17.79 43.65 20.05 49.67 17.47 43.15 
8 22.45 50.67 19.35 43.89 2l.91 48.23 19.01 43.51 

I Average I 2l.33 56.58 19.43 5l.89 I 20.90 55.06 19.15 51.52 I 

Our first observation from Table 5.5 is that the standard crossover operators 

give poorer results than the multi crossover operator with both I-point and F-point 

crossover strategies. As suggested, the F-point crossover strategy does perform 
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better compared to I-point crossover strategy in both different crossover operators. 

It is clear that better solution quality is obtained under the multicrossover operator 

in both cases although fewer generations are created within the time limit. This 

superiority is more pronounced when the number of jobs is large. 

We conclude that the I-point and F-point multicrossover operators are the 

preferred versions of crossover operators, with the latter performing marginally 

better. Consequently, the F-point multicrossover operator is used in the proposed 

MXGA. 

Table 5.6 shows the computational results of the proposed MXGA using the 

swap operator explained in Section 5.4.3. The purpose of this experiment is to 

investigate the effect on the solution quality when using the swap operator in our 

proposed MXGA. 

Table 5.6: Results of Swap (15 CPU seconds per run) 
MXGA (lP) MXGA (FP) 

N F with Swap without Swap with Swap without Swap 
ARD MRD ARD MRD ARD MRD ARD MRD 

50 
4 23.89 74.51 24.65 76.05 23.23 73.21 24.09 75.34 
8 16.05 42.19 16.98 44.15 15.76 41.34 16.31 43.67 

100 
4 17.11 41.76 18.01 43.44 16.45 40.97 17.34 43.21 
8 19.09 42.29 19.74 43.67 18.76 41.19 19.25 43.19 

1 Average 19.04 50.19 119.85 51.83 18.55 49.18 19.25 51.35 I 

It is clear from Table 5.6 that the swap operator yields better results in the 

MXGA compared to the algorithms without the swap operator. This matches our 

intuition that the swap operator manages to create more diversity in the population 

and lead the search into the more 'interesting' regions to explore better local 

optima. Analysing the results obtained by the algorithms, we can conclude that 

the presence of the swap operator in the proposed MXGA improves the solution 

quality with the F-point crossover version performing the best. 

Table 5.7 reports the results of the proposed MXGA using the mutation op­

erator as described in Section 5.4.4. As for the swap operator, we observe that 

the presence of the mutation operator in the MXGA improves the solution qual-
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ity. This improved performance is explained by the observation that the mutation 

operator is able to help the MXGA explore unknown regions. 

The results of the computational experiments in this subsection provide guide­

lines for the design of the proposed MXGA. The elitism replacement and filtration 

strategy clearly outperform the steady state replacement strategy. The high selec­

tion pressure cause by the elitism scheme makes the population fall into premature 

convergence. But it can be overcome by introducing the filtration strategy into 

MXGA. By removing and replacing the identical individuals with randomly gen­

erated individuals in every R generations, this will help the population explore 

more unknown regions in the search space. The exploration technique used in the 

standard mutation operator can be further enhanced by introducing the swap op­

erator into the MXGA, while the exploitation technique can be improved by using 

the multicrossover operator as described in Section 5.4.2. Consequently, this final 

version of the proposed MXGA is used in our comparative tests in the subsection. 

Table 5.7: Results of Mutation (15 CPU seconds per run) 
MXGA (lP) MXGA (FP) 

N F with Mutation without Mutation with Mutation without Mutation 
ARD MRD ARD MRD ARD MRD ARD MRD 

50 
4 22.76 72.31 23.92 74.62 21.24 70.29 23.31 73.41 
8 14.95 40.77 15.99 42.01 13.98 38.76 15.87 4l.65 

100 
4 16.21 39.64 17.32 4l.92 15.64 38.21 16.41 40.99 
8 18.34 40.78 18.89 4l.95 17.45 39.44 18.65 4l.01 

I Average I 18.07 48.38 I 19.03 50.13 I 17.08 46.68 I 18.56 49.27 

5.6.5 A Comparison of different Local Search Algorithms 

In this subsection, we present results of tests that compare the DLTS, RSDM, and 

MXGA with each other. We also compare our 'good' implementations with stan­

dard TS and GA. The differences between the MXGA and SGA are with regards 

to the use of the crossover operator, reproduction procedure and the replacement 

scheme. The SGA applies the standard F-point crossover operator to produce 

two offspring from two selected parents. In the case of SGA, the steps explained 
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in Section 5.4.2 are used only once (i.e. t = 1) to generate exactly two offspring. 

The SGA uses the reproduction procedure instead of a swap operator when the 

crossover does not apply to the selected parents. The replacement strategy em­

ployed in the SGA is the steady-state replacement strategy. 

For this final experiment, we use the problem instances described in Section 

5.6.1. For each combination of problem instance, 30 runs were performed. In 

order to have a fair comparison between different algorithms in this experiment, 

we employed a duration of 15 CPU seconds per run. Results are listed in Table 

5.8. For each algorithm, the entries report the average values (ARD and MRD) 

computed over the five problem instances with five combinations of due dates 

(i.e. 750 runs). The final line of Table 5.8 gives the overall average value. 

Table 5.8: Comparative Computational Results (15 CPU seconds per run) 
Setup 

N F 
SGA MXGA STS DLTS RSDM 

Class ARD MRD ARD MRD ARD MRD ARD MRD ARD MRD 
4 18.58 79.63 13.54 71.56 25.34 133.93 13.76 72.31 17.03 88.60 

50 8 17.85 69.24 13.76 60.06 23.10 77.21 14.82 62.82 18.71 69.20 
12 12.38 41.35 9.31 36.71 15.33 50.48 10.93 39.37 13.48 44.01 

A 4 21.12 150.38 15.73 119.68 17.35 126.67 15.74 113.06 18.96 135.78 
100 8 26.26 138.34 18.75 106.15 23.65 129.21 20.80 114.30 24.24 125.23 

12 34.91 124.86 19.28 82.83 23.02 99.61 20.50 87.28 23.97 100.47 
Average 21.85 100.64 15.06 79.50 21.30 102.86 16.09 81.52 19.40 93.88 

4 6.72 54.79 4.65 42.53 9.93 81.00 4.81 42.87 6.03 51.34 
50 8 10.30 72.03 7.74 59.31 12.84 82.93 8.52 64.07 9.46 67.68 

12 8.35 50.78 5.51 39.51 10.91 62.37 7.72 50.61 8.40 53.12 
B 4 9.78 90.00 7.11 69.12 8.07 87.09 7.47 76.14 8.34 81.78 

100 8 13.69 123.20 9.64 91.07 11.85 115.56 11.08 97.63 11.85 102.99 
12 17.44 113.88 9.52 72.46 11.37 86.34 10.89 79.57 12.01 88.80 

Average 11.05 84.12 7.37 62.34 10.83 85.89 8.42 68.48 9.35 74.29 

4 28.09 74.80 17.05 57.75 33.17 86.38 17.29 59.33 22.11 68.93 
50 8 22.56 51.45 15.42 41.56 27.04 58.37 16.00 44.72 20.59 60.11 

12 13.40 30.32 9.27 25.26 14.91 35.06 10.07 26.31 14.18 34.29 
C 4 44.18 165.15 25.60 99.87 25.85 103.67 25.72 103.06 30.57 131.31 

100 8 39.39 112.15 25.60 83.38 29.92 98.94 26.82 89.00 31.76 102.47 
12 55.27 108.72 22.43 60.90 26.26 70.58 23.08 62.56 27.76 78.24 

Average 33.82 90.43 19.23 61.45 26.19 75.50 19.83 64.17 24.50 79.23 

AVERAGE 22.24 91.73 13.89 67.76 I 19.44 88.08 I 14.78 71.39 17.75 82.47 

vVe first observed that the MXGA performs significantly better than the SGA. 

This shows that MXGA is able to produce better solution quality compared to 

SGA. There is clear evidence from Table 5.8 that, on average, the MXGA is the 

best algorithm followed by the DLTS, RSDM, STS and finally the SGA. Also, our 

proposed DLTS and RSDM outperformed the STS and SGA. 
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We have found that computational difficulty as measured by relative deviation 

from the lower bound increases with problem size. With other things being equal, 

when we increase the number of jobs, then both ARD and lVlRD will increase. 

Note that for all the local search algorithms, fewer generations (or iterations) are 

executed within the time limit as the number of jobs or families become larger. 

The algorithms find problems of setup class C (large setup time) to be the most 

challenging. This is due to the large setup time, as it contributes substantially to 

the maximum lateness of an optimal schedule. Jobs tend to form a larger batch 

size, with more jobs in a batch, to reduce the need of setup time between batches 

from different families. As a result, more jobs will miss their assigned due dates. 

From the manufacturer's point of view, the only solution to the large setup time is 

to form large batch sizes to allow many jobs to run on a similar setup. When the 

setup time is small (i.e. setup class B), more batches are formed which means fewer 

jobs are to be processed per batch, and hence more jobs will meet their respective 

due dates. Results from Table 5.8 suggest that the problem instances with setup 

class B is relatively easier to solve compared to other setup classes. 

5.7 Conclusions and Remarks 

In this chapter, a single machine family scheduling problem with family setup 

times to minimise the maximum lateness is studied. We have also described the 

EDD properties for jobs within a family and for batches. 

We have designed a genetic algorithm which uses a multi crossover operator in 

an effort to achieve better solutions quality. Various techniques have also been 

introduced into the proposed algorithm to further enhance the solutions quality. 

Extensive computational experiments show that the proposed multicrossover ge­

netic algorithm (lVlXGA) achieves better results compared to a standard genetic 

algorithm, both standard and dynamic length tabu search and a randomised steep­

est descent method. The development of lVlXGA for other optimality criterion such 

as minimising the total (weighted) tardiness/earliness is worthy offuture research. 
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Non-Oriented Two-Dimensional 

Rectangular Single Bin Size Bin 

Packing Problem 

6.1 Introduction 

In this chapter, we concentrate on a non-oriented two-dimensional rectangular 

single bin size bin packing problem (2DRSBSBPP) (based on "Wascher et al. 's 

Typology). According to Lodi et al. [194], the problem can be defined as follows: 

"Given are n rectangles, each characterised by a height hj, and a width Wj, for 

j = 1,2,3, ... , n and an unlimited number of identical rectangular bins, each 

having height H, and width W. The objective of the 2DRSBSBPP is to pack each 

rectangle into a bin so that no two rectangles overlap and the number of required 

bins is minimised." 

This problem is classified as a class of NP-hard problem by Garey and Johnson 

[108]. 

156 
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The general assumptions of the 2DRSBSBPP in this study are: 

1. all input data are positive integers; 

2. Wj::::; W,hj ::::; H (j = 1,2, ... ,n); 

3. a set of rectangular items, which may contain identical rectangles; 

4. a set of identical objects (bins); 

5. rectangle j may be rotated by 90° where max{ Wj, hj } :::; min {W, H}; 

6. rectangles are packed in non-guillotine cuts pattern in the bin; 

157 

7. rectangles are packed in an orthogonal packing pattern: the edges of the 

rectangles are parallel to those of the bins. 

One of the objectives in this study is to develop a new heuristic placement 

routine that can be used with our proposed MultiCrossover Genetic Algorithm 

(MXGA). The proposed placement routine was inspired by the best-fit heuristic 

placement routine designed by Burke et al. [40] and Whitwell [280] for solving the 

two dimensional rectangular stock cutting problem. 

In this study, we propose a MXGA that utilises the multicrossover operator to 

solve the 2DRSBSBPP. We use a standard I-point or 2-point crossover to produce 

two temporary offspring. Detailed descriptions of the proposed multicrossover 

operator are discussed in Section 6.3.4. The architecture of the MXGA used in 

this chapter is based on the framework discussed in Section 4.9. 

This study will look at a new variant of the 2DRSBSBPP by including a due 

date for each rectangle and a fixed processing time for each bin. As a result, the 

problem becomes a bicriteria optimisation problem where the objective function is 

to find an optimal solution for minimising the maximum lateness of the rectangles 

and minimising the number of bins used. This extension has practical applica­

tions in the wood and metal industries. This problem can also be treated as a 

batching machine scheduling problem where a machine can process several jobs 

simultaneously. Section 6.4 will address this problem in more detail. 
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The motivation of this extension came from the dilemma faced in the industrial 

manufacturing applications which involved the trade-off between the customers' 

satisfaction (meeting customers' due date on the order placed) and the manufac­

turer's efficiency (minimising the wastage of material used). 

In the next section, we present a new heuristic placement routine for 2DRSBS­

BPP in more detail. The developments of the MXGA for solving the 2DRSBSBPP 

are the focus of Section 6.3. Some of the main components of the MXGA are dis­

cussed in detail. A new variant of the 2DRSBSBPP which involves rectangle due 

date and fixed bin processing time is addressed in Section 6.4 and a new lower 

bound of the maximum lateness for the 2DRSBSBPP with due dates is then pro­

posed in Section 6.5 in order to measure the performance of the heuristic solution 

found when the exact solution is unknown. Section 6.6 provides an insight into 

the local search algorithms we designed specifically for comparison purposes with 

the proposed MXGA. To end this chapter, extensive computational experiments 

are conducted for the proposed placement routine, the classic 2DRSBSBPP and 

the new 2DRSBSBPP with due dates in Section 6.7. Some concluding remarks 

are given in Section 6.8. 

6.2 Lowest Gap Fill 

Inspired by the Bottom-Left Fill (BLF) routine, Burke et al. [40] and Whitwell 

[280] propose a best-fit heuristic placement routine for the two-dimensional stock 

cutting problem that is effective in filling the available gaps in the partial layout by 

dynamically selecting the best rectangle for placement during the packing stage. 

Unlike the Bottom-Left (BL) and BLF routines that place the rectangles based on 

the sequence of rectangles supplied, their proposed routine would make informed 

decisions about which rectangle should be packed next and where it should be 

placed. Their extensive computational results show that the proposed heuristic 

is able to outperform the currently published and established heuristic and meta­

heuristic methods to produce solutions that are very close to optimal with very 
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small computational time. Due to the excellent results achieved by the best-fit 

heuristic in stock cutting problem, we are intrigued to use their ideas to design a 

new placement routine to suit our problem. In the following, we briefly describe 

the best-fit heuristic placement routine for the cutting stock problem. Detailed 

descriptions of the routine can be found in Burke et al. [40J and Whitwell [280J. 

According to Burke et al. [40J and Whitwell [280J, the best-fit heuristic is a 

greedy algorithm that attempts to produce a high quality packing layout by ex­

amining the available gap within the stock sheet and then placing the rectangle 

that best fits the lowest gap available. Every time a rectangle is placed, the lowest 

available gap will change with respect to its location and size. They define a niche 

placement policy for the case when the best fit rectangle does not completely fill 

the gap. This policy describes how a rectangle should be placed within the gap. 

The best-fit placement routine is implemented in three stages: preprocessing 

stage, packing stage, and postprocessing stage. In the preprocessing stage, the 

rectangles are initially arranged following a horizontal orientation and sorted in 

non-increasing order of their width, breaking ties by non-increasing height. The 

stock sheet is represented as a linear array in which the number of elements is equal 

to the width of the stock sheet (x-coordinate). Each element of the array holds the 

total height of the packing at that x-coordinate of the stock sheet. Therefore, the 

coordinate of the lowest gap can be determined by locating the smallest value of 

the array and the width of the gap is the length of the consecutive array of equal 

value. 

During the packing stage, a list of rectangles is examined and the best fitting 

rectangle returned. This rectangle is then placed within the gap depending on the 

current niche placement policy. The rectangle is assigned coordinates and removed 

from the rectangle list. The relevant stock sheet array elements are incremented 

by the rectangle height. The process continue until every rectangle is packed in 

the stock sheet. 
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In the postprocessing stage, the quality of solution is improved by repacking 

any rectangle that creates 'towers' in the layout. Towers are created when long 

thin (i.e. height> width) rectangles are protruding from the top of the packing 

layout. The tower is removed from the packing and then rotated 900 before being 

repacked in the new orientation on top of the packing layout. If the solution quality 

is improved, the prosess is repeated on a new 'tower'. This process continues until 

there is no improvement in the solution quality. 

Based on the ideas presented above, we propose a new heuristic placement 

routine for the 2DRSBSBPP, called the Lowest Gap Fill (LGF). This placement 

routine consists of two stages: preprocessing stage and packing stage. As in the best­

fit placement routine, before the start of the LGF placement routine, the rectangles 

are initially arranged following a horizontal orientation (where its longest edge is 

parallel to the bottom of the bin) and sorted in a non-increasing order of their 

width (breaking ties by non-increasing height). 

We employ a best-fit type strategy by examining the lowest available gap in 

the current bin and then placing the rectangle that best fits the gap available. 

This placement routine not only keeps track of the free position in the layout, but 

also of the dimensions of the available gap at the respective position. "When no 

remaining rectangle can fit into any of the available gaps in the current bin, the 

bin is closed and a new empty bin is initialised to replace the closed bin as the 

current bin. Any unfilled space in the closed bin will be regarded as wastage. Also 

note that the proposed routine only concentrates on one bin during the packing 

process. This differs from the BL and BLF routines, where a list of bins that has 

been created needs to be maintained. The routine continues until all the rectangles 

in the list have been packed into a minimum number of bins. The details of the 

implementation stages will be discussed in the next subsection. 

Some of the algorithms such as BL and BLF may require a costly overlap 

evaluation test. This evaluation test performs an overlap test between the rectangle 

and each of the rectangles that have already been packed in the current bin. It 

is obvious that the more rectangles that have been packed, the more overlap tests 
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have to be performed. The process becoming increasingly slower as each rectangle 

is placed. With the best-fit approach and the implementation strategy of the 

LGF (presented in next subsection) , this costly evaluation test is not needed as 

the rectangle packed will not overlap with other rectangles already packed in the 

current bin. 

6.2.1 Implementation 

Preprocessing Stage 

Instead of maintaining a linear array as in the best-fit placement routine proposed 

by Whitwell [280], we use a pointer (x , y) to indicate the position of the lowest 

available gap in the bin during the packing stage. The pointer is determined by 

locating the lowest free position in a bin, left justified. A free position is where a 

rectangle can be placed without overlapping with other rectangles that are already 

packed. The width of the gap can be found by measuring the length on the x­

coordinate starting from the pointer until it touches either the right edge of the 

bin (Figure 6.1 (a)) or the left edge of a tall rectangle (Figure 6.1 (b)). Note that 

the difference between the height of the bin and the y-coordinate of the pointer 

gives the height of the available gap. As a result, we obtain both dimensions of 

the available gap. This will ensure that the rectangle to be placed next will not 

overlap with the bin or any other rectangles that are already packed in the bin. 

Figure 6.1: Examples of pointer and gap 
(a) (b) 
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Due to the best-fit strategy that we employ in our proposed routine, we must 

examine all of the rectangles to be sure that the selected rectangle to be placed 

next is the largest available rectangle that can be fit in the gap at each placement. 

However, we can reduce the number of rectangles we need to examine by sorting 

the list of rectangles once before packing commences. 

This can be done by first rotating any rectangle for which the height is greater 

than the width so that we get a list of rectangles with their longest edge parallel 

to the bottom of the bin. For example, by denoting each rectangle by a (width, 

height) pair, the rectangle list of 

{(2,2), (5,9), (1,2), (7,2), (3,5)} becomes {(2,2), (9,5), (2,1), (7,2), (5,3)}. 

Then, the list of rectangles is sorted in non-increasing order of width (breaking 

ties by non-increasing height). From the previous example, 

{(2,2), (9,5), (2,1), (7,2), (5,3)} becomes {(9,5), (7,2), (5,3), (2,2), (2,1)}. This 

preprocessing stage required 0 (n log n) time. 

The new list of rectangles can now be examined for the best fitting rectangle 

without the need to search the entire list during the packing stage. For instance, 

suppose we found a gap of 6 units in the bin. The first rectangle (9,5) in the list is 

examined. Note that it could fill 5 units if rotated. It does not fit the gap exactly, 

so we continue the search. The second rectangle (7,2) is examined. It can fill 2 

units if rotated. We must continue because there may be a rectangle with a width 

of 6 units that can fit the gap exactly. The third rectangle (5,3) is examined. It 

can fill the same number of units as the first rectangle. Since we prefer to pack 

the larger rectangle first, the first rectangle would be returned as the best fitting 

rectangle. We know we can terminate our search, as all remaining rectangles have 

dimensions of less than or equal to 5. Also note that we terminate the search as 

soon as a rectangle that fits exactly is found. This will reduce the search time of 

the process. In general, it is better to place a rectangle with larger dimensions 

earlier in the packing than towards the end of the packing, when smaller rectangles 

are easier to fit into any gaps within the bin. 
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Packing Stage 

During the packing stage, the smallest dimension of height for the available rect­

angles in the rectangle list (i.e .. min . {hi}, where j = number of the remaining 
2=1,2, ... ,J 

rectangles in the rectangle list) is stored. This value is used to compare with the 

width of the gap in the current bin. The value of min {hj } will only be updated 
] 

if the rectangle with the smallest dimension of height has been packed into the 

current bin. The pointer and the corresponding gap width will also be maintained 

during the packing stage. 

At first, an empty bin is initialised as the current bin, where the pointer is 

at the bottom-left corner (x 0, y = 0) of the current bin, with a gap width of 

the entire bin width W. The first rectangle in the rectangle list is then placed at 

the bottom left of the current bin. The placed rectangle is then removed from the 

rectangle list. The pointer and gap width are updated according to the dimensions 

of the packed rectangle. Next, the rectangle list is examined again and the best 

fitting rectangle returned. The selected rectangle will be placed in the current 

bin to fill the gap, with the bottom-left corner of the selected rectangle placed at 

the position of the corresponding pointer. This will ensure that the current bin 

is systematically filled from the bottom-left corner of the bin. The rectangle is 

removed from the rectangle list and the value of the pointer and gap width are 

updated. If the best fitting rectangle does not completely fill the gap, then there 

is no need to locate or update the new pointer for the next rectangle. Only the 

gap width needs to be updated, where it is a portion of the recent gap. Figure 

6.2 shows the stages of packing the rectangles into an empty bin using the LGF 

placement routine. Note that rectangle 3 and 5 have been rotated 90 0
• 
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Figure 6.2: Packing the rectangles into a bin (LGF routine) 
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If the gap width at the corresponding pointer is smaller than the current value 

of min { hj }, we can regard the relevant space as wastage. The reason behind this 
J 

is that if the gap cannot be filled now, it will not be able to be filled later in 

the process. So, the pointer will be raised up to the next lowest point where the 

corresponding gap width is at least as big as the value of min {hj }. For example 
J 

(Figure 6.3 (a)), assume that there is a gap width of 1 unit at the corresponding 

pointer in the current bin, but the m~n {hj } = 2, which means that none of the 
J 

remaining rectangles in the list can fit into the gap. The pointer is then raised to 

the next lowest point (5,3) where the corresponding gap width is at least 2 (in this 
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case is 5). When the current bin is full (Figure 6.3 (b)) or the pointer has been 

raised to the top of the current bin (i.e. y = H) (Figure 6.3 (c)) , the bin is closed 

and removed. A new empty bin is initialised as the current bin and the process 

continues until all of the rectangles in the list are packed. Only one bin is open 

at a time. In order to reduce the time spent searching through all the bins that 

have been created during the process one by one, it is advantageous to close and 

remove the bin once none of the remaining gaps can be filled. This will reduce the 

processing time. This packing stage requires O(n2
) time. 

" 

Figure 6.3: Scenarios where gap size < min {h j }, bin full and y = H 
J 
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6.3 MultiCrossover Genetic Algorithm 

In this section, we propose a MXGA for solving the 2DRSBSBPP. The proposed 

MXGA utilises a multicrossover operator in an effort to achieve enhanced solutions 

for a better quality of packing pattern in the bins. A common feature found in most 

genetic algorithms (GAs) developed for 2DRSBSBPP is their two stage approach, 

where a GA is used to explore and find good solutions in the search space. Then, 

a placement routine is needed to decode the solutions generated by the GA into 

the corresponding packing pattern for the evaluation of their layout quality. 

In our proposed MXGA, we employ LGF as our placement routine. In the 

remaining section, we will discuss some of the main components in our proposed 

MXGA. Note that the general architecture of the MXGA for 2DRSBSBPP is the 

same framework as we described in Section 4.9. 

6.3.1 Search Space 

It would be beneficial if the search space is sufficiently large to allow the search 

process to explore a large range of layout patterns before it started converging. 

But, a very large search space may contain a high number of layout configurations 

which do not contribute to the search process due to their low quality. Therefore, it 

is advantageous to limit the search space. The search space for this implementation 

is limited with respect to the feasibility of the solutions. The feasibility of all 

solutions in the search space is guaranteed by the decoding procedure which only 

produce non-overlapping solutions. 

6.3.2 Representation 

Most researchers have used items permutation to represent an individual. Each 

rectangle only appeared once in the individual and is not repeated. The rectangles 

are then packed into bins according to the sequence in which they appeared. Since 
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we are using the LGF placement routine in the decoding stage (presented in next 

subsection), the sequence of the rectangles becomes irrelevant. 

In our proposed MXGA, the complete set of rectangles n, forms the length 

of the chromosome (individual). The genes are represented by a uniform random 

permutation of the integer numbers of bins in the interval [l,LBoJ, where LBo is the 

overall lower bound described in Section 3.4.3, equation (3.47). Thus, a solution to 

the packing problem in this case consists of a sequence of positive integer numbers 

indicating the bin number, in which the rectangles are placed into the bin. The 

exact location in the layout is then determined by a placement routine. 

Figure 6.4 shows an example of the gene representation for an individual with 

8 (n) rectangles attempt to pack into 3 (LBo) bins. The individual will attempt 

to pack rectangles {3,5,7} into bin 1, rectangles {1,4} into bin 2, and rectangles 

{2,6,8} into bin 3 if it fits during the decoding stage using the LGF placement 

routine. Any rectangle that cannot be feasibly packed into the assigned bin are 

dealt with the strategies suggested in the next subsection. Also note that every 

rectangle only appears once in the individual. 

Figure 6.4: An example of an individual (chromosome) 

item's no. 234 567 8 

bin's no. 2 3 2 3 1 3 

6.3.3 Decoding 

The LGF heuristic placement routine is used to decode the genotype (gene represen­

tation) of an individual into phenotype (packing layout). The heuristic placement 

routine is designed such that the decoding only results in valid packing layouts. 

Before the placement routine takes place, the individual needs to be decoded into 

a sequence of rectangles which are grouped by the bin numbers that are associated 

with each rectangle. This is achieved by the following two step procedure: 

81 Sort the rectangles in a increasing order of their associated bin number. 

82 Groups the rectangles with the same bin number. 



CHAPTER 6 168 

Also note that, based on the requirement of the placement routine, we need to 

pre-order the rectangles within the group before the routine commences. During 

the process of packing the rectangles into the bin within the group, any rectangle 

that cannot be feasibly packed will be regarded as an unassigned rectangle and 

kept in a list. After placement routine has been applied to all groups of rectangles, 

a strategy is needed to pack the rectangle( s) in the unassigned rectangle list into 

the bins already used or into new bins, so that a complete set of rectangles are 

packed without overlapping. After the strategy has been applied, the genotype of 

the individual is updated with the new packing layout. We suggest the following 

three strategies to deal with the problem. Note that the rectangle(s) in the unas­

signed rectangle list are sorted in order of non-increasing size before the strategy 

commences. 

pack_extra: 

Pack all the rectangle(s) in the unassigned rectangle list into one or more new bins 

without considering the bins already in use. This strategy is more likely to yield 

poor results, since more bins will be required than previously assigned. However, 

its computation time is very short in comparison to other strategies and therefore 

may be preferred. 

pack_above: 

Pack the unassigned rectangle(s) above the other items already packed in the bins, 

without permitting overflowing of the bin or overlapping of the rectangles, until all 

the rectangle( s) in the list are packed. Initialise a new bin if none of the bins can 

accommodate the unassigned rectangle( s). This strategy might produce a better 

result compared to the first strategy. However, the resulting packing layout tends 

to produce waste in the bin by not taking into consideration filling the empty space 

in between the rectangles or between the rectangles and the bin. 
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repack: 

Pack any unassigned rectangles from the list into the bins already used. This is a 

more powerful but computationally more expensive strategy. The idea is to first 

unpack the rectangles already packed in the selected bin and repack it again after 

adding a rectangle from the unassigned rectangle list into the group. This method 

may result in a better quality in the packing layout of the bin compared to tile 

former strategies. The procedure is as follows: 

81 Sort the bins in non-decreasing order of their bin utilisation (equation (6.1)). 

82 Start from the first bin in the list (i.e. lowest bin utilisation), unpack the 

rectangles from the selected bin by emptying the contents of the bin. 

83 Repack the selected bin using the LGF with the rectangles previously as­

signed to the bin plus the first rectangle (i.e. largest) from the unassigned 

rectangle list. Any left over or unfit rectangle(s) will became unassigned at 

this stage. 

84 Calculate the bin utilisation (equation (6.1)) for the selected bin . 

• If the value of the bin utilisation has increased, the selected bin is 

updated with the new packing layout, bin utilisation, and the list of 

rectangle in the bin. The unassigned rectangle list will also be updated 

(reorder) with any left over rectangle(s) from 83. If the unassigned 

rectangle list is empty, 8TOP; else, go to 8l. 

• Else (i.e. decreased or equal value), the selected bin is not updated 

(i.e. the rectangles previously packed in the selected bin and the status 

of the unassigned rectangle remain unchanged). If the selected bin is 

the last bin in the list, go to 85; else, go to 83 and pack the same 

unassigned rectangle into the next bin in the list. 

85 Pack any unassigned rectangle(s) in the list into one or more new bins until 

the complete set of rectangles is packed without overlapping. 

Step 81 is inspired by the ideas of bin utilisation, where low bin utilisation 

means the rectangles in that particular bin are packed loosely. It could also mean 



CHAPTER 6 170 

less rectangles were packed in the bin. This also means that there are more chances 

for the unassigned rectangles to be packed in the bin with some minor modification 

to the packing layout. Note that by the end of the process, we might have increased 

the number of bins used from the ones originally assigned in the genotype. But, 

we also might have increased the quality of the individual bin utilisation. 

6.3.4 MuItiCrossover 

Most researchers have used specific crossover operator such as cycle crossover (CX), 

partially matched crossover (PMX)([151, 154]), order based crossover (OBX), or 

order crossover (OX)([158, 192, 255]) in their proposed GA when dealing with 

the 2DRSBSBPP. This is due to the fact that they use items permutation in the 

encoding stage, where the individual is represented by a sequence of permutations 

of the rectangles. In order to ensure the rectangles only appeared once and are 

not repeated in the offspring, they have to use the specific crossover to check 

the validity of the offspring before the decoding commences. Unlike others, our 

proposed multicrossover operator uses standard I-point or 2-point crossover to 

produce two temporary offspring. The idea behind this is that our individual is 

represented by a sequence of the bin number with the length of the complete set 

of rectangles. Every gene represents a bin number in which the rectangle will be 

packed if it fits. Thus, the constraint for the rectangles to appear only once in 

the solution is already fulfilled before the crossover commences. The process for a 

2-point crossover is as follows: 

S 1: Select randomly 2 crossover points in both PI and P2 (Parent 1 & 2). 

S 2: Form 3 pairs of sub-genes (head, body, tail) which are separated by the 
crossover points in both PI and P2. 

S 3: A randomly generated number will determine the allocation of each paIr 
(e.g. head) in TCI and TC2 (Temporary Offspring 1 & 2). 

S 4: Repeat S 3 for the other two pairs (body, tail) until 2 complete TCI and 
TC2 are formed. 
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The steps above will be repeated t times to produce 2t temporary offspring. 

The best and a selected temporary offspring using probabilistic binary tournament 

selection mechanism are then chosen to be the offspring for the current generation. 

The steps can be easily modified to suit the I-point crossover strategy. Figure 

6.5 shows an example of the multi crossover process with t = 3. Recall that the 

individual is represented by a sequence of random permutations of the bin numbers, 

with length equal to the complete set of rectangles. 

As a result of the computational complexity of the decoding strategies described 

in Section 6.3.3, the evaluation of the temporary offspring is conducted using the 

pack_extra strategy. Although the pack_above and repack strategies may generate 

a better solution quality, they require more computational effort in comparison to 

the pack_extra strategy. 

Figure 6.5: MultiCrossover 

Parent 1 11 I 2 I 1 I 31 2 I 3 11 !2 I I TC1 11 I 2 I 3 I 2 I 12 13 I 2 I 
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TC3 11 I 2 11 I 3 I 2 I 2 I 3 11 I 3 

TC4 I 2 11 I 3 I 2 11 I 3 11 I 2 I 

Crossover 
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Offspring 1 I 2 11 11 I 3 I 2 I 3 11 11 I 3 

Offspring 2 I 2 11 I 3 I 3 I 2 I 3 11 I 2 I 
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6.3.5 Swap 

As a result of the crossover probability, Pc, the crossover may not be applicable to 

the selected parents. Instead of 'reproduction' as in a standard GA, a new operator 

called 'swap' was used to produce new offspring and introduce more diversity into 

the population. This can be achieved by: 

S 1: Select randomly a swap point in a parent to form two sub-genes. 

S 2: Swap the position of the sub-genes to form a new offspring. 

The steps above are repeated for the second parent to create a second offspring. 

Figure 6.6 shows the process of swap on two selected parents. Before the swap 

commences, Parent 1 will pack rectangles {3,5,7} in bin 1, rectangles {1,4} in 

bin 2, and rectangles {2,6,8} in bin 3. After a swap point (between rectangles 

4 and 5) has been selected in Parent 1, two sub genes consist of bins {2,3,1,2} 

(rectangle 1 - 4) and bins {1,3,1,3} (rectangle 5 - 8) are formed. Then, the sub 

genes will swap position to form a new offspring (Offspring 1) which will pack 

rectangles {1,3,7} in bin 1, rectangles {5,8} in bin 2, and rectangles {2,4,6} in bin 

3. Similarly, Offspring 2 is created by using the same steps as explained above. 

Figure 6.6: Swap 

Parent 1 I 2 13 11 1211 13 11 13 I) C Parent 2 11 13 11 12 12 13 12 13 I 
; swap point : swap point 

11 13 11 13 12 13 11 12 1 Offspring 211 12 12 13 1213 11 13 I Offspring 1 

6.3.6 Mutation 

After a crossover or swap is performed, mutation takes place. This operator pre­

vents all solutions in the population from converging on same local optima. We 

used two mutation operators in our MXGA. First of all, we select a subset of 

individuals from the new offspring population with a given individual mutation 

probability, PM . An offspring is selected for individual mutation if the random 

number r assigned to the offspring is less than or equal to the individual mutation 
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probability (i.e r ::; PM) ' Then, the selected offspring will go through the gene 

mutation process. Each gene in the selected offspring is visited and if k :::; Pm , 

the bin number is randomly changed in the interval [1,LEo], where k is a random 

number and Pm is the gene mutation probability. 

6.3.7 Fitness Evaluation 

The main objective function in our proposed MXGA for the classic 2DRSBSBPP 

is to minimise the number of bins used to pack the complete set of rectangles. This 

is correct from the problem objective point of view. However, this is not sufficient 

to guide the search process since a large number of solutions will result in the same 

total number of bins used. Figure 6.7 shows three solutions to a problem instance 

involving 23 rectangles, which use the same number of bins. The bins in solution 

I and solution 2 are not very densely packed and show many empty areas enclosed 

between the rectangles. Solution 3 is the favoured one since the first five bins are 

very densely packed. The last bin contains only one rectangle, which one of the 

other bins may easily accommodate after some minor modifications to the packing 

layout. This solution is therefore a better than the other two and the objective 

function needs to indicate this via the fitness value. 

Figure 6.7: Three solutions to the 2DRSBSBPP using the same number of bins 
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The quality of a packing pattern is determined by the utilisation of each bin 

as defined in equation (6.1), where j indicates the number of rectangles in the 

respective bin, Aitemi is the area of the rectangle i (i = 1,2, ... ,j) in the bin, and 

Aobject is the capacity of the bin. The denser the rectangles are packed, the less 

waste is produced and the higher the bin utilisation. 

",j A 
Bin Utilisation = L....ti=l 2temi 

Aobject 
(6.1 ) 

Next we consider the problem of aggregating the bin utilisation over all the bins. 

Falkenauer and Delchambre [90] suggest a fitness function for the 1DRSBSBPP 

that includes the capacity of the individual bins. In their work, equation (6.2) is 

used in a GA for a one-dimensional problem with lV1 being the number of bins 

used. Ai is the area of all the items in a certain bin with the capacity of Aobjecti' 

The exponent k is a constant (k > 1) and puts a higher weight on bins with higher 

utilisation. They experimented with several values for k and settled on k = 2. 

",M ( Ai )k 
L....ti=l Aobjecti 

Fitness = --------=----'­
lV1 

k = 2. (6.2) 

From the mathematical point of view, equation (6.2) favours solutions where 

the rectangles are evenly packed across the bins, than solutions where rectangles 

are packed very densely in all bins except one bin, which is loosely packed in most 

cases. Refer back to Figure 6.7, and by applying equation (6.2), we will select 

the solution from solution 1 as having the highest fitness value in the solution 

space rather than solution 3. In solution 1, the items are packed quite evenly in 

every bin. While in solution 3, the first five bin are very densely packed but the 

last bin has a very small bin utilisation which will reduce the overall fitness value 

significantly. 

In order to overcome these disadvantages, we propose an improved fitness func­

tion where we permit one bin to have a poor individual bin utilisation. The rect­

angle( s) in this bin has (have) a much higher chance of being removed from the bin 

and packed in other bins. To achieve this, we first sort the bins in non-increasing 
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order of their bin utilisation. Then, the fitness value is calculated, ignoring the 

last bin, using the following equation: 

,,",M-l(~? 

F 't * - L..,,=1 Aobjecti ~1 ~ 1 
~ ness - ,"Vj > . 

i\lJ - 1 
(6.3) 

For a single bin solution, the fitness value is calculated using equation (6.2). Note 

that equation(6.3) does not represent the 'true' value of the overall bin utilisation. 

Equation (6.3) puts more pressure on bins with higher bin utilisation by discarding 

the bin with the lowest bin utilisation. The idea behind this is to always select the 

solutions which contain bins with high individual bin utilisation plus a bin with 

a very low individual bin utilisation. We hope that the bin with the lowest bin 

utilisation can easily be removed in the next iteration/generation. 

It is worth mentioning that the fitness value obtained from equation 6.3 is 

only used during the execution of the algorithm. Once the stopping criterion is 

reached, the' true' overall bin utilisation for the best solution found is calculated 

using equation (6.2). 

6.4 2DRSBSBPP with Due Dates 

Having successfully developed the LGF placement routine and our proposed lVIXGA, 

we now extend our study on 2DRSBSBPP by assigning due dates to each rectan­

gle that is to be packed and a fixed processing time for each bin. We define the 

problem as follows: 

"Given are n rectangles, each characterised by a height hj) a width Wj, and a due 

date dj , for j = 1,2,3, ... , n and an unlimited number of identical rectangular 

bins, each having a height H, a width W, and a fixed processing time P. The 

2DRSBSBPP with due date has the objective of minimising the maximum lateness 

of the n rectangles by packing them, without overlap, and minimising the number 

of bins." 

The aim of this study is to solve the dilemma often faced in the industrial 

application which involves the trade-off between the customers' satisfaction and 
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the manufacturer's efficiency. In a classic 2DRSBSBPP, we either assume the 

rectangles due dates are not considered during packing stage, or the productions 

are scheduled to complete within a single production period. These assumptions 

render time to not be an issue in the packing stage, with focus only on the quality 

of the packing. 

This extension has practical applications in the wood and metal industries. In 

the metal industry for instance, suppose that the bins used are the metal sheets 

with fixed dimensions, and the rectangles placed in a bin are the rectangular shapes 

to be cut from a metal sheet. Each metal sheet requires a fixed processing time 

on a cutting machine to cut all the shapes, where each shape has a due date by 

which it should be completed. 

Suppose that a group of customers place orders (i.e. shapes) with different due 

dates by which they should be completed. A decision has to be made on either to 

satisfy the customers by meeting the due dates of the orders placed, or to increase 

the packing efficiency by mixing the customers orders and therefore minimise the 

wastage of the metal sheets used. 

From meeting the customers' satisfaction point of view, metal sheets which 

contain shapes with small due dates are ideally cut earlier. By doing this, shapes 

with small due dates are placed together in one or more metal sheets. Depending 

on the dimensions of the shapes, the metal sheets may not be fully utilised, where 

the packing layout will create waste. This solution becomes less appealing to the 

manufacturer if the wastage cannot be recycled rendering the cost of production 

to increase. 

From the manufacturer's point of view, mixing the customers orders can in­

crease the packing efficiency if the shapes of an order can be use to fill in the gaps 

created by the shapes of another order on the metal sheets. However, depending 

on the shapes' due dates, the approach of mixing the customers orders to achieve 

a higher packing efficiency may result in missing the due dates of the customers 

orders with small due dates. 
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However, due dates and packing efficiency may not be a direct trade-off. In a 

special case, mixing the customers orders with similar due dates might simultane­

ously increase the packing efficiency and meet customers due dates, since shapes 

with small dimensions are able to fill in the gaps between the larger shapes from 

other customers orders. By doing this, the metal sheets can be fully utilised where 

the metal sheets are densely placed and therefore creating less wastage. At the 

same time, this approach will meet the customers due dates by placing the shapes 

with similar due dates together in one or more metal sheets. 

This problem can also be treated as a batching machine scheduling problem 

where a machine can processed several jobs simultaneously. A bin can be viewed 

as a single machine with a fixed capacity. Rectangles packed in the bin are the 

jobs processed in the machine. In this case, the jobs are processed in the machine 

with a fixed processing time. Thus, the problem can be transformed into a batch­

ing machine scheduling problem where the objective is to find a schedule which 

minimise the maximum lateness of the group jobs. 

In order to deal with the 2DRSBSBPP with due dates, we first define two 

distinct objective functions for the problem to be solved: 

1. minimise the maximum lateness of the rectangles to be packed with a sec­

ondary objective of minimising the number of bins used (ideal for customers' 

satisfaction) ; 

2. minimise the number of bins used with a secondary objective of minimising 

the maximum lateness of the rectangles packed (ideal for manufacturer's 

efficiency) . 

Each of the objective function can be viewed as a hierarchical optimisation 

approach. This approach first optimises the primary objective, then the secondary 

objective is optimised subject to the additional constraint that the solution value of 

the primary objective is optimum. By alternating the objective functions in every 

G generations (or I iterations) during the execution of the local search algorithms, 

we will be able to find a good balance of the trade-off between the customers' 

satisfaction and salesman's routing efficiency. 
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The maximum lateness, Lmax of the rectangles packed is calculated as follows: 

let B be the number of bins used, P is the fixed bin processing time, and di is the 

due date of rectangle i. Assume Tb is the number of rectangles packed in bin b, 

then the bin due date, 6b, is obtained using the following equation 

(6.4) 

The bins are reindexed in a non-decreasing order of their bin due dates (i.e. 6b :s; 

6b+l)' Thus, the maximum lateness of the rectangles packed is 

Lmax = max {(P x b) - 6b}' 
b=1,2, ... ,B 

(6.5) 

6.5 Lower Bound for 2DRSBSBPP with Due Dates 

In this section, we derive a simple lower bound of the maximum lateness for the 

2DRSBSBPP with due dates. The lower bound (for the number of bins used 

in non-oriented 2DRSBSBPP) proposed by Dell'Amico et al. [69] is used in the 

derivation of this lower bound. 

As we do not know which rectangle has the maximum value of lateness, we first 

sort the n rectangles in EDD order (i.e. non-decreasing order of their due dates) to 

identify the rectangle with the largest due date. Then, by using the lower bound 

discussed in Section 3.4.3.2, we obtain the number of bins used for the n rectangles. 

As mentioned earlier, this problem uses a fixed processing time P, for the bins. 

The completion time for the bins is the product of the fixed processing time and 

the number of bins used. Thus, the lower bound on the maximum lateness for the 

n rectangles is the difference between the completion time and the highest due 

date. The steps (summarised below) are repeated by removing the rectangle with 

the largest due date from the list until only one rectangle is left to be packed into 

the bin. 
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S 1: Sort the n rectangles in a non-decreasing order of their associated rectangle 

due date di , so that d1 ::; d2 ::; ... ::; dn . Set j = n. 

S 2: Calculate the lower bound for the number of bins used, LB~in (as explained 
in Section 3.4.3.2) for the j rectangles. 

S 3: Compute a lower bound on the maximum lateness of the j rectangles, 
Lj = (P X LB~in) - dj; where dj = largest due date. 

S 4: Reduce j by 1 (i.e. j := j - 1), and repeat S 2 - S 3 until j = 1. 

Thus, the lower bound of the maximum lateness for 2DRSBSBPP with due dates 

IS: 

LBLmax = . max {Lj}. 
J=I,2,3, ... ,n 

(6.6) 

To justify that the above procedure generates a valid lower bound, consider 

rectangles 1, 2, ... ,j. The number of bins required to pack these rectangles is at 

least LB~in as shown by Dell'Amico et at. [69] in Section 3.4.3.2. In an optimal 

solution, define rectangle i so that none of the rectangles 1, ... , i-I, i + 1, ... , j 

appears in a later bin than rectangle i. If rectangle i is in bin b, then 

as defined in S 3. 

LBLmax > (P x b) - di 

> (P X LB~in) - di 

> (P X LB~in) - dj , 

6.6 Competitors - Performance Measure 

6.6.1 Unified Tabu Search 

(6.7) 

In this subsection, we briefly describe the Tabu Search used in the computational 

experiments. It is based on the Unified Tabu Search (UTS) developed by Lodi 

et at. [194]. The choice was made based on the effectiveness of the algorithm in 

generating high quality solutions. For more details about the framework of the 

UTS, see Lodi et at. [193, 194, 196, 198]. 
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The main feature of the framework is the use of a unified parametric neigh­

bourhood, whose size and structure are dynamically varied during the search. The 

algorithm also adopts a search scheme which is independent of the specific packing 

problem to be solved. 

Given a current solution, the neighbourhood is searched through moves which 

consist in modifying the solution by changing the packing of a subset of rectangle 

S, in an attempt to empty a specific target bin. Subset S is defined so as to 

incl ude one rectangle, j, from the target bin and the current contents of k other 

bins. The new packing for S is obtained by executing a heuristic placement routine 

A on S. The value of parameter k, which defines the size and the structure of the 

current neighbourhood, is automatically updated during the search. The algorithm 

maintains k distinct tabu lists. 

The target bin is selected as the one minimising, over all current bin i, the 

filling function 

(5) = LjESi wjhj _ ISil 
I{J, 0: WH n ' (6.8) 

where Si denotes the set of rectangles currently packed in bin i, and 0: is a user 

specified positive weight. The resulting choice favours the selection of target bins 

with a low bin utilisation (breaking ties by bins packing a relatively large number 

of rectangles). 

The overall algorithm is briefly stated in Figure 6.8. An initial incumbent 

solution is obtained by executing routine A on the complete instance, while the 

initial tabu search solution consists of packing one rectangle per bin. At each 

iteration, a target bin is selected, and a sequence of moves, each performed within 

the procedure SEARCH (Figure 6.9), tries to empty it. The procedure SEARCH 

also updates the value of parameter k and, in special cases, may perform the 

procedure DIVERSIFICATION (given in figure 6.10). The execution is halted as 

soon as a proven optimal solution is found, or a time limit is reached. 
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Figure 6.8: Unified Tabu Search Framework (Lodi et al. [198]) 

algorithm TSpack: 

end. 

z* := A({I, ... ,n}) (comment: incumbent solution value); 
let L be a lower bound on the optimal solution value; 
if z* = L then stop; 
initialise all tabu lists to empty; 
pack each item into a separate bin; 
z := n (comment: Tabu Search solution value); 
d:= 1; 
determine the target bin t; 
while time (or iteration) limit is not reached do 

diversify := false; k := 1; 
while diversify = false; and z* > L do 

kin:= k; 
call SEARCH(t, k, diversify, z); 
z* :=min{z*,z}; 
if k < kin then determine the new target bin t 

end while; 
if z' = L then stop 
else cail DIVERSIFICATION(d, z, t) 

end while 

Figure 6.9: Unified Tabu Search: Procedure SEARCH (Lodi et al. [198]) 

procedure SEARCH(t, k, diversify, z): 
penalty' := +00; 
for each JESt do 

for each k-tuple K of bins not including t do 
S := {j} U (U iEK Si); 
penalty := +00; 
case 

A(S) < k: 
execute the move and update the solution value z; 
k := max{l, k - I}; 
return; 

A(S) = k: 
if the move is not tabu or St == {j} then 

execute the move and update the solution value Z; 

if St == {j} then k := max{l, k - I}; 
return 

end if; 
A(S) = k + 1 and k> 1: 

let I be the set of k + 1 bins used by A; 
t := arg miniEI{ <p(Si)} , T := (St \ {j}) U Sy; 
if A(T) = 1 and the move is not tabu then 

penalty := min{ <p(T), miniE!\ {"t} {<P(Si)}} 
end case; 
penalty' : = min {penalty' ,penalty}; 

end for; 
end for; 
if penalty' =F +00 then execute the move corresponding to penalty' 
else if k = kmax then diversify := true else k := k + 1 

return. 
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The value of k is updated as follows. When a move in the SEARCH procedure 

decreases the number of k bins (A(S) < k), or when a non-tabu move removes 

rectangle j from target bin t by packing the set S into exactly k bins (A (S) = k), 

the move is immediately performed and the neighbourhood size is reduced by one 

unit (i.e. k := k - 1). Its value is increased by one unit (i.e. k := k + 1), if 

the neighbourhood has been completely searched without finding an acceptable 

move. If k has already reached a maximum prefixed value kmax , the procedure 

DIVERSIFICATION, as given in Figure 6.10, is performed. 

Figure 6.10: Unified Tabu Search: Procedure DIVERSIFICATION (Lodi et 
al. [198]) 

,-------------------------------------------------, 
procedure DIVERSIFICATION(d, z, t) 

if d S z and d < dmax then 
d:=d+l; 

else 

return. 

let t be the bin with d-th smallest value of '17(-); 

remove from the solution the Lz/2J bins with smallest '17(.) value; 
pack into a separate bin each item currently packed in a removed bin; 
reset all tabu list to empty; 
d:= 1 

A move that is not immediately performed is evaluated through a penalty. The 

penalty is infinity if the move is tabu, or if routine A used at least two extra 

bins (i.e. A(S) > k + 1)), or if k = 1. Otherwise, the penalty is obtained as 

follows. A local target bin, t is determined among the k + 1 bins produced by A. 

Routine A is executed on the rectangles set T with the rectangles in bin t plus the 

residual rectangles in the target bin t, in an attempt to get a single bin solution. 

If this happens, the penalty of the overall move is the minimum among the filling 

function values obtained for the k + 1 resulting bins. Otherwise, the move is not 

acceptable and its penalty is set to infinity. The move with the minimum penalty 

(if any) is performed when the entire neighbourhood is searched without finding 

an acceptable move. 

As mentioned earlier, each neighbourhood has a tabu list and a tabu tenure 

Tk (k = 1, ... , kmax ). For k > 1, each list stores the penalty* values corresponding 

to the last Tk moves performed in the corresponding neighbourhood. For k = 1, 
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the tabu list stores the values of the filling function, <pC), corresponding to the 

last Tl sets for which a move has been performed. 

Having constructed the UTS using LGF as the placement routine, we incorpo­

rate the idea of finding the minimum of the maximum lateness for the rectangles 

to be packed into the design of the UTS. Since the UTS already is a very efficient 

algorithm, we only need some minor modifications to the original code to deal with 

the alternative objective function. Recall that, from the study of the 2DRSBSBPP 

with due dates, we have the following two distinct objective functions: 

1. minimise the maximum lateness of the rectangles packed with a secondary 

objective of minimising the number of bins used; 

2. minimise the number of bins used with a secondary objective of minimising 

the maximum lateness of the rectangles packed. 

In order to find a good balance between the trade-off of the objective func­

tions (i.e. customers' satisfaction and packing efficiency), we alternate between 

the objective functions every I iterations by introducing a new SEARCH_1 pro­

cedure (given in Figure 6.11) into the main algorithm of the UTS. Note that the 

SEARCH procedure developed by Lodi et al. [194] favoured the second objective 

where packing efficiency is very high. 

Inspired by the target bin t, we defined the weakest bin, l which contains rect­

angles with small due dates but high lateness in current solution as follows. Let 

Qj be the set of rectangles i, each having a due date di , currently packed into bin 

j with a fixed processing time P, and B is the number of bins used in the current 

solution. Bin l is the one maximising, over all current bin j (j = 1, ... , B), the 

following lateness equation 

(6.9) 

The moves try to remove the rectangle(s) with the smallest due date from the 

weakest bin using the procedure SEARCH_1 as explained in Figure 6.11. Variable 

F (in Figure 6.11) denotes the maximum lateness value obtained from a new 
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packing layout when a rectangle from the weakest bin is removed and placed in 

one of the k bins. The solution is considered "acceptable" if: (i) the maximum 

lateness over all bins is decreased (i.e. F < Lmax) or (ii) the number of bins used 

does not exceed the current solution value while maintaining the maximum lateness 

value (i.e. F = Lmax and A(Q) ~ k). vVe allow the number of bins used to increase 

if it results in the decrease of the maximum lateness. 

Figure 6.11: Unified Tabu Search: Procedure SEARCH_1 

procedure SEARCH_I(I, k, diversify, y, z): 
penalty' := +=; 
Lma..x Y; 
for each j E Qz do 

for each k-tuple K of bins not including I do 
Q := {j} U (U iEK Qi); 
penalty := +=; 
case 

F < Lmax: 
execute the move and update the solution value y and Z; 

k := max{l, k - I}; 
return; 

F = Lmax and A(Q) ::; k: 
if the move is not tabu or Qz = {j} then 

execute the move and update the solution value Z; 

if Qz = {j} then k := max{l, k - I}; 
return 

end if; 
F> Lmax and A(Q) ::; k: 

if the move is not tabu then 
penalty:= F 

end case; 
penalty' := min {penalty' ,penalty}; 

end for; 
end for; 
if penalty' f += then execute the move corresponding to penalty' 
else if k = k max then diversify := true else k := k + I 

return. 

As in the procedure SEARCH, the value of k in the SEARCH_1 procedure is 

updated as follows. When either (i) or (ii) is applied, the move is immediately 

performed and the neighbourhood size is reduced by one unit (i.e. k := k - 1). 

Its value is increased by one unit (i.e. k := k + 1), if the neighbourhood has been 

completely searched without finding an acceptable move. If k has already reached 

a maximum prefixed value kmax , the procedure DIVERSIFICATION (Figure 6.10) 

is performed. But, when neither (i) nor (ii) apply, a penalty is associated with the 

move. The penalty is infinity if the move is tabu, or if the maximum lateness value 
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obtained from the new packing is higher than the current solution when routine A 

uses at least one extra bin (i.e. F > Lmax and A( Q) > k). Otherwise, the penalty 

takes the value of F. 

When the neighbourhood has been searched entirely without detecting cases (i) 

and (ii), the move having the minimum finite penalty (if any) is performed and the 

control returns to the main algorithm. As previously mentioned, there is a tabu 

list and a tabu tenure Tk (k = 1, ... ,kmax ) for each neighbourhood. Each list keeps 

a memory of the penalty* values corresponding to the last Tk moves performed. 

6.6.2 Randomised Descent Method 

The Randomised Descent Method (RDM) we employed in the computational ex­

periments has a similar framework as in the UTS discussed in the previous sub­

section. The main difference lies in the use of the tabu list in the UTS and the 

acceptance rule and randomisation introduced in the RDM. 

The SEARCH and SEARCH_1 procedures discussed in the previous subsection 

also have been modified to suit the framework of the algorithm. While the main 

features of the UTS (i.e. unified parametric neighbourhood, stopping criteria, and 

diversification) are used in the RDM, we also adopted an acceptance rule which 

allows the neutral move solutions up to R consecutive iterations before terminating 

the algorithm. When there are multiple identical neutral moves found during 

the SEARCH procedure (given in Figure 6.12) or SEARCH_1 procedure (given 

in Figure 6.13) in a single iteration, randomisation is used to randomly select a 

move from the list of identical moves. Consequently, the procedure can escape 

from falling into the same local optimum and continue its search. Note that 

the deteriorating move (i.e. [A(S) = k + 1 and k > 1] in Figure 6.9 and [F > 

Lmax and A(Q) < k] in Figure 6.11) is not considered in the RDM. 

As in UTS for 2DRSBSBPP with due dates, we alternate the objective func­

tions (discussed in Section 6.4) in every I iterations and employ first improve 

strategy for the RDM. 
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Figure 6.12: Randomised Descent Method: Procedure SEARCH 

procedure SEARCH(t, k, diversify, z): 
U:= 0; 
for each JESt do 

for each k-tuple K of bins not including t do 
S := {j} U (U iEK Si); 
case 

A(S) < k: 
execute the move and update the solution value z; 

k := max{l, k - 1}; 
return; 

A(S) =k: 
if St == {j} then 

else 

execute the move and update the solution value z; 
k := max{1, k - 1}; 
return 

U:= U + 1; 
if U :s: T then update the move into temp list 

end case; 
end for; 

end for; 
if Uf"O then randomly execute a move from the temp list 
else if k = kmax then diversify := true else k := k + 1 

return. 

Figure 6.13: Randomised Descent Method: Procedure SEARCH_1 

procedure SEARCH_1(1, k, diversify, y, z): 
U:= 0; 
Lmax := Yi 

for each j E Ql do 
for each k-tuple K of bins not including I do 

Q := {j} U (U iEK Qi); 
case 

F < Lmax: 
execute the move and update the solution value y and z; 

k := max{1, k - 1}; 
return; 

F = Lmax and A(Q) :s: k: 
U:= U + 1; 
if U :s: T then update the move into temp list 
end if; 

end case; 
end for; 

end for; 
if Uf"O then randomly execute a move from the temp list 
else if k = kmax then diversify := true else k := k + 1 

return. 
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6.7 Computational Experience 

We are now in position to give computational results on the performance of the 

LGF and the proposed local search algorithms. Having explained the experimental 

design for our computational experiments, we conduct the computational experi­

ments in four parts. First, we compare the LGF with some well known heuristic 

placement routines, namely: BLF, Touching Perimeter (TP) and Floor Ceiling 

(FC), as described in Section 3.4.2.1. Then, we compare the results obtained by 

using TP and LGF as the placement routine (i.e. inner heuristic) in the Dnified 

Tabu Search developed by Lodi et al. [194]. In the third part of the computa­

tional experiments, we give some computational results of our proposed MXGA 

at different stages of development. We present the final results of our extensive 

computational experiments for different local search algorithms in two different 

scenarios. First, we show the final results of comparing our proposed MXGA with 

standard GA (SGA), UTS and RDM where the objective function of the problem 

to be solved is minimising the number of bins used (and therefore maximising 

the overall bin utilisation). Then, comparisons of different local search algorithms 

based on the objective functions discussed in Section 6.4 are presented for 2DRS­

BSBPP with the inclusion of rectangle due dates and a fixed bin processing time. 

6.7.1 Experimental Design 

The algorithms are coded in ANSI-C using Microsoft Visual C++ 6.0 as the com­

piler and run on a Pentium 4, 2.0 GHz computer with 512 MB memory. We 

use problem instances taken from the literature. We consider ten different classes 

of problem instances. The first six classes (I - VI) are proposed by Berkey and 

~Wang [32J as in Table 6.1. In each of the six classes, all of the rectangle sizes 

are generated in the same interval. Martello and Vi go [203] propose the next four 

classes (VII - X)(Table 6.1), where a more realistic situation is considered. The 

rectangles are classified into four types: 
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Type 1: Wj uniformly random in [~W, W], hj uniformly random in [1, ~H]; 

Type 2: Wj uniformly random in [1, ~WJ, hj uniformly random in [~H, H]; 

Type 3: Wj uniformly random in [~W, WJ, hj uniformly random in [~H, HJ; 

Type 4: Wj uniformly random in [1, ~1;V], hj uniformly random in [1, ~H]; 

Table 6.1: Classes for the Problem Instances (Lodi et al. [194]) 
Class Bin (W x H) Item (Wj and h j ) 

I 10 x 10 uniformly random in [1,10] 
II 30 x 30 uniformly random in [1,10] 
III 40 x 40 uniformly random in [1,35] 
IV 100 x 100 uniformly random in [1,35] 
V 100 x 100 uniformly random in[1,100] 
VI 300 x 300 uniformly random in [1,100] 
VII 100 x 100 Type 1 with probability 70%, 

Type 2, 3, 4 with probability 10% each 
VIII 100 x 100 Type 2 with probability 70%, 

Type 1, 3, 4 with probability 10% each 
IX 100 x 100 Type 3 with probability 70%, 

Type 1, 2, 4 with probability 10% each 
X 100 x 100 Type 4 with probability 70%, 

Type 1, 2, 3 with probability 10% each 
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For each class, five values of n : 20,40,60,80,100 are considered. For each 

combination of class and value of n, 10 problem instances are generated. The 

problem instances are provided by Lodi et al. [194] and are publicly available on 

the web [64]. We adopt the following abbreviations for the remaining subsections: 

IP 
2P 
SGA 

: I-point crossover 
: 2-point crossover 
: Standard Genetic Algorithm 

MXGA : MultiCrossover Genetic Algorithm 
MXGA 1 : MXGA with pack_extra strategy in the decoding stage 
MXGA 2 : MXGA with pack_above strategy in the decoding stage 
MXGA3: MXGA with repack strategy in the decoding stage 
MXGAF : final version of MXGA 
UTSTP : Unified Tabu Search with TP as the inner heuristic 
UTSLGF: Unified Tabu Search with LGF as the inner heuristic 
RD M : Randomised Descent Method 
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Since the optimal solutions for the problem instances are not known, we use 

the lower bound proposed by Dell'Amico et al. [69] for the number of bins used, as 

described in Section 3.4.3.2. We compare the performance of the various heuris­

tic placement routines and local search algorithms on the basis of the following 

statistics: 
L~ (UBBin;) 

~-1 LBBino 
A verage Ratio, Ratio = K " (6.10) 

Overall Bin Utilisation, OBU = 
U 

K ~, where (6.11) 

,\"UBBini (~)2 
U

i 
0J=1 WxH and 

UBBin; 
(6.12) 

I::K 
D 

A verage Relative Percentage Deviation, ARD = i~ " where (6.13) 

UB -LB Di = Lmaxi Lmaxi X 100%. 
LBLmaxi 

(6.14) 

Note that parameter K in equations (6.10), (6.11), and (6.13) takes the value of 

the number of problem instances tested for each combination of class and value of 

n. In this case K = 10. Also note that the variables U BBini and U B Lma.xi represent 

the heuristic solutions found in instance i for the number of bins used and the 

maximum lateness respectively. Similarly, LBBini and LBLmaxi represent the lower 

bound of the problem instance i for number of bins used and the maximum lateness 

respectively. Equation (6.12) is the overall bin utilisation as explained in equation 

(6.2), where Aj is the total area of all the rectangles in bin j (j = 1,2, ... ,U BBinJ. 

The specific values for the generic design variables in MXGA, UTS and RDM 

are summarised in Table 6.2 and 6.3 respectively. Initial computational exper­

iments are performed to determine the size of the candidate list of temporary 

offspring. Five values of t (t = 3,5,7,9,10) are tested and results show that t = 5 

gives the best result within a reasonable computation time. 
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Table 6.2: Implementation of generic design variables for lVIXGA and SGA 
variable value 

chromosome length, L n (number of rectangles) 
population size, Ppop 100 
crossover operator I-point and 2-point 
crossover rate, Pc 0.75 
multicrossover, t (lVIXGA only) 5 (= 10 temporary offspring) 
individual mutation rate, PM 0.25 
gene mutation rate, Pm lin 
selection mechanism probabilistic binary tournament 
filtration rate, F (lVIXGA only) every 50 generations 

Table 6.3: Implementation of generic design variables for GTSTP , UTS LGF and 
RDlVI 

variable value 
tabu tenure for all k, Tk (UTSTP and UTS LGF only) 3 
max. number of distinct tabu lists, kmax (UTSTP and UTSLGF only) 3 
a (equation (6.8)) 20 
max. value of the differentiation counter d, dmax 50 
iterations executed before alternating the objective function, I 100 
max. no. of consecutive neutral move allowed per run, R (RDlVI only) 1000 

In the final part of the computational experiments, having computed the com­

pletion time of LBBini , GLB; = P X LBBini (P = 100), for each problem in­

stance, we generate three sets of integer due dates from the uniform distribution 

of [101, pGLB,) , where p E {0.6, 0.8, 1.0}. We label each set of due date class as 

follows (assuming LBBini > 1): 

Class A: [101,0.6GLBJ; 
Class B: [101,0.8GLBJ; 
Class C: [101,1.0GLB;]. 
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6.7.2 A Comparison of Different Heuristic Placement Rou­

tines 

In this subsection, we first compare the LGF with the BLF as explained in Section 

3.4.2.1. Literature suggests that the BLF routine outperforms the Bottom-Left 

(BL) routine, although it has a longer execution time. Also, the use of the pre­

ordering sequence by non-increasing width, height or area gives better quality 

solutions. Hence, we concentrate only on the BLF routine. This is also due to the 

fact that both placement routines have the same time complexity of O(n2
). 

The results of the BLF placement routine are generated using the following 

five preordering sequences of the rectangles: 

DW : Decreasing Width, breaking ties by decreasing height. 

DH : Decreasing Height, breaking ties by decreasing width. 

DA(W): Decreasing Area, breaking ties by decreasing Width. 

DA(H) : Decreasing Area, breaking ties by decreasing Height. 

R : Random permutation. 

As we want to extensively test the LGF placement routine, we compare our 

results with the TP and FC placement routines developed by Lodi et al. [194] 

using the problem instances provided in [64]. In this experiment, we use DA(W) 

preordering sequence in the BLF placement routine to generate the solutions. 

Note that we do not give the execution times for both experiments, as these are 

negligible (never exceeding 0.1 seconds per execution). 
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LGF vs. BLF 

The computational results comparing LGF with BLF placement routine are pre­

sented in Table 6.4. The first two columns give the class and the value of n. The 

next five columns refer to the BLF placement routine with five different preorder­

ing sequences (DW, DR, DACW) , DA(R), R). The last column refers to the LGF 

placement routine. 

For each algorithm, the entries report the average ratio (equation (6.10)), com­

puted over the 20 randomly generated problem instances. For each class, the final 

line gives the average over all values of n. The final line of Table 6.4 gives the 

overall average value over all classes. The bold face figures represent the best 

solution obtained for each class. 

We first observe that the solution quality of LGF placement routine outper­

forms the BLF placement routine in all five preordering categories. The best 

average value found in BLF placement routine is with DA(W) preordering se­

quence. By considering in each class, we see that the LGF routine produces the 

best results in 9 out of 10 classes. There is clear evidence that filling the gaps in 

the partial layout by dynamically selecting the best rectangle is better than based 

on the sequence of the rectangles supplied. 



CHAPTER 6 193 

Table 6.4: Comparison of ELF Routine with LGF Routine (Execution Time: less 

than 0.1 CPU second) 
Class 

BLF LGF n 
DW DH DA(W) DA(H) R 

20 1.170 1.170 1.148 1.148 1.251 1.117 

40 1.115 1.115 1.109 1.115 1.180 1.067 

I 60 1.123 1.130 1.125 1.130 1.188 1.085 

80 1.130 1.130 1.124 1.124 1.174 1.082 

100 1.132 1.132 1.126 1.126 1.155 1.060 

Average 1.136 1.136 1.126 1.129 1.190 1.082 

20 1.000 1.000 1.000 1.000 1.100 1.000 

40 1.025 1.025 1.025 1.025 1.025 1.000 

II 60 1.075 1.075 1.075 1.075 1.250 1.050 

80 1.017 1.033 1.033 1.033 1.150 1.000 

100 1.042 1.046 1.042 1.046 1.083 1.000 

Average 1.032 1.036 1.035 1.036 1.122 1.010 

20 1.265 1.265 1.265 1.265 1.333 1.167 

40 1.248 1.248 1.229 1.229 1.339 1.145 

III 60 1.220 1.220 1.194 1.194 1.259 1.130 

80 1.232 1.232 1.216 1.216 1.263 1.118 

100 1.259 1.255 1.233 1.233 1.275 1.100 

Average 1.245 1.244 1.227 1.227 1.294 1.132 

20 1.100 1.100 1.050 1.050 1.350 1.050 

40 1.000 1.000 1.000 1.000 1.000 1.000 

IV 60 1.100 1.100 1.125 1.125 1.200 1.075 

80 1.017 1.050 1.033 1.050 1.200 1.000 

100 1.017 1.017 1.050 1.050 1.104 1.017 

Average 1.047 1.053 1.052 1.055 1.171 1.028 

20 1.213 1.201 1.173 1.173 1.265 1.137 

40 1.186 1.186 1.149 1.149 1.278 1.154 

V 60 1.181 1.181 1.156 1.181 1.235 1.135 

80 1.202 1.202 1.181 1.181 1.255 1.144 

100 1.170 1.172 1.144 1.172 1.219 1.123 

Average 1.190 1.188 1.161 1.171 1.250 1.138 

20 1.000 1.000 1.000 1.000 1.050 1.000 

40 1.300 1.350 1.350 1.350 1.350 1.250 

VI 60 1.125 1.125 1.075 1.125 1.300 1.075 

80 1.092 1.108 1.108 1.108 1.158 1.075 

100 1.167 1.167 1.183 1.183 1.250 1.100 

Average 1.137 1.150 1.143 1.153 1.222 1.100 

20 1.252 1.252 1.185 1.185 1.283 1.213 

40 1.234 1.234 1.194 1.194 1.312 1.199 

VII 60 1.218 1.218 1.194 1.218 1.284 1.163 

80 1.229 1.229 1.202 1.202 1.320 1.168 

100 1.204 1.204 1.182 1.204 1.290 1.149 

Average 1.227 1.227 1.191 1.201 1.298 1.178 

20 1.276 1.276 1.215 1.276 1.358 1.203 

40 1.239 1.239 1.191 1.191 1.316 1.176 

VIII 60 1.231 1.231 1.200 1.231 1.313 1.174 

80 1.234 1.236 1.205 1.205 1.315 1.189 

100 1.203 1.203 1.179 1.203 1.281 1.145 

Average 1.237 1.237 1.198 1.221 1.317 1.177 

20 1.014 1.014 1.003 1.003 1.014 1.014 

40 1.007 1.007 1.000 1.007 1.007 1.007 

IX 60 1.005 1.005 1.000 1.005 1.002 1.005 

80 1.005 1.005 1.001 1.005 1.003 1.005 

100 1.006 1.006 1.001 1.001 1.003 1.006 

Average 1.007 1.007 1.001 1.004 1.006 1.007 

20 1.246 1.246 1.213 1.246 1.488 1.167 

40 1.157 1.149 1.149 1.157 1.408 1.117 

X 60 1.162 1.169 1.157 1.162 1.376 1.092 

80 1.136 1.152 1.132 1.152 1.397 1.082 

100 1.144 1.148 1.121 1.121 1.407 1.093 

Average 1.169 1.173 1.154 1.168 1.415 1.ll0 

AVERAGE i 1.143 1.145 1.129 1.137 I 1.228 1.096 I 
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LGF vs. BLF vs. Fe vs. TP 

Table 6.5 summarises the results comparing the BLF with DA(W) preordering 

sequence, Fe, and TP placement routines with LGF. The decision of using the 

preordering sequence of DA(W) in the BLF placement routine is based on the 

computational results reported in the previous experiment. For each placement 

routine, the entries report the average ratio (equation (6.10)), computed over the 

10 problem instances given in [64]. For each class, the final line gives the average 

overall values of n. The final line of Table 6.5 gives the overall average value over 

all classes. The bold face figures represent the best solution found in each class. 

By considering, for each class, the average value computed over all values of n, 

we see that the BLF placement routine with DA(W) preordering sequence always 

produces the worst results among the four placement routines. Neither of the 

placement routines for LGF, Fe and TP can be classified as the clear winner in 

this experiment as they produce mixed degrees of success in terms of the solution 

quality in each class. In terms of the solution quality for the average value over 

all classes, LGF only underperforms TP by 0.3% (7.6% over the lower bound for 

TP and 7.9% over the lower bound for LGF) but it outperforms Fe by 2% (9.9% 

over the lower bound). However, if we recall that both FC and TP have a time 

complexity of O(n3 ) for their algorithm, while LGF only has a time complexity 

of O(n2
), then it is advantageous to employ the LGF as the heuristic placement 

routine for 2DRSBSBPP. 
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Table 6.5: Comparison of LGF with BLF, FC, and TP (Lodi et al [194]) (Execution 
Time: less than 0.1 CPU second) 

Class n BLF LGF FC TP Class n BLF LGF FC TP 
20 1.09 1.03 1.06 1.05 20 1.00 1.00 1.00 1.00 
40 1.12 1.04 1.08 1.06 40 1.40 1.40 1.40 1.40 

I 60 1.13 1.05 1.09 1.05 VI 60 1.10 1.05 1.05 1.05 
80 1.15 1.06 1.09 1.06 80 1.00 1.00 1.00 1.00 
100 1.12 1.04 1.07 1.03 100 1.13 1.07 1.07 1.07 

Average 1.122 1.044 1.078 1.050 Average 1.127 1.103 1.104 1.104 
20 1.00 1.00 1.00 1.00 20 1.22 1.19 1.19 1.13 
40 1.10 1.10 1.10 1.10 40 1.20 1.12 1.17 1.10 

II 60 1.10 1.05 1.05 1.00 VII 60 1.20 1.10 1.18 1.12 
80 1.07 1.07 1.03 1.07 80 1.20 1.10 1.17 1.11 
100 1.06 1.03 1.03 1.00 100 1.19 1.09 1.17 1.11 

Average 1.065 1.050 1.042 1.034 Average 1.202 1.119 1.176 1.114 
20 1.20 1.06 1.18 1.06 20 1.23 1.15 1.16 1.16 
40 1.22 1.13 1.16 1.11 40 1.22 1.16 1.19 1.16 

III 60 1.26 1.10 1.19 1.11 VIII 60 1.19 1.09 1.18 1.11 
80 1.27 1.10 1.15 1.10 80 1.19 1.10 1.16 1.11 
100 1.23 1.08 1.13 1.08 100 1.19 1.09 1.17 1.12 

Average 1.239 1.093 1.162 1.092 Average 1.204 1.116 1.172 1.132 

20 1.00 1.00 1.00 1.00 20 1.01 1.01 1.00 1.01 
40 1.00 1.00 1.00 1.00 40 1.02 1.02 1.01 1.02 

IV 60 1.10 1.15 1.10 1.10 IX 60 1.01 1.01 1.01 1.01 
80 1.10 1.10 1.10 1.07 80 1.01 1.01 1.01 1.01 
100 1.13 1.07 1.07 1.03 100 1.01 1.01 1.01 1.01 

Average 1.065 1.063 1.054 1.040 Average 1.011 1.011 1.008 1.012 
20 1.15 1.09 1.08 1.06 20 1.15 1.20 1.15 1.20 
40 1.18 1.10 1.10 1.11 40 1.13 1.07 1.09 1.08 

V 60 1.16 1.09 1.11 1.08 X 60 1.14 1.08 1.09 1.09 
80 1.17 1.09 1.11 1.08 80 1.14 1.06 1.06 1.06 
100 1.16 1.08 1.10 1.08 100 1.11 1.07 1.07 1.06 

Average 1.165 1.092 1.100 1.082 Average 1.135 1.098 1.092 1.098 

AVERAGE 1.133 1.079 1.099 1.076 I 
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6.7.3 Unified Tabu Search 

This subsection compares the empirical performance of UTS using TP and LGF 

as the inner heuristic. Note that the results of UTSTP are extracted from Lodi 

et al. [194] while the results of UTS LGF are generated from the problem instances 

given in [64]. This is a comparison of a classic 2DRSBSBPP. In each algorithm, 

the results are obtained from the average of 10 (i.e. K) problem instances. The 

execution in both algorithms are halted as soon as a time limit of 60 CPU seconds 

per instance is reached. 

Table 6.6 gives the results of the comparison between the UTSTP and UTSLGF . 

As explained previously, the first and third pairs of columns correspond to the class 

and the value of n. The second and last pairs of columns refer to the average ratio 

(equation (6.10)) computed by UTSTP and UTS LGF respectively. In this table too, 

for each class, the final line gives the average over all values of n. The final line 

of Table 6.6 gives the overall average value over all classes. The bold face figures 

represent the best solutions obtained for each class. 

Based on the average value computed over all values of n, we can observe 

that both UTSTP and UTS LGF generally improve the initial deterministic solution 

produced by the inner heuristic (i.e. TP and LGF respectively in Table 6.5), except 

Class IV and VI produced by UTSTP . With the help of the tabu search approach, 

we further improved the solution quality of the LGF from 7.9% to 6.0% over the 

lower bound. The approach also improved the solution quality ofthe TP from 7.6% 

to just 6.0% over the lower bound. Note that both algorithms achieve the same 

result (i.e. 1.060). vVe can conclude that, the unified tabu search is an effective 

approach to 2DRSBSBPP regardless of the specific placement routine used in the 

SEARCH procedure. 
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Table 6.6: Comparison of UTSTP (Lodi et al. [194]) with UTSLGF (60 CPU 
seconds per run) 

Class n UTSTP UTS LGF Class n UTSTP UTSLGF 
20 l.05 1.03 20 1.00 1.00 
40 1.04 1.04 40 1.40 1.30 

I 60 l.04 1.04 VI 60 1.05 1.05 
80 1.06 1.06 80 1.00 1.00 
100 1.03 1.03 100 l.07 1.07 

Average 1.044 1.039 Average 1.104 1.083 
20 1.00 1.00 20 1.11 1.13 
40 1.10 1.10 40 1.08 1.08 

II 60 1.00 1.00 VII 60 1.06 1.07 
80 1.03 l.00 80 1.10 1.10 
100 1.00 1.00 100 1.08 1.08 

Average 1.026 1.020 Average 1.086 l.093 
20 1.06 1.04 20 1.10 1.10 
40 1.09 1.10 40 1.10 1.13 

III 60 1.08 1.09 VIII 60 1.07 1.07 
80 1.07 1.09 80 1.08 1.09 
100 1.07 l.06 100 1.09 1.08 

Average 1.074 1.077 Average 1.088 l.094 
20 1.00 1.00 20 1.00 l.00 
40 1.00 l.00 40 1.01 l.01 

IV 60 1.10 l.l0 IX 60 1.01 l.01 
80 1.07 1.03 80 1.01 1.01 
100 1.03 1.03 100 1.01 l.01 

Average 1.040 1.033 Average 1.008 1.007 
20 1.04 l.06 20 1.12 1.15 
40 1.07 l.09 40 1.06 1.06 

V 60 1.06 l.09 X 60 1.06 1.06 
80 1.07 1.08 80 1.05 l.05 
100 l.07 1.08 100 1.05 1.04 

Average 1.062 l.079 Average 1.068 1.072 

II AVERAGE I 1.060 1.060 
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6.7.4 Initial Investigation of MultiCrossover Genetic Al­

gorithm 

In this subsection, we report on computational results of the MXGA at different 

stages of development. Although many additional parameter setting tests are per­

formed to obtain a 'good' implementation of the MXGA, only the most significant 

are reported. As for the proposed MXGA for the single machine family schedul­

ing problem described in Chapter 5, we believed that the elitism replacement and 

filtration strategy also improved the proposed MXGA for the 2DRSBSBPP. 

As for the initial development, we consider only the first four classes of problem 

instances described in Table 6.1. For each class, we consider three values of n : 

20,40,80, and for each combination of class and n, 10 problem instances are tested. 

We use the problem instances provided by Lodi et al. [194]. In the remaining tables 

(Table 6.7-6.9), the results generated by the LGF placement routine are used as 

the benchmark for the development of the MXGA. The execution of the MXGA 

algorithms are halted as soon as a time limit of 120 CPU seconds per instance is 

reached. 

We first compare different decoding strategies in the MXGA as suggested in 

Section 6.3.3 where the results are reported in Table 6.7. We employ 2-point multi­

crossover in this experiment with the pack_extra strategy as the decoding strategy 

for the temporary offspring. The choice is made based on the low time complex­

ity of this decoding strategy compared to others. The first two columns give the 

class and the value of n. The next pair of columns refer to the results generated 

by heuristic placement routine, LGF. The following three pairs of columns refer 

to the results generated by the MXGA with three different decoding strategies: 

pack_extra, pack_above and repack strategies. For each algorithm, the entries in the 

first column report the average ratio (equation (6.10)) while the second column 

give the average overall bin utilisation (equation (6.11)). For each class, the final 

line gives the average over all values of n. The final line of Table 6.7 gives the 

overall average value of all classes. 
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vVe first observe that the solution quality of all three MXGAs outperform the 

LGF. Among the classes, Class III proved to be the most difficult to solve. As sug­

gested, the repack strategy proved to be the most powerful tool among the three, 

followed by the pacLabove strategy in generating good results. The pacLextra 

strategy produced the least impressive results. It is clear that the better solution 

quality is obtained under the repack strategy, although it is computationally more 

expensive. Consequently, the repack strategy is used in the decoding stage. 

Table 6.7: Comparison of LGF with MXGA1,2.3 

Class 
aLGF bMXGA l bMXGA2 bMXGA3 n 

Ratio OBU Ratio OBU Ratio OBU Ratio OBU 
20 1.0268 80.54 1.0268 80.54 1.0268 80.54 1.0268 80.54 

I 40 1.0379 84.95 1.0379 84.95 1.0379 84.95 1.0379 84.95 
80 1.0626 86.22 1.0626 86.22 1.0626 86.22 1.0626 86.22 

Average 1.0424 83.90 1.0424 83.90 1.0424 83.90 1.0424 83.90 
20 1.0000 42.40 1.0000 42.40 1.0000 42.40 1.0000 42.40 

II 40 1.1000 54.72 1.1000 54.72 1.1000 54.72 1.1000 54.72 
80 1.0667 78.48 1.0633 78.84 1.0567 79.26 1.0499 79.84 

Average l.0556 58.53 l.0544 58.65 l.0522 58.79 l.0500 58.99 
20 l.0567 65.70 l.0529 66.01 l.0510 66.38 l.0499 66.77 

III 40 1.1266 69.26 1.1199 70.24 1.1067 7l.64 1.1000 72.54 
80 1.0982 78.47 1.0967 78.86 1.0899 79.03 l.0831 79.25 

Average l.0938 71.14 1.0898 71.70 l.0825 72.35 l.0777 72.85 
20 l.0000 38.36 l.0000 38.36 1.0000 38.36 l.0000 38.36 

IV 40 l.0000 56.71 1.0000 56.71 l.0000 56.71 l.0000 56.71 
80 1.1000 74.13 1.1000 74.13 1.1000 74.13 1.1000 74.13 

Average l.0333 56.40 1.0333 56.40 l.0333 56.40 l.0333 56.40 

I AVERAGE I l.0563 67.50 I l.0550 67.67 I 1.0526 67.86 I 1.0509 68.04 I 

a deterministic algorithm with execution time of less than 0.1 CPU second. 
b stopping criterion of 120 CPU seconds per run. 

Table 6.8 exammes the effect on solution quality for the proposed MXGA 

when we incorporate the swap procedure instead of the reproduction procedure 

as in a SGA if the multicrossover does not apply to the selected parents. As in 

the previous experiment, we employ 2-point multicrossover with the pacLextra 

decoding strategy for the temporary offspring. From the results we achieved from 

the previous experiment, we apply the repack strategy during the decoding stage 

for the offspring in this experiment. The table gives the same information for the 

first two pairs of columns as in Table 6.7, while the following two pairs of columns 
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refer to the results generated by the MXGA for the cases of without and with the 

swap procedure respectively. 

Our first observation from Table 6.8 is that the swap procedure yields better 

results in the MXGA compared to the algorithm which is without the procedure. 

As the values indicate, the swap procedure has a beneficial influence on the solution 

quality although it requires a slightly longer computation time and therefore fewer 

generations will be evaluated within the time limit. This indicates that, besides 

the mutation operator, the swap procedure also helps the algorithm to further 

explore the search space. Analysing the results obtained by the algorithms, we 

can conclude that the presence of the swap procedure in our proposed MXGA 

does improve the solution quality. 

Table 6.8: Comparison of LGF with MXGA3 (with and without swap) 

CLGF 
dMXGA3 

Class n without Swap with Swap 
Ratio OBU Ratio OBU Ratio OBU 

20 1.0268 80.54 1.0268 80.54 1.0268 80.54 
I 40 1.0379 84.95 1.0379 84.95 1.0379 84.95 

80 1.0626 86.22 1.0626 86.22 1.0626 86.22 
Average 1.0424 83.90 1.0424 83.90 1.0424 83.90 

20 1.0000 42.40 1.0000 42.40 1.0000 42.40 
II 40 1.1000 54.72 1.1000 54.72 1.1000 54.72 

80 1.0667 78.48 1.0499 79.84 1.0499 79.84 
Average 1.0556 58.53 1.0500 58.99 1.0500 58.99 

20 1.0567 65.70 1.0499 66.77 1.0379 67.67 
III 40 1.1266 69.26 1.1000 72.54 1.1000 71.64 

80 1.0982 78.47 1.0805 80.34 1.0769 81.03 
Average 1.0938 71.14 1.0768 73.22 1.0716 73.45 

20 1.0000 38.36 1.0000 38.36 1.0000 38.36 
IV 40 1.0000 56.71 1.0000 56.71 1.0000 56.71 

80 1.1000 74.13 1.1000 74.13 1.0921 74.89 
Average 1.0333 56.40 1.0333 56.40 1.0307 56.65 

[ AVERAGE [1.0563 67.50 [1.0506 68.13 [1.0487 68.25 [ 

C deterministic algorithm with execution time of less than 0.1 CPU second. 
d stopping criterion of 120 CPU seconds per run. 

In the next experiment, we investigate the impact of the mutation operator in 

the MXGA. It has been suggested that the mutation operator might deteriorate 

the solution quality by randomly assigning the item into a random bin. In order 
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to analyse the impact of the mutation operator on the final outcome, a MXGA has 

been applied without using the mutation operator. Note that the multicrossover 

operators used in this experiment are the I-point and 2-point crossover strategies 

described in Section 6.3.4. Once again, the pacLextra decoding strategy is used for 

the temporary offspring. Table 6.9 summarises the computational results of the 

lVIXGA using the mutation operator. The table gives the same information for the 

first two pairs of columns as in Table 6.7, while the following four pairs of columns 

refer to the results generated by the lVIXGA for the cases of with or without the 

mutation operator using I-point and 2-point multicrossover respectively. 

Table 6.9: Comparison of LGF with YIXGA3 (with and without mutation) 

eLGF fMXGA 3 

Class n 1P + Mutation 1P - Mutation 2P + Mutation 2P - Mutation 
Ratio OBU Ratio OBU Ratio OBU Ratio OBU Ratio OBU 

20 1.0268 80.54 1.0268 80.54 1.0268 80.54 1.0268 80.54 1.0268 80.54 
I 40 1.0379 84.95 1.0379 84.95 1.0379 84.95 1.0379 84.95 1.0379 84.95 

80 1.0626 86.22 1.0626 86.22 1.0626 86.22 1.0626 86.22 l.0626 86.22 
Average 1.0424 83.90 1.0424 83.90 1.0424 83.90 1.0424 83.90 1.0424 83.90 

20 l.0000 42.40 1.0000 42.40 1.0000 42.40 1.0000 42.40 1.0000 42.40 
II 40 1.1000 54.72 1.1000 54.72 1.1000 54.72 1.1000 54.72 1.1000 54.72 

80 l.0667 78.48 l.0333 81.02 1.0499 79.84 1.0333 8l.02 1.0499 79.84 
Average 1.0556 58.53 1.0444 59.38 l.0500 58.99 1.0444 59.38 1.0500 58.99 

20 l.0567 65.70 1.0367 68.91 1.0499 66.89 1.0367 68.91 1.0499 66.89 
III 40 1.1266 69.26 1.0921 74.33 1.1000 7l.64 1.0921 74.33 1.1000 71.64 

80 l.0982 78.47 l.0731 81.23 1.0835 80.12 1.0731 8l.23 l.0835 80.12 
Average l.0938 71.14 1.0673 74.82 l.0778 72.88 1.0673 74.82 1.0778 72.88 

20 l.0000 38.36 l.0000 38.36 1.0000 38.36 1.0000 38.36 l.0000 38.36 
IV 40 1.0000 56.71 1.0000 56.71 1.0000 56.71 1.0000 56.71 l.0000 56.71 

80 1.1000 74.13 1.0834 75.67 1.1000 74.13 1.0834 75.67 1.1000 74.13 
Average 1.0333 56.40 l.0278 56.91 1.0333 56.40 1.0278 56.91 l.0333 56.40 

I AVERAGE I 1.0563 67.50 I 1.0455 68.76 I 1.0509 68.04 I 1.0455 68.76 I 1.0509 68.04 I 

e deterministic algorithm with execution time of less than 0.1 CPU second. 
f stopping criterion of 120 CPU seconds per run. 

The results achieved by the lVIXGA with the mutation operator in both I-point 

and 2-point multicrossover operators clearly outperform the MXGA without the 

mutation operator. Also note that the lVIXGA with mutation operator in both the 

I-point and 2-point multicrossover operators achieved the same solution values in 

every combination of class i (i = 1,2,3,4) and value n (n = 20,40,80). Thus, 
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the mutation operator is used in our proposed MXGA. In the next subsections, 

this final version of the MXGA is compared to other local search approaches. 

The results of the tests that are described in the previous experiments provide 

guidelines for the design of the MXGA. 

6.7.5 A Comparison of different Local Search Algorithms 

In this subsection, we present the results of an extensive computational experiment 

that compares our proposed MXGA with the SGA, UTS and RDM on solving the 

classic 2DRSBSBPP. Since the MXGA performs equally well for both I-point and 

2-point multicrossover operators, we decide to test the performance of both with 

the SGA. For this experiment, problem instances provided by Lodi et al. [194] 

are used. For each class, we consider five values of n : 20,40,60,80, 100. For 

each combination of class and value of n, 10 problem instances are tested. For a 

fair comparison between different algorithms in this experiment, we employ the 

stopping criterion of 120 CPU seconds per instance. The specific values for the 

generic design variables in MXGA, SGA, UTS and RDM are summarised in Table 

6.2 and Table 6.3. 

The differences between the MXGA and SGA employ in this experiments are 

with regards to the use of the crossover operator, reproduction procedure and the 

replacement scheme. The SGA applies the standard crossover operator to produce 

two offspring from two selected parents. In the case of SGA, the steps explained 

in Section 6.3.4 are used only once (i.e. t = 1) to generate exactly two offspring. 

The SGA uses the reproduction procedure instead of a swap operator when the 

crossover does not apply to the selected parents. The replacement strategy employ 

in the SG A is the steady-state replacement strategy. 

The results are presented in Table 6.10. The first two columns give the class 

and the value of n. The next two pairs of columns refer to the final version of 

MXGA, MXGAp , and give the results for the I-point and 2-point multi crossover 

respectively. The following two pairs of columns refer to the SGA, and give results 
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for the I-point and 2-point crossover respectively. The last two pairs of columns 

give the results of the UTS LGF and RDM respectively. 

For each algorithm, the entries in the first column report the average ratio 

(equation (6.10)), while the entries in the second column give the average overall 

bin utilisation (equation (6.11)), computed over the ten generated instances. For 

each class, the final line gives the average over all values of n. The final line of 

Table 6.10 gives the overall average value over all classes. It is worth mentioning 

again that the placement routine used in all of the algorithms is the LGF placement 

routine we developed in Section 6.2. 

By considering for each class, the average values computed over all values 

of n, we see that the MXGAF , in both the I-point and 2-point multicrossover, 

perform reasonably well compared to other algorithms except in Class IV and VI 

where UTS LGF performs the best. In general, SGA produced the least impressive 

results where the SGA with the 2-point crossover operator performs slightly better 

(i.e. 0.1%) than the SGA with I-point crossover operator in terms of the overall 

average ratio over all classes. Only a small fraction of improvement (i.e. 0.6%) is 

achieved in the SGA compared to the LGF heuristic routine. This may suggest 

that either the SGA is not an ideal choice of algorithm to be used in the bin packing 

problem or the LGF placement routine is itself already a powerful heuristic for the 

packing problem. 

A closer look at the results of the UTS LGF and RDM show that both algorithms 

also performed quite well, with UTS LGF performing marginally better. This sup­

ports the idea that acceptance rule and randomisation procedure introduced in 

the RDM, are comparable with the ideas of tabu lists and tabu tenure used in the 

UTS LGF in generating high quality solutions. This indicates that the randomisa­

tion procedure is capable of directing the moves to escape from local optima. 

Improvements of 2.5% and 2.2% in the I-point and 2-point MXGAF respec­

tively as compared to LGF placement routine show that the MXGAF is able to 

produce better solution quality. A significant improvement of 2% (I-point) and 
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1.6% (2-point) in the MXGAp compared to SGA is obtained from the overall re­

sults. This suggests that the various techniques used in the MXGAp are capable 

of improving the results although less generations are generated within the time 

limit. The overall results show that the MXGAp algorithm is the preferred choice 

followed by the UTSwF, RDM and SGA. 

Table 6.10: A Comparison of MXGAF with the SGA, UTS LGF and RDM (120 
CPU seconds per run) 

MXGAp SGA 
UTSLGP RDM 

Class n IP 2P IP 2P 
Ratio OBC Ratio OBC Ratio OBC Ratio OBC Ratio OBC Ratio OBC 

20 1.03 81.48 1.03 81.49 1.03 81.11 1.03 81.04 1.03 81.31 1.05 80.69 
40 1.04 85.94 1.03 86.91 1.04 85.79 1.05 84.42 1.04 85.75 1.05 84.36 

I 60 1.04 88.40 1.04 88.25 1.05 86.63 1.04 87.85 1.04 88.05 1.04 87.73 
80 1.06 87.40 1.06 87.20 1.06 87.00 1.06 86.93 1.06 87.25 1.06 87.23 

100 1.02 93.43 1.03 92.71 1.03 92.26 1.03 92.59 1.03 92.45 1.03 92.67 
Average 1.037 87.33 1.036 87.31 1.041 86.56 1.040 86.57 1.039 86.96 1.046 86.54 

20 1.00 42.40 1.00 42.40 1.00 42.40 1.00 42.40 1.00 42.40 1.00 42.40 
40 1.10 56.07 1.10 56.07 1.10 54.80 1.10 55.03 1.10 56.07 1.10 56.07 

Il 60 1.00 76.54 1.00 76.81 1.20 67.24 1.17 70.38 1.00 76.81 1.00 76.81 
80 1.00 83.51 1.03 81.07 1.07 78.00 1.07 78.00 1.00 83.45 1.03 81.34 

100 1.00 81.48 1.00 8l.36 l.03 78.21 1.03 78.05 1.00 81.48 1.03 78.09 
Average 1.020 68.00 1.027 67.54 1.080 64.13 1.073 64.77 1.020 68.04 1.032 66.94 

20 1.04 68.91 1.04 68.96 l.06 66.18 1.06 66.21 1.04 68.91 1.06 66.02 
40 1.09 74.33 1.09 74.37 1.09 73.20 1.11 71.15 1.10 72.87 1.09 74.11 

III 60 1.08 81. 76 1.09 80.72 1.10 77.71 1.09 78.35 1.09 80.23 1.09 80.25 
80 1.06 83.33 1.06 83.21 1.09 79.25 1.09 79.17 1.09 79.82 l.09 79.10 
100 1.06 85.27 1.06 83.98 1.08 81.10 1.09 80.39 1.06 83.34 1.07 83.01 

Average 1.065 78.72 1.068 78.24 1.085 75.49 1.087 75.06 1.077 77.03 1.080 76.50 
20 1.00 38.36 1.00 38.36 1.00 38.36 1.00 38.36 1.00 38.36 1.00 38.36 
40 1.00 56.71 l.00 56.56 1.00 55.07 1.00 55.01 1.00 56.71 1.00 56.71 

IV 60 1.10 71.46 1.10 71.33 1.10 70.07 1.10 69.64 1.10 71.05 1.10 71.07 
80 1.07 76.49 1.10 74.15 1.10 72.96 1.10 72.86 1.03 79.25 1.07 76.24 
100 1.03 79.30 1.03 79.02 1.07 75.75 1.07 75.37 1.03 79.15 1.03 79.15 

Average 1.040 64.47 1.047 63.88 1.053 62.44 1.053 62.25 1.033 64.90 1.040 64.31 
20 1.04 70.58 1.04 70.51 1.06 68.03 1.06 68.06 1.06 68.34 1.04 70.44 
40 1.06 76.54 1.06 76.51 1.08 73.74 1.08 73.36 1.09 72.89 1.07 75.21 

V 60 1.07 78.23 1.07 78.06 1.09 75.37 1.07 76.33 1.09 75.46 1.07 77.65 
80 1.07 78.96 1.07 78.93 1.08 76.35 1.08 76.40 1.08 76.63 1.07 78.85 

100 1.05 83.93 1.07 82.44 1.07 80.98 1.08 79.81 1.08 79.44 1.07 81.89 
Average 1.058 77.65 1.061 77.29 1.076 74.89 1.075 74.79 1.079 74.55 1.064 76.81 

20 1.00 29.23 1.00 29.23 1.00 29.23 1.00 29.23 1.00 29.23 1.00 29.23 
40 1.40 49.09 1.40 49.13 1.40 47.40 1.40 47.42 1.30 50.12 1.40 48.25 

VI 60 1.00 70.03 1.00 70.17 1.05 66.22 1.05 65.96 1.05 66.00 1.03 68.34 
80 1.00 68.67 1.00 67.86 1.00 66.66 1.00 67.00 1.00 68.67 1.00 68.67 

100 1.07 75.99 1.07 75.40 1.10 72.60 1.10 72.40 1.07 75.34 1.07 75.25 
Average 1.093 58.60 1.093 58.36 1.110 56.42 1.110 56.40 1.083 57.87 1.100 57.95 

20 1.11 71.94 1.11 71.89 1.13 68.96 1.13 68.79 1.13 68.51 1.13 68.61 
40 1.07 80.43 1.07 80.27 1.09 77.16 1.12 75.28 1.08 78.97 1.08 78.89 

VII 60 1.05 85.22 1.06 83.68 1.08 80.60 1.08 80.68 1.07 82.74 1.06 83.24 
80 1.08 84.79 1.09 83.45 1.10 81.23 1.09 82.22 1.10 81.14 1.10 81.33 

100 1.07 86.30 1.07 85.81 1.10 82.00 1.09 82.20 1.08 84.36 1.08 84.11 
Average 1.075 81.74 1.080 81.02 1.101 77.99 1.103 77.83 1.093 79.14 1.090 79.24 

20 1.10 72.14 1.10 72.14 1.12 69.27 1.12 69.01 1.10 72.14 1.10 72.14 
40 1.09 80.23 1.09 79.84 1.11 76.55 1.09 78.41 1.13 74.95 1.11 76.25 

VIII 60 1.06 84.93 1.06 84.36 1.10 79.96 1.10 79.67 1.07 83.27 1.07 83.01 
80 1.07 85.21 1.08 83.93 1.10 81.22 1.11 80.62 1.09 82.63 1.10 81.11 
100 1.06 86.55 1.07 86.10 1.09 82.31 1.09 82.79 1.08 84.74 1.08 84.56 

Average 1.078 81.81 1.081 81.27 1.105 77.86 1.101 78.10 1.094 79.55 1.092 79.41 
20 1.00 43.57 1.00 43.57 1.01 43.03 1.01 43.03 1.00 43.57 1.00 43.57 
40 1.01 45.75 1.01 45.75 1.01 45.75 1.01 45.75 1.01 45.75 1.01 45.75 

IX 60 1.01 43.56 1.01 43.56 1.01 43.56 1.01 43.56 1.01 43.56 1.01 43.56 
80 1.01 45.12 1.01 45.12 1.01 45.12 1.01 45.12 1.01 45.12 1.01 45.12 

100 1.01 46.10 1.01 46.10 1.01 46.10 1.01 46.10 1.01 46.10 1.01 46.10 
Average 1.007 44.82 1.007 44.82 1.008 44.71 1.008 44.71 1.007 44.82 1.007 44.82 

20 1.13 68.40 1.13 68.38 1.13 67.13 1.13 67.01 1.15 66.34 1.13 67.01 
40 1.06 79.87 1.06 79.68 1.06 78.17 1.06 77.87 1.06 79.73 1.06 79.55 

X 60 1.07 84.42 1.08 83.41 1.10 79.99 1.08 80.59 1.06 85.21 1.07 84.67 
80 1.06 85.83 1.06 85.51 1.07 82.66 1.06 83.17 1.05 89.14 1.05 89.00 

100 1.04 87.85 1.04 87.11 1.07 82.80 1.07 83.36 1.04 86.89 1.05 85.65 
Average 1.070 81.27 1.072 80.82 1.086 78.15 1.080 78.40 1.072 81.46 1.072 81.18 

I Average 1.054 72.44 1.057 72.06 1.074 69.86 1.073 69.88 1.060 71.43 1.062 71.36 
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6.7.6 A Comparison of different Local Search Algorithms 

(with due dates) 

In this final section of computational experiments, we compare the results of 

different local search algorithms on solving the 2DRSBSBPP with due dates. Both 

algorithms UTS LGF and RDM use SEARCH and SEARCH_1 procedures during 

the execution. 

Once again, we use the problem instances provided by Lodi et al. [194]. For 

each class, we consider five values of n : 20,40,60,80, 100, and for each combi­

nation of class and value of n, 10 problem instances are tested. As described in 

Section 6.7.1, we further categorise the data set into three separate groups by allo­

cating the due dates to the rectangles. In order to have a fair comparison between 

different algorithms in this experiment, we employ the stopping criterion of 120 

CPU seconds (2 minutes) per instance. 

Recall that, we optimise the bicriteria objective function of the problem by 

alternating between optimising each of the objective function discussed in Section 

6.4, through a hierarchical optimisation approach in every I iterations (in this case 

= 100 for UTS LGF and RDM), and G generations (in this case = 100 for MXGAF 

and SGA). By alternating the objective functions during the execution of the al­

gorithms, we are solving the problem using a simultaneous optimisation approach. 

Under this approach, both objective functions are treated as equally important. 

As a result, a set of Pareto optimal solutions consisting of both objective functions 

is obtained, where a trade-off curve and an eff~cient frontier for the problem can 

be formed. Note that the trade-off curve and the efficient frontier are equal only 

if the trade-off curve is convex. 

It is worth mentioning that there is no suitable way of constructing a single 

composite objective function to represent the bicriteria objective function of the 

problem. This is due to the incomparability of the unit used (i.e. time, number of 

bins) in both performance criteria which result in the computationally inaccessi­

bility for optimising the single composite objective function in a direct manner. 
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Both MXGA F and SGA algorithms do not require any major modifications to 

suit the objective functions. Both algorithms are only required to include the ob­

jective functions discussed in Section 6.4 as part of the fitness evaluation procedure. 

As suggested from the previous results, we employ the I-point crossover operator 

in both algorithms as it produced better results within a fixed computation time 

compared to the 2-point crossover operator. 

We present only the results of the two extreme points of the efficient frontier. 

The computational results of the first and second objective functions are presented 

in Table 6.11 and Table 6.12 respectively. In both tables, the first two columns 

give the due date class (discussed in Section 6.7.1) and the problem class. For each 

algorithm, the entries in the first column report the overall average ratio computed 

over all values of n (in this case, K = 50 in equation (6.10)). The entries in the 

second and third columns give the average overall bin utilisation (equation (6.11) 

with K = 50) and the overall average relative percentage deviation (equation 

(6.13) with K = 50) respectively. For each due date class, the final line gives the 

average value over all classes. The final line of each table gives the overall average 

value over all due date classes. Table 6.13 gives a summary of Table 6.11 and 

Table 6.12. 

By considering the overall average value found in each due date class in both 

Table 6.11 and Table 6.12, we see that the problem instances in due date class 

C to be the most challenging. The overall average ratio reported in Table 6.11 

clearly shows that the trade-off begins to show effect on the solution quality when 

the range of the rectangle due date increased. It is clear to see that the MXGA ob­

tained better results compared to other algorithms, although the results obtained 

in 'Ratio' (equation (6.10)) and 'OBU' (equation (6.11)) are worse than the results 

for the classic 2DRSBSBPP (refer Table 6.10). We notice that the RDM performs 

better than UTS LGF in all performance measures except in class A, where UTS LGF 

performs marginally better than RDM in both 'Ratio' and 'OBU'. 
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It is interesting to see that in Table 6.12, the computational results generated 

by SGA (1.065 on average) and UTSLGF (1.052 on average) in terms of 'Ratio' 

are generally better than the results obtained from the classic 2DRSBSBPP (from 

Table 6.10: 1.074 [SGA] and 1.060 [UTS LGF ]). However, MXGA and RDM fail to 

improve the solution quality of the 'Ratio' when compared with their counterpart 

in the classic problem. In this table, RDM clearly performs better than UTSLGF 

in terms of 'ARD'. This may indicate that UTS LGF is a very effective approach 

in finding the minimum number of bins used, but less powerful in minimising the 

maximum lateness of the rectangles packed. There is no huge surprise at this out­

come as the UTS LGF is initially designed specifically for the classic 2DRSBSBPP 

where the' only' objective is to minimise the number of bins used. 

In this case (i.e. second objective in Section 6.4), MXGA generated less impres­

sive results compared to UTS LGF in term of 'Ratio' and 'OBU'. But, the 'ARD' 

obtained by the MXGA clearly outperforms other algorithms. 



Due Date Data SGA MXGA F 
Class Class Ratio OBU ARD Ratio OBU ARD 

I 1.056 83.10 16.58 1.042 85.26 12.37 
II 1.033 63.69 17.38 1.020 66.19 11.15 
III 1.109 71.36 30.86 1.078 75.40 22.00 
IV 1.047 60.68 21.74 1.047 61.65 17.29 

A V 1.087 72.45 24.24 1.070 74.46 18.00 
VI 1.110 54.51 23.23 1.093 56.01 16.66 
VII 1.120 74.45 33.48 1.090 78.54 2:3.52 
VIII 1.125 74.14 33.96 1.089 78.79 2:1.31 
IX 1.007 44.07 1.68 1.007 44.10 1.68 
X 1.099 74.96 27.90 1.080 77.27 23.89 

Average 1.079 67.34 23.10 1.062 69.77 16.99 
I 1.065 81.82 34.93 1.046 84.73 24.17 
II 1.033 63.61 47.72 1.027 65.52 33.98 
III 1.132 68.91 66.78 1.088 73.90 46.21 
IV 1.060 59.27 53.45 1.047 61.70 35.98 

B V 1.113 69.66 48.58 1.080 73.43 35.51 
VI 1.110 54.34 48.85 1.110 54.93 37.73 
VII 1.133 72.88 71.94 1.102 76.80 52.17 
VIII 1.143 72.19 72.72 1.099 77.38 49.41 
IX 1.007 43.84 2.42 1.007 43.97 2.42 
X 1.113 73.38 67.45 1.087 76.31 53.48 

Average 1.091 65.99 51.48 1.069 68.87 37.11 
I 1.085 79.30 136.69 1.054 83.50 92.98 
II 1.050 61.80 232.20 1.040 64.02 149.48 
III 1.164 65.80 180.45 1.093 73.28 124.96 
IV 1.070 58.68 223.21 1.053 60.59 153.24 

C V 1.134 67.32 149.25 1.088 72.38 105.04 
VI 1.110 54.34 274.92 1.110 54.43 241.31 
VII 1.161 70.18 296.58 1.106 76.20 209.59 
VIII 1.153 70.86 421.53 1.101 76.79 273.28 
IX 1.007 43.71 9.93 1.007 43.81 9.93 
X 1.131 71.33 396.65 1.100 75.24 318.50 

Average 1.107 64.33 232.14 1.075 68.02 167.83 

UTSLGF RDM 
Ratio OBU ARD Ratio OBU 
1.053 83.42 16.02 1.088 78.73 
1.025 64.92 13.17 1.025 65.:36 
1.084 74.51 27.90 1.092 7:1.23 
1.033 62.25 19.09 1.040 61.77 
1.077 73.61 21.97 1.076 73.53 
1.110 54.41 21.49 1.103 55.34 
1.107 76.70 29.67 1.099 77.10 
1.102 77.26 29.99 1.103 76.41 
1.007 42.92 1.74 1.007 43.17 
1.089 76.59 32.05 1.093 74.93 
1.069 68.66 21.31 1.073 67.96 
1.069 81.58 31.78 1.088 78.46 
1.038 64.05 39.68 1.032 63.68 
1.128 69.99 64.99 1.107 71.50 
1.063 59.58 49.09 1.060 59.22 
1.104 70.91 48.33 U)94 71.59 
1.090 55.34 46.41 1.097 55.00 
1.135 73.47 65.82 1.122 74.28 
1.122 75.08 67.28 1.118 74.27 
Ul07 43.09 2.53 1.007 43.30 
1.125 72.90 81.02 1.110 73.23 
1.088 66.60 49.69 1.084 66.45 
1.083 79.76 115.41 1.104 76.50 
1.048 62.60 165.41 1.040 62.44 
1.148 68.01 173.81 1.127 69.10 
1.063 60.12 210.69 1.063 59.19 
1.134 68.20 142.07 1.106 69.88 
1.110 54.42 264.36 1.117 53.73 
1.164 70.42 261.95 1.134 71.77 
1.172 69.72 387.14 1.135 72.15 
1.008 43.14 15.1:3 1.008 43.29 
1.148 70.83 412.62 1.134 70.87 
1.108 64.72 214.86 1.097 64.89 

ARD 
22.27 
12.00 
26.59 
18.95 
21.73 
19.34 
29.46 
29.03 

2.12 
27.54 
20.90 

38.27 
33.46 
56.46 
45.72 
40.41 
42.01 
58.16 
60.49 

3.79 
64.39 
44.32 

128.02 
179.75 
148.03 
183.06 
121.12 
251.38 
227.27 
320.40 

18.72 
345.31 
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Due Date Data SGA MXGA p 
Class Class Ratio OBU ARD Ratio OBU ARD 

I 1.038 85,73 22,37 1.036 86,1:3 13,96 
II 1.033 63,69 17,38 1.020 66,19 11.15 
III 1.079 74,82 38,3:3 1.070 76,35 23,83 
IV 1.047 60,68 21.74 1.047 61.65 17,29 

A V 1.068 74.55 27.57 1.062 75,53 20.28 
VI 1.ll0 54.51 23.23 1.093 56,01 16.66 
VII 1.091 77.89 39.45 l.On 80,20 28.44 
VIII 1.089 78.23 39.93 1.079 80.05 28.68 
IX 1.007 44.07 1.68 1.007 44.10 1.68 
X 1.079 77.22 30,07 1.073 78,28 26,56 

Average 1.064 69,14 26,18 1.056 70.45 18.85 
I 1.041 85,19 46,29 1.036 86,24 29.00 
II 1.033 63,61 47,72 1.020 66,02 34,34 
III 1.078 74,88 89,86 1.071 75,99 55,05 
IV 1.053 59,72 53,68 1.047 61.70 35,98 

B V 1.068 74.44 63,55 1.062 75,60 40,84 
VI 1.110 54,34 48,85 1.103 55.40 37,80 
VII 1.090 77,85 91.03 1.081 79,34 66,72 
VIII 1.089 78,19 89,91 1.081 79,56 59.48 
IX 1.007 43,84 2,42 1.007 43,97 2.42 
X 1.079 77,28 75,08 1.074 78,02 60,04 

Average 1.065 68,93 60,84 1.058 70,18 42.17 
I 1.041 85,17 189,73 1.036 85,96 124,60 
II 1.037 62,99 234,99 1.020 65,65 152,94 
III 1.076 75,08 253,78 1.072 75,69 147,83 
IV 1.053 59,99 225.52 1.047 61.1:1 154.41 

C V 1.072 73.99 200.62 1.062 75.48 145.06 
VI 1.ll0 54.34 274.92 1.ll0 54.43 241.31 
VII 1.088 78.04 386,60 1.079 79.43 263,25 
VIII 1.091 77.85 509,33 1.081 79,39 328,74 
IX 1.007 43,71 9,93 1.007 43,81 9,93 
X 1.074 77,73 497.09 1.07l 78,29 418,8:3 

Average 1.065 68,89 278,25 1.058 69,93 198.69 

UTSLGP RDM 
Ratio OBU ARD Ratio OBU 
1.038 85,63 18,83 1.084 79,08 
1.020 65,31 13,20 1.020 65,73 
1.060 77,30 30,30 1.079 74,75 
1,033 62,25 19,09 1.040 61.77 
1.055 76,24 26,34 1.073 73,85 
1.1]0 54.41 21.49 1.103 55.34 
1.068 81.43 34,14 1.094 77,66 
1.074 80.80 33.40 1.096 77,15 
1.007 42.91 1.74 1.007 43,17 
1.064 79,73 35,09 1.083 75,93 
1.053 70.60 23,36 1.068 68.44 
1.035 85,95 39,96 1.081 79.42 
1.020 65,52 40,23 1.020 64,75 
1.064 17.05 76,45 1.076 74,90 
1.045 61.16 49,59 1.047 60.44 
1.057 76,03 56,22 1.075 73,56 
1.083 55,83 46.48 1.090 55.43 
1.067 81.24 82,04 1.094 77,33 
1.069 81.35 82,18 1.097 76,58 
L007 43,09 2,53 1.007 43,30 
1.073 78,42 92,67 1.080 76.41 
1.052 70.56 56,83 1.067 68,21 
1.037 85,67 149,20 1.089 78,17 
1.020 64,95 168,62 1.020 64,21 
1.054 78,04 227.23 1.081 73.73 
1.040 61.79 213.44 1.047 60.49 
1.056 76,14 184.62 1.078 72,59 
1.103 55,15 264,76 1.103 54.78 
1.067 81.28 332,09 1.107 74.73 
1.069 81.03 467,79 1.099 75,80 
1.007 43,23 16,61 1.008 43.31 
1.066 78,99 487,26 U)85 76,24 
1.052 70.63 251.16 1.072 67.41 

I 
ARD 
22,58 
12,19 
29,02 
18,95 
22.01 
19,34 
30.64 
29.67 

2.12 
28,52 
21.51 , 

42,80 
33,68 
68,20 
45,85 
48,26 
42,10 
65,92 
68,]5 

3,79 
73,31 
49,21 

138,09 
181.97 

182.49 
186,81 
146.44 
252,29 
267.94 
450,80 

21.83 
441.32 
227,00 

c+c+r-j Q 
P'"' O· >l' ~ 
CD ;:J 0" >-
t-;"cp '1:1 
S S OJ >-3 
'" ....... trJ 
S;:J f-' ;:0 ...... tv 
~S" OJ f-' ...... 

~ f{5 >-
QC+() 
,.,...P'"'O 

v CD S 
C:::;;:J'Q 
CIl ~ >l' 
CD S ::J. 
() 0" CIl 
o CD 0 
;:J I-i ;:J 

~ 0 0 
>-h >-h 

26 s-: t:J 
I-i ;:J :=;..; 
I-i CIl >-h 

~ ~ 8l 
;:J CIl CD 

'--' CD ;:J 
o...c+ 

:fi r 
...... 0 
c+ () 

P'"'e:.. 
>l' W 
CIl CD 
CD >l' 
() I-i o () 
;:J P'"' 

§">-
I-i ........ 

'<: ()'q 
o o I-i 

u;::;: 
<--.. P'"' a S 
...... CIl 
<~ 
CD 0 
o 0" 
>-h <--.. 

S a 
5' <' ...... CD 

S 
w' 2 tv 
...... ;:J 0 
;:J () CD ()'q I 



~ 
cJ 
CD 
OJ 

f-' 
W 

o 
o 
8 
~ 
~ 
~ 

~ 
~I D~ue--D-a-te-C-l-a-ss-I~-----S-G-A------~-----~--X-G-A--F----~-----U--T-S-L-G-F----~------R-D-~-------,I ~. 

-Lm~TBin-- 'Ratio-OBU ARD Ratio OBU ARD 
A 1.079 67.34 23.10 1.062 69.77 16.99 
B 1.091 65.99 51.48 1.069 68.87 37.11 
C 1.107 64.33 232.14 1.075 68.02 167.83 

AVERAGE 1.092 65.89 102.24 1.069 68.89 73.98 

Bin / Lmax Ratio OBU ARD Ratio OBU ARD 
A 1.064 69.14 26.18 1.056 70.45 18.85 
B 1.065 68.93 60.84 1.058 70.18 42.17 

C 1.065 68.89 278.25 1.058 69.93 198.69 
AVERAGE 1.065 68.99 121.76 1.057 70.19 86.57 

'----..... --........ -.-...... ~- - L ........... ___ . _ ,-- , -

-----

Ratio OBU ARD Ratio 
1.069 68.66 21.31 1.073 
1.088 66.60 49.69 1.084 
1.108 64.72 214.86 1.097 
1.088 66.66 95.29 1.085 

Ratio OBU ARD Ratio 
1.053 70.60 23.36 1.068 
1.052 70.56 56.83 1.067 
1.052 70.63 251.16 1.072 
1.052 70.60 110.45 1.069 , - ~----

OBU ARD 
67.96 20.90 

66.45 44.32 

64.89 192.31 

66.43 85.84 

OBU ARD 
68.44 21.51 
68.21 49.21 

67.41 227.00 
68.02 99.24 

o 
o 
8 
~ 
~ 
~ 

~ 
~ o· 
~ 

~ 

:::0 
(I) 
w 
~ 
rt 
w 
~ 

f-' 
tv 
0 

Q 
f-1j 

c:: 
w 
(I) 
(") 

0 
~ 
0... w 
~ 
(I) 
~ 

~ 

~ 
~ 

'-.../ 

Q 
~ 
>--
'lj 
>-j 
trJ 
?:I 
OJ 

tv 
f-' 
0 



CHAPTER 6 211 

6.8 Conclusions and Remarks 

In this chapter, a non-oriented two-dimensional rectangular single bin size bin 

packing problem with the objective of minimising the number of bins used is 

defined. We have developed a heuristic placement routine called Lowest Gap 

Fill (LGF) that is effective in filling the available gaps in the partial layout by 

dynamically selecting the best rectangle for placement during the packing stage. 

The routine requires O(n2 ) time. vVe compare the placement routine with some 

well known heuristics reported in the literature. Computational results shown that 

our proposed placement routine is capable of producing high quality solutions. 

A MultiCrossover Genetic Algorithm (MXGA) has been proposed to solve the 

non-oriented 2DRSBSBPP in this chapter. Various techniques have been intro­

duced into the MXGA to further enhance the solutions. We compared the MXGA 

with the well known Unified Tabu Search (UTS) proposed by Lodi et al. [194]. 

Extensive computational experiments show that the MXGA achieves better results 

compared to a standard genetic algorithm, UTS and randomised descent method. 

We also introduced a new variant of the 2DRSBSBPP where each rectangle 

has a due date and there is a fixed processing time for the bins used. The objec­

tive of this problem variant is to minimise the maximum lateness of the rectangles 

and minimising the number of bins used. A lower bound to the problem is also 

proposed in this chapter. Extensive computational experiments have been carried 

out to solve the 2DRSBSBPP with due dates. All the local search algorithms 

previously designed have been modified to suit the problem. Comparative com­

putational results shown that our proposed MXGA achieved a mixed degree of 

success compared to UTS. 

The applications of MXGA and LGF for other cutting and packing problems 

such as open dimension problem and stock cutting problem are worthy of future 

research. 



Chapter 7 

Symmetric Travelling Salesman 

Problem with Due Dates 

7 .1 Introduction 

In this chapter, we study a new variant of the symmetric version of the Time 

Constrained Travelling Salesman Problem (TCTSP), called the Travelling Sales­

man Problem with Due Dates (TSPDD). Other TCTSP in literature are TSP 

with Deadlines (TSPD), TSP with Target Times (TSPTT) and TSP with Time 

Windows (TSPTW). The TSPDD has important practical applications in bank or 

postal deliveries and scheduling deliveries. 

The TSPDD can be defined as follows: 

"Given a set {I, 2, ... , n} of cities, there exist a distance (or cost) Cij, and a travel 

time t ij , for each pair i, j E n of distinct cities. Assume that city 1 is a depot and 

the tour must visit every city exactly once, starting and ending at the depot. For 

each city i (except city 1), there is a due date di . This problem is best treated as 

a bicriteria optimisation problem where the objective is to find an ordering of the 

cities that starts and ends at the depot which minimises the maximum lateness 

Lmax , and the total tour length of the cities." 

212 
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The main motivation of this study is derived from the trade-off between the 

customers' (to be served in the cities) satisfaction and the routing (travelling 

cost / time) efficiency of the salesman. 

In this study, we propose a MultiCrossover Genetic Algorithm (MXGA) that 

utilises the multicrossover operator to solve the TSPDD. We introduce a new 

variant of a subtour based crossover, where the constraint on sharing the common 

subtours in both parents is relaxed. Detailed descriptions of the operator are given 

in Section 7.5.2. Once again, the architecture of the MXGA uses in this chapter 

is based on the framework design discussed in Section 4.9. Various techniques will 

be introduced to further enhance the solution quality. 

In the next section, we concentrate on the study of the TCTSP from literature. 

To the best of our knowledge, there is no literature on the TSPDD. Hence, we focus 

on problems which are closely related to TSPDD, namely TSPD, TSPTT and 

TSPTW. Extensive search on the literature shows that both TSPD and TSPTT 

receive little attention from the research community. Literature on the TSPTW 

will be the focus in Section 7.2. 

TSPTW consists of finding the minimum-cost tour of a set of cities where each 

city is visited exactly once. To be feasible, the tour must start and end at an 

unique depot within a certain time window and each city must be visited within 

its own time window. According to Balas and Simonetti [23], the problem can be 

defined more formally as follows: 

"G iven a set {I, 2, ... , n} of cities, there exist a distance/cost Cij, and a travel time 

tij , for each pair i,j En of distinct cities. For each city i, there is a time window 

[ai, bi] where ai and bi are the earliest and latest bound of the time window. The 

time window indicates that city i has to be visited not earlier than ai and not later 

than bi . Early arrival is allowed, where there exists a waiting time Wi until ai. The 

TSPTW is: 

- hard: if the late arrival is not allowed, or 

- soft: if the late arrival is allowed by adding a penalty to the objective function. 
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The objective is to find a minimum cost tour, where the cost of a tour may 

be the total distance travelled (in which case the waiting time Wi, is ignored) or 

the total time it takes to complete the tour (in which case the waiting time Wi is 

added to the travel time tij)." 

The problem is NP-hard and Savelsbergh [246] has shown that even finding 

a feasible solution to the TSPTW is an NP-complete problem. TSPTW can 

be viewed as a subproblem of the Vehicle Routing Problem with Time Window 

(VRPTW). 

Section 7.3 addresses the TSPDD in more detail and a new lower bound of the 

maximum lateness for the TSPDD is then proposed in Section 7.4. The develop­

ments of the MXGA for solving the TSPDD are the focus of Section 7.5. Some of 

the main components in the MXGA are discussed in detail. Section 7.6 provides 

an insight into the local search algorithms designed specifically for comparison 

purposes with the proposed MXGA. Computational experiments are conducted in 

Section 7.7 to assess the merit of the proposed algorithms. To end this chapter, 

we give some concluding remarks in Section 7.S. 

7.2 Time Constrained Travelling Salesman Prob­

lem 

Bansal et al. [24] consider the TSPD which they define as a problem of finding 

a tour in a set of n cities, starting at a city T (i.e. depot), that visits as many 

cities as possible by their deadlines. This problem has a practical application 

on the point-to-point orienteering problem and machine scheduling problem with 

sequence dependent setup times. The authors give an O(logn) approximation 

algorithm for the problem. They also extend their study in VRPTW and give an 

o (log2 n) approximation to the problem. No computational results are reported 

in their study. 
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Campbell and Thomas [43] address the stochastic version of the TSPD where 

each city i to be visited is based on a given probability Pi. They present three 

different models to represent three different ways in which deadline violations can 

be measured and addressed in a stochastic environment. No computational results 

are reported in their study. 

Balas and Simonetti [23] introduce the TSPTT which is applicable to Just-In­

Time scheduling problems. This model defines a target time for each city, rather 

than a time window. The objective is to minimise the maximum deviation between 

the target time and the actual service time over all cities. A secondary objective 

could be the minimisation of the total time needed to complete the tour. They 

propose a Dynamic Programme (DP) which is initially used in their research to 

solve the TSPTW. Computational results for problem instances from the literature 

for up to 46 cities, where the target times are defined as the time window mid­

points, show that the optimal solution is found in most cases within a reasonable 

time. To the best of our knowledge, no further research has been done on this 

problem variant. 

The first approaches for the TSPTW can be attributed to Christofides et 

al. [53] and Baker [17]. Both papers present a Branch and Bound (B&B) ap­

proach. Christofides et al. [53] describe the B&B approach in which the lower 

bound computation is performed via a state-space relaxation in a DP scheme. So­

lutions of problem instances of up to 50 cities with 'moderately tight' time windows 

are reported. Baker [17] exploits a time constrained critical path formulation in 

the lower bound computation. The algorithm performs well on problems of up to 

50 cities when only a small percentage of the time windows overlap. 

Langevin et al. [175] address the problem using a two-commodity flow formula­

tion within a B&B scheme. Computational results for problems of up to 60 cities 

are reported. More recently, Ascheuer et al. [14] consider several formulations for 

the asymmetric version of the problem and compares them within a branch and 

cut scheme. The framework incorporates techniques tailored for the asymmetric 

TSPTW such as data preprocessing, primal heuristics, local search, and variable 
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fixing. Their algorithm solves instances in the range of 50-70 cities to optimality. 

They also tested their algorithm on real-world problem instances with sizes of up 

to 250 cities. 

Dumas et al. [80] propose a DP approach for the TSPTW that extensively 

exploits elimination tests to reduce the state space. They report solving instances 

with up to 200 cities with 'fairly wide' time windows. Mingozzi et al. [211] propose 

a DP derived by through a generalisation of the state-space relaxation scheme 

developed by Christofides et al. [53]. Their proposed algorithm can be also applied 

to TSPTW problems with precedence constraints. They present computational 

results for instances of up to 120 cities. 

More recently, Balas and Simonetti [23] present a new DP algorithm that can 

be applied to a wide class of restricted TSP. This approach yields good results on 

the asymmetric version of TSPTW in cases where the number of overlapping time 

windows are small. 

Recently, TSPTW has drawn interest from the Constraint Logic Programming 

(CLP) community. Pes ant et al. [227] propose a CLP which incorporates arc 

elimination and time window reduction rules previously proposed by Langevin et 

al. [175] and Desrochers et al. [71] respectively. A year later, Pes ant et al. [228] 

show the flexibility of the CLP by solving a new variant of the TSPTW, called 

TSPTW with Multiple Time Windows, using the same algorithm as for the original 

problem with some minor modifications. 

Focacci et al. [95] view the TSPTW as a model combining TSP and a scheduling 

problem. They use a set of propagation techniques based on feasibility reasoning 

and exploiting information on costs. In addition, they also propose two branching 

strategies that can be used to solve the problem. Computational results of problem 

instances from the literature show that the algorithm is a viable choice for solving 

TSPTW. Moreover, they use the TSPTW as a case study and present a series of 

papers on CLP based on the general framework presented in [95] (see [96, 97, 98]). 
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Because of the limitations associated with exact formulation, there exists a 

body of research focusing on heuristic techniques for the TSPTW. Carlton and 

Barnes [44] solve the TSPTW with a reactive tabu search approach that permits 

infeasible solutions in its search neighbourhood through the implementation of a 

static penalty function. Computational results on 145 problem instances of up to 

200 cities from the literature show that optimal or near-optimal solutions can be 

obtained within reasonable computation times. 

Gendreau et al. [110] present an algorithm based on the GENIUS procedure (as 

discussed in Section 3.5.1.3). The computational results for problem instances of 

up to 100 cities from the literature, indicate that optimal or near- optimal solutions 

can be obtained in most cases within reasonable computation times. 

Calvo [42] presents a three-stage procedures to solve the TSPTW. It starts by 

solving an assignment problem with a particular objective function. This objective 

function takes into account the scheduling constraints, which are relaxed to obtain 

a pure assignment problem from the original formulation. By doing this, a solution 

close to feasible is obtained where there is a set of subtours and a long main tour 

starting from and ending at the depot. An insertion heuristic is then applied to 

insert the subtours into the main tour to obtain a good initial feasible solution for 

the problem. The solution is further improved by a local search scheme based on 

a k-Opt exchange procedure. Computational results on 395 benchmark problems 

indicate that optimal or near-optimal solutions can be obtained in most cases 

within reasonable times. 

Ohlmann and Thomas [219] apply a variant of simulated annealing, called com­

pressed annealing, which incorporates a variable penalty method with stochastic 

search to solve the TSPTW. The performance of the compressed annealing algo­

rithm is tested on 400 problem instances from the literature. The authors demon­

strate that compressed annealing consistently converges to good solutions, and 

exhibits potential for particularly large instances with wide time windows. They 

obtain new best known solution for a number of instances and match the previously 

best known solution in most of the benchmark problem instances. 
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Nygard and Yang [218] propose a Genetic Algorithm (GA) to solve the TSPTW. 

They develop a new crossover operator, called the Earliest Closing Time Crossover 

operator. Each offspring is carefully constructed by selecting the next city to be 

visited, based on the latest service time of the next potential city of both parents. 

The GA consistently provides good quality solutions for the problem instances 

from literature. 

A year later, Yang and Nygard [285] solve the TSPTW using a GA by in­

troducing a new class of crossover operator, called edge-type crossover, and a 

heuristically selected initial population. The initial population of the tour is con­

structed by first ordering the cities with time windows according to their latest 

service time to form a partial tour. Then, the cities with no time windows are 

inserted in between the partial tour to form a complete route. The edge-type 

crossover consists of a class of five different operators (i.e. shorter edge, longer 

edge, most cities, randomly combined, and nearest cities), which are modifications 

of the greedy crossover operator of Grenfenstette et al.[131 J. Computational results 

of the problem instances from literature demonstrate that the proposed crossover 

operators are effective. Moreover, the use of a heuristic method to generate the 

initial population greatly reduces the computation time. 

7.3 Thavelling Salesman Problem with Due Dates 

In this section, we introduce a new variant of the TCTSP, called Travelling Sales­

man Problem with Due Dates (TSPDD). The formal definition of the TSPDD is 

given in Section 7.1. 

We concentrate our study on the symmetric version (i.e. Cij = Cji) of the prob­

lem. For simplicity, we also assume that Cij = tij for i, j E n. It is worth mention­

ing that, although the total tour length of the cities is symmetric, the maximum 

lateness of the cities is not. We can demonstrate this by using the example in 

Figure 7.1 with a 3 cities (i = 1,2,3) problem. Note that the formulation and 

calculation of the maximum lateness of the cities will be given later in the section. 
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Let city 1 be the depot, city 2 and city 3 have a due date of 5 units and 6 units re­

spectively. Suppose that {C12, C23, c3d {3, 4, 5} and Cij = Cji for each pair i, j E 3 

of distinct cities. Thus, for Tour A: (1 2 3), the total tour length is 12 units and 

the maximum lateness is 1 unit. On the other hand, Tour B: (1 3 2) gives the 

same tour length as Tour A but with the maximum lateness of 4 units. This result 

shows that the total tour length is symmetric but the maximum lateness is not. 

Figure 7.1: An example of a 3 cities problem 
TourA Tour B 

C 23 = 4 CJ2 = 4 

d 2 =5 ~d3=6 d 2 =5 ~d3=6 
2 3 2 3 

C -3~ JC3 • =5 
12- / 

I 
C = 3 \., JCu = 5 

2. """'- I .-/' 

The main motivation of this study is derived from the trade-off between the 

customers' (to be served in the cities) satisfaction and the routing (travelling cost) 

efficiency of the salesman. On one hand, if the routing efficiency is more important, 

the salesman tends to visit customers via the shortest route in between cities to 

reduce the travelling cost (e.g. time and fuel). On the other hand, to meet the 

customer due date (e.g. bank closing time), the original route has to be reassigned 

so that priorities can be shifted. This allows customers (i.e. cities) that have the 

shortest due date to be visited ahead of the other cities. 

In order to deal with the problem, we first define two distinct objective func­

tions for the problem to be solved: 

1. minimise the maximum lateness of the cities to be visited with a secondary 
objective of minimising the total tour length (ideal for customers' satisfac­

tion) ; 

2. minimise the total tour length with a secondary objective of minimising the 

maximum lateness of the cities to be visited (ideal for salesman's routing 

efficiency) . 

Each of the objective function can be viewed as a hierarchical optimisation 

approach. This approach first optimises the primary objective, then the secondary 
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objective is optimised subject to the additional constraint that the solution value of 

the primary objective is optimum. By alternating the objective functions in every 

G generations (or I iterations) during the execution of the local search algorithms, 

we will be able to find a good balance of the trade-off between the customers' 

satisfaction and salesman's routing efficiency. 

The maximum lateness Lmax, of the cities to be visited in the tour is calculated 

as follows: let 1r(1), 1r(2), . .. , 1r(n), where 1r(1) = city 1, be the ordering of the 

cities to be visited in the tour and d7r(j) is the due date of the jth city in the tour. 

vVe denote t 7r (j)7r(j+1) as the travel time from jth city to (j + l)th city in the tour. 

The lateness of the jth city in the tour is obtained by the following: 

j-1 

L7r(j) = ~ t 7r (i)7r(i+1) - d7r(j)' (7.1) 
i=l 

Thus, the maximum lateness of the cities to be visited in the tour is 

Lmax . max {L7r(j)}' 
J=2,3 ... ,n 

(7.2) 

7.4 Lower Bound for TSPDD 

In this section, we derive a simple lower bound of the maximum lateness for the 

TSPDD where the distance between the cities satisfy the 'triangle inequality'. The 

Concorde software [57] which is developed by the research team lead by Applegate 

is used to generate the optimal tour length LEn of the n cities. 

vVe first sort cities 2, ... ,n in EDD order (i.e. non-decreasing order of their 

due dates) and let city 1 be the depot at which the tour must start and end. By 

employing the Concorde software [57], we obtain the optimal tour length LEn, of 

the problem. Since we assumed that Cij = t ij , then, LEn is also the total time 

travelled by the cities in the optimal tour. The lower bound on the maximum 

lateness of the tour of n cities is the minimum value of 

LEn - tj1 - d j ; for j 2,3, ... ,n. (7.3) 
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The logic is: one of the cities 2, 3, ... , n, must be the last city in the tour. Suppose 

it is city j. Then travel time ijl is included in the tour, and so a lower bound on 

the time that we can visit city j is LBn - i jl . We then subtract the due date of 

the city j to get the lower bound on the maximum lateness, Ln = LBn - ijl - dj . 

As we do not know which city is last in the tour, we look at all possibilities and 

choose the smallest. 

The steps of finding the optimal tour length and the lower bound on the max­

imum lateness of the tour are repeated by first removing the city with the largest 

due date from the list. The process is repeated until the list contains only the 

depot. More formally, the process can be summarised as follows: 

8 1: Sort cities 2, ... ,n in a non-decreasing order of their associated city due date 

di , so that d2 :5. d3 :5. ... :5. dn and let city 1 be the depot. Set j = n. 

8 2: Find the optimal tour length LBj, of j cities using the Concorde software. 

8 3: Compute a lower bound on the maximum lateness of the j cities, 
Lj = . min. {LBj - iil - di }. 

2=2,3, ... ,J 

8 4: Reduce j by 1 (i.e. j := j - 1), and repeat 8 2 8 3 until j = 1. 

Thus, the lower bound of the maximum lateness for TSPDD is 

LBLmax . max {Lj}. 
J=2,3, ... ,n 

(7.4) 

To justify that the above procedure generates a valid lower bound, consider an 

optimal tour of n cities. Suppose that we delete cities j + 1, ... , n from this tour. 

From the triangle inequality, no city is visited later as a result of these deletion. 

Let T be the tour length, and h be the last city visited. Then 

LBLmax > T - ihl - dh 

> LBj - thl - dh (7.5) 

> . min { LBj - til di } 
2=2,3, ... ,J 

as defined in 83. 
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7.5 MultiCrossover Genetic Algorithm 

In this section, we proposed a MultiCrossover Genetic Algorithm (MXGA) for 

solving the TSPDD. In the remaining subsections, we will discuss some of the 

main components of our proposed MXGA. The general architecture of the MXGA 

is shown in Section 4.9. 

7.5.1 Representation 

The proposed MXGA is developed using path representation (as discussed in Sec­

tion 4.2). The complete set of cities n, forms the length of the chromosome (in­

dividual). In this representation, the n cities to be visited are sequenced in order 

according to a string of n genes, so that if city i is the jth gene of the string, city 

i is the jth city to be visited. Without loss of generality, the first gene in each 

chromosome is city 1 and indicates the start of the tour as a depot. Also note that, 

every city appears only once in the chromosome. Figure 7.2 shows an example of 

the representation of an individual with 9 cities to be visited. Hence, the tour 

starts at city 1, the depot, followed by city 4, city 9, city 7, etc. until it reaches 

city 6 before it returns to the depot. 

Figure 7.2: An example of an individual (chromosome) 

gene's no. 1 2 3 4 5 6 7 8 9 

city's no. 11 1 41 9 17 1 215 1 81 3 16 I 

7.5.2 MultiCrossover 

The proposed multicrossover operator is a variant of the subtour based crossover. 

The offspring generated from this operator inherit the subtours from their parents. 

Unlike the other subtour based crossover operators such as Subtour Exchange 

Crossover (SXX) [284], Complete Subtour Exchange Crossover (CSEX) [167] and 
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Subtour Preservation Crossover (SPX) [257], where the parents have to share the 

common subtours in order for the operator to be effective, our proposed crossover 

strategy relaxes this constraint. 

This subtour based crossover strategy first randomly selects a subtour of size 

s from a parent P. Then, an arbitrary city is chosen within the subtour which 

indicates the position of the city in another parent Q where the subtour will be 

inserted. Any repeated city from parent Q is removed to form a valid temporary 

offspring. Similarly, we can generate the second temporary offspring by inserting 

a randomly selected subtour from parent Q to parent P. The size of the subtour 

is randomly selected within a bound of [2, an], where n is the number of cities to 

be visited. Initial experiments suggest the value of a as 0.2. In other words, the 

size s of the subtour is between the range of 2 cities to 20% of the total cities to 

be visited in the tour. The process of generating two temporary offspring from a 

pair of parents is as follows (an example is given in Figure 7.3): 

S 1: Select randomly a subtour of size s in both PI and P2 (Parent 1 & 2). 

S 2: Select randomly a city in the subtour of P2 as the identifier I. 

S 3: Locate the position R of I in PI. 

S 4: Insert the subtour of P2 into PI at R. 

S 5: Remove the duplicate cities from PI by preserving the subtour of P2. The 
completed tour is denoted as TC1 (Temporary Offspring 1). 

S 6: Repeat S2 - S5 to generate TC2 (Temporary Offspring 2) by inserting 

subtour from PI into P2 analogously. 

By repeating the steps above for r times, we produce a candidate list of 2r 

temporary offspring. The best and a selected temporary offspring found using the 

probabilistic binary tournament selection mechanism are then chosen to be the 

new offspring for the current generation. It is more convenient to describe the 

process using the example in Figure 7.3 with r = 3. 
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Figure 7.3: MultiCrossover 

subtour Temp. I 1 [>(1 61 91 4 17 I 21 5 I 81 3 [>~:] 

8 3 6 ri *TC 1 I 1 I 6 I 9 14 I 71 2 I 51 81 31 

====:====:7==5:2= ILl Temp. I 1 I 813 16 19 14 17 I 2 15 [::tlla:] 
TC 2 11 I 8 I 3 16 19 14 17 I 2 15 I 

-------------------------------------------------------------------------------------------------

subtour Temp.11 [>~J:9:T:(1 21914171518 I 316 I 
~~~-r~~~~ 

Parent 1 1 4 9 7 2 5 8 3 6 ri *TC 311 I 21 91 41 71 5 I 81 3 I 61 

Parent 2 1 8 3 6 9 4 7 5 2 ILl Temp. I 1 12 I 5 I 81 3 [:::(16 19 14 17 [:~Ja:::J 
TC 41 1 [2 I 5 I 81 31 6 19 14 171 

-------------------------------------------------------------------------------------------------

~ Temp. I 1 I 4 [::9::] 7 I 2 I 5 18 I 3 16 19 I 
Parent 1 1 4 9 7 2 5 8 3 6 ri TC 511 I 41 71 2 I 51 8 13 I 61 91 

Parent 2 1 8 3 6 9 4 7 5 2 ILl Temp. I 1 I 81 3 16 19 14 [:)1:::1 5 17 12 I 

o = identifier 

TC 611 I 8 13 16 19 14 15 17 I 21 

Offspring 1 I 1 I 6 I 9 14 I 71 2 I 51 81 31 

Offspring 211 I 21 91 41 71 5 I 81 3 I 61 

In Figure 7.3, we have two parent tours represented by ParentI (PI) and Par­

ent2 (P2) respectively as: 

PI : (1 4 9 7 2 5 8 3 6) and P2 : (1 8 3 6 9 4 7 5 2). 

Suppose that the cities between the 4th and 6th gene are selected as the subtour 

in both PI (7 2 5) and P2 (6 9 4), and we randomly selected city 9 in P2 as the 

identifier I. Hence, the position R of I in PI is at the 3rd gene. By inserting the 

subtour from P2 into PI at the 3rd position, we get 

Temp. : (1 4 6 9 4 7 2 5 8 3 6). 
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Note that the resulting chromosome is infeasible as city 4 and city 6 appear 

twice (i.e. visited twice in the tour). To deal with this infeasibility, city 4 and city 

6 that previously appear in PI are removed from the resulting chromosome. The 

aim is to always preserve the cities in the subtour from the other parent. The 

feasible chromosome is the new temporary offspring (TCl): 

TCI : (1 6 9 4 7 2 5 8 3). 

By repeating the steps above (i.e. subtour of PI (7 2 5), I 

R = 7 in P2), we have the second temporary offspring (TC2): 

TC2 : (1 8 3 6 9 4 7 2 5). 

city 7 in PI, and 

The whole process of generating two temporary offspring is repeated for r (in 

this case r = 3) times to generate a candidate list of 2r temporary offspring. Then, 

the best and a selected temporary offspring (in this case are TCI and TC3) found 

using the probabilistic binary tournament selection mechanism will be chosen to 

be the new offspring for the current generation. 

The advantage of randomly choosing a city within the subtour as the identifier 

helps the crossover strategy to generate different offspring if the same parents and 

subtour are selected again later in the process. For instance, suppose that the two 

parents from Figure 7.3 are selected again for crossover, with a different identifier 

selected within the same subtour (i.e. (6 9)) in Parent 2, we produce different 

offspring: 

- city 6 from Parent 2 as the identifier: Offspring: (1 4 7 2 5 8 3 6 9); 

- city 9 from Parent 2 as the identifier: Offspring: (1 4 6 9 7 2 5 8 3). 
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7.5.3 Swap 

The swap operator used in the MXGA is based on the idea of a 3-0pt move as 

described in Section 3.5.1.2. This operator is used to produce new offspring and 

introduce more diversity into the population when the multicrossover operator 

does not apply. This can be achieved by doing the following steps: 

S 1: Select randomly 3 swap points in a parent. 

S 2: Form 4 subtours which are separated by the swap points. 

S 3: Swap the position of the 2nd and 3rd subtours to form a new offspring. 

The steps above are repeated for the second parent to create a second offspring. 

Figure 7.4 shows the resulting offspring after the swap operator has been applied 

to a parent. 

Figure 7.4: Swap 

Note that we do not reverse the sequence of the genes within the subtours. 

It is considered that reversing the sequence of genes might produce deteriorating 

results when the city with the shorter due date is visited later in the tour. 
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7.5.4 Mutation 

We use the Displacement Mutation (DNI) operator proposed by Michalewicz [210] 

(as described in Section 4.7) to mutate the offspring. First of all, a subset of 

individuals from the new offspring population is selected with a given individual 

mutation probability PM, where an offspring is selected for mutation if the random 

number m, assigned to the offspring is less or equal to the individual mutation 

probability (i.e. m :::; PM)' Then the selected offspring will go through the DM. 

The steps of the DM can be summarised as follows: 

S 1: Select a subtour at random from the offspring. 

S 2: Remove the subtour from the offspring. 

S 3: Reinsert the subtour into the offspring at a randomly selected point. 

For example, consider the offspring in Figure 7.5 and suppose that the subtour 

(8 10 - 5) is selected. Let say we randomly select the 3rd gene to be the gene 

after which the subtour is inserted. This results in a new offspring as in Figure 

7.5. 

Figure 7.5: Displacement Mutation 

before mutation: 11 1 61151 71 4 1121 81101 5111 12 1 9 1131 31141 

c ;;?: ~. 
11 1 6115171 41121111 2 19 1131 3 114 1 su btou r: I 8 11 0 I 51 

insertion point 

after mutation: 1116115181101517141121111219113131141 
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7.6 Competitors - Performance Measure 

7.6.1 Dynamic Length Tabu Search 

In this subsection, we briefly describe the Tabu Search (TS) used in the computa­

tional experiments. We use the TS developed by Knox [170J. Several modifications 

have been considered to further enhance the efficiency of the algorithm. For in­

stance, Knox uses the 2-0pt (2-edge exchange) procedure as the inner heuristic 

and a fixed tabu list length of 3n for the TS, where n is the number of cities to be 

visited. On the other hand, we employ the 3-0pt (3-edge exchange) procedure as 

the inner heuristic and a dynamic length of the tabu list for the algorithm. 

The length of the tabu list is dynamically controlled during implementation 

in order to achieve better solution quality. Such processes can have an important 

influence on which moves are available to be selected at a given iteration. We 

observe that a short tabu list is needed at the beginning of the run to allow the 

search to fully exploit the neighbourhood. A longer tabu list is needed at the later 

stage of the run to allow the search to explore the other region of the search space. 

Since applying the 3-0pt procedure would result in a huge search space, we 

use a neighbour list for each city to reduce the search space and improve the 

speed of the algorithm while maintaining the solution quality. The neighbour list 

implementation was proposed by Johnson and McGeoch [161J. The details of our 

proposed Dynamic Length Tabu Search (DLTS) algorithm can be described as 

follows. 

Before the start of the algorithm, a neighbour list for each city i (i = 1, 2, 3, ... , n), 

which contains k (where k is a parameter, typically k = 20) nearest neighbours 

in a non-decreasing order of their distance/cost Cij, for i =I- j; j = 1,2,3, ... , n 

is generated. Two tabu lists (one for each of the bicriteria objective functions) 

with size of I n/8l are initialised (which are empty at the beginning of the search). 

However, throughout the implementation, the size of the tabu list is dynamically 

controlled within the range of r n/8l to r n/6l via the following systematic proce-
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dure. Start with a tabu list length of r n/81. Increase the length by 2 after 100 

non-improving moves. Decrease the length by 2 once an improving move is found. 

The idea of a dynamic length tabu list is inspired by Tsubakitani and Evans 

[267] in their study to find an optimum size of the tabu list for STSP. We quote 

the following statement from their paper: 

"If the tabu list is too short, the TS may keep returning to the same local 

optimum. This prevents the search pmcess fmm exploring a wide area 

of the solution space. In contrast, if the tabu list is too long, it results 

in excessive computational time to search the tabu list to determine if 

a move is tabu. Thus, a longer time spent going thmugh a tabu list 

pmvides less time for the pmcedure to explore in the solution space for 

a given computational time . ..... Therefore, the tabu list size should be 

as small as possible but long enough to allow the search to move away 

fmm the local optimum." 

Based on their computational experiments, they recommend that the tabu list 

size is in the range of r n/81 to r n/61 for TS using 3-0pt moves. 

The search begins with a randomly constructed initial tour except city 1, which 

is set to be the depot. At each iteration, a series of candidate 3-edge exchanges 

is evaluated and the best exchange candidate ebest, is identified and accepted as 

the new tour. An exchange candidate e, is one which is either not tabu or is 

able to override the tabu status by producing a new tour whose total tour length 

or maximum lateness (depending on the objective functions) is lower than the 

aspiration criterion value. 

It is worth mentioning that, this implementation does not perform an exhaus­

tive evaluation of all 3-edge exchange candidates on each iteration of the search. 

Instead, the neighbour list described earlier is used during the edge exchange pro­

cedure. Furthermore, the candidates for city i + 1 are also subject to the due date 

constraint where the due date of city i+ 1 has to be greater than or equal to that of 
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city i. The logic is that travelling from city i to city i+ 1 with the shortest distance 

helps to reduce the total tour length and visiting cities in a non-decreasing order 

of their due date helps to reduce the maximum lateness. 

We employ the same updating procedures suggested by Knox [170] for the tabu 

list and aspiration criterion. Note that Knox [170] employs the 2-edge exchange 

procedure as the inner heuristic. Thus, only two dropped edges are considered 

during updating procedures. In DLTS, the information recorded on the tabu lists 

consists of the three dropped edges of a 3-edge exchange candidate. The added 

edges are not recorded on the tabu lists. In other words, updating a tabu list 

involves placing the deleted edges of the 3-edge exchange on the list. If the list 

is full, the oldest elements of the tabu list are replaced by the new deleted edges 

information. An exchange candidate is classified as tabu only if all three added 

edges of the exchange are on the tabu lists. If one or more added edges are 

not on the tabu lists, then the candidate move is not classified as tabu. The 

value recorded on the aspiration criterion is the total tour length or the maximum 

lateness (depending on the objective functions) which exists prior to making the 

candidate exchange. The aspiration value associated with the three dropped edges 

of an exchange is the only one updated. 

In order to find a good balance between the trade-off of the objective functions 

(i.e. customers' satisfaction and salesman's routing efficiency), we alternate the 

objective functions during the search in every I iterations the relevant tabu list 

and aspiration criterion. 

7.6.2 Randomised Steepest Descent Method 

The Randomised Steepest Descent Method (RSDM) we employed in the compu­

tational experiments has a similar framework (i.e. 3-0pt exchange and neighbour 

list) as in the DLTS. The main differences are: instead of using the tabu lists and 

the aspiration criterion to explore and exploit the search space in DLTS, we use 

the acceptance rule and randomisation to search the solution space in RSDM. 
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The acceptance rule we employ allows neutral moves of up to R consecutive 

iterations (where R is a parameter, e.g. 1000) before terminating the algorithm. 

This gives the algorithm more chance to explore and exploit the search space. We 

also introduce a randomisation strategy into the algorithm when there are multiple 

identical good tours, either improving or neutral moves, found in a single iteration. 

In order to prevent the tour from falling into the same local optimum, a move is 

randomly selected from the list of identical tours to be the new current tour. 

Note that deteriorating moves are not allowed in RSDM. In other words, the 

algorithm will terminate once the best tour found at the end of the current iteration 

is worse than the best tour found so far. As in DLTS, we alternate the objective 

functions during the search every I iterations. 

7.7 Computational Experience 

In this section, we report on computational results of our proposed local search 

algorithms. Having explained the experimental design for the computational ex­

periments, we present the performance effect of the swap and mutation operators 

in our proposed MXGA in solving a series of test problems from literature for the 

standard Symmetric Travelling Salesman Problem (STSP). 

vVe complete this section by presenting the extensive computational results 

for different local search algorithms proposed in the previous sections for solving 

the symmetric version of TSPDD, based on the objective functions discussed in 

Section 7.3. 

7.7.1 Experimental Design 

All the reported computational results are generated on a Pentium IV 2.0GHz 

PC with 512 Mb memory. The algorithms are coded in ANSI-C using Microsoft 

Visual C++ 6.0 as the compiler. The problem instances used are from the TSPLIB 
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[266], with the number of cities varying from 17 to 200. We adopt the following 

abbreviations for the remaining subsections: 

: Minimum Tour Length 
: Maximum Lateness 
: Standard Genetic Algorithm 

MXGA : MultiCrossover Genetic Algorithm 
MXGAs : MXGA for STSP 
DLTS : Dynamic Length Tabu Search 
RSDM : Randomised Steepest Descent Method 

We compare the performance of the various local search algorithms on the basis 

of the following statistics: 

- Minimum Relative Percentage Deviation: 

-OPT } 
OPT x 100% . (7.6) 

(7.7) 

- Average Relative Percentage Deviation: 

IT' ARD ~~1 Di h D 
.1. min : T = K ,were i = 

UB . -OPT 
TmIni X 1000/. 

OPT /0 
(7.8) 

~~1 Ei U BLmaxi - LBLmax 07 () 
Lmax : ARDL = , where Ei = x 10010. 7.9 

K LBLmax 

The variables used in the above equations take the following values: 

- K = total number of repeated runs for each problem instance using different 

starting solution(s). In this case, K = 10. 

- U BTmin = heuristic solution found in i-th run for Tmin . , 

U BLmaxi = heuristic solution found in i-th run for Lmax. 

- LBLmax = lower bound of the Lmax for the problem instance. 

- OPT = optimal solution of the problem instance with respect to the tour length 

(as given in TSPLIB [266]). 

The due date di , of city i is generated based on the idea of Solomon [258] in 

generating the center of the time windows for the vehicle routing problem with 
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time windows. He uses the interval (e1 + t h , h - til - Si) as the center of the time 

windows where the variables take the following values: 

- el and II = earliest and latest bound of the time windows for the depot, 

- tli and til = travel time from depot to city i and vice versa, and 

- Si service time in city i. 

As mentioned in Section 7.3, the depot (i.e. city 1) does not has a time window 

nor due date. For simplicity, we assume el = 1 and II = OPT. Note that 

Cij = tij for i, j E n, and there is no service time in the cities. Hence, the 

integer due date of the city i, di , is generated from the uniform distribution of 

The specific values for the generic design variables in MXGA, SGA, DLTS, 

and RSDM are summarised in Table 7.1 and 7.2 respectively. Initial computational 

experiments are performed to determine the size of the candidate list of temporary 

offspring. Five values of r (r 3,5,7, g, 10) are tested and results show that r = 5 

gives the best result within a reasonable computation time. 

Table 7.1: Implementation of generic design variables for MXGA and SGA 
variable value 

crossover rate, Pc 0.75 
multicrossover, r (MXGA and MXGAs only) 5 (= 10 temporary offspring) 
individual mutation rate, PM 0.25 
filtration rate, F (MXGA and MXGA s only) every 50 generations 
selection mechanism probabilistic binary tournament 
chromosome length, L number of cities 
population size, N 100 
alternating the objective functions, G every 100 generations 

Table 7.2: Implementation of generic design variables for DLTS and RSDM 
variable value 

neighbour list, k 20 
alternating the objective functions, I 100 
max. number of consecutive neutral move allowed per run, R (RSDM only) 1000 
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7.7.2 Initial Investigation of MultiCrossover Genetic Al­

gorithm 

In this subsection, we report on computational results of the proposed MXGA 

for solving the standard STSP. This problem variant does not includes due dates 

to the cities. In other words, the only objective function to be considered is the 

minimum tour length of visiting each city exactly once. We believe that the results 

obtained from these experiments will give good indications on the performance of 

the MXGA. For the initial development, we consider only 15 problem instances 

containing between 17 and 100 cities, taken from the TSPLIB [266]. For each test 

problem, a total of 10 runs are performed to obtain an average value. A duration 

of maximum of 20000 generations per run are performed. Note that, the execution 

in each run of the MXGA s is halted as soon as the OPT for the problem instance is 

found, or when 1000 consecutive non-improving generations have been generated. 

By doing this, we can reduce the computation time spent on the execution of 

the algorithms. The logic is that, if an algorithm fails to improve the solution 

quality after a certain number of generations, the population is considered to 

have converged to a local optimum. Further exploration and exploitation on the 

search space are unlikely to improve the solution quality. Note that the average 

computation time for each problem instance is not reported in Table 7.3 and 7.4. 

We incorporate the swap operator in the MXGAs instead of the reproduction 

procedure when the multicrossover operator does not apply to the selected parents. 

Table 7.3 examines the effect of that on solution quality for the proposed MXGA s . 

The first column of Table 7.3 lists the names of the TSPLIB instances considered, 

where the number indicates the number of cities. The second column gives the 

optimal solution of the problem instances. The following two pairs of columns 

refer to the results obtained by the MXGAs for cases with and without the swap 

operator respectively. For each algorithm, the entries in the first column report the 

minimum relative percentage deviation (equation (7.6)) of the tour length while 

the second column gives the average relative percentage deviation (equation (7.8)) 
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of the tour length. The final line of Table 7.3 gives the overall average value over 

all test problems. 

We first observe that the swap procedure yields better results in the MXGAs 

compared to the algorithm without the procedure. Of the 15 problems tested, 

the MXGA s with the swap operator finds optimal solutions for six problems at 

least once in 10 runs, compared to five problems for MXGAs without the swap 

operator. As the values indicate, we believed that the swap operator procedure is 

able to help the algorithm to further explore the search space although a slightly 

longer computation time is required. Consequently, the swap operator is used in 

the proposed MXGA. 

Table 7.3: Results of MXGAs (with and without Swap) (maximum of 20000 gen­
erations per run a) 

TSPLIB 
MXGAs 

with Swap without Swap 
Data Set OPT l'vIRDT ARDT MRDT ARDT 

gr17 2085 0.00 0.71 0.00 1.74 
gr21 2707 0.00 0.00 0.00 0.07 
gr24 1272 0.00 1.01 0.00 1.21 
fri26 937 0.00 0.00 0.00 0.64 

bays29 2020 0.00 1.36 0.00 3.54 
dantzig42 699 0.00 0.00 0.14 3.35 

swiss42 1273 0.67 4.41 1.01 6.21 
att48 10628 1.11 5.04 1.11 4.73 
gr48 5046 1.34 5.83 2.11 8.02 
hk48 11461 l.l5 4.88 l.89 5.70 
eil51 426 l.50 4.42 2.03 5.44 

berlin52 7542 l.34 4.37 3.21 6.51 
st70 675 2.96 8.61 5.48 10.81 
pr76 108159 0.77 6.33 2.54 8.87 

kroA100 21282 2.63 8.00 4.67 10.27 

Average 0.90 I 3.66 I l.61 5.14 I 
a stopping criterion: 1000 consecutive non-improving generations or optimal solution is found. 

In the next experiment, we will investigate the impact of the mutation operator 

in the MXGAs ' It has been suggested that the mutation operator might deteriorate 

the solution quality by randomly inserting the cities into the tour. To analyse 

this, a MXGAs has been applied without using the mutation operator. Note 

that the swap operator is used in the MXGAs for both cases (with and without 
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mutation operator). Table 7.4 summarises the computational experiments of these 

experiments. The table gives the same information for the first two columns as 

in Table 7.3. The following two pairs of columns refer to the results obtained by 

the MXGA s for the cases of with and without the mutation operators respectively. 

Table 7.4: Results of MXGA s (with and without Mutation) (maximum of 20000 
generations per run b) 

TSPLIB 
MXGA s 

with Mutation without Mutation 
Data Set OPT MRDT ARDT iVIRDT ARDT 

gr17 2085 0.00 0.00 0.00 0.48 
gr21 2707 0.00 0.00 0.00 0.00 
gr24 1272 0.00 0.00 0.00 0.94 
fri26 937 0.00 0.00 0.00 0.00 

bays29 2020 0.00 0.79 0.00 1.47 
dantzig42 699 0.00 0.00 0.00 0.00 

swiss42 1273 0.00 3.97 0.84 4.23 
att48 10628 0.56 3.11 1.11 5.11 
gr48 5046 0.00 3.06 1.23 5.79 
hk48 11461 0.00 4.46 1.43 4.95 
eil51 426 0.23 1.81 1.41 4.32 

berlin52 7542 0.00 3.89 1.05 4.24 
st70 675 0.74 4.56 3.05 8.54 
pr76 108159 0.65 4.81 0.79 6.54 

kroA100 21282 0.45 5.77 2.79 7.51 

Average 0.18 I 2.42 I 0.91 3.61 

b stopping criterion: 1000 consecutive non-improving generations or optimal solution is found. 

Our first observation from Table 7.4 is that the results achieved by the MXGAs 

with the mutation operator clearly outperform the MXe As without the mutation 

operator. Of 15 problems tested, the MXGAs with mutation operator finds op­

timal solutions of 10 problems at least once in 10 runs while the remaining five 

problems of near optimal solutions (i.e less than 1% over the optimal). As in the 

previous experiment, the MXGA s with mutation operator requires slightly longer 

computation time compared to the MXGA s without mutation operator. Thus, the 

mutation operator is used in the proposed MXGA. Consequently, this final version 

of the MXGA is used in the comparative tests in next subsection. 
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7.7.3 A Comparison of different Local Search Algorithms 

In this subsection, we present the results of an extensive computational experiment 

that compare our proposed MXGA with the Standard GA (SGA), DLTS and 

RSDM described in the previous sections. The differences between the MXGA and 

SGA are with regards to the use of the subtour crossover operator, reproduction 

procedure and the replacement scheme. The SGA applies the subtour crossover 

operator to produce two offspring from two selected parents. In the case of SGA, 

the steps explained in Section 7.5.2 are used only once (i.e. r = 1) to generate 

exactly two offspring. The SGA uses the reproduction procedure instead of a 

swap operator when the crossover does not apply to the selected parents. The 

replacement strategy employ in the SGA is the steady-state replacement strategy. 

For this final experiment, we use 29 problem instances containing between 

51 and 200 cities, taken from the TSPLIB [266]. All the problem instances use 

a format of 'EUC_2D' for the distance between the cities. EUC_2D means the 

edge of a pair of cities is an Euclidean distance in two-dimensional. The choice 

is made due to the limitation of the Windows version of the Concorde software 

[57] in obtaining the optimal tour length which is then used in the calculation of 

the lower bound of maximum lateness in Section 7.4. This Windows version of 

software is constrained by the format of the distance between the cities. 

For each test problem, a total of 10 runs are performed to obtain an average 

value. In order to have a fair comparison between the different algorithms in this 

experiments, we employ the stopping criterion of 300 CPU seconds (5 minutes) 

per run for problem instances with 100 cities or less, and 600 CPU seconds (10 

minutes) per run for problem instances with cities between 101 and 200. 

Recall that, we optimise the bicriteria objective function of the problem by 

alternating between optimising each of the objective function discussed in Section 

7.3, through a hierarchical optimisation approach in every I iterations (in this 

case 100) for DLTS and RSDM, and G generations (in this case = 100) for 

MXGA and SGA. By alternating the objective functions during the execution of 
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the algorithms, we are actually trying to solve the problem using a simultaneous 

optimisation approach. Under this approach, both objective functions are treated 

as equally important. As a result, a set of Pareto optimal solutions consisting 

of both objective functions is obtained, where a trade-off curve and an efficient 

frontier for the problem can be formed. Note that the trade-off curve and the 

efficient frontier are equal only if the trade-off curve is convex. 

It is worth mentioning that there is no suitable way of constructing a single 

composite objective function to represent the bicriteria objective function of the 

problem. This is due to the incomparability of the unit used (i.e. time, tour length) 

in both performance criteria which result in the computationally inaccessibility for 

optimising the single composite objective function in a direct manner. 

In this section, we present only the results of the two extreme points of the 

efficient frontier. The computational results of the first and second objective func­

tions are presented in Table 7.5 and Table 7.6 respectively. The first column in 

both tables lists the names of the TSPLIB instances considered, where the num­

ber indicates the number of cities. For each algorithm, the entries in the first 

two columns report the minimum relative percentage deviation (equation (7.6)) 

and the average relative percentage deviation (equation (7.8)) of the tour length 

respectively. The next two columns report the minimum relative percentage de­

viation (equation (7.7)) and the average relative percentage deviation (equation 

(7.9)) of the maximum lateness respectively. The final line of each table gives the 

overall average value over all test problems. 

By considering the overall average value found over all test problems in both 

Table 7.5 and Table 7.6, the MXGA achieved better results compared to SGA, 

DLTS and RSDM. However, a one-to-one comparison on the test problems shows 

that the MXGA achieved a mixed degree of success compared to DLTS and RSDM. 

Note that, the results obtained for Lmax in both tables are less impressive in all 

cases. This might be due to the simple lower bound derived previously. Hence, a 

better lower bound is needed to further justify the quality of the results. vVe also 

noticed that both DLTS and RSDM obtained similar results in most of the test 
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problems. This suggests that the randomisation used in the RSDM might have 

the same effectiveness as the tabu list in DLTS. The problem instances with prefix 

"pr" appear to be difficult to solve using DLTS and RSDM compared to MXGA 

and SGA. 

The results of SGA in Table 7.5 appear comparable with both the DLTS and 

RSDM algorithms in most of the test problems, especially in finding the minimum 

tour length. However, SGA failed to compete with the other algorithms when 

the second objective is considered (in Table 7.6). Based on the computational 

results, we can conclude that a good balance between the trade-off of the maximum 

lateness and the minimum tour length is very difficult to achieve within a limited 

computation time. 
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7.8 Conclusions and Remarks 

In this chapter, the variants of the Time Constraint Travelling Salesman Problem 

(TCTSP) are studied. A new variant of TCTSP, called the Travelling Salesman 

Problem with Due Dates (TSPDD) is introduced, where each city to be visited has 

a due date. The objective is to find an ordering of the cities that starts and ends 

at the depot which minimises the maximum lateness and the total tour length of 

the cities. A lower bound of the maximum lateness to the problem is also proposed 

in this chapter. 

A MultiCrossover Genetic Algorithm (MXGA) has been proposed to solve the 

TSPDD in this chapter. Various techniques have been introduced into the pro­

posed MXGA to further enhanced the solutions quality. The computational re­

sults presented for several symmetric version of TSP instances have shown that 

the MXGA is able to produce high quality solutions. 

A tabu search which dynamically control the length of the tabu list during the 

execution and a neighbour list of visiting the nearest cities is developed for the 

problem. A randomised steepest descent method is also developed. It randomly 

selects a tour when there are multiple identical good tours found in a single it­

eration. Extensive computational experiments have been carried out to solve the 

TSPDD. Comparative results show that the MXGA achieved better solution qual­

ity compared to a standard genetic algorithm, dynamic length tabu search and 

randomised steepest descent method. However, the results obtained in minimising 

the maximum lateness are less impressive. 

There are several issues for future research. First, a better lower bound of the 

maximum lateness could be derived. Secondly, it would be interesting to inves­

tigate the performance of the local search algorithms on other TCTSP. Thirdly, 

further tests of the algorithms on other possibly more complex TSP instances are 

required to provide a detailed assessment of the merits of the proposed algorithms. 

For instance, different range of city due dates sets could be considered. 



Chapter 8 

Conclusions and Further Research 

Throughout this thesis, we have considered the developments of a general frame­

work for MultiCrossover Genetic Algorithms (MXGAs) for three specific variants 

of Combinatorial Optimisation Problems (COPs) and successfully applied the pro­

posed MXGAs to each of the problems. vVe demonstrated that the proposed ap­

proach is general enough to be applicable to a diverse range of problems from the 

Single Machine Family Scheduling Problem (SMFSP) with family setup times to 

the Symmetric Travelling Salesman Problem with due dates (STSPDD). In this 

last chapter, we summarise the research conducted and discuss the prospects for 

future research on the subject. 

8.1 Summaries of Research Conducted 

The problems we studied are mainly motivated by the dilemma faced by manu­

facturing organisations which involves the trade-off between the manufacturer's 

efficiency and customers' satisfaction. By including the customers' due dates into 

the standard problems, we have created some new NP-hard problems which have 

these due dates as a common theme. 

One of the main objectives of this research is to develop a general framework for 

the MXGA (Section 4.9) for solving the problems. The proposed MXGA utilises a 
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multicrosover operator that uses a simple yet effective standard crossover operator 

as the crossover strategy to generate offspring. Every time the proposed crossover 

strategy is executed, two temporary offspring are generated from the selected par­

ents. The main feature of the multicrossover is that it first generates a candidate 

list of valid temporary offspring from a pair of selected parents through repeated 

applications of the proposed crossover strategy. Then, the best and a selected 

temporary offspring (using the probabilistic binary tournament selection mech­

anism) are chosen to be the offspring for the current generation. Furthermore, 

various operators such as swap and filtration techniques have been introduced into 

the MXGA to further enhance the solution quality. The efficiency of the MXGA 

developed in the thesis is measured through a comparison with other local search 

methods such as tabu search (TS) and a steepest descent method (SDM) using the 

same problem instances. Since the problems are NP-hard, the optimal solutions 

are not known. The next best form of validation of the algorithm is to compare 

the results with lower bounds. 

The implementation of the MXGA starts in Chapter 5 with the SMFSP with 

family setup times. The objective is to find a schedule which minimises the maxi­

mum lateness of the jobs in the presence of the sequence independent family setup 

times. To the best of our knowledge, no research has been carried out on the 

application of a genetic algorithm (GA) for this specific problem. The proposed 

MXGA is developed using binary representation and uses the standard I-point or 

F-point crossover operator (where F defines the total number of families in the 

schedule) as the crossover strategy to produce temporary offspring. 

The performance of the MXGA is compared with an improved TS and SDM. 

A tabu search with a dynamic length tabu list (DLTS) is designed for the problem 

using the shift job neighbourhood (as explained in Section 5.5). The tabu list 

length is dynamically controlled during implementation in order to achieve better 

solution quality. Such a process has an important influence on which moves are 

available to be selected at a given iteration. An aspiration criterion is also intro­

duced to prevent the occasional loss of good solutions due to the tabu list. In our 
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SDM, we considered a randomisation strategy when there are multiple identical 

good solutions (i.e. improving and neutral moves) found in a single iteration. A 

move is selected randomly from the list of the identical good solutions. vVe be­

lieved this strategy helps the search to escape from a local optimum and continue 

its search in other 'interesting' regions of the search space. Extensive computa­

tional results show that the proposed MXGA performs better compared than the 

other local search methods, and in particularly significantly improves the solution 

quality compared to a standard GA (SGA). 

In Chapter 6, we first studied the non-oriented Two-Dimensional Rectangular 

Single Bin Size Bin Packing Problem (2DRSBSBPP) and successfully developed 

a heuristic placement routine, called Lowest Gap Fill (LG F), that is effective in 

filling the gaps in a partial layout by dynamically selecting the best rectangle 

for placement. The LGF requires only O(n2
) time (where n is the number of 

rectangles) during the packing stage. Promising results have been achieved (as in 

Table 6.4 and 6.5) and it is comparable with other higher complexity placement 

routines such as Floor Ceiling and Touching Perimeter (both routines have time 

complexity of O(n3 )). 

We extended the problem by including a positive integer due date for each 

rectangle and a fixed processing time for the bins used. Hence, a new variant of 

the problem emerged and we referred to it as 2DRSBSBPP with due dates. The 

objective is to minimise the maximum lateness of the rectangles by packing them, 

without overlap, and minimising the number of bins. This new problem variant 

has practical industrial applications such as in the wood and metal industries. 

Section 6.4 explains in detail the problem to be solved. Since the optimal solution 

is not known, we derived a simple lower bound on the maximum lateness for the 

problem. 

The MXGA proposed for both standard and extended 2DRSBSBPP are based 

on the general framework discussed in Section 4.9. An integer permutation repre­

sentation is used where each gene indicates the bin number, in which the rectangles 

are placed into the bin. We used the standard I-point or 2-point crossover operator 
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as the crossover strategy to produce two temporary offspring. The performance of 

the MXGA is compared with the Unified Tabu Search (UTS) developed by Lodi 

et al. [194] and a Randomised Descent Method (RDM) which uses a similar frame­

work as in the UTS. All the local search algorithms use the LGF as the placement 

routine. Although the MXGA significantly outperforms the SGA and RDM in 

the extensive computational experiments, it achieves a mixed degrees of success 

compared to UTS. 

The STSPDD is the main focus of Chapter 7. This is a new variant of the 

time-constrained TSP where each city has a due date by which it should ideally 

be visited. The objective is to minimise the maximum lateness and the total 

tour length of the cities to be visited. This extension has important practical 

applications in banks or postal deliveries, scheduling deliveries, etc. The proposed 

MXGA uses a path representation and subtour crossover operator. The proposed 

crossover strategy generates two temporary offspring through a process that inserts 

a subtour, from one parent to the other parent. 

The performance of the MXGA is compared with a DLTS and RSDM. Both 

DLTS and RSDM use a 3-0pt move as the inner heuristic. Since applying the 

3-0pt procedure would result in a huge search space, a neighbour list for each city 

is introduced to reduce the search space and increase the speedup of the algorithms 

while maintaining the solution quality. A neighbour list of a city is a list which 

contains a group of nearest neighbours from the city in a non-decreasing order of 

their distance. Comparative results show that the MXGA achieves better solution 

quality compared to the SGA, DLTS and RSDM. However, the results obtained 

in minimising the maximum lateness are less impressive for all the local search 

algorithms. 

Unfortunately, the lack of suitable lower bounds for the maximum lateness 

makes it difficult to decide whether the solutions obtained from the proposed 

MXGAs and other local search methods in the previous problems are in fact of 

high quality. This could be the subject of future further research efforts. 



CHAPTER 8 247 

8.2 Further Research 

Our work has left some open ends, both theoretical and computational. The use 

of local search algorithms to tackle any kind of COPs is always an endless source 

for research. More classical local search algorithms such as simulated annealing, 

scatter search, variable neighbourhood search or ant colony optimisation could be 

implemented to further justify the merit of our proposed MXGAs in solving the 

problems. Further extensive computational tests of the MXGAs on other possibly 

more complex problem instances may also be required to provide a detailed as­

sessment of the merits of the proposed algorithms. For instance, different ranges 

of customers' due dates sets could be considered. 

Furthermore, it would be interesting to investigate the performance of the 

proposed MXGAs on other optimality criteria for the problems studied. For in­

stance, the development of MXGAs for other optimality criterion such as minimis­

ing the total (weighted) tardiness/earliness in SMFSP, other cutting and packing 

problems such as open dimension problem and stock cutting problem, and other 

time-constrained TSP such as the TSP with time windows are worthy of future 

research. 

The next Issue that comes to mind is computing suitable lower bounds of 

the maximum lateness for the non-oriented 2DRSBSBPP with due dates and the 

TSPDD. Better lower bounds could be derived by using the dynamic programming 

formulation of the state-space relaxation technique. The search for lower bounds 

using other techniques is still an open area for future research. 

In this thesis, we have demonstrated the effectiveness and efficiency of the 

MXGAs built up from the underlying general framework in solving COPs. We 

really hope that the studies in this thesis will be helpful for the developments of 

such algorithms and new variants of the COPs. It has certainly given us many 

possibilities for further research. 
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