$$\frac{\partial u}{\partial t} = \alpha \nabla^2 u$$

Partially-Ordered Event Triggered Systems, and the Challenges of Event-Based Computing

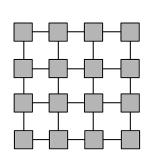
Mark Vousden: m.vousden@soton.ac.uk

Graeme Bragg: gmb@ecs.soton.ac.uk

Alex Rast: a.d.rast@soton.ac.uk

Jonny Beaumont: j.beaumont@imperial.ac.uk Matthew Naylor: matthew.naylor@cl.cam.ac.uk

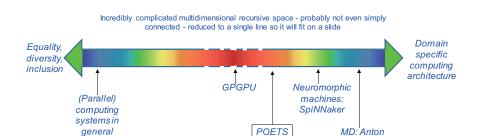
David Thomas: d.thomas1@imperial.ac.uk


Andrey Mokhov: andrey.mokhov@newcastle.ac.uk

Andrew Brown: adb@ecs.soton.ac.uk

Describing Problems

- $\frac{\partial u}{\partial t} = \alpha \nabla^2 u$ (initial-value problem)
- Lockstep iteration vs. globally asynchronous
- Different ways (algorithms) of saying the same thing (physics).



About POETS

- **Objective:** To explore the potential of event-based computing for solving certain types of massive compute problems.
- POETS exploits developments in reconfigurable platforms and the availability of cheaper cores.
- The user defines simple behaviours for the compute cores, which create emergent system dynamics.
- POETS can solve problems orders of magnitudes faster than conventional machines... but is not a general purpose compute machine.

Computers do Everything Poorly

POETS

Dissipative Particle Dynamics

Our Partners

So if this system is so great for large problems that people care about...

Why aren't all scientists using it?

POETS Challenge: Problem Reformulation

- It's hard to leave decades of algorithm theory behind... and to justify picking up another for a slight chance at greatness.
- For some applications, it's not even possible.
- Need to convince:
 - The scientist
 - Their team
 - Paper reviewers
 - Grant panels

Challenge: Timeliness

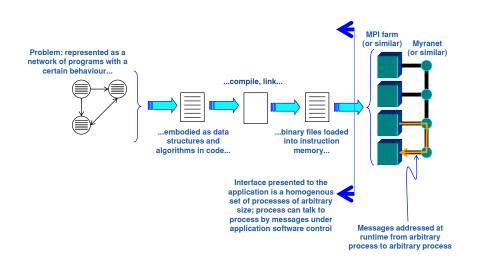
- Keeping up with technology.
- The roadside of history is littered with failed bespoke machines that were overtaken by conventional compute before their design was complete.

• Strike while the iron is hot!

The solution? Better communication!

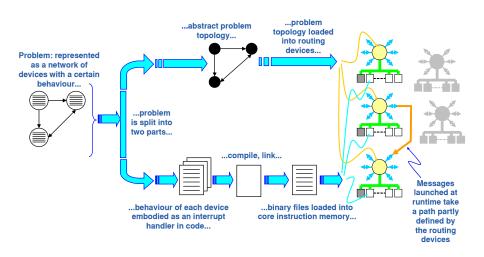
m.vousden@soton.ac.uk

Applications of Interest


Anything you can describe as a large graph of simple processes, communicating locally and asynchronously:

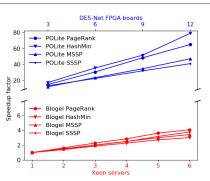
- Image processing
- ANN pattern recognition
- Neural simulation
- Finite differences/elements/volumes
- Particle and field
- Continuous, discrete simulation
- Financial fraud detection
- Linear algebra
- Ray tracing
- Weather modelling

- $10^3 \text{ neurons} \to \mathsf{Thread}$
 - Physics! Seismology!
 - $\mathsf{Volume} \to \mathsf{Thread}$
- on $\mathsf{Nodes} o \mathsf{Thread}$ Accounts and transactions $o \mathsf{Graph}$
 - Matrix-vector, matrix-matrix
 - $\mathsf{Pixels} \to \mathsf{Thread}$
 - Stiff problem, chaos!



Traditional Problem Flow

Event-Based Problem Flow

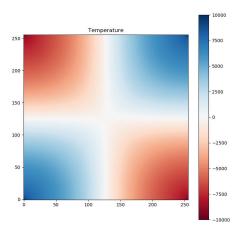


POETS

POETS Hardware (for now)

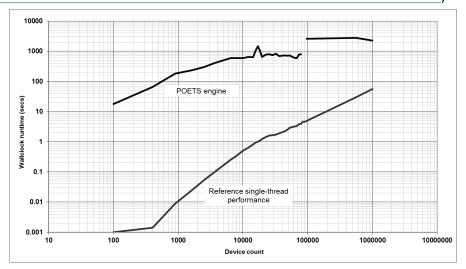
- **Eight x86 servers**, for hybrid compute and C&C.
- **56 DE5-Net FPGA boards** (seven per server, six for dedicated compute) each with:
 - 2×4GB DDR3 DRAM DIMMs
 - 4×8MB QDRII+ SRAM DIMMs
 - -4×10 Gb/s SFP+ ports (to connect them together)
 - 1 bespoke power management board for power switching, measurement, and health monitoring. FPGA power: 50W (busy).
- Custom overlay (Tinsel), providing per board:
 - 64 RISC-V multithreaded (16) barrel cores, $f_{\rm MAX} \approx 250 {\rm MHz}$ under high loading.
 - **16 FPUs**, with maximum latency of 14 cycles at $f_{\rm MAX}$.

POETS Power Benchmarks (vs. Xeon Cluster)



(Horizontal axis normalised by power consumption)

Naylor, M., et al. "Tinsel: a Manythread Overlay for FPGA Clusters." Field-Programmable Logic and Applications (FPL). Newcastle University, 2019.



Heated Plate on POETS

Heated Plate on POETS

